Universität Heidelberg

11. Juni 2018

Mathematisches Institut Prof. Dr. Winfried Kohnen Johann Franke

Modulformen 1 - Übungsblatt 7

Sommersemester 2018

Aufgabe 1 (1+1+2+2(+2 Bonus) Punkte)

In dieser Aufgabe wollen wir Modulformen zu sogenannten Kongruenzuntergruppen betrachten. Dabei ist eine Untergruppe $\Gamma \subset \Gamma(1)$ eine Kongruenzuntergruppe, falls es ein ganzes $N \geq 1$ gibt, so dass $\Gamma(N) \subset \Gamma$. Das kleinste N mit dieser Eigenschaft bezeichnen wir auch als die Stufe von Γ . Da $\Gamma(N)$ für alle $N \geq 1$ endlichen Index in Γ hat, ist der Index einer Kongruenzuntergruppe in $\Gamma(1)$ stets endlich.

- (a) Sei U Untergruppe einer Gruppe G mit endlichem Index m. Ist nun $g \in G$ beliebig gewählt und $g_1, ..., g_m$ ein Vertretersystem der Rechtsnebenklassen von G nach U (d.h. $G = \bigcup_{j=1}^m Ug_j$), so ist auch $g_1g, ..., g_mg$ ein solches.
- (b) Sei nun Γ eine Kongruenzuntergruppe der Stufe N. Eine holomorphe Funktion $f: \mathbb{H} \to \mathbb{C}$ bezeichnen wir als Modulform von Gewicht $k \in \mathbb{Z}$ bezüglich Γ , falls gilt
 - (i) $f|_k L = f$ für alle $L \in \Gamma$.
 - (ii) Für jedes $M \in \Gamma(1)$ ist $g = f|_k M$ holomorph in $z = i\infty$.

Wir bezeichnen ab jetzt $M_k(\Gamma)$ als den Vektorraum der Modulformen von Gewicht k bezüglich Γ .

Sei $f \in M_k(\Gamma)$. Verwenden Sie, dass $\Gamma(N)$ ein Normalteiler von $\Gamma(1)$ ist um zu zeigen, dass für jedes $M \in \Gamma(1)$ die Funktion $g = f|_k M$ eine Fourier-Entwicklung in $z = i\infty$ besitzt der Form

$$g(z) = \sum_{\ell=0}^{\infty} a_g(\ell, M) q^{\ell/N}.$$

(c) Es gibt Abbildungen

$$\operatorname{Sp}: M_k(\Gamma) \to M_k(\Gamma(1)),$$

$$\pi: M_k(\Gamma) \to M_{mk}(\Gamma(1)),$$

die gegeben sind durch

$$\operatorname{Sp}(f) := \sum_{\gamma \in \Gamma(1)/\Gamma} f|_k \gamma$$

resp.

$$\pi(f) := \prod_{\gamma \in \Gamma(1)/\Gamma} f|_k \gamma.$$

Abgabe: Montag, 18.06, bis spätestens 11 Uhr ct. im Tutorenbriefkasten Nr. 53 in INF 205 im ersten Stock.

Dabei ist $m = [\Gamma(1) : \Gamma]$ der Index von Γ in $\Gamma(1)$. Man nennt $\operatorname{Sp}(f)$ auch die Spur von f.

(d) Es gilt für k > 0 in selber Terminologie wie oben

$$\dim_{\mathbb{C}} M_k(\Gamma) \leq \left\lceil \frac{mkN}{12} \right\rceil + 1.$$

Hinweis: Zeigen Sie zunächst für $f \in M_k(\Gamma)$: ist für ein $M \in \Gamma(1)$ auch $a_f(\ell, M) = 0$ für alle $0 \le \ell \le \frac{mkN}{12}$, so gilt bereits f = 0.

(e) Die Gruppe Γ_{θ} , definiert als das Erzeugnis von $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ und $T^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, ist eine Kongruenzuntergruppe der Stufe N=2 und hat den Index m=3.