An <u>n-component link</u> L C B is a union of m oriented disjoint smoothly embedded circles (n=1: "knot"). A <u>Seifert surface</u> S C B ³ for L is an oriented compact connected smoothly embedded surface with 98 = L. (as oriented manifolds) • Every link has (many) Seifert surfaces. (as oriented manifolds) • Seifert surfaces are of independent interest. For example, what is the minimal possible genus $g(L)$ of a Seifert surface can be used for computing the Alexander polynomial $\Delta_L \in \mathbb{Z}[t^{\pm 1}]$ of L. • To a Seifert surface S, we associate its Seifert pairing	Computing generalized Seifert matrices for closures of colored braids Purintamilhor DOI: 10.1142/50218216522500687 05.01.2023
A <u>Seifert surface</u> SC S ^s for L is an oriented compact connected smoothly embedded surface with 98 = L. (as oriented manifolds) • Every link has (many) Seifert surfaces. • Seifert surfaces are of independent interest. For example, what is the minimal possible genus g(l) of a Seifert surface for a given link? • Seifert surface can be used for computing the Aux ander polynomial Δ _L ∈ Z[t ²¹] of L. • To a Seifert surface S, we associate its Seifert pairing	joint w/ Stefan Friedl & Chinneyon Kausik
A <u>Seifert surface</u> SC S ^s for L is an oriented compact connected smoothly embedded surface with 98 = L. (as oriented manifolds) • Every link has (many) Seifert surfaces. • Seifert surfaces are of independent interest. For example, what is the minimal possible genus g(l) of a Seifert surface for a given link? • Seifert surface can be used for computing the Aux ander polynomial Δ _L ∈ Z[t ²¹] of L. • To a Seifert surface S, we associate its Seifert pairing	An n -component link $L \subset S$ is a union of n oriented
A <u>Seifert surface</u> SC S ^s for L is an oriented compact connected smoothly embedded surface with 98 = L. (as oriented manifolds) • Every link has (many) Seifert surfaces. • Seifert surfaces are of independent interest. For example, what is the minimal possible genus g(l) of a Seifert surface for a given link? • Seifert surface can be used for computing the Aux ander polynomial Δ _L ∈ Z[t ²¹] of L. • To a Seifert surface S, we associate its Seifert pairing	disjoint smoothly embedded circles (n=1: "knot").
 Every link how (many) Seifert surfaces. Seifert surfaces are of independent interest. For example, what is the minimal possible genus g(L) of a Seifert surface for a given link? Seifert surfaces can be used for computing the Alexander polynomial Δ_L∈ Z[t^{±1}] of L. To a Seifert surface S, we associate its Seifert pairing 	A Seifert surface SCS3 for L is an oriented
 Every link how (many) Seifert surfaces. Seifert surfaces are of independent interest. For example, what is the minimal possible genus g(L) of a Seifert surface for a given link? Seifert surfaces can be used for computing the Alexander polynomial Δ_L∈ Z[t^{±1}] of L. To a Seifert surface S, we associate its Seifert pairing 	compact connected smoothly embedded surface with $98 = L$. (as oriented manifolds)
 Seifert surfaces are of independent interest. For example, what is the minimal possible genus g(L) of a Seifert surface for a given link? Seifert surfaces can be used for computing the Alexander polynomial Δ∈ Z[t^{±1}] of L. To a Seifert surface S, we associate its Seifert pairing 	
 Severt surfaces are of undependent interest. For example, what is the minimal possible genus g(L) of a Seifert surface for a given link? Seifert surfaces can be used for computing the Alexander polynomial Δ_L∈ Z[t¹] of L. To a Seifert surface S, we associate its Seifert pairing 	· Every link has (many) Seifert surfaces.
Seifert surface for a given link? Seifert surfaces can be used for computing the Alexander polynomial $\Delta_{L} \in \mathbb{Z}[t^{\frac{1}{2}}]$ of L . To a Seifert surface S , we associate its Seifert pairing	· Seifert surfaces are of independent interest.
Seifert surface for a given link? Seifert surfaces can be used for computing the Alexander polynomial $\Delta_{L} \in \mathbb{Z}[t^{\frac{1}{2}}]$ of L . To a Seifert surface S , we associate its Seifert pairing	For example, what is the minimal possible genus g(L) of a
· To a Seifert surface S, we associate its Seifert pairing	Seifert surface for a given link?
· To a Seifert surface S, we associate its Seifert pairing	· Seifert surfaces can be used for computing the
• To a Seifert surface S, we associate its Seifert pairing $H_1(S) \times H_1(S) \longrightarrow \mathbb{Z}$	Alexander polynomial $\Delta_{\epsilon} \mathbb{Z}[t^{\pm}]$ of ϵ .
	To a Seifert surface S, we associate its Seifert pairing $H_1(S) \times H_1(S) \longrightarrow \mathbb{Z}$

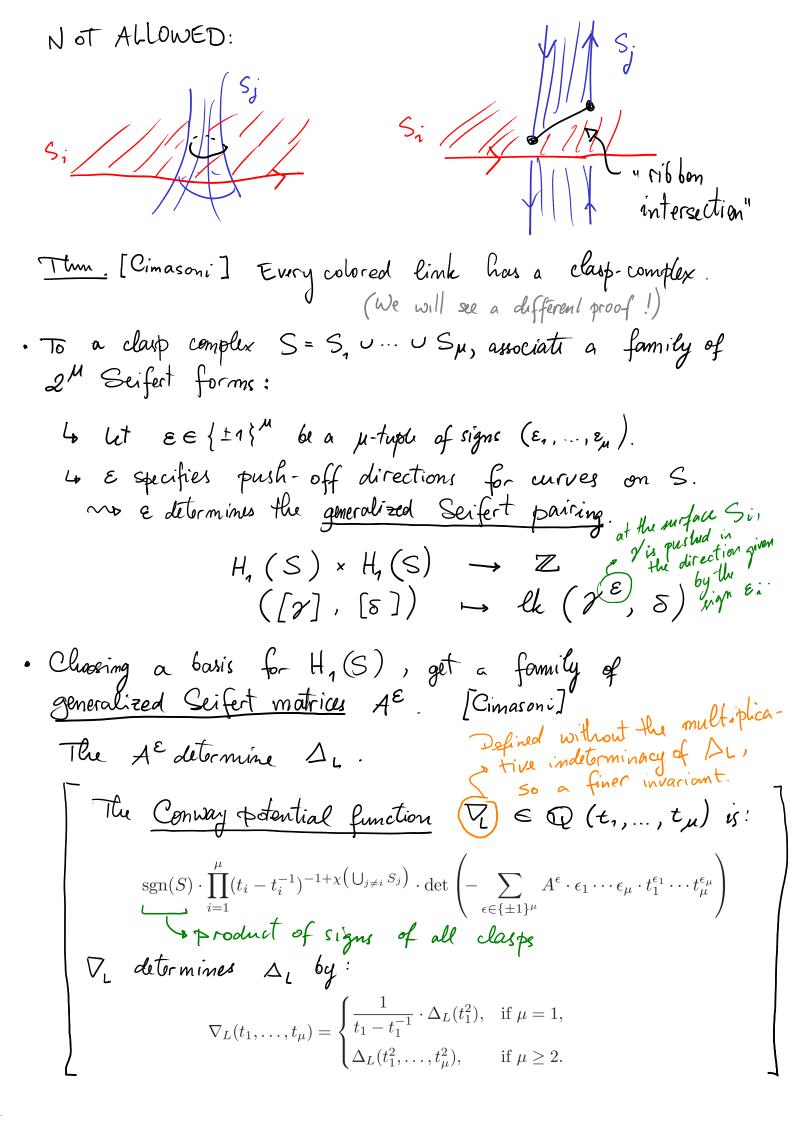
To a Seifert surface S, we associate its <u>Seifert pairing</u> $H_1(S) \times H_1(S) \longrightarrow \mathbb{Z}$ $([\mathcal{V}], [S]) \longmapsto \text{lk}(\mathcal{V}, S)$ toward the negative side of S

· Choosing a Z-basis for H₄(S) determines a matrix A representing this form.

A is called a Seifert matrix for L.

• The infinite cyclic covering to is the one
induced by the epimorphism $\pi_1(\mathbb{S}^3 1L) \rightarrow \mathbb{Z}$ sending each meridion to 1. $\longrightarrow H_1(X_{\infty})$ becomes a $\mathbb{Z}[t^{\pm 1}]$ -module
$-\frac{1}{1}$. At - AT is a presentation matrix for $H_1(X_{\infty})$
The Alexander polynomial $ \Delta_L(t) = \det\left(At - A^T\right) $ is a link invariant (up to multiplication by units tt) $ \underline{Obs}: \deg\left(\Delta_L\right) \leq 2g(t) + \pi_d(t) - 1 $ $ \underline{UPSHoT}. Seifert matrices are useful $
· To compute a Seifert matrix:
1. Find a Seifert surface S
2. Choose a basis of H, (S)
3. For every two basis elements [a7, [B], compute $lk(\alpha^-, B)$
In 2016, Collins gave on algorithm to produce a
Seifert matrix for a link given as a braid closure.
a braid its closure
Braids are a convenient input. Need only specify sequence of crossings.
Braids are a convenient input. Need only specify sequence of crossings. Then [Alexander]. Every link is isotopic to the closure of a braid.
Collins, köphe, Lewark implemented it as a computer program:
"Seifert Matrix Computations" https://www.maths.ed.ac.uk/~v1ranick/julia/index.htm

The COLORED setting
Def. Let $\mu \in \mathbb{N}_{\geq 1}$. A μ -coloring on a link L is a decomposition of L into μ links: $L = \coprod_{i \in I} L_i$
To a μ -colored link L one associates its multivariable Alexander polynomial $\Delta_L \in \mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1},, t_{\mu}^{\pm 1}]$ (well-defined up to multiplication by units $\pm t_1^{k_1} t_{\mu}^{k_{\mu}}$)
In computing ΔL , the role of Scifert surfaces is played by clasp-complexes.
Def. [Cooper, Cimasoni] A clast-complex for a u-colored link
is a collection of oriented surfaces $S_1,, S_M \subseteq S^3$ s.h.: • Each S_i is a Seifert surface for L_i • The union $S_1 \cup \cup S_M$ is connected • There are no triple points: $S_i \cap S_j \cap S_k = \emptyset$ for i, j , k distinct
· Distinct Si, Si intersect along clasps "Ump" Component of Sins; homeomorphic to an interval connecting Li to Li, and otherwise disjoint from L.
·



Other applications

The A^E determine the Cimasoni-Florens signatures and multitles of L

T. M.: (\$119) M

T. M.: (\$119) M

Top. concordance invariants.

Determine the isometry type of generalized Blanchfield

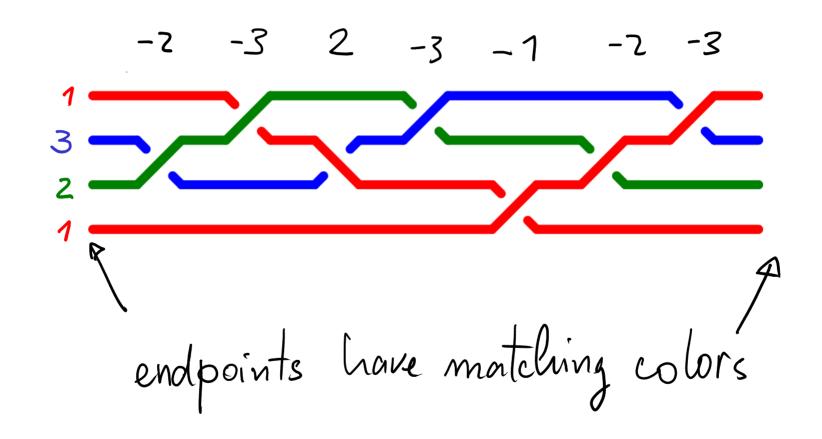
Determine the isometry type of generalized Blanchfield

Pairing TH(5³1L; My)×TH(5³1L; My)→ Q(tn..., tn)

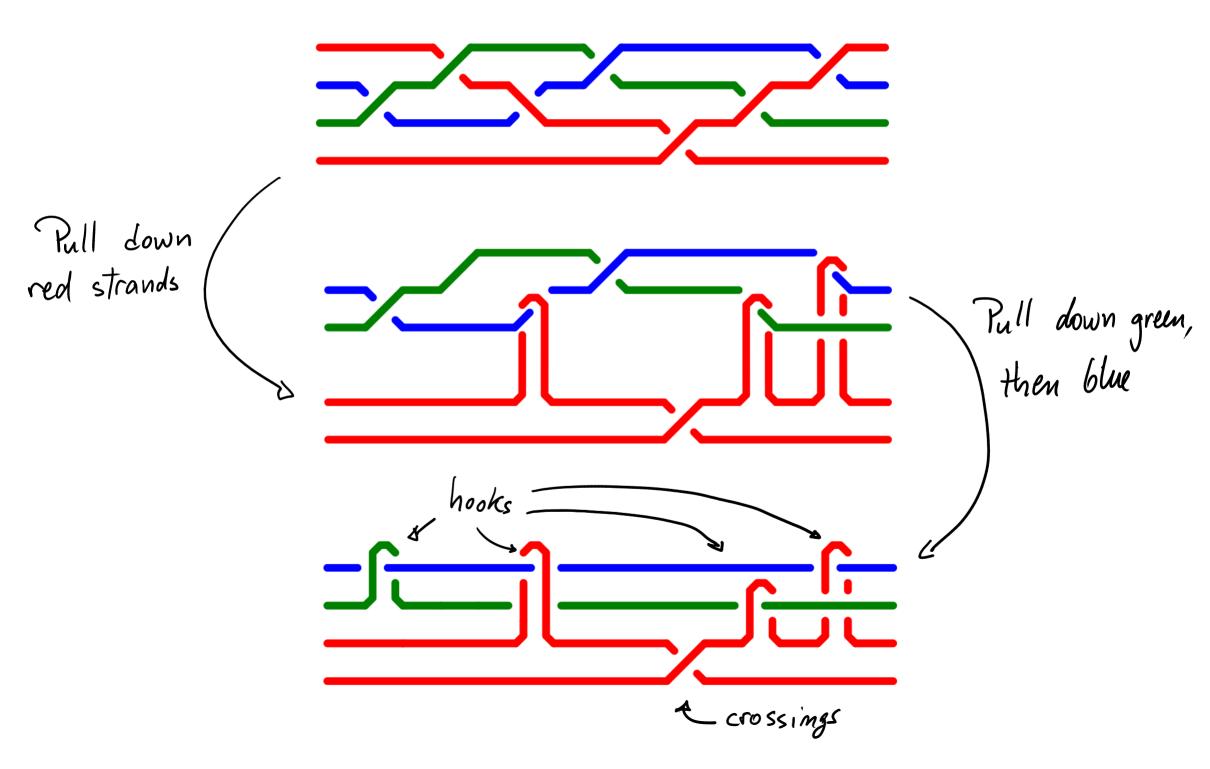
- · We have given our algorithm for producing a family of generalized Seifert matrices for a link given as the closure of a colored braid.
 - Construct clasp-complex
 - choose homology basis
 - compute linking numbers
- · Chinmaya Kausik has a computer implementation "CLASPER". https://github.com/Chinmaya-Kausik/py_knots/

Outline of the algorithm

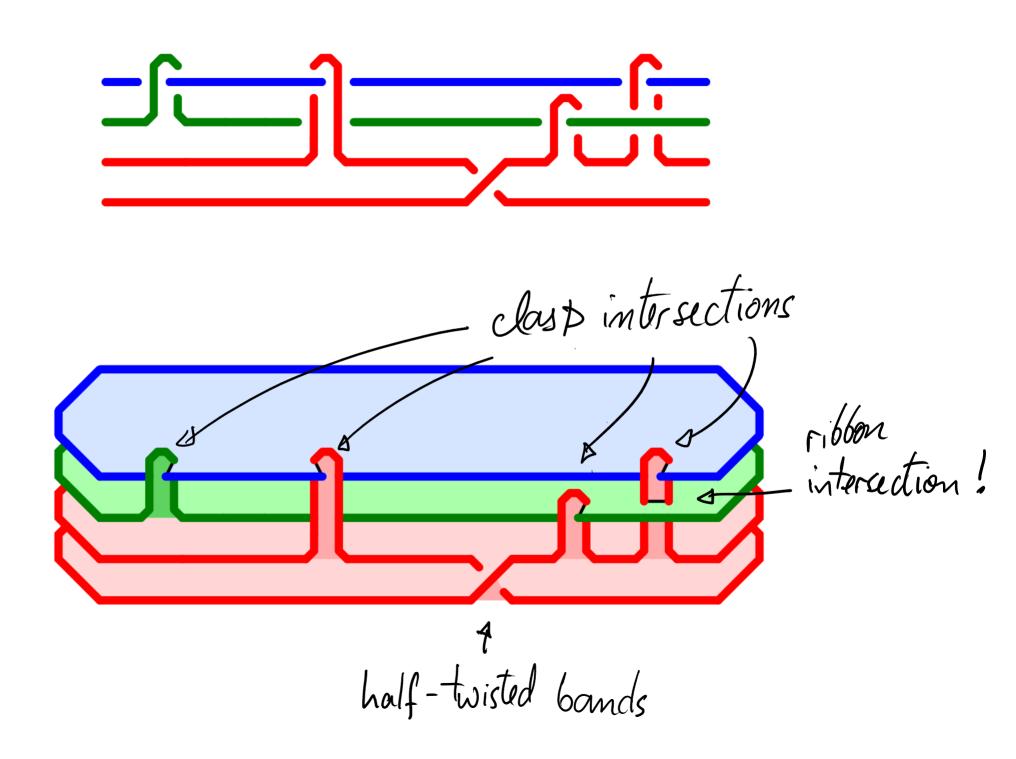
0. Start with a braid whose closure is colored



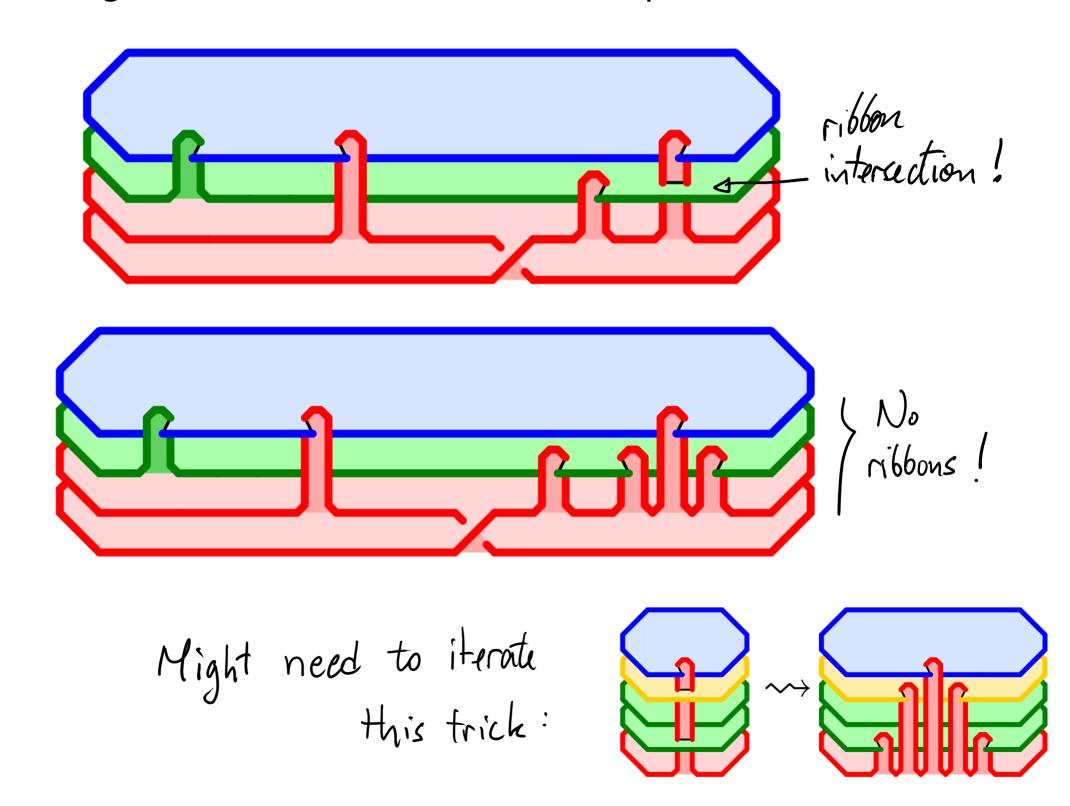
1. Pull down strands in each color



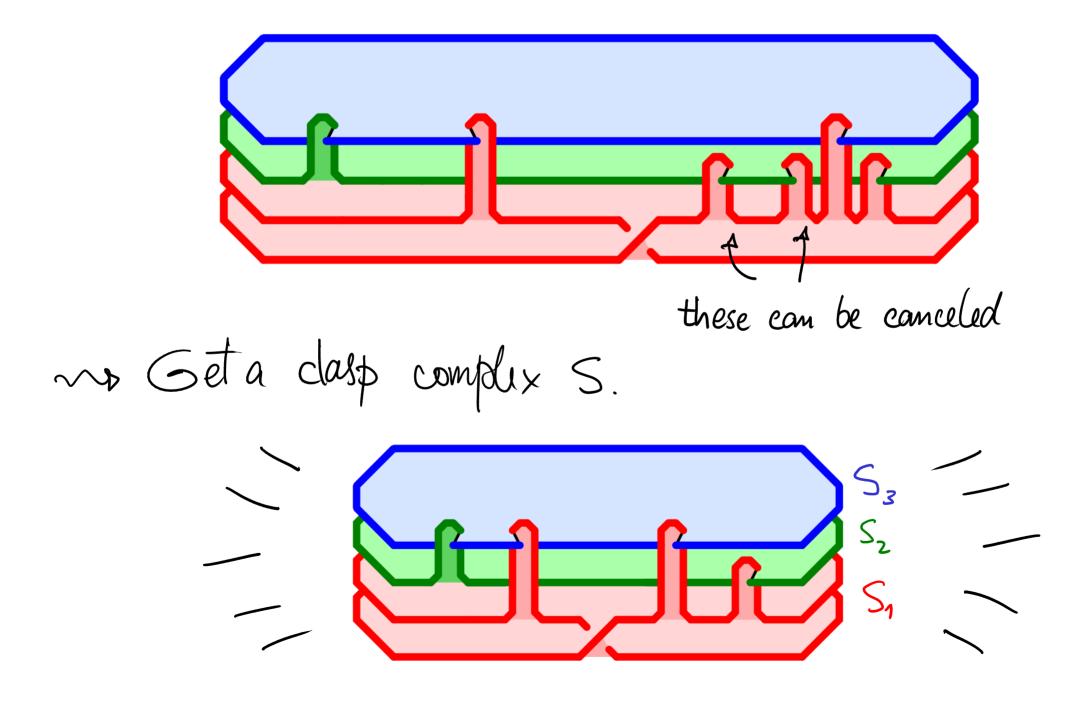
2. Close up braids, fill in surfaces



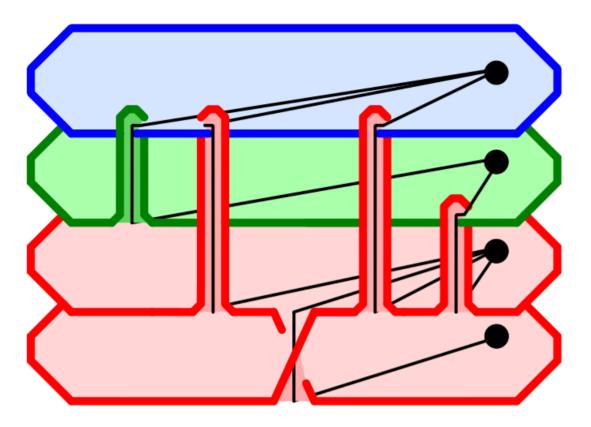
3. Exchange ribbon intersections for clasps

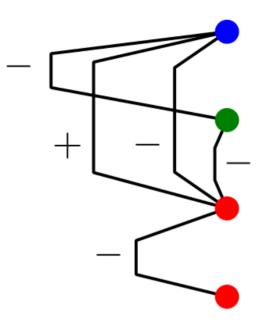


4. Clean up, make sure surfaces are connected, make sure the complex is connected...



5. Encode S as a decorated graph G



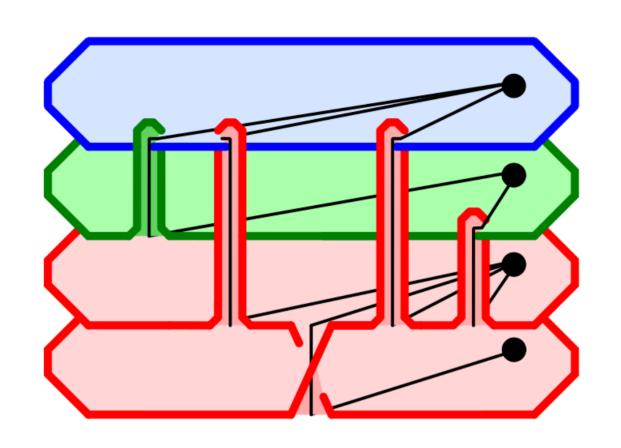


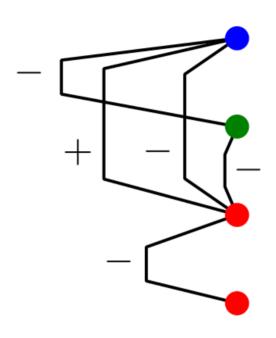
- total order on vertices - total order on edges Decoration includes

- colors of vertices - signs on edges (to encode handedness)

(edge is a < half-twisted bond if endpoints are < some different color)

Obs. G is a deformation retract of S.



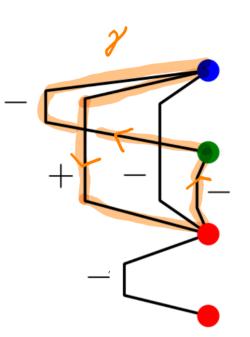


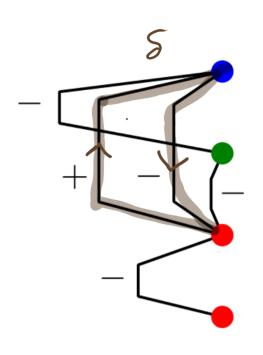
 \sum_{o} :

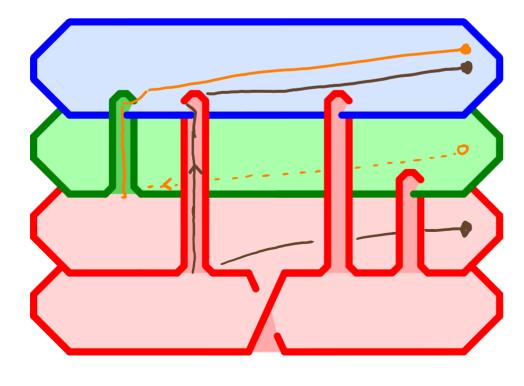
6. Choose a basis of $H_1(S)\cong H_1(G)$. (as circuits in G)

7. Compute linking numbers edge-by-edge

Ex. To compute







These two edges contribute with +1.

To this can be read off from the decorations.

. Sum contributions of all edges.