04 The deletion and exchange condition - part 1
Donnerstag, 4. April 2024 16:21
Continuation of chapters:
We will now introduce reflection systems.
Def 3,12
A pre-reflection system for a group G is a pair (X, R) where X is a connected, simple graph on which G acts by graph automorpluisms and R is a subset of G sith. The following are satisfied
(1) each $r \in R$ is an involution
(2) R is closed under conjugation ie. $\forall g \in G$ and $\forall r \in R: \operatorname{gr}^{-1} \in R$.
(3) R generates G
(4) \forall edges e in X there exists $r_{e} \in R$ sith. To swaps the two end points of the edger.
(5) $\forall r \in R$ there exists at least one edge in X which is flipped by r.
3.13 Example

Put $X=C a y(W, S)$

$$
\text { - - . } 7 \text {. } \ln 11-1 \quad n \ldots . . . \ln -11-00
$$

the $x=$ Lay $w(\infty)$
and put $R:=W S W^{-1}=\left\{g s g^{-1} \mid g \in W_{1} s \in S\right\}$.
Then (X, R) is a pre-reflection system in all cases 1) -3) of Example 3.8.

1) $D_{\infty}=\left\langle S_{1}, S_{2} \mid S_{1}^{2}\right\rangle \quad S:=\left\{S_{1}, S_{2}\right\}$

The "reflection" swapping the ends s_{1} and $s_{1} s_{2}$ of the yellow edge is $T:=S_{1} S_{2} S_{1} \in R$ componte $r \cdot S_{1}=S_{1} S_{2} s_{1} \cdot s_{1}=S_{1} S_{2}$ and

$$
r \cdot s_{1} s_{2}=s_{1} s_{2} s_{1} \cdot s_{1} s_{2}=s_{1}
$$

Hove generally, the edge $\{g \mid g s\}$ is swapped by the element $g_{s} g^{-1} \in R$.
This coorks for examples 2) and 3) also.
2) $W=\operatorname{Sym}(3), \quad S=\left\{S_{11} S_{2}\right\}$ as shown

$$
\begin{gathered}
W=\left\langle S \mid S_{i}^{2}, S_{1} S_{2}^{3}\right\rangle=D_{6} \\
\quad\left(S_{1} S_{2}\right)^{3}=11
\end{gathered}
$$

$$
\begin{aligned}
& \left(S_{1} S_{2}\right)^{3}=11 \\
& \Leftrightarrow S_{1} S_{2} S_{1} S_{2} S_{1} S_{2}=11 \\
& \Leftrightarrow S_{1} S_{2} S_{1}=S_{2} S_{1} S_{2}
\end{aligned}
$$

Both yellow edges are swapped by

$$
r:=S_{1} S_{2} S_{1}
$$

This is due to the fact that $S_{1} S_{2} S_{1}=S_{2} S_{1} S_{2}$
3) $W=\left\langle S_{0}, S_{1}, S_{2} \mid S_{i}^{2},\left(S_{i} S_{j}\right)^{3}{ }_{i \neq j}\right\rangle$

The Cayley graph is the dual graph of the cling corresponding to W :
$\operatorname{Gay}(\omega, S), S=\left\{S_{0}, S_{1}, S_{2}\right\}$
Put gavin $R=W \delta \omega^{-1}$.
how every $r \in R$ swaps infinitely many edges in this example.
Eng. take $T=\delta_{0} S_{2} S_{0}$ then obviously le edge sos \because So is swapped boys. But also all other edges marked the same color.
Again elements in R correspond to actual hyperplane reflections.
äctual umpeplane reffectiòns.

4) A nou-Coxeter example: cake $G=7 L$ and $S=\{ \pm \lambda\}$ no involutions $\operatorname{Cay}(G, S)=\ldots \underbrace{+1}_{-1} \ldots$
Q: ls there a pre-reflection system

Q: Is there a pre-reflection system for this example?
5) Lemma: (ω, S) any Coxeter system, put $X:=\operatorname{Cay}(\omega, s)$ and $R:=\omega S \omega^{-1}$, then (x, R) is a pre-reflection system.
Proof: Recall that X is connected and simple as a graph.
The element wsw-1 flips the edge $\{1,00 s\}$ and no other element in R does 50, too.

Def 3.14 Walls and reflection systems.
Given a pre-reflection systems (X, R) for a group G. Then the wall H_{r} for $r E R$ is the set of (midpoints of) edges in X flipped by r.
A pre-reflection system is a reflection system if in addition
(6) for eat $r \in R$ the complement $X \backslash H_{r}$ of the wall of r has exactly 1 two components.
two components.

Rule Note that each $r \in R$ in a reflection system flips the two components of $\times \backslash H_{r}$.
We will prove that all pre-reflection systems far Coxeter gros defined as in Example 3,11 are in fact reflection systems.

Def 3.15 deletion \& exchange condition Let ω be generated boy a set of involutions. We say ω satisfies the deletion condition if for all words $\left(s_{1}, \ldots, s_{k}\right)$ in S with $l\left(s_{i} \ldots \cdot S_{k}\right)<k$ there exists indices $i_{i j}$ with. $S_{1} \cdots s_{k}=s_{1} \cdots \hat{S}_{i} \ldots \hat{S}_{j} \cdots s_{k}$.

Wratisfies the exchange condition if the following holds:
suppose $\left(S_{1}, \ldots, S_{k}\right)$ is a reduced word for ω, then $\forall s \in S$ we have either $l(s w)=k+1$ or there exists an index i sith.

$$
w=s \cdot s_{1} \cdots \hat{s}_{i} \cdots s_{k}
$$

$\hat{\omega}=s \cdot s_{1} \cdots \hat{s}_{i} \cdots s_{k}$.

Heme 3.16
Let W be a group generated by a set of involutions S.
Put $X:=$ Cay $(0, s)$ and $R:=W S W^{-1}$.
then the following are equivalent:
(1) (ω, s) is a Coxeter system.
(2) (X, R) is a reflection system
(3) (ω, s) satisfies the deletion condition.
(4) (ω, s) satisfies the exchange condition.

This is how we will prove this theorem
Rule: We will use the fact that the involutions in S in a Coxeter system (O_{S})
3.17 Words and paths in $X=C a y(\omega, s)$ suppose W is generated by involutions S. suppose further that all involutions in S are distinct. Then we have a lojection:

$$
\text { Slonacc in } S\} \longleftrightarrow \text { Sedae paths in } X\}
$$

$$
\{\text { words in } S\} \underset{1: 1}{\rightleftarrows}\left\{\begin{array}{r}
\text { minimimal } \\
\text { edge paths in } X \\
\text { stating at } \mathbb{1}
\end{array}\right\}
$$

$$
\left(s_{1}, s_{2}, \ldots s_{k}\right) \longmapsto \text { path with vertices }
$$

$$
S_{1}, s_{1} S_{2}, S_{1} s_{2} S_{3}, \cdots
$$

$$
\ldots, S_{1} S_{2} \cdots S_{k}
$$

3.18 words and reflections and crossed walls Assumptions as in 3,17.
Every word $\left(S_{1}, S_{2}, \ldots S_{k}\right)$ in S has an associated sequence of reflections:

$$
\begin{aligned}
& r_{1}=S_{1} \\
& r_{2}=S_{1} S_{2} S_{1} \\
& r_{3}=S_{1} S_{2} S_{3} S_{2} S_{1} \\
& \vdots \\
& r_{k}=S_{1} S_{2} \ldots S_{k-1} S_{k} S_{k-1} \ldots S_{2} S_{1} .
\end{aligned}
$$

Reflection r_{i} flips the edge between the vertices $S_{n} \cdots s_{i-1}$ and $S_{1} \cdots s_{i}$ in X. We say the path associated with $\left(S_{1}, \ldots, S_{k}\right)$ cos defined in 3,17) crosses the wall H_{r} for some $r \in R=W S W^{-1}$ if $r=r_{i}$ for some i and r_{i} defined as above.
hey to prove $(1) \Rightarrow(2)$ and $(2) \Rightarrow(3)$.
Lemma 3.19
W generated boy a set S of distinct
W generated boy a set S of distinct involutions.

$$
X=\operatorname{Cay}(w, s), R=W \delta w^{-1}
$$

Let $\left(S_{1}, \ldots, S_{k}\right)$ be a word in S and let r_{1}, \ldots, T_{k} be the associated reflections.
If $\Gamma_{i}=\Gamma_{j}$ for some $i<j$, then

$$
s_{1} \cdots s_{k}=S_{1} \ldots \hat{S}_{i} \cdots s_{j} \ldots S_{k}
$$

Proof: Suppose $r=r_{i}=r_{V}$.
Put $\omega_{p}:=s_{1} \cdots s_{p} \quad \forall 1 \leq p \leq k$.
Let p be the post determined boy $\left(S_{1}, \ldots, S_{k}\right)$.
Apply r to the sub-path on the vertices $\omega_{i}, \ldots, \omega_{j-1}$:

Concatenating the image with sub-paths

1. ~. 1.n. an i.onll $\cap \subset$

Concatenating the image wiser sub-puino of r connecting 11 and w_{i-1} as well as ω_{j} and ω_{k}, we obtain a new path from 11 to W_{k} which is shorter.
Since the action of W on $X=\operatorname{Cay}(\omega, s)$ preserves cupes of edges Chis new path corresponds to the word

$$
\left(s_{1}, S_{2}, \ldots S_{i-1}, S_{i+1}, \ldots, S_{j-1}, S_{j+1}, \ldots, s_{k}\right)
$$

Hence $\omega=S_{1} \ldots \hat{S}_{i} \cdots \hat{S}_{j} \ldots S_{k}$.

