RATIONAL FUNCTIONS, COTANGENT SUMS AND EICHLER
INTEGRALS

JOHANN FRANKE

ABSTRACT. With the help of so called pre-weak functions, we formulate a very general
transformation law for some holomorphic functions on the upper half plane and motivate
the term of a generalized Eisenstein series with real-exponent Fourier expansions. Using
the transformation law in the case of negative integers k, we verify a close connection
between finite cotangent sums of a specific type and generalized L-functions at integer
arguments. Finally, we expand this idea to Eichler integrals and period polynomials for
some types of modular forms.

INTRODUCTION

We recall that an elliptic modular form f of weight k € Z for a congruence subgroup
I' © SLy(Z) with multiplier system v : I' — C* is a holomorphic function on the extended
upper half plane {r € C | Im(7) > 0} U Q u {00}, which satisfies the transformation
law

FleM(7) = v(M)f(7).

Here f|.M denotes the usual Petersson slash operator

Sl (ZL Z) () = (ad — be)z (cr + d)~* f (‘” + b) ,

cT+d

One can show that there are no non-constant modular forms for £ < 0 and that the
spaces M (I",v) are finite-dimensional. A useful tool for computing the exact value of the
dimensions is the Riemann-Roch formula, for more explicit details see for example [6].
Modular forms play an extraordinary important role in many fields of mathematics and
physics such as number theory, geometry and string theory. Also many generalizations of
the classical modular forms have been found, such as Siegel modular forms (see also [I]
and [11]) for matrix valued arguments that transform under congruence subgroups of the
symplectic group Sp,; and Hilbert modular forms (for a great introduction, the reader
may wish to consult [10]) that transform under congruence subgroups of SLy(O), where
O is the ring of integers of a number field K.

Ve

Basically, two elementary ideas for constructing modular forms dominate in literature.
One of them uses so called Poincaré series, which give in the simplest case Eisenstein series.
The other one goes via Fourier analysis and quadratic forms. This leads to theta functions.
In [9] a third elementary approach to modular forms was presented. It is based on a class of
very simple functions which we will call weak functions. A weak function w is a 1-periodic
meromorphic function in the entire plane, which has the following properties:
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(i) All poles of w are simple and lie in Q.

(ii) The function w tends to 0 rapidly as the absolute value of the imaginary part in-

Creases, SO
w(z +iy) = O(ly|™™)

for all M > 0 as |y| — .

By Liouville’s theorem one quickly sees that each weak w is essentially just a rational
function R € C(X) with (only simple) poles only in roots of unity, such that R(0) =
R(0) = 0. Here we put w(z) := R(e(z)), where e(z) := €*™*. One defines Wy to be
the space of weak functions with the property that w(z/N) only has poles in Z. We
associate to w a periodic residue function G, (x) := —2mires,—,w(z). Now one can show
the following construction theorem for modular forms for the congruence subgroup

D(NyNy) < Ty (N1, Np) = {(i Z) e FO(Nl,Ng)’a —d=1 (mod NlNz)} .

Theorem 0.1. Let k > 3 and Ny, Ny > 1 be integers. There is a homomorphism
Wy, @ Wi, —> My (I'1 (N1, Ny))

wRn— Dp(w@n:7) = Y. 2B (v)w(aT).
zeQX
In the case that k = 1 and k = 2 the map stays well-defined under the restriction that the
function z — 2*7tn(2)w(2T) is removable in z = 0.

To any modular form of weight k£ > 2, that vanishes in the cusps in 7 = 0 and 7 = 70,
we can associate an Eichler integral. It has the form

E(f;T) —Cszf 7)F2dz,

where ¢ is some normalizing constant. This integral represents a holomorphic and peri-
odic function on the upper half plane and is tied to the so called period polynomial p(f;7)
of f by the functional equation

E(fi=1/1) =7 E(fir) = p(fi 7).
Explicitly, we have a connection to the critical values of the L-function associated to f
by

k=2 1 g
1—n k—2—n
i\ T) = T "A(fin+ DT .
p(f;7) Z ( . ) (fin+1)

These period polynomials are very important objects in number theory. For example,
they appear in the context of a conjecture by Delinge-Beilinson-Scholl which makes an
assertion about the nature of values of derivatives of L-functions of Hecke cuspforms f,
see also [I5]. Also, an immediate implication of the Eichler-Shimura isomorphism, see
[14], applied to the period polynomial is Manin’s Periods Theorem [I7], which provides
important information about the arithmetic nature of critical L-values. For a detailed
investigation of the values of Eichler integrals at algebraic points, also in the context of
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Ramanujan identities for L-values at integer arguments, see [12]. Finally, a fairly good
introduction to the so called Riemann hypothesis for period polynomials attached to
derivatives of L-functions is given in [5].

In this paper, we will continue the study of the relation between weak functions and
modular forms. We look at a more general class of weak functions, the pre-weak functions,
that are allowed to have poles at real numbers and only have to be bounded as the
imaginary part of the argument tends to £00. We collect these functions in the vector
space Wp.. What we get is the following transformation law.

Theorem 0.2 (cf. Theorem . Let w®n € W(%, then we have for all k € Z and T € H

A~

Ou(w @ 1 =1/7) = T04(1 @~ 7) + 2mines.o(* ()2 (2)).

Here w(z) = w(—=z) and W(% denotes a sufficiently good subspace of Wiye @ Wie and is
explained below.

This transformation law is just a straight generalization of a theorem in [9)], where modular
forms are constructed with the help of rational functions. A first example of application
of this generalized transformation law is the definition and investigation of generalized
Eisenstein series. These functions can be written as a holomorphic limit of modular forms
and hold a Fourier series >}, .5 a(t)q" with real exponents.

In the case the pre-weak functions w ® 7 only live on points of finite order, the rational
function at the end of the transformation refers to a period polynomial if £ < 0. It im-
plies that critical values of L-functions attached to Eisenstein series are just residues of
elementary functions.

We motivate this elementary approach to period polynomials by some applications cotan-
gent sums and generalized L-functions that are defined by

L(w;s) := Z Bo(x)x™°.

:EGR>0

Here, [, is the 1-periodic coefficient function of the pre-weak function w. Basically, we
analyze the case w = 1, hence 1 ® 1, in more detail. As a result we give a detailed
description of cotangent sums in terms of L-functions. A (general) cotangent sum is a
finite sum of the form
C(B;m) = Y, Blx)cot™(rz),
O<x<1

where of course (z) is zero everywhere except finitely many points. In case of a character
x we use the different but more convenient denotation

N-1 :
. ™)
C(x;m) = "= ).
(x;m) ;1 X(j) co (N)
A famous example for a cotangent sum is given in [I3] on p. 262:

(0.1) N21 cot? (%) = (V- 1)3(N — 2>, N =23 ..

j=1
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Note that the sum is always rational independent of the choice of N. Generally, it turns
out that the arithmetic nature of such cotangent sums is strongly tied with the arithmetic
nature of corresponding L-functions. The key idea is to construct (for fixed w) a lower
diagonal isomorphism A,, € Q™*™ between the spaces {a1C(Sy; 1)+ - - +a,,C(Bo;m)|a; €
Q} and {b;L*(B; 1)/ + - + bmz*(ﬁw;m)/ﬂm\bj € Q}, where the L* are essentially L-
functions. A consequence of this construction is the following theorem.

Theorem 0.3 (cf. Theorem [2.14). Let w € W be a pre-weak function that is removable
inz=0. Let K|Q be a field extension (not necessarily finite) and m € N be any positive
integer. Assume that C(B,;0) € K. Then we have

L(w;1) L(w;?2) L(w;m)

) b )
T 2

e K <= C(B:1),C(Bu;2), - ,C(Buim) e K

7Tm

For example, with ((2k) € Qn?* an easy consequence of Theorem is
N— .
Z cot™ <—7T> € Q, VYm, N € N.

This is well-known and was verified by Berndt and Yeap (see [2], p. 6). We can use
Theorem to show some more interesting relations for cotangent sums.

Theorem 0.4 (cf. Corollary[2.20). Let p be a prime and x be the Legendre symbol modulo
p. Then we have for all m € N

VpC(x;m) € Q.

An example for m = 13 and the Legendre symbol modulo 7 is

2 3T 47 5% om 494370
£13 < ¢13 —cot!s £13 —cot!s —cot!s _ .
co 7) +co —7 co —7 +co —7 co —7 co —7 —49 \ﬁ

Furthermore, with our method it is possible to derive explicit formulas for the cotangent
sums C(x;m) where x is an arbitrary primitive character. These will be stated in Corol-
lary 2.19] Similarly, we can give (rather complicated) formulas for Dirichlet series with
trigonometric coefficients at integer arguments, see Corollary and Remark [2.23] Fi-
nally, using Fourier analysis and the generalized Clausen functions one can derive closed
formulas for cotangent sums presented by Berndt and Yeap [2| involving sine and co-
sine functions. Here we use explicit terms (described in Theorem of the rational
isomorphisms briefly described above.

In the last section, we prove a duality result that concerns pre-weak functions. We prove
that the £ —1-fold integrals of ¥}, can be expressed as linear combinations of expressions 1,
(with some negative j) and apply this to Eisenstein series. This is realized by an injective
linear map

51?,/(,1]\/1 : WWC&k,fl [TN] ® Wl;z;?g,l [TM] - pre 1 TM ® @ Z] pre 1 TN]

7=0
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that is given in terms of several Fourier transforms and will be specified below. Note
that the T, stand for (pre-)weak functions of level . In particular, we prove the following
theorem.

Theorem 0.5 (cf. Theorem [4.10). The diagram

Weeseal ¥ © Wilta [ Tar] —5 Wilta[Tad] @ D)0 #Wigea[Tw]
k,a
7914: (T [ %7‘) ©] ﬁg_k
Cq [l¢"™]] Cg [[¢"™]]

Skfl

is commutative. Here, C3[[q"/M]] is the space of Fourier series of the form Y- a(n)
that converge to holomorphic functions on the upper half plane.

qn/M

As a consequence, for example, we can find the following interpretation of critical values
of L-functions associated to Eisenstein series.

Theorem 0.6 (cf. Theorem 4.13). Let k = 2 be an integer, x and ¢ be two primitive
Dirichlet characters with x(—1)(—=1) = (=1)* and f(7) = Ex(x,¥; 7). We then have the
following identity between rational functions:

k—2
K=2\ a0y g —t An’ 1-k Nyz
Z ( ’ )z Af; 0+ 1)1 " = _NZZANX(k — 1)resz:0 2wy (2)wy No))

=0

The paper is organized as follows. First we define the term pre-weak function and consider
generalized Eisenstein series, that have g-series expansions ), a(t)q" with real exponents.
We prove the functional equations of the associated generalized L-functions.

In the second section we apply the theory of pre-weak functions to cotangent sums and
generalize some results by Berndt, Yeap and Zaharescu. In the third section we expand
our main ideas to pre-weak functions of higher degree, which means that we allow poles
of higher order. Finally, in the last section, we generalize the ideas of the second section
to period polynomials and prove a duality result.

Notation. Throughout the paper £k, N > 1 and M > 1 will denote integers. We
sometimes use the notation sgn(f) = +1 to indicate that f is an even or odd function,
respectively.

We define for any set L to be L% the space of all functions f : L — C, that are zero
everywhere except finitely many x € L. The subspace Lgo — L% is given by all f satis-
fying 3 ., f(z) = 0. In the case 0 € L we write L™ for the subspace of functions with

f(0) =0,

For positive integers N we abbreviate Fy := Z/NZ. For the complex variable z = = + iy
we write e(z) := €*™* and for the complex variable 7 we define ¢ := €*™7. We write
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0, = ﬁ% and 0, := 2%”,6—‘1. If the variable is clear we only write 0.
We will write S(f) < U for the set of poles of a meromorphic function f : U — C.
Throughout, we write Wieak o and Wiy, o for the space of weak and pre-weak functions of
degree at most a (which means that w € Wiyeak . has poles of order maximal a), respec-
tively. The notation W[7 ]| means that the contained (pre)-weak functions shall only have
poles in 7 < R/Z modulo Z. We write Ty := {0, %, s %}

We denote WY as the subspace of (pre-)weak functions that are removable in z = 0.
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1. PRE-WEAK FUNCTIONS, EISENSTEIN SERIES AND GENERALIZED PERIODIC
L-FUNCTIONS

We denote the vector space of all generalized weak functions of degree 1 (this means, that
only poles os degree 1 are allowed) by Wyea. Le., each function w € Wi has period 1,
is meromorphic in C and of rapid decay as |Im(z)| — oo and only has poles of degree at
most 1 at real values.

We now call a 1-periodic pre-weak, if it has all properties of a weak function except that
it is just bounded as y — +00 in the strip {0 < z < 1}. In other words, we have the exact
sequence

0 —> Wweak N Wpre fH(f(—Z;'O}f(zoo)) (CQ — 0.

The subspaces Wii® < Wi contain all pre-weak functions that additionally vanish
in z = +400. All introduced notations for weak functions will also apply to pre-weak
functions, if appropriate. Note that each w € W, also has a representation

o) =) + ) Bul@hal(s), hule) = -

z€R/Z 6(.17) - 6(2) 7

where the sum is of course finite. Now consider the homomorphism

(1.1) (R/Z)*° — O({s e C | o > 1})
B L(B;s) = >, Bla)a™

The holomorphic functions on the right will be called periodic L-functions (since the input
function lives on the 1-torus). We have the decomposition

(1.2) L(B;s) = Y, Blx)((s,x),
z€(0,1]

where
o0

((s,x) = Z(n+x)_5, x>0,
n=0
is the Hurwitz zeta function. By analytic continuation we may consider the subspace
L-0O(C) = O({s € C | ¢ > 1}) for the image in (1.1). The residue map 8 —

s—1
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ress—1 L(0; s) has kernel (R/Z)EO’O. In the case that 8 has support on +Z\Z for some
N, we obtain an ordinary Dirichlet series with an exponential factor.

L(B;s) = N° i B(5)n

The aim of this section is to associate periodic L-functions with generalized Eisenstein
series that satisfy certain transformation properties. These Eisenstein series Ej(w ®n;7)
arise from (generalized) weak functions w ® 1 with real (but not necessarily rational)
poles. Since we are not able to assign w and 7 a meaningful finite integer level in the case
they have irrational poles, the functions Ej(w ® n; 7) will not be modular forms (except
of course they identically vanish).

We will use the notation W* to indicate the sub-spaces spanned by odd and even func-
tions. What we need is the following: for k € Z we define

Wieak ® Wweak; if k> 0,
W(%) = <Wpre & Wweak; Wweak & Wprea W;«e ® Wl;;‘ey Wli;e ® W;e ) if k= Oa
Wpre ® Wpre> if £ <0.

Also we use the notation W(% [T1,72] to indicate, that the first and the second space are
associated to the subsets T;,T; < R/Z, e.g. W(%[TN,TM] = Wyeak| TN ] ® Wyear|Tar]-
Consider the following linear map between pairs of pre-weak functions and holomorphic
functions

Iy Vi, — O(HT UH),

(1.3) wRn+—> —2mi 1%1_{1010 Z res,_, (2" 'n(2)w(27)) = p(w @n; 7).

TER™
|z|<R

We explain Vi, by Vi i= Wyeak @ Wiy if £ > 0 and Vj, := W(%, else. A proof that this is
well-defined is given in Proposition (1.3

Remark 1.1. If one considers the decomposition W = W @ W~ into even and odd
functions, respectively, one can easily show by symmetry that (WTQW )@ (W - W ™) c
ker(Jg) if k =1 (mod 2), and (W @W™)@d (W~ @ W) c ker(dy), else. We use for
elements w € WH\{0} the notation sgn(w) = +1.

pre pre pre pre that entirely
map to the constant zero function by Remark [I.1 But we will still use this notation for
formal reasons.

Note that W(%) is also spanned by the spaces Wt @ W and W & W

Remark 1.2. With the still valid functional equation
hy(—2) = =1 —h_,(2)

one easily sees that

weW, =4 Y Bu@ha(2) | Bul—2) = TA.u(2)

zeR/Z
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Proposition 1.3. The map V4 is well-defined.

Proof. Let x € R* and K < H" U H™ be a compact subset. Then we have the estimate

k—1

[res.—o2" " 'n(2)w(z7)| < max w(rx)| - [res.—an(z)] - [x*".

We distinguish three cases.

1. In the case k > 0 the claim now follows easily since then w € Wy.x and hence there is
a 0 > 0 (depending on K and w), such that

max lw(Tz)| = O (e_m') :

On the other hand, the term |res,_,n(z)| is bounded since 7 is periodic.
2. If k < 0 it follows that

|res. 2" ' (2)w(z7)| < Clz|*
where the constant C' > 0 may be chosen as

C = max w(w)| - max |res,_\n(z)|.
)] e s an(C)

Since the sum Y, (0 0y 2|71~k converges the claim follows.

3. In the case £ = 0 we note that the map is defined on the subspace Wyeax @ Wi by
the arguments of 1. It is clearly defined for W ® W and W ® W, since then all
summands cancel each other. So we are left to show that we can define it on Wpe ® Wieak-
Without loss of generality we assume that w®n € W;{re ® W .. First let both functions
be even. Then w = ¢ + w,, with some constant ¢ and wy, € Wyear. In conclusion, we only
have to show that the sequence

S = —2mic lim Z res,_n(2)z "

R—
TER™
|z|<R

converges. Let 0 < 1 < 9 < x3 < --- the sequence of all positive poles of . With
partial summation we obtain

N N N-1 [/ u
Z By(j)a;t = (Z 577(%‘)) TN+ Z (Z 577(%‘)) (Tty — a0,
j=1 j=1 u=1 \j=1
Since n is weak, the term Z;\Ll By(x;) is bounded and hence the right hand side converges

as N tends to infinity. The odd case works similarly, since then we have w = ccot(7z) +wy
and hence

res,_pz 'n(2)w(r2) = +icB,(v)z™! + O(e™"), § >0,

but since (+x)~! = +2~! we are reduced to the even case. Finally, since in both cases
we obtain homomorphisms that coincide on the common subspace Wear @ Wieak We may
extend it to the resultant space (Wpre ® Wieaks Wiveak @ Wore)- O

We now obtain the following very general transformation law.
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Theorem 1.4. Let w®n € W(%, then we have for all k € 7 and 7 € H

1 ~ . _ ~
(1.4) U (w & n; —;) = 7", (n ® —W; 7) + 2mi res,_g (zk n(2)& <E)) .

T

Here 0(z) = w(—2).
Proof. Let y > 0 and 7 = iy € H. Define

gy(2) = —2miz"n(2)0 (i> :
vy
Then g, is a meromorphic function in the plane with simple poles at S(g,) = S(n) U
S(w)iy\{0} (all lying on the real and imaginary axes). Consider the closed contour inte-
grals

L) = 5= § sl
Ru(y)

where R, (y) is a sequence of rectangles that cross the axes half between the respective
poles z,, and z,1. We are left to show I,,(y) 250 since then the claim follows with the
identity and residue theorem. Using periodicity of 7, w and the decay of g, we find that
this will certainly be the case for k + 0. So we are left to show it for k = 0.

We first consider the case w®n € W, ®WE,. Then the functions Jy(w®n) and Jo(n®—0)
are constant zero. Since the product w(z/iy)n(z)/z is an even function in this case, its
residue at z = 0 will be 0. Hence the transformation law is trivially satisfied in this case.
Now let w € Wyea. Then the integrals on the right and the left in the rectangle will go
to zero because of the exponential decay of w and the periodicity of 1. So we can express
I,,(y) in the form

—0on+itn on—1itn
(1.5) L(y) — f g, (=)dz + J gy(2)dz + o(1)
on+itn —On—1iln

where 0 < 0, — o and 0 < t,, — o0 are chosen in the sense of R, (y). Now we divide the
integrals into three parts:

On—itn —cy/n—itn cy/n—ity on—itn
gy(2)dz = f gy(2)dz + J gy(2)dz + f gy(2)dz.
—op—itn —op—iln —cy/n—itn cy/n—itn

Here, ¢ > 0 is some fixed constant (note that v/n = o(c,)). There is a constant C' > 0
such that we have |n(z)| < C for all [Im(z)| = 1. Also on the segments [—o, +it,, 0, +it,]
the function @(z/yi) is uniformly bounded (with respect ton = 1,2, 3, ...) by some D > 0
since it is periodic along the imaginary axes. Hence for sufficiently large n we obtain

J gy(2)dz « \t/—ﬁ = o(1).

n

cy/n—itn

—ca/n—ity
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On the other hand, since @(z/yi) is of rapid decay as Re(z) — 400 we have |g,(z)| =
O(e~°Re()) uniformly on {z € C | |Re(z)| > 1,|Im(z)| > 1} for some § > 0. Hence the
integrals

+o0—ity

gy(2)dz
+15it,,

will certainly converge absolutely and also

ton—1itn

te/n—ity

The first integral in (1.5 tends to zero by the same argumentation. The case w ® 1 €
Wire ® Wieax Works analogously. This proves the transformation formula. O

Definition 1.5. Let 8 be any function in (R/Z)C0. Then we define its Fourier transform
F(B):R— C by

FB)y) = >, Blx)e ™.

z€R/Z

Definition 1.6. Let k = 3 be an integer and 53,7 be functions in (R/Z)5°, such that
sen(B)sen(y) = (—=1)k. We assign these data an Eisenstein series by

Ex(B,7:7) = ), ax(B,7:1)d

teR~q
with the coefficients
ar(B,yit) = ) di ' B(A)F(7)(da).

di1€R~ ¢

dQEN

dida=t
In the cases k = 2 and k = 1 we have the same definition under the restrictions 3(0)y(0) =
0 and B(0) = v(0) = 0, respectively.

Note that the (non-trivial) exponents in the above Fourier series can be irrational numbers
too.

Theorem 1.7. Let all assumptions hold as above. The generalized Eisenstein series
satisfies the modular identity
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Proof. We find

M@ =2 Y ot 1Ba) 3 () A

aeR=0 2€R/Z e(z) —e(ar)

=2 > Yo" 8a) [ D] v(@e(—vz) |¢™ = 2E(8,7; 7).

ac€R~ g v=1 zeR/Z

The claim now follows by Theorem [I.4, Note that in the case k = 2 at least one and in
the case k = 1 both of the functions wg and 7, have a removable singularity in z = 0,
such that in every case the rational part in ([1.4)) vanishes. 0

Analogous to ordinary Eisenstein series we can assign a generalized L-function to Ey(3,7; 7).
The result is a generalized Dirichlet series

Db,

where D < R. is a discrete subset and a : D — C a sequence of complex numbers. Like in
the classical case one can show (for example by Mellin transform, using the transformation
law of the Eisenstein series) that these L-functions have a meromorphic continuation to
the entire plane and satisfy a functional equation of the standard type.

Proposition 1.8. The generalized L-function associated to Ey(5,v;T) is given by

L(Ex(8,7);s) = L(B;s +1—k) Y y(x)Lis(e7>™),

z€R/Z

where Lig(z) denotes the polylogarithm. It converges on {s € C|Re(s) > k} and has a
meromorphic continuation to the entire plane.

Note that L(f;s) represents a holomorphic function on {s € C|Re(s) > 1} by (1.2) (5 is
1-periodic and zero at all but finitely many points) and has a holomorphic continuation
to C\{1} with a possible simple pole in s = 1.

Proof. Starting with Definition [I.6] we obtain

DM DL dB(d)F(y)(de) |t = (2 B(t)t‘”k‘l) S Fy)(nn~*.

teR~q d1eR~q teR~¢
doeN
dida=t

The function 7 is zero almost everywhere. Since by

Fm)l< Y, (@)l

zeR/Z
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its Fourier transform F()(n) is bounded and hence the corresponding Dirichlet series
converges absolutely on {s € C|Re(s) > 1}. We now have

a0
ZJT_'(,}/) Z Z —271'1nx -5 _ Z ’}/(l’)Lis(e_me).
n=1 n=1zeR/Z zeR/Z

The claim follows with the analytic properties of s+ Lis(e72™®) and L(f; s). O

In the next theorem we prove a functional equation for the completed L-function associ-
ated to a generalized Eisenstein series.

Theorem 1.9. The completed L-function
A(B, ;) := (2m) °T(s) L(Ek(8,7); 5)

extends to an entire function and satisfies the functional equation
AEW(B,7)ik =) = A (Ei (7. —B) 55

Proof. By Mellin transformation we obtain

0

A(B,v;s) = fEk(ﬂ,v;iy)y“dy-
0

By splitting the integral in the intervals [0, 1] and [1,0) and making the substitution
y — y~ ! in the first integral we obtain

o0 o0
i —s5— s
AB,7y;s) = JEk (6,7; ;) y o dy + JEk B,y iy)y*dy

1

o0
- JE'“(% —Briy)y Ny + | Ee(8,7;iy)y*dy.
1

——3 "

From this one sees that A(f3,~;s) is entire. The symmetry on the right hand side leads
to the desired functional equation. O

2. COTANGENT SUMS

Besides periodic L-functions we may associate other objects to a pre-weak function. For
integers m = 1, 2, 3, ... we define the corresponding cotangent sum

2 B () cot™ ().

zeR/Z

The primary goal of this section is to develop a principle which helps to write cotangent
sums as rational combinations of L-functions, and vice versa. With this we may conclude
several results about cotangent sums using well known results about L-functions, and of
course vice versa again.
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A famous example for a cotangent sum is given in [I3] on p. 262:

(2.1) NZ_1 cot? (?V—j) = W - 1)3<N — 2), N =23, ..

j=1
Note that the sum is always rational independent of the choice of N. This was generalized
by Chu and Marini in [4] and Berndt and Yeap [2] on p. 6.

Theorem 2.1. Let N and n be positive integers. Then

21009” (%) = (=1)"N — (—1)"2>" Z Y H Bzh

Jjo=0 jon=0 r= 0
J0+J1+ “+jan=n

In particular, we have
N-1 .
™
t2 [ = ) € Q.
Z co ( N) Q
7j=1
Note that the B, denote the Bernoulli numbers defined by generating series

i B, ., T

— " = .

n! e —1

The interesting identity in Theorem [2.1] can be proved by looking at
f(2) = cot®(7z) cot(nkz)

and using contour integration. Another more general result is presented in [2] on p. 17
(there is a mistake in the original paper) and looks as follows.

Theorem 2.2. For positive integers 0 < a < k and n let

k=1 : :
2
sn(k,a) = Z sin ( 7;:‘7) cot” (%)
J

—1

k-1 : .
2
cn(k,a) = Z cos ( 77;]) cot™ (%) :

Then we have for all positive integers m

and

1 B, By,
(22)  somr (k) = (~1)22m ) ake 2B T B
j17-~~7j2m2—1,u,1/>0 'u' 2 1:[ (2JT>‘
271+ +2jom—1+p+r=2m—1
and
1 By 2m B2‘
(23)  conlkia) = (~1)mH192m 3 e L B T B
I ! |
J1eesd2m p,v 20 v r=1 <2j7’)

21+ +2jom+v+u=2m

In particular, both s,, and c,, define sequences of elements in Q|k,a].
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In other words, the theories of generalized periodic L-functions and cotangent sums are
in some way equivalent. To understand this, we modify the definition of a periodic
L-function in the following way. In the entire section we denote Wgre as the subspace
of pre-weak functions that have a removable singularity in z = 0, which is equivalent to
B,(0) = 0. Consider now the homomorphism between the space of pre-weak functions

and an infinite tuple of complete L-values at positive integers

wo — N

wr—> <Z(w; 1), L(w; 2), > : L(w; k) := ZX Bo(x)z k.

In the case k = 1, we interpret the sum as

(24)  Llw=lim > Bu(e)a = Y (Bule) - fu(—x))a
—N<ax<N,z$0 >0

Remark 2.3. Note that by Remark[l.dsgn(w) = (—1)* implies L(w; k) = 0 fork > 1 (an
even pre-weak function is weak up to a constant and an odd up to a cotangent function).

If k =1 this relation still holds if we restrict to weak functions or odd w.

Before we move on, we define a sequence of numbers which is of great importance in
combinatorics.

Definition 2.4. Let n € Ny and k € Z. We define the Stirling numbers of the second kind

by
(h-agev(Ju-ir oeren

where {{} := 1 and {}} := 0 whenever k >n or k < 0.

sen=()-(,")

S*(n, k) = k! {Z} - zk:(—l)j (’“) k—j)", k<n

j=0 J

Put

and

To find the connection between (generalized) L-functions and cotangent sums we need
the following lemma.

Lemma 2.5. Define a sequence ¢ : N3 — C by
50(0) = 51(0) = 50(1) = 0,
and for integers v,u = 0 with v + u > 2:

iquu - v+b—u—logr—1— *
o] Do (=1 S (1 — L)AL w).
T l=u—1

oy (u) :=
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Let a € C\Z. Then we have in an arbitrary small neighborhood of z = 0

cot(m(z — a) ZP cot(ma))z” = — cot(ma) + (—m — weot?(ma))z + - - -,
where
v+1
P(X) =7" ) 6,u1(u)X
u=0
Remark 2.6.
(i) The first polynomials P, are given by

PO(X) = _X7
P(X)=—-m—7X?
Py(X) = —m*X — X3,

w3 Axd

Py(X) = -3 ?)ﬂ — X,
2

Py(X) = _lX_‘L')iX?) . &
3 3

(i) We have for all v = 1 the formulas
(2.5) 5, (v) =—1
and for all v = 2

' Z(_l)y+€—12y—1—és*(y _ 1,6),

6,(0) =

since then A((,0) =
(111) It is 6,(u) = 0 if u > v. Since the function cot(x) is odd, we obtain §,(u) = 0 if
v+u=1 (mod 2).

Proof. Tt is clear that the function f(z) = cot(7(z —a)) is holomorphic in a neighborhood
of z = 0 in the case a € C\Z. For the constant term we find
cot(m(—a)) = — cot(ra) = 7° (6,(0) + §,(1) cot(ma)),

and indeed this coeflicient is

61(1) =i*- (—=1)-2"- 8*(0,0) - ((g) — <8>) = 1.

Using the formula in [I9] on p. 2,

cot™(z) = (20)"(cot(x Z

v=0

<

|
U{ }zcot x)—1)°, n=1,

N
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(note that in the paper, the sum starts at v = 1 but we have n > 1, hence {} = 0) and
the binomial theorem, for v > 1, we end up with

v l+1
FO0) = —=(=2m0)" 313 (we(u — 1) — v, ¢(u)) cot* (ma),
{=0u=0
where G 8 (2
ay(u) = (2? ) (u) (—1)um,
Put

26)l6:) = el — 1) — ) = SO CU () (1),

and note that this implies b,(—1,0) = 0. With the additional summand b,(—1,0) we
obtain

v o +1 v+l v
M0 (lu) =D D b, u)
=0 u=0 u=0/l=u—1

and conclude

(v) 0 1/ v+l v
f'() ZZbEucot“wa)
v u=0f=u—1
Together with ([2.6]) this proves the formula for §,(u), after the index shift v — v —1. O

We can use Lemma to determine the local Taylor expansion of w(z) at z = 0. This
will later help to explain the relationship between periodic L-functions and cotangent
sums.

Lemma 2.7. Let we Wy,,. Then we have

w(z) = w(in) — 50l gE(ZayH(u)c*(w;u)) (2",

Proof. With the behavior of the function cot(wz) at z = ioo we obtain the following
canonical representation of w:

o(e) = (i) + 3] o) (oot (n e =)~ 3).

% Z Bu(z) cot (m (2 — x)) Z 2 Bu(z)P, (cot mx) z¥

z€R/Z v=0 zeR/Z
v+1 i [e'e) v+1
= —UZ;)w;R/Zﬁw Z (51/-1-1 COt 5; (l;)(sw_l(U)C(w;u)) (Zﬂ')”.

The claim now follows with some simple rearrangements. 0
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At this point we stress the simple but important fact, that the coefficients ¢,(u) are
independent of the choice of w.

Lemma 2.8 (Generalized Abel’s theorem). Let f, : E u {1} — C be a sequence of
continuous functions that are holomorphic in the unit disc E, such that f,(z) — f(2) as
n — o for all z € E. We assume that f is bounded on [0,1] and put D := supy<,<; | f(¢)].
Let .7 a(n) be a converging series and F(z) = Y.~ a(n)fn(z) be holomorphic in E.
Assume that the f, satisfy the Abelian condition: there is a constant C' > 0 such that
uniformly for allm >0 and all 0 <t < 1:

fult) = fanr (D] < C(1 = )™

Then we have
o0

Jim D an)falt) = f(1) D] a(n).

n=1

Note that the important case f,(z) = 2" is Abel’s theorem.
Proof. We show that for each € > 0 there is an N such that for all N > Ny:

(2.7) sup

o<i<l1

>, a(n)fa(t)

n>N

< e.

Let € > 0. Choose ¢ > 0 such that max{|fi(1)]d,0(C + D)} < e. We choose an integer N
such that if A, = >3\, a(k), we have

sup |A,| < 6.

n>N

This is possible since the series >, a(n) converges. By partial summation we obtain
with f,(2) = f(z) and 0 <t < 1:

>, aln) falt)

Aoof<t> - Z An(fn(t> - fn+1(t>>‘

n>N n>N
<D +0C(1—t) Y " <5(C+D)<e.
n>N
On the other hand we have
D, amfa(D)] = [F)]] Y aln)| < |f(1)5 <e.
n>N n>N
From this follows (2.7) and we conclude the lemma. 0

We consider the following special case.

Lemma 2.9. Let g be holomorphic on E and a neighborhood U of z = 1. Then f,(z) :=
g(z") satisfies the assertions of Lemmal[2.§
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Proof. Let 0 < b < a < 1. To see the lemma one uses the Cauchy integral formula

o) =) _ 1 [ gl
a—b _ZWigg(z—a)(z—b)d’

where the closed and smooth integration path v ¢ E u U with length £(y) surrounds the
compact line [0, 1] once in positive direction. We find a minimum distance € > 0 between
v and [0, 1]. Hence

maxe, [9(2)|
c2

9(2)

e LU

Y

1 § g(z) 1
— dz < — max
2mi J (z —a)(z — o zey

Y

where C' > 0 is independent from a and b. Put a = t" and b = t"*! for 0 < ¢
1. Since ¢(t") converges to ¢(0) if 0 < ¢t < 1 and to ¢(1) if ¢ = 1, one has D

max{|g(0)], lg(D)]}-

Ol A

We are now in the position to prove a result that ties values of L-functions with Taylor
coefficients of pre-weak functions.

Proposition 2.10. Let k = 1 be an integer and w @n € Wye @ Wpre if k> 1 and w®n €

(Whre @ Wieak, Wite @ Wi, W, @ Wik.) else, such that w has a removable singularity in
z =0. We then have
(2.8) lim 1-1(w ®n;1y) = w(0)L(n; k).

y—)

In particular, for w®@mn € Wye ® Wie (and w®mn € <Wpre ® Wieak, Wihe ® Wpre> ifk=1)
we have the key identity

(2.9) L(n; k) = 2mi res._q (27 n(2)) .

Proof. First we note that in the case k = 1 (2.8)) is trivial for elements w®n in W QW

since then both the left hand side and the right hand side are zero (note tﬁat eltfler
w(0) = 0 or L(n;1) = 0). Alsoif wene Wi ® Wi, both sides vanish according to
Remark and since 7 is odd. So we can assume 7 to be weak in this case.

We have w(z) = R(e(z)) with a rational function R, which fulfills the conditions of Lemma

(note that w has a removable singularity in z = 0). We obtain:
hslw@miy) = 3 a8 (@)wlaiy) + Y (~1)fa~ G, (—a)w(~aiy).
a>0 a>0

Since n is weak for & = 1 both series will converge for y = 0 separately. Hence with
Lemma 2.8 we conclude

lim 91 (w®mn;iy) = w(O)Z(n; k).

y—07
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Note that we have a homeomorphism between the segments [0, ic0] and [0, 1] given by
2+ e2™%_ On the other hand, with Theorem we obtain

ling) N p(w®n;7) = lin% [(—T)klﬁlk (77 ® —; —l) + 2mires,_o (2 n(z)w(27))
T— T— T

= 2miw(0)res,—o (2 *n(z)) .

In the case of k£ = 1, the first term on the right side vanishes because 7 is weak. The
choice w = 1 finally proves ({2.9). O

Throughout our analysis of cotangent sums we assume the first component of the Wy, ®
Wire to be the function which is constant 1. It is trivial but crucial that this function is
even. Since we want to consider all values of completed L-functions simultaneously, we
only look at elements 1 @ w € (Wi, @ W0, Wi, @ W), In other words, throughout,
w it is an odd pre-weak function or weak function - both have a removable singularity in
z = 0. Together with Lemma [2.7] we can now suggest closed formulas for cotangent sums

in terms of corresponding L-functions at integer arguments.

Proposition 2.11. Let k > 1 and w € (W - ). We have the formula

eak) pre

— Z Bo(a)a™ = —a* 2 0 (n)C(w;n

aeRX*

which is equivalent to

(2.10) I*(wik) = <w 5) 5 (0)C(w:0) Zk:

Proof. First note that §;(0) = 0. In the case w is odd it is trivial that L(w;1) = 0 =
C'(w; 1), which proves the formula in this case. So let w be weak if £ = 1. With Lemma
we see that the residue of z7*w(z) in z = 0 is given by

, k
_ [
res,_o (2 "w(z)) = §7rk ! Z Ok (u)C'(w; u)
Multiplying by 27i proves the claim when using ([2.9)). O

Definition 2.12. For Dirichlet characters x modulo N we put

Z cotm(]z;).

Remark 2.13. Let k > 0 be an integer. In 3| a relation between the class number hy of
the field K = Q(v/—k) and cotangent sums is proved. If x is an odd (real) character for
K, we have

C(x; 1) = 2Vkhg.
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The present method now gives a further viewpoint to this equation since by Proposition

(2.10) we have

~

L(wy; 1) = =m61(1)C(Buy s 1)
and by the class number formula L(x;1) is directly tied to hx. Here we have put

2f~

wn(2) = 3 x(G)ha (2),

J=1

where x 1s a character modulo N.

Let A be the linear operator

Ay [[R—T]R

neN neN

(al, as, as, )T [— (Z 5m(])a]>

We can write this formally as an infinite lower triangular matrix:

meN

) 0 0 0 0
5(1) 6(2) 0 0 0
5(1) &(2) &3 0 0
(2.11) Do = | 5,(1) 64(2) 6u(3) 64(4) 0
05(1) d5(2) d5(3) d5(4) d5(5)

Proposition provides us a linear system with countable many unknowns. In other
words, we can find values for the cotangent sums recursively. We obtain:

*

L*(w; 1) Clw: 1)
L*(w;2) C(w;2)
L*(w; 3 C(w;3
(2.12) E*Ew;ﬁli = Ay ng;zi;
z*(w; 5) C(w;b)

Note that in the case that w is weak we have L*(w; k) = —7*L(w; k). With 6,(v) = —1
(see (2.5)) we see that the system ([2.12)) is invertible, since we have a lower diagonal
operator. In other words, for all positive integers m we have

(2.13) AL, (w) = C,p(w),

where L,,(w) and C,,(w) denote the first m rows vectors of (2.12)) and A,, the regular
major m x m block of the operator. Note that since A, € Q™™ we have Al e Qm*™.
Therefore we obtain the following theorem.
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Theorem 2.14. Let w € <W£eak,Wg;;> be a pre-weak function. Let K|Q be a field
extension (not necessarily finite) and m € N be any positive integer. Assume that C(w;0) €
K. Then we have

Lwi1l) Lw;2)  L(w;m)

Y

T 2

e — (C(w;1),C(w;2),--+,C(w;m) € K.

9 Y
7-(-m

Proof. As (2.12)) proves, we can express the terms Z(w; k)r=* + C(w;0)6,(0) as rational
combinations of C(w;m), 1 < m < k and vice versa the terms C'(w; k) as rational combi-

nations of L(w;m)m™™ + C(w: 0)8,,(0). Since d,,(0) € Q for all m > 0, the claim follows
with C(w;0) € K. O

We see that it turns out that there is an arithmetic connection between cotangent sums
and generalized L-functions. Together with Theorems and we are able to find
explicit formulas. Here, the key ingredient is the fact that expressions like

N-1 i
Z cot (F)

j=1

are polynomials P,,(N) for fixed m. Compare Theorem 2.1} For the next theorem we
need the Euler numbers E,, that are defined by the generating series

Theorem 2.15. Let k> 1 and we (Wi, . W) .

(i) There are rational numbers dx(€) (given in and 6;(¢), independent from the
choice of w, such that

(214) LB 5 0)0(wi0) = 3800w 0
and 7
(2.15) Clwik) = Y. 81(0) (-M:g D 5,0)C(w: 0)> .

(i1) Explicitly, we obtain 6%(u) =0 if v +u =1 (mod 2) and for 0 < { <k

2%k
B,
* _( \k+l4+1692k—21 2%,
(2.16) 65.(20) = (—1) 2 2 H(2jr)!
Jiy-sJ2k =0 r=1
L+ j1 4+ jor =k
and
2k—1
* 1) — [ 1\kt+l+162k—2¢ Bs;,
(2.17) Ogp_1(20—1) = (1) 2 Z | | o
J1seemjok—1=0 ey \&dr):

20— 14251 +++2jop_1=2k—1
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(i1i) (Supplementary laws) We have for all positive integers k

k
(1) Z 3(20)02(0) = (1),

k _1\k
(2) ;5;k<2€)<(2€>ﬂ_%=% 1— 2% Z H szr

77777

Jl+ +J2k k

Remark 2.16. Supplementary law (1) reduces (2.15)) to the formula

(2.18) Clw; k) + MC(MO) = —ié:(@)z(w Or*

2

Proof.

(i)

(i)

The formula ([2.14)) follows from Proposition Let k& < m be arbitrarily chosen.
Formula (2.15)) follows with (2.13)) and the fact that A, ! € Q™*™ is again a lower

triangular matrix, when denoting its coefficients by 67 (u) (analogously as it was done
in (2.11))). It is clear that all values §%(u) are independent of m and w.

We first show by induction that for v,u = 1 the §%(u) vanish if v + u =1 (mod 2).
This is clear for v < u, so we assume that u < v. Obviously, with the vanishing of
the above triangle in mind, the statement is equivalent to the vanishing of all “odd*
lower diagonals

Dy :=(0)(v—1))y=23..
Ds := (6, (v — 3))v=us,..

Dop—y = (05(v — 2k + 1)) y—ok 2611,...

We formally write A 'A, = I,. First we show the vanishing of D;. Let v > 2.
Then we obtain, multiplying the v-th row of the operator AL! with the v — 1-th
column of A,:

Za* (v —1) Z 5 (u)dy (v — 1) = 6% (v — 1)8,_1(v — 1) = 0.
u=r—1
Hence §%(v — 1) = 0, since 6,_1(v — 1) = —1 (note that 6,(v — 1) = 0 — remember
that d,(u) = 0 if v + u = 1 (mod 2) by Remark (iii)). Note that the sum
could be reduced to two summands in the first step since we have multiplied two
lower diagonal operators. For the induction step, we assume that we have proved
vanishing for Dy, Ds, ..., Dop_1. We show that under these circumstances we obtain
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the vanishing of Dyy;. Let v > 2k + 2, and multiply the v-th row of AZ! with the
v — 2k — 1-th column of A,

v

(2.19) Z p(uw)du(v —2k—1) = > Sr(u)dy(v—2k—1) = 0.

u=v—2k—1
If v — 2k < u < vis of the form u = v — 2¢ for an integer ¢, we have §%(u)d, (v —
2k — 1) = 0 since §,_o(v — 2k — 1) = 0. Otherwise, if u = v — 2¢ + 1, we also have
0% (u)oy(v — 2k — 1) = 0 since then §%(v — 2¢ + 1) = 0 by assumption since ¢ < k.
Hence, (2.19)) reduces to
(Sj(V — 2k — 1>51/72k71(7/ — 2k — 1) =0.

Since 0,_ox_1(v — 2k — 1) = —1, we obtain §*(v — 2k — 1) = 0.

To obtain the coefficients 6* explicitly, we could of course simply use invert the
operator A, which would not be too bad, since all of its finite “blocks* are lower

diagonal with determinant +1. However, there is even a quicker trick that uses a
small subset of cotangent sums that are polynomials in the “period variable .

To prove the formula (2.16) for (5;‘k(2€) with 1 </ < k choose
2 hy(z) Ncot(Nm) — cot(mz)),

where N > 1 is a positive integer. A brief calculation shows wy € Wg;g . We have
for integers k > 0

Liwxsk) = > (L)"“:{%(k‘)(N - 1), if k=0 (mod 2),

r#0 (mod N) N 0, else,

and for £ = 1 the right sum is understood as in (2.4)). Since wy is not weak, we have

to include the terms C'(B,,;0) = N — 1. From (2.12)) and we conclude for all
even positive integers 2k

(2.20) Z 03 (20)7 2 (=2¢(20) (N* — 1) — 7350(0)(N — 1))

k

B .

— (_].)kN o (_1)k22k Z Z H 2]'r 2

Jo=0 \ = J1,.., Jor =0
J0+J1+ +ok= k
Both sides are a polynomial in N and since this identity is valid for all N > 1, we
obtain

Bay 2k

* —2¢ _ ko2k 22
205200207 = ~(-1)* P > 11

J1yeng2k 20 r=1
L+j1++jar=k

by comparing coefficients. Note that by the classical result

c(a0) = (- B

(=1,2,3,..
(2£)' ) ) 737 )
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this is equivalent to

* 2 BQ +162 BQ szr
X R i I I

Jisesj2k=20 =1
l+j1++jor=Fk

and with By, # 0 formula (2.16)) follows easily.

The proof of formula (2.17)) works similar. Take a positive integer N = 0 (mod 4),

set a = % and

where x4 is the non—prm(:lpal character modulo 4. Clearly Ny is weak with level N.
Together with (2.12]) and (2.2)) we obtain for positive integers 2k — 1

N-1 . .
- 22 O3 1 (20 — ) ™ L(xa; 20 — )N = Y sin (%) cot?h! <%)

j=1

2k—1
_ (_1)]€22/€—1 2 (E)MNVl& B2j'r
.jl ~~~~~ j2k71’/‘ay>0 4 M' V' r=1 (QJT)'

251+ 42k —1+pt+v=2k—1
Jo _in 2k—1

B,4%70 By

_ (_1)k22k71 : Jr N_j()
2, 2

= (o —a)lal 4 (2j:)!

J0,J15-++5J2k—120
Jo+2j1++2jop_1=2k—1

Using the classical formula

) 1 Bogom®!
L(xs;20—-1) = (-1) m, (=1,2,3,..,
we obtain by comparing coefficients:
(_1)65;%*1(% — 1Eg ko2k—102—40 E By,
222—1(2€ - 2)' = (_1> 2 2 Sor—1 Z H (2. >‘
' Jisej2k—120 r=1 \&Jr):

20—14251 44250 —1=2k—1

with

20—1
Bo4e
Sae-1 = Z_;) 20— 1—a)lal’

The identity
Egr—s
T -2

follows with the fact that

= B,Am m " = 4xe® 2xe” 2x
Z x Z + = = -
— m! etr —1 em4 1 et —e®

n:0

is an even function. The formula now follows after a simple rearrangement.
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(iii) Looking again at (2.20)) we obtain by comparing the coefficients belonging to N:

— Y1 05(20)820(0) = (—1)F = —i%*,

This proves supplementary law (1). On the other hand, making this comparison for
the constant terms we find

k

2 Z 5§k(2£)g(%)ﬂ_2€ + 2 55 (20)52,(0) = _(_1)k22k Z 1—[ BQJT

=1 g1y, Jor=0 r= 1
Jl+ “+jok=k

and using supplementary law (1) we immediately see (2).

This completes the proof. 0

It is clear by the vanishing of §* and § for arguments v + « =1 (mod 2) that

2k—1

Z O ( = 0.

Hence

k k
1+ (-1
> a0 =+
=1
and with (2.15)) we obtain (2.18)).

We want to apply these theorems to make statements about cotangent sums using L-
functions. What we need is the following classical result due to Leopoldt.

Theorem 2. 17 Let x be a primitive character modulo N and k be a positive integer.
Put § = =X=1 X . If k=6 (mod 2), then

k
Lo k) = (-1)+5 T P (%”)

Here the numbers By 5 are the generalized Bernoulli numbers defined by the identity

N 0
o e > X2
n=0

a=1 n

Remark 2.18. Let x be a character modulo N. Note that we can express B, , in terms
of the standard Bernoulli numbers by the formula

(2:21) B = ) Y (1) B

It follows that if x is real we have B, , € Q.
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We can use this to determine a closed formula for the character cotangent sums

Z 7) cot™ (%) :

Corollary 2.19. Let x™ be an even and x~ be an odd primitive character modulo N > 1
and m =1 be an integer. We have the explicit formulas

+. _ 20 g% 2€,x+
(2.22) C(x™;2m) EZEI )22s% (20) i
and
i B, ,—
— 201 5% 1) 2=l
(2.23) C(x :2m—1) ZE yo2-tsx (20 1)(%_1>!.

In particular, independently of m, one has

(2.24) GIxH)'C(x T 2m) € QX (1), - X (9)) © Qe
and
(2.25) iG(x) OO 2m = 1) € QU (g1)s s X (g1)) = Q(eF)

respectively, where the integers gi,...,g: modulo N are generators of Fx and ¢(N) is
Fuler’s totient function.

Proof. Define

N—
-3
L
N

1

Jj=
Then wy+(z) is weak and hence C'(8,, ,;0) = 0. By Theorem one obtains

By

Z(Wx+32£) = (_1)f+1g(X) (2£>‘

(27‘(’)%
and similarly
B N
T(weo:20— 1) = (—1)H1G () =221 (97)2-1
Elun-120 = 1) = (<1)iG() s 2m
Note that we obtain an additionally factor 2 (by symmetry) and N?* and N?~! (by the
residues), respectively, in this calculation. The formulas (2.22)) and ([2.23]) now follow with
Theorem ?JIE
To see and - we first note that the right inclusions follow from e(N) =
(mod N By ([2-21) we see B, x € Q(x(g1), .-, x(g¢)) and with and e ar

done.

08 —

Corollary 2.20. Let p be a prime and x be the Legendre symbol modulo p. Then we have
for allmeN

VPC(x;m) € Q.
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Proof. For the Legendre symbol y we have the identity

B ifp=1 (mod 4)
g(x) {i\/ﬁ, ifp=3 (mod 4).

Since x is real, it is rational, and the claim follows with Corollary [2.19, O

There has been lots of effort finding closed values for Gauss sums. The reader may wish
to consult for example [10] for an elementary overview.

Example 2.21. With Mathematica we obtain the identities

o (T o [ 27 o 3T o [ 4rm 8
cot (—) —cot’| — ) —cot | — | +cot” | — | = —,
) 5) 5) ) 5)
T 27 3T 4 oT 6 m
t6<—)— to [ = o — 0 — ) —cot® [ — tO( — ) —cot® [ —
co 13 co 13 +co 13 +co 13 co 13 +co 1 co 3
¢ [ 8T 6 [ 9T ¢ (10T 6 (117 6 (127 31832
—cot’ | —= ) +cot’ { —= | +cot’ | —— ] —cot” | —— | + cot = ,
13 13 13 13 13 V13
and

27 3 47 5T 6 494370
t13 < ) t13 t13 t13 t13 t13 '
co z +co 7 —CO —7 +co —7 —COo —7 —COo —7 = —9\/7

Also we can use the results about cotangent sums to derive properties about L-functions
having trigonometric coefficients.

Corollary 2.22. Let cot = cot except cot(mn) := 0 for alln e Z. Let N > a > 1 and
ny,na,ng = 0 be integers such that niny = 0. We then have for k = 1 with ny + n3 =k
(mod 2):

~ns3

2mwan ) cos™ ( 2mwan ) cot

i sin™! ( N . N (Lz\?) e Qrt.
n

Proof. The condition n; +n3 = r (mod 2) implies that the coefficients (when extended to
Z) define an even/odd function if and only if r is even/odd. The result now follows with
the well-known expressions for sin” and cos™ in terms of linear combinations of multiple
arguments sin and cos functions and Theorems 2.2 and [2.14] O

Remark 2.23. Again, using Theorems [2.9 and one can find rather complicated
explicit formulas for the above Dirichlet series in terms of the values 0, (u).

We can use this formalism to give a purely Fourier analytic proof for Theorem [2.2] Re-
member the modified Clausen function

o0
n(2mwon)
Slor—1(0) := Z n2k: 1
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and .
os(2mOn
Slai(6) := —>

n=1
Using standard Fourier analysis one obtains for 0 < 0 < 1:

0<
(2.26) Slyy_1(6) = (D@m= 1) G kZ < ) B,

202k —1)! &
and

(DR @2m)* & (2K o i
(2.27) Sloy(0) = T > <j )B 0

=0
We can now use Theorem to find the closed formulas provided in Theorem [2.2] To
see this, put § = # for 0 < a < k. Consider the function

:Z <27ra]> (o)

which lies in W Then, we have for even values 2¢ > (

L(w;20) = Z Cos (27rau> <E> o 2 i Cos (27rau) (E> L 2 i u
k k bt k k =

u#0 (mod k)
and by ([2.27)) this equals to

—2¢(20) + <‘1>£(‘21£()2!7T/~c>2Z ; (2}6) b (5

For odd values 20 — 1 > 0 we find L(w; 2¢ — 1) = 0. Note also that the sum C/(w;0) = —1
for obvious reasons. Hence, with Theorem [2.15| we find

(2.28) C(w;2m) + (-1)™ = — 2 55 L(w; 2072,
By supplementary law (2) we have

(2.29) 2ia;m(2£)g(zg)7r—% = (=1)™ 4 (—1)mHim D ﬁ B,
=1 ’

. Tlyeeny j2m20 r=1
2§11+ +2jom=2m

On the other hand, a straightforward calculation shows

_1)Y(2x 20 2¢ an 20—j
_5;m(2£>( 1) (%()2' k) ]ZO (26) B <E> ¢

J

— (_1)m+122m QZZ Z 7‘“[’6““3 H BQJr
s

e 2€ !
Jlyeees Jom =0 M M
204251+ 4+2j2m=2m

The cosine formula of Theorem [2.2] follows now by summing this over £ = 1, ..., m, making
the substitution 2¢ = v + p and adding everything together. Note that the (—1)™ in
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(2.28) will cancel with that of (2.29) and that the formula (2.29)) due to supplementary
law (2) is just the case 2¢ = u + v = 0, completing the sum in (2.3)). Similarly, we can
show the sine formula (2.2)) in full generality.

Remark 2.24. Note that we only have used the polynomials P,, and Q,, defined by

Po(N) = NZI cot™ (%)

in the proof of Theorem [2.15,

3. THE SPACE Wje o AND APPLICATIONS

The proof of Theorem [I.4] did not use the order of the poles that occurred, only their
locations. This motivates us to generalize the concept of pre-weak functions in the sense,
that we allow them to have poles of arbitrary order. In this section we investigate analo-
gous transformation laws for this kind of situation and will apply this to specific types of
g-series, see also Theorem [3.11]

Definition 3.1. We call a meromorphic function w pre-weak of degree d, if all conditions
for pre-weak functions are satisfied except that w has a pole of order d (and all other poles
have order at most d). We denote the vector space of pre-weak functions with degree at
most a with Wye .. We collect all pre-weak functions of arbitrary degree in the space

0¢]
Wpre,oo = U Wpre,a-
a=1

Even in the higher degree situation, we will still use the notation

Ve(w®n; 7) = —2mi Z res,—g (zk_ln(z)w(zT)) :

zeRX

Like in the special case a = 1 it is quite easy to classify all pre-weak functions of degree
at most a using elementary complex analytic ideas. For this purpose we abbreviate

(31) hx’g(z) = ﬁ

We now find that there are uniquely determined functions 3; : R/Z — C, 1 < j < a, such
that

w(z) = w(ioo) + 3 >, Bi(@)ha(2).
j=12zeR/Z
In other words, there is an isomorphism

Woreo = CO® P (R/Z).

=1
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As we will see later, it is natural to study transformations of rational functions when ap-
plying the differential ¢ = ﬁ% Note that h,,(2) satisfies the differential equation

(3.2) Ohyo(2) = (1 = Ohyo(2) + le(x)hy p1(2).
We define the projection 7 : ng‘;m — gﬁgl by

(Y @) | = Y Bun(@han(2).

(=1 2€R/Z 2€R/Z

This implies

Proposition 3.2. We have the exact sequence

00 d o0 1 00
0 Wpre,oo Wpre,oo pre,1 0.

Proof. It is clear that 7 is onto and that the extended homomorphism W o 2, pre,oo

has kernel C. Since Wgoo N C =0, it follows that ¢ is injective.

re,00
To see im(0) < ker(m;) we observe that

0, 2 Be@hae(z) = D7 Y7 Bel@) (1= Ohge(2) + be(@)he ()

(=1 2eR/Z (=1 2eR/Z

has no non-vanishing term h, ;(z). On the other hand, if f € ker(m), it is of the form

F(2) =27 D7 e(@)heu(z).

=2 zeR/Z
Again with (3.2)) we inductively see that there is a g € ng‘;w such that d(g) = f. O

Together with Wien = C@® W2 | we obtain the following.

re,1

Corollary 3.3. We have a canonical isomorphism
Woreo = C® (—D O"Wi®

pre,1°
n=0

Together with the isomorphism
(= Wweak,l ) ChO,l

pre,1 =
we quickly obtain
&Wéﬁyl =~ Wieak1 @ Chy 2.
Putting everything together we obtain the following decompositions.

Corollary 3.4. Let a be an integer. Then we have the decompositions

a—1 a—2
Wweak,a = Wweak,l ® @ an ;?271 = Wweak,l @® C—B an (anveak,l @® ChO,Z) .
n=1 n=0

At some stage it will be crucial to change from Wieak oo t0 Wire oo in the sense of decom-
positions into derivatives. This is done in the obvious way.
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Proposition 3.5. Let w € Wyeako. Then we have the following identity between decom-
positions provided by Corollary|3.4):

a—1 a—1
W = /\0 + Z 8j)\j = )\0 + Z 6j_1(6wj + th072),
j=1 J=1

where X\o,w; € Wiyeak1, Aj € Wg;’gl for1 < j < a—1. As a result, we get for all

0 <j <a—1 the corresponding coefficients

) B, (), y+0,
ﬁkj(y) = {ﬁwj(0> tej, Y= 0,

where ¢g := 0.
The next lemma provides some useful differential identities.

Lemma 3.6. Let be k€ Z and w®n € W(%.
(1) We have Oy (0w ®n;7) = 0;0k—1(w @ n; T).
(it) We have 9p(w ® 0.m;7) = 5=(1 — k — Ta%)ﬁk_l(w Qn; 7).

Proof. Since interchanging residue and differential operator is legitimated we easily see

O % v (el = 3 resca (#7000 02))

2mi
a€eR/Z aeR/Z

This proves (i).
For (ii) let f(z) = z"'w(72). Then we note

0 = res,— ((f(2)1(2))) = 18,z f(2)7' (2) + ves.— [ (2)n(2)

and hence
Ip(w@n';7) = 2mi Z res,—q ((k — 1)2" 2w(r2)n(2) + 2" 17w/ (12)n(2))
a€eR/Z
= (1 — k)ﬁkfl(w ®n; 7') — Tﬁk(w/ X n; T)
0
- (0=0-rf) nawsnn),
T
according to (i). O

As an application of the more general formalism we want to give a description of a special
case of the main transformation law in the language of series of rational functions. To
make things more explicit, we are going to use differentials of the form
2 an
2 n
Wo + W T5— +WeT 5 + - + W,T

or oT? orn’
and apply the results of Lemma Since the lemma tells us

1 0
w@d) = 5 (1= k=75 ) s lwm )

wie(C,

21
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it seems reasonable to look at differentials

Dyn = 2mi)"(1 -k — Ta%)@ —k— T%) o(n—k— Ta%)
= (2mi)™" 2 (2(‘”” {‘;} /ﬁk,nk(j)) 76%

to find that
Di(w @ 15 7) = Dy nVpn(w @m;7).

Here {;} denote the Stirling numbers of the second kind and for integers b > a — 1 the
numbers K, (j) are defined by

(X—a) (X —a— 1) (X =B = 3 kus()X7.

j=0
We abbreviate s(n, £) := (2mi) "1 D=1 {9} Kipnn(J)-

It is remarkable that we still obtain a simple modular relationship between ¥y (w ® 1; 7)
and U4 (n ® ©; 7), as it was the case in Theorem [1.4]

Theorem 3.7. Let w®n € Wyeak, 0 @ Wiveak,o0, where w and n have the Laurent expansions

o0
w(z) = 2 a,z",
n=—U
0
n(z) = Z by 2"
n=-—V
We then have the identity
1 U+V—k
Uy (w@n; —;) = (=DM (n @ ©; 7) + 2mi Z be_vay _po(—1)V 7V e
c=0

Proof. The proof is essentially the same as the one of Theorem [I.4, We may choose 7 = iy
with ¥y > 0 and use the rapid decay of the functions w and 7 for increasing imaginary
parts to show

1
— 3€ 7 (2)w(zr)de = Z (res.—y +res.__z) (2" 'n(2)w(27))
27 NTN T
|z|=N-+e x#0

+res._g (2 'n(z)w(27)) = o(1),

where € > 0 is fixed and sufficiently small (note that w and 7 are periodic and only have
real poles).

k—1 k—1

Put g,(z) := 2" 'n(z)@(27) and h.(z) := 2" 'w(2)n(z7). For each 7 € H we obtain the

functional equation

g (=2) = (=7t (<2) 8(=2) = (=) Fha(2).

T T T
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Hence

(3.3) res,—_z (g-(2)) = —%reszzaC (gT (—E>> = (—7)"res,—y (h_g(;:))

-
by the linearity of the residue. For the residue in z = 0 we obtain

res,—q (g-(2)) = res,—g (kuVl (Z bg_V,Zj) (Z(—l)ZUaZ_UTZU,/))

=0 ¢=0
[°9) L

= TIeS,—0 LR-U-V-1 Z Zbcfvaefch(—ULC*UT@*C’U s
(=0 \c=0

U+V—k

_ Z bc_vav_k_c(_1)V—k—c7_V—k—c
c=0

and hence

—2mi 2 res,—; (g-(2)) — 2mi 2 res,—_z (g,(2)) — 2mi res,—o (g,-(2)) = 0,

=
reRX reRX

and by (3.3)) this implies

U+V—k 1
V(N ®@w;T) — 2mi 2 be_vay _p_o(—1)V eV =he = ()R, (w ®n; ——) .
T

c=0

Multiplying this by (—1)*~*7* proves the claim. O

This framework can be used to derive transformation laws of “higher functions ¥ (w ®
n; T), where w(z) and 7(z) are allowed to have poles of higher degree. The outcomes are
functions of the form

f(7) = go(7) + 7g1(7) + - + 7" gu(7),

where the g;(7) are Fourier series on the upper half plane, such that the f(7) possess
non-trivial transformation properties. We will omit the details of this extremely technical
setup but will give examples in order to convince the reader of its usefulness. We will
not use Theorem in full generality and show examples with rational poles and lower
degrees.

Example 3.8. Let k = 6 be an even integer. Put
w(z) := csc(2mz)
and

n(z) :=icot(2mz) csc(2mz).

Then we have

and hence obtain

V(0,0 ® O,w; T) = 0051 (W ® Ow; T) =
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This equals to
2

a2
One could now use the transformation properties of Vy_o(w ® w;T) given in Theorem

to make final conclusions. But we will use Theorem|[3.7 to investigate Uy (n@mn; 7). Let n
be a non-zero integer. We obtain with the series expansions

et e (-=2) <0 (--2))

k1
Ag =i (g) cot(nm) cse(nmr)

b ((1 — k)%ﬁk_z(w@)W;T) V2 (w Quw; T)> :

Ay =i(k—1) (g)k_Q cot(nm) cse(nmwt) — 2i (g)k_l (77 cse(nmT) + 277 cot®(n7T) esc(nwr))
and
1) = sty + O
for k=6
47r2resz=g (2" 'm(2)n(zr)) = (=1)"*( (g) cot(nm) cse(nmr)

+2(—=1)" <2> (77 ese(nwt) + 277 cot® (nwrT) ese(nwr))

Since we have

2"+ 1
cot(mnt) cse(mnT) = ((q 1))2 )
q" —
2iq?
cse(nmr) = :
q" —1
2i(q" + 1)%q2
cot?(nm7) cse(nmr) = _Z((q—l));ﬁ,
qn —

we obtain by symmetry and Theorem [3.7 (note that sgn(n) = 1), that fi(7) with series
representation

satisfies

Example 3.9. This example is very similar to Example|3.8, we choose
w(z) = n(z) := csc?(27z)
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this time. The main difference is that w(z) has no integral function that is weak, since
the integral is given by —% cot(2mz) + C, compare also the result of Corollary . Let
k = 6 be even. Very similar to Example we find for

fr(T) := —12 +27rz7'2n 1+—q

1—q (1—qm)?"
the transformation law

Definition 3.10. We say that a holomorphic q-series

09]

F0) = Y aln)g

n=0
on the upper half plane has rational type (M, N), if there is a N-periodic arithmetic
Junction ¥(n), a polynomial P and a rational function R with poles only in {z = (};,0 <

j <M} and R(0) = R(0) =0, such that
fr)= >, vm)P(n)R (¢%).

neZ\{0}

Theorem 3.11 (Transformation law for rational type g-series). Let f be a (M, N)-rational
type q-series with periodic function satisfying Z;V:1 ¥(j) = 0, and with rational R which
has poles of degree at most a. Put §(1p) = 0 if ¥(0) = 0 and 6(¢)) = 1, else. Then there
is a polynomials Q_1(X) of degree at most —ordx—_1(R) — ordx—_o(P) — 1, and complex
numbers Ay and Ay, such that

a—1
f <—1> =0Q_ (—%) + Ag + 8() Ay 4 rdesPIH Z 7s;(1),

T =0

where each s;(T) is a finite sum of q-series of rational type (N, M).

Proof. We are able to present a constructive proof, but we will only sketch the ideas
of construction. Without loss of generality, we assume P(n) = nf~! with an arbitrary
integer £ > 0. Hence ordx_¢(P) = k — 1. For each (M, N)-rational type series with the
additional assumption Z;V:I ¥ (j) = 0 we find weak functions

Nk 12,¢ %
and

such that
f(7) = de(w@n; 7).
With Theorem [3.7| we find polynomials @_1(X) and @;(X) such that

/ (—%) ~ Q. <—1) £ QUT) + (D) @ B 7).
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But since V' < 1 and V < 0 if and only if §(¢0) = 0, we see that ), has degree at most 1
and 1 only if 6(¢) = 1. On the other hand, also by Theorem (Q)_1(X) has degree at
most U — k = —ordx—1(R) —ordx—o(P) — 1 (note that ordx_o(P) is the correct measure
at this point, since if P had more higher degree terms then the degree of ()_; would be
smaller for these terms). For any fixed x = ﬁ # 0, consider the expansions

9= 30 () (- 3)

ner) = 3 T G (z _ ﬁ)

|
0 u:

M

E—1 .\ k—1—p . o (u) (3T .\ ptvtu
s, (Y SN (AT G (L |
M 0 M M u! M
w,v+V,u=0

For any triple p + v +u = —1 with 0 < p < k — 1 this is essentially of the form

ktopy () Lup o (IT
o (2o ()

and since n® is weak again, hence of the form W(qﬁ) (note that W (0) = W(o0) = 0 and
W may only have poles in roots of unity (%) and 3,(z) is 1-periodic, we may sum this
over all j/ = j (mod M) to obtain a (N, M)-rational type series

> G (o).,

J'€Z\{0}

With this we obtain, that res__; (2*7'&(2)n(27)) equals

where the M-periodic b, (j') takes the value b, (—> if /=4 (mod M) and 0 else. Sum-
ming up all the terms shows the claim, since 0 < u < a — 1 is not negative. U

Finally, we give one more example.

Example 3.12. Consider the weak functions w(z) := csc®(2wz) and n(z) := csc(2mz).
Put P(n) := n*! with some even integer k > 6. This implies a = 3, ordx_o(P) =
deg(P)=k—1,V =1 and U = 3. Following Theorem the q-series

o= 3o () G =05 ()

n=1

which is essentially Ix(w ® n; T), satisfies the transformation law

(=2 = = 0l) + ) = ) - (),
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where
1= 5 5 oo (3 <230 (3 2
g2(T) = 2(—2mi) Z (g;3n2ﬂ_ cot(mnt) csc(mnt)(k — 1) <g>k2
& (—1)n , L e
g3(T) := 2(—2mi) Z {73 (—2) (7® esc(mnT) + 2% cot®(mnT) csc(mnT)) <§>
0 o (MR q% 2(1+C] ) q%

:21;(—1) <§) (1_qn_ TEYDE ),

94(7) 1= 2(—2mi) Z (;;gn(_ csc(mnt)) (k— 1)2(/€ —2) (g)k—:s
D2 & myes g
) 2m? ;(_1) <§> 1 g T

Note that we were able to start summation at n = 1 by symmetry.

4. EICHLER DUALITY

Let £ > 2 be an integer. In this last section we develop an explicit formula for the k — 1-
fold integral of ¥4 (w®n; 7) in the case w ®nN € Wyeaka[ Tn] ® Wik 1 [Tar]. On the rational
function side it is given by a duality using Fourier transforms. In the following we give
the definition of an m-fold integral as we will use it.

Definition 4.1. Let m > 0 be an integer. Then we define the m-fold integral map Sm by

| settey— et

~ Y aslng™ — M Z as(nn="g™.
n=1

Note that this is the inverse function of 0™ defined on C{[[¢]].

Before we start we shortly introduce the Fourier transform of a pre-weak function with
rational poles. Let N be an integer. Then we define

Fn : W [Tv] — Wi [Tn]

2

D BG/N)A /N*’Zflv () -

Jj=1 Jj=1
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A simple calculation verifies, that the inverse of this isomorphism is given by
Fat s W [Tn] — W [Tw]

pre,1 pre,1

Mz

BI/N)hjn — Z Fy' )(5) R/
7j=1 7j=1
where

—1 273, k/N
F : (k/N)e ™
RGIOE N;l]/s /N)
In order to prove Eichler duality we will introduce the following bracket notation which

will simplify a lot.

Definition 4.2. Let vy be a function in (R/Z)% and 3 : R — C be bounded. We put

[B&]ke(T) =2 Z Z di~'(di)dyf (da) | 4"
teR~ ¢ d1€R~¢
dQEN
didsa=t

Note that [ ® 7]k always represents a holomorphic function on the upper half plane
with a zero in 7 = 700.

In the following we want to find the Fourier expansion of ¥x(w,n;7) in the case that n
has degree 1. This case is the most important one for most of our applications such as
Eichler integrals. One of our main tools is a certain differential equation satisfied by the
above introduced Fourier series.

Remark 4.3. From now on, if not defined differently, we assume that if some w @ n €
Wireoo ® Wore.oo is used together with some integer k we have sgn(w)sgn(n) = (—1)*.

Lemma 4.4. We have
67[6 & ’Y]kl = [ﬁ & 'Y]k+1,€+1~

Proof. Since we can differentiate termwise we obtain

572M1—k i de_IV(d) <%>éﬁ <%> 2T

m=1 \d|m

o § (i () 5o () )

m=1 \d|m

= o2M~F Z de < )“_15 (%) 2™ ir

m=1 \d|m

=[B® 7]k+1,€+1(7')'
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Proposition 4.5. Let k = 21 mod 2 be an integer and w @1 € W(%i [T, Tar]. Then
we have for all T on the upper half plane

(i)
(w®n;7) = A+ [Fn(bu) ® Byleo(T)

where

s 2wt (i) L(n;1 —k), k<0,
o, k= 0.

(it)
Uk (hoz ®@m;7) = [1® Byl (7).
Here 1(z) = 1 for all x € +Z/Z.

Note that we use the convention of Remark for all such assertions.

Proof. We first observe that for all o € Z\{0}

aT

res,_ o (" "n(2)w(zT)) = %Ml_ko/f_lﬁn(a)w (W) :

Suppose that k is even. Let w = w(io0) + wy with wy € Wy and note that 3, = f,,. Now
we obtain

Ipw@n;7) = 2M*F i o718, (a) (w(iOO) +wo (aT))
(

— A+ oMY kZak By) Y Bulj)—

a=1 jeFn —€ (% - %)

= A+ 2M1—k’ Z Z Ofk_lﬁn Z Bw ( _) av/M
a=1lv=1 jeF N N

—A+2M1 ki2<dk 1/8n Zﬁw 27mm/d]/N>q /M
m=1d|m jeFn

In the case w(z) = hp2(z) we find

Vg, (hooa ®@mn;7) = 2 Z k—lﬁn(a) e (M)

(1-e(5))
i Y

zm<dk < )i

||
Mg ] M8 L

The odd case works analogously. 0
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Note that the inverse Fourier transform of 1(z) is given by

Fy'(1)(x) = do(),
where dg(z) = 1 if 2 = 0 mod Z and §y(x) = 0 for all other values z € +Z/Z. So we can
also write

Ux (ho2 ®@n;7) = [Fn(d0) ® Bylea (7).

The work we have done so far now provides

Theorem 4.6. Let k = 0 be an integer and 1 € Wie1[Ti]. Let w € Wyeak o Tv| with

decomposition
a—1

W=+ > N
j=1
such that \o € Wy and \j € W2 ' [Tx]. Then the following identity is valid on the upper
half plane:

a—1

I(w®@n;7) = Y [Fn(By,) ® Bylu(7)-

7=0

Proof. Starting with an expression w = wp + >3, L0771 (0w; + ¢jho2) with w; € Wiy, we
obtain
a—1

In(w@n;7) = ewo @3 7) + D & Dk ((0w; + ciho2) @75 7)
=1
and with Lemma [1.4) and Proposition [4.5] this simplifies to

a—1

= [Buo @ Bylio + Y FIFn(Buy) ® Byli—jo(7) + 3 [e; Far(00) ® Byli—j1a(7)

j=1
a—1

= [Buo @ Bylro + Z [FN(Bo; + ¢500) & Bylr,i(T)

J=1

where do(z) = 1 if x € Z and 0 else, and finally with Proposition

2 [FN(Br;) @ Byli (7).

The next lemma imitates a classical result by Bol.

Lemma 4.7 (Weak Bol’s identity). Let k > 1 and f: Fy — C, v : Fyy — C. Then we
have

[ o) =50 s (37 ).

Note that the choice of £ — 1 is crucial for this kind of formula.
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Proof. This can be followed by direct calculation and for the convenience of the reader
we provide the details.

[RCENPICE LlM”Z Rl (@ (%) 6 (%) )"

SE

5 (S (@) @)l

m=1 \d|m

0

_ o NLH—k pTh—t—1 Z 27 <%> d2-k+0-1g (d) (q

m=1 \d|m

N
= N * [y ® Bla_rico <ﬁ7) :

gl=
N———
23

O

Theorem 4.8. Let k > 1 and w ® 1 € Waeakoo| Tn] @ Wit 1 [Ti], where w = > =0 PN,
with \j € W% | [Tn] as in Theorem 4.0 . Then we have

pre,1

u

. N
J Up(w®mn; T Z N9y 4 <'F1\_4/17]®-FN)\3'; WT) :
k-1

Proof. First of all, Theorem [4.6] gives us

Ir(w@n;7) = D [FN(Br) @ Byli;(7).

7=0
Now with Lemma we conclude

Ih(w®@n;7) = ) []:N(ﬁAj) ® Bylr.i(7)

=0
= ;} N"7F[8, @ Fn(Bx;)]2—k+j0 (%)

0

In order to study Eichler duality we extend the C vector space Wi o[ Tn] to a C[z, z271]
module by putting

My = Wprem[TN] &® C[Z, 271].
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In particular, we obtain a graded algebra

09]

th = @ Zijre,oo[TN]a

j=—

whose elements naturally stand with the function ¢, in the sense that

(28 w@nT) = h(w® ' 0 7) = p(w@n; 7).

Definition 4.9. Let k = 3 be an integer. Then for each 1 < a < k — 2 we define the
Fichler homomorphism

a—1
gli\,[(;M C—D a] W;Z)SZ 1 TN ® WIZ)SZ 1[TM] pre 1 TM ® @ Z]W;?; 1 TN]
by
a—1 - a—1 A
wRn = YN ®n— N'"FFn® > (2N) Fy);.
j=0 Jj=0

Theorem 4.10. We have the following assertions:

(i) The map Sﬁ’lM is an isomorphism for each 1 < a < k — 2.

(ii) Consider the subspace Wyearo| Tn] @ Wikt 1 [Tir] = @2, 0 IWtea[Tn] @ Wikt 1 [Ta]-
The diagram

weak a[TN] & ere 1[TM] ENVEVE WS?Z I[TM] ® @J 0 Z]ngg I[TN]

N,M
(C: )

Vg (7= 27) 0 Vyyy

Cs [lg™]] Cs [lg™]]

Sk—l

15 commutative.
Proof. (i) We show that the map
I WS?& [Ta] ®@ZJW5£1 —’@%W;ﬁ& [T] ®Wre1[TM]

with

a—1 a—1
r®y=2® ), 2y — N Y Ny © Fue
=0 =0
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is an inverse of 8,?7[ M We find for w®n € @?;3 AW [T @ Wige 1 [T

pre,1 re,1

a—1
oy (5,§Y(;M(w ® n)) = <N1"“]-“A}177 ® ), (zN)j}"N)\j>

J=0

\
A
7

A

a

NP7 (85,00 F 5 Fa Ay ® FruFaf'n)

=0

SIS
II
= O

(ag)\j ®n)
§=0

wn.
The other way round we see for a® b€ W% [Ty ® @?;01 Wi [Tw]:

pre,1

a—1
& (T 00 )) = &5 (N YN TR e fw)
=0

a—1
= NFINTE <fM1fo ® ) Nj(zN)j}"N}"Nlbj>
j=0

=a®b.

(ii) We prove that the compositions give the same output. Let w ® n € Wyeak o[ Tn] ®
Wi [Ta] and w be given by

pre,1
a—1
_ NJ 100
W = ZO /\j7 /\jEWpre,l[TN]‘
7=0

Then according to Theorem [4.§ we have that

u

. Nt
(41) L_l ﬁk(w Xn; 7') = Z N1+]fkq92,k+j (‘FMln X .FN)\J'; ﬁ) .

J=0

On the other hand we find

a—1
Vo <8,§7[(’1M(w ®n); 7') = N¥7kgy o (]:Mln ® Z(Nz)j]:zv)\j; 7')
j=0
a—1
= Z Nl_k+j192—k+j (‘FJ\_/[177®‘FN/\j;T) :

j=0
O

Before we apply this to several situations we first recall basic facts about Eichler inte-
grals.

Proposition 4.11. Let f : H — C be a holomorphic function with the following proper-
ties:
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(i) f is periodic and has a Fourier expansion of the form f(1) = Y, as(n)g"* with
some A > 0.

(ii) There is an integer k = 2 and a dual function f* with a Fourier expansion f*(1) =
S aps (n)g™™* with \* > 0, such that

f(=1/1) =7 f*(7).

(111) The coefficients ar(n) and ag«(n) are polynomially bounded, such that the corre-
sponding L-functions L(f;s) = Y, ay(n)n™ and Ls+(s) converge on some right
half plane.

Then the functions Ly and L« have meromorphic continuations to the entire plane. If
we further put

and

A simple but very important observation was made in [§], we have the following for-
mula.

Proposition 4.12. For primitive non-principal Dirichlet characters x and v we have

X(=1)(=2mi)**1G ()
Ny (k= 1)1G(X)

(4.2) Ep(x. ;1) = U (wy ® wys 7).

It is well-known that if y and ¢ are primitive Dirichlet characters and f = Ey(x,¥;7)
the corresponding L-function is

2(=2mi)"G ()

NE(k—1)! L(x; ) L(;s — k + 1).

L(Ey(x,¢;7);8) =
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We assume that both y and ¢ are non-principal. From identity (4.2) and Theorem m
we obtain

) =% ) Wy @ wr: T
| Btevin - TG0 [IR2ETE
X(=1)(=27m0)* "G (1)

)

Nk~ DIGR) N,
B (—2mi)~+ Nyt
= NNk \ e @@y )
Since ( )k )
—2m1
E.(x, ;7 F(7),
where

this combines to
472

F(r) = A 1)192_k (Ww ® wy; ]]\; )
DE

In the sense of Proposition we have Ejf(x,¥;7) = x(—1)Ex(v
vides

¥, x;7) and this pro-
42
— )Py | wy ® wy;
Now according to Proposition we have the functional equatlon

k—2
F(T) _ (—T)k_QF*(—l/T) _ (_1)k Z (k - Z)il—zAf(g + 1)7_k:—2—é'

=\
On the other hand, from Theorem [I.4] we obtain
(=) 2F*(=1/7)

4r? N
=— 722y (=1 Py ( ;__¢>
A AT R Rt

Am?rhe2(—1)k? - Nwz)) (Nw )’“ ( N T)
om0 | 217 + v ;= :
NZZ N 1) res,—g (z wy (2)wy (NXT N 9k | Wy ® wy; N,

And this concludes the following theorem.

F*(7) =

Theorem 4.13. Let k = 2 be an integer, x and ¢ be two primitive Dirichlet characters
with x(=1)(=1) = (=1)* and f(1) = Ex(x, ;7). We then have the following identity

between rational functions:

k=2
k=2 — A’ 1k Nyz
Z ( ’ )z Ap(0+1)77" = _N!;_lNX(k — 1)reszzo 2wy (2)wy N-))

=0
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We can now use this to give detailed expressions for the L-functions in the critical
strip.
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