RATIONAL FUNCTIONS AND MODULAR FORMS

J. FRANKE

ABSTRACT. There are two elementary methods for constructing modular forms that
dominate in literature. One of them uses automorphic Poincare series and the other one
theta functions. We start a third elementary approach to modular forms using rational
functions that have certain properties regarding pole distribution and growth. We prove
modularity with contour integration methods and Weil’s converse theorem, without using
the classical formalism of Eisenstein series and L-functions.

1. INTRODUCTION

We recall that an elliptic modular form f of weight k € Z for a congruence subgroup
I' © SLy(Z) with multiplier system v : I' — C* is a holomorphic function on the upper
half plane {7 € C | Im(7) > 0}, which satisfies the transformation law

JIM(7) = v(M)f(7)
and is additionally holomorphic in the cusps Q u {co}. This means, that the Fourier

expansion of f|zM(7) is of the form >,  a(n)¢”N for all M € SLy(Z), where f|M
denotes the usual Petersson slash operator
b
(et +d)"f (aT i ) :

NI

(2 8) 1= ety (22

One can show that there are no non-constant modular forms for £ < 0 and that the
spaces M (I',v) are finite-dimensional. A useful tool for computing the exact value of the
dimensions is the Riemann-Roch formula, for more explicit details see for example [6].
Modular forms play an extraordinary important role in many fields of mathematics and
physics such as number theory, geometry and string theory. Also many generalizations of
the classical modular forms have been found, such as Siegel modular forms (see also [I]
and [11]) for matrix-valued arguments that transform under congruence subgroups of the
symplectic group Sp,; and Hilbert modular forms (for a great introduction, the reader
may wish to consult [10]) that transform under congruence subgroups of SLy(QO), where
O is the ring of integers of a number field K.

Basically, two elementary ideas for constructing modular forms dominate in literature.
One of them uses so-called Poincaré series, which give in the simplest case Eisenstein
series. The other one goes via Fourier analysis and quadratic forms. This leads to theta
functions.

In this paper we will give a third elementary approach to modular forms, which seems to
be natural in the sense that the functional equation and Fourier series are on an equal
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footing. This method of construction also does not distinguish between weights k = 1,2
and k > 3, as it is the case for classical Eisenstein series. It is grounded on a class of very
simple functions which we will call weak functions. Here, a weak function w is a 1-periodic
meromorphic function in the entire plane, which has the following properties:

(i) All poles of w are simple and lie in Q.

(ii) The function w tends to 0 rapidly as the absolute value of the imaginary part in-
creases, SO

w(z +iy) = O(ly|™)
for all M > 0 as |y| — .

By Liouville’s theorem one quickly sees that each weak w is essentially just a rational
function R € C(X) with (only simple) poles only in roots of unity, such that R(0) =
R(0) = 0. Here we put w(z) := R(e(z)), where e(z) := €*™*. There are no non-trivial
weak functions with poles only in Z. We shall later see that this corresponds to the fact
that there are no non-trivial cusp forms of weight 2 < k < 14, k £ 12, for the full modular
group.

We can identify weak functions with functions on the points of finite order Q/Z on the
1-torus, which are zero up to finitely many exceptions. This works via its residue function
Bu(x) := —2mires,—,w(z), where the —2mi is a normalizing factor. It is easy to see that
necessarily > .o /2 Bu(z) = 0. We will write wpg, if w has residue function g and 3, if 5 is
the residue function of w. If L is a set, we write L5 for the vector space of all functions
f L — C, such that f(z) = 0 for all but finitely many x € L and ) _; f(z) = 0. For the
next theorem, we consider the congruence subgroup I'y (N7, N3) defined in .

Theorem 1.1 (cf. . Let k = 3 and Ny, Ny > 1 be integers. There is a homomorphism
(Z[§1/2)5" ® (Z351/Z)5" — Mr(T1(N1, N2))

By — Y, " y(x)ws(ar).
zeQ*
In the case that k =1 and k = 2 the map stays well-defined under the restriction that the
function z — 2" 'w. (2)wg(27) is removable in z = 0.

Of course, this gives an interpretation for arbitrary functions on the global space (@/Z)go.
We will motivate using an approach from complex analysis. This works as follows.
For each pair w ® n we can define a holomorphic function on H by

79]6 W®77, Z 'Tk 1677 )
reQX*

We define the involution w — @ by &(z) := w(—z). Then we can show

Theorem 1.2 (cf. . Let k € Z be an integer. For all weak w and n we have the
following transformation property.

Vi (w @ m; 7)[1S = V(N @ =05 T) + Guo iy (T) |15,
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where S := (Y 3') and g, is a rational function which can be evaluated explicitly by

gw,n(T) = 2mires,—g (Zk_ln(Z)W(ZT)) .

Of course all the functions ¥ (w ®n; 7) admit Fourier series and they essentially coincide
with those given by ({2.4).

As previously announced, we present an alternative proof of modularity. It is not based
on coefficient comparison and does not use the theory of L-functions. It makes use
of twists of the 9, and Weil’s converse theorem. For the transformation laws we use
contour integration methods. This complex analytic philosophy is not new; for exam-
ple, Siegel gave a short proof for the functional equation of the Dedekind eta function
n(r) = g2 [T, (1 —¢") using similar ideas, see [2] on p. 48 ff. They were also already
used in a similar way by Berndt and Straub in [3] when deducing an interesting functional
equation for the secant series

() = Z sec(m').

nS

n=1

This new perspective to modular forms has several advantages. One of them is that it
motivates a quite simple and natural generalization of Eisenstein series to objects with
transformation properties and generalized Fourier series. Here we just go to the closure of
Q/Z, which is R/Z, so we include all points of infinite order. This is done by the author
in [9]. Also we are able to simply interpret values of classical L-functions as residues of
transformed rational functions, which makes the bridge to Bernoulli numbers and cotan-
gent sums, already partially studied in [4], slightly more accessible. Indeed, the functional
equation proposed in is also true for negative integers k and a wider class of mero-
morphic functions.

Another application is the observation, that some of the series 9, converge exceptionally
fast near the cusp 7 = 0, where the modular form is zero. This leads to a dominated
convergence theorem for Eisenstein series which is given in [§]. One can apply this result
to the corresponding L-functions of products of Eisenstein series to get new series repre-
sentations that converge in the critical strip. This could be of interest, since Dickson and
Neururer have shown in [7], that, if k > 4, N = p?¢’ N’ where p?, ¢° are powers of primes
and N’ is square free, the space My(I'o(NV)) is generated by Ei(I'o(N), x0.1) (xo.1 is the
trivial character) and a subspace containing products of two Eisenstein series. A similar
result for My (p) and k > 4, where p is prime, is due to Imamoglu and Kohnen [12]. For a
correspondence between values of L-functions for products of pairs of different Eisenstein
series see [9].

The paper is organized as follows. In the first section we give a short introduction to Eisen-
stein series. Secondly, we introduce weak functions in more detail and state some basic
results we will need. In Section 3 we construct modular forms using rational functions
and give examples.

Notation. As introduced we define for any set L to be L€ the space of all functions
f: L — C, that are zero everywhere except finitely many x € L. The subspace Lgo c L

is given by all f satisfying > _, f(z) = 0.
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For positive integers N we write Fy := Z/NZ and F1 := Z[+|/Z. We will identify
N

functions f € IF(]CVO with N-periodic functions f : Z — C. For integers M we will set
fIM](z) := f(Mz) when f :Z — C. For weak functions [M] will have a slightly different
interpretation. We will write S(f) < U for the set of poles of a meromorphic function
f:U—C.

For any Dirichlet character ¢ modulo N we define the Gauss sum G(¢)) := Y ' p(n)e2m/N.
For the generalized Gauss sum it will be more convenient to use the more general notion
of a discrete Fourier transform

Fy FY = Fy.

fo Z f 727rijn/N'
Note that we have an inverse transforrnatlon
N—
Z 27rijn/N'

We use the same notation for functions f € F 10 and have kyFn [ = Fyknf. For d|N we
N

(Fn'g

ZIH

also use the trivial injection
iyt (Fa)™ — (Fn)™

(N f)(x) = {
for purposes of notation.

For the complex variable z = x + iy we write e(z) := €™ and for the complex vari-
able 7 we define g := *™".

We write x4 for the principal character modulo d. In particular, xo 1 denotes the trivial
character.
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2. EISENSTEIN SERIES FOR ['o(M, N)

We briefly sketch the theory of Eisenstein series associated to a pair of Dirichlet charac-
ters. For Dirichlet characters x and ¢ modulo positive integers M and N, respectively,
and some integer k > 3 one defines the corresponding Eisenstein series for 7 € H (=
upper half plane) via

(2.1) B i) i= Y x(m)b(n)(mr +n)

(m,n)eZ\{(0,0)}
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This series converges absolutely and uniformly on compact subsets of the upper half plane
and defines a holomorphic function in that region. One can show that leads to a
non-zero function if and only if x(—1)1(—1) = (=1)* and that the E} are modular forms
of weight k for the congruence subgroups

(22) To(M,N) = {(i Z) e SLQ(Z)‘I) =0 (mod M),c=0 (mod N)}

with Nebentypus character xt¢» of I'o(M, N). However, in the case k = 1,2 the above
series will no longer have good convergence properties, but there might be also non-trivial
modular forms of weight £ = 1 and k£ = 2. We can remedy this using the non-holomorphic
generalization

(2.3) E(ims)i= Y x(m)(n)(mr +n)Flmr + 0|7
(mn)eZ?\{(0,0)}

and analytic continuation in s. As a result, the functions Ej keep their modularity
properties when considering the weights £ = 1,2. In this situation it is reasonable to
define Ej over their Fourier expansion. For a very detailed presentation of this Hecke
trick see [13] on p. 274 ff.

Every Eisenstein series admits a Fourier series. The coefficients are well-known and given
by

24 2L 0+ s [ S @ can () |

"m=1 \dm

where L(1, s) is the corresponding Dirichlet L-function. Note that in the case that

is primitive one has (Fyt)(a) = ¥(a)(Fn1)(1) and one obtains the simpler expression
D A1 (d)x (n/d) for the coefficients up to a constant.

3. WEAK FUNCTIONS

Let w be a 1-periodic meromorphic function on C such that all poles of w lie in Q. We
also want w to be of rapid decay as the imaginary part of its arguments runs to +oo. If
we further assume that all poles are simple, it is an easy consequence from Liouville’s
theorem that such an w is given by

w(z) = Y Bule)ha(2),

zeQ/Z

where h,(2) := e(2)/(e(x) —e(2)) with some f,, € (Q/Z)5°. We call such w weak functions.
The level of w is defined as the smallest positive integer N such that w(z/N) only has
poles at integers. It is obvious that the set of all weak functions with level d such that d|N
form a finite dimensional vector space over the complex numbers, which we will denote
by Wy. The global vector space of all weak functions will be denoted as W,.
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Especially when going over to Fourier series it will be useful to identify functions in IFClO
N
with those in IE‘%O via the obvious map
iy FQ 5 FY
N

(sxf)@) = f ()

Remark 3.1. We have Wy = 0, since all weak functions with level 1 are multiples of
cot(mz), which does not satisfy the growth condition. This elementary fact also has an
interpretation using modular forms, see[4.8,

For a non-principal Dirichlet character y modulo N we write
wy(2) = Z X(7)hj/n(2).
JeFN

Let €, be the group of all Dirichlet characters modulo L. We define the principal part of
WN by

Py =<K we Wylw = Z Cd Z XO,d(j)hj/d

dN  jeFy

Proposition 3.2. We have a decomposition

WN :mN@@ @ wa.

dIN xe€4\x0,d

Proof. Tt is clear that Wy is isomorphic to {v € CV | Z;V:I v; = 0} = CV~1. We can now
formally write
(CN_l _ CJO(N)—I e @ Ccp(d)—l.
N

Recall that characters are linearly independent. Each summand C#®~! corresponds to a
subspace of Wy given by the span of the w,, where the  are the non-principal characters
modulo d. Therefore the quotient C7)~1 is generated by the principal characters and
since we have the vanishing condition of Wy this is given by By, as required. U

We use the same definition in the context of residue functions, i.e. we basically split
them into non-principal characters and principal part elements. Let ¢ be a non-principal
character or an element of the principal part ¢ = >’ dIN, ch‘f%Xo,d, modulo N,. We then
define the corresponding character by

¢*(n) o(n), if ¢ is non-principal,
n) =
X0,Ng4 (n), if ¢ is in the principal part.

Note that we have ¢(Mn) = ¢*(M)¢(n) for any M coprime to N.
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Definition 3.3. Let N be a positive integer. For any positive integer M which is coprime
to N, we define the Atkin-Lehner operator [M]: Wy — Wx by

(@)[M] = ) (knBo) (M)

JEFN
Remark 3.4. Fach wy is an eigenvector of [M] with eigenvalue ¢*(M).

On W,, we define an involution = : W, — W, given by w(z) := w(—z). One easily
checks that this map is well-defined and level preserving. In particular, it restricts to maps
T Wy — Wy. We define Wz < Wy for T € N U {00} as the spaces of even and odd weak
functions, respectively. This induces a canonical decomposition map tp : W — Wi @W,
given by w — (w+@)/2+ (w—&)/2. Hence we obtain multiplicative decompositions

vy, @ty Wiy @ Wy, — (W, @ W) @ (Wi, @ W),
and we define
(W, @Wp,)" :=WEL QW W, Wy,
and
(W, @ Wp,)™ := Wi QW5 @Wn QW .
Fix an integer k. Every pair w ® n in Wj; ® Wi defines a holomorphic function on the
union of the upper and lower half plane H := H* v H~ by

ﬂk:I@ﬁ4()DVN~——>C)@ﬂ)

e(w®n;7) = —2mi Z res,— (2" 'n(2)w(z7)).
zeQX
It can be checked that the series converges absolutely and uniformly on compact subsets
of H. So ¥ (w®mn; 7) is indeed holomorphic in this region. By simple symmetry arguments
one sees (Wy @ Wy )T < ker(d9y) if (—1)F = £1.
The next theorem is one of the central statements of the paper. It states that there is in
some sense a modular duality induced by the isomorphism

Wy @ Wy — Wy ® Wy,
WRN+— N —Q.

Theorem 3.5 (Main transformation law). Let w ® n be a pair in Wy ® Wy. Then we

have
z

Pe(w®@n; —1/7) = 79, (n ® —&; T) + 2mires,—g (zk_ln(z)@ (—)) :

T

Remark 3.6. Note that the second summand on the right is a rational function of T,
which is holomorphic in C*.

Proof. Let 7 € H be arbitrary and fixed. Define

g-(2) = —2miZ*In(2)o <E> .
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Then ¢, is a meromorphic function in the plane whose poles are simple and S(g,) <
+Z U ~Zt. For fixed arbitrary small ¢ > 0 define a sequence R, of radii with R, — o0
as n — o0 and

d({lz| = Rn}, S(9-)) > €

for all n € N, where d(U, V') defines the infimum of the euclidean distance of points u € U
and v € V. Now consider the closed contour integrals

L(r) = — gﬁ g:(2)dz,

211
|z|=Rn

taken as usual counter clockwise. A tedious calculation (which is omitted here) using the
growth properties of weak functions shows lim,, ., ,,(7) = 0 and hence by the Residue
theorem

Z res,—q (g-(2)) + res,—o(g-(2)) + Z res,—qr (9-(2)) = 0.

aeL7\{0} ae+7\{0}

Since 7 € H and the poles of w are a subset of Q, the poles of z — n(z)& (f) in Q* are a
subset of the poles of 7, and hence the first sum clearly equals 9,(H®n; 1) = U (w®n; —1).
Since

res,—qr (97(2)) = TkreSZ:a(gT(TZ)),

we obtain for the second sum

Z res,—ar (-(2)) = 79 (n @ ©; 7).

ae 3 Z\{0}

This proves the claim. O

It is clear that every ¥y (w ®n; 7) admits a Fourier expansion. Since we only focus on the
non-trivial cases we assume w ®n € (W ® Wy)* if (=1)% = £1. It is given by

B w28 Y S () ) Fai) () a7
m=1d|m

According to (2.4) we conclude for non-principal characters

—1)(—2mi)*
(3.2) Er(x, ;1) = w(N(li(— 17;) ﬁk(w}-;{l(x) ® Wry () T)-

In particular, if y and ¢ are primitive and hence conjugate up to a constant under the
Forurier transform, this simplifies to

X(=1)(=27i)*G(¢)
N(k=1)'G(X)

A detailed description of the space ¥y (W ® W) will be given in [§].

(3.3) Ee(x,:7) =

i (wy @ wg; 7).
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4. CONSTRUCTION OF MODULAR FORMS

In this section we present an alternative proof that the J;(w®mn; 7) define modular forms.
We use the properties of weak functions and contour integration methods. The proof
underlines the naturalness of the construction and gives modularity for all values k € N
simultaneously, without using the Hecke trick. Our main tool is the transformation law
and Weil’s converse theorem, which is presented in [I3] on p. 128. With Lemma 4.3.9
on p. 123 we avoid the need of constructing L-functions.

Let Ny, Ny be positive integers and y be a Dirichlet character modulo N = N;N,. Then
we have an isomorphism

My (Po(N1, N2), x) — M(To(N), x)

(4.1) f(7) — f(NaT)
where I'y(N7, No) was defined in (2.2)) and ['g(V) is as usual defined by

To(N) := {(CCL Z) e SLQ(Z)‘C —0 (mod N)}.

In the same way we obtain an isomorphism My (T'1(Ny, N3)) — My (T'1(N)), where
[’y (N1, Ny) is the congruence subgroup

(42)  Ti(Ny,Ny) = {(‘i 2) e FO(Nl,N2))a —d=1 (mod NlNQ)}

and

T\ (V) ;:{@ Z)eSM(Z)‘CEO,aEdEl (mod N)}.

Furthermore we have a useful decomposition

M (T1(N)) = @ Mi(To(N). ),

where the sum runs over all Dirichlet characters modulo N. Together with (4.1)) this gives
the decomposition

(4.3) M. (T (N1, No)) = @Mk(FD(Nl,NQ),X),

where the sum runs over all Dirichlet characters modulo N.

Let M > 1 be an integer and f(7) = Y.~ a(n)¢”™ be a holomorphic function on

n=0

the upper half plane. Let ¢ a Dirichlet character modulo r. Then we put

fo(r) = D b(n)a(n)g™™.

We say in this case that f is twisted by the character 1. In the following and for all A e R
we put T'(A\) = (§ 7). The following result is well known.
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Proposition 4.1. Let f(1) = Y. a(n)g™ be holomorphic on the upper half plane
such that a(n) = O(n*) for some L > 0. Let 1 be a primitive Dirichlet character with
conductor my,. Then for any integer k > 0 we have

folr Zzp f|kT(uM).

My,

Now let N > 1 and M > 1 be coprime integers. We observe that two maps Sy : Fy — C
and [y : Fy; — C induce a new map By x By : Fyyr — C when putting

(Bn x Bar)(m) = By (v) B (u)

where m = vM — ulN. We use this type of notation because it is more natural for later
applications. According to the Chinese remainder theorem this is well defined. Note
that

(Bn x Bar)(m) = By [M ] (m) Bu [N~ (=m),

where M~! is the multiplicative inverse of M modulo N and N~! is the multiplicative
inverse of N modulo M.

Definition 4.2. Let N and M be coprime. Then we define a bilinear map
X WN X WM - WNM
by putting

(W x)(2) = Y, (B x By)()hymin(2)-

JEFN M

Note that this is well defined since

D1 BaxBG) = D, ) Bulw)By(v) =

j€FN M u€elF n velF ps

Lemma 4.3. Let ¢ be a primitive Dirichlet character modulo N and d a proper divisor
of N. Then for all integers u we have

IM -1

Z¢dj+u)—0

7=0
Proof. This is well-known and will be omitted. O

The next lemma is a technical statement for rearranging sums over IFy; x Fx over Fy n
using the above cross product.

Lemma 4.4. Let N and M be two coprime integers. Let B :Fy — C and f : Fyy — C
be functions. Let also a be an integer and v a primitive Dirichlet character modulo M.
Then we have the identity

D0 D WBG) M —auN) =) > (% x B)(€)f(6).

u€elF pr ]G]FN ZEFNM
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Proof. We omit the simple proof. O
The next theorem considers the twists of the functions 9.

Theorem 4.5. Let Ny, Ny and M be integers such that gcd(Ny, M) = ged(No, M) = 1
and 1 a primitive Dirichlet character modulo M. Then for any w e Wy, and n e Wy, we
have

(Ik)y(w @m;7) = G() T M1 (No) Oy, ((wyp x w) ® (wy x n[M]); M) .

Proof. With [£.1] we obtain
(Vi) (w @m;7)

=2NVRGW@) T Y Bl Y af B () (% " %

uE]F]u an\{O}
eler — JM—auNy
N2 M Ny

-~ B o) 3 5 S e

aeZ\{0} ueF s jeF N, No  MN;

Note that f(z) =
this is

e(f — w1 —e(ff — Mgﬁvl))*1 is a function of Fy, . Now with

= 2N3TEG) T Y oM (a)w(e) Y (@ x Au)(0)

1—e(9 — £
aeZ\{0} LeF N, m No MN;

C NI V)G@) T Y a8, [ (Ma)$ (N5 (@)

a€eZ)\{0}

x (@ x B0

aT 4
teF N, M l—e (E - MN1)

ar ¢
€ <N2 MN1>

= 2N, MO (N)GW) T Y oW x B [M]) (@) Y] (@ x Bu)(0)

aeZ\{0} LeF Ny M l—e <?<7_2 - Mi\ﬁ)
2 GE NS @ < @ <) (ar).

aeZ\{0}

O

Theorem 4.6. Let x and ¢ be two non-principal Dirichlet characters or principal elements
modulo Ny, > 1 and N, > 1, respectively, and k =1 an integer. Then if f(1) = Vj(wy ®
we, NyT) we have f € Mg(To(NyNg), x*¢*).
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Proof. We check the conditions of Weil’s converse theorem. Here we use the equivalent
version, which gets along without L-functions and uses the transformation properties of
the twists of the Fourier series. For this we frequently use 3.5l Put f(7) = Jp(wy ®
we; NyT). It is clear by that if we put f(z) = >, a(n)g" we obtain a(n) = O(n")
for some L > 0. Now we set

o= () 1 ()
= ( N¢NXT> - Iy, (wx®w¢; _NLXT)

From this it is clear that g(7) = >, b(n)¢" for some sequence b(n) with b(n) = O(n*)
for some L > 0. Let 1 be a primitive Dirichlet character with conductor M, such that
(Ny, My) = (Ny, My) = 1. We denote
Cy = XF(My) ™ (My) (=N Ny)G ()G () .
The theorem follows if we can show that
Fulkw(Ns Ny M) = Cug.

The left hand side we find

fulew(Ng Ny M)
_ 1
= () Ne N MZT) 7" (1) (wx®w¢% _Nx—MiT)

Since ) is primitive we can apply [£.5] and obtain

_ (\/MTMT)—kQ(E)‘le_lw(N¢)0k <(w¢ X wy) @ (wy x wo[ Myl); =5 ]b )

x VT
= — (%) ’ G() " My~ ) (Ng )™ (M) Iy, ((wy x we) @ (wyp x wy) s Ny Myr)
(1)) (%) GB) ME (N, 6% (M)

X Uy, ((ww X we) ® (% X wx) ;NXMwT) .
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On the other hand we have

9Aﬂ=—f@®<—g2wwww®wﬁMﬁ
=—ﬁ@4ww01c&)<M£%WWWM@@XWQ®@%xdeM%NM@ﬂ

:_f@Uﬂw”< " MR (M)

X U, ((wy X wy) ® (wy X wy) s Ny MyT) .

Multiplying this by Cy clearly gives us fy|pw(NyN,M7). This proves the theorem. [

Let Ny and N; be positive integers with w®n € Wy, ® Wy,. This composes into elements
cijw;®n;, where both w; and 7; are either the principal part or correspond to non-principal
characters modulo dy and dy respectively, where d;|N;. Here ¢;; are proper constants.
Hence Yy (w ®n; 7) decomposes into ¢;;0x(w; ® n;; 7), which belong to My (To(dy, da), x1,2)
according (4.1)) and with suitable characters x; 2. But we have a canonical embedding
My (To(dy,d2), x1,2) = Mi(To(Ny, Na), X1.2X0,N,N,)- Together with this proves the
following theorem.

Theorem 4.7. Let k > 3 and N1, Ny > 1 be integers. There is a homomorphism

(Co (CO
<FL) ® (FL> —> Mp(I'1(Ny, Ny))
Ni/o N2 /o
BRy— > 2" y(x)ws(zT).
zeQX*
In the case that k =1 and k = 2 the map stays well-defined under the restriction that the
function z — 2*7w. (2)wg(27) is removable in z = 0.

Note that in this theorem we have used

k—1 k-1

—2mires,— (2" ny(2)w(z7)) = 2" y(z)w(zT).

Remark 4.8. All these modular forms vanish in the cusps T € {0,i00}. So if there were
non-trivial weak functions with level 1, they would be odd (since there is a simple pole
in z = 0) and one could generate non-trivial cusp forms for any even weight k = 2 for

SLo(Z), which is impossible.

In the case N7 = Ny = N and k € 2N we can even say a bit more. Let I's(N) be defined
by the commodity of T';(/V, N) and S. Then we can define an abelian character xy on
['s(N) given by
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Corollary 4.9. Let wr @ w* € Wi @ Wi and k > 2 an even integer. Then we have
ﬁk(uﬁ ®(JJ+> € Mk(rs(N),XN) and 19]6(0.)_ ®w‘) € Mk(FS(N))

Proof. With [4.7 we obtain ¥ (w* ®w*) € My (I'1(N, N)). Using[3.F we additionally follow
Vp(w @ W 7) 1S = Fok(w® @w™; 7).

Since I'g(V) is generated by I'1 (NN, N) and S, this proves the corollary. O

We give an example of quick construction. The theta group I'y is a congruence subgroup
generated by the elements 7% = (}?) and S.

Example 4.10. Let vy(n) be the exponent of 2 in the prime decomposition of n. For any
even k = 4 we then have that

= n
n 1/9v2(n) n/2
Z 2 2 ) O-k;—l (21}2(71)) q

18 an entire modular form of weight k for T'y.

Proof. The space W, ® W, has one dimension and is generated by ws ® ws, where

_ e(z) _e(») o
e(2) —e(z) 1—e(z) sin(27z)’

Hence due to [4.9) we obtain a modular form f e My(I'p) with

© n/2
_ k-1 4

n=1 q

Rearranging the Lambert sum shows

[o's) k—1
f(T) _ Z Z (_1)m/(27‘+1)—1 <27~ﬂl 1) qm/Q

With

3 (Y = g ()

ulm
u odd

the claim follows. O
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