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0 Introduction

0.1 Objective and motivation

A handlebody Vg is a certain type of compact 3-manifold, having a closed oriented surface

of genus g as its boundary, and whose fundamental group is free on g generators. As is

true for all 3-manifolds, any conjugacy class of π1(Vg) can be realized as a curve without

self-intersections, but the same is not true of ∂Vg. The map π1(∂Vg) → π1(Vg) is well-

known to be surjective, but one can ask the natural question: Which homotopy classes

of curves in Vg (without basepoint) can be realized in ∂Vg without self-intersections?

By choosing an isomorphism φ : π1(Vg)→ Fg (where Fg is the abstract free group on

g generators), we define a conjugacy class of Fg to be geometric if it can be realized as a

simple closed curve in ∂Vg. It turns out that the property of being geometric is indepen-

dent of the choice of φ (Proposition 2.2). This tells us that geometricity makes sense as an

actual group-theoretical property of conjugacy classes in a free group, rather than being

just a geometric aspect of curves in a handlebody. The definition of geometricity can

actually be generalized to finite sets of conjugacy classes (multiclasses) of Fg, a multiclass

being geometric if there exist pairwise disjoint simple closed curves (a multicurve) on ∂Vg
realizing all conjugacy classes.

Knowing that a conjugacy class is geometric allows one to construct 3-manifolds with

boundary that have prescribed fundamental groups. For example, if the conjugacy class

w ⊆ Fg is geometric, then the manifold obtained by attaching a “thickened 2-cell” along a

regular neighbourhood of a curve on ∂Vg representing w has fundamental group Fg/〈〈w〉〉.
Taking this idea a step further, suppose multiclass w1, . . . , wn can be represented by

disjoint simple closed curves on ∂Vg cutting ∂Vg into a collection of punctured spheres

(that is, the curves form a Heegaard diagram). Then we can obtain a closed 3-manifold

with fundamental group Fg/〈〈w1, . . . , wn〉〉 by attaching to Vg a second handlebody of

the same genus along a suitable homeomorphism of the boundaries (for an introductory

account on Heegaard splittings, see for example [8]).

The main goal of the present thesis is to establish a criterion to determine whether

a multiclass is geometric. The answer to this question has been attributed (for instance

in [1]) to H. Zieschang, the original article being in Russian [13]. This is used in [1]

to characterize the broader concept of virtual geometricity: A multiclass {w1, . . . , wn} is

virtually geometric if there is a finite index subgroup G ≤ Fg such that the maximal cyclic

subgroups of G that are conjugate into the wj define a geometric multiclass A of G. In

the case of a single conjugacy class (say of w ∈ Fg), glueing two handlebodies modelling G

along a neighbourhood of a multicurve representing A in the boundary yields a manifold

whose fundamental group embeds in Dg(w) = Fg ∗
〈w〉
Fg. In [3], this was exploited for

finding surface subgroups of one-ended groups of the form Dg(w), after a question posed

by Gromov.

The fundamental result, which we shall prove, is the following.

Theorem 2.31 (Zieschang). Let A be a disk-busting multiclass of Fg and B◦ a free basis

for Fg such that lB◦(A) is minimal among all bases. Then A is geometric if and only if

WhB◦(A) has an admissible planar embedding.
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The above concepts shall be rigorously defined in the body of the text, but as an

overview:

1. A being disk-busting means that there is no factorization Fg = G1 ∗ G2 with each

w ∈ A represented in G1 or G2,

2. lB◦(A) denotes the length of the reduced multiword representing A in the basis B◦,

3. WhB◦(A) is the Whitehead graph, which is constructed by reading off that multi-

word (see Definition 2.9),

4. Admissibility of a planar embedding of WhB◦(A) is a compatibility condition be-

tween the embedding and an extra piece of structure that Whitehead graphs possess

(see Definition 2.13).

We will also present some results relating different isotopy classes of simple closed

curves in ∂V representing a fixed conjugacy class w. We construct the induced curve

graph Cw, whose vertices are such isotopy classes, with an edge between two classes if they

can be made disjoint. When w is the trivial conjugacy class, this is just the disk graph,

which has been studied before [4, 5]. We will see how Cw is related to the handlebody

group (see Definition 3.12) and present some results about its connected components.

0.2 Outline

In Part 1, we define and state basic properties of handlebodies Vg, and introduce disk

systems, collections of properly embedded disks in Vg that are the geometric incarnation

of free bases of π1(Vg). These allow us to represent the class of a curve in Vg by a word that

can be read off from the intersection pattern of the curve with the disks. The exposition

is loosely based on [8].

Part 2 is when we prove Theorem 2.31. After introducing geometricity of multiclasses

of Fg (Section 2.1), we tackle the problem of characterizing geometricity of a multiword

Λ (Section 2.2), that is, determining whether there exists a multicurve on ∂Vg whose

intersection pattern with some disk system is exactly the one given by Λ. The key lies in

a certain graph, the word graph, whose definition is a direct adaptation of the Whitehead

graph to the context of words. We answer this question with a criterion involving planarity

of the word graph of Λ, and an extra compatibility condition (Proposition 2.14). This

additional requirement is related to the ribbon structure (Definition 2.12) induced on the

word graph by such a planar embedding, and prompts the question of determining the

minimal genus of a closed oriented surface where a given ribbon graph embeds. As this

is a rather self-contained problem, it has been separated into Appendix A.

We then move towards translating a geometricity test for a multiclass A into a geo-

metricity test for some multiword Λ representing A, in an appropriate basis. In Section

2.3, we reduce the problem to the case where A is disk-busting. An algorithm for testing

separability of A and decomposing it into disk-busting parts is presented, closely follow-

ing [9]. In the process, we introduce Whitehead moves (Definition 2.20), a certain type

of basis change for Fg, and show how they can be realized geometrically as changes of

disk system. Still following [9], we also explain how separability of A can be realized
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geometrically, and this is used in proving Proposition 2.29, the main result of this section.

In Section 2.4, we import an algebraic fact about Whitehead moves (Proposition 2.30) to

finally prove Theorem 2.31.

We begin Part 3 with some preliminary concepts about curves on surfaces (Section

3.1), and in Section 3.2 we introduce the induced curve graph Cw and give an alternative

characterization of its edges (Theorem 3.8). In Section 3.3, we explain how Cw relates

to Dehn Twists and the handlebody group, and give a necessary condition for two iso-

topy classes to be in the same connected component, in the case where w is not in the

commutator of Fg (Theorem 3.17).

0.3 Preliminaries

0.3.1 Geometric topology

Throughout the text, we will shift between the topological and smooth settings as con-

venient, always assuming submanifolds intersect transversely (which is true up to mod-

ification by a small homotopy). We will never work with manifolds or cell complexes of

dimension greater than 3, so we can employ the techniques of piecewise-linear topology.

In particular, we will make extensive use, often implicitly, of the existence of regular

neighbourhoods of cell complexes embedded in manifolds.

Definition 0.1. Let X be a subset of a manifold M . A (closed) regular neighbourhood

of X is a neighbourhood that is homeomorphic to a mapping cylinder

Mf = (Y × [0, 1]qX)/(y, 1) ∼ f(y),

for Y ⊆ M a codimension 1 submanifold and f a map Y → X. Moreover, the inclusion

Mf ↪→M maps X to X and Y × {0} to Y in the obvious manner.

Another construction that will be routinely performed on a manifold is that of cutting

along a codimension 1 submanifold.

Proposition 0.2. Let M be a manifold (without boundary) and Y ⊆ M a codimension

1 submanifold. Then there exists a manifold with boundary M\Y and a natural map

M\Y → M , whose restriction to the interior of M\Y is a homeomorphism onto the

complement of Y in M , and ∂(M\Y ) maps onto Y as the sphere bundle of its normal

bundle.

This construction is unique, and generalizes to manifolds with boundary, in which

case we need to assume that Y is properly embedded in M .

Definition 0.3. Given an embedding f : Y ↪→ M between manifolds with boundary, we

say that Y is properly embedded in M if f(Y ) ∩ ∂M = f(∂Y ). In the smooth setting,

we further require that this intersection be transverse.

0.3.2 Low-dimensional topology

Definition 0.4. A simple closed curve in a manifold is an embedded submanifold that

is homeomorphic to S1.
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Frequently, these will also come equipped with a choice of orientation, or a distin-

guished basepoint.

Definition 0.5. A simple closed curve in a closed surface S is called essential if it

does not bound an embedded disk in S. For a 3-manifold M with boundary, a properly

embedded disk D in M is called essential if ∂D is essential in ∂M .

Definition 0.6. Let a, b be isotopy classes of simple closed curves in a surface. Their

geometric intersection number i(a, b) is the minimal number of intersection points of

a simple closed curve representing a, and one representing b.

Definition 0.7. Two (transverse) simple closed curves α, β in a surface are in minimal

position if |α ∩ β| = i([α], [β]).

We will make use of the well-known classification of surfaces, and occasionally of the

bigon criterion (Proposition 1.7 of [2]):

Definition 0.8. A bigon in a surface S is a pair of embedded arcs intersecting exactly

at their endpoints, whose union bounds an embedded disk in S. Two (transverse) simple

closed curves α, β in a surface are said to form a bigon if there is an embedded disk in S

whose boundary is the union of an arc form α, and one from β.

Proposition 0.9 (The bigon criterion). Two simple closed curves in a surface are in

minimal position if and only if they do not form a bigon.

0.3.3 Graph theory

We will appeal the following well-known result.

Theorem 0.10 (Kuratowski). A finite graph is planar if and only if it does not contain

(as a subgraph) a subdivision of K5, the complete graph on 5 vertices, or K3,3, the complete

bipartite graph on 6 vertices partitioned as 3+3.

At some point, we will need to think of an edge e of a graph Γ as comprised of two

segments, each adjacent to one of the endpoints of e. This is formalized as follows.

Definition 0.11. A half-edge of a graph is an edge of it barycentric subdivision.

If Γ is a directed graph, then its half-edges are also oriented, and we distinguish

between incoming and outgoing half-edges, depending on whether they are oriented

towards or away from their corresponding vertex of Γ. If h is a half-edge, we denote by h

its opposite, that is, the other half-edge coming from the same edge of Γ.
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1 Handlebodies

1.1 Definition and basic facts

The starting point of our discussion is a 3-manifold constructed as follows. Begin with

a finite disjoint union Q =
∐n
j=1D

3
j of copies of the 3-ball D3 := {x ∈ R3 | ‖x‖ ≤ 1},

and let E1, F1, . . . , Em, Fm be pairwise disjoint, embedded disks in ∂Q. Moreover, for

1 ≤ i ≤ m, let fi : Fi → Ei be orientation-reversing homeomorphisms, where the disks

inherit the induced orientation of D3 on S2. Finally, define V = Q/∼ to be the quotient

space obtained by “glueing the balls along the fi”, that is, by identifying q ∼ fi(q) for all

q ∈ Fi. The resulting space V is an oriented 3-manifold with boundary.

Definition 1.1. A space V constructed in this manner is called a handlebody if it is

connected.

Notice that connectedness of V implies that m ≥ n− 1.

Since the result of glueing two distinct balls along a pair of disks is homeomorphic to

a ball, we may modify our construction of V by replacing two distinct balls in Q, and

a pair of disks connecting them, with a single ball. If we do this n − 1 times, we get a

construction using only one ball. Hence, we could just as well have defined a handlebody

by starting with Q = D3. This observation will be used in proving the following result.

Proposition 1.2. Let V, V ′ be handlebodies constructed from n, n′ balls (respectively),

and let m,m′ be the number of pairs of disks being glued in each. Then V ∼= V ′ if and

only if m− n = m′ − n′.

Proof. (⇐) By the preceding remark, we may assume that n = n′ = 1. Since at each step

we decrease both m and n by 1 (and similarly for m′, n′), this implies m = m′. We then

use the following technical lemma, whose proof we omit.

Lemma 1.3. Let X,X ′ ⊆ S2 be finite disjoint unions of embedded disks, and h : X → X ′

an orientation-preserving homeomorphism. Then there exists a homeomorphism H : S2 →
S2 extending h.

Using the notation in the definition of handlebody, this implies our statement by taking

X =
⋃
i(Ei∪Fi), X ′ =

⋃
i(E
′
i∪F ′i ). Define h by mapping each Fi to F ′i via any orientation-

preserving homeomorphism hi, and map Ei to E′i via f ′i ◦ hi ◦ f
−1
i . Applying the lemma,

we get a map H : S2 → S2 that is compatible with the glueing maps. We now extend H

to the interior of D3 by regarding it as the cone of S2 (that is, D3 ∼= (S2× I)/(S2×{1})),
and sending (q, t) 7→ (H(q), t). This self-homeomorphism of D3 descends to the desired

homeomorphism V → V ′.

(⇒) ∂V is an oriented surface with Euler characteristic χ(∂V ) = nχ(S2) − 2m =

2n− 2m. Hence, m− n = −χ(∂V )/2.

From the classification of closed orientable surfaces, we deduce:

Corollary 1.4 (of proof). The quantity g = m− n+ 1 is the genus of ∂V .

This yields the following restatement of Proposition 1.2.

6



Corollary 1.5. Two handlebodies are homeomorphic if and only if their boundaries have

the same genus.

We will thus hereafter denote the handlebody of genus g by Vg.

Proposition 1.6. Vg is homotopy-equivalent to a wedge of g circles.

Sketch of proof. Again, we will use a construction of V from a single 3-ball. Choose

one point qi in the interior of each Fi ⊂ ∂D3, and consider the straight-line segment

connecting qi to the centre of D3. Do the same for the points of the form fi(qi). Now,

the map D3 → Vg takes the union Ŝ of all these segments to a wedge S of g circles.

With some work, one can find a strong deformation retraction D3 → Ŝ that descends to

a strong deformation retraction V → S.

It follows that the fundamental group π1(Vg) is isomorphic to Fg, the free group on g

generators. We further remark that, since the universal cover of a connected 1-dimensional

CW-complex is a (possibly infinite) tree, which is contractible, any handlebody is aspher-

ical, that is, it has trivial homotopy groups πi(Vg) for i ≥ 2.

1.2 Disk systems

In this section, we present an explicit, geometric way of constructing free bases for π1(Vg),

which will be a cornerstone of most of the text.

Definition 1.7. An ordered collection D = (D1, . . . , Dm) of pairwise disjoint, oriented,

properly embedded disks in Vg is called a disk system if cutting Vg along the disks yields

a single ball.1

A disk system D hence provides a way to exhibit Vg as a quotient Q/∼ (with Q a

single ball), as in the definition of a handlebody, so the equation g = m − n + 1 from

before tells us that m = g. We thus conclude that any handlebody has a disk system,

and a disk system for Vg contains exactly g disks. We will write Vg\D to denote the ball

that results from cutting Vg along the disks in D.

Definition 1.8. Two disk systems D = (D1, . . . , Dg),D′ = (D′1, . . . , D
′
g) are isotopic if

there exists an isotopy of Vg carrying one to the other.

A typical disk system is illustrated, for g = 3. Proposition 1.9 below tells us that this

example has full generality.

1In the literature, a disk system might refer simply to any collection of properly embedded essential
disks that are pairwise disjoint and non-isotopic. A system of disks in this broader sense may very well
disconnect Vg, or cut it into handlebodies of positive genus. The ones in our definition are commonly
called minimal disk systems.
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Figure 1.1: A disk system for V3. Arrows indicate the orientation of the disks.

Since the disks in D carry orientations, we can distinguish the disks Ei, Fi embedded

in the boundary of Q := Vg\D, that result from cutting Vg along the Di, as follows.

The Ei, Fi have natural orientations induced from the orientation of Q, so we declare

the homeomorphism Di → Ei to be orientation-preserving, and Di → Fi orientation-

reversing. We will stick to this convention for the remainder of the text.

We also collect the following result.

Proposition 1.9. If D = (D1, . . . , Dg),D′ = (D′1, . . . , D
′
g) are disk systems for Vg,

then there exists a self-homeomorphism of Vg carrying each Di to D′i in an orientation-

preserving manner.

Proof. We consider the result of cutting Vg along either D or D′. We get balls Q,Q′

with distinguished disks Ei, Fi, E
′
i, F
′
i on their boundaries. As was done in the proof

of Proposition 1.2, we choose orientation-preserving homeomorphisms Ei → E′i, Fi → F ′i ,

which are then extended to ∂Q→ ∂Q′ using Lemma 1.3, and finally to a homeomorphism

Q→ Q′. This descends to the desired self-homeomorphism of Vg.

A disk system D = (D1, . . . , Dg) for Vg will be used to define a basis for π1(Vg, p)

(for some point p away from the disks), that is, an isomorphism φD : π1(Vg, p) → Fg.
2

The idea is to, given an oriented loop α at p, construct a word on x1, x
−1
1 , . . . , xg, x

−1
g

that “tracks the intersections of α with the Di”. More precisely, starting at p with the

empty word, we traverse α and append xi to our word whenever α intersects Di with

positive orientation, and x−1i when it intersects Di with negative orientation. We denote

the resulting word by ωα (this notation will also be used when α is an oriented arc), and

this word represents the desired element φD([α]) ∈ Fg.

Lemma 1.10. φD is a well-defined group isomorphism.

Proof. Checking well-definedness is the hardest part. We first give a description of the

universal cover of Vg in terms of D. Let Ṽg be the quotient of a disjoint union of copies

of Q indexed by the elements of Fg:

Ṽg =

 ∐
w∈Fg

Qw

 /∼,

2Throughout the text, we shall use different notation to distinguish between the abstract free group
Fg, most often identified with π1(Vg), and the group Fg of words in the symbols x±1

1 , . . . , x±1
g up to

cancellation. A choice of basis for any free group is then exactly an isomorphism onto Fg.
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where the equivalence relation is given by qw ∼ fi(q)wxi , for q ∈ Fi and fi : Fi → Ei the

glueing maps. We illustrate (part of) the resulting space, in the case g = 2.

Figure 1.2: A portion of the space Ṽ2.

The natural maps Qw → Vg descend to a map Ṽg → Vg, which is actually a covering

map. By an argument similar to the one presented in the discussion preceding Proposition

1.6, one can show that Ṽg is homotopy-equivalent to a tree (an infinite one, if g ≥ 1), so

it is contractible, and thus Ṽg is indeed the universal cover of Vg.

Now, let α be an oriented loop at p, and denote by p1 the point in Ṽg above p in the

copy of Q indexed by 1 ∈ Fg. The lift α̃ of α starting at p1 ends at the point pw ∈ Qw,

where w ∈ Fg is represented by the word obtained by starting with the empty word, and

appending xi (resp. x−1i ) whenever α̃ goes into a copy of Fi (resp. Ei) and out of Ei (resp.

Fi). This corresponds precisely to appending xi when α intersects Di positively, and x−1i
when it intersects negatively. In other words, w is represented by ωα. Therefore, if α′

represents the same element as α in π1(Vg, p), in which case α̃′ has the same endpoint as α̃,

we conclude that ωα represents the same element as ωα′ in Fg, whence φD is well-defined.

It is also clearly a group homomorphism.

For injectivity, observe that an occurrence of the sub-word xix
−1
i in ωα corresponds to

a sub-arc of α hitting Di twice in succession with positive and then negative orientation,

but otherwise being disjoint from all disks. In Q = Vg\D, this corresponds to an arc from

Ei to Ei. Such an arc can be homotoped in Q to a neighbourhood of Ei, and then through

the disk Di in Vg, thus removing the sequence xix
−1
i from ωα. Similarly, we may remove

sub-words of the form x−1i xi. Thus, if ωα reduces to the empty word, we can modify α

enough times, until ωα is empty. The resulting α intersects none of the Di, so it lifts to

Q and is trivial.

For surjectivity, we need only to see that there exist loops in Vg whose corresponding

words are the generators xi, which is self-evident.
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Note that the isomorphisms φD, φD′ obtained from isotopic disk systems D,D′ are the

same. Indeed, an isotopy of Vg carrying D to D′ transforms any curve α into a curve with

the same intersection pattern with the D′ as the one of α with D.

For completeness, we collect one last general result about disk systems, whose proof

shall be given much later using tools that are yet to be introduced.

Proposition 1.11. Any free basis of π1(Vg, p) can be obtained from some disk system.

We remark that this is not a one-to-one correspondence, as the same basis can be

obtained from disk systems that are not isotopic. Consider, for example, the depicted

disk systems D,D′. By the bigon criterion, D1 and D′1 do not have isotopic boundaries,

but one can check on a free basis of π1(Vg, p) that φD = φD′ .

Figure 1.3: Two non-isotopic disk systems for V2 that give rise to the same basis of
π1(V2, p).

10



2 A theorem of Zieschang

2.1 Geometric conjugacy classes of Fg
Fix once and for all an isomorphism φ : π1(Vg, p) → Fg (assume p ∈ ∂Vg). We wish to

determine what elements of Fg correspond to homotopy classes that can be represented

by simple closed curves on ∂Vg. However, since we do not care so much about curves with

basepoints, we shift our attention to conjugacy classes, rather than actual elements of Fg.
Indeed, it is well-known that conjugacy classes of the fundamental group are the same as

homotopy classes of curves without basepoint. Also, fundamental groups of a topological

space X with respect to different basepoints are isomorphic via maps

π1(X,x)→ π1(X,x
′)

[α] 7→ [γ · α · γ−1],

where γ is any path from x′ to x, and different choices of γ yield isomorphisms that differ

only by conjugation with some element in π1(X,x
′). Therefore, we may unambiguously

talk about a conjugacy class in π1(X), without reference to basepoint.

Definition 2.1. A conjugacy class w ⊆ Fg is geometric if it corresponds to a (free)

homotopy class that can be represented as a simple closed curve α in ∂Vg. Such a curve

α is called a geometric realization of w.

More generally, a finite set A = {w1, . . . , wn} of conjugacy classes (a multiclass) of

Fg is geometric if there exist pairwise disjoint simple closed curves α1, . . . , αn (a multi-

curve) in ∂Vg with each αi being a geometric realization of wi. This multicurve is called

a geometric realization of A.

Our main goal is to devise an algorithm to decide whether a multiclass is geometric.

The reader may be displeased by the apparent dependence of this definition on the chosen

isomorphism φ. This choice is however immaterial:

Proposition 2.2. Let φ, φ′ : π1(Vg, p)→ Fg be isomorphisms. If a multiclass A of Fg is

geometric with respect to φ, then it is also geometric with respect to φ′.

To see why this is true, we will appeal to the following result, which is an easy

consequence of Proposition 1.9 and the yet unproven Proposition 1.11.

Lemma 2.3. The canonical group homomorphism Homeo(Vg, p) → Aut(π1(Vg, p)) is

surjective.

Here, Homeo(X,x) denotes the group of self-homeomorphisms of a space X fixing the

point x ∈ X, and Aut(G) denotes the group of automorphisms of a group G.

Proof of Proposition 2.2. Using Lemma 2.3, let f : Vg → Vg be a homeomorphism induc-

ing φ′−1 ◦ φ on π1(Vg, p), and suppose the curves α1, . . . , αn are a geometric realization

of A = {w1, . . . , wn} with respect to φ. If φ denotes the map induced by φ on the set of

conjugacy classes, this can be written as φ([αi]) = wi. We need only to observe that the

curves αi are taken by f to a geometric realization of A with respect to φ′:

φ′([f(αi)]) = φ′(φ′−1 ◦ φ([αi])) = wi.
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2.2 Geometricity of words

2.2.1 Cyclic words vs. conjugacy classes

At this point, it is useful to clarify some terminology, which will be extensively used.

Definition 2.4. 1. Lg shall denote the set of letters {x1, x−11 , . . . , xg, x
−1
g }.

2. By a word on Lg, we will strictly mean a (possibly empty) finite sequence of these

symbols, without cancellation (so the word x1x
−1
1 is different from the empty word).

When giving examples with a specific g, we may use simplified notation (say, write

x, y, z instead of x1, x2, x3).

3. A word is reduced if no two inverse symbols occur consecutively.

4. A cyclic word is an equivalence class of words, where two are identified if they can

be obtained from one another by a cyclic permutation of the symbols (for example,

the words xyz, yzx, zxy are all the representatives of a particular cyclic word).

5. A cyclic word is reduced if all its representatives are reduced (so as a cyclic word,

xyx−1 is not reduced).

Having fixed a disk system for Vg (hence a free basis for Fg), each element has a

unique reduced word representing it. Similarly, a conjugacy class can be represented by a

unique reduced cyclic word. Only rarely will we need to refer to elements in Fg and words

representing them – we will instead be focusing on conjugacy classes and cyclic words. For

that reason, we will not incorporate into our notation the distinction between elements

and conjugacy classes of Fg, or between words and cyclic words. We will however stick

to the convention of denoting a (cyclic) word by a Greek letter (most often ω), and an

element or conjugacy class by a Latin letter (most often w). This is similar to how we

typically name loops of in Vg (with or without basepoint) as α, β, . . ., but their homotopy

classes are a, b, . . .. If some free basis is implicit, the element or conjugacy class represented

by ω in that basis will be denoted by [ω]. Consistently with notation that was introduced

earlier, if a disk system for Vg is implicit and α is a closed curve in Vg, then ωα shall

denote the cyclic word tracking the signed intersections of α with the disks.

Our description of bases of π1(Vg) as disk systems suggests the following adaptation

of the definition of geometricity to (sets of) cyclic words.

Definition 2.5. A cyclic word ω on Lg will be called geometric if for some (hence any)

disk system D for Vg, there exists a simple closed curve α in ∂Vg with ω = ωα. α is then

a geometric realization of ω with respect to D.

A finite set Λ = {ω1, . . . , ωn} of cyclic words (a multiword) is geometric if for some

(hence any) D, there is a multicurve {α1, . . . , αn} with each αj a geometric realization of

ωj with respect to D.

(The statements in parentheses follow from Proposition 1.9.)

Rephrasing the property of a multiclass being geometric in terms of geometricity of

multiwords yields the following straightforward statement.
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Proposition 2.6. A multiclass A = {wj} of Fg is geometric if and only if for some

(hence any) free basis B for Fg, there exists a geometric multiword Λ = {ωj} such that

wj = [ωj ] in B.

(The statement in parentheses uses Proposition 1.11.)

We emphasize that the “only if” part of this proposition does not guarantee geometric-

ity of all multiwords Λ representing A – not even of the set of reduced cyclic words (the

reduced multiword).

Proposition 2.7. Let B be some basis of F4. There exists a geometric conjugacy class

w ⊆ F4 such that the reduced cyclic word representing w in B is not geometric.

Proof. Take w to be the conjugacy class represented in B by the reduced cyclic word

ω = x2yztz−1xy−1. In Section 2.2.3, we will see that ω is not geometric, but ω′ =

x2yztz−1xy−1zz−1 is. Thus w is geometric.

The existence of this example is perhaps surprising, as the cyclic word ω′ is, in some

sense, more complex than ω, so one might think it ought to be harder to draw a geometric

realization for it. Another way of phrasing this example is in terms of “waves”.

Definition 2.8. If D is a disk system for Vg, a wave γ is an embedded arc in Vg that

intersects exactly one disk of D, and this intersection is ∂γ. Moreover, the intersections

at each endpoint should have opposite orientations.

The claim in our previous example is therefore that if D is a disk system corresponding

to B and α is a geometric realization of w, then one of the arcs into which α is cut by D
is a wave. Indeed, such an arc corresponds precisely to the consecutive occurrence of two

inverse symbols in ωα.

Still, we will see that under some additional assumptions on A and B, it is true

that geometricity of a multiclass is equivalent to geometricity of the reduced multiword.

Proving this reduction will require a substantial amount of work, which we postpone.

For the remainder of Section 2.2, we focus instead on understanding when multiwords

are geometric, and in so doing we introduce a fundamental tool, to be used extensively

throughout this work.

2.2.2 Word graphs and Whitehead graphs

Definition 2.9. If Λ is a multiword on Lg, then the word graph Wh(Λ) is the directed

graph having Lg as its vertex set, and with one edge from y to z−1 for each occurrence of

the string yz in some cyclic word of Λ.

If A is a multiclass of Fg, and B is a free basis of Fg, the Whitehead graph WhB(A)

is the word graph of reduced multiword for A in the basis B.

The Whitehead graph was first introduced by J. H. C. Whitehead in [11, 12]. Orig-

inally, it arose on a different topological setting, where Fg was being regarded as the

fundamental group of a g-fold connected sum of copies of S1 × S2.

For our purposes, the motivation lies in the following construction. Fix a disk system

D for Vg, let Λ = {ω1, . . . , ωn} be a multiword in Lg, and let {α1, . . . , αn} be a multicurve
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in Vg with ωαj = ωj for all j. Cut Vg along D, and then collapse to points the 2g disks on

the boundary of the resulting ball Q. If none of the ωj is empty, then the arcs coming from

the αj , together with the collapsed disks, form a directed graph embedded in a 3-ball,

with the vertices on the boundary. This graph is precisely the word graph Wh(Λ), where

the vertices are labeled as xi or x−1i depending respectively on whether they come from

collapsing Ei or Fi.

More to our purposes, suppose Λ is geometric and {αj} is a geometric realization of

Λ. Then this embedding of Wh(Λ) is entirely contained in a 2-sphere. This observation

alone yields a first application of the word graph.

Proposition 2.10. The word graph of a geometric multiword is planar.

Sometimes, it will be convenient to refrain from collapsing the disks Ei, Fi, so we may

work with embeddings of word graphs or Whitehead graphs that have “thick vertices”.

We illustrate Proposition 2.10 with Λ = {ω}, where ω is the (geometric) cyclic word

xyz−1y−1.

Figure 2.1: A planar “embedding with thick vertices” of Wh({ω}), obtained by cutting a
geometric realization of ω along a suitable disk system.

As an example with g = 3, the cyclic word ω = x2y2z2xzy is not geometric, because

the underlying undirected graph of Wh({ω}) is K3,3, which is non-planar.

Since each occurrence of x±1i in a cyclic word of Λ contributes with one edge out of

the vertex labelled x±1i and one into x∓1i , we see that vertices that are inverse to each

other have the same degree. Moreover, the construction of Wh(Λ) provides canonical

bijections ηi (1 ≤ i ≤ g) from the set of half-edges incident with x−1i to the set of half-

edges incident with xi. These ηi map incoming half-edges to outgoing half-edges, and

vice-versa. Specifically, if a string of the form yxiz occurs in a cyclic word of Λ, then ηi
maps the half-edge into x−1i from y −→ x−1i to the half-edge out of xi from xi −→ z−1

(and similarly for a string yx−1i z). This additional piece of structure will be of paramount

importance in characterizing geometric cyclic words.

2.2.3 Testing geometricity of cyclic words

Planarity of the word graph is not a sufficient condition for geometricity of Λ. In this

section, we will prove a criterion that is actually necessary and sufficient, by inspecting

the embedding given by Proposition 2.10 and its relation with the bijections ηi. This
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involves an important feature of graphs embedded in oriented surfaces, for which we need

the following notion.

Definition 2.11. A total cyclic order C on a set X is a ternary relation C ⊆ X3

satisfying the following axioms, for all a, b, c, d ∈ X:

1. Cyclicity: (a, b, c) ∈ C implies (b, c, a) ∈ C,

2. Asymmetry: (a, b, c) ∈ C implies (a, c, b) /∈ C,

3. Transitivity: If (a, b, c) ∈ C and (a, c, d) ∈ C, then (a, b, d) ∈ C,

4. Totality: If a, b, c are all distinct, then (a, b, c) ∈ C or (a, c, b) ∈ C.

We will say that “b lies between a and c” to express the fact that (a, b, c) ∈ C (this

is of course not a synonym to “b lies between c and a”). For any cyclic order C, one can

define an opposite order C by

(a, b, c) ∈ C ⇐⇒ (a, b, c) 6∈ C.

If X is finite, then for each a ∈ X, there exists a unique b 6= a such that for every c

distinct from a and b, we have (a, b, c) ∈ C. This b is the successor of a. We also define

the predecessor of a to be its successor in C.

Importantly, the points in an oriented circle are totally cyclically ordered by setting

(a, b, c) ∈ C whenever the positively oriented arc from a to c contains b in its interior.

Definition 2.12. A ribbon graph is a graph together with total cyclic orders on the sets

of half-edges at each vertex.

Any finite graph embedded in an oriented surface S is naturally endowed with a

ribbon structure, by “reading the half-edges at each vertex v counter-clockwise”, which

we formalize as follows. First, choose a point in the interior of each edge (call it the

midpoint), and define the two connected components of its complement in the edge to be

the half-edges. Then, pick a closed disk D embedded in S containing v, small enough so

that D intersects no other vertex and no midpoint of any edge. Now, ∂D intersects all

half-edges incident with v, and for each such half-edge h, there is one intersection point

ph that is closest to v along h. We endow the set of all such points with the total cyclic

order inherited from ∂D, and carry this cyclic order to the half-edges themselves. This

construction is independent of the choices of midpoints and of D. In particular, D can

be made arbitrarily small.

We are now ready to state and prove the main result of this section.

Definition 2.13. A ribbon structure on a word graph is admissible if the cyclic orders

are reversed by the bijections ηi. A planar embedding of a word graph is admissible if it

induces an admissible ribbon structure.

Proposition 2.14. A multiword Λ in Lg is geometric if and only if there exists an

admissible planar embedding of Wh(Λ).
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Proof. (⇒) Consider the ribbon structure on Wh(Λ) induced from the planar embedding

given by Proposition 2.10. For each 1 ≤ i ≤ g, there are obvious bijections

Di ∩
⋃
j

αj ←→ Ei ∩

⋃
j

αj\D

 ←→ {half-edges of Wh(Λ) at xi}.

Here,
(⋃

j αj\D
)

denotes the collection of arcs obtained from the αj after cutting Vg along

D. The bijection on the left preserves the natural cyclic orders by our convention that

Di → Ei is orientation-preserving, and one can see by definition of the ribbon structure

on Wh(Λ) that the bijection on the right also respects cyclic orders.

Similarly, there are bijections

Di ∩
⋃
j

αj ←→ Fi ∩

⋃
j

αj\D

 ←→ {half-edges of Wh(Λ) at x−1i },

but this time, the bijection on the left is order-reversing. Since ηi is the composition of

all these, we conclude it reverses the cyclic orders at each pair of inverse vertices.

(⇐) We need to construct a geometric realization of Λ, given an embedding of Wh(Λ)

in S2 inducing an admissible ribbon structure. At each vertex v of Wh(Λ), find a disk

D embedded in S2 as in the construction of the cyclic ordering of the half-edges. Thus,

D contains v and ∂D intersects each half-edge incident with v. We assume that all

intersections of ∂D with the edges of Wh(Λ) are transverse, and all 2g disks are disjoint.

We now modify D so that ∂D ∩Wh(Λ) consists precisely of one point of each half-edge

incident with v. We do this by noticing that a point p of intersection of ∂D with another

half-edge, or that is not closest to v along the half-edge that contains it, may be removed.

Indeed, if we start at such a point p and traverse the edge containing p towards the interior

of D, we will cross ∂D again and leave D. Thus, this arc we traversed cuts D into two

disks, of which only one contains v. We may therefore modify D so as to discard the

other, along with p:

Figure 2.2: Modifying D so that each half-edge at v intersects ∂D exactly once.

After doing this enough times, we obtain D as stated.

The resulting disks will be called Ei, Fi, according to whether they contain the vertices

xi, x
−1
i , respectively. The intersection points of Wh(Λ) with their boundaries are naturally

identified with the half-edges of Wh(Λ), and thus the bijections ηi can be regarded as maps

Wh(Λ)∩∂Fi →Wh(Λ)∩∂Ei. Now, the assumption that the ηi are order-reversing allows

us to construct orientation-reversing homeomorphisms ∂Fi → ∂Ei that restrict to ηi.

These homeomorphisms can in turn be extended to the interior of the disks, yielding

glueing maps fi : Fi → Ei, which we use to construct Vg. After glueing, the portion of
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Wh(Λ) away from the interior of the disks has become a multicurve in ∂Vg realizing Λ

geometrically.

We now provide an example of a multiword Λ that is not geometric, even though its

word graph is planar. With g = 2, let Λ be comprised solely of the cyclic word x2yxy−1.

Wh(Λ) is depicted below.

The half-edges have been labelled in order to indicate the ηi. For this specific planar

embedding, the bijection between the half-edges at x−1 and x does not reverse the induced

cyclic order, so this embedding is not admissible. But for any embedding of Wh(Λ) in

S2, the triangle formed by the vertices x, y, x−1 separates S2 into two disks, and the

induced ribbon structure on Wh(Λ) is completely determined by which of them contains

the remaining vertex y−1. Neither choice results in an admissible ribbon structure, so Λ

is not geometric.

In the proof of Proposition 2.7, we stated that the reduced cyclic word ω = x2yztz−1xy−1

is not geometric, yet any conjugacy class of Fg represented by ω (in some basis) is geo-

metric, since ω′ = x2yztz−1xy−1zz−1 is geometric. The situation becomes clear once we

contemplate the relevant word graphs, shown below with the differences highlighted in

blue.

Wh({ω}) :

Wh({ω′}) :

One of the connected components of Wh({ω}) is a subdivision of the word graph

from the previous example, and the same argument shows it does not have an admissible

embedding. However, the planar embedding of Wh({ω′}) above is admissible. The extra

syllable zz−1 in ω′ results in a loop that allows the “last edge” to hit the vertex x−1 on

the correct side. This loop corresponds to a wave in the geometric realization of w.

As an application of the other direction of Proposition 2.14, we have the following

result.

Corollary 2.15. If each variable occurs in Λ at most twice, then Λ is geometric.
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To clarify, in each cyclic word we count every occurrence of xi and x−1i . For example,

x occurs twice in each of x2, xx−1 and x−2. We then add up these numbers over all words

in Λ.

Proof. Wh(Λ) has all vertices of degree at most 2. Hence, it cannot contain a subdivision

of K5 or K3,3, and so by Kuratowski’s Theorem, it is planar. But again since there are

at most two half-edges at each vertex of Wh(Λ), the ribbon structure will be comprised

only of empty cyclic orders, thus being trivially admissible.

The usefulness of Proposition 2.14 depends on our ability to tell whether a given

ribbon graph can be embedded in S2 in a manner that preserves its ribbon structure.

This is related to the following concept.

Definition 2.16. The genus g(Γ) of a finite graph Γ is the smallest genus of a closed

oriented connected surface where it embeds. If Γ is a ribbon graph, we further require that

the ribbon structure be induced by the embedding.

In Appendix A, we show that this notion is well-defined (that is, a minimal surface in

this sense always exists), and give a method to compute the genus of any ribbon graph.

Having such a procedure in hand, testing geometricity of a multiword Λ is reduced to an

algorithmic task, since one needs only to go through all admissible ribbon structures on

Wh(Λ) (of which there are only finitely many), and test if any of them has genus 0.

2.3 Separability

2.3.1 Disk-busting conjugacy classes

We now set out to translate our original problem – determining if a multiclass A is

geometric – into a geometricity test for some multiword Λ representing A in an appropriate

basis. The first step is to reduce the problem to the case where A does not have the

following property.

Definition 2.17. A multiclass A of Fg is separable if there exists a non-trivial factor-

ization Fg = G1 ∗G2 as a free product, with each w ∈ A having a representative in G1 or

G2. If A is not separable, it is called disk-busting.

The second definition is motivated by the following fact.

Proposition 2.18. Suppose A is a multiclass of Fg, and let {αj} be a set of closed

curves in Vg representing A (not necessarily simple closed curves in the boundary). If

there exists some essential, properly embedded disk D in Vg disjoint from all αj, then A is

separable. Moreover, there is a disk system D = (D1, . . . , Ds, Ds+1, . . . , Dg) so that each

αj is disjoint from either the D1, . . . , Ds or the Ds+1, . . . , Dg.

Proof. We construct D as follows:

Case 1: If D disconnects Vg, then cutting along D produces two handlebodies Vs, Vg−s
of positive genus (since D is essential), each with a marked disk E,F on its boundary,

with E,F disjoint from the αj . One can then find disk systems (D1, . . . , Ds) for Vs,

(Ds+1, . . . , Dg) for Vg−s, which can be arranged to miss E,F . Together, these disk systems

lift to a disk system D = (D1, . . . , Ds, Ds+1, . . . , Dg) for Vg.
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Case 2: If cutting along D does not disconnect Vg, we complete D to a disk system

D = (D1, . . . , Dg−1, D = Dg). In this case, s = g − 1.

In either case, if (b1, . . . , bs, bs+1, . . . , bg) is the basis given by D, then setting G1 =

〈b1, . . . , bs〉, G2 = 〈bs+1, . . . , bg〉 gives a factorization Fg = G1 ∗ G2 showing that A is

separable.

In Section 2 of [9], Stallings describes an algorithm for determining whether a mul-

ticlass A is separable. The space used to model Fg is a the g-fold connected sum

Wg := (S1 × S2)#g, which is actually the same as a pair of handlebodies of genus g

glued along their boundary via the identity map. The role of our disk systems is, in that

case, played by collections of g spheres, and cutting along such systems of spheres yields

a space that is homeomorphic to S3 with 2g open balls removed. This is where word

graphs are naturally seen, in that context.

Both Wg and the handlebody picture in the previous proof, where we allow curves to

be embedded in the interior of Vg, are more flexible models for studying abstract group-

theoretical properties of Fg. Indeed, for any system of spheres/disks, we can represent a

multiclass A by a multicurve without waves (whose definition is adapted in the obvious

manner). This means that for any choice of basis B, we can represent A by curves tracking

the reduced cyclic words representing A in B, and so after cutting Wg or Vg along the

system of spheres/disks, we always recover the picture of WhB(A) (rather than just some

word graph). As we saw before, this is radically different from what happens when we

insist that the curves lie in ∂Vg. These models are of course not so closely related to our

endeavour of characterizing geometricity, but they should nevertheless be kept in mind.

Here is one application, which is the first ingredient in Stallings’ proof:

Proposition 2.19. Let A be a multiclass of Fg. If there is a basis B of Fg such that

WhB(A) is disconnected, then A is separable.

Proof. Write WhB(A) as a non-trivial disjoint union Γ1 t Γ2, and consider the Vg model

with A represented by curves in the interior of Vg without waves. For D a disk system

representing B, cutting Vg along D yields an “embedding” of WhB(A) in Q = Vg\D (with

vertices replaced by disks in ∂Vg). Find a properly embedded disk D in Q disjoint from

the Ei, Fi ⊂ ∂Q, so that each ball into which D cuts Q contains the vertex set of one

of the Γi. Homotope all edges relative endpoints, so that the curves representing A are

disjoint from D in Vg. Proposition 2.18 finishes the job.

2.3.2 Whitehead moves

Definition 2.20. An automorphism of Fg is called:

1. simple, if it is induced by a permutation of Lg,

2. of type T, denoted Tv,V , if there exist a letter v ∈ Lg and a subset V ⊂ Lg
containing v but not v−1, such that Tv,V fixes v, and for xi 6= v, v−1, it is given by

xi 7→


xi if xi, x

−1
i 6∈ V

xiv if xi ∈ V, x−1i 6∈ V
v−1xi if xi 6∈ V, x−1i ∈ V
v−1xiv if xi, x

−1
i ∈ V

,
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3. a Whitehead automorphism, if it is of either of the previous two types.

A change of free basis of Fg from B to B′ is called a Whitehead move if the basis

change map φB′ ◦ φ−1B : Fg → Fg is a Whitehead automorphism.

Whitehead moves lie at the heart of Stallings’ proof, and much like Whitehead graphs,

they have a rather vivid geometric interpretation. If B is the basis for Fg induced by

some disk system D, then a simple Whitehead move corresponds to a reordering of the

disks in D, possibly with a change of orientation of some of them.

Whitehead moves of type T are more interesting. Consider the picture of Q = Vg\D,

with embedded disks Ei, Fi in ∂Q, identified, respectively, with the letters xi, x
−1
i . Let

v, V be as in the above definition, and draw a new properly embedded disk D in Q

disjoint from the disks Ei, Fi, such that in Q\D, the Ei, Fi are partitioned into V and its

complement. Moreover, let the basepoint p of Vg lie in the connected component of Vg\D
that does not contain the elements of V , and orient D so that its negative side is facing

the elements of V .

Since each of v, v−1 lies in a different side of D in Q, if we cut Q along D and then

glue back the “thick vertices” v, v−1, we again obtain a 3-ball. This shows that if, in D,

we replace the disk corresponding to v, v−1 with D, we obtain a disk system. One can

check, by drawing generators and seeing how they intersect the new disk system, that

the corresponding change of basis is precisely the Whitehead move given by Tv,V . Such a

disk D will be said to model the Whitehead move, and by “realizing a Whitehead move

geometrically”, we shall mean performing the change of disk system we just described.

Any Whitehead move can thus be specified just by choosing D and selecting a compatible

letter v ∈ Lg. As an example with g = 3, the disk D pictured below could be used to

model the Whitehead moves given by V = {x, x−1, y−1, z} and v = y−1 or v = z.

Figure 2.3: A disk D modelling the Whitehead moves given by Ty−1,V or Tz,V , where
V = {x, x−1, y−1, z}.

This new language warrants a second inspection of the proof of Proposition 2.19. If

we translate the two cases in the proof of Proposition 2.18 into the context of Whitehead

graphs, Case 1 corresponds precisely to the situation where the vertex sets of the two

subgraphs Γ1,Γ2 are closed under inverses. In that case, the induced partition of B gives

the desired splitting of Fg. In Case 2, the disk D can be made to correspond to a rank 1
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free factor in which none of the conjugacy classes of A is represented. Since we are in the

situation where there is a vertex v ∈ Γ1 such that v−1 ∈ Γ2, our geometric interpretation

of Whitehead moves tells us we can obtain from B a basis compatible with such a splitting

by orienting D so that its positive side is facing Γ2, and applying the Whitehead move

given by Tv,V , where V is the vertex set of Γ1.

2.3.3 Testing separability

The second ingredient for the separability test, whose proof will be omitted, is a result

shown in [9] by employing a method of Whitehead from [11], where the “sphere model”

Wg is heavily used. A different proof can be found in [10], using a generalization of

Whitehead graphs.

Definition 2.21. A vertex v of a graph Γ is called a cut vertex if the graph Γ\v, obtained

from Γ by removing v and all edges incident with v, has more connected components than

Γ.

Proposition 2.22. If a multiclass A is separable and B is a basis for Fg with WhB(A)

connected, then WhB(A) has a cut vertex.

The last ingredient is the following lemma.

Definition 2.23. Let A be a multiclass in Fg, and B a free basis. The length of A relative

to B, denoted lB(A), is the sum of the lengths of the reduced cyclic words representing A

in B, or, equivalently, the number of edges in WhB(A).

Lemma 2.24. Suppose WhB(A) is connected and has a cut vertex v, so WhB(A) is the

union of two connected subgraphs Γ1,Γ2 whose intersection is exactly v, both containing

vertices other than v. Assume Γ2 contains v−1, and let V ⊂ Lg be the vertex set of Γ1.

If B′ is the basis obtained from B by applying the Whitehead move given by Tv,V , then

lB′(A) < lB(A).

Proof. Let D be a disk system for Vg corresponding to B, and represent A by a multicurve

{αj} in the interior of Vg, without waves. Draw a disk D properly embedded in Q = Vg\D
modelling the Whitehead move of interest and homotope the arcs in Q relative endpoints

so that all of them intersectD at most once. Thus, in the resulting picture, all intersections

of WhB(A) with D correspond to edges connecting Γ1 to Γ2, which are a proper subset

of the edges incident with v.
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Figure 2.4: A disk D modelling a Whitehead move given by Tv,V , where v is a cut vertex
of WhB(A). On the left of D we see the vertex set of Γ1, and the vertices on the right,
together with v, comprise the vertex set of Γ2.

Since there are no loops in WhB(A), or arcs from D back to itself, the αj form no

waves with the disk system D′ obtained by realizing our Whitehead move geometrically.

Hence, cutting Q along D and glueing the disks labelled v, v−1, we obtain Vg\D′ with the

embedded graph WhB′(A). Our lemma will follow if we show that the number of edges

in the new graph is strictly smaller than in the old one. Since vertices other than v, v−1

are not having their degrees changed, this is equivalent to the claim that the degree of v

(which is the same as that of v−1) has decreased. But the degree of v in WhB′(A) is the

number of edges intersecting D in the Q picture, and these are strictly fewer than the

edges incident with v.

Finally, we are ready to state the separability test for a multiclass A: Draw the

Whitehead graph WhB(A) for any basis B. If it is disconnected, Proposition 2.19 shows

A is separable, and provides a compatible factorization of Fg. Otherwise, look for a cut

vertex. If none exists, we conclude by Proposition 2.22 that A is not separable. If there

is a cut vertex, perform the Whitehead move dictated by Lemma 2.24, and repeat with

the new basis. This step reduces the length of A, which cannot decrease indefinitely,

so eventually we reach either a disconnected graph, or a connected graph without cut

vertices.

2.3.4 Geometric separability

The goal of this section is to show that geometricity of a separable multiclass A of Fg is

equivalent to geometricity of each of its parts in the free factors of Fg. The main idea we

will need is that “algebraic separability implies geometric separability”. More precisely,

we aim to prove the following result, using the approach in Section 3 of [9].

Proposition 2.25. If A is a geometric multiclass, with {αj} a geometric realization,

and A is separable, then there exists an essential properly embedded disk D in Vg that is

disjoint from all αj.

The geometric constraints in this setting require us to replace the concept of length

from before with a different notion.
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Definition 2.26. Let {αj} be a multicurve in Vg, and D = (D1, . . . , Dg) a disk system

for Vg. The complexity of the multicurve (relative to D) is either of the following equal

numbers:

1. the total number of intersections of the αj with the Di,

2. the sum of the lengths of the cyclic words ωαj ,

3. the number of edges in Wh({ωαj}).

As we have seen, when given a geometric multiclass A and a disk systemD representing

a basis B, it may be impossible to find a geometric realization of A such that cutting Vg
along D yields an embedding of WhB(A), as there may be waves which we cannot get rid

of. The following result tells us that if the disk system is chosen carefully, this is not an

issue.

Proposition 2.27. Let {αj} be a multicurve in ∂Vg. Then for any disk system D, there

is a system D′ such that the αj form no waves with D′, and the complexity of {αj} relative

to D′ is no more than with respect to D.

If A is a geometric multiclass, then by taking {αj} to be a geometric realization of

A, this result implies that there is some free basis B of Fg for which WhB(A) has an

admissible planar embedding.

Proof. If the curves form no waves with D, then there is nothing to prove. Otherwise,

cut Vg along D. Any wave becomes an embedded arc γ in the boundary of Q = Vg\D,

connecting two boundary points of one of the Ei, Fi. For concreteness, say it is Ei. A

small closed regular neighbourhood of ∂Ei ∪ γ in ∂Q has three circles as its boundary,

only one of which separates Ei from Fi. Let D be an oriented, properly embedded disk

in Q having this circle as its boundary.

Figure 2.5: Using a wave at a disk Di of D to construct a disk D having fewer intersections
with the αj .

Replacing Di with D in D yields a new disk system D1, as D models a Whitehead

move of type T. Moreover, this change introduces no new intersections of the αj with the

disk system, and removes the intersections with one of the two arcs into which γ cuts Di.
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Hence, the complexity of {αj} relative to D1 is strictly less than with respect to D. Since

complexity cannot decrease indefinitely, if we iterate this procedure enough times we will

eventually reach a disk system for which there are no waves.

Proof of Proposition 2.25. Start with any disk system D, and apply the following steps:

1. Use Proposition 2.27 to modify D without increasing complexity, so the αj form no

waves.

2. Cut Vg along D. Since there are no waves, we get an “embedding with thick vertices”

of WhB(A) in the boundary of Q = Vg\D, where B is the basis represented by D.

(a) If WhB(A) is disconnected, one can find a properly embedded disk D in Q

disjoint from the Whitehead graph, with connected components of the graph

in either side of D. Hence, D is essential in Vg, as desired.

(b) If WhB(A) is connected, Proposition 2.22 gives a cut vertex, which corresponds

to one of the disks Ei, Fi (say Ei, for concreteness). In the disk ∂Q\E̊i, draw an

arc γ connecting two points of ∂Ei, but otherwise disjoint from WhB(A), such

that each side of γ contains some connected component of WhB(A)\Ei. Then,

perform a similar construction as in the proof of Proposition 2.27: Choose a

small regular neighbourhood of ∂Ei∪γ in ∂Q and use the boundary component

that separates Ei from Fi to produce a properly embedded diskD inQ. Replace

Di in D with D to obtain a new disk system, strictly reducing complexity.

Return to step 1.

Since complexity cannot decrease indefinitely, we eventually land in step 2.(a).

For our purposes, the usefulness of Proposition 2.25 lies in the following corollary:

Corollary 2.28. Suppose A is geometric. Then there exits a (possibly trivial) factoriza-

tion Fg = G1 ∗ . . . ∗ Gm ∗ H and a partition A = A1 t . . . t Am such that each Ak is

represented in Gk, and Ak is disk-busting and geometric in Gk.

Proof. The essence of the proof is the following statement.

Claim: Suppose we have a (possibly trivial) factorization Fg = G∗H and a disk system

D = (D1, . . . , Dr, Dr+1, . . . , Dg) for Vg giving a compatible basis (b1, . . . , br, br+1, . . . , bg),

that is, (b1, . . . , br) is a basis for G and (br+1, . . . , bg) is a basis for H. Moreover, let A

be a geometric multiclass, and {αj} a geometric realization such that the αj intersect

none of the disks Dr+1, . . . , Dg. Then, if A is separable in G, we can replace the disks

D1, . . . , Dr from D with D′1, . . . , D
′
s, D

′
s+1, . . . , D

′
r such that each αj intersects only the

D′1, . . . , D
′
s, or only the D′s+1, . . . , D

′
r.

To justify this fact, we cut Vg along the disks Dr+1, . . . , Dg, thus recovering a han-

dlebody Vr in which A is geometrically realized. Moreover, there are marked disks

Er+1, Fr+1, . . . , Eg, Fg in ∂Vr that are disjoint from the curves αj . Since A is sepa-

rable, by Proposition 2.25 there is an essential properly embedded disk D in Vr dis-

joint from the αj . By Proposition 2.18, we can modify (D1, . . . , Dr) to a disk sys-

tem (D′1, . . . , D
′
s, D

′
s+1, . . . , D

′
r) for Vr that gives a basis compatible with a non-trivial

factorization G = G1 ∗ G2, so that each curve in A intersects only the D′1, . . . , D
′
s,
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or only the D′s+1, . . . , D
′
r. These disks can be modified slightly so as to avoid the

Er+1, Fr+1, . . . , Eg, Fg, and thus lift to Vg, replacing D1 . . . , Dr in D. This proves the

claim.

We now explain how to deduce the corollary. If A is disk-busting, there is nothing to

prove. Otherwise, applying our claim with H trivial and D any disk system for Vg will

give a non-trivial factorization of Fg with a new, compatible disk system, together with

a (possibly trivial) partition of A. We then ask whether any part Ak of A is separable in

the respective factor Gk, and apply the claim again with A = Ak, G = Gk. We iterate

this argument, each time further refining the partition of A and the factorization of Fg,
and we eventually reach a point where all Ak are disk-busting in Gk. Some rank 1 factors

of Fg (coming from applications of Proposition 2.18 where the disk D falls into Case 2

of the proof) will have no conjugacy classes represented in them, and we group them all

into the factor H in the statement of the corollary.

The desired reduction of the geometricity test to disk-busting multiclasses is contained

in the following proposition, of which we give only a partial proof.

Proposition 2.29. Let A = A1 t . . .tAm be a multiclass of Fg = G1 ∗ . . . ∗Gm ∗H such

that each Ak is non-empty and disk-busting in Gk. Then A is geometric in Fg if and only

if each Ak is geometric in Gk.

Proof. (⇐) Choose a disk systemD for Vg corresponding to a basis of Fg that is compatible

with the given factorization, and let Q = Vg\D. For each 1 ≤ k ≤ m, draw a simple closed

curve γk on ∂Q separating the Ei, Fi ⊂ ∂Q coming from disks Di that correspond to basis

elements in Gk, from the other Ei, Fi. Moreover, make it so that the αk are pairwise

disjoint. (One way to obtain such curves would be to, for each k, connect the relevant

Ei, Fi by a minimal number of paths in ∂Q, constructing a “tree with thick vertices”,

and then take the αk to be boundaries of small regular neighbourhoods in ∂Q of all those

trees).

Now, for each k, glue back the Ei, Fi corresponding to the basis elements in Gk, so

as to obtain a handlebody Vgk for which the natural map into Vg induces precisely the

inclusion Gk ↪→ Fg. Then, find a geometric realization of Ak in Vgk such that the curves

all lie on the same side of γk (this is not hard to arrange, since γk is just bounding a disk

in ∂Vgk). This guarantees that curves from geometric realizations of different factors are

disjoint. Hence, the geometric realizations of the Ak obtained in this manner lift to a

geometric realization of A in Vg.

(⇒) Corollary 2.28 tells us that the implication is valid for some factorization of Fg
and partition of A. It turns out that any other partition of A into disk-busting sets

must be the same, and corresponding factorizations Fg = G′1 ∗ . . . ∗G′m ∗H ′ have the G′k
conjugate to Gk. This is proved in [10] using the Wg model.

2.4 Testing geometricity of conjugacy classes

In this section, we finally provide a test for geometricity of a multiclass A. By the previous

results, we need only concern ourselves with the case where A is not separable. We will

make heavy usage of the geometric interpretation of Whitehead moves, and also of the

following algebraic fact, whose proof is omitted.
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Proposition 2.30. Fix a multiclass A of Fg and let f ∈ Aut(Fg) be such that f(A)

has minimal length among {φ(A) | φ ∈ Aut(Fg)} (in the canonical basis of Fg). Then

f factors as a composition fm ◦ . . . ◦ f1 of Whitehead automorphisms with the following

property: If we set A0 = A and Ak = fk ◦ . . . ◦ f1(A) for 1 ≤ k ≤ m, then the length l(Ak)

of Ak is always strictly less than l(Ak−1), unless Ak−1 is already of minimal length, in

which case l(Ak) = l(Ak−1).

Whitehead proved this result in [12] using topological arguments, but a purely alge-

braic proof in a more modern language can be found in [7].

Since this proposition implies that any change of basis can be obtained from a sequence

of Whitehead moves, and we have modeled such basis changes geometrically as changes of

disk system, we conclude that any basis of Fg can be realized by some disk system, that is,

we have proven Proposition 1.11. This was the missing piece in the proof of Proposition

2.2, so we can finally rest assured that the definition of geometricity of conjugacy classes

is independent of the identification Fg ∼= π1(Vg)!

We now present the main theorem of Part 2.

Theorem 2.31 (Zieschang). Let A be a disk-busting multiclass of Fg and B◦ a free basis

for Fg such that lB◦(A) is minimal among all bases. Then A is geometric if and only if

WhB◦(A) has an admissible planar embedding.

Proof. (⇐) This is just Proposition 2.6.

(⇒) All the hard work is contained in the following lemma.

Definition 2.32. Let A be a multiclass and B a basis of Fg. A Whitehead move B  B′

is optimal if lB′(A) is minimal among all Whitehead moves.

Lemma 2.33. Suppose A is a disk-busting geometric multiclass, D is a disk system, and

{αj} is a geometric realization of A without waves. If B is the basis represented by D and

B′ is obtained from B by an optimal Whitehead move, then there exists a disk system D′

corresponding to B′ such that the αj form no waves with D′.

Let us believe this lemma for the moment. If we start with a geometric realization

{αj} of A, we know from Proposition 2.27 that there exists some disk system forming

no waves with the αj . By Proposition 2.30, one can get from the corresponding basis

B to B◦ through a sequence of optimal Whitehead moves. Lemma 2.33 then tells us

that we can realize all these Whitehead moves by changes of disk system without ever

introducing waves, so in the end we reach a disk system D◦ for B◦ having no waves. Thus,

the reduced multiword Λ representing A in B◦ is geometric, and so Proposition 2.14 gives

an admissible planar embedding of Wh(Λ) = WhB◦(A).

Proof of Lemma 2.33. Draw some properly embedded disk D in Q = Vg\D modelling the

optimal Whitehead move. If the resulting disk system does not form waves with the αi,

we are done. Otherwise, observe that all waves come from edges of the embedded graph

WhB(A) ⊂ ∂Q intersecting ∂D more than once.

Suppose γ is an arc in ∂Q lifting to a wave in Vg, so γ is obtained by cutting an edge

of WhB(A) along two consecutive intersections with D. If v is the vertex defining our

Whitehead move, we know that v and v−1 lie in different components of Q\D. Let us
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say that v−1 is in the same side of D as γ (otherwise just interchange v and v−1 in what

follows). Moreover, suppose γ cuts ∂D into two arcs δ1, δ2, such that the region of ∂Q

bounded by δ2 and γ in ∂Q contains v−1, and the region U bounded by δ1 and γ contains

neither v nor v−1. Furthermore, we may assume that γ is innermost with these properties

along δ1, that is, no edge of WhB(A) has two consecutive intersections with D producing

an arc contained in U .

We will now modify D to a different disk D′ modelling the same Whitehead move,

but having fewer intersections with WhB(A). The construction depends on whether U

contains any vertex of WhB(A):

Case 1: If there are no vertices of WhB(A) in U , consider a small closed regular

neighbourhood of ∂D ∪ γ in ∂Q. Its boundary has three components, one of which

separates v−1 from v and U . If D′ is a properly embedded disk in Q having this boundary

component as ∂D′, then the partition of Lg induced by D′ is the same as that of D, so

D′, suitably oriented, models the same Whitehead move.

Figure 2.6: Using a wave to modify D and remove intersections with the αj , in the case
where U contains no vertex of WhB(A).

Case 2: If there are vertices of WhB(A) in U , then there are intersections of the edges

of WhB(A) with the interior of δ1, as WhB(A) is connected (from Proposition 2.19 and

the fact that A is disk-busting). If we start at any such intersection point and traverse

the corresponding edge towards the interior of U , then we will certainly not cross γ, and

the assumption that γ is innermost tells us that we will not cross δ1 either, so we will land

in a vertex inside U . On the other hand, if we start at an intersection of WhB(A) with

the interior of δ1 and instead traverse the edge away from U , there are three possibilities:

1. we land in a vertex,

2. we cross δ2,

3. we cross δ1.

We shall say that the intersections of WhB(A) with the interior of δ1 are of type 1, 2

or 3, according to where they fall in this division (note that intersections of type 3 come

in pairs).
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Figure 2.7: The classification of intersections of WhB(A) with δ1.

We now show that, as a consequence of our Whitehead move being optimal, there is

at least one intersection of type 2, which will allow us to construct D′. Let D̃ be the disk

whose definition is the same as D′ of Case 1. This time, the partition of Lg induced by D̃

is not the same as that of D, although D̃ still separates v from v−1. Let B̃ be the basis

obtained from B by the Whitehead move defined by D̃ (together with v).

We wish to compare lB′(A) and lB̃(A), so set ∆ := lB′(A)− lB̃(A). The only difference

between the cyclic words read off in the disk system representing B′, and those read off

in the one representing B̃ is the insertion of instances of v±1 in some of the former words.

These insertions correspond precisely to the intersections we discussed before. Specifically:

1. Each intersection of type 1 corresponds to an insertion of a symbol v±1 which is not

neighboured on either side by its inverse, so it contributes with +1 to ∆.

2. An intersection of type 2 corresponds to an insertion of the form xv  xv−1v or

v−1x  v−1vx, with x 6= v, v−1. This inserted symbol is thus part of a string of

alternating symbols v, v−1, and so the contribution of the intersection to ∆ is with

+1 or −1, depending on whether this string has even or odd length.

3. Intersections of type 3 come in pairs, and each pair corresponds to an insertion of

two consecutive, mutually inverse symbols. Hence the overall contribution of all

intersections of type 3 to ∆ is 0.

The hypothesis of B  B′ being optimal implies that ∆ ≤ 0. Therefore, from the

above facts we deduce that there are at least as many intersections of type 2 as there are

of type 1. Since some intersection exists (our very first remark since studying Case 2),

we will be able to conclude that an intersection of type 2 exists if we show that not all

intersections are of type 3. But if all intersections were of type 3, we would be able to

use the outermost arcs they define to draw a simple closed curve ε on ∂Q disjoint from

WhB(A), separating it into non-empty disjoint components:
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Figure 2.8: Having all intersections of δ1 and WhB(A) be of type 3 enables the construc-
tion of ε, contradicting connectedness of WhB(A).

Having shown, at last, that an intersection of type 2 exists, we illustrate the modified

disk D′. Again, notice that the partition it induces on Lg is the same as D.

Figure 2.9: Using a wave to modify D and remove intersections with the αj , in the case
where U contains some vertex of WhB(A).

This finishes Case 2.

We can keep modifying our disk as long as it forms waves with the αj , each time

decreasing the number of intersections with the curves, so we will eventually reach a disk

modelling our optimal Whitehead move, such that the resulting disk system D′ has no

waves, thus proving the lemma.

Having Theorem 2.31 in hand, we are ready to give an algorithm to test geometricity

of a multiclass A, given as a reduced multiword:

1. Using the algorithm at the end of Section 2.3.1, find a factorization Fg = G1 ∗
. . . ∗ Gm ∗H and a partition A = A1 t . . . t Am with each Ak disk-busting in Gk.

Perform the following steps for each Ak, and then geometricity of A is equivalent

to geometricity of each Ak by Proposition 2.29.

2. For A disk-busting in Fg, find a basis B for which lB(A) is minimal by searching

through all possible Whitehead moves (of which there are only finitely many) for

one that decreases the length of A, applying it, and repeating until no Whitehead

move decreases length. The resulting basis gives A minimal length as a consequence

of Proposition 2.30.
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3. If lB(A) is minimal, test geometricity of the reduced multiword Λ representing A in

B, as explained at the end of Section 2.2.3. By Theorem 2.31, geometricity of A is

equivalent to that of Λ.
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3 The induced curve graph

3.1 Curves on a surface

For this third part, we move towards relating distinct (as in non-isotopic) geometric

realizations of the same conjugacy class of Fg. In this section, however, we restrict

our attention to curves on a closed orientable surface S, not necessarily regarded as the

boundary of a handlebody.

Definition 3.1. The curve graph C(S) has as vertices the isotopy classes of (unoriented)

essential simple closed in S, with an edge between a, b whenever i(a, b) = 0.

The curve graph has been used in understanding the topology of 3-manifolds and

their Heegaard splittings [6]. Here, we present only the following property, whose proof

we adapt from [2].

Proposition 3.2. If S is not a torus, then C(S) is connected.

Proof. Given isotopy classes a, b, we will prove that there exists a path between them

by induction on i(a, b). If i(a, b) = 0, then they are connected by an edge and there is

nothing to show. For i(a, b) > 0, it suffices to show that there exists an essential isotopy

class c with i(a, c) < i(a, b) and i(b, c) < i(a, b).

Let a, b be represented by simple closed curves α, β with minimal intersection. If

i(a, b) = 1, then a closed regular neighbourhood of α ∪ β is homeomorphic to a torus

with one open disk removed. Since we are assuming S is not a torus, the boundary

component γ cannot bound a disk in S, so we may take c as the isotopy class of γ, for

which i(a, c) = i(b, c) = 0.

When i(a, b) ≥ 2, orient α, β and look at two intersections that are consecutive along

β. The two situations to consider are when α crosses β twice in the same direction, or in

opposite directions.

Figure 3.1: The construction of γ, the case where i(a, b) ≥ 2.

In the first case, we draw a curve γ that always lies to the right of α, except that it skips

one of the arcs of α between the two intersection points, as illustrated. Since γ intersects

α at a single point, it is essential, and for its isotopy class c we have i(a, c) = 1. Our

construction also ensures that γ skips one of the intersections with β, so i(b, c) ≤ i(a, b)−1,

as desired.

In the second case, we construct γ similarly, but justify it being essential by noting

that otherwise α and β would form a bigon and not be in minimal position. We get

i(a, c) = 0 and i(b, c) ≤ i(a, b)− 2, so we are done.
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The following construction will play an important role in the forthcoming.

Definition 3.3. Let α, β be disjoint simple closed curves in S, and δ an arc connecting

some point in α to some point in β, but which does not otherwise intersect α or β. A

regular neighbourhood of α∪β∪γ has three simple closed curves as boundary components,

one of which is isotopic to α, and another to β. We denote the third one by α ∗
δ
β, and

call it the slide of α over β along δ.

The curve α ∗
δ
β is only defined up to isotopy. If we have a preferred orientation for α,

we may use it to induce an orientation for α ∗
δ
β. Moreover, if α has basepoint p := α∩ δ,

we may modify α ∗
δ
β slightly in order to make it start and end at p, thus turning it into

a representative of [α] · [δ · β±1 · δ−1] ∈ π1(S, p) (where δ is oriented from α to β, β has

δ ∩ β as basepoint, and the sign depends on the orientation of β).

Figure 3.2: The slide construction.

It is interesting to note the following fact.

Proposition 3.4. In the setting of the previous paragraph, we have [α] =

[(
α ∗
δ
β

)
∗
δ
β

]
in π1(S, p).

Proof. We only need to observe that, if we traverse the curve on the right hand side, then

the second time we track β, we do it with the opposite orientation of the first passing.

Hence, the corresponding homotopy class is

[α] · [δ · β±1 · δ−1] · [δ · β∓1 · δ−1],

which yields [α] when all cancellation is done.

3.2 Edges in Cw
We now return to thinking of the surface of genus g as the boundary of Vg.

Definition 3.5. Let w be a conjugacy class in Fg. The induced curve graph Cw is the

full subgraph of C(∂Vg) whose vertices are isotopy classes of curves representing w (when

suitably oriented).

It is immediate from this definition that Cw is non-empty if and only if w is geometric.

In that case, and in contrast to what was seen in the previous section, Cw is in general

not connected. We now seek to better understand its connected components, for which

we shall make use of the slide construction from the previous section, in the case where

the curve β is a meridian.
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Definition 3.6. A simple closed curve in ∂Vg is a meridian if it bounds a disk in Vg.

Lemma 3.7. An oriented simple closed curve α in ∂Vg represents the trivial conjugacy

class of Fg if and only if it is a meridian.

Proof. The only non-obvious direction is (⇒). Using Proposition 2.27, we get a disk

system D with which α forms no waves, hence the disks in D are disjoint from α. Cutting

Vg along D makes α into an embedded simple closed curve in the boundary of a 3-ball,

where it obviously bounds a properly embedded disk. This disk now lifts to Vg.

The main result of this section gives an alternative characterization of the edges of

Cw:

Theorem 3.8. Let α, β be disjoint simple closed curves on ∂Vg. Then α, β represent the

same conjugacy class of Fg if and only if β is isotopic (in ∂Vg) to α∗
ε
γ, for some meridian

γ and arc ε.

It follows from this theorem that the second condition is symmetric with respect to α

and β, but that could already be deduced from Proposition 3.4. Another easy consequence

is the following:

Corollary 3.9. For w a geometric conjugacy class, Cw has edges if and only if w is

separable.

Proof. (⇒) If the isotopy classes of two geometric realizations of w are connected by an

edge in Cw, then they are of the form [α],
[
α ∗
ε
γ
]

for α a simple closed curve in ∂Vg and

γ a meridian. These classes can only be distinct if γ is essential, so by Proposition 2.18

we conclude w is separable.

(⇐) If w is separable and α is a geometric realization of w, then Proposition 2.25 gives

an essential, properly embedded disk D disjoint from α. If D is part of some disk system

(so Vg\D is connected), then ∂D is homologically non-trivial in ∂Vg, and on H1(Vg) we

have, for ε an arc connecting α to ∂D as above,[
α ∗
ε
∂D
]

= [α]± [∂D] 6= [α].

Thus, the isotopy classes of α and α ∗
ε
∂D are two distinct vertices of Cw connected by an

edge.

In the case where D cuts Vg into two handlebodies of positive genus (so ∂D is homo-

logically trivial in ∂Vg), one can find a properly embedded disk D′ as in the first case in

the connected component of Vg\D that does not contain α. We then carry out the same

argument.

Our proof of the implication (⇒) in Theorem 3.8 will have a somewhat combinatorial

flavor, making use of ideas we have touched on when discussing Whitehead graphs. One

can, however, use purely topological methods to prove the following weaker statement:

For every two disjoint, non-isotopic simple closed curves α, β ⊂ ∂V representing the same

conjugacy class w, there exists a disjoint essential meridian. This would be enough to

deduce Corollary 3.9.
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This quicker proof would roughly go as follows: We know α, β are homotopic in Vg, and

one can use techniques in geometric topology to obtain from one such homotopy a properly

embedded annulus A ∈ Vg whose boundary is α ∪ β. We then consider any properly

embedded disk D ⊂ Vg transverse to A, and modify it so as to eliminate intersections

with A: First we remove circles in D ∩A (using that Vg is aspherical), and then intervals

whose ends are on the same boundary component of A (surgering D along intervals that

are innermost in A). If D ∩ A is still non-empty, then all its components are intervals

with one end in α and one in β, and there is one such interval δ that is innermost in D.

In that case, one can show that α ∗
δ
β is an essential meridian.

Proof of Theorem 3.8. (⇐) Suppose that β ' α ∗
ε
γ. Let p = α ∩ ε be the basepoint for

both α and α ∗
ε
γ, and give α ∗

ε
γ the orientation induced from α. On π1(∂Vg, p), we have[

α ∗
ε
γ
]

= [α] · [ε · γ · ε−1] (for one possible orientation of γ). The second factor becomes

trivial in π1(Vg, p), so we conclude β is freely homotopic to α in Vg.

(⇒) Using Proposition 2.27, find a disk system D for Vg such that α, β form no waves

with D, so ωα, ωβ are reduced. Also, choose basepoints p, q for α, β, respectively, such

that the (non-cyclic) words ωα, ωβ are the same. We will write ωα = ωβ = y1 . . . yn, where

each yj stands for a symbol x±1i . We need one further assumption, whose justification

will take most of the remainder of the proof:

Claim: p, q can be chosen so that there is a path δ from p to q in ∂Vg that is otherwise

disjoint from α, β, and from the disks in D.

On the boundary of Q = Vg\D, after collapsing the disks to points, we see a planar

embedding of a graph Γ that resembles Wh({ωα}), except that all edges are doubled.

Label the vertices of Γ as x±1i accordingly. Even though Γ is not exactly a Whitehead

graph, much of the theory we developed still holds, namely, there are bijections between

the sets of half-edges at inverse vertices, and these bijections reverse the cyclic orders

induced from the planar embedding. Also, there are no loops, and two of the edges of

Γ have marked points p, q. We colour the edges depending on whether they come from

α (blue) or β (red), there being n edges of each colour. We denote by αj the blue edge

from yj to y−1j+1 corresponding to the syllable yjyj+1, and similarly for the red edges (the

indices are of course modulo n).

We may assume that one of the bigons formed by αn, βn in ∂Q is innermost among all

bigons formed by pairs of edges αj , βj (note the same index j). Otherwise, let αk, βk be

innermost in this sense and replace the basepoints p, q with points in αk, βk (shifting the

labelling of the αj , βj accordingly). This induces the same cyclic permutation on both

words ωα, ωβ, so they remain equal to one another.

Now, if there is a simple path on ∂Q from p to q that is otherwise disjoint from Γ, we

lift it to ∂Vg and take that as δ. If not, consider the disk U bounded by αn, βn witnessing

that our bigon is innermost. If we have failed to construct δ, there must be a path of Γ

inside U connecting the two endpoints yn, y
−1
1 of αn (and βn). For concreteness, assume

the first edge of this path lies between αn and βn in the cyclic order at yn (the other case

is analogous):
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If the path has length at least 2, then its second vertex is different from yn, y
−1
1 . Any

edge having that vertex as an endpoint (say, for instance, that it is blue) has its red

counterpart also inside U . This contradicts our bigon being innermost, so we conclude

that the path is comprised of a single edge (which we assume is blue – the other case is

analogous). Hence, Γ contains one of the following two subgraphs:

(1) (2)

We proceed to see why situation (2) cannot occur. The existence of this subgraph

tells us that yk = y−11 . In the cyclic order at y1, we find that αk−1 lies between α1, β1,

and βk−1 lies between β1, α1. Therefore, αk−1 and βk−1 are in different sides of the bigon

formed by α1, β1, so they must both be incident with y−12 :

This shows yk−1 = y−12 . Repeating this argument enough times, we eventually reach

one of two contradictions: Either k is even and we obtain y k
2
+1 = y−1k

2

(contradicting ωα

being reduced), or k is odd and we get y k+1
2

= y−1k+1
2

, which is also absurd. This rules out

(2).

A similar argument with (1) shows that yj+k = yj for all j, that is, our word is

invariant with respect to shifting by k positions.

At this point, our only obstruction to constructing δ is the existence of edges from

yn to y−11 between αn and βn (with respect to the cyclic ordering around yn). Some of

them might be blue, others red, but there have to exist two consecutive ones of a different

colour. By what we just saw, if we replace p, q by points in those consecutive edges, ωα, ωβ
remain unchanged. With these new basepoints p′, q′ we are surely able to construct δ:
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Figure 3.3: Using two edges from yn to y−11 of different color, that are adjacent in the
cyclic order at yn, to find new basepoints p′, q′ for α, β and construct δ.

This finishes the proof of the claim.

Now, let γ = α ∗
δ
β, with orientation induced from α. A glance at the bigon formed by

α0 and β0, together with the arc δ, reveals that γ traverses β with opposite orientation:

Figure 3.4: The image of γ after cutting Vg along D and collapsing the Ei, Fi. The dotted
path connecting p to γ is the one we will take as ε.

Therefore, since we constructed δ so as to not intersect any disk in D, we conclude

ωγ = ωαω
−1
β = ωαω

−1
α , so γ represents the trivial element in Fg, whence it is a meridian

by Lemma 3.7.

A dotted path was added in the above picture, which is the one we shall take as ε.

On π1(∂Vg, p), we then have[
α ∗
ε
γ
]

= [α · ε · γ−1 · ε−1] = [α · δ · β · δ−1 · α−1].

The last path is freely homotopic to β, so this finishes the proof.

We can use Theorem 3.8 to give a homological invariant for the connected components

of Cw, in the case where w is the conjugacy class of a non-zero power of a primitive element.

Definition 3.10. An element of Fg is primitive if it is part of some free basis.3

We will denote the standard generators of H1(∂Vg) ∼= Z2g as illustrated for g = 3.

3This is not widespread terminology. Often, an element of a group is called primitive if it is not a
proper power of any other element.
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Figure 3.5: The standard generators of H1(∂V3).

Let w be the conjugacy class of some non-zero power of a primitive element, and

choose a disk system D = (D1, . . . , Dg) such that w is represented by the cyclic word xk1
in the corresponding basis (k 6= 0). By Proposition 1.9, we may assume that the ∂Di, with

the induced orientations from Di, are the curves drawn above representing the homology

classes bi.

Corollary 3.11. Let α, β be geometric realizations of w as above. If their isotopy classes

are in the same connected component of Cw, then they represent homology classes whose

coefficients in b1 are the same.

As an example with g = 2, each of the isotopy classes depicted below lies in a distinct

connected component of Cx:

Figure 3.6: Three curves representing the conjugacy class of x ∈ F2. Their classes in
H1(∂V2) are, from left to right, a1, a1 − b1, a1 + b1.

Proof. It is enough to prove the result in the case where [α], [β] are connected by an edge.

By Theorem 3.8, we can write [β] =
[
α ∗
ε
γ
]

with γ a meridian. Fixing some orientation

for γ and using square brackets to denote homology classes, we have
[
α ∗
ε
γ
]

= [α]± [γ] .

Now, [α] has zero component in the ai for i 6= 1, and the coefficient in a1 is k. Since γ is

a meridian, [γ] has zero component in all the ai. We may therefore write

[α] = kai +

g∑
j=1

λjbj , [γ] =

g∑
j=1

µjbj .

Therefore, we need only to show is that µ1 = 0, which can be seen by looking at intersec-

tion products. We know α and γ are disjoint, so [α] � [γ] = 0, but since ai � bi = 1, we

have

[α]� [γ] =
(
kai +

∑
λjbj

)
�
∑

µjbj = kµi.

As k 6= 0, we conclude µi = 0.
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3.3 Cw and the handlebody group

One of the reasons to study the induced curve graph of a conjugacy class is its connections

to the mapping class group of ∂VG and the handlebody group. We define these concepts

in the present section, and explore some relations with Cw.

Definition 3.12. The mapping class group Mod(S) of a closed surface S is the

group of orientation-preserving self-homeomorphisms of S, up to homotopy. The han-

dlebody group Hg < Mod(∂Vg) is comprised of the classes of maps that extend to self-

homeomorphisms of Vg.

The following lemma tells us that this notion is well-defined.

Lemma 3.13. If f : ∂Vg → ∂Vg is a homeomorphism that extends to Vg and f ′ is

homotopic to f , then f ′ also extends to Vg.

Proof. Let F : Vg → Vg be an extension of f to Vg, and h : Vg × [0, 1]→ Vg be such that

h(−, 0) = f, h(−, 1) = f ′. We consider a closed regular neighbourhood N ∼= ∂Vg × [0, 1]

of ∂Vg, with i : ∂Vg × [0, 1]→ Vg taking ∂Vg × {1} to ∂Vg. To obtain an extension F ′ of

f ′, we define F ′ as F outside of N , and in N we map

i(x, t) 7→

{
F (i(x, 2t)) if 0 ≤ t ≤ 1

2

h(x, 2t− 1) if 1
2 ≤ t ≤ 1

.

To determine whether an element of Mod(∂Vg) is in Hg, we use the following propo-

sition.

Proposition 3.14. The following conditions on a self-homeomorphism f : ∂Vg → ∂Vg
are equivalent:

1. f extends to a self-homeomorphism of Vg,

2. f takes all meridians to meridians,

3. For some disk system D = (D1, . . . , Dg), f takes each ∂Di to a meridian.

Proof. The implications (1⇒ 2) and (2⇒ 3) are trivial.

To prove (3 ⇒ 1), we first show that the meridians f(∂Di) collectively bound a disk

system D′ = (D′1, . . . , D
′
g). By hypothesis, there exist properly embedded disks D′i having

f(∂Di) as boundary, however their interiors may intersect. Suppose D′2 intersects D′1
non-trivially. One can find a curve of intersection γ that is innermost with respect to

D′1 and, since Vg is aspherical, we can modify D′2 by homotoping the disk bounded by γ

through D′1, decreasing the number of components of D′1 ∩D′2. We repeat this until all

intersections of D′1 with D′2 are removed, and then remove all intersections of D′1 with

the remaining disks. Cutting Vg along D′1 allows us to now play the same game with D′2
without creating new intersections with D′1. If we do this with all disks, in the end all D′i
are disjoint (and the ∂D′i have not been changed). Since cutting ∂Vg along the ∂Di yields

a sphere with 2g open disks removed, and this property is preserved by f , we conclude

the D′i form a disk system.

38



We now extend f to Vg. First, define it in the interior of the Di as a collection of

homeomorphisms Di → D′i extending the map on the boundary. Then, cut Vg along D
or along D′ in order to obtain balls Q,Q′. We have a homeomorphism ∂Q→ ∂Q′, which

easily extends to the interior of Q, lifting to a homeomorphism of Vg.

An important type of mapping classes are Dehn twists, constructed in the following

manner. Start with a simple closed curve α in the surface S and find a closed regular

neighbourhood N of α, which is to be identified with [0, 1]×S1 in an orientation-preserving

fashion (where [0, 1] × S1 carries the orientation induced from the standard orientations

of [0, 1] and S1). Now, consider the self-homeomorphism φ of N ∼= [0, 1]× S1 given by

(t, eiθ) 7→ (t, ei(θ+2πt)),

and notice that it fixes ∂N ∼= {0, 1} × S1 pointwise. This means we can define an

orientation-preserving homeomorphism Tα : S → S by using φ on N and extending it to

the identity on the rest of S. It turns out that the mapping class of Tα is independent

of the choice of N , of the identification with [0, 1]× S1, and of the choice of α within its

isotopy class. Dehn twists are extensively discussed in [2], where it is shown that they

have infinite order in Mod(S), and that Mod(S) is always generated by finitely-many

Dehn twists.

We illustrate the effect of Tα on a curve β that intersects it. Explicitly, Tα inserts a

“left-handed spiral” about α at every intersection of β with α:

Figure 3.7: For each intersection of α with β, Tα appends to β a left-handed spiral about
α.

Similarly, T kα would insert a spiral going around α k times, where for negative values

of k this would correspond to a “right-handed” spiral. It should be stressed that this does

not depend on any sort of orientation of α. With this geometric intuition, we can see the

effect of Dehn twists on homology.

Lemma 3.15. If α, β are two simple closed curves in S, then on H1(S) we have

Tα([β]) = [β] + ([β]� [α])[α].

Proof. When traversing β, an intersection where α crosses from right to left contributes

with +1 to [β] � [α]. From the above picture we see that the spiral that Tα appends

has the same orientation as α, so this intersection contributes to Tα([β]) with +[α]. The

opposite occurs for crossings from left to right.

We now present the promised connection between Cw and Hg.
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Proposition 3.16. If [α], [β] are in the same connected component of Cw, then TβT
−1
α ∈

Hg.

Proof. It is sufficient to show the result in the case where [α], [β] are connected by an

edge, because then for any path [α] = [α0], [α1], . . . , [αk] = [β] in Cw, we get

TβT
−1
α = (Tαk

T−1αk−1
) . . . (Tα2T

−1
α1

)(Tα1T
−1
α0

) ∈ Hg.

If [α], [β] are connected by an edge, we can use Theorem 3.8 to write [β] =
[
α ∗
ε
γ
]
.

We will check condition 2 of Proposition 3.14 with a disk system D disjoint from γ (its

existence is assured by Proposition 2.27). Moreover, we may assume that D is disjoint

from the arc ε as well, by dragging any such intersections along ε, towards α, starting

with those closest to α:

Figure 3.8: Modifying ∂Di to remove intersections with ε.

We now draw α ∗
ε
γ and see what happens to ∂Di at each intersection with α when

TβT
−1
α is applied. Since γ is a meridian, α and α ∗

ε
γ are isotopic (in Vg). Thus, each

intersection of ∂Di with α contributes to a modification of ∂Di that, from the point of

view of π1(Vg), amounts to appending one curve followed by its inverse, as is illustrated:

Figure 3.9: The effect of TβT
−1
α on ∂Di.

Hence, TβT
−1
α (∂Di) remains a meridian, and since this is true for all intersections and

all Di, we conclude TβT
−1
α ∈ Hg.

We can use this criterion to show that the homological invariant from the previous

section is not a perfect invariant. Explicitly, we will give two simple closed curves α, β

in ∂V2, both representing the conjugacy class of a primitive element and, on homology,

having the same coefficient on the relevant generator. Yet we will exhibit a meridian γ

for which TβT
−1
α (γ) is not a meridian.
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Figure 3.10: Two isotopy classes representing the conjugacy class of x and having the
same coefficient for b1 on H1(∂V ). Inspecting the effect of TβT

−1
α on the meridian γ

reveals that they lie in different components of Cx.

For the disk system indicated on the left, we see ωα = x and ωβ = xyy−1y−1y, so

both curves represent the conjugacy class of x in Fg. On H1(Vg),

[α] = a1 + 2b1, [β] = a1 + 2b1 − b2,

so they do indeed have the same value for our invariant.

However, let us write down the cyclic word for the curve γ′ := TβT
−1
α (γ). Since α is

disjoint from γ, this is just Tβ(γ). We compute ωγ′ by the following recipe:

1. Start at some point in γ (a chosen basepoint was marked on the picture),

2. Traverse γ following its orientation until either:

(a) an intersection with β is reached, in which case: turn left and traverse β

(possibly against its orientation) until back at the same intersection. Return

to step 2.

(b) the basepoint is reached, in which case the trip is finished.

All signed intersections with the Di along the trip are to be tracked, and the resulting

word is the desired ωγ′ . The result of this computation is

ωγ′ = (yy−1x−1y−1y)(yxyy−1y−1)(yy−1y−1yx)(yyy−1x−1y−1).

This does not cancel to the empty word, so γ′ is not a meridian. Hence, TβT
−1
α 6∈ Hg,

and so by Proposition 3.16 we conclude [α], [β] are not in the same connected component

of Cx.

We finish with a generalization of the homological criterion of the last section.

Theorem 3.17. If w is not in the commutator of Fg, and α, β are geometric realizations

of w satisfying TβT
−1
α ∈ Hg, then on H1(∂Vg) we have [α]� [β] = 0.

Note that because of Proposition 3.16, this holds in particular if the isotopy classes of

α, β are in the same component of Cw. Corollary 3.11 then becomes a particular case of

this theorem.

Proof. If we choose any disk system for Vg, the fact that w is not in the commutator

of Fg implies that there is some disk D for which the number of positive and negative

intersections of D with α is not the same. In other words, we have [∂D] � [α] 6= 0.
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Also, notice that since the cyclic words represented by α and β on this disk system are

equivalent, we have [∂D]� [α] = [∂D]� [β].

We now apply Lemma 3.15 to see the effect of TβT
−1
α on [∂D] ∈ H1(∂Vg). For legibility,

square brackets will be omitted in the following three lines, but all curves are to be read

as the classes they represent in H1(∂V ).

TβT
−1
α (∂D) = Tβ(∂D − (∂D � α)α)

= ∂D + (∂D � β)β − (∂D � α)(α+ (α� β)β)

= ∂D + (∂D � α)(β − α− (α� β)β)

If ι : ∂Vg ↪→ Vg is the inclusion, we have:

1. ιTβT
−1
α ([∂D]) = 0, since TβT

−1
α (∂D) is a meridian,

2. ι([∂D]) = 0,

3. ι([α]) = ι([β]), since these curves are homotopic in Vg.

Therefore, in H1(Vg) we have

([∂D]� [α])([α]� [β])ι([β]) = 0.

Since the conjugacy class w of Fg represented by β is not contained in the commutator,

which is precisely the kernel of π1(Vg) → H1(Vg), we conclude ι([β]) 6= 0. By choice of

D, the first factor of the above equation is not 0 either. As H1(Vg) is torsion-free, we

conclude [α]� [β] = 0.

As an example, consider the following two simple closed curves α, β in ∂V2 representing

the conjugacy class of x2y2 (in the basis given by the usual disk system).

Figure 3.11: Two isotopy classes representing the conjugacy class w of x2y2. On H1(∂Vg),
their intersection product is non-zero, so they lie in different components of Cw.

Since x2y2 is not a power of a primitive element (drawing the Whitehead graph im-

mediately reveals that {w} is not separable), Corollary 3.11 is not applicable. Still, w is

not in the commutator subgroup, and Theorem 3.17 can be used. On H1(∂Vg), we have:

[α] = 2a1 + b1 + 2a2 − b2, [β] = 2a1 + b1 + 2a2 + b2.

Computing the intersection product yields [α]� [β] = 4, so [α] and [β] are not in the

same component of Cw.
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Using Theorem 3.17 with this specific example is of course excessive, as we observed

{w} is disk-busting, and as we saw earlier, that implies Cw has no edges. However, if we

instead regard w as a conjugacy class in, say, F3, and draw analogous curves α′, β′ in ∂V3,

this “absence of edges” argument ceases to hold, but Theorem 3.17 nevertheless allows us

to conclude [α′], [β′] are in different components.
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A The genus of a ribbon graph

This appendix describes a method to compute the genus of a ribbon graph. All graphs

are assumed to be finite.

Proposition A.1. If Γ is a connected graph embedded in S2, there is a homeomorphism

S2 ∼= (
⋃
iDi) ∪f Γ restricting to the identity on Γ, where the Di are 2-cells and f :⋃

i ∂Di → Γ is an attaching map that depends only on the induced ribbon structure on Γ.

Proof. A closed regular neighbourhood of Γ in S2 can be thought of as a mapping cylinder

Mf for f : Y → Γ, with Y a compact 1-dimensional submanifold of S2, which we identify

with Y × {1/2} ⊆Mf . Hence, Y is a finite disjoint union of circles γi, each bounding an

embedded disk in S2 that contains Γ in its interior, and another disk Di that is disjoint

from Γ. Now, Mf is homeomorphic to the space obtained by collapsing Y × [1/2, 1] ⊆Mf

onto Γ, and this in turn is homeomorphic to the attachment of Y × [0, 1/2] ⊆ Mf to Γ

via f : Y × {1/2} → Γ. Both these homeomorphisms fix Y × {0} and Γ pointwise, so we

get an extended homeomorphism S2 ∼= (
⋃
iDi)∪f Γ respecting the inclusion of Γ on each

side.

We now explain how to read off f from the ribbon structure. Let each circle γi carry

the orientation induced from Di, so Γ always lies to the right of γi. Each attaching

map fi : γi → Γ cuts γi into a cyclic sequence of arcs that alternate between being

mapped onto vertices and onto edges of Γ. These latter maps onto the edges restrict to

homeomorphisms in the interior of the arcs. As an example, for the plane graph below,

there two 2-cells being attached, with γ1 being split into 6 arcs, and γ2 into 10 arcs.

Figure A.1: A plane graph Γ, together with curves γi bounding a closed neighbourhood.
In this illustration, the circular segments are mapped by fi to vertices, and the straight
ones to edges.

Since the quotient mapDi → Di/α that collapses an arc α ⊂ ∂Di is a homeomorphism,

the previous description of the attaching maps fi can be made simpler by just ignoring

the arcs that are mapped to vertices. It can also be shown that the precise choice of

homeomorphisms from each arc of γi onto the respective edge of Γ is immaterial, provided

that orientations are respected.

We are therefore only concerned with determining the cyclic sequence of edges being

traced by each γi, together with the orientations in which they are being traversed. That

information can be encoded by a set of cyclic sequences si of half-edges of Γ, where the

occurrence of a half-edge h is to be interpreted as γi traversing the edge containing h in

the direction away from h, towards its opposite h. The si are completely determined by

the following two rules:
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1. Each edge of Γ is traversed exactly once in each direction (either by the same or by

distinct γi),

2. Upon arriving at a vertex v via a half-edge h, γi is to traverse the half-edge that

precedes h in the cyclic order of the half-edges at v.

Indeed, rule 1 tells us that each half-edge occurs precisely once within the si, and rule

2 gives a recurrence relation for constructing the sequences. Thus, one can recover all

attaching maps fi from the ribbon structure on Γ via the following algorithm:

1. Start with a list L of all half-edges of Γ.

2. Remove one half-edge h from L, and write down a new sequence si of half-edges as

follows:

(a) Set si1 = h,

(b) If sik is known, let g be the half-edge that precedes sik in the cyclic order at the

appropriate vertex. If g = h, then the sequence si is complete, and it encodes

one of the attaching maps fi, as explained above. Otherwise, g is still in L
(this can be seen by an inductive argument). In this case, remove g from L
and set sik+1 = g.

3. If L is empty, we are done. Otherwise, return to step 2.

Proposition A.1 actually holds for an embedding of a connected graph Γ in any closed

oriented surface S, if we further require that S have minimal genus among all closed

oriented surfaces that induce the same ribbon structure on Γ. Indeed, the only point

of the proof in which we needed S = S2 was in stating that the circles γi bound disks

disjoint from Γ; in other words, that the complement of an open regular neighbourhood

of Γ is a disjoint union of disks. But using the fi to attach anything other than a union of

disks would produce a surface of higher genus. More precisely, if some of the γi are used

to attach a connected surface of genus ≥ 1 along boundary components, then replacing

that surface with a sphere with the same number of boundary components results in a

surface of lower genus than S. But attaching a sphere with k ≥ 2 boundary components

also results in higher genus than just attaching k disks (the end result differing by the

addition of k − 1 handles).

Another way of phrasing these observations is to say that a ribbon structure on a con-

nected graph Γ determines at most one embedding of Γ in a minimal (in the above sense)

closed orientable surface. It turns out that it always determines one such embedding,

which is the content of the following result. In particular, the genus of a ribbon graph is

well-defined.

Proposition A.2. If Γ is a ribbon graph and S is obtained from Γ by attaching 2-cells

via the maps fi as in the proof of Proposition A.1, then S is a (not necessarily connected)

closed oriented surface.
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Proof. The algorithm for constructing the sequences si ensures that each half-edge is used

precisely once, so each edge is traversed twice. Hence, the resulting CW-complex is locally

euclidean. Since each edge is traversed once in each direction, one can see from cellular

homology that H2(S) is non-trivial, and so the orientations of the 2-cells all match to give

a global orientation of S.

If we drop the connectedness assumption on Γ, we may still embed each of its com-

ponents in a connected surface, and then take the connected sum of all surfaces. It is

however no longer true that the embedding is unique in the sense of Proposition A.1.

The above two propositions allow us to compute the genus of a connected ribbon

graph, simply by counting the cyclic sequences si from Proposition A.1, each of which

will correspond to a 2-cell in S, and then performing an Euler characteristic count. Since

the number of possible ribbon structures on a finite graph is finite, it is possible to compute

the genus of a graph with no ribbon structure by listing all ribbon structures, and taking

the least genus.

For graphs that are not connected, the following result tells us that we can simply

compute the genera of all connected components, and then take their sum.

Proposition A.3. For any graphs Γ0,Γ1 (with or without ribbon structures), we have

g(Γ0 q Γ1) = g(Γ0) + g(Γ1).

Proof. By taking the connected sum of surfaces for Γ0 and Γ1, it is clear that

g(Γ0 q Γ1) ≤ g(Γ0) + g(Γ1).

For the other inequality, let Γ0 q Γ1 be embedded in a minimal surface S, whose

genus we wish to show is at least g(Γ0) + g(Γ1). It is possible to find a 1-dimensional

submanifold Y ⊆ S such that cutting S along Y produces two (possibly disconnected)

surfaces with boundary S0, S1, one containing Γ0, the other Γ1 (Y can be obtained by

defining a smooth function S → R that evaluates to 0 in a neighbourhood of Γ0, and to

1 in a neighbourhood of Γ1, and then taking Y to be the pre-image of a regular value in

]0, 1[). This Y is a disjoint union of circles, each glueing a component of S0 to one of S1.

Consider the connected bipartite graph ∆ whose vertices are the components of S0
and S1, and where the edges between two vertices are the circles in Y connecting them.

If we modify S by cutting along one component of Y and capping the two resulting

boundary components with a pair of disks, the corresponding change to ∆ is the removal

of an edge. If this modification leaves S (and thus also ∆) connected, then it decreases

its genus by 1, contradicting minimality of S. Hence, the removal of any edge disconnects

∆, in other words, ∆ is a tree. Any tree can be inductively constructed by starting with

a single vertex, and repeatedly adding a vertex together with an edge connecting it to a

pre-existing one. This translates to S being the connected sum of all surfaces obtained

by cutting S along Y and capping all boundary circles with disks. If Ŝ0 is the connected

sum of all such components coming from S0, and Ŝ1 is defined similarly, then

g(S) = g(Ŝ0) + g(Ŝ1) ≥ g(Γ0) + g(Γ1),

which proves the result.
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