An overview of Sigma-invariants

The features of a group being finitely generated or finitely presented are wellknown to be, respectively, the n = 1 and n = 2 cases of the property F_n : a group G is said to be of type F_n if it admits a K(G, 1) with finite *n*-skeleton. Towards the end of the last century, the question of when such finiteness conditions descend to subgroups of G led to the discovery of the homotopical Sigma-invariants $\Sigma^n(G)$ and their homological counterparts $\Sigma^n(G; A)$ (for Aa $\mathbb{Z}G$ -module). Intuitively, $\Sigma^n(G)$ can be thought of as the set of group homomorphims $\chi: G \to \mathbb{R}$ for which G is "of type F_n in the direction of χ ", with the classical property F_n being equivalent to $0 \in \Sigma^n(G)$.

In my talk I will give an introduction to the theory of Sigma-invariants, with particular focus on Σ^1 , mentioning some of their applications in group theory and topology. If time permits I will also say a few words on the more recent efforts to extend these notions to locally compact groups.