Sheet 1

Due date: April 26

Problem 1 (Products of Coxeter groups). Let W_{1} and W_{2} be Coxeter groups.
(a) Show that the direct product $W_{1} \times W_{2}$ is a Coxeter group. A Coxeter group that cannot be expressed as a direct product of non-trivial Coxeter groups is called irreducible.
(b) Show that the free product $W_{1} * W_{2}$ is a Coxeter group.

Problem 2 (The semidirect product). Let N, H be groups.
(a) Given an action $\alpha: H \rightarrow \operatorname{Aut}(N)$ of H on N by group automorphisms, we define the (external) semidirect product $N \rtimes_{\alpha} H$ (written simply $N \rtimes H$ if there is no room for confusion) as the group with underlying set $N \times H$ and group operation given by

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right):=\left(n_{1} \alpha\left(h_{1}\right)\left(n_{2}\right), h_{1} h_{2}\right) .
$$

Show that $N \rtimes H$ is indeed a group, fitting into a short exact sequence of the form

$$
\mathbb{1} \rightarrow N \rightarrow N \rtimes H \rightarrow H \rightarrow \mathbb{1}
$$

What happens if α is the trivial action?
(b) Consider a short exact sequence of groups

$$
\mathbb{1} \rightarrow N \xrightarrow{f} G \xrightarrow{g} H \rightarrow \mathbb{1},
$$

and show the following conditions are equivalent:

1. This short exact sequence splits, that is, there is a homomorphism $s: H \rightarrow G$ such that $s \circ g=\mathrm{id}_{H}$ (called a section).
2. There is an action $\alpha: H \rightarrow \operatorname{Aut}(N)$ and an isomorphism $\varphi: G \rightarrow N \rtimes_{\alpha} H$ making the following diagram commute:

In this case we also say G is a semidirect product of N and H.
(c) Give an example of a short exact sequence of groups that does not split.

Problem 3 (Dihedral groups). Recall that for each $n \in \mathbb{N}_{\geq 1} \cup\{\infty\}$, the dihedral group D_{n} is the group of isometries of the regular n-gon (the " ∞-gon" being \mathbb{Z}). We have seen in class that these are precisely the Coxeter groups of Rank 2:

$$
\mathrm{D}_{n} \cong\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=\left(s_{1} s_{2}\right)^{n}=1\right\rangle,
$$

(where " $\left(s_{1} s_{2}\right)^{\infty}=1$ " is interpreted as no relation). Prove they can also be described as semidirect products:

$$
\mathrm{D}_{n} \cong \mathbb{Z} / n \rtimes \mathbb{Z} / 2 \quad\left(\text { for all } n \in \mathbb{N}_{\geq 1}\right), \quad \mathrm{D}_{\infty} \cong \mathbb{Z} \rtimes \mathbb{Z} / 2
$$

where the nontrivial element of $\mathbb{Z} / 2$ acts by sending $1 \mapsto-1$.

Problem 4 (Dobble). The game Dobble is played with a deck of cards where each card contains 8 different pictures, and every two cards have precisely one picture in common.

How can one design such a deck with 57 distinct cards? Hint: Look for inspiration in Sheet 0.

