

Sheet 5

Due date: Nov 22

Problem 1. (Count the uncountables) Which of the following classes of groups contain uncountably many isomorphism classes?

- (a) Finite groups
- (b) Countable groups
- (c) Finitely generated groups
- (d) Finitely generated abelian groups
- (e) Finitely presented groups
- (f) Countably presented groups (that is, having a presentation with (at most) countably many generators and countably many relators)
- (g) Free groups

Problem 2 (A 2-generated group with uncountably many quotients). In this exercise we will construct a 2-generated group G whose center contains an isomorphic copy of $\bigoplus_{\mathbb{N}} \mathbb{Z}$. Define:

- the free abelian groups A and B as having \mathbb{Z} -bases $(a_n)_{n \in \mathbb{N}_{>0}}$ and $(b_n)_{n \in \mathbb{Z}}$, respectively.
- the \mathbb{Z} -bilinear map $f: B \times B \to A$ given on basis elements by

$$f(b_m, b_n) := \begin{cases} a_{n-m} & \text{if } n > m, \\ 0 & \text{if } n \le m, \end{cases}$$

• the binary operation on the set $H := A \times B$, given by

$$(a,b) \cdot (a',b') := (a+a'+f(b,b'),b+b'),$$

• the map

$$T \colon H \to H$$
$$\left(a, \sum_{n \in \mathbb{Z}} \beta_n b_n\right) \mapsto \left(a, \sum_{n \in \mathbb{Z}} \beta_n b_{n+1}\right).$$

Show the following statements:

- (a) The operation \cdot makes *H* into a group.
- (b) The set $A \times \{0\}$ is a central subgroup of H.
- (c) *H* is generated by the set $\{(0, b_n) \mid n \in \mathbb{Z}\}$. *Hint:* For each $n \in \mathbb{N}_{>0}$, compute the commutator $[(0, b_0), (0, b_n)]$.
- (d) T is a group automorphism of H.

We now let $G := H \rtimes \mathbb{Z}$, with action $\mathbb{Z} \to \operatorname{Aut}(H)$ given by $1 \mapsto T$. Prove that G satisfies the desired properties:

- (e) G is generated by $\sigma := ((0, b_0), 0)$ and $\tau := ((0, 0), 1)$.
- (f) G contains a central subgroup isomorphic to $\bigoplus_{n \in \mathbb{N}} \mathbb{Z}$, and thus uncountably many normal subgroups.

By Proposition 4.7 from class, it follows that G has uncountably many pairwise nonisomorphic quotients! We can use G to show that the same is true of the group G_0 from class, presented by two generators s, t and relations

$$\{[[s, t^n s t^{-n}], s] \mid n \in \mathbb{Z}\} \cup \{[[s, t^n s t^{-n}], t] \mid n \in \mathbb{Z}\}.$$

- (g) Show that the assignment $s \to \sigma$, $t \to \tau$ induces an epimorphism $G_0 \twoheadrightarrow G$.
- (h) Show that the subgroup of G_0 generated by $\{[s, t^n s t^{-n}] \mid n \in \mathbb{Z}\}$ is central and contains a subgroup isomorphic to $\bigoplus_{n \in \mathbb{N}} \mathbb{Z}$.

Problem 3 (Word metrics). Fix a group G with generating set S, and assume S is symmetric (that is, $S = S^{-1}$).

(a) Prove that the function

$$d_S \colon G \times G \to \mathbb{R}_{\geq 0}$$
$$(g,h) \mapsto l_S(g^{-1}h),$$

where l_S is the word length relative to S, is a metric on G.

if there is a constant $L \in \mathbb{R}_{>0}$ such that

(b) Let H be a second group, with symmetric generating set T. Show that if T is finite, then every group homomorphism $f: H \to G$ is Lipschitz with respect to the metrics d_T and d_S . Reminder: A function $f: X \to Y$ between metric spaces $(X, d_X), (Y, d_Y)$ is called Lipschitz

$$\forall x, x' \in X \quad d_Y(f(x), f(x')) \le L \, d_X(x, x').$$

(c) Conclude that if S and S' are finite symmetric generating sets for G, then the metrics $d_S, d_{S'}$ on G are **bilipschitz equivalent**, that is, there are constants $\alpha, \beta > 0$ such that

$$\forall g, h \in G \quad \alpha \, d_S(g,h) \le d_{S'}(g,h) \le \beta \, d_S(g,h).$$

Remark: This implies that any properties of the metric space (G, d_S) that are preserved by bilipschitz equivalence are therefore intrinsic to G (that is, independent of S)!