Sheet 3

Due date: May 10

Problem 1 (Graphs for Coxeter systems). Read Definition 3.5.1 of a Coxeter diagram (sometimes also called Coxeter-Dynkin diagram) in
M.W. Davis, The Geometry and Topology of Coxeter Groups, Princeton University Press (2008).

A free version of the book is available to download from the author's webpage at https://people. math.osu.edu/davis.12/davisbook.pdf.

Read also the definition of a Coxeter graph in Section 3.1 of
T.A. Schroeder, Coxeter Groups and the Davis Complex, in A. Wootton, V. Peterson, C. Lee (eds), A Primer for Undergraduate Research, Foundations for Undergraduate Research in Mathematics. Birkhäuser, Cham. (2017).

You should have access through the University's library via https://doi.org/10.1007/978-3-319-66065-3_1.
(a) Explain the difference between these two definitions and illustrate with a Coxeter system of your choice.
(b) Suppose Γ_{1} and Γ_{2} are Coxeter diagrams for the Coxeter groups W_{1}, W_{2}. What is the Coxeter group represented by the disjoint union $\Gamma_{1} \sqcup \Gamma_{2}$? What if Γ_{1} and Γ_{2} are instead Coxeter graphs?
Hint: This should remind you of Problem 1 from Sheet 1.

Problem 2 (Type A_{n}). Given $n \in \mathbb{N}$, the Coxeter system of type A_{n} has rank n and Coxeter matrix $\left(m_{i j}\right)_{i, j \in\{1, \ldots, n\}}$ given by

$$
m_{i j}= \begin{cases}1 & \text { if } j=i \\ 3 & \text { if } j=i \pm 1 \\ 2 & \text { otherwise }\end{cases}
$$

Equivalently, by the following Coxter diagram:

The goal of this exercise is to show that the symmetric group $\operatorname{Sym}(n+1)$, together with the set S of transpositions between adjacent elements $s_{1}=(12), s_{2}=(23), \ldots, s_{n}=(n n+1)$, is a Coxeter system of type A_{n}.
(a) Show that S generates $\operatorname{Sym}(n+1)$.
(b) Verify that each product $s_{i} s_{j}$ has order $m_{i j}$ in $\operatorname{Sym}(n+1)$ as above.

By results from class, we are left to prove that $(\operatorname{Sym}(n+1), S)$ satisfies the exchange condition.
(c) Given a permutation $\sigma \in \operatorname{Sym}(n+1)$ and $1 \leq i<j \leq n+1$, we say the pair (i, j) is an inversion of σ if $\sigma(i)>\sigma(j)$, and denote by $\operatorname{inv}(\sigma)$ the number of inversions of σ. For $\sigma=(5,4,3,2,1) \in \operatorname{Sym}(5)$, what is $\operatorname{inv}(\sigma)$?
(d) Show that for every $\sigma \in \operatorname{Sym}(n+1)$ and $i \in\{1, \ldots, n\}$,

$$
\operatorname{inv}\left(\sigma s_{i}\right)= \begin{cases}\operatorname{inv}(\sigma)-1 & \text { if }(i, i+1) \text { is an inversion of } \sigma, \\ \operatorname{inv}(\sigma)+1 & \text { otherwise }\end{cases}
$$

Use this to show that $l_{S}(\sigma)=\operatorname{inv}(\sigma)$.
Hint: Prove one inequality at a time. Each of the two cases is helpful for one direction.
(e) Prove $(\operatorname{Sym}(n+1), S)$ satisfies the exchange property.

Hint: If $(i, i+1)$ is an inversion of $\sigma=s_{i_{1}} \ldots s_{i_{m}}$, with $\sigma(i)=b>a=\sigma(i+1)$, consider the first integer r such that in the permutation $\tau=s_{i_{1}} \ldots s_{i_{r}}$, the pair $\left(\tau^{-1}(b), \tau^{-1}(a)\right)$ is an inversion. Then compare σ with $s_{i_{1}} \ldots \widehat{i_{i_{r}}} \ldots s_{i_{m}}$.

Problem 3 (Conjugation classes of reflections). Recall that the set R of reflections in a Coxeter system ($W, S=\left\{s_{i}\right\}_{i \in I}$) consists of all conjugates of the standard generators:

$$
R:=\left\langle w s w^{-1} \mid s \in S, w \in W\right\rangle
$$

In particular, R is a union of conjugacy classes in W, but how many? Maybe there is one conjugacy class for each $s \in S$? Or maybe they are all conjugate?
(a) Show that for every $i, j \in I$ with $m_{i j}$ odd, the generators s_{i} and s_{j} are conjugate.
(b) Show that if m is not odd (that is, $m \in 2 \mathbb{N} \cup\{\infty\}$), then in the Coxeter group of type $\mathrm{I}_{2}(m)$

$$
W=\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=\left(s_{1} s_{2}\right)^{m}\right\rangle
$$

the elements s_{1} and s_{2} are not conjugate.
Hint: Find a group G and a homomorphism $W \rightarrow G$ mapping s_{1} and s_{2} to elements that are clearly not conjugate. (Further hint: Distinct elements of an abelian group are clearly not conjugate.)
(c) Show that it is possible for two standard generators s_{i}, s_{j} in a Coxeter system with $m_{i j} \in$ $2 \mathbb{N} \cup\{\infty\}$ to be conjugate.
(d) Let Γ_{0} be the Coxeter graph of (W, S) (as in Problem 1), and let Γ be the graph obtained from Γ_{0} by discarding all edges with even labels. Describe the conjugacy classes of reflections in terms of Γ.

Problem 4 (A non-Coxeter group). Recall that for each $n \in \mathbb{N}_{\geq 1}$, the Alternating group $\operatorname{Alt}(n)$ is defined as the kernel of the sign map

$$
\begin{aligned}
\operatorname{Sym}(n) & \rightarrow\{ \pm 1\} \\
\sigma & \mapsto \operatorname{sgn}(\sigma) .
\end{aligned}
$$

In other words, $\operatorname{Alt}(n)$ consists of the permutations that are the product of an even number of transpositions.

[^0](a) Show if $n \geq 5$, then $\operatorname{Alt}(n)$ is generated by involutions.

Hint: Alt (n) is generated by products of two transpositions. When is such a product an involution?
(b) You might have learned at some point that when $n \geq 5$, the group $\operatorname{Alt}(n)$ is simple. Use this fact to show that in this case, despite being generated by involutions, $\operatorname{Alt}(n)$ is not a Coxeter group.

Hint: In class we have seen that Coxeter groups always admit an epimorphism onto $\mathbb{Z} / 2$.

[^0]: ${ }^{1}$ The alternating group is also often denoted by A_{n}, but we avoid this nomenclature as it might cause confusion with the Coxeter group of type A_{n}.

