RAMANUJAN IDENTITIES OF HIGHER DEGREE

J. FRANKE

ABSTRACT. We use techniques regarding generalized Dirichlet series developed in [6]
to obtain formulas for a wide class of L-functions at rational arguments. It is shown
that these values are related to special functions on the upper half plane which possess
similar properties as modular forms. Several formulas of Ramanujan involving values of
L-functions at integer arguments turn out to be special cases of the main theorem.

1. INTRODUCTION

This paper continues the study of L-functions at rational points which was done in the
case of Dirichlet L-functions in [6]. In that paper the author generalized some classi-
cal identities for Dirichlet L-functions by Ramanujan, for example the following formula
involving values of the Riemann zeta function at integers

1 = 1
a <§<(2N +1) + ; J2N+1 (g2ak — 1))
1

k=1
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(2N + 2 — 2k)!

where N > 0 is an integer and a, 3 are positive real numbers such that a3 = 7. A proof
for this relation is also given in [2]. One notes that the terms 3¢(2N + 1) on both sides
and the finite sum over the Bernoulli numbers come from the residues of the completion
A(s) := (2m)*T'(s)((s)C(s + 2N + 1) at the points s = 0 and s = —2N (note that
¢(0) = —%), and s = —2N —1,—2N + 1,...,—1, 1, respectively. The infinite sums are of
Lambert type but can be rearranged to power series in z = e 2* (and z = ¢~ 27) with
coefficients identical to those of the Dirichlet series ((s)((s + 2N + 1).

The formula is associated to the number field K = Q, but for example the following
new formula corresponds to the case where K = Q(v/D) is a real quadratic number field:
let N € N, dx and xp(d) be the discriminant and character associated to K. Let

c(n) = 2ZXD(d)‘7—2N—1(d)U_2N_1 <g>
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be the coefficients of the Dirichlet series 2(x (s)(k (s+2N +1), where (x(s) is the Dedekind
zeta function associated to K. Then we have for all o, 3 > 0 with a8 = 4r2d":

N <_<K( )Cx(2N +1) Z n) Ko 204[))

n=1

=57 <—<K< )¢k (2N +1) Z n)Ko(26+/n >>

(1.2) 2357 oy ss ((Ch(l = 2N + 1)Cke (£ +2) + Ce(£ = 2N + 1)Ge(€ + 2)
- Z ( @N (- 1)2
E even
_QCK(K — 2N + ]-)CK(E + 2) log(a) HQN —1 —
+ GN (- 1) +2(2N 7 1)'2§ x(0— 2N+1)§K(€+2))

+ RicCie(2N + 2)(a N2 — g72N-2),

where K is the bessel function, H,, := Z?Il % is the n-th harmonic number, v = 0,57721...

is the Euler-Mascheroni constant and Ry is given by
21 h
R — og(e) K
Vldx]
where h is the class number and log(e) the regulator of K. This new result is analogous
to (|1.1)) in the following sense: the infinite sums now involve functions of higher degree, the

terms —((0)C(2N +1) in (1.1]) are replaced by —(5(0)(x (2N + 1) and the finite sum now
also involves values of () at integer arguments and a logarithmic term since the degree of

K is not n = 1 but n = 2 and the completion D(s) = (%) B () Cr(s)Cr(s + 2N + 1)

d
has also poles of order 2 in the critical strip. At this point the reader shall be hinted
to a connection to Maass Eisenstein series. Indeed, the coefficients a(n) := yp(n)og(n)

generate the Dirichlet series (g /p (s)? and

0

Z (27rny) “in (27?713:) s— iy

= Dl DI )" ’

is a corresponding Maass Eisenstein series on I'p := I'o(D) U STy(D) with eigenvalue +

4
with respect to the hyperbolic Laplacian operator. Here S := (? _0

To(N) := {<CCL Z) e SLQ(Z)‘ (ﬁ Z) _ (o ) mod N}

the usual congruence subgroup with level N. In this paper we consider the situation that
Ky(xny) sin(xnz) is replaced by Kg(*+/—nit), which is (when looking at the corresponding
gamma, factor) is a function of degree 2. Note that in [II] Lewis and Zagier study the
exchange by e *™" which is a function of degree 1.

The theory behind the curious formula can be explained by the fact that the values
C(2N +1) appear as coefficients of certain period polynomials (or rational functions more

w\»-t

) is the inversion

and
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generally speaking) of Eichler integrals
i
Er(T) = ¢ J(f(z) —a(0))(z — 7)"2dz, 7 € H (= upper half plane),

where f is a modular form of weight k with Fourier expansion f(z) = >, a(n)q™ (where
as usual ¢ := ¢?™*) and ¢ is some normalizing constant. An example of the situation
looks as follows. Let x be a primitive character with conductor m > 1 and Gauf sum

G(x). We denote the weight k slash operator for (CCL 2) € GLy(R)™ as usual by

Sl (i Z) (2) := (ad — be)*(er + d)™* f (“Z + b) .

cz+d

We now find that if

g(X o m n/m
Fy ( T Z ; e2mf/m _ qn/m)
we have
(1.3) (Fy — CFyli-1S5) (1) = P(7),

where C' = x(—1) and P is a polynomial which degree is at most k. The coefficients
of P are related to values of L-functions at integer arguments. In particular, one can

compute
i (— _ omit\"
=2, X)Lk = %) (- -
=0 m
As easy corollaries we obtain identities in the spirit of Ramanujan, e.g.

55 < X5(n)[ 1 1 1 1

- - +
o' “ n3 6271—”/565 -1 627rn/5<‘§ -1 627rn/5<§ -1 eQTrn/SCél -1

L(27 X5) =

Here, (5 = exp(27i/5). To receive this formula one chooses x to be the Legendre symbol
modulo 5 and substitutes 7 = ¢ into . For more about the general theory of Eichler
integrals and period polynomials the reader is referred to [5]. In [7] transcendental values
of Eichler integrals are investigated.

In [6] this author generalized the above identities to the case of not only integer but
rational arguments. We proved the following: let x £ o be a primitive character modulo
m, k and b be positive integers and k =1 mod 2. We define M}, ,(7, x) as a holomorphic
function on the upper half plane given by a generalized Fourier series

n/bm T
(1.4) M p(7,x) = Z)\kbnx)qbl / q:= e,

n=1

where the coefficients A, 5(n, x) are defined by the identity

b .
1 —1
Z)\kan }_[L(s+—,x>L(s—l—jT+k‘,Y>.
Then we have
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Theorem 1.1 (see [0], p. 94). Let
20\ (=1 Py [+ —1 (+j-1  _
) (e

7=1

if 1 —bk —b< (<0 and v, = 0 otherwise. Then we have the modular identity

b

Myp(m,x) = (=12 (=im)" My (=1/7,x) = . ye(=ir) ™,
{=1—bk—b

where B = b(k — x(—1))/2.

As a result, products of values of Dirichlet L-functions at rational arguments are linked
with objects which have similar properties like classical modular forms.

The purpose now is to generalize this concept to a much wider class of L-functions.
The main problem here is that the gamma factor v(s) of L-functions in the completion
A(s, L) := v(s)L(s) (which continues to a meromorphic function on the complex plane
and satisfies a functional equation of the standard type) is not of he form ~(s) = A*T'(s)
in general. Consequently, the exponential terms in ((1.4) are replaced by functions which
arise as special cases of the Meijer G-function

Gman Q1 ap | J (bj_s)ngllr(l_aijS) s ds
" 2mi H] a1 L1 —=bj +5) I'(a; — s) ’

p,q
by, ... b, A

where 0 < n < p, 0 < m < q are integers and L describes a suitable path of integration
in the sense of an inverse Mellin transformation. For any further details the reader may
wish to consult [1], p. 374.

To arrive at this point, we consider generalized Dirichlet series >, | a(n)n™*/", collected
in the vector space D((v,v*), 0, k), with absolute abscissa ¢ and properties described in
Definition[2.5]in detail, such as a functional equation under s — k—s. They are completed
by gamma factors of the form

s/b

Y(s) = ab* [ [T(a; + $)9T(b; — 5)%

j=1

specified in Definition with exponential decay in vertical strips. This is a very general
situation and many important Dirichlet series do fit into this family. The main formalism
of this paper now is the following theorem.

Theorem 1.2 (cf. Theorem [2.§ E Let € N and 5 = (yj)1<j<u ond ¥ = (v )1<j<p be
collections of gamma factors in Wap.ca. We then have a map

I
7; : >< D((fyj’ 73*)’ g, k) —D ((Gg,b,c,d(i/% GZ,b,c,d(iiﬂ;lv)) y MO, /'Lk — M + 1)

(Dy, ... D H[SHHD (S” )]
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The maps G* come from a generalized Gauf formula for gamma factors explained in
Proposition

The Dirichlet series in the image of the 7, may contain information about L-series at
rational arguments. Indeed, with the help of a converse theorem Theorem [2.7] presented
in section 2 we obtain curious holomorphic objects on the upper half plane with certain
transformation properties tied to constants of interest.

We shall be especially interested in the case that v(s) is of the form ~y(s) = A*T'(s)" for
some integer n > 1. Explicitly, we can then write this functions for each n € N and ¢ > 0

as

c+100

1
W, (1) :i= — I'(s)"(—iT) *ds, T e H.
(1) =5 | T

c—1%00
We say that the function W), has degree n (this denotation seems natural by the appli-
cation to number fields). In the case n = 2, for example, when studying L-functions of
quadratic number fields, the expressions Wy are Ky-Bessel functions. An example looks

as follows.

Theorem 1.3 (cf. Theorem BA). Let w > 1 and b > 0 be integers with w = 1 mod 2.
Let K = (K1, K1, ..., Ky, K}) be a collection of real quadratic number fields as above. For
all T € H we define the (holomorphic) function

0 ¢]
Eup(riK) = 28D Y (v K) Ko (47rb 2 %\/—TT) ’

v=1

where D = \/|dK1 ~dpey - dr, - dgg| and A is some constant depending on the collection

K. Then, for all T € H, we have an identity

w+1

By (75 K) = (=i7)" " By (= 1/7; King) = | Pa(7) + log(=i7)Qa(7),

where the P; and Q) are rational functions with P, = Qo = 0 whenever 1 < a and a =0
mod 2.

The coefficients ¢, 4(v; K) arise from products of Dedekind zeta functions corresponding
to the fields K3, K1, ..., K3, K}, the explicit definition is given in (3.5)).

The paper is organized as follows. In the second section we use generalizations of the
Hecke converse theorem to reveal connections between generalized Dirichlet series with
certain properties (such as a meromorphic continuation to the entire plane) and functions
which transform similarly as modular forms and are related to values of Dirichlet series
at rational arguments.

In the third and fourth section we apply our results to some special cases such as the
Dedekind zeta function of number fields and L-functions associated to modular forms of
half-integral weight. In the last section we formulate some obvious questions which are
motivated by our results.

Notation. We will use the symbol 1 to denote the vector (1,1,...,1) € R", where n
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shall be clear in the context. Also, for arbitrary a € R", we write s, = (a,1) = >.'_ a,
as the sum of all entries in a.

Let S be a set (or class) and o := (01,...,0,) € S x --- x S be a tuple. We will then
use the notation oy, = (0y,...,01) several times. Sometimes we will use the notation

exp, () 1= pu”.
ACKNOWLEDGEMENTS

The author is very grateful to Winfried Kohnen for many helpful comments as well as
the referees for their careful reading and their useful suggestions which improved the

paper.
2. DIRICHLET SERIES AND GENERAL MODULAR RELATIONS

The matter of this section is to explain the term Ramanujan identity and to summarize
the concept in a formal definition. Like in the special case of modular forms there is a
1:1 correspondence between Dirichlet series with certain properties (such as a functional
equation) and functions which are holomorphic on the upper half plane and are related to
interesting rational functions. The examples given by Ramanujan only referred to values
of L-functions at integer arguments. However, by including generalized Dirichlet series of

the form
o0

D(s) = Z a(v)y=*/
v=1
for some b € N it is possible to develop an analogous theory for L-functions at rational
arguments. To formalize this theory we need the following.

Definition 2.1. Let a € R*, b € Rog, a = (ay,...,a,),b = (by,...,b,) be in R" and
c=(c1,..,Cn),d = (dy,....,d,) be in Z". We define the corresponding gamma factor by

Yababed(s) = ab* [ [T (a; + s)7 T (b — s)" .

j=1

Observe that in the case n = 1 we have Euler’s formula:

T
71,1,0,1,1,1(3) =I(s)['(1 —s) =

sin(7s)’
It is obvious that products of gamma factors are again gamma factors and we obtain that
the set 20U of all gamma factors carries the structure of a multiplicative abelian group. We

will simply write v(s) instead of Y, pab.c.a(s) when the parameters are clear. We have the
following formal trick.

Proposition 2.2. For p=1,2,3,... we have multiplicative operators
G, W—->W

V(s) = ﬁv (#) :
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Proof. 1t is well-known that
Gu(D(aj + 5)) = (2m)W=VR2y12=s=1a D (a; + 5) € 2B,
and similarly we obtain
Gu(L(b; —s)),G,(ab®) € 20.

Since G, is a multiplicative map (in fact, a group homomorphism) our assertion follows.

O

If we fix real vectors a, b € R" in the expression above, we obtain the subgroup W, . We
then have restricted homomorphisms

G,u : QHa,b - Qnua,ub—(u—l)l

by Remark [2.4] As we will see later, for some applications the above Gamma trick is still
too restrictive. But by fixing ¢ = (¢q,...,¢,) and d = (dy,...,d,) in Z", we eventually
obtain mappings

o
>< QUa,b,c,d - Qnua,,ub—(u—l)l,c,d‘
j=1
This is explained in greater detail in the following proposition. Note that 20, p cq is not

a group with the operation declared above.

Proposition 2.3 (Generalized Gauf formula). We have mappings

W
H .
G(a,b,c,d : >< QHa,b,c,d - SznpLa,ubf(yfl)l,c,d
Jj=1

given by

I .
s+75—1
(vaj76j7a7bvcyd(s))‘l;:1 — H 704]',6]‘,371),0,(1 ( ILL ) :

=1

We explicitly have

= s+j—1
H ’Yaj7ﬁjzavb7c7d - = PyAsz,u'aJJ‘bi(/"‘il)l:cyd(8)7
j=1 H

where the real numbers A, B are given by

® . S¢ + 8
A= (H o3} W”) (2m)( D/ eeta) exp 5~ (@) + (b))t (u— 1)sa)
j=1

and

respectively. Recall that s, = (v, 1).
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Proof. Expanding the product shows

& s+5—1
n%j,ﬁj,a,b,c,d E—

j=1 H
= (s+j—1)/ ° s+75—1 c S—I-j—l de
= [TesB I (@ + 22—=) T (b -2
=1 =1 H H
and we use [ [f_, T'(b; — %) = [T Tl — 5 - “T_l + ]%1) to obtain

‘ n . ) o y— N dy
Oéjﬁ](‘erj*l)/H % H [(27T>Tlu§*uaefsr('uae I S)] ‘ [<27T>Tllj/§*#be+s+uflr(,ubg —SsS—u+ 1)] ¢
=1

<
Il
Jut

I
.::]t

Sorting the terms leads us to

= ’VA,B,,ua,,ub—(,u—l)l,c,d(s)7

as required. O

Sometimes we will leave out the indices of G when the parameters should be clear.
Remark 2.4. Proposition [2.3] provides us with the explicit formula

GN (’Ya’b@,b,c,d(S)) = ’YAH,b,LJf(SC*Sd) Jua,ub—(p—1)1 (8)7

where
— — C
A = a“b(“ 1)/2(27T)(M 1)/2:(sc+5q) exp,, (8 + 84

2

~((a.c) + (b.d))yu+ (1~ D)sa)

The next definition comprises all relevant Dirichlet series for our purposes.

Definition 2.5. Let be N. We say that a (generalized) Dirichlet series of the form

D(s) = Z a(v)v=/"

has signature ((y,v*), 0, k) where (v,v*) € W?* and k € R, if the following conditions are
all satisfied:

(i) D(s) is absolutely convergent in the right half-plane {s € C | Re(s) > o} and has
a meromorphic continuation to the entire complex plane with possible poles at argu-
ments s € R.

(ii) There is a dual (generalized) Dirichlet series D*(s) also absolutely convergent in
{s € C| Re(s) > o} with a meromorphic continuation to the entire plane such that
the completions

and .
D*(s) := 7*(s)D*(s)
are related by the functional equation

D(k — s) = D*(s).
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(i1i) The function lA)(s) is bounded on every vertical strip {—0 < o1 < Re(s) < 03 <
o} N {|Im(s)| = 1}.

We denote the space of such generalized Dirichlet series D(s) by D((v,v*),0,k). In the
case vy = v*, we simply write D(v, 0, k).

From now on let us fix some gamma factors v, y* with the property
(2.1) Y(8), Y*(8) <oy,0 ||V e S MM Vo oy > 0,

on every vertical strip o7 < Re(s) < gy. For lots of applications this follows by application
of Stirling’s formula

['(s) =+ Omst 2 s H()
in C_ with holomorphic H with the property
lim H(s)=0

|s|—o0
—m+i<Arg(s)<m—0
for all fixed values 6 € (0,7). Let S(f) < U denote the set of poles the meromorphic
function f in its domain of definition U. For fixed o we define

0o := max{zx € S(y) u S(v*) | * < o}, 6 := min{z € S(y) u S(v*) | * > o}.

In the case that v,v* have no pole z with Re(z) > o, we simply set ; = o0. Note that
we have a holomorphic inverse Mellin transform of ~

c+100

1
o

(22) M (y,x)

~v(s)z*ds, o <c<b,
c—100
on the half plane Re(xz) > 0. By the usual argument including contour integration we

see that (2.2) is independent from the choice of ¢. We can estimate the integral (2.2))
uniformly for all —it € Wy := {z e C* | |Arg(2)| < § — 6} by

ka

23) M) <

o0
|7T J |v(c + it)|eArg(’”)tdt Ly oo |TI7C
—0o0

Definition 2.6. Let f : H — C be a holomorphic function. We say that f induces a
modular identity (of the Ramanujan type) of signature ((v,7*),o,k) (where k € R and
v, v* € 0 satisfies condition (2.1))) if the following conditions are satisfied:

(i) We can expand [ in series of the form
(2.4) f(r) =D aw)M (v, —irv'"),  beN,
v=1

such that a(v) « v5 =1 in this case.
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(ii) There is a dual function f* with expansion

oe]

fi(r) = Z o (V)M (y*, =i, b* e N,

v=1
a*(v) « v~ and also real numbers k—o < cq, ...,co < o and polynomials Py, ..., P,
with transformation property

4

F(=1/7) = 7% f*(r) + > Py(log(—iT))7.

j=1

We denote the space of such functions by R((y,~v*),0,k). Again, if v = v* we write
R(vy,0,k). As in classical theory, we will sometimes call k the weight of f.

Theorem 2.7. Let v, v* be gamma factors which satisfy (2.1), and k € R with k < 20.
Then we have an isomorphism between spaces

9 :D((7,77),0,k) = R((7,7*), 0, k)

given by
1 c+100
VD | T— — f v(s)D(s)(—iT)"*ds, o<c<b|,
271
c—100
with inverse
1 a0
v f - SH—inx:cSldx, o < Re(s) <
’7(8) J ( ) ( ) 1

Note that the representation of 9='(f) is not defined for all s but its meromorphic con-
tinuation is an element of D((v,v*), 0, k).

Proof. We omit a rigorous proof but sketch the main ideas. For the map ¥ let 7 = 1y with
y > 0 and complete the integrals

1 o+e+100 k—o—e+i0
2.5 — D(s)y~*ds — — D(s)y—5d
(2.5) — f (s)y*ds — o f (s)y~*ds
o+E—100 k—o—e—i0

where 0 < ¢ < 6; — o, to a limit of closed contour integrals by adding horizontal segments
to form a rectangle (the boundedness condition for the Dirichlet series on vertical strips
allows us to use the Phragmen-Lindelof principle (for details see for example [12] on p.
118) which means that the horizontal parts will vanish). Note that the coefficients o and
o* satisfy the growth condition because of the convergence of the Dirichlet series. After
the substitution s — k£ — s in the right integral, expression equals to

o0
D a)IM () - ’“Z Y e ).

v=1
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Finally, the residue theorem gives the desired error terms

ZE: res,—, <B(S)yfs) = Zé:Pj(log(y))y

j=1
and the result follows (after adjusting the objects notation) by analytic continuation.

For the other direction one obtains the Dirichlet series by construction (since the coefhi-
cients grow not to fast) by

Tf(ix)x51dx = J./\/l (v, zv0) 2" da = ~(s)D(s)

v= 1

on the strip o < Re(s) < #;. Note that switching integral and sum is allowed using
absolute convergence and Lebesgues theorem (split the integral into two parts Iy and I,
from 0 to 1 and 1 to oo, respectively, and choose values Re(s) > ¢; > o and ¢; > Re(s) > o
satisfying for estimating the first and second integral). The dual integral is defined
analogously and with the transformation property one obtains the functional equation
back. In particular, since ¢; < o for all 1 < j < ¢, one has

Tf(ix)xs_ldx = Tf(i/x)m_s_ldx + I(8)

= J <(zx)kf*(zx) + Z Pj(log(x))xcj> 275 da + Lo (s)

=" 1% (k i (S_C]) + I(s),

where the dual integral converges since k — Re(s) < k — o0 < o and the P; are some
polynomials. Hence

(26) 3($)D(s) — L Z (522) - 10

With the same arguments (note that kK — o < ¢;) one obtains

@7 D) - Z (=) - o

and it follows that I,(s) and I%(s) and hence D(s) and D*(s) have meromorphic con-
tinuations to the entire plane, since the vertical half planes {Re(s) > max{k — 61,0}}
and {Re(s) < 01} have a non-empty intersection, with possible poles only at real values.
The functional equation becomes clear with and (after adjusting the dual by
rescaling with the factor ).

The growth conditions are clear for vertical strips in {Re(s) > o} and {Re(s) < k — o}
due to the functional equation. For the critical strip {k — o < Re(s) < o} one uses the
standard estimate of the integrals I, and I% along vertical lines. 0
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For more about converse theorems the reader is referred to e.g. [4] (p. 336 — 338: Lemma
1 and Theorems 2 and 3) where general Dirichlet series >, a(n)e " (as usual, ), is a
real increasing sequence with A\, — c0) and modular relations of the type

o0]

Z n) exp( )\x—x‘SZb exp(—%)

are investigated. In Lemma 1, the effect of the residue integral on the modular error term
is described in detail. Although Bochner assumes 6; = o for the Mellin integrals the
arguments are similar.

We can now use the generalized Gaufs formula to introduce a general method to extract
analytic objects related to L-functions at rational arguments from those related to integer
arguments. This is summed up in the next theorem.

Theorem 2.8. Let pe N and 5 = (vj)1<j<p and 7* = (7] )1<j<pu be collections of gamma
factors in Wapca. We then have a map

1
7; : >< D((’YJV 7;)7 o, k) —-D ((Gg,b,c,d(f?% Gg,b,c,d(ﬁ/itw)) » HO Mk — Tt 1)

j=1

Proof. Firstly, we show that the above map is indeed well-defined. To do so, we have to
check that the image of some tuple (Dy, ..., D,) is a generalized Dirichlet series with sig-
nature ((G4pca(7), GapeaFine)) » 1o, pk — g1+ 1) as introduced in Definition 2.5, Since

) —1
po < Re(s) = U<Re(§) <Re(%),

the convergence part of condition (i) is clearly satisfied. As a product of meromorphic
functions in the complex plane the resultant function is meromorphic too and still has
poles only in R as every factor does. For part (ii) we use the functional equations of the
individual factors:

E((Dj))(uk—(u—l)—s):ﬁ@<k e ]) HD’”“<M>’

i=1 H

With

K s+45—1
070 - 1950 (2271)

J=1 a

we have found the dual which also converges absolutely for all s with Re(s) > o, with
corresponding gamma factor Gy |, . 4(75,)- It is plain that (iii) is satisfied and this proves
the theorem. O
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3. APPLICATION TO DEDEKIND ZETA FUNCTIONS OF NUMBER FIELDS

In this section, we will construct identities of higher degree by looking at the specific
gamma factors v(s) = ab’T"(s) for integers n = 1,2, 3, ....

Definition 3.1. Let n € N be an integer. We define for all T € H

Wo(r) e J T(s)"(—ir)~*ds,

2w
c—100

where ¢ > 0 is some real number.

Let K; and K3 be two number fields of degree n and the same signature (rq,7s), where r;
and 7y denote the numbers of real and complex embeddings of K; and K5, respectively.
We now consider the special gamma factor

et () = (—V'deK') I(s)"

(2m)"

Here, dk, and dk, denote the discriminants of K; and K, respectively. We are interested
in the space D(Vk, k,, 1, k). But before starting, we just revise some basic facts.

Let K be a number field with degree n and signature (r1,75). We can then define its
Dedekind zeta function by

1
Ck(s) = Z W,

a

where the sum extends over all non-zero ideals of the integral domain Ok and N is
the norm of an ideal. It is a well known result by Hecke [8] that the corresponding

function
A/ |d ’ T
Ex(s) = (2T2|7Tf/i> r (g) T'(s)"™Cr(s)

has a holomorphic continuation to C\{0, 1} with simple poles for s € {0, 1} and fulfills the
functional equation

k(1 —s) = Ek(s).

Proposition 3.2. Let K and K, be two number fields of degree n and same signature
(ri,m2), w > 0 an odd integer and

¢w<5; Ky, KQ) = VK1L,K (S)n(Kl (S)CKz (8 + w)'
Then we have the functional equation
(3.1) Yu(l —w = s; Ky, Ko) = (1) 070220, (5 K G,
In other words, we have (g, (s)Crk, (s + w) € D(Vk, k5, 1,1 — w), and

(3.2) (Crea (8)Cra (5 + w))* = (1) (5) Gy (5 + ).
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Proof. We will first show that

bl Ky J) = —— ('dK2|> ﬁ<ﬂ+1)_1H(wwx§K1<s>sK2<s+w>.

T rorn/2
(24/m) \ 2re/ 1\ 2 11

This is a simple calculation involving the duplication formula I'(s)I'(s+3) = T'(2s)2' 2/

We obtain
—w w3 —r w1
1 (m) [T(355+0) TI6+ 0 e oemts +w

r ro+n/2
(24/m) \ 2re/ a2 11

_ 1 (VW)SF(f)”r(ﬂ)“r<s>2’"zcm<s><m<s+w)

(2y/m) | 22regn 2 2

. 1 \/m ) )" s r14+2r2 S S w
- (Qﬁ)r1 ( or1+2ra 0 ) (2\/7> F< ) CKl( >CK2( + )

and since n = r; + 2ry we conclude

_ (@) T(8)"Cr, (8)Ck, (8 + w),

(2m)"

as required.

Now we show the functional equation by using the above representation in terms of {;
with j = 1,2. Obviously, the term &k, (s)€k, (s + w) changes to &k, (s)Ek, (s + w) under
the transformation s — 1 — w — s. We have

w—3 w—3

S fl—w—s+1 - 2 (s+1 w-—3 -
- e . =(—1 ri(w—1)/2 sy,
5 ( 5 + J> (—1) H 5t
7=0 7=0
wa?)
+1 e
_ (_1)r(w=1)/2 S
(=1) H 5
7=0
and similarly
w—1 w—1
l—w—s+0)™™=(-D"||(s+w—-1—-0)""
=0 =0
w—1
= (=12 | |(s+£)7".
=0
Since (—1)" = —1, the claim follows. O

We are interested in formulas for L-functions at rational arguments. To gain those, we
have to construct a proper generalized complete Dirichlet series.
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Definition 3.3. Let w > 1 and b > 0 be integers with w = 1 mod 2. Also let K =
(K1, K1, Ky, K}, ..., Ky, K}) be a collection of number fields with the same degree n, such
that K; and KJ’ have the same signature (ry;,72,;) for all 1 < j <b. Then we define

b
s+7—1
Hw ( ,Kj,K;).

Jj=

For the sake of simplicity, we write Dy, g, (s) := Ck,(5)(x, (s + w). Now one can apply
w w b .
Theorem to the data (DKI’Ki,...,DKvaé) € X D(vKﬁKé,l, 1 — w) to obtain the
q

functional equation
(3.3) B p(1— bw — 5; K) = (=1) D= ma (002420 (50 ).

For the convenience of the reader we want to demonstrate this general principle by the
explicit case of real quadratic number fields. So assume that the above collection now
only contains real quadratic number fields. A calculation shows

2mh
Ghoo (5, 1 ) 1i2s) = Ab( f) D(s)?

where D = \/ die, - dicy -+~ di, - digy| and A = T]'_, |dx, -dger| 5 and hence we have

(3.4) Byy(s; K) = Ab(i;rﬁ) 2ﬁ< <3”_1><K3 <#+w).

7j=1

Obviously, the central object of studying yet is the generalized Dirichlet series
b . 0
+75—-1 +5—1 ~
(3.5) D ZJI—IC <S J )CK (%4—1{)) :;Cw’b@;K)V_S/b’

where the generating coefficients ¢, ;(v; K ) are defined by the product in the above equa-
tion.

Theorem 3.4. Let w > 1 and b > 0 be integers with w = 1 mod 2. Let K =
(K1, K1, ..., Ky, K}) be a collection of real quadratic number fields as above. For all T € H
we define the (holomorphic) function

Ew,b

o0
Z Cwp(V; K <47Tb 2 \/—iT) ,

Then, for all T € H, we have an identity

Eup(m3 K) = (=i7)" 7 By (—1/73 Kiny) = D Pa(7) + log(—i7)Qa(7),
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where the P; and Q) are rational functions with P, = Qo = 0 whenever 1 < a and a =0
mod 2. The functions P; are explicitly given by

b

- Sy ot T o () e (370 0)

(=1 j=1
GEb—0+1
0 Ci, ,(0) ks (w) (+7—1 (+5—1
. . N—t Ky 1- J J
=1-b Jj=1
1t
b—bw
Cie (£)
P,(1) = —i7)"A(0)Ryr N s A
) e—;bw( A0 Hombura- 20%(—1)!1
b )
(+ (+5—1
X H CK; (—j ) CK' <—?) + w)
j#bf]l:ulJrlfé

where Ry :=ress_1(k(s), and for all2 < a <w + 1 witha=1 mod 2 and o + w

Po(r) = ) (=im) " [Wy(0) + Wa(l) + W5(0)]

o) = A0 | HcK (=) o (= +0),

Uy (0) = [Z <<Ku (“J_—l) G, (“JT_l 4 w>) ZM(E)]

pn=1

U3(l) = —2log < 2\;%) Al ﬁ <MT_1> (K <£+]T_1 + w> :
with
and

b . .
) = HCKj (#) Ck, <¥ +w)-
j=1

The functions Q; satisfy Qo = Q1 =0 and

b—ba

Qu(r) == > (—im)"A(0) (_2)!2 ﬁCKJ‘ (MT_l> Cx; (MT_I " w)

asa =2 and =1 mod 2.
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Proof. We remember that 2K,(24/z) = Wy(z). From (3.3]) we conclude

w,b
Df( (s) € D((Gg,o,z,o(('YKj,K})1<j<b)a Gg,o,z,o(('YK,;_j+1,Kb_j+1)stb))a b, 1 —bw)
with dual series .
w,b — w,b
(Dk ) (s) = D" (s).
Since we clearly have 1 — bw < 2b, we can use Theorem The calculations all base
on investigating the residues of the completed Dirichlet series. For example, poles of first

order are given in s = 1,2,...;b. The residues here are given by the summands of Fy(7).
The details and the further calculations are omitted. 0

-

Note that (1.2]) follows by this new identity by setting b = 1 and o = 27d*+/—iT and
_1
/6 = 27TdK2 .

1
=it

4. APPLICATION TO L-FUNCTIONS FOR MODULAR FORMS OF HALF-INTEGRAL
WEIGHT

We can apply the developed methods to find new identities for L-functions assigned to
modular forms of half-integral weight. We consider the Hecke group H(A) < SLy(R),
0 -1 1 A

1 0 and Ty = 0 1 where
A > 0 is some real number. It was shown by Hecke that H(A) is discrete if and only
if A\ > 2or A = 2cos (%) with an integer m > 3. Let f be a cusp form of weight
ke 1+ Ny for #()). Then f has a Fourier expansion f(7) = >)_ a(n)q"/* and satisfies
the functional equation f (—2) = (—i7)*f(7). Furthermore, the coefficients a(n) shall be

bounded by a(n) < ns (for A < 2 this is always the case, for A > 2 we assume it). The
corresponding Hecke L-function L(s) = > a(n)n™% is absolutely convergent in the
half-plane {Re(s) > £ + 1} and extends to a meromorphic function on all of C. Kohnen
and Raji show in [10], that ¢;(s) = Ly(s + k — 1) is an element of D(Ypa, 2 — 5,2 — k)
with corresponding gamma factor

= (5) o () 3 ) - ()2

Now we can assign f the series

which is by definition generated by the elements S =

a0
Za n*~FH(2minz/\),

n=1

where the function H is given by H(z) = \/LE (eZF (3,2) - \%), here, I'(0, z) := {7 e~'t*1dt
denotes the incomplete Gamma function. Note that H is a holomorphic function on the
upper half-plane and H(z) = O(|z|~2). Given a(n) <y nt it is easy to see that Efisa
holomorphic function on the upper half-plane. In [10], Kohnen and Raji used this series
to start a cohomology theory in the case of half-integral weight. It is shown that

E3(r) — (ir) €2 <—1> _ Pir) + (27;”)2 Q;(7).

=

T



18 J. FRANKE

where P; and )y are polynomials of degree at most k — % In the case k > 3 this result
follows also by D € D(vai, 2 — g, 2 —k),

(4.1) M; (T'(s)sec(ws), x) = H(x)

and Theorem by studying the poles of ﬁ(s) at half-integral values. Note that the
natural embedding

k 1
D (’}/hatlfa2 - 572 - k) — D <’yhalf7 572 - k)

and hence the values o = % and 0, = % are used. We want to apply the main theorem to

construct curious formulas for the functions Ly at rational arguments.
Lemma 4.1. Let e N. We obtain

G (Yhatt) (8) = /1t <27r\/X>#1 (QWM)S ['(s)

A cost=1(7s)’

Proof. This is routine, observe that

K i1
HCOS <7TL) — (2m) " cosV(xs).
j=1 K

O

Let (f;)1<j<u be a finite collection of cusp forms with same weight k € 2 + Ny. One can
now use Theorem [2.§ to show that

. +j-1 k
H¢f,u (%) € D <Gu(7half);l$ (2 - 5) 7,u - Mk + 1) .
7j=1

At this point we obtain an infinite number of new identities, the details are omitted.

Example 4.2. Let = 3. We consider the Dedekind eta function
a0
n(z) =" [ -q"),
n=1

which is well known to be a holomorphic modular form of weight k = % for SLo(Z) with
certain nebentypus character. Due to the above discussed results we find that

1 73
oy = Ly (S— 5) eD <'7half>1a§) .

75(¢77) €D (G3<’7half>’ %7 g) )

Hence

where .
v3(8) = G3(’7half)<8) = —964/372 <%) [(s)sec(ms).
With residue calculus and (4.1) we find
1 mx

MG (s, z) = —96v/37%2e 52T (E’ Z) + E(x),
4
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where
_192\/§7r 3844/3  2304+4/3  230404/3  3225604/3

21/2 3/2 T5/2 T207/2 309/2

1 2 -
w(§)en(557) (557 - Z st

E(z) =
Put

then we obtain

0
21 5
= ) A (s, —itm'?) e R —-.
f(T) mZ:l W,3(m>M% (737 rTm ) 73, 4 ) 9
The error term in the transformation law of f(—1/7) is now related to products of values
of L, at arguments s € %Z. The calculations are analogous to those made in [6] when

proving Theorem [1.1].

5. QUESTIONS

It is natural to ask the following question at this stage.

Question 5.1. Is there a possibility to extract more detailed information about (products
of ) L-functions at rational arguments using the introduced techniques?

The most promising way is probably finding a cohomology theory just as in the case of
modular forms of integer and half-integer weight to describe the period polynomials which
have occurred.

A second question refers to results of Jin, Ma, Ono and Soundararajan in [9)], who proved
that the zeros of the period polynomial of a newform f € Si(I'o(IV)) lie on the circle

|z = 1/+/N.

Question 5.2. What can we say about the zeros of the error polynomials related to L-
functions at rational arguments?
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