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Abstract. Basing on the new approach to modular forms presented in [6] that uses
rational functions we prove a dominated convergence theorem for certain modular forms
in the Eisenstein space. It states that certain rearrangements of the Fourier series will
converge very fast near the cusp τ “ 0. As an application, we consider L-functions
associated to products of Eisenstein series and present natural generalized Dirichlet series
representations, that converge in an expanded half plane.

Introduction

We recall that an elliptic modular form f of weight k P Z for a congruence subgroup
Γ Ă SL2pZq with multiplier system v : Γ Ñ Cˆ is a holomorphic function on the extended
upper half plane tτ P C | Impτq ą 0u Y Q Y t8u, which satisfies the transformation
law

f |kMpτq “ vpMqfpτq.

Here f |kM denotes the usual Petersson slash operator

f |k

ˆ

a b
c d

˙

pτq “ pad´ bcq
k
2 pcτ ` dq´kf

ˆ

aτ ` b

cτ ` d

˙

.

One can show that there are no non-constant modular forms for k ď 0 and that the
spaces MkpΓ, vq are finite-dimensional. A useful tool for computing the exact value of the
dimensions is the Riemann-Roch formula, for more explicit details see for example [4].
Modular forms play an extraordinary important role in many fields of mathematics and
physics such as number theory, geometry and string theory. Also many generalizations of
the classical modular forms have been found, such as Siegel modular forms (see also [1]
and [8]) for matrix valued arguments that transform under congruence subgroups of the
symplectic group Spn; and Hilbert modular forms (for a great introduction, the reader
may wish to consult [7]) that transform under congruence subgroups of SL2pOq, where O
is the ring of integers of a number field K.
Basically, two elementary ideas for constructing modular forms dominate in literature.
One of them uses the so called Poincare series, which give in the simplest case Eisenstein
series. The other one goes via Fourier analysis and quadratic forms. This leads to theta
functions. In [6] a third elementary approach to modular forms was presented. It grounds
on a class of very simple functions which we will call weak functions. A weak function ω
is a 1-periodic meromorphic function in the entire plane, which has the following proper-
ties:
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(i) All poles of ω are simple and lie in Q.

(ii) The function ω tends to 0 rapidly as the absolute value of the imaginary part in-
creases, so

ωpx` iyq “ Op|y|´Mq

for all M ą 0 as |y| Ñ 8.

By Liouville’s theorem one quickly sees that each weak ω is essentially just a rational
function R P CpXq with (only simple) poles only in roots of unity, such that Rp0q “
Rp8q “ 0. Here we put ωpzq :“ Rpepzqq, where epzq :“ e2πiz. One defines WN to be
the space of weak functions with the property, that ωpz{Nq only has poles in Z. We
associate to ω a periodic divisor function βωpxq :“ ´2πiresz“xωpzq. Now one can show
the following construction theorem for modular forms for the congruence subgroup

ΓpN1N2q Ă Γ1pN1, N2q :“

"ˆ

a b
c d

˙

P Γ0pN1, N2q

ˇ

ˇ

ˇ
a ” d ” 1 pmod N1N2q

*

.

Theorem 0.1. Let k ě 3 and N1, N2 ą 1 be integers. There is a homomorphism

WN1 bWN2 ÝÑMkpΓ1pN1, N2qq

ω b η ÞÝÑ ϑkpω b η; τq :“
ÿ

xPQˆ
xk´1βηpxqωpxτq.

In the case that k “ 1 and k “ 2 the map stays well-defined under the restriction that the
function z ÞÑ zk´1ηpzqωpzτq is removable in z “ 0.

The main tools for the proof are Weil’s converse theorem and the following observa-
tion.

Theorem 0.2. We define the involution ω ÞÑ ω̂ by ω̂pzq :“ ωp´zq. Let k P Z be an
integer. For all weak ω and η we have the following transformation property.

ϑkpω b η; τq|kS “ ϑkpη b´pω; τq ` gω,ηpτq|kS,

where S :“ p 0 ´11 0 q and gω,η is a rational function which can be evaluated explicitly by

gω,ηpτq “ 2πiresz“0
`

zk´1ηpzqωpzτq
˘

.

In this paper, we continue the study of this new perspective to modular forms and apply
it to Dirichlet series. We first want to investigate the space ϑkpWN1 bWN2q and it will
turn out, that it is generated by Eisenstein series.

Theorem 0.3 (cf. 1.1). Let k ě 3. The image space ϑkpWN1 bWN2q is generated by the
elements Ekpχ, ψ; N1d2

N2d1
τq where χ and ψ run over all non-trivial characters modulo d1|N1

and d2|N2, respectively, such that χp´1qψp´1q “ p´1qk.

The cases k “ 1 and k “ 2 can be treated similarly. We want to apply the series
representations of ϑk in terms of rational functions to Dirichlet series. To every modular
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form fpτq “
ř

ně0 apnqq
n{N of weight k for some congruence subgroup Γ Ă SL2pZq we can

associate an L-function Lpf, sq given by

Lpf, sq “
8
ÿ

n“1

apnqn´s.

One can show that this function converges absolutely on the half plane Repsq ą k, has
meromorphic continuation to the entire plane and satisfies a certain functional equa-
tion. The complete L-function Λpf, sq “ p2π{Nq´sΓpsqLpf, sq can be written as an inte-
gral

Λpf, sq “

8
ż

0

pfpixq ´ ap0qqxs´1dx.

In the case that f is a cuspidal Hecke eigenform its L-function is entire, has an Euler
product expansion and encodes deep arithmetic information.

We give a proof for a dominated convergence theorem for Eisenstein series arising from
rational functions. In order to formulate it, we need the concept of the degree of a N -
periodic function β. The degree of such a β is defined as the largest integer 0 ď d such
that

N
ÿ

n“1

βpnqnr “ 0, for all 0 ď r ď d.

Theorem 0.4 (cf. 2.9). Let ω b η P WN1 bWN2 be a pair of weak functions such that ω
is removable in z “ 0 and κN2βη has degree d. Then for all α P N0 there is a constant
Cβ,ω,α ą 0 such that uniformly for all T P N and y P r0, 1s

ˇ

ˇ

ˇ

ˇ

ˇ

N2T
ÿ

n“1

nαβηpn{N2qωpniyq

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cβ,ω,αy
d´α.

An application of this theorem is a new, in some sense more natural, representation of
L-functions associated to products of Eisenstein series in terms of a generalized Dirichlet
series. Modifying the sum a bit leads to convergence in a much wider region. In particular,
we have the following theorem.

Theorem 0.5 (cf. 3.16). Let l P N, k “ pk1, ..., klq P Nl a vector of positive integers and
χj, ψj, j “ 1, ..., l, be non-principal, primitive characters modulo M and N , respectively,
such that χjp´1qψjp´1q “ p´1qkj . Then, if we put |k| “ k1 ` ¨ ¨ ¨ ` kl, we have for all
s P C with Repsq ą |k| ´ l ´ 1

2

řl
j“1pψjp´1q ` 1q

L

˜

l
ź

j“1

Ekjpχj, ψj; τq, s

¸

“

ˆ

´
2πi

N

˙|k| l
ź

j“1

Gpψjq
pkj ´ 1q!

ÿ

pu,vqPNlˆNl
Πkpuqψpuqχpvq 〈u,v〉´s ,

where Πkpuq “ uk11 ¨ ¨ ¨u
kl
l , ψpuq “ ψ1pu1q ¨ ¨ ¨ψlpulq and χpvq “ χ1pv1q ¨ ¨ ¨χlpvlq. For

convergence in the extended half plane the sum has to be modified slightly, this is explained
below.
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Note that this representation of the L-function of the considered product is more natural
since it is a direct generalization of the formula in the case l “ 1, where the series directly
splits into a product of two Dirichlet L-functions. An important question, which is still
unsolved in the very general case, is that which modular forms can be written as sums of
products of Eisenstein series. But there is a lot of progress in this field. Dickson and Neu-
rurer have shown in [5], that, if k ě 4, N “ paqbN 1 where pa, qb are powers of primes and
N 1 is square free, the space MkpΓ0pNqq is generated by EkpΓ0pNq, χ0,Nq and a subspace
containing products of two Eisenstein series. A similar result for Mkppq and k ě 4, where
p is prime, is due to Imamoḡlu and Kohnen [9]. For a correspondence between values of
L-functions for products of pairs of different Eisenstein series see [3].

The paper is organized as follows. In the first section we identify generators for the
space of modular forms that arise from rational functions. In the second section we prove
a Dominated convergence theorem for Eisenstein series, which provides an upper bound
for several partial sums of the series involving weak functions for modular forms near
the cusp τ “ 0. In the last section we apply this theorem to L-functions associated to
products of Eisenstein series.

Notation. We use the introduced notations WN for the vector space of weak func-
tions of level d|N , and W˘

N for the odd and even function part.

Throughout l is a positive integer. We briefly define k “ pk1, ..., klq P Nl to be a vec-
tor of positive integers. We write |k| “ k1 ` ¨ ¨ ¨ ` kl.

For real valued vectors u “ pu1, ..., ulq P Rl we briefly write maxpuq :“ maxtu1, ..., ulu.

We sometimes use the notation sgnpfq “ ˘1 to indicate that f is an even or odd function,
respectively.

We define for any set L to be LC0 the space of all functions f : LÑ C, that are zero ev-
erywhere except finitely many x P L. The subspace LC0

0 Ă LC0 is given by all f satisfying
ř

xPL fpxq “ 0. For positive integers N we abbreviate FN :“ Z{NZ and F 1
N

:“ Zr 1
N
s{Z.

Especially when going over to Fourier series it will be useful to identify functions in FC0
1
N

with those in FC0
N via the obvious map

κN : FC0
1
N

„
ÝÑ FC0

N

pκNfqpxq :“ f
´ x

N

¯

.

We will identify functions f P FC0
N with N -periodic functions f : Z Ñ C. For integers M

we will set f rM spxq :“ fpMxq when f : ZÑ C.

For any Dirichlet character ψ moduloN we define the Gauss sum Gpψq :“
řN´1
n“0 ψpnqe

2πin{N .
For the generalized Gauss sum it will be more convenient to use the more general notion



A DOMINATED CONVERGENCE THEOREM FOR EISENSTEIN SERIES 5

of a discrete Fourier transform
FN : FC0

N
„
ÝÑ FC0

N .

pFNfqpjq :“
N´1
ÿ

n“0

fpnqe´2πijn{N .

Note that we have an inverse transformation

pF´1
N gqpjq :“

1

N

N´1
ÿ

n“0

gpnqe2πijn{N .

We use the same notation for functions f P FC0
1
N

and have κNFNf “ FNκNf . For d|N we

also use the trivial injection
ιdN : pFdqC0 ÝÑ pFNqC0

pιdNfqpxq :“

#

fpxd
N
q, x ” 0 mod N

d

0, else

for purposes of notation. Note that if f P FC0
d and d|N we have FN ι

d
Nf “ Fdf .

For the complex variable z “ x ` iy we write epzq :“ e2πiz and for the complex vari-
able τ we define q :“ e2πiτ .

We denote CN as the group of all characters modulo N . Also we write CN for the set
of all characters modulo d, where d divides N . We write χ0,d for the principal character
modulo d. In particular, χ0,1 denotes the trivial character.
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My special thanks go also to Vijay Modaher for his careful proof reading.

1. The space of weak modular forms

For Dirichlet characters χ and ψ modulo positive integersM andN , respectively, and some
integer k ě 3 one defines the corresponding Eisenstein series for τ P H p“ upper half planeq
via

Ekpχ, ψ; τq :“
ÿ

pm,nqPZ2ztp0,0qu

χpmqψpnqpmτ ` nq´k.(1.1)

This series converges absolutely and uniformly on compact subsets of the upper half plane
and defines a holomorphic function in that region. One can show that (1.1) leads to a
non-zero function if and only if χp´1qψp´1q “ p´1qk and that the Ek are modular forms
of weight k for the congruence subgroups

Γ0pM,Nq :“

"ˆ

a b
c d

˙

P SL2pZq
ˇ

ˇ

ˇ
b ” 0 pmod Mq, c ” 0 pmod Nq

*

with Nebentypus character χψ of Γ0pM,Nq. The cases k “ 1, 2 are treated differently,
see also [10] on p. 274 ff. or [4].
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Every Eisenstein series admits a Fourier series. The coefficients are well-known and given
by

2Lpψ, kqχp0q `
2p´2πiqk

Nkpk ´ 1q!

8
ÿ

m“1

¨

˝

ÿ

d|m

dk´1pFNψqp´dqχ
´m

d

¯

˛

‚qm{N ,(1.2)

where as usual q :“ e2πiτ and Lpψ, sq is the Dirichlet L-function. Note that in the case that
ψ is primitive one has pFNψqpaq “ ψpaqpFNψqp1q and one obtains the simpler expression
ř

d|n d
k´1ψpdqχ pn{dq for the coefficients up to a constant.

It is clear that every ϑkpωb η; τq admits a Fourier expansion. Since we only focus on the
non-trivial cases we assume ω b η P pWM bWNq

˘ if p´1qk “ ˘1. It is given by

ϑkpω b η; τq “ 2N1´k
8
ÿ

m“1

ÿ

d|m

´

dk´1pκNβηqpdq pFMκMβωq
´m

d

¯¯

qm{N .(1.3)

According to (1.2) we conclude for non-principal characters

Ekpχ, ψ; τq “
ψp´1qp´2πiqk

Npk ´ 1q!
ϑkpωF´1

M pχq b ωFN pψq; τq.(1.4)

In particular, if χ and ψ are primitive and hence conjugate up to a constant under the
Fourier transform, this simplifies to

Ekpχ, ψ; τq “
χp´1qp´2πiqkGpψq
Npk ´ 1q!Gpχq

ϑkpωχ b ωψ; τq.(1.5)

Already here the connection between Eisenstein series and weak functions is intuitively
clear.

In this section we want to find generators for the space ϑkpWN1 bWN2q. We call their
elements weak modular forms. In other words, the vector space VkpΓ1pN1, N2qq of all weak
modular forms is the image of the linear map

WN1 bWN2 ÝÑMkpΓ1pN1, N2qq.

Let pFNqC0
˚,0 Ă FC0

N be the subspace of all functions with fp0q “ 0. It is an easy exercise
to verify that the discrete Fourier transform defines an isomorphism

FN : pFNqC0
˚,0

„
ÝÑ pFNqC0

0 .

With this we conclude that pωF´1
N1
χbωFN2

ψqpχ,ψqPCN1
ztχ0,1uˆCN2

ztχ0,1u
is a basis forWN1bWN2 .

The next theorem provides generators for the space VkpΓ1pN1, N2qq.

Theorem 1.1. Let k ě 3. The space VkpΓ1pN1, N2qq is generated by the elements
Ekpχ, ψ; N1d2

N2d1
τq where χ and ψ run over all non-trivial characters modulo d1|N1 and d2|N2,

respectively, such that χp´1qψp´1q “ p´1qk.
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Proof. It is clear that the Fourier transform preserves the subspaces of odd and even
functions. Hence, for characters χp´1qψp´1q “ p´1qk, we have the Fourier expansion

ϑkpωF´1
N1
χ b ωFN2

ψ; τq “ 2N1´k
2

8
ÿ

m“1

ÿ

d|m

´

dk´1pFN2ι
d2
N ψqpdq

`

FN1F´1
N1
ιd1N1

χ
˘

´m

d

¯¯

qm{N2

“ 2N1´k
2

8
ÿ

m“1

ÿ

d|m

´

dk´1pFd2ι
d2
N2
ψ
”

N2

d2

ı

qpdqιd1N1
χ
´m

d

¯¯

qm{N2

“ 2N1´k
2

8
ÿ

m“1

ÿ

d|m

ˆ

dk´1pFd2ψqpdqι
d1
N1
χ

ˆ

mN1

dd1

˙˙

qmN1{N2d1

“ 2N1´k
2

8
ÿ

m“1

ÿ

d|m

´

dk´1pFd2ψqpdqχ
´m

d

¯¯

qmpN1d2{N2d1q{d2 .

This proves the theorem. �

For our investigations we are especially interested in a subspace of Vk which we will denote
by Uk and which contains all weak modular forms which arise from weak functions that
are removable in z “ 0. In the following we shall give generators for Uk. Let HNi Ă WNi

be the subspace of weak functions that are removable in z “ 0. Then we have

WNi “ CωF˘1
Ni
χ0,Ni

‘HNi .

In other words, the space HN is given by weak elements ωpzq such that βωp0q “ 0. On the
periodic function side, we define the subspace of these coefficients by pF 1

Ni

q
C0
0,0. Note the

the Fourier transform FNi defines an automorphism on the subspace pFNiq
C0
0,0. So firstly,

consider the basis pωF´1
N1
χbωFN2

ψqχ,ψ of HN1bHN2 , where χ and ψ are either non-principal

characters modulo d1|N1 and d2|N2 or functions ϕpNiq
ϕpdiq

ιdiNiχ0,di ´ χ0,Ni for i “ 1, 2.

Theorem 1.2. Let k ě 1. The space Uk “ ϑkpHN1 bHN2q is generated by the elements
Ekpχ, ψ; N1d2

N2d1
τq and the linear combinations

ϕpN1q

ϕpd1q
Ekpχ0,d1 , ψ; N1d2

N2d1
τq ´ Ekpχ0,N1 , ψ; d2

N2
τq,

ϕpN2q

ϕpd2q
Ekpχ, χ0,d2 ;

N1d2
N2d1

τq ´

ˆ

N2

d2

˙k

Ekpχ, χ0,N2 ;
N1

d1
τq,

and
ϕpN1q

ϕpd1q

ϕpN2q

ϕpd2q
Ekpχ0,d1 , χ0,d2 ;

N1d2
N2d1

τq ´
ϕpN1q

ϕpd1q

ˆ

N2

d2

˙k

Ekpχ0,d1 , χ0,N2 ;
N1

d1
τq

´
ϕpN2q

ϕpd2q
Ekpχ0,N1 , χ0,d2 ;

d2
N2
τq `

ˆ

N2

d2

˙k

Ekpχ0,N1 , χ0,N2 ; τq,

where 1 ă di ă Ni and χ, ψ are non-principal characters modulo d1 and d2, respectively,
such that sgnpχψq “ p´1qk.
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Proof. Since all considered weak functions are removable in z “ 0, we can apply the
theorem to all positive weights k “ 1, 2, .... The proof works similar as the one of 1.1 and
we omit it. �

Theorem 1.3. We have the following.

(i) The space of weak modular forms of weight k “ 1 is given by V1pΓ1pN1, N2qq “

ϑ1pHN1 bHN2q. In particular, it is generated by the elements given in 1.2 for k “ 1.

(ii) The space of weak modular forms of weight k “ 2 is given by V2pΓ2pN1, N2qq “

ϑ2pHN1bHN2‘CωF´1
N1
χ0,N1

bHN2‘HN1bCωFN2
χ0,N2

q. In particular, it is generated

by the elements in 1.2 for k “ 2 and E2pχ0,N1 , ψ; d2
N2
τq, E2pχ, χ0,N2 ;

N1

d1
τq, where χ

and ψ are non-principal characters modulo d1|N1 and d2|N2, respectively.

In the last section we would like to investigate L-functions of products of weak functions.
To formalize this, we give the following final definition.

Definition 1.4. Let k “ pk1, ..., klq a vector of weights. We then define VkpΓ1pN1, N2qq

as the vector space of all modular forms that can be written as a sum
ř

j cjf1,j ¨ ¨ ¨ fl,j,
where each fr,j is an element of VkrpΓ1pN1, N2qq. Analogously, we define the subspace
UkpΓ1pN1, N2qq Ă VkpN1, N2q by demanding fr,j P UkrpΓ1pN1, N2qq.

2. A dominated convergence theorem

Definition 2.1. Let N be a positive integer and g : Z Ñ C an N-periodic function. We
define the degree of g to be the largest positive integer d such that for all 0 ď α ď d:

N
ÿ

j“1

gpjqjα “ 0.

The degree of the zero function is defined to be 8. In the case
řN
j“1 gpjq “ 0 we say that g

has degree ´8. We denote rN, ds as the vector space of N-periodic functions with degree
at least d.

We have rN,N ´ 1s “ 0 (Vandermonde-Matrix).

Proposition 2.2. Let β : Z Ñ C have period N and degree d. Then we have for all
T P N and 0 ď α ď d:

NT
ÿ

j“1

βpjqjα “ 0.

Proof. It is sufficient to prove
NpT`1q
ÿ

j“NT`1

βpjqjα “ 0.
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for arbitrary T P N and 0 ď α ď d. This follows from
NpT`1q
ÿ

j“NT`1

βpjqjα “
N
ÿ

j“1

βpNT ` jqpNT ` jqα “
α
ÿ

u“0

ˆ

α

u

˙

pNT qα´u
N
ÿ

j“1

βpjqju “ 0.

�

In the following we will abbreviate

Sβpu; qq :“
q
ÿ

j“1

βpjqju.

Example 2.3. Each non-principal Dirichlet character mod N has degree 0 and each
(non-principal) even character has degree 1.

Proposition 2.4. Let β : ZÑ C be in rN, ds. Then the polynomial

Wβpu;xq “
N
ÿ

p“1

Sβpu; pqxp

has a zero of degree at least d´ u in X “ 1.

Proof. Let 0 ď ` ď d´ u´ 1 be an integer. Then we obtain

W
p`q
β pu; 1q “

N
ÿ

p“1

˜

p
ÿ

r“1

βprqruppp´ 1q ¨ ¨ ¨ pp´ `` 1q

¸

“

N
ÿ

r“1

βprqru
N
ÿ

p“r

“

p` ` b`´1p
`´1
` ¨ ¨ ¨ ` b1p

‰

“

N
ÿ

r“1

βprqru pQ`pNq ´Q`pr ´ 1qq

for some polynomial Q` of degree `` 1 ď d´ u

“ 0.

�

We will write
Wβpu;xq “ p1´ xqα´uĂWβpu;xqα

in further applications when 0 ď u ď α ď d.
Our investigations foot on the properties of some explicit polynomials. For a fixed non-
negative integer α we define a sequence by

pT pα;xq “ p1´ xqα`1
T
ÿ

`“1

`αx`, T “ 1, 2, 3, ...

For example we have pT p0;xq “ x´ xT`1 for T “ 1, 2, ....
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Lemma 2.5. The sequence ppT pα;xqqTPN converges to some polynomial function on the
interval r0, 1q from below for all α ě 0. In particular the terms pT are uniformly bounded
in the sense

sup
TPN

sup
xPr0,1s

|pT pα;xq| ď Cα

for some constant Cα ą 0.

This uniform boundedness is a very important property as we will see later.

Proof. It is clear that pT pα;xq is increasing for fixed x. The power series
8
ÿ

`“1

`αx`

converges for x P r0, 1q to a rational function Qαpxq
p1´xqα`1 where Qαpxq is some polynomial

which is non-negative in r0, 1s. This follows inductively by
ř8

`“1 x
` “ x

1´x
and the fact

that

x
d

dx

ˆ

Qα´1pxq

p1´ xqα

˙

“
Qαpxq

p1´ xqα`1

with polynomials Qα´1 and Qα. Put Cα “ supxPr0,1sQαpxq. �

Remark 2.6. In fact, one can give an explicit formula for the Qα in terms of Eulerian
numbers, but we will not need such a precise description for our applications.

Lemma 2.7. For each T ě 1 there is some number 0 ă ξα,T ă 1 such that pT pα;xq is
increasing in the interval r0, ξα,T s and decreasing in the interval rξα,T , 1s.

Proof. Since we have pT pα;xq ě 0 for 0 ď x ď 1 (with equality if x “ 0 or x “ 1) it is
sufficient to show that p1T pα;xq “ 0 has exactly one solution 0 ă ξα,T ă 1. For values
0 ă x ă 1 we obtain

p1T pα;xq “ ´ pα ` 1qp1´ xqα
T
ÿ

`“1

`αxα ` p1´ xqα`1
T
ÿ

`“1

`α`1x`´1 “ 0

ðñ

T
ÿ

`“1

`

´pα ` 1qx` ` `α`1x`´1 ´ `α`1x`
˘

“ 0

ðñ
1

xT
`

T´1
ÿ

`“1

˜

α`1
ÿ

j“2

ˆ

α ` 1

j

˙

`α`1´j

¸

x`´T “ pα ` 1qTα ` Tα`1.

Since the right hand side is greater than the left hand side for x “ 1 and the left hand
side is unbounded and monotonically decreasing in the interval p0, 1s, there is exactly one
solution for the above equation in this area and the claim follows. �

Before we can go on to the main theorem of this section we recall
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Lemma 2.8. Let ak be a sequence of complex numbers and bk and ck sequences of positive
real numbers such that 0 ď bk`1 ď bk and ck`1 ě ck ě 0 for all k. Then we have for all
n ě 1:

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

akbk

ˇ

ˇ

ˇ

ˇ

ˇ

ď b1 ¨ max
r“1,...,n

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

k“1

ak

ˇ

ˇ

ˇ

ˇ

ˇ

and
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

akck

ˇ

ˇ

ˇ

ˇ

ˇ

ď p2cn ´ c1q ¨ max
r“1,...,n

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

k“1

ak

ˇ

ˇ

ˇ

ˇ

ˇ

.

Theorem 2.9. Let β be a function in rN, ds and ω P WM be a weak function which is
holomorphic around z “ 0. Then for all α P N0 there is a constant Cβ,ω,α ą 0 such that
uniformly for all T P N and y P r0, 1s

ˇ

ˇ

ˇ

ˇ

ˇ

NT
ÿ

n“1

nαβpnqωpniyq

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cβ,ω,αy
d´α.

Remark 2.10. Note that in the case α ď d the left hand side is bounded uniformly for
values T and y P r0, 1s. Since the series converges absolutely and uniformly on compact
subsets K Ă rε,8s for all ε ą 0 dominant convergence is clear for these areas of y (of
course the number ε “ 1 was arbitrary chosen in the theorem).

Proof. For y “ 0 the inequality holds since in the case α ď d the left hand side is always
zero and otherwise the right hand side is `8 from the right. Let y ą 0. We then have

NT
ÿ

n“1

nαβpnqωpniyq “
ÿ

jPFN

βωpjq lim
LÑ8

L
ÿ

k“1

NT
ÿ

n“1

nαβpnqζkjM e
´2πkny, ζM :“ e2πi{M .

In the first step we will only deal with the inner sums. For reasons of simplicity we ignore
the scalars 2πk. We obtain with partial summation

NT
ÿ

n“1

nαβpnqe´ny “ e´NTy
NT
ÿ

n“1

nαβpnq `
NT
ÿ

n“1

˜

n
ÿ

r“1

βprqrα

¸

pe´ny ´ e´pn`1qyq

and since the first term vanishes

“ p1´ e´yq
NT
ÿ

n“1

˜

n
ÿ

r“1

βprqrα

¸

e´ny.

Now we have for n “ N`` q with 0 ď ` ď T ´ 1 and 1 ď q ď N

n
ÿ

r“0

βprqrα “
N``q
ÿ

r“N``1

βprqrα “
α
ÿ

u“0

ˆ

α

u

˙

pN`qα´uSβpu; qq.
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Hence

p1´ e´yq
NT
ÿ

n“1

˜

n
ÿ

r“1

βprqrα

¸

e´ny

“ p1´ e´yq
N
ÿ

q“1

α
ÿ

u“0

ˆ

α

u

˙

Nα´uSβpu; qqe´yq
T´1
ÿ

`“0

`α´ue´yN`

“ p1´ e´yq
α
ÿ

u“0

ˆ

α

u

˙

Nα´uWβpu; e´yq
pT´1pα ´ u; e´yNq

p1´ e´yNqα´u`1

“ p1´ e´yqd´α
α
ÿ

u“0

ˆ

α

u

˙

Nα´u
ĂWβpu; e´yqd

pT´1pα ´ u; e´yNq

p1` e´y ` e´2y ` ¨ ¨ ¨ ` e´ypN´1qqα´u`1
.

Let L be a positive integer. It follows

ˇ

ˇ

ˇ

ˇ

ˇ

L
ÿ

k“1

NT
ÿ

n“1

nαβpnqζkjM e
´kny

ˇ

ˇ

ˇ

ˇ

ˇ

“ p1´ e´yqd´α

ˇ

ˇ

ˇ

ˇ

ˇ

α
ÿ

u“0

ˆ

α

u

˙

Nα´u
L
ÿ

k“1

ĂWβpu; e´kyqd
pT´1pα ´ u; e´kNyqζkjM

p1` e´ky ` e´2ky ` ¨ ¨ ¨ ` e´kpN´1qyqα´u`1

ˇ

ˇ

ˇ

ˇ

ˇ

and when writing ĂWβpu; e´kyqd “
řbu
a“1 γupaqe

´aky (note that this polynomial vanishes at
zero and only depends on u):

ď 2|d´α|yd´α
α
ÿ

u“0

ˆ

α

u

˙

Nα´u

bα,u
ÿ

a“1

|γα,upaq|

ˇ

ˇ

ˇ

ˇ

ˇ

L
ÿ

k“1

pT´1pα ´ u; e´kNyqpζjMe
´ayqk

p1` e´ky ` e´2ky ` ¨ ¨ ¨ ` e´pN´1qkyqα´u`1

ˇ

ˇ

ˇ

ˇ

ˇ

since p1 ´ e´yqm ď 2|m|ym for all m P Z and y P r0, 1s. For each y the sequence ck “
1{p1 ` e´ky ` e´2ky ` ¨ ¨ ¨ ` e´pN´1qkyqα´u`1 satisfies 1 ě ck`1 ě ck ě 0 for all k ě 1 and
hence using 2.8 we find

ď 2|d´α|`1yd´α
α
ÿ

u“0

ˆ

α

u

˙

Nα´u

bα,u
ÿ

a“1

|γα,upaq| max
1ďIďL

ˇ

ˇ

ˇ

ˇ

ˇ

I
ÿ

k“1

pT´1pα ´ u; e´kNyqpζjMe
´ay
q
k

ˇ

ˇ

ˇ

ˇ

ˇ
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Now let T ą 1 and y ą 0 be arbitrary chosen. We can split the set t1, 2, ..., Iu in
elements 1 ď 2 ď ¨ ¨ ¨ ď IpT, yq such that e´Nky ě ξα´u,T´1 and IpT, yq ă k ď I with
e´Nky ă ξα´u,T´1. In this sections the function pT´1pα ´ u;xq is increasing and then
decreasing, respectively. Hence

ď 2|d´α|`1yd´α
α
ÿ

u“0

ˆ

α

u

˙

Nα´u

bα,u
ÿ

a“1

|γα,upaq|

¨

˚

˚

˝

max
1ďIďL

¨

˚

˚

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

1ďkďIpT,yq

e´Nkyěξα´u,T´1

pT´1pα ´ u; e´kNyq

ˆpζjMe
´ay
q
k
ˇ

ˇ`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

IpT,yqăkďI

e´Nkyăξα´u,T´1

pT´1pα ´ u; e´kNyqpζjMe
´ay
q
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˛

‹

‹

‚

˛

‹

‹

‚

and by applying 2.8 again using |pT´1pα ´ u;xq| ď mα´u

ď 2|d´α|`1yd´α
α
ÿ

u“0

ˆ

α

u

˙

Nα´u

bα,u
ÿ

a“1

|γα,upaq|

ˆ max
1ďIďL

¨

˝2mα´u max
1ďkďIpT,yq

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

h“1

pζjMe
´ay
q
h

ˇ

ˇ

ˇ

ˇ

ˇ

`mα´u max
IpT,yq`1ďkďI

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

h“IpT,yq`1

pζjMe
´ay
q
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˛

‚

Since ζjM “ 1 (this is because ω is removable in z “ 0) we obtain

ď 2|d´α|`1yd´α
α
ÿ

u“0

ˆ

α

u

˙

Nα´u

bα,u
ÿ

a“1

|γα,upaq| ˆ max
1ďIďL

p2mα´uM `mα´uMq

ď 2|d´α|`3Myd´α
α
ÿ

u“0

mα´u

ˆ

α

u

˙

Nα´u

bα,u
ÿ

a“1

|γα,upaq|.

This is independent of L and remains true when L Ñ 8. Since the constant in the last
expression besides yd´α does not depend on T and y the theorem is proved. �

3. Application to L-functions of modular forms

Let S “ tt1, t2, ...u be a countable, totally ordered set (the direction is simply given by
ti ď tj ðñ i ď j) equipped with an integer map | ¨ |S : S Ñ N such that for some
L ě 0:

#tt P S | |t|S “ nu “ OpnLq.(3.1)

In the case the set S is clear we simply write | ¨ |. For example, S could be the set of
integral ideals of a number field and | ¨ | their norm. Let aptmqmPN a sequence of complex
numbers. We define the corresponding formal Dirichlet series by

F psq :“
ÿ

tPS

aptq|t|´s :“
8
ÿ

m“1

aptmq|tm|
´s.
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In the case that the series
8
ÿ

n“1

ˇ

ˇ

ˇ

ˇ

1

|tn|s
´

1

|tn`1|s

ˇ

ˇ

ˇ

ˇ

converges for all s P C with Repsq ą 0 one can check using partial summation that such
Dirichlet series converge (if they do) on half planes and represent holomorphic functions
in these regions. This is for example the case, if the |tn| increase monotonously. Since
we have (3.1), one can show that F psq will converge in some point s0 if and only if
aptq “ Op|t|νq for some ν P R.

Definition 3.1. Let F psq “
ř

tPS aptq|t|
´s a Dirichlet series, Q a totally ordered countable

set together with a surjective map w : Q Ñ S with finite fibres. We also assume that F
converges to a holomorphic function on some half plane tRepsq ą σ0u. The order of Q
shall respect the order of S, this means u1 ď u2 ùñ wpu1q ď wpu2q for all u1, u2 P Q.
We define an integer map on Q via |u|Q :“ |wpuq|S. In other words, all elements in the
same fibre of a t P S are associated to the same integer. By a splitting of F we mean a
Dirichlet series rF psq “

ř

uPQ bpuq|u|
´s
Q that has the following properties:

(i) rF psq converges to a holomorphic function in some half plane tRepsq ą σ̃0u.

(ii) We have for all t P S the summation formula
ř

uPw´1ptq

bpuq “ aptq.

We may think of splittings in the following way: we have Q “
Ť

tPS σ
´1ptq and there-

fore
ÿ

tPS

aptq|t|´s “
ÿ

tPS

ÿ

uPw´1ptq

bpuq|u|´sQ .

The next definition provides kind of an inverse concept for splittings.

Definition 3.2. Let S “
Ť8

j“1 Sj be a disjoint covering with finite Sj. We say that a
Dirichlet series F psq “

ř

tPS aptq|t|
´s respects the rearrangement pSjqjPN, if the series is

given by the partial sums

Fnpsq “
n
ÿ

j“1

ÿ

tPSj

aptq|t|´s.

If there might be danger with confusion we simply write

pF, pSjqjPNqpsq “
8
ÿ

j“1

ÿ

tPSj

aptq|t|´s.

Obviously, F psq and pF, pSjqjPNqpsq coincide in all regions of absolute convergence. In the
case of Sj “ tt P S | |t| “ ju, pF, pSjqjPNqpsq is an ordinary Dirichlet series

ř

bpnqn´s – we
call this the standard rearrangement. The next proposition makes clear why rearrange-
ments makes splitting undone in some situations.

Proposition 3.3. Let rF be a splitting of F over Q. Define the disjoint union Qj :“

σ´1ptjq. If we now sum rF with respect to pQjqjPN we obtain F .
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Proof. This follows directly from the definitions. �

Definition 3.4. We call pTjqjPN a sub-rearrangement of pSjqjPN, if there is a sequence
0 ă k1 ă k2 ă k3 ă ¨ ¨ ¨ of integers such that T1 “ S1 Y ¨ ¨ ¨ Y Sk1, T2 “ Sk1`1 Y ¨ ¨ ¨ Y Sk2
and so on.

In the following we define for any rearrangement the abscissa of convergence σppF, pSjqjPNqq
to be the infimum real value σ0, such that for all complex values s P C with Repsq ą σ0
the series converges and represents a holomorphic function in this region.

Remark 3.5. One easily checks σppF, pTjqjPNqq ď σppF, pSjqjPNqq. Hence 3.3 shows that
splitting does not improve the area of convergence. However, when rearranging a split
series the situation might look different.

Let RpF q the set of all rearrangements of F . We define an equivalence relation on RpF q
by putting two coverings in the same class if the resultant series have the same abscissa
of convergence. We collect this data in RpF q{ „. We would like to study RpF q{ „, in
particular, we are interested in the following question:

Question 3.6. What is the value rσpF q :“ infGPRpF q{„ σpGq?

There is no simple answer to this question. It rather strongly depends on the Dirichlet
series itself, as the next examples demonstrate.

(i) If aptq ě 0 globally, the region of convergence can not be improved by rearranging
the Dirichlet series. Hence |RpF q{ „ | “ 1 and rσpF q “ σpF q.

(ii) Although the set G is large, ´rσpF q does not have to be unbounded even in the case
that F is entire. If χ is an even real non-principal character modulo M , one can
show that rσpLpχ, sqq “ ´1 if Lpχ,´1q R Z. In this case the "best" rearrangement
of Lpχ, sq is given by N “

Ť

jPNtMpj ´ 1q ` k | 1 ď k ďMu and we have

Lpχ, sq “
8
ÿ

j“1

˜

M
ÿ

m“1

χpmqpMpj ´ 1q `mq´s

¸

, Repsq ą ´1.

We conclude Lpχ, 0q “ 0. Since all inner summands in the rearrangements are
integers when s “ ´1, there is indeed no better choice if Lpχ,´1q R Z, as the reader
may easily check.
A similar argument shows rσpLpχ, sqq “ σ0 “ 0 if χ is real, odd and Lpχ, 0q R Z.

(iii) The identity 1
ζpsq

“
ř8

n“1
µpnq
ns

for Repsq ą 1 is well-known and elementary. Here
µpnq is the Möbius function. Since µpnq has sign changes, it makes sense to look at
possible rearrangements. However it seems extremely difficult to find improvements
of σ “ 1, since there is no progress in this area until today! We have 1

2
ď rσp1{ζq ď 1

and rσp1{ζq “ 1
2
implies the RH.

Remark 3.7. In the case of (ii), where the coefficients are well-studied, there are of
course even more powerful tools for analytic continuation using series transformations,
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that can be seen as generalized rearrangements in the sense that we allow the splitting sets
Sn to have infinite order. For example, when using Euler summation, we find the right
hand series

Lpχ, sq ”
8
ÿ

n“0

2´n´1
n
ÿ

ν“0

ˆ

n

ν

˙

χpν ` 1qpν ` 1q´s,

will converge globally for non-principal characters χ.

Let k “ pk1, ..., klq and f P UkpΓ1pM,Nqq be a weak modular form. In the following
we give a natural splitting for Lpf, sq in terms of the overset Q “ Nl ˆ Nl. After this,
when applying the dominated convergence theorem from the last section we can find good
rearrangements of these splittings to give estimates for the size defined in 3.6.

Let GplqN “ FˆN ˆ ¨ ¨ ¨ ˆ FˆN be the l-fold product of the residue class groups modulo N .
Then GplqN is a multiplicative group and there are ϕpNql characters ψ : G

plq
N Ñ Cˆ given

by ψpnq “
śl

j“1 ψjpnjq, where ψ1, ..., ψl are characters modulo N . We further call a
character ψ : G

plq
N Ñ Cˆ non-principal, if no component ψj with 1 ď j ď l is principal

and principal else. Analogously we say that ψ is primitive if and only if all components
are primitive.
Note that each ψ extends multiplicatively to a map ψ : Zl Ñ Cˆ. For k P Nl also define
the (multiplicative) map Πkpnq “ nk1´11 ¨ ¨ ¨nkl´1l .

Lemma 3.8. Let t1, ..., tl be functions in
ˆ

F 1
N

˙C0

0

such that the associated weak functions

ωtj are removable in z “ 0. Then we have for all vectors u P Nl and s with Repsq ą 0:
8
ż

0

ωt1pu1ix{Nq ¨ ¨ ¨ωtlpulix{Nqx
s´1dx “ Γpsq

ˆ

N

2π

˙s
ÿ

vPNl
F plq
N tpvq 〈u,v〉

´s ,

where F plq
N tpvq “ pFN t1qpv1q ¨ ¨ ¨ pFN tlqpvlq is the vector valued Fourier transform. Here,

the order of summation respects the maximum values of v.

Proof. We have

ωt1pu1ix{Nq ¨ ¨ ¨ωtlpulix{Nq “
ÿ

qPG
plq
N

t1pq1q ¨ ¨ ¨ tlpqlq
l

ź

j“1

epujix{Nq

epqj{Nq ´ epujix{Nq

“
ÿ

qPG
plq
N

t1pq1q ¨ ¨ ¨ tlpqlq
l

ź

j“1

8
ÿ

vj“1

e´2πujvjx{N´2πiqjvj{N

“ lim
TÑ8

ÿ

qPG
plq
N

t1pq1q ¨ ¨ ¨ tlpqlq
T
ÿ

v1“1

¨ ¨ ¨

T
ÿ

vl“1

e´2πpv1u1`¨¨¨`vlulqx{N´2πipv1q1`¨¨¨`vlqlq{N .
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The multisum is in the sense of a summation which respects the maximum of the vectors v.
Since for 0 ă θ ă 2π the geometric sums

řn
j“1pye

iθqj are bounded uniformly for 0 ď y ď 1
and n P N we may switch integration and summation and the claim follows. �

Proposition 3.9. Let f P UkpΓ1pM,Nqq be a modular form, such that

f “
R
ÿ

α“1

µαϑk1pωhα,1 b ωtα,1q ¨ ¨ ¨ϑklpωhα,l b ωtα,lq.

Here we assume that sgnphα,jtα,jq “ p´1qkj for all j “ 1, ..., l. Then, for all complex
numbers s with Repsq ą |k|, we have

Lpf, sq “
ÿ

pu,vqPNlˆNl
apu,vq 〈u,v〉´s ,(3.2)

where the coefficients apu,vq are given by

apu,vq “ N l´kΠkpuq
R
ÿ

α“1

µα

l
ź

j“1

tα,jpujqpFMhα,jqpvjq.

Proof. The series on the right of (3.2) clearly converges absolutely on the half plane
ts P C | σ ą |k|u. Since tjp0q “ hjp0q “ 0 for all 1 ď j ď l, all involved weak functions
are removable in z “ 0 and so is their product. We have for all s P C

Λpf, sq “

ˆ

2π

N

˙´s

ΓpsqLpf, sq “

8
ż

0

R
ÿ

α“1

µαbαpixqx
s´1dx.

Hence, due to absolute convergence, we obtain for all s with σ ą k

Lpf, sq “ lim
TÑ8

1

Γpsq

ˆ

2π

N

˙s

N l´k
T
ÿ

uj“1
1ďjďl

R
ÿ

α“1

µαu
kα,1´1
1 ¨ ¨ ¨u

kα,l´1

l tα,1pu1q ¨ ¨ ¨ tα,lpulq

ˆ

8
ż

0

ωh1pu1ix{Nq ¨ ¨ ¨ωhlpulix{Nqx
s´1dx.

Together with 3.8 we obtain

“ N l´k
8
ÿ

uj ,vj“1
1ďjďl

R
ÿ

α“1

µα

˜

l
ź

j“1

u
kj´1
j tα,jpujqpFMhα,jqpvjq

¸

pu1v1 ` ¨ ¨ ¨ ` ulvlq
´s

“ N l´k
8
ÿ

uj ,vj“1
1ďjďl

l
ź

j“1

u
kj´1
j

R
ÿ

α“1

µα

˜

l
ź

j“1

tα,jpujqpFMhα,jqpvjq

¸

pu1v1 ` ¨ ¨ ¨ ` ulvlq
´s.

�
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3.9 provides us coefficients apu,vq that belong to splittings of Lpf, sq over Q “ Nl ˆ Nl.
However, as we have already pointed out, this is not a well-defined linear map in general,
since the coefficients are not uniquely determined. We are especially interested in a
reasonable subset of the large set of all possible splittings of Lpf, sq, this becomes clear
in the following discussion.
Put

Ubk pΓ1pM,Nqq :“
l

â

j“1

UkjpΓ1pM,Nqq

and
AlM,N :“ tg : FlM ˆ FlN Ñ C | p˚qu.

Here the condition p˚q means that g is zero whenever a component of the argument is
zero. Note that AlM,N is clearly isomorphic to the corresponding space rAlM,N of periodic
maps g : Zl ˆ Zl Ñ C. Consider the commutative diagram

Ubk pΓ1pM,Nqq rAlM,N

UkpΓ1pM,Nqq

„

ι

ϕk ϕk ˝ ι
´1 “: ψk

where ι and ϕk are determined by

ϑk1pωh1 b ωt1q b ¨ ¨ ¨ b ϑklpωhl b ωtlq ÞÝÑ
l

ź

j“1

tjpFMhjq

and

ϑk1pωh1 b ωt1q b ¨ ¨ ¨ b ϑklpωhl b ωtlq ÞÝÑ
l

ź

j“1

ϑkjpωhj b ωtjq,

respectively. The linear map ϕk : Ubk pΓ1pM,Nqq Ñ UkpΓ1pM,Nqq is surjective by con-
struction, however, no isomorphism in general (indeed, this is the case if and only if l “ 1).
We shall write Λk for the kernel of ϕk. 3.9 now gives us a map that equips a modular
form f P UkpΓ1pM,Nqq with a pre-image of ψk, but of course, this pre-image is in general
not uniquely determined. Therefore it is more reasonable to consider a map

f ÞÝÑ v0pfq ` ιpΛkq

that sends f to a complete family of coefficients apu,vq in the sense of 3.9. Here, v0pfq
is any fixed pre-image of f under ψk.

Proposition 3.10. For every f P UkpΓ1pM,Nqq consider the family apfq “ Πkpuqpv0pfq`
ιpΛkqqpu,vq of coefficients with arguments pu,vq P Nl ˆ Nl. All of them define splittings
of Lpf, sq (S “ N) over Q “ Nl ˆ Nl equipped with the integer map |pu,vq| :“ 〈u,v〉.

Of course, when using 3.3 one could reconstruct the original ordinary Dirichlet series with
a standard rearrangement. However, in the following we study a completely different
rearrangement pUN,mqmPN that arises from the results in the previous section. With this
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we want to extend the region of convergence of the series Lpf, sq “
ř

apu,vq 〈u,v〉´s
naturally. Fix an integer N . We define for p, q P N

TN,p,q “ tt “ pu,vq P Nl
ˆ Nl

| Npp´ 1q ă maxpuq ď Np,maxpvq “ qu.

Note that the TN,p,q define a disjoint covering of Nl ˆ Nl. We then define

UN,1 :“ TN,1,1

UN,2 :“ TN,1,2 Y TN,2,1 Y TN,2,2

UN,3 :“ TN,1,3 Y TN,2,3 Y TN,3,1 Y TN,3,2 Y TN,3,3

and so on. After 3.10 provided us some natural splittings (in fact, all Dirichlet series of
Lpf, sq arising from products of weak functions for k and not from the usual Fourier series)
we show that we can improve the region of convergence by rearranging the splittings by
UN.m.

Theorem 3.11. Let N ą 1 and l ě 1 be integers and hj P rM, 0s, tj P rN, djs be even or
odd functions for 1 ď j ď l and some non-negative integers dj. We further assume that
we have sgnphjtjq “ p´1qkj for every 1 ď j ď l. Consider the modular form

fpτq “
l

ź

j“1

ϑkjpωhj b ωtj ; τq P UkpΓ1pM,Nqq.

For all values s P C with Repsq ą |k| ´ l ´ d, where d “
řl
j“1 dj, we have the series

representation

Lpf, sq “ N l´|k|
ÿ

pu,vqPNlˆNl
ΠkpuqtpuqpF plq

N hqpvq 〈u,v〉
´s ,

where tpuq :“ t1pu1q ¨ ¨ ¨ tlpulq and pF plq
N hqpvq :“ pFNh1qpv1q ¨ ¨ ¨ pFNhqpvlq is the multidi-

mensional Fourier transform. The summation respects the rearrangement pUN,mqmPN. In
particular, we have

inf
bPapfq

rσ

¨

˝

ÿ

pu,vqPNlˆNl
bpu,vq 〈u,v〉´s

˛

‚ď |k| ´ l ´ d.

The short notation apfq was introduced in 3.10.

Proof. The series on the right of (3.2) converges absolutely for all s with Repsq ą |k|.
Since tjp0q “ hjp0q “ 0 for all 1 ď j ď l, all involved weak functions are removable in
z “ 0 and so is their product. We have for all s P C

Λpf, sq “

ˆ

2π

N

˙´s

ΓpsqLpf, sq “

8
ż

0

fpixqxs´1dx “

8
ż

0

l
ź

j“1

ϑkjpωhj b ωtj ;xiqx
s´1dx.
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The functions t1, ..., tl have degrees d1, ..., dl which means by 2.9 that there is a constant
C ą 0 such that for all T P N and 0 ď x ď 1:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

NT
ÿ

uj“1
1ďjďl

uk1´11 ¨ ¨ ¨ukl´1l t1pu1q ¨ ¨ ¨ tlpulqωh1pu1ix{Nq ¨ ¨ ¨ωhlpulix{Nqx
s´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“xσ´1
l

ź

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

NT
ÿ

uj“1

u
kj´1
j tjpujqωhjpujix{Nq

ˇ

ˇ

ˇ

ˇ

ˇ

ďCxσ`d´1´p|k|´lq

and the right hand side is an integrable majorant for σ ą |k| ´ l´ d. For these values we
therefore have dominated convergence on the interval r0, 1s and uniform convergence on
the interval r1,8q, hence we obtain for Repsq ą |k| ´ l ´ d

Lpf, sq “
1

Γpsq

ˆ

2π

N

˙s
8
ż

0

lim
TÑ8

N l´|k|
NT
ÿ

uj“1
1ďjďl

uk1´11 ¨ ¨ ¨ukl´1l t1pu1q ¨ ¨ ¨ tlpulq

ˆ ωh1pu1ix{Nq ¨ ¨ ¨ωhlpulix{Nqx
s´1dx

“ lim
TÑ8

1

Γpsq

ˆ

2π

N

˙s

N l´|k|
NT
ÿ

uj“1
1ďjďl

uk1´11 ¨ ¨ ¨ukl´1l t1pu1q ¨ ¨ ¨ tlpulq

ˆ

8
ż

0

ωh1pu1ix{Nq ¨ ¨ ¨ωhlpulix{Nqx
s´1dx.

In the proof of the dominated convergence theorem the upper bound was independent of
the choice of the partial sums for the series of ω. Hence, together with 3.8 we obtain

“ lim
TÑ8

N l´|k|
NT
ÿ

uj“1
1ďjďl

uk1´11 ¨ ¨ ¨ukl´1l t1pu1q ¨ ¨ ¨ tlpulq
T
ÿ

vj“1
1ďjďl

F plq
N hpvq

pu1v1 ` ¨ ¨ ¨ ` ulvlqs
.

Since the order of summation in the partial sums respects the rearrangement pUN,mqmPN
the theorem is proved. �

From this we obtain a much more general result as (ii) presented in the above exam-
ples.

Corollary 3.12. Let t “ 0 be in rN, ds. Then the series
8
ÿ

r“0

N
ÿ

`“1

tp`qpNr ` `q´s

converges for all s P C with Repsq ą ´d to a holomorphic function Lpt, sq. In particular,
Lpt,´αq “ 0 for all 0 ď α ă d.
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Proof. Put k “ d ` 1. Choose h “ 0 such that sgnpt ¨ hq “ p´1qk. Then we obtain with
3.11 that the series

lim
TÑ8

N1´k
NT
ÿ

u“1

8
ÿ

ν“1

uk´1tpuqpFNhqpνq

puνqs
“ lim

TÑ8
N1´k

˜

NT
ÿ

u“1

ud´stpuq

¸˜

8
ÿ

ν“1

pFNhqpνq

νs

¸

converges for all s P C with Repsq ą 0 to a holomorphic function. Since

lim
TÑ8

NT
ÿ

u“1

ud´stpuq “
8
ÿ

r“0

N
ÿ

`“1

tp`qpNr ` `q´s`d

the claim follows. �

One consequence of this observation is an application to infinite products.

Example 3.13. Consider the function

a4pnq “

$

’

&

’

%

´1, n ” ˘1 pmod 4q,

2, n ” 2 pmod 4q,

0, n ” 0 pmod 4q.

Then a4 has degree 1, since obviously
ř4
j“1 a4pjq “

ř4
j“1 a4pjqj “ ´1 ` 4 ´ 3 “ 0. One

sees quickly that

fpsq “
8
ÿ

n“1

a4pnqn
´s
“
`

3 ¨ 2´s ´ 2 ¨ 4´s ´ 1
˘

ζpsq,

where ζpsq denotes the Riemann zeta function. Together with 3.12 we conclude that
8
ÿ

n“0

4
ÿ

j“1

a4p4n` jqp4n` jq
´s

converges to a holomorphic function for all s P C with Repsq ą ´1 and we find
8
ÿ

n“0

plogp4n` 1q ´ 2 logp4n` 2q ` logp4n` 3qq “ f 1p0q.

Since ζp0q “ ´1
2
we obtain

8
ź

n“0

p4n` 1qp4n` 3q

p4n` 2q2
“

1
?

2
.

Remark 3.14. With a rearranged splitting
8
ÿ

n“1

pp2n´ 1q´s ´ 2p2nq´s ` p2n` 1q´sq “ 2p1´ 21´s
qζpsq ´ 1,

that converges for Repsq ą ´1, we similarly conclude (when using ζ 1p0q “ ´1
2

logp2πq) the
Wallis product

8
ź

n“1

p2n´ 1qp2n` 1q

p2nq2
“

2

π
.
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Example 3.15. Let χ be a non-principal even character modulo N . Then, using the
well-known Weierstraßproduct expansion

1

Γpsq
“ seγs

8
ź

n“1

´

1`
s

n

¯

e´s{n,

we find
8
ź

n“0

pNn` 1qpNn` 2qχp2qpNn` 3qχp3q ¨ ¨ ¨ pNn`N ´ 1qχpN´1q “
N
ź

m“1

Γ
´m

N

¯χpmq

.

As a consequence, we obtain the following well-known identity

eL
1pχ,0q

“

N
ź

m“1

Γ
´m

N

¯χpmq

.

The next final corollary provides natural generalized Dirichlet series representations for L-
functions associated to products of Eisenstein series for non-principal primitive Dirichlet
characters.

Corollary 3.16. Let χ, ψ : Zl Ñ Cˆ be non-principal, primitive characters modulo M
and N , respectively, such that χjp´1qψjp´1q “ p´1qkj for all j “ 1, ..., l. For all s P C
with Repsq ą |k| ´ l ´ 1

2

řl
j“1pψjp´1q ` 1q we have

L

˜

l
ź

j“1

Ekjpχj, ψj; τq, s

¸

“

ˆ

´
2πi

N

˙|k| l
ź

j“1

Gpψjq
pkj ´ 1q!

ÿ

pu,vqPNlˆNl
Πkpuqψpuqχpvq 〈u,v〉´s ,

where the summation respects the rearrangement pUN,mqmPN.

Proof. Since all characters are primitive we have

Ekjpχj, ψj; τq “
χjp´1qp´2πiqkjGpψjq
Npkj ´ 1q!Gpχjq

ϑkjpωχj b ωψj ; τq.

Hence we obtain with 3.11

L

˜

l
ź

j“1

Ekjpχj, ψj; τq, s

¸

“ λ1 ¨ ¨ ¨λlN
l´|k|

ÿ

pu,vqPNlˆNl
ΠkpuqψpuqpF plq

N χqpvq 〈u,v〉
´s ,

where

λj “
χjp´1qp´2πiqkjGpψjq
Npkj ´ 1q!Gpχjq

.

We can simplify the expression pF plq
N qpχq by

pF plq
N qpχqpvq “ χpvqpF plq

N χqp1q “ χpvq
l

ź

j“1

χjp´1qGpχjq,

so we obtain

λ1 ¨ ¨ ¨λlN
l´|k|

pF plq
N qpχqpvq “

ˆ

´
2πi

N

˙|k| l
ź

j“1

Gpψjq
pkj ´ 1q!

χpvq.
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The extended domain of convergence follows, because of the rearrangement, with 3.11
and the fact that the degree of ψj is given by 1

2
pψjp´1q ` 1q. �

Finally, we give an example.

Example 3.17. Let χ be a primitive even Dirichlet character modulo N ą 1. We then
look on the Eisenstein series E2pχ, χ; τq of weight k “ 2 and define

fpτq “ E2pχ, χ; τq2.

Then f is a modular form of weight 4 for the group ΓpN2q and vanishes in the cusps z “ 0
and z “ i8, hence its L-function Lpf, sq is entire. We are especially interested in the
critical value Lpf, 1q. With 3.16 we obtain

Lpf, 1q “ C1

8
ÿ

r1,r2,ν1,ν2“1

˜

N´1
ÿ

q1,q2“0

χpq1qχpq2qχpν1qχpν2q
pNr1 ´ q1qpNr2 ´ q2q

pNr1 ´ q1qν1 ` pNr2 ´ q2qν2

¸

,

where the constant C1 is given by

C1 “
χp´1qp2πiq4

N3
.
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