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Abstract

With the help of transformation formulas of Dirichlet L-series we generalize some
classical formulas for the values ζ(2N +1) given by Ramanujan. This will be done
by constructing generalized Dirichlet series of the form

∑∞
n=1 ann

−s/b where b > 0

is an integer, which have similar transformation properties as Dirichlet L-functions
and by considering their Mellin transforms using contour integration methods.
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Zusammenfassung

Mit Hilfe der Transformationsformeln der Dirichletschen L-Reihen verallgemein-
ern wir klassische Formeln von Ramanujan, welche die Werte ζ(2N + 1) der Rie-
mannschen Zeta-Funktion beinhalten. Dies wird mit Mellin-Transformierten von
zuvor konstruierten Dirichlet-Reihen der Form

∑∞
n=1 ann

−s/b, wobei b ∈ N, bewerk-
stelligt, die ähnliche Transformationseigenschaften wie Dirichletsche L-Funktionen
besitzen.

iii



Contents

1 Introduction 3

2 Foundational material 7
2.1 The Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Dirichlet characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Dirichlet L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Mellin transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Eisenstein series and Eichler integrals . . . . . . . . . . . . . . . . . . . . 20

3 Generalized Ramanujan identities 23
3.1 Rationally scaled Dirichlet series with transformation properties analo-

gous to Dirichlet L-functions . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Series identities for values of L-functions at rational points . . . . . . . . 33
3.3 Mixed characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography 41





1 Introduction

The Riemann zeta function is one of the most important and also mysterious complex
functions in analytic number theory. In the right half plane {Re(s) > 1} it is defined as
the Dirichlet series

ζ(s) =
∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+ · · ·

which is absolutely and uniformly convergent on compact subsets K ⊂ {Re(s) > 1}
and hence represents a holomorphic function on {Re(s) > 1}. By analytic continuation,
the function ζ(s) extends to a holomorphic function on C \ {1} with a simple pole in
s = 1. It is a classical mathematical problem to find closed expressions for the values
ζ(n), where n > 1 is an integer. For even integers n = 2k this problem was solved by
Leonhard Euler who showed the surprising formula

ζ(2k) = (−1)k−1
B2k(2π)2k

2(2k)!
,

where the Bk are the Bernoulli numbers, which are defined via the expansion

x

ex − 1
=
∞∑
ν=0

Bν

ν!
xν .

This deep relationship is for example a consequence of the following important integral
identity, linking the Zeta with the Gamma function, namely

ζ(s)Γ(s) =

∞∫
0

x

ex − 1
xs−1

dx

x
, Re(s) > 1,

and the functional equation of the zeta function. For details, see for example [8]. It can
be verified easily that all the Bk are rational numbers and hence, due to Lindemann,
that all numbers ζ(2k) are transcendental. However, in the case that n is an odd number



greater than 1, almost nothing is known about the numbers ζ(n). In 1974, Apery showed
that ζ(3) is irrational using the fast converging series

ζ(3) =
5

2

∞∑
k=1

(−1)k−1

k3
(
2k
k

) ,
and in [6] Beukers presented a different proof using modular forms. Some progress in this
area was made by Zudilin, who gave a proof that an infinite number of odd zeta values
is irrational, see [16]. However, there is still no proof for the irrationality of ζ(2n + 3)

for any single n ≥ 1.

In 1901 the Indian mathematician S. Ramanujan suggested some interesting identities
involving odd zeta values. A famous special case of these relations is the beautiful
formula

ζ(3) =
7π3

180
− 2

∞∑
n=1

1

n3(e2πn − 1)
, (1.1)

linking the values ζ(3) and π3 deeply. For instance, as an immediate corollary we see
that at least one of the values

ζ(3) and
∞∑
n=1

1

n3(e2πn − 1)

is transcendental. But in fact, identity (1.1) is just a special case of a much more general
formula found by Ramanujan, namely

α−N

(
1

2
ζ(2N + 1) +

∞∑
k=1

1

k2N+1(e2αk − 1)

)

= (−β)−N

(
1

2
ζ(2N + 1) +

∞∑
k=1

1

k2N+1(e2βk − 1)

)
(1.2)

− 22N

N+1∑
k=0

(−1)k
B2k

(2k)!

B2N+2−2k

(2N + 2− 2k)!
αN+1−kβk,

where N > 0 is an integer and α, β are positive real numbers such that αβ = π2, see
also [3]. In order to obtain (1.1), we have to substitute N = 1 and α = β = π into
(1.2). Although this formula by Ramanujan may look curious, it can be proved quite

4



elementary by applying residue calculus to the function

fN(z) =
cot(πz) cot(πzτ)

z2N+1
,

where τ is a complex number on the upper half plane. In fact, using the Laurent

expansion cot(πz) =
∞∑
n=0

(−1)n22nB2nπ
2n−1

(2n)!
z2n−1, we obtain

resz=0fN(z) = 22N+2π2N(−1)N+1

N+1∑
µ=0

B2µ

(2µ)!

B2N+2−2µ

(2N + 2− 2µ)!
τ 2µ−1,

and
resz=nfN(z) =

cot(πτ |n|)
π|n|2N+1

= − i

π|n|2N+1
− 2i

1

π|n|2N+1(e−2πi|n|τ − 1)
,

resz=n/τfN(z) = τ 2N
cot(π|n|/τ)

π|n|2N+1
= τ 2N

(
i

π|n|2N+1
+ 2i

1

π|n|2N+1(e2πi|n|/τ − 1)

)
for all n ∈ Z\{0}. For all τ ∈ H we can find a sequence of closed circles γRn with center
m = 0 and radius Rn, such that Rn →∞ and

lim
n→∞

∮
γRn

fN(z)dz = 0.

Hence, the sum of all residues of fN vanishes, which is equivalent to the identity

− 1

2
ζ(2N + 1)−

∞∑
n=1

1

n2N+1(e−2πinτ − 1)

+ τ 2N

(
1

2
ζ(2N + 1) +

∞∑
n=1

1

n2N+1(e2πin/τ − 1)

)

=
π

4i
22N+2π2N(−1)N

N+1∑
µ=0

B2µ

(2µ)!

B2N+2−2µ

(2N + 2− 2µ)!
τ 2µ−1.

By setting α = −πiτ and β = πi
τ
, one now verifies (1.2) easily.

The aim of this master thesis is to generalize series identities for the Riemann zeta
function at odd integer values of the Ramanujan type to series identities involving Dirich-
let L-functions at rational points. This can be done by constructing Dirichlet series D(s)

which have a meromorphic continuation to the entire complex plane and possess trans-
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formation properties similar to Dirichlet L-functions, i.e. there are rational numbers
v > 0 and w, such that for a positive integer b the function

f(s) = (2πv)−s Γ(s)D(s/b)

fulfills a functional equation of the type f(w − s) = ±f(s) for all s ∈ C. The idea of
construction is quite simple: one can obtain such D(s) by considering products of the
form

L
(s
b
, χ
)
L

(
s+ 1

b
, χ

)
· · ·L

(
s+ b− 1

b
, χ

)
where χ is a primitive Dirichlet character with modulus m. The method introduced will
provide new series identities for Dirichlet L-functions at rational points, for example,
when considering the unit character,

∞∑
n=1

∑
d|n

σ−3(n/d)σ−3(d)d−1/2

(e−2π√n − 1

32
e−8π

√
n

)
= A+B + C +D + E (1.3)

where

A =
511

92160
π2ζ(3/2)ζ(9/2),

B =
1

288
π3ζ(3/2)ζ(5/2),

C = − 7

32
ζ(3/2)ζ(5/2)ζ(3),

D =
127

11520
π3ζ(1/2)ζ(7/2),

E = −31

64
ζ(1/2)ζ(7/2)ζ(3),

and σk(n) is the usual divisor sum. This new identity is the case b = 2, k = 3 and τ = i
2

of Theorem 3.1.5.

In chapter 2, we present some foundational material and in chapter 3 the main the-
orems are proved using contour integration methods. We also give some examples and
present a second proof for the identity (1.2). In the last section of the thesis, we also
consider the case of mixed characters.
The author is grateful to Winfried Kohnen for his support. The main results of this
master thesis are new and will be published soon in the Ramanujan Journal.
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2 Foundational material

In this chapter we will discuss some basic material.

2.1 The Gamma function

Definition 2.1.1. For complex numbers s with Re(s) > 0 we define the Gamma function
by

Γ(s) =

∞∫
0

e−xxs−1dx.

The Gamma function has very important properties. It can be extended to a holo-
morphic function on C\{0,−1,−2, ...} with simple poles in s = −n ∈ −N0 with residues
ress=−nΓ(s) = (−1)n

n!
and fulfills the functional equation

sΓ(s) = Γ(s+ 1).

In particular, we obtain the formula Γ(n+ 1) = n! for all n ≥ 0 by induction. The next
theorem is an important result of Wielandt, who gave a characterization of the Gamma
function.

Theorem 2.1.2 (Wielandt, 1939). Let V := {s ∈ C | 1 ≤ Re(s) < 2} and D a domain
which contains the strip V . Let f : D −→ C be an analytic function which has the
following properties:

(i) f is bounded on V .

(ii) We have
sf(s) = f(s+ 1)

for all s, s+ 1 ∈ D.



2.1 The Gamma function

Then we have
f(s) = f(1)Γ(s).

Proof. See for example [8], p. 198.

The Gamma function has some very useful properties. For instance, using residue
calculus, one can show the following interesting identity holding for all complex values
s /∈ Z.

Theorem 2.1.3 (L. Euler, 1749). For all s ∈ C \ Z, we have the identity

Γ(s)Γ(1− s) =
π

sin(πs)
.

Proof. See for example [8], p. 204.

This identity will help us later to deal with functional equations of Dirichlet L-
functions. The next theorem is an important result by Stirling, who characterized the
growth behaviour of the Gamma function in terms of elementary functions.

Theorem 2.1.4 (Stirling formula). We have for all s ∈ C\{x ∈ R | x ≤ 0} the formula

Γ(s) =
√

2πss−
1
2 e−seH(s)

where H(s) is analytic on C \ {x ∈ R | x ≤ 0} and converges to 0 in every segment
−π + δ < Arg(s) < π − δ, where 0 < δ < π.

Proof. See for example [8], p. 208.

Corollary 2.1.5. Let a < b be two real numbers and ε > 0 an arbitrary small real
number. Then we have

Γ(c+ iT ) = O(e−(π2−ε)|T |)

uniformly in a ≤ c ≤ b, when T ∈ R and |T | → ∞.

Proof. Let c ∈ [a, b]. With Stirling’s formula we obtain

|Γ(c+ iT )| =
∣∣∣√2π(c+ iT )c+iT−

1
2 e−c−iT eH(c+iT )

∣∣∣ .
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2.1 The Gamma function

Since that
√

2πe−c−iT eH(c+iT ) is bounded for |T | → ∞, there is a constant C(a, b) such
that

≤ C(a, b)

∣∣∣∣exp

((
c+ iT − 1

2

)
Log (c+ iT )

)∣∣∣∣
Let T ≥ 1. Now there is a constant K1(a, b) independent from T and ε(T ) > 0 such that
Re [Log (c+ iT )] ≤ K1(a, b) log(T ) and |Im [Log (c+ iT )]| ≥ π

2
− ε(T ) for T sufficiently

large. Hence we have

≤ C(a, b)K1(a, b)Te
−(π2−ε(T ))|T |

for all sufficiently large T . Since we can choose ε(T )→ 0 as |T | → ∞ and the constants
C(a, b) and K1(a, b) are independent from c, the corollary follows.

The key to all results of this paper is a well-known formula by Gauß, which creates a
relation between the Gamma function Γ(s) and its rational transformations Γ

(
s+`−1
b

)
,

where 1 ≤ ` ≤ b.

Theorem 2.1.6 (C. F. Gauß). Let b be a positive integer. Then we have

b∏
`=1

Γ

(
s+ `− 1

b

)
= (2π)(b−1)/2b1/2−sΓ(s).

Proof. We will use Wielandt’s Theorem 2.1.2 to show the claim. Let

h(s) =
Γ
(
s
b

)
Γ
(
s+1
b

)
· · ·Γ

(
s+b−1
b

)
bs−1

(2π)(b−1)/2b−1/2
.

Then h is analytic on C \−N0 and bounded on the strip 1 ≤ Re(s) < 2 according to the
stirling formula. It is easy to check that

sh(s) = b
s

b
h(s) = h(s+ 1),

so we are left to show that

b−1∏
`=1

Γ

(
`

b

)
= (2π)(b−1)/2b−1/2
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2.1 The Gamma function

which implies h(1) = 1 and hence Γ(s) = h(s) by Wielandt’s Theorem. We will show
this in the case where b is odd, the even case is analogous. Firstly, using Theorem 2.1.3,
we obtain

b−1∏
`=1

Γ

(
`

b

)2

=

(b−1)/2∏
`=1

π

sin(π`/b)
·
(b−1)/2∏
`=1

π

sin(π(b− `)/b)

= πb−1
b−1∏
`=1

1

sin(π`/b)

= (2πi)b−1
b−1∏
`=1

1

eπi`/b − e−πi`/b

= (2πi)b−1
b−1∏
`=1

e−πi`/b ·
b−1∏
`=1

1

1− e−2πi`/b

= (2πi)b−1e−πib(b−1)/(2b) ·
b−1∏
`=1

1

1− e−2πi`/b

= (2π)b−1
b−1∏
`=1

1

1− e−2πi`/b
.

Now we have

b−1∏
`=1

1

1− e−2πi`/b
= lim

x→1

x− 1

xb − 1
= lim

x→1

1

bxb−1
=

1

b
, (2.1)

and hence, given that Γ(x) > 0 for all x > 0, we obtain

b−1∏
`=1

Γ

(
`

b

)
= (2π)(b−1)/2b−1/2.
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2.2 Dirichlet characters

2.2 Dirichlet characters

Definition 2.2.1 (Character of an abelian group). Let G be an abelian group. Then,
a character χ of G is a group homomorphism χ : G → C×, where C× is the group of
complex multiplication.

We are specially interested in the case when G is a finite abelian group.

Proposition 2.2.2. Let G be a finite abelian group with neutral element e and χ be a
character of G. Then χ(e) = 1 and for every value a ∈ G, χ(a) is a root of untinity.

If G is an abelian group, we define C(G) to be the set of all characters of G. It is then
easy to see that the set C(G) is an abelian group by setting (χ1χ2)(a) := χ1(a)χ2(a) for
all a ∈ G. The next theorem shows, that there is an interesting connection between G
and C(G) in the case that G is finite.

Theorem 2.2.3. Let G be a finite abelian group. Then G is isomorphic to C(G).

Proof. See for example [7], p. 33.

Definition 2.2.4 (Dirichlet character). Let m be a positive integer and ψ be a character
of the finite abelian group (Z/mZ)× of the residue classes modulo m. We then define an
arithmetic function χ on Z by setting

χ(k) =

ψ(k), if (m, k) = 1,

0, else.

We call the function χf a Dirichlet character modulo m induced by the character χ.
Furthermore, we denote the unit (or trivial) character χ(n) = 1 for all n ∈ N by χ0.

It follows easily from the previous definitions that every Dirichlet character for a given
m is periodic with period m and strictly multiplicative, i.e. χ(ab) = χ(a)χ(b) for any
a, b ∈ Z. Moreover, there is a 1:1–correspondence between arithmetic functions that
fulfill the above properties and characters on (Z/mZ)×.

Definition 2.2.5 (Gauss sum). Let χ be a Dirichlet character modulo m. Then we

11



2.2 Dirichlet characters

define

G(n, χ) =
m−1∑
k=0

χ(k)e2πink/m.

We also set G(χ) := G(1, χ). We call the arithmetic function G(n, χ) the Gauss sum
associated to χ.

The Gauss sum is said to be separable for a fixed number n, if the following holds:

G(n, χ) = χ(n)G(χ),

where χ is the complex conjugate of χ.

Definition 2.2.6. A character χ of (Z/mZ)× is said to be primitive, if there is no
divisor 1 ≤ d < m of m such that χ factors through

χ : (Z/mZ)×
π−→ (Z/dZ)×

χ∗
−→ C× (2.2)

where π is the natural projection and χ∗ is a character on (Z/dZ)×. The unit character
χ0 is primitive by definition.

In the case that the relation (2.2) holds, we say that χ is induced by χ∗. One can
show that a Dirichlet character χ modulo m is primitive if, and only if, for any divisor
1 ≤ d < m there is some a ≡ 1 mod d with (a,m) = 1 such that χ(a) 6= 1. Primitive
Dirichlet characters have useful properties, as the next theorem shows.

Theorem 2.2.7. Let χ be a primitive Dirichlet character modulo m. Then we have:

(i) G(n, χ) is seperable for any n ∈ N.

(ii) |G(χ)|2 = m, in particular G(χ) 6= 0.

Proof. See for example [1], p. 168.

Remark 2.2.8. It can be shown that primitivity of χ and Theorem 2.2.7 (i) are indeed
equivalences.

Lemma 2.2.9. Let χ be a primitive Dirichlet character modulo m. Then we have

G(χ)G(χ) = χ(−1)m.

12



2.2 Dirichlet characters

Proof. We have

G(χ) =
m∑
k=1

χ(k)e−2πik/m

= χ(−1)
m∑
k=1

χ(−k)e−2πik/m

= χ(−1)G(χ).

Hence, due to Theorem 2.2.7, we obtain

G(χ)G(χ) = χ(−1)G(χ)G(χ) = χ(−1)m.

This proves the lemma.

Theorem 2.2.10 (Generating function). Let χ be a primitive Dirichlet character modulo
m and |z| < 1 be a complex number. Then we have

∞∑
k=1

χ(k)zk =
G(χ)

m

m∑
k=1

χ(k)z

e2πik/m − z
.

We will need this result later for dealing with special cases of the generalized Ramanu-
jan identities. In order to prove it, we need a lemma.

Lemma 2.2.11. Let m > 1 be an integer and P (X) ∈ C[X] a polynomial satisfying
degP < m. Then we have

P (z)

1− zm
=

1

m

m∑
k=1

P (e2πik/m)e2πik/m

e2πik/m − z
.

Proof. The first part of the proof is a simple application of Liouvilles theorem. Cal-
culating the residues of f(z) := P (z)

1−zm at z = e2πi`/m, ` = 0, 1, 2...,m − 1 we conclude
that

z 7→ f(z) +
m∑
k=1

P (e2πik/m)

z − e2πik/m
∏
j 6=k

1

e2πik/m − e2πij/m

13



2.2 Dirichlet characters

is entire, bounded and tends to zero for |z| −→ ∞, hence we obtain

f(z) = −
m∑
k=1

P (e2πik/m)

z − e2πik/m
∏
j 6=k

1

e2πik/m − e2πij/m
. (2.3)

With a calculation analogous to (2.1) we obtain

∏
j 6=k

1

e2πik/m − e2πij/m
= e2πik/m

∏
j 6=k

1

1− e2πi(j−k)/m
=
e2πik/m

m

for all k = 1, ...,m. Together with (2.3) we obtain the lemma.

Now we are ready for the

Proof of Theorem 2.2.10: We have |χ(k)| ≤ 1 for all k and therefore it is clear that
the generating function of χ is holomorphic on the open disc E = {z ∈ C | |z| < 1}. Let
pχ(z) =

∑m
`=1 χ(`)z`−1. Since χ is periodic with period m, we obtain

∞∑
k=1

χ(k)zk =
zpχ(z)

1− zm
=

z

m

m∑
k=1

pχ(e2πik/m)e2πik/m

e2πik/m − z
,

whereas the last equality follows from Lemma 2.2.11. Now we have

pχ(e2πik/m)e2πik/m = e2πik/m
m∑
`=1

χ(`)e2πik(`−1)/m = G(k, χ) = χ(k)G(χ),

according to Theorem 2.2.7, since χ is primitive.

14



2.3 Dirichlet L-functions

2.3 Dirichlet L-functions

Definition 2.3.1. Let f : N −→ C be an arithmetic function. Then we define the
corresponding formal Dirichlet series by

D(s, f) =
∞∑
n=1

f(n)

ns
.

Clearly, if f(n) = O(nδ−1), the series D(s, f) converges absolutely for all s with
Re(s) > δ. We have the following proposition.

Proposition 2.3.2. Let δ be a real number and Aδ the set of all arithmetic functions
f : N −→ C such that f(n) = O(nδ−1). Then A has the structure of a ring whereas the
multiplication is given by the Dirichlet convolution

f ∗ g :=

n 7−→∑
d|n

f(d)g(n/d)


with neutral element ε(n) = δn,1.

Let Dδ be the set of all Dirichlet series D(s, f) which converge absolutely on the right
half-plane {Re(s) > δ}. Then Dδ is a ring with pointwise addition and multiplication.
We have an injective ring homomorphism

ϕ : Aδ −→ Dδ

f 7−→ D(·, f).

Proof. The ring structures are clear. The proposition follows with the above results and
the Identity Theorem for Dirichlet series, which is shown in [7] on p. 26.

We have studied Dirichlet characters χ for a given modulus m in the last section. We
will now look at the Dirichlet series of the form s 7→ D(s, χ).

Definition 2.3.3 (Dirichlet L-function). Let χ be a Dirichlet character modulo m. We
call the corresponding Dirichlet series the Dirichlet L-function of the character χ and

15



2.3 Dirichlet L-functions

write

L(s, χ) =
∞∑
n=1

χ(n)

ns
.

If χ is principle, the above series converges if, and only if, we have Re(s) > 1. If χ is not
principal, the series converges for all Re(s) > 0 and converges absolutely for Re(s) > 1.

It can be shown that L(s, χ) has a holomorphic extension to the entire complex plane
in the case that χ is not principal. In the case that χ is principal it has a holomorphic
extension to C \ {1} with a simple pole in the point s = 1.

Example 2.3.4 (Riemann zeta function). An important example for a Dirichlet L-
function is the so called Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
, Re(s) > 1,

which corresponds to the trivial character χ0.

Theorem 2.3.5 (Euler product). Let χ be a Dirichlet character. Then we have for all
Re(s) > 1:

L(s, χ) =
∏
p

(1− χ(p)p−s)−1,

where the product is extended over all primes.

Proof. Since the Dirichlet series of L(s, χ) is absolutely convergent in the half plane
{Re(s) > 1} and χ is a strictly multiplicative function, the theorem follows by a general
result stated in [1], p. 231.

We are interested in the values L(r, χ), where r is a rational number. The next propo-
sition shows, that considering primitive characters is sufficient.

Proposition 2.3.6. Let χ be a Dirichlet character modulo m, which is induced by a
primitive character χ∗ modulo d. Then we have χ(n) = χ∗(n) for all (n,m) = 1 and
hence

L(s, χ) = L(s, χ∗)
∏
p|m

(1− χ∗(p)p−s).

16



2.3 Dirichlet L-functions

Proof. See for example [7], p. 72.

A very important property of Dirichlet L-functions are their functional equations.
They provide useful information about the behaviour of the L(s, χ) in the complex
plane, for example about their zeros. Again, it is sufficient to treat the primitive case.

Theorem 2.3.7 (Functional equation of Dirichlet L-functions). Let χ be a primitive
Dirichlet character modulo m. If we set a = (1− χ(−1))/2 and

ξ(s, χ) =
( π
m

)−(s+a)/2
Γ

(
s+ a

2

)
L(s, χ),

we have the following identity:

ξ(1− s, χ) =
ia
√
m

G(χ)
ξ(s, χ).

Alternatively, we have the equivalent relation

L(1− s, χ) =
2ia

G(χ)

(
2π

m

)−s
Γ(s) cos

(π
2

(s− a)
)
L(s, χ).

Proof. See for example [7], p. 74.

Corollary 2.3.8. Let χ be a Dirichlet character. If χ is not principal, the function
L(s, χ) can be extended to an entire function on C. If χ is principal, L(s, χ) can be
extended to a holomorphic function on C \ {1} with a simple pole in s = 1.

Theorem 2.3.9 (Special values of the Riemann zeta function). For all integers n ≥ 1

we have the following values for the Riemann zeta function:

(i) ζ(2n) = (−1)n−1B2n(2π)2n

2(2n)!
.

(ii) ζ(0) = −1
2
.

(iii) ζ(−n) = −Bn+1

n+1
. In particular, we have ζ(−2n) = 0 for all n ≥ 1.

(iv) ζ ′(−2n) = 1
2
(−1)n(2π)−n(2n)!ζ(2n+ 1).

Proof. The first three results can be found in [1]. The last claim follows then with the
functional equation.
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2.3 Dirichlet L-functions

Theorem 2.3.10 (Lindelöf’s Theorem). Let f(s) be a holomorphic function on a strip
S = {σ1 ≤ Re(s) ≤ σ2} such that f(s) = O(eε|t|) for every ε > 0 in S. If

f(σ1 + it) = O(|t|κ1) and f(σ2 + it) = O(|t|κ2)

then
f(σ + it) = O(|t|k(σ))

uniformly for σ1 ≤ σ ≤ σ2, where k(σ) is the linear function of σ with k(σ1) = κ1 and
k(σ2) = κ2.

Proof. See for example [15], p. 180.

Theorem 2.3.11. Let χ be a primitive Dirichlet character and G = {s ∈ C | 0 ≤
Re(s) ≤ 1, Im(s) ≥ 1}. If χ is not principal there is a constant K > 0 such that

|L(σ + it, χ)| ≤ Kt
1
2
− 1

2
σ

for all σ + it ∈ G. In the case χ = χ0, we similarly obtain

|ζ(σ + it)| ≤ Kt
1
2
− 1

2
σ log(t+ 1).

Proof. See for example [15], p. 299.
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2.4 Mellin transforms

2.4 Mellin transforms

In this short section, we introduce a very important integral transformation.

Proposition 2.4.1 (Mellin transform). Let f ∈ Aδ be an arithmetic function and
D(s, f) its Dirichlet series. Let P (z, f) =

∑∞
n=1 f(n)zn be the corresponding power

series. Then P (z, f) has a radius of convergence R ≥ 1 and we have

D(s, f)Γ(s) =

∞∫
0

P (e−x, f)xs−1dx

for all Re(s) > max{δ, 0}.

Proof. One uses the integral of the Gamma function as a starting point. After a sub-
stitution we have Γ(s)f(n)n−s =

∫∞
0
f(n)e−nxxs−1dx. The theorem follows now by

summation and applying Lebesgue’s theorem.

Remark 2.4.2. The Gamma function Γ(s) corresponds to the neutral element f(n) =

δn,1.

Theorem 2.4.3 (Mellin inversion theorem). Let c > 0 be a real number. Then we have
for every Re(x) > 0:

e−x =
1

2πi

c+i∞∫
c−i∞

Γ(s)x−sds.

Proof. This is a beautiful application of the Residue theorem. See for example [8], p.
424.

Theorem 2.4.4 (Inverse Mellin transformation). Let δ > 0 and D(s, f) be a Dirichlet
series in Dδ. Then we have for all ε > 0 and z with Re(z) > 0

P (e−z, f) =
1

2πi

δ+ε+i∞∫
δ+ε−i∞

Γ(s)D(s, f)z−sds.

Proof. See for example [14], p. 46.
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2.5 Eisenstein series and Eichler integrals

2.5 Eisenstein series and Eichler integrals

We briefly sketch the theory of modular forms in this section. As usual, we denote
Γ[1] = SL2(Z) as the full modular group and for any N ≥ 1

Γ[N ] :=

{
M ∈ Γ[1]

∣∣∣M ≡ (1 0

0 1

)
mod N

}
.

We call a subgroup Λ ⊂ Γ[1] a congruence subgroup, if there is an integer N such
that Γ[N ] ⊂ Λ. For any complex function f : H −→ C we define (f |kM)(τ) :=

(cτ + d)−kf
(
aτ+b
cτ+d

)
, where M =

(
a b

c d

)
∈ Γ[1] and k is an integer.

Proposition 2.5.1. Let f be a holomorphic function on H which is periodic with period
N . Then we can expand f in a Fourier series

f(τ) =
∞∑

m=−∞

a(m)qm/N , q = e2πiτ ,

which converges uniformly on every compact subset of H. We say that f is holomorphic
at the point i∞, if a(n) = 0 for all n < 0.

Proof. This is routine, see for example [8], p. 148.

Definition 2.5.2 (Modular form). Let f be a holomorphic function on H and Λ a
congruence subgroup. Then we say that f is a modular form of weight k for the group
Λ, if the following conditions are satisfied:

(i) For everyM ∈ Λ, we have f |kM = ψ(M)f for an abelian character ψ with |ψ(M)| =
1, which only depends on the matrix M .

(ii) For every M ∈ Γ[1], the function f |kM is holomorphic in i∞.

Example 2.5.3. A famous non-trivial example of a modular form of weight 12 for the
full modular group is the so called discriminant ∆, which is defined by

∆(τ) = q

∞∏
n=1

(1− qn)24.

A very short and elegant proof for the modularity of this expansion is given in [12].
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2.5 Eisenstein series and Eichler integrals

Definition 2.5.4 (Eisenstein series of weight k ≥ 3). Let χ and ψ be Dirichlet characters
of modulus m and ` respectively. Then we define for any integer k ≥ 3:

Ek(τ, χ, ψ) =
∑

(p,q)∈Z2\{(0,0)}

χ(p)ψ(q)

(pτ + q)k
.

It can be shown that the Ek are indeed holomorphic functions on the upper half-plane
H. We want to study their invariance properties under particular transformations.

Definition 2.5.5. Let m and ` be positive integers. Then we define:

Γ0(m, `) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣b ≡ 0 mod `, c ≡ 0 mod m

}
.

It is clear that the groups Γ0(m, `) are congruence subgroups of Γ[1]. The next theo-
rem shows, that the Ek are modular forms for the subgroups Γ0(m, `).

Theorem 2.5.6. Let M =

(
a b

c d

)
∈ Γ0(m, `) and χ and ψ be characters modulo m

and ` respectively. Then we have

(cτ + d)−kEk

(
aτ + b

cτ + d
, χ, ψ

)
= χ(d)ψ(d)Ek(τ, χ, ψ).

Proof. See for example [13], p. 269.

Theorem 2.5.7 (Fourier expansion of Ek). Assume k ≥ 3. Let χ and ψ be Dirichlet
characters modulo m and modulo `, respectively, satisfying χ(−1)ψ(−1) = (−1)k. Let
`ψ be the conductor of ψ, and ψ0 the primitive character associated with ψ. Then

Ek(τ, χ, ψ) = ak,χ,ψ(0) + Ak,χ,ψ

∞∑
n=1

ak,χ,ψ(n)qn/`,

where

Ak,χ,ψ = 2(−2πi)k
G(ψ0)

`k(k − 1)!
,
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2.5 Eisenstein series and Eichler integrals

ak,χ,ψ(0) =

2L(k, ψ), if χ is principal

0, else,

ak,χ,ψ(n) =
∑
c|n

χ
(n
c

)
ck−1

∑
d|(g,c)

dµ
(g
d

)
ψ0
(g
d

)
ψ0
( c
d

)
.

Here, g = `
`ψ

and µ the Möbius function. In particular, Ek(τ, χ, ψ) is holomorphic at
i∞.

Proof. See for example [13], p. 270.

Remark 2.5.8. We observe that if ψ is primitive, the above formula simplifies to

ak,χ,ψ(n) =
∑
c|n

ck−1ψ(c)χ
(n
c

)
.

These coefficients play an important role in this thesis. They will appear in the Dirichlet
expansion of products of Dirichlet L-functions.

Definition 2.5.9 (Eichler integral). Let f be a modular form of weight k for the con-
gruence subgroup Λ such that f(i∞) = 0. Then we define the corresponding Eichler
integral of f as a function on H by

f̃(τ) =
1

2πi

τ∫
i∞

f(z)(z − τ)k−2dz.

More generally, if f(i∞) = c, we define

f̃(τ) =
1

2πi

τ∫
i∞

(f(z)− c)(z − τ)k−2dz

in the same way as above.
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3 Generalized Ramanujan identities

3.1 Rationally scaled Dirichlet series with

transformation properties analogous to Dirichlet

L-functions

As usual we let q = e2πiτ for any complex variable τ in the upper half plane H.

Definition 3.1.1. Let χ be a Dirichlet character modulo m. We define

ψk(s, χ) =

(
2π

m

)−s
Γ(s)L(s, χ)L(s+ k, χ).

For real numbers u, v, we denote by σu,v(n, χ) the n-th coefficient of the Dirichlet series
L(s+ u, χ)L(s+ u− v, χ), provided Re(s) > max{1− u, 1− u+ v}. For instance in the
case that χ = χ0 is principal, we just have σ0,k(n, χ0) = σk(n) where σk is the divisor sum.

Proposition 3.1.2. We have

σu,v(n, χ) = n−u
∑
d|n

dvχ(d)χ
(n
d

)
. (3.1)

Proof. This is a simple application of Proposition 2.3.2. The coefficients ofD1(s) = L(s+

u, χ) and D2(s) = L(s + u− v, χ) are given by a1(n) = n−uχ(n) and a2(n) = nv−uχ(n)

respectively. We obtain σu,v = a1 ∗ a2 and therefore

σu,v(n, χ) =
∑
d|n

a2(d)a1

(n
d

)
=
∑
d|n

χ(d)dv−u
(n
d

)−u
χ
(n
d

)
= n−u

∑
d|n

dvχ(d)χ
(n
d

)
.



3.1 Rationally scaled Dirichlet series with transformation properties analogous to
Dirichlet L-functions

It is clear that for any integers b, k > 0 the product L(s, χ)L(s+ 1/b, χ) · · ·L(s+ (b−
1)/b, χ)L(s + k, χ) · · ·L(s + k + (b − 1)/b, χ) is generated by the Dirichlet convolution
function

λk,b(n, χ) := (σ0,−k(., χ) ∗ · · · ∗ σ(b−1)/b,−k(., χ))(n). (3.2)

Definition 3.1.3. Let b > 0 be an integer and k > 0 be odd. Let χ be a primitive
character modulo m. Then we define

Mk,b(τ, χ) =
∞∑
n=1

λk,b(n, χ)qbn
1/b/m.

Obviously, in the case b = 1 the series Mk,b(τ, χ) are regular Fourier series. Then we
have the following theorem.

Theorem 3.1.4. Let χ be a primitive character modulo m. We can write Mk,1(τ, χ) in
terms of an Eichler integral. In fact we have

Mk,1(τ, χ) =
km

4πiG(χ)

τ∫
i∞

[Ek+1(z, χ, χ)− 2L(k + 1, χ)δ1,m](z − τ)k−1dz.

Proof. We have χ(−1)χ(−1) = 1 = (−1)k+1. Let ρ(z) = Ek+1(z, χ, χ) − 2L(k +

1, χ)δ1,m and Ak+1,χ,χ · ak+1,χ,χ(n) the Fourier coefficients of ρ(z) in Theorem 2.5.7,
where

Ak+1,χ,χ = 2(−2πi)k+1 G(χ)

mk+1k!
.

We then have

τ∫
i∞

ρ(z)(z − τ)k−1dz =

τ∫
i∞

Ak+1,χ,χ

∞∑
n=1

ak+1,χ,χ(n)e2πizn/m(z − τ)k−1dz

=

0∫
i∞

Ak+1,χ,χ

∞∑
n=1

ak+1,χ,χ(n)e2πiτn/me2πizn/mzk−1dz

= Ak+1,χ,χ

∞∑
n=1

ak+1,χ,χ(n)e2πiτn/m(−ik)
∫ ∞
0

e−2πxn/mxk−1dx
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3.1 Rationally scaled Dirichlet series with transformation properties analogous to
Dirichlet L-functions

= −Ak+1,χ,χ

∞∑
n=1

ak+1,χ,χ(n)e2πiτn/m ·
(
mi

2πn

)k
(k − 1)!

Now we have n−kak+1,χ,χ(n) =
∑

d|n
(
d
n

)k
χ(d)χ

(
n
d

)
= λk,1(n, χ). Since k is odd, we

obtain

= 4πi
G(χ)

km

∞∑
n=1

λk,1(n, χ)e2πiτn/m.

Such integrals are deeply related to zeta values and are linked to Beukers’ proof [6] of
the irrationality of ζ(3). Beukers considers various integrals of holomorphic modular
forms that themselves satisfy certain functional equations.
For more about transcendent values of Eichler integrals see [10].
Our purpose is to show the next two theorems which make an interesting statement
about the coefficients λk,b.

Theorem 3.1.5. Let k > 1 be an odd integer and

γ` = (2πb)−` b(`− 1)!
b∏

b−`+16=j=1

ζ

(
`+ j − 1

b

) b∏
j=1

ζ

(
`+ j − 1

b
+ k

)

if 1 ≤ ` ≤ b,

γ` = (2πb)−`
(−1)`

(−`)!
ζ ′(1− k)

b∏
(1−k)b+1−`6=j=1

ζ

(
`+ j − 1

b

)
ζ

(
`+ j − 1

b
+ k

)

if 1− bk ≤ ` ≤ b− bk and

γ` = (2πb)−`
(−1)`

(−`)!

b∏
j=1

ζ

(
`+ j − 1

b

)
ζ

(
`+ j − 1

b
+ k

)

else. Then we have the modular identity

Mk,b(τ, χ0)− (−1)A(−iτ)bk−1Mk,b(−1/τ, χ0) =
b∑

`=1−bk−b

γ`(−iτ)−`,

where A = b(k − χ0(−1))/2 = b(k − 1)/2.
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3.1 Rationally scaled Dirichlet series with transformation properties analogous to
Dirichlet L-functions

Theorem 3.1.6. Let k be a positive odd integer and χ 6= χ0 be primitive. Let also

γ` =

(
2πb

m

)−`
(−1)`

(−`)!

b∏
j=1

L

(
`+ j − 1

b
, χ

)
L

(
`+ j − 1

b
+ k, χ

)

if 1− bk − b ≤ ` ≤ 0 and γ` = 0 otherwise. Then we have the modular identity

Mk,b(τ, χ)− (−1)B(−iτ)bk−1Mk,b(−1/τ, χ) =
b∑

`=1−bk−b

γ`(−iτ)−`,

where B = b(k − χ(−1))/2.

In the case b = 1 both theorems are well-known and lead directly to identity (1.2)
suggested by Ramanujan. More precisely, using Theorem 3.1.5 we obtain an identity by
Grosswald (see also [9]) for zeta values at odd arguments k > 1:

Mk,1(τ, χ0)− τ k−1Mk,1(−1/τ, χ0) =
1

2
ζ(k)(τ k−1 − 1)

+
(2πi)k

2τ

k−1
2

+1∑
j=0

τ k+1−2j B2j

(2j)!

B2k+1−2j

(2k + 1− 2j)!
.

Putting τ = βi/π, with some β > 0, gives (1.2). The details of this calculation are
presented at the beginning of the next section.
The cases b > 1 are new results and lead to series identities for products of Dirichlet
L-functions at rational arguments.
Theorem 3.1.5 and Theorem 3.1.6 are proved in Theorem 3.1.12 in this section. In Sec-
tion 3 we give some corollaries and examples. We start with the following proposition.

Proposition 3.1.7. Let k be an odd positive integer and χ be a primitive character.
Then we have the reflection formula

ψk(1− k − s, χ) = (−1)(k−χ(−1))/2ψk(s, χ).

Proof. Let a = (1− χ(−1))/2. With Theorem 2.3.7 we obtain

ψk(1− k − s, χ) =

(
2π

m

)s+k−1
Γ(1− k − s)L(1− k − s, χ)L(1− s, χ)
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3.1 Rationally scaled Dirichlet series with transformation properties analogous to
Dirichlet L-functions

=

(
2π

m

)s+k−1
Γ(1− k − s) 2ia

G(χ)
Γ(s+ k) cos

(π
2

(k + s− a)
)

×
(

2π

m

)−s−k
L(s+ k, χ) · 2ia

G(χ)
Γ(s) cos

(π
2

(s− a)
)(2π

m

)−s
L(s, χ).

With the help of Theorem 2.1.3 and since G(χ)G(χ) = χ(−1)m = (−1)am this simplifies
to

= 2(−1)a
(

2π

m

)−s cos
(
π
2
(k + s)

)
cos
(
π
2
s
)

sin (π(s+ k))
Γ(s)L(s, χ)L(s+ k, χ).

Hence we are left to show

R(s) =
cos
(
π
2
(k + s)

)
cos
(
π
2
s
)

sin(π(k + s))
=

1

2
(−1)(k−1)/2

for odd integers k to show the proposition. This is an easy application of Liouvilles
theorem, since R(s) is periodic with period 1, bounded on {s ∈ C | |Im(s)| ≥ 1} and we
have

lim
s→0

R(s) =
−π

2
sin
(
π
2
(k + s)

)
cos
(
π
2
s
)
− π

2
cos
(
π
2
(k + s)

)
sin
(
π
2
s
)

π cos(π(k + s))
=

1

2
(−1)(k−1)/2

with L’Hospital. Hence R is entire and bounded with R(0) = 1
2
(−1)(k−1)/2.

Definition 3.1.8. Let b > 0 be an integer and ε > 0 an arbitrary real number. Then we
define Ik,b(τ, χ) to be the Mellin integral

Ik,b(τ, χ) =
m−(b−1)/2b−1/2

2πi

b+ε+i∞∫
b+ε−i∞

b∏
j=1

ψk

(
s+ j − 1

b
, χ

)
(−iτ)−sds.

It follows quickly from Stirling’s formula and the polynomial growth of Dirichlet L-
functions along the imaginary axis and Re

(
s+j−1
b

)
> 1 for all Re(s) > b and j ≥ 1 that

Ik,b is indeed a holomorphic function in τ on the upper half plane. Our aim is to identify
functional equations of the Ik,b of the modular type. The next step is to take a closer
look at the product of the ψk.
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3.1 Rationally scaled Dirichlet series with transformation properties analogous to
Dirichlet L-functions

Proposition 3.1.9. Let k be a positive odd integer and χ be a primitive character. The
function Φk,b(s, χ) =

∏b
j=1 ψk

(
s+j−1
b

, χ
)
has the following properties:

(i) For all Re(s) > b one has

Φk,b(s, χ) = Γ(s)

(
2πb

m

)−s
m(b−1)/2b1/2

∞∑
n=1

λk,b(n, χ)n−s/b,

where the coefficients λk,b are given in (3.2).

(ii) It extends to a holomorphic function on C\{` ∈ Z | 1−bk−b ≤ ` ≤ b} with possible
simple poles or removable singularities for all s ∈ {` ∈ Z | 1− kb− b ≤ ` ≤ b}.

(iii) It satisfies the functional equation Φk,b(1− bk − s, χ) = (−1)b(k−χ(−1))/2Φk,b(s, χ).

(iv) Let R` := ress=`Φk,b(s, χ) and A(s) := (2πb/m)−sm(b−1)/2b1/2. In the case χ 6= χ0,
we obtain

R` = A(`)
(−1)`

(−`)!

b∏
j=1

L

(
`+ j − 1

b
, χ

)
L

(
`+ j − 1

b
+ k, χ

)

if 1 − bk − b ≤ ` ≤ 0 and R` = 0 if 1 ≤ ` ≤ b. In the case that χ is principal and
k > 1, we obtain

R` = A(`)b(`− 1)!
b∏

b−`+16=j=1

ζ

(
`+ j − 1

b

) b∏
j=1

ζ

(
`+ j − 1

b
+ k

)

if 1 ≤ ` ≤ b,

R` = A(`)
(−1)`

(−`)!
ζ ′(1− k)

b∏
(1−k)b+1−`6=j=1

ζ

(
`+ j − 1

b

)
ζ

(
`+ j − 1

b
+ k

)

if 1− bk ≤ ` ≤ b− bk and

R` = A(`)
(−1)`

(−`)!

b∏
j=1

ζ

(
`+ j − 1

b

)
ζ

(
`+ j − 1

b
+ k

)

else.
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3.1 Rationally scaled Dirichlet series with transformation properties analogous to
Dirichlet L-functions

Proof.

(i) To show this, one uses the well-known product formula

b∏
j=1

Γ

(
s+ j − 1

b

)
= Γ(s)(2π)(b−1)/2b1/2−s,

which was shown in Theorem 2.1.6. By definition we have

∞∑
n=1

λk,b(n, χ)n−s =
b∏

j=1

L

(
s+

j − 1

b
, χ

)
L

(
s+

j − 1

b
+ k, χ

)
.

We obtain for all s with Re(s) > b:

b∏
j=1

Γ

(
s+ j − 1

b

)(
2π

m

)− s+j−1
b

L

(
s+ j − 1

b
, χ

)
L

(
s+ j − 1

b
+ k, χ

)

= Γ(s)

(
2π

m

)−s−(b−1)/2
(2π)(b−1)/2b1/2−s

∞∑
n=1

λk,b(n, χ)n−s/b

= Γ(s)

(
2πb

m

)−s
m(b−1)/2b1/2

∞∑
n=1

λk,b(n, χ)n−s/b.

(ii) This is immediate. If χ is principal, we additionally have to consider the cases
(s+j−1)/b = 1 and (s+j−1)/b+k = 1 given that ζ(s) has a simple pole at s = 1.
In these cases we have the equivalences s = b− j+ 1 ≤ b and s = b(1− k)− j+ 1 ≥
1− bk − b, respectively.

(iii) Using Proposition 3.1.7 we find

Φk,b(1− bk − s, χ) =
b∏

j=1

ψk

(
1− bk − s+ j − 1

b
, χ

)

=
b∏

j=1

ψk

(
1− k − s+ b− j

b
, χ

)

= (−1)b(k−χ(−1))/2
b∏

j=1

ψk

(
s+ b− j

b
, χ

)
= (−1)b(k−χ(−1))/2Φk,b(s, χ).
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3.1 Rationally scaled Dirichlet series with transformation properties analogous to
Dirichlet L-functions

(iv) Let χ 6= χ0. Since L(s, χ) and es are entire functions and ress=`Γ(s) = (−1)`
(−`)! for

` ≤ 0, we obtain

R` = ress=`

(
A(s)Γ(s)

b∏
j=1

L

(
s+ j − 1

b
, χ

)
L

(
s+ j − 1

b
+ k, χ

))

= A(`)
(−1)`

(−`)!

b∏
j=1

L

(
`+ j − 1

b
, χ

)
L

(
`+ j − 1

b
+ k, χ

)

in the case that 1− bk − b ≤ ` ≤ 0 and R` = 0 else.

Let now χ = χ0. Then we have L(s, χ) = ζ(s). We will distinguish between
the different cases.
Case 1. 1 ≤ ` ≤ b. In this case, the only pole which occurs in the term of Φk,b is
the one contributed by ζ

(
s+j−1
b

)
if j = b − ` + 1. Moreover, the pole has residue

ress=`ζ
(
s+b−`
b

)
= b, hence

R` = ress=`

(
A(s)Γ(s)

b∏
j=1

ζ

(
s+ j − 1

b

)
ζ

(
s+ j − 1

b
+ k

))

= A(`)b(`− 1)!
b∏

b−`+16=j=1

ζ

(
`+ j − 1

b

) b∏
j=1

ζ

(
`+ j − 1

b
+ k

)

in this case.
Case 2. 1−bk ≤ ` ≤ b−bk. Since k is odd, we obtain lims→` ζ

(
s+j−1
b

)
ζ
(
s+j−1
b

+ k
)

=

ζ ′(1− k) for j = b− bk− `+ 1 which can only occur if 1− bk ≤ j ≤ b− bk. On the
other side, we have ` ≤ 0 and therefore the zeta function will contribute a simple
pole. Hence

R` = ress=`

(
A(s)Γ(s)

b∏
j=1

ζ

(
s+ j − 1

b

)
ζ

(
s+ j − 1

b
+ k

))

= A(`)
(−1)`

(−`)!
ζ ′(1− k)

b∏
(1−k)b+1−`6=j=1

ζ

(
`+ j − 1

b

)
ζ

(
`+ j − 1

b
+ k

)
.

Case 3. If Case 1. and 2. do not apply, we clearly have ` ≤ 0 but also no singularities
from the zeta terms. The result follows analogous to the case χ 6= χ0.
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3.1 Rationally scaled Dirichlet series with transformation properties analogous to
Dirichlet L-functions

Lemma 3.1.10. Let y > 0 and a < b be real numbers. Then we have

lim
T→∞

b±iT∫
a±iT

Φk,b(s, χ)y−sds = 0.

Proof. This follows directly with Corollary 2.1.5, Theorem 2.3.7 and Theorem 2.3.11.

Remark 3.1.11. The case χ = χ0 and k = 1 leads to f(s) = (2π)−sΓ(s)ζ(s)ζ(s + 1),
which has a double pole at s = 0 and is related to the Dedekind η-function η(τ) =

q1/24
∏∞

n=1(1−qn) by the formula exp I1,1(τ, χ0) = q−1/24η(τ). One can use the techniques
of the next theorem to show the functional equation η(−1/τ) = (−iτ)1/2η(τ). For more
details, see also [13] on p. 129, where the complete proof (of Weil) is presented.

From now on, if χ is principal, we will assume that k > 1.

Theorem 3.1.12. Let k be a positive odd integer and χ be a primitive character. Then
the functions Ik,b are modular in the sense that they fulfill the functional equation

(−1)b(k−χ(−1))/2(−iτ)bk−1Ik,b

(
−1

τ
, χ

)
= Ik,b(τ, χ)−

b∑
`=1−bk−b

γ`(−iτ)−`

where the γ` are defined in Theorem 3.1.5 and Theorem 3.1.6, respectively. We have the
following generalized Fourier expansion

Ik,b(τ, χ) =
∞∑
n=1

λk,b(n, χ)qbn
1/b/m,

and in particular, Mk,b = Ik,b.

Proof. Let y > 0 be real and τ = iy. We will use Mellin’s inversion theorem to show the
theorem. One can consider the closed contour integral

Wk,b(iy, χ) =
m−(b−1)/2b−1/2

2πi

∮
γ

Φk,b(s, χ)y−sds

where γ is the rectangle with vertices at b+ ε± iR and 1− bk − b− ε± iR, integrated
anticlockwise, R running to +∞. With the help of Proposition 3.1.9 (note that γ` =
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3.1 Rationally scaled Dirichlet series with transformation properties analogous to
Dirichlet L-functions

m−(b−1)/2b−1/2R`), residue calculus leads us to

Wk,b(iy, χ) =
b∑

`=1−bk−b

γ`y
−`.

On the other hand, as R goes to infinity, the integrals from b+ε+iR to 1−bk−b−ε+iR

and 1− bk− b− ε− iR to b+ ε− iR respectively will vanish according to Lemma 3.1.10,
therefore we have

Ik,b(iy, χ)− m−(b−1)/2b−1/2

2πi

1−bk−b−ε+i∞∫
1−bk−b−ε−i∞

Φk,b(s, χ)y−sds =
b∑

`=1−bk−b

γ`y
−`.

If we now make the substitution s 7−→ 1− bk − s into the above integral, we obtain

1−bk−b−ε+i∞∫
1−bk−b−ε−i∞

Φk,b(s, χ)y−sds = ybk−1(−1)b(k−χ(−1))/2
b+ε+i∞∫
b+ε−i∞

Φk,b(s, χ)ysds

and this leads to

Ik,b(iy, χ)− ybk−1(−1)b(k−χ(−1))/2Ik,b

(
i

y
, χ

)
=

b∑
`=1−bk−b

γ`y
−`.

The claim now follows by analytic continuation. The Fourier expansion part follows
with

Ik,b(τ, χ) =
∞∑
n=1

λk,b(n, χ)
1

2πi

b+ε+i∞∫
b+ε−i∞

Γ(s)

(
−2πbn1/bτi

m

)−s
ds =

∞∑
n=1

λk,b(n, χ)qbn
1/b/m.

The absolute convergence of the series justifies the switching of sum and integral by
Lebesgue’s theorem.

It is plain that Theorem 3.1.5 and Theorem 3.1.6 are immediate corollaries.
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3.2 Series identities for values of L-functions at rational points

3.2 Series identities for values of L-functions at

rational points

If we consider the cases b = 1, k = 2N + 1 for some integer N > 0 and χ = χ0 we can
deduce the identity (1.2) by setting πiτ = −α and −πi/τ = −β. If τ/i is a positive real
number, then α, β > 0 and αβ = π2. First we obtain λ2N+1,1(n, χ0) = σ−2N−1(n) and it
follows that

∞∑
n=1

σ−2N−1(n)

(
e−2αn − (−1)N

(
α

β

)N
e−2βn

)
=

1∑
`=−2N−1

γ`

(
α

β

)−`/2
. (3.3)

We use the identities ζ(2n) = (−1)n+1 (2π)
2nB2n

2(2n)!
, ζ(1− n) = −Bn

n
as well as ζ ′(−2n) =

1
2
(−1)n(2π)−2n(2n)!ζ(2n+ 1) for all n ≥ 1 given in Theorem 2.3.9 to transform the right

hand side of (3.3) into

ζ(2N+1)

(
(−1)N

2

(
α

β

)N
− 1

2

)
+

(2π)2N+1

2

N+1∑
`=0

(−1)N−`+1 B2`

(2`)!

B2N+2−2`

(2N + 2− 2`)!

(
α

β

)(2`−1)/2

.

The left hand side is a Lambert sum, hence it equals to

∞∑
n=1

1

n2N+1(e2αn − 1)
− (−1)N

(
α

β

)N ∞∑
n=1

1

n2N+1(e2βn − 1)
.

The equation (1.2) follows now immediately.
The next corollary refers to the general case, that is when χ is not principal.

Corollary 3.2.1. Let k be a positive odd integer and χ 6= χ0 be a primitive character.
We define for all τ on the upper half plane

Fk(τ, χ) =
G(χ)

m

∞∑
n=1

m∑
`=1

χ(`n)qn/m

nk(e2πi`/m − qn/m)
.
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3.2 Series identities for values of L-functions at rational points

Then the following identity holds.

(−1)(k−χ(−1))/2(−iτ)k−1Fk

(
−1

τ
, χ

)
= Fk(τ, χ)−

k∑
`=0

(−1)`

`!
L(−`, χ)L(k−`, χ)

(
−2πiτ

m

)`
.

Proof. With the help of the identity

∞∑
n=1

χ(n)qn =
G(χ)

m

m∑
`=1

χ(`)q

e2πi`/m − q

which was shown in Theorem 2.2.10, one obtains

Mk,1(τ, χ) =
∞∑
n=1

σ0,−k(n, χ)qn/m

=
∞∑
n=1

∑
d|n

d−kχ(d)χ(n/d)qn/m

=
∞∑
n=1

∞∑
a=1

χ(a)

ak
χ(n)qan/m

=
G(χ)

m

∞∑
a=1

χ(a)

ak

m∑
`=1

χ(`)qa/m

e2πi`/m − qa/m

=
G(χ)

m

∞∑
n=1

m∑
`=1

χ(`n)qn/m

nk(e2πi`/m − qn/m)
.

The corollary follows now from Theorem 3.1.6.

Example 3.2.2. Let k = 3, b = 1 and χ5 be the Legendre symbol with modulus 5. Then
we obtain the series identity

L(2, χ5) =
5
√

5

2π

∞∑
n=1

χ5(n)

n3

[
1

e2πn/5ζ5 − 1
− 1

e2πn/5ζ25 − 1
− 1

e2πn/5ζ35 − 1
+

1

e2πn/5ζ45 − 1

]
.

Here, ζ5 = exp(2πi/5).

Proof. One uses the substitution τ = i in the formula of Corollary 3.2.1, G(χ5) =
√

5,
L(−1, χ5) = −2

5
and L(−2n, χ5) = 0 for all n ≥ 0 to find the identity.
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3.2 Series identities for values of L-functions at rational points

Example 3.2.3. Let k = 1, b = 3 and χ7 be the Legendre symbol with conductor 7.
Then the coefficients λ1,3(n, χ7) are given by

λ1,3(n, χ7) = χ7(n)n−2/3
∑
d|n

d1/3σ−1

(n
d

)∑
c|d

c1/3σ−1(c)σ−1

(
d

c

)
.

If we now set

A =
9

49
π2L(−2/3, χ7)L(−1/3, χ7)L(1/3, χ7)L(2/3, χ7)L(1, χ7),

B = −3

7
πL(−1/3, χ7)L(1/3, χ7)L(2/3, χ7)L(1, χ7)L(4/3, χ7),

and
C =

1

2
L(1/3, χ7)L(2/3, χ7)L(1, χ7)L(4/3, χ7)L(5/3, χ7),

we obtain
∞∑
n=1

λ1,3(n, χ7)e
−6π 3√n/7 = A+B + C.

Proof. Since χ7 is real, formula (3.1) reduces to

σu,v(n, χ7) = n−uχ7(n)σv(n).

Hence

λ1,3(n, χ7) = (σ0,−1(., χ7) ∗ σ1/3,−1(., χ7) ∗ σ2/3,−1(., χ7))(n)

=
∑
d|n

∑
c|d

χ7(c)σ−1(c)(d/c)
−1/3χ7(d/c)σ−1(d/c)(n/d)−2/3χ7(n/d)σ−1(n/d)

= χ7(n)n−2/3
∑
d|n

∑
c|d

σ−1(c)σ−1(d/c)σ−1(n/d)(dc)1/3.

To get the series identity, substitute τ = i into the formula of Theorem 3.1.6. One may
use L(0, χ7) = 1.
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3.3 Mixed characters

3.3 Mixed characters

There is no difficulty to generalize the introduced method to the case of mixed charac-
ters. To be exact, one obtains similar results for primitive characters χ and ψ with mod-
ulus m and ` respectively by generalizing the function ψk(s, χ) to a function ψk(s, χ, ψ).

Definition 3.3.1. Let χ and ψ be primitive characters modulo m and ` respectively. We
define

ψk(s, χ, ψ) =

(
2π

m

)−s
Γ(s)L(s, χ)L(s+ k, ψ).

The functions ψk(s, χ, ψ) behave similarly to ψk(s, χ), as the next theorem shows.

Theorem 3.3.2. Let k ≥ 1 be an odd integer and χ(−1) = ψ(−1). Then we have

ψk(1− k − s, χ, ψ) =
m

G(χ)G(ψ)
(−1)(k−χ(−1))/2ψk(s, ψ, χ).

Similarly, let χ(−1) = −ψ(−1) and k > 1 and k > 1 even. Then we obtain

ψk(1− k − s, χ, ψ) =
im

G(χ)G(ψ)
(−1)

k
2ψk(s, ψ, χ).

Proof. The proof is nearly analogous to Proposition 3.1.7. At the beginning, let us
consider the first case. Let a = (1 − χ(−1))/2 = (1 − ψ(−1))/2. With Theorem 2.3.7

we obtain

ψk(1− k − s, χ, ψ) =

(
2π

m

)s+k−1
Γ(1− k − s)L(1− k − s, χ)L(1− s, ψ)

=

(
2π

m

)s+k−1
Γ(1− k − s) 2ia

G(χ)
Γ(s+ k) cos

(π
2

(k + s− a)
)

×
(

2π

m

)−s−k
L(s+ k, χ) · 2ia

G(ψ)
Γ(s) cos

(π
2

(s− a)
)(2π

`

)−s
L(s, ψ)

=
2

π

m(−1)a

G(χ)G(ψ)

(
2π

`

)−s
J(s)L(s, ψ)L(s+ k, χ)
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3.3 Mixed characters

where J(s) = cos
(
π
2
(k + s− a)

)
cos
(
π
2
(s− a)

)
Γ(1− k − s)Γ(s+ k), which simplifies to

J(s) = π
2
(−1)(k−1)/2 (analogous to Proposition 3.1.7) since k is assumed to be odd, hence

=
m

G(χ)G(ψ)
(−1)(k−χ(−1))/2

(
2π

`

)−s
L(s, ψ)L(s+ k, χ),

which shows the first part of the theorem. To show the second part, let a = (1 −
χ(−1))/2 = 1− (1− ψ(−1))/2. We obtain

ψk(1− k − s, χ, ψ) =

(
2π

m

)s+k−1
Γ(1− k − s)L(1− k − s, χ)L(1− s, ψ)

=

(
2π

m

)s+k−1
Γ(1− k − s) 2ia

G(χ)
Γ(s+ k) cos

(π
2

(k + s− a)
)

×
(

2π

m

)−s−k
L(s+ k, χ) · 2i1−a

G(ψ)
Γ(s) cos

(π
2

(s− 1 + a)
)(2π

`

)−s
L(s, ψ)

=
2

π

im

G(χ)G(ψ)

(
2π

`

)−s
K(s)L(s, ψ)L(s+ k, χ)

where K(s) = cos
(
π
2
(s− 1 + a)

)
cos
(
π
2
(s+ k − a)

)
Γ(1−k−s)Γ(s+k), which simplifies

to K(s) = π
2
(−1)

k
2 (analogous to Proposition 3.1.7) since k is assumed to be even, hence

=
im

G(χ)G(ψ)
(−1)

k
2

(
2π

`

)−s
L(s, ψ)L(s+ k, χ),

which proves the theorem.

One can use Theorem 3.3.2 to show other relations in the spirit of (1.2), for instance
the following sum of level 4 by Ramanujan (see also [3])

α−N+ 1
2

(
1

2
L(2N,χ−4) +

∞∑
k=1

χ−4(k)

k2N(eαk − 1)

)
=

(−1)Nβ−N+ 1
2

22N+1

∞∑
k=1

sech(βk)

k2N
(3.4)

+
1

4

N∑
k=0

(−1)k

22k

E2k

(2k)!

B2N−2k

(2N − 2k)!
αN−kβk+

1
2 ,

which is valid for all positive values α, β satisfying αβ = π2, where N is any positive
integer and χ−4 is the character χ−4(n) = 0 for n even and χ−4(n) = (−1)(n−1)/2 else.
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3.3 Mixed characters

Here, the En are the Euler numbers characterized by the expansion

sech(z) =
∞∑
n=0

En
zn

n!
, |z| < π.

Identity (3.4) can be derived using Theorem 3.3.2 with the characters χ = χ0 and
ψ = χ−4. Let k = 2N . One consideres the closed contour integral

W2N(iy, R) =
1

2πi

∮
γ

ψ2N(s, χ0, χ−4)y
−sds

where γ is the rectangle with vertices 1 + ε ± iR and −2N − ε ± iR respectively and
τ = iy where y > 0 is a real number. As R goes to +∞, we obtain

lim
R→∞

W2N(iy, R) =
1

2πi

1+ε+i∞∫
1+ε−i∞

ψ2N(s, χ0, χ−4)y
−sds− 1

2πi

−2N−ε+i∞∫
−2N−ε−i∞

ψ2N(s, χ0, χ−4)y
−sds

as usually with Stirling’s and Lindelöf’s Theorem. This equals to

1

2πi

1+ε+i∞∫
1+ε−i∞

ψ2N(s, χ0, χ−4)y
−sds− y2N−1

2πi

i(−1)N

2i

1+ε+i∞∫
1+ε−i∞

ψ2N(s, χ−4, χ0)y
sds

since G(χ0) = 1 and G(χ−4) = 2i. Using Mellin’s inversion theorem, we can write both
integrals as a Fourier series, hence they equal

∞∑
ν=1

∞∑
µ=1

χ−4(ν)

ν2N
e−2πyνµ − (−1)Ny2N−1

2

∞∑
ν=1

∞∑
µ=1

χ−4(µ)

ν2N
e−πνµ/(2y)

=
∞∑
ν=1

χ−4(ν)

ν2N(e2πyν − 1)
− (−1)Ny2N−1

∞∑
ν=1

sech(π ν
2y

)

ν2N

where q = e−2πy and this remains valid, when yi is any number from the upper half-plane.
On the other hand, we have

W2N(iy, R) =
1∑

`=−2N

ress=`ψk(s, χ0, χ−4)y
−s

and
L(2ν + 1, χ−4) =

1

4
· (−1)νE2νπ

2ν+1

22ν(2ν)!
,
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3.3 Mixed characters

which is given in [4] on p. 125, we obtain

−1∑
`=−2N

ress=`(2πy)−sΓ(s)ζ(s)L(s+ 2N,χ−4)

=
−1∑

`=−2N

(2πy)−`
(−1)`

(−`)!
ζ(`)L(`+ 2N,χ−4)

=
1

4

−1∑
`=−2N
` odd

(2πy)−`
(−1)`

(−`)!
−B1−`

1− `
(−1)

`+2N−1
2 π2N+`E`+2N−1

(`+ 2N − 1)!

=
1

4

2N∑
f=1
f odd

(2πy)f
(−1)f−1

f !

B1+f

(1 + f)!

(−1)
2N−f−1

2 π2N−fE2N−f−1

(2N − f − 1)!

=
1

4

N−1∑
ν=0

(2πy)2ν+1 B2ν+2

(2ν + 2)!

E2N−2ν−2

(2N − 2ν − 2)!

(−1)N−ν−1

4N−ν−1
π2N−2ν−1

=
1

4

N−1∑
µ=0

(2πy)2N−2µ−1
B2N−2µ

(2N − 2µ)!

E2µ

(2µ)!

(−1)µ

4µ
π2µ+1

=
π2N

4

N−1∑
µ=0

(2y)2N−2µ−1
B2N−2µ

(2N − 2µ)!

E2µ

(2µ)!

(−1)µ

4µ

and hence

W2N(iy, R) =
L(2N + 1, χ−4)

2πy
− 1

2
L(2N,χ−4) +

π2N

4

N−1∑
`=0

(−1)`

22`

E2`

(2`)!

B2N−2`

(2N − 2`)!
(2y)2N−2`−1

=− 1

2
L(2N,χ−4) +

π2N

4

N∑
`=0

(−1)`

22`

E2`

(2`)!

B2N−2`

(2N − 2`)!
(2y)2N−2`−1.

Putting everything together leads us to

∞∑
ν=1

χ−4(ν)

ν2N(e2πyν − 1)
− (−1)Ny2N−1

∞∑
ν=1

sech(π ν
2y

)

ν2N

=− 1

2
L(2N,χ−4) +

π2N

4

N∑
`=0

(−1)`

22`

E2`

(2`)!

B2N−2`

(2N − 2`)!
(2y)2N−2`−1
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3.3 Mixed characters

and with α = 2πy and β = π
2y

1

2
L(2N,χ−4) +

∞∑
ν=1

χ−4(ν)

ν2N(eαν − 1)

=
(−1)N

22N−1 α
N− 1

2β−N+ 1
2

∞∑
ν=1

sech(βν)

ν2N
+
αNβN

4

N∑
`=0

(−1)`

22`

E2`

(2`)!

B2N−2`

(2N − 2`)!
αN−`−

1
2β

1
2
+`−N ,

respectively. Obviously, we have αβ = π2. Finally, multiplying with α
1
2
−N shows (3.4).

Similarly, one can use the methods of this master thesis to show series representations
for Dirichlet L-functions at rational arguments for mixed characters.
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