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SERIES

J. FRANKE

ABSTRACT. Basing on the new approach to modular forms presented in [6] that uses
rational functions we prove a dominated convergence theorem for certain modular forms
in the Fisenstein space. It states that certain rearrangements of the Fourier series will
converge very fast near the cusp 7 = 0. As an application, we consider L-functions
associated to products of Eisenstein series and present natural generalized Dirichlet series
representations, that converge in an expanded half plane.

INTRODUCTION

We recall that an elliptic modular form f of weight k € Z for a congruence subgroup
I' © SLy(Z) with multiplier system v : I' — C* is a holomorphic function on the extended
upper half plane {r € C | Im(7) > 0} U Q u {00}, which satisfies the transformation
law

FIeM(7) = v(M) (7).
Here f|;M denotes the usual Petersson slash operator

Il (i Z) (7) = (ad = be)? (er + d) " f (“T - b) |

ct +d

One can show that there are no non-constant modular forms for £ < 0 and that the
spaces M (T",v) are finite-dimensional. A useful tool for computing the exact value of the
dimensions is the Riemann-Roch formula, for more explicit details see for example [4].
Modular forms play an extraordinary important role in many fields of mathematics and
physics such as number theory, geometry and string theory. Also many generalizations of
the classical modular forms have been found, such as Siegel modular forms (see also [I]
and [§]) for matrix valued arguments that transform under congruence subgroups of the
symplectic group Sp,; and Hilbert modular forms (for a great introduction, the reader
may wish to consult [7]) that transform under congruence subgroups of SLy(O), where O
is the ring of integers of a number field K.

Basically, two elementary ideas for constructing modular forms dominate in literature.
One of them uses the so called Poincare series, which give in the simplest case Eisenstein
series. The other one goes via Fourier analysis and quadratic forms. This leads to theta
functions. In [6] a third elementary approach to modular forms was presented. It grounds
on a class of very simple functions which we will call weak functions. A weak function w
is a 1-periodic meromorphic function in the entire plane, which has the following proper-
ties:
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(i) All poles of w are simple and lie in Q.

(ii) The function w tends to 0 rapidly as the absolute value of the imaginary part in-
creases, SO

w(z +iy) = O(ly|™")
for all M > 0 as |y| — .

By Liouville’s theorem one quickly sees that each weak w is essentially just a rational
function R € C(X) with (only simple) poles only in roots of unity, such that R(0) =
R(0) = 0. Here we put w(z) := R(e(z)), where e(z) := €*™*. One defines Wy to be
the space of weak functions with the property, that w(z/N) only has poles in Z. We
associate to w a periodic divisor function S, (z) := —2mires,_,w(z). Now one can show
the following construction theorem for modular forms for the congruence subgroup

D(NyNy) < Ty (N1, Ny) = {(Z Z) e FO(Nl,NQ)’a —d=1 (mod NlNQ)} .

Theorem 0.1. Let k = 3 and N1, Ny > 1 be integers. There is a homomorphism
Wy, ® Wx, — My(I'1(N1, N2))

wnr— I(w®n;7) := Z "1, (z)w(2T).
eQX*
In the case that k =1 and k = 2 the map stays well-defined under the restriction that the
function z — 2*7In(2)w(27) is removable in z = 0.

The main tools for the proof are Weil’'s converse theorem and the following observa-
tion.

Theorem 0.2. We define the involution w — @ by &(z) 1= w(—=2). Let k € Z be an
integer. For all weak w and n we have the following transformation property.
De(w@n;7) 1S = V(N @ =05 7) + ooy (7)[5,

where S := (') and g, is a rational function which can be evaluated explicitly by

gw,n(T) = 2mires —g (ZkilTI(Z)w(ZT)) .

In this paper, we continue the study of this new perspective to modular forms and apply
it to Dirichlet series. We first want to investigate the space ¥, (Wx, ® Wy, ) and it will
turn out, that it is generated by Eisenstein series.

Theorem 0.3 (cf. [1.1)). Let k = 3. The image space Ox(Wn, ® Wh,) is generated by the

elements Ey(x,v; ]N\éf T) where x and 1 run over all non-trivial characters modulo di| Ny

and dy| Ny, respectively, such that x(—1)y(=1) = (—1)*.

The cases k = 1 and &k = 2 can be treated similarly. We want to apply the series
representations of ¥y in terms of rational functions to Dirichlet series. To every modular
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form f(7) = Y,,-p a(n)g"™ of weight k for some congruence subgroup I' = SLy(Z) we can
associate an L-function L(f,s) given by

L(f,s) = Z a(n)n™°.

One can show that this function converges absolutely on the half plane Re(s) > k, has
meromorphic continuation to the entire plane and satisfies a certain functional equa-
tion. The complete L-function A(f,s) = (2n/N)~*I'(s)L(f,s) can be written as an inte-
gral

0

A(f,s) = J(f(zx) —a(0))x* 'dz.

In the case that f is a cuspidal Hecke eigenform its L-function is entire, has an Euler
product expansion and encodes deep arithmetic information.

We give a proof for a dominated convergence theorem for Eisenstein series arising from
rational functions. In order to formulate it, we need the concept of the degree of a -
periodic function #. The degree of such a [ is defined as the largest integer 0 < d such
that

N
N By =0,  forall0<r<d.
n=1

Theorem 0.4 (cf. 2.9). Let w®n e Wy, @ W, be a pair of weak functions such that w
is removable in z = 0 and kn,B3, has degree d. Then for all o € Ny there is a constant
Chuwa > 0 such that uniformly for all T € N and y € [0, 1]

NoT

Z n® B, (n/Na)w(niy)| < Cp ooy
n=1

An application of this theorem is a new, in some sense more natural, representation of
L-functions associated to products of Eisenstein series in terms of a generalized Dirichlet
series. Modifying the sum a bit leads to convergence in a much wider region. In particular,
we have the following theorem.

Theorem 0.5 (cf. [3.16). Let [ e N, k = (ki,..., k) € N' a vector of positive integers and
X5, ¥, J = 1,...,1, be non-principal, primitive characters modulo M and N, respectively,
such that x;(—=1)y;(=1) = (=1)%. Then, if we put |k| = ki + - + k;, we have for all
s € C with Re(s) > [k| — 1 — 237, (¢;(—1) + 1)

2

Jj=1 Jj=

Y MwTwa(e) (o),
1\ " (u,v)eN! x N

where The(w) = uf' -, P(u) = () Pi(w) and x(v) = xa(v1) -+ xa(vr). For

convergence in the extended half plane the sum has to be modified slightly, this is explained
below.
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Note that this representation of the L-function of the considered product is more natural
since it is a direct generalization of the formula in the case [ = 1, where the series directly
splits into a product of two Dirichlet L-functions. An important question, which is still
unsolved in the very general case, is that which modular forms can be written as sums of
products of Eisenstein series. But there is a lot of progress in this field. Dickson and Neu-
rurer have shown in [5], that, if £ > 4, N = p®¢® N’ where p?, ¢® are powers of primes and
N’ is square free, the space My (I'o(V)) is generated by Ex(T'o(N), xon) and a subspace
containing products of two Eisenstein series. A similar result for My (p) and k > 4, where
p is prime, is due to Imamoglu and Kohnen [9]. For a correspondence between values of
L-functions for products of pairs of different Eisenstein series see [3].

The paper is organized as follows. In the first section we identify generators for the
space of modular forms that arise from rational functions. In the second section we prove
a Dominated convergence theorem for Eisenstein series, which provides an upper bound
for several partial sums of the series involving weak functions for modular forms near
the cusp 7 = 0. In the last section we apply this theorem to L-functions associated to
products of Eisenstein series.

Notation. We use the introduced notations Wy for the vector space of weak func-
tions of level d|N, and Wi for the odd and even function part.

Throughout [ is a positive integer. We briefly define k = (ky,...,k;) € N to be a vec-
tor of positive integers. We write |k| = ky + - -+ + k.

For real valued vectors w = (u1, ..., u;) € R! we briefly write max(u) := max{u, ..., u;}.

We sometimes use the notation sgn(f) = £1 to indicate that f is an even or odd function,
respectively.

We define for any set L to be L the space of all functions f : L — C, that are zero ev-

erywhere except finitely many x € L. The subspace Lgo c L% is given by all f satisfying

> wer f(x) = 0. For positive integers N we abbreviate Fy := Z/NZ and F 1 := Z[+]/Z.
N

Especially when going over to Fourier series it will be useful to identify functions in IE'CIO

N
with those in F$? via the obvious map

Ky i F 5 FY
N

(kxf)@) = f ()

We will identify functions f € IF%O with N-periodic functions f : Z — C. For integers M
we will set f[M](z) := f(Mz) when f:7Z — C.

For any Dirichlet character ¢ modulo N we define the Gauss sum G(¢)) := 3" p(n)e2m/N.
For the generalized Gauss sum it will be more convenient to use the more general notion
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of a discrete Fourier transform
Fy FY = FY.

fo Z f 727Tijn/N'
Note that we have an inverse transformatlon
N—
(.F g Z 27rijn/N.
We use the same notation for functions f € F 10 and have kyFn f = Fyrnf. For d|N we
N

Wy (Fg)® — (Fy)®

also use the trivial injection

f(3), =0 mod T

0, else

() == {

for purposes of notation. Note that if f € ]FSO and d|N we have Fyid f = Fuf.

2miz

For the complex variable z = z + iy we write e(z) = e and for the complex vari-

able 7 we define ¢ := ™7,

We denote €y as the group of all characters modulo N. Also we write €y for the set
of all characters modulo d, where d divides N. We write x4 for the principal character
modulo d. In particular, xo,1 denotes the trivial character.
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1. THE SPACE OF WEAK MODULAR FORMS

For Dirichlet characters x and v modulo positive integers M and N, respectively, and some
integer k > 3 one defines the corresponding Eisenstein series for 7 € H (= upper half plane)
via

(1.1) EL(x, ;) = > x(m)ypn)(mr +n)".

(m,n)eZ2\{(0,0)}

This series converges absolutely and uniformly on compact subsets of the upper half plane
and defines a holomorphic function in that region. One can show that leads to a
non-zero function if and only if x(—1)1(—1) = (—=1)* and that the Ej, are modular forms
of weight k for the congruence subgroups

To(M, N) := {(‘c‘ Z) e SLQ(Z)Ib —0 (mod M),c=0 (mod N)}

with Nebentypus character xt of I'o(M, N). The cases k = 1,2 are treated differently,
see also [10] on p. 274 ff. or [].
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Every Eisenstein series admits a Fourier series. The coefficients are well-known and given
by

(1.2) 2L(w,k)x(0)+% D DT (Fave)(—d)x (%) g,

"m=1 \dm

where as usual ¢ := ¢*™" and L(1, s) is the Dirichlet L-function. Note that in the case that
1 is primitive one has (Fn)(a) = ¥ (a)(Fy1)(1) and one obtains the simpler expression
Ddin d*14(d)x (n/d) for the coefficients up to a constant.

It is clear that every ¥y (w ®n; 7) admits a Fourier expansion. Since we only focus on the
non-trivial cases we assume w ® n € (W ® Wy)* if (=1)% = £1. It is given by

(1.3)  Ip(w®n;7) =2N"* i D (d’“*l(/fNﬁn)(d) (FarkiarBo) (E)) g™,

m=1d|m d
According to (|1.2]) we conclude for non-principal characters

P(=1)(=2mi)"
Nk — 1)

(1.4) Ey(x, ;1) = ﬁk(wf&l(x) @ WEN ()3 7).

In particular, if x and v are primitive and hence conjugate up to a constant under the
Fourier transform, this simplifies to

x(=1)(=2m)*G ()
N(k—-1)G(x)

Already here the connection between Eisenstein series and weak functions is intuitively
clear.

(1.5) Ee(x. ¢ 7) =

Ui (wy @ wg; 7).

In this section we want to find generators for the space ¥ (Wy, ® Wy,). We call their
elements weak modular forms. In other words, the vector space Vi (I'y (N1, Ny)) of all weak
modular forms is the image of the linear map

Wi, @ Wi, — M(I'1 (N1, V).

Let (IFN)EE’(}J c FY be the subspace of all functions with f(0) = 0. It is an easy exercise
to verify that the discrete Fourier transform defines an isomorphism

Fu (Bl — ([Fx)p".

With this we conclude that (wfﬁllx@)wﬁvw)(x,w)eﬁ\{xw}XQ\{XOJ} is a basis for Wy, @Wh,.
The next theorem provides generators for the space Vi (I'y (N1, Na)).

Theorem 1.1. Let k > 3. The space Vi(I'y(Ny, Ny)) is generated by the elements

Ex(x, ¢; %;337') where x and ¥ run over all non-trivial characters modulo di| Ny and da| N3,

respectively, such that x(—1)y(—1) = (=1)*.
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Proof. 1t is clear that the Fourier transform preserves the subspaces of odd and even
functions. Hence, for characters x(—1)1(—1) = (—=1)*, we have the Fourier expansion

D(wrty ®WryuiT) = 2N, ) ) (d’f*l(sz,L?@ )(d) (Fa, Fuledt x) (%)) g/

m=1d|m

SN (7 Bt [ @t ()

m=1d|m

- < - 1 mN MmNy 201
= 2N, K Z Z (dk 1(]:d2¢)(d)0§lv1X (W;)) g

m=1d|m

o Y3 Fa ) (1)) g,

m=1d|m

This proves the theorem. O

For our investigations we are especially interested in a subspace of V;, which we will denote
by Ui and which contains all weak modular forms which arise from weak functions that
are removable in z = 0. In the following we shall give generators for Uy. Let Hy, € Wiy,
be the subspace of weak functions that are removable in z = 0. Then we have

Wy, = Cw}-;,r]l @ Hy;,.

s XO,N;

In other words, the space Hy is given by weak elements w(z) such that §,(0) = 0. On the
periodic function side, we define the subspace of these coefficients by (F 1 )g%. Note the

N;

the Fourier transform Fy, defines an automorphism on the subspace (IFNi)g%. So firstly,
consider the basis (w il (OWry, )y of Hyy®@Hy,, where x and 1 are either non-principal

characters modulo d;|N; and dy| N, or functions “;((Jdvz)) L%Z_ Xo.d; — Xo,n; for i =1,2.

Theorem 1.2. Let k > 1. The space Uy = 9x(Hn, ® Hy,) is generated by the elements

Ex(x, ¢; %337’) and the linear combinations

©(N1)
w(dy)

k
P (N2) . Nidy Ny .V
s0<d2) Ek(X)XO,dg) Nody T) - d_g Ek:(Xa X0,Na; d_lT)’

Ex(Xo.ar> V5 NET) = Ex(Xo.n, 03 $27),

and

Ni) (N
Er(Xo.dy s X0,ds JNV;ZfT) (M) ( ,

¢(dy) d_2

AN
Ex(Xo.vis Xoda; $27) + (—2> Er(Xo.n Xo,n23 T),

k
> Ex(Xody» Xo.No; 54T)

da

where 1 < d; < N; and x, v are non-principal characters modulo dy and dy, respectively,
such that sgn(xy) = (—1).
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Proof. Since all considered weak functions are removable in z = 0, we can apply the
theorem to all positive weights k = 1,2, .... The proof works similar as the one of and
we omit it. 0]

Theorem 1.3. We have the following.

(i) The space of weak modular forms of weight k = 1 is given by Vi(I'1(N1, N3)) =
V1(Hy, ® Hy,). In particular, it is generated by the elements given in[1.9 for k = 1.

(i1) The space of weak modular forms of weight k = 2 is given by Va(I'y(Ny, Na)) =
Vo(Hy, ® Hy, @(wailx(wl ® Hy, ® Hy, @ Cwry, xo x, ). In particular, it is generated

by the elements in for k = 2 and Es(xo,n,, ¥; %T),EQ(X,XOVNQ; ]C\l[—llT), where x
and 1) are non-principal characters modulo di|Ny and da|Na, respectively.

In the last section we would like to investigate L-functions of products of weak functions.
To formalize this, we give the following final definition.

Definition 1.4. Let k = (ki,...,k;) a vector of weights. We then define Vi(I'1(Ny, N3))
as the vector space of all modular forms that can be written as a sum Zj cifij- - fuj

where each f,; is an element of Vi, (I'1(N1, N2)). Analogously, we define the subspace
Uk(Fl(Nl,NQ)) C Vk(Nla NQ) by demandmg f”‘J € Uk,.(rl(Nla Ng))

2. A DOMINATED CONVERGENCE THEOREM

Definition 2.1. Let N be a positive integer and g : Z. — C an N -periodic function. We
define the degree of g to be the largest positive integer d such that for all 0 < a < d:

2,90)5" =0.

The degree of the zero function is defined to be co. In the case Zjvzl g(7) + 0 we say that g
has degree —c0. We denote [N, d] as the vector space of N -periodic functions with degree

at least d.
We have [N, N — 1] = 0 (Vandermonde-Matrix).

Proposition 2.2. Let § : Z — C have period N and degree d. Then we have for all
TeNand0<a<d:

Proof. 1t is sufficient to prove
N(T+1)

j=NT+1
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for arbitrary 7' e N and 0 < a < d. This follows from

N(T+1) N a N
DB = D BINT + j)(NT + 5)° =Z<) 7)™ > B(5);
j=NT+1 j=1 u=0 j=1

In the following we will abbreviate
q
= >80
j=1

Example 2.3. Fach non-principal Dirichlet character mod N has degree 0 and each
(non-principal) even character has degree 1.

Proposition 2.4. Let §:7Z — C be in [N,d]. Then the polynomial

N
Wa(u;z) = Z Sg(u;p)a?
p=1

has a zero of degree at least d —u in X = 1.

Proof. Let 0 < ¢ < d—u—1 be an integer. Then we obtain

Z(Zﬁ r)rp(p—1) - <p—€+1)>
:Z Zp+be T+ b
:Z (N) = Qu(r — 1))

for some polynomial ), of degree / + 1 < d —u
= 0.

We will write N
Wa(uyx) = (1 — ) " We(w; x)q
in further applications when 0 < u < a < d.

Our investigations foot on the properties of some explicit polynomials. For a fixed non-
negative integer o we define a sequence by

T
pr(a;r) = (1 —2)**! Zfo‘xé, T=123,..

For example we have pp(0;z) = 2 — 27+ for T = 1,2, ...
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Lemma 2.5. The sequence (pr(a;x))ren converges to some polynomial function on the
interval [0,1) from below for all o = 0. In particular the terms pr are uniformly bounded
i the sense

sup sup |pr(o;x)| < C,
TeN z€[0,1]
for some constant C,, > 0.

This uniform boundedness is a very important property as we will see later.

Proof. Tt is clear that pr(a;x) is increasing for fixed x. The power series

e}
> mat
/=1

converges for z € [0,1) to a rational function (1?Z§§)+1 where @, (x) is some polynomial
which is non-negative in [0,1]. This follows inductively by >~ a* = = and the fact
that
Qa1(r)) _  Qalz
e ((1 - x)o‘) (1 —z)ott
with polynomials Q,-1 and Qn. Put Cy = sup,cpg 1) Qa (). O

Remark 2.6. In fact, one can give an explicit formula for the QQ, in terms of Eulerian
numbers, but we will not need such a precise description for our applications.

Lemma 2.7. For each T > 1 there is some number 0 < {, 7 < 1 such that pr(a;x) is
increasing in the interval [0, &, 1] and decreasing in the interval [&ar, 1].

Proof. Since we have pr(a;z) = 0 for 0 < < 1 (with equality if x = 0 or z = 1) it is
sufficient to show that p/.(a;z) = 0 has exactly one solution 0 < &,r < 1. For values
0 <z <1 we obtain

T T

pr(a;x) =— (a+1)(1 - g;)aZgaxa +(1—z)ot! Zgaﬂxg,l _0

(=1 (=1

Mﬂ

—(a+ 1)z’ + T — ety = 0
¢

1 S (H ard
— - Z <Z ( ; >£a+1 J) T = (o + )T + T
/=1

j=2

1

Since the right hand side is greater than the left hand side for x = 1 and the left hand
side is unbounded and monotonically decreasing in the interval (0, 1], there is exactly one
solution for the above equation in this area and the claim follows. 0]

Before we can go on to the main theorem of this section we recall
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Lemma 2.8. Let a; be a sequence of complex numbers and by and c;, sequences of positive
real numbers such that 0 < b1 < by and ¢y = ¢, = 0 for all k. Then we have for all
n=1:

Z

: max

n
2, aibi <
k=1

and

< (2¢, — . max

R

S

Theorem 2.9. Let 8 be a function in [N,d] and w € Wy be a weak function which is
holomorphic around z = 0. Then for all o € Ny there is a constant C o > 0 such that
uniformly for all T € N and y € [0, 1]

my) < Oﬁ,w,aydia

Remark 2.10. Note that in the case o < d the left hand side is bounded uniformly for
values T and y € [0,1]. Since the series converges absolutely and uniformly on compact
subsets K < [e, ] for all ¢ > 0 dominant convergence is clear for these areas of y (of
course the number € = 1 was arbitrary chosen in the theorem,).

Proof. For y = 0 the inequality holds since in the case o < d the left hand side is always
zero and otherwise the right hand side is +oo from the right. Let y > 0. We then have

NT L NT
k _ .
Z naﬁ( my Z ﬂw glm Z Z n® ] 27rkny’ CM — 627”/M.
—00
n—1 jeF k=1n—1

In the first step we will only deal with the inner sums. For reasons of simplicity we ignore
the scalars 2mk. We obtain with partial summation

S B(m)e™ = NS oG 1 Y (Z @(rw) (e — e~(nt1y)

n=1 n=1 n=1

and since the first term vanishes

Now we have for n = N{ + ¢ with 0

N

(<T—-1land1<qg< N

Nil+q

M= % s = 3 (&) oo situ)

r=0 r=N{+1 u=0
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Hence

_ p—yN)a—u+1
u=0 \U (1 — e~yN)a—ut
oy (@ —uly7 - pro1(a —u;e )
=(1—¢Y d—a Nl oy |
( € ) uz_;) u) ,B(U, (& )d(l tTeYde ... efy(Nq))aqu

Let L be a positive integer. It follows

L NT
% st
k=1n=1

< L . ,—kNy\ kj
Q a—u 77 . —ky prl(Oé —use )CM
Z_;) (u)N kz_:l Wﬁ(u’ c )d(l +e R 4 e2ky ... 4 efk(Nfl)y)afqul

= (1 —ev)i™

and when writing I/IN/g(u; e )y = 3" y,(a)e"®¥ (note that this polynomial vanishes at
zero and only depends on u):

<2|d—a| d— i( )Na uZh/au

u=0 =

L pr_1 OK—U e kNy)(CJ 7ay)k
Z 1 + e—ky + 6—2k’y + e (N 1)ky)a—u+1

since (1 —e™¥)™ < 2ly™ for all m € Z and y € [0,1]. For each y the sequence ¢; =
/(1 +e ™™ 4 e2 4. 4 em(N=Dhyja—utl gatisfies 1 > ¢y = ¢ = 0 for all k > 1 and
hence using we find

proala —u; e H) (¢ )’

[0 ba,u
|d— a|+1 d—a Z a—u Z
< ( ) 23 Pt

bl
i~
i
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Now let 7" > 1 and y > 0 be arbitrary chosen. We can split the set {1,2,...,1} in
elements 1 < 2 < -+ < I(T,y) such that e ¥ > ¢, , 7y and I(T,y) < k < I with
e Nky < Ea—ur—1- In this sections the function pr_i(a — u;x) is increasing and then
decreasing, respectively. Hence

«

ba,u
|d— a|+1 d—a a—u .. —kN
<2 3 () St | || B prata et

=0 a=1 1<k<I(T,y)
e_Nkygéa—u,T—l

x (e~ ™)k + > proi(o = us e *NV)((d e )

I(Ty)<k<I
e Ny <g o1

and by applying 2.8 again using |pr_i(a — u; )| < ma_y

«

bo,u
< 2|d a|+1 d— aZ ( )Na—uz |7a7u<a)
= a=1
k
Z Chre™™)

X max | 2mgy_, max

1<I<L 1<k<I(T,y) KTy)+isk<I|, &

k
+ Mgy  Max Z (¢],e )"
(
Since ijw + 1 (this is because w is removable in z = () we obtain

o ba,u
< old-al+1yd—a 2 ( )Nau Z Vau(a)| x max (2ma—uM +mq_ M)
~ g

(0% boz,u
—a —a Q a—u
< 21y me(u)z\f > Naw(a)
a=1

u=0

This is independent of L and remains true when L — oo. Since the constant in the last
expression besides y?~* does not depend on 7" and y the theorem is proved. [l

3. APPLICATION TO L-FUNCTIONS OF MODULAR FORMS

Let S = {t1,t5,...} be a countable, totally ordered set (the direction is simply given by
ti <t; < i < j) equipped with an integer map | - |s : S — N such that for some
L>0:

(3.1) #{te S| |tls =n} = O(nb).

In the case the set S is clear we simply write | - |. For example, S could be the set of
integral ideals of a number field and | - | their norm. Let a(¢,,)men & sequence of complex
numbers. We define the corresponding formal Dirichlet series by

0

F(s):= > a()|t] ™ = > alty)[tm| ™.

tesS m=1
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In the case that the series

i
converges for all s € C with Re(s) > O one can check using partial summation that such
Dirichlet series converge (if they do) on half planes and represent holomorphic functions
in these regions. This is for example the case, if the [¢,| increase monotonously. Since
we have (3.1]), one can show that F(s) will converge in some point sy if and only if
a(t) = O(|t]") for some v € R.

|tn+1‘

Definition 3.1. Let F(s) = >, s a(t)[t|* a Dirichlet series, Q a totally ordered countable
set together with a surjective map w : Q — S with finite fibres. We also assume that F
converges to a holomorphic function on some half plane {Re(s) > o¢}. The order of Q
shall respect the order of S, this means uy < us = w(uy) < w(ug) for all uy,us € Q.
We define an integer map on Q via |u|g := |w(u)|s. In other words, all elements in the
same fibre of a t € S are associated to the same integer. By a splitting of F' we mean a
Dirichlet series F(s) = Youeq U(W)|ulg® that has the following properties:

(i) F(s) converges to a holomorphic function in some half plane {Re(s) > ¢}.

(11) We have for allt € S the summation formula >, b(u) = a(t).

uew=1(t)

We may think of splittings in the following way: we have Q = |J,.g0 () and there-

fore Z ol Z Z MQ

teS teS uew—

The next definition provides kind of an inverse concept for splittings.

Definition 3.2. Let S = U;O:I S; be a disjoint covering with finite S;. We say that a
Dirichlet series F(s) = Y, s a(t)|t|™° respects the rearrangement (S;)jen, if the series is
gien by the partial sums

Z 2 ale™.

j=1teS;

If there might be danger with confusion we simply write

(F, (S5)5en)( Z D a)l

Jj=1teS;

Obviously, F'(s) and (F, (S;)jen)(s) coincide in all regions of absolute convergence. In the
case of S; = {t € S| |t| = j}, (F, (S;)jen)(s) is an ordinary Dirichlet series > b(n)n=° — we
call this the standard rearrangement. The next proposition makes clear why rearrange-
ments makes splitting undone in some situations.

Proposition 3.3. Let F be a splitting of F' over ). Define the disjoint union Q); :=
o t;). If we now sum F with respect to (Q;);en we obtain F.
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Proof. This follows directly from the definitions. 0J

Definition 3.4. We call (T})jen a sub-rearrangement of( i)jen, if there is a sequence
0 <ky <kyg<ks<--- of integers such that Ty = S, U -+ U Sk, To = Sk, 41U -+ U Sk,
and so on.

In the following we define for any rearrangement the abscissa of convergence o((F, (.S;) jeN))
to be the infimum real value o, such that for all complex values s € C with Re(s) >
the series converges and represents a holomorphic function in this region.

Remark 3.5. One easily checks o((F, (Tj)jen)) < o((F,(S))jen)). Hence[3.3 shows that
splitting does not improve the area of convergence. However, when rearranging a split
series the situation might look different.

Let JR(F') the set of all rearrangements of F. We define an equivalence relation on R(F)
by putting two coverings in the same class if the resultant series have the same abscissa
of convergence. We collect this data in R(F')/ ~. We would like to study R(F')/ ~, in
particular, we are interested in the following question:

Question 3.6. What is the value ¢(F) := infgen(r)/~ 0(G)?

There is no simple answer to this question. It rather strongly depends on the Dirichlet
series itself, as the next examples demonstrate.

(i) If a(t) = 0 globally, the region of convergence can not be improved by rearranging
the Dirichlet series. Hence |R(F)/ ~ | =1 and 6(F') = o(F).

(ii) Although the set & is large, —5(F") does not have to be unbounded even in the case
that F' is entire. If x is an even real non-principal character modulo M, one can
show that &(L(x,s)) = —1if L(x,—1) ¢ Z. In this case the "best" rearrangement
of L(x, s) is given by N = ;o {M(j — 1) + k[ 1 <k < M} and we have

Z(Z M(j—1)+m)” S), Re(s) > —1.

1
We conclude L(x,0) = 0. Since all inner summands in the rearrangements are
integers when s = —1, there is indeed no better choice if L(yx, —1) ¢ Z, as the reader
may easily check.

A similar argument shows &(L(x, s)) = 0o = 0 if x is real, odd and L(x,0) ¢ Z.

(iii) The identity C =", n?) for Re(s) > 1 is well-known and elementary. Here
p(n) is the Moblus function. Since p(n) has sign changes, it makes sense to look at
possible rearrangements. However it seems extremely difficult to find improvements
of 0 =1, since there is no progress in this area until today! We have 3 < 5(1/¢) <1

and 0(1/() + implies the RH.

Remark 3.7. In the case of (ii), where the coefficients are well-studied, there are of
course even more powerful tools for analytic continuation using series transformations,
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that can be seen as generalized rearrangements in the sense that we allow the splitting sets
S, to have infinite order. For example, when using Euler summation, we find the right

hand series
Z g -l Z <V)X(u +1)(v+1)7°,

v=0
will converge globally for non-pmnczpal characters x.

Let k = (kyi,....,k;) and f € Ug(I'y(M,N)) be a weak modular form. In the following
we give a natural splitting for L(f,s) in terms of the overset @ = N' x N'. After this,
when applying the dominated convergence theorem from the last section we can find good
rearrangements of these splittings to give estimates for the size defined in

Let G%) = Fy x .-+ x Fy be the [-fold product of the residue class groups modulo N.
Then Ggf,) is a multiplicative group and there are p(N)! characters 1 : Ggf,) — C* given
by ¥(n) = Hézl Y;(n;), where 91, ...,¢; are characters modulo N. We further call a
character v : Gg\l{) — C* non-principal, if no component v; with 1 < j < [ is principal
and principal else. Analogously we say that ¢ is primitive if and only if all components
are primitive.

Note that each v extends multiplicatively to a map v : Z! — C*. For k € N! also define

the (multiplicative) map Il (n) = nf171 ...~

Co
Lemma 3.8. Let ty,...,t; be functions in (JFL> such that the associated weak functions
N/o
wy, are removable in z = 0. Then we have for all vectors w € N' and s with Re(s) > 0:

0

f (wniz/N) - wy (wgiz/ N2 da ( ) 3 FO o

veN!

where F](\l,)t(v) = (Fnt1)(v1) -+ (Fnty)(v) is the vector valued Fourier transform. Here,
the order of summation respects the maximum values of v.

Proof. We have

- . l e(ujiz/N)
wy, (wiz/N) - wy, (wiz/N) q%ﬁy ti(a) tl(%)g e(q;/N) — e(ujiz/N)
I o
_ Z tl ql 1_[ Z e—277ujvj:(:/N—27Tqu‘Uj/N
qeva) j=1lwv;=1
T T )
= qlgr;o Z:(l) t1(qr) - ti(q) Ulz_ll i 'vzz—ll e~ 2m(viwnt- w2/ N=2mi(vigi+-+viq) /N

qeGy
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The multisum is in the sense of a summation which respects the maximum of the vectors v.
Since for 0 < 0 < 27 the geometric sums Z?Zl(ye“’)J are bounded uniformly for 0 <y < 1
and n € N we may switch integration and summation and the claim follows. 0

Proposition 3.9. Let f € Ug(I'y(M, N)) be a modular form, such that

R
f = Z H’Oﬂ?kil (wha,l ®wto¢,l) T ﬁkl (wha,l ®wta,l)'

a=1

Here we assume that sgn(ha it ;) = (—1)% for all j = 1,...,1. Then, for all complex
numbers s with Re(s) > |k|, we have

(3.2) L(f,s) = Z a(u,v) (u,v)",

(u,v)eNL x Nt

where the coefficients a(u,v) are given by

R
a(u,v) = N M (u) Y pa Hta,g‘ (us) (Farha,g)(vs).

Proof. The series on the right of (3.2) clearly converges absolutely on the half plane
{se C| o> |k|}. Since t;(0) = h;(0) = 0 for all 1 < 5 <, all involved weak functions
are removable in z = 0 and so is their product. We have for all s € C

Am@=(%)sN@uﬁ@=T§ymmwfﬂn

Hence, due to absolute convergence, we obtain for all s with o > £

. ]. 27T a,1— a,l ™
L(f,s) = lim (—> Nk 2 2 au’f b f’l 1ta,1(U1)~--ta,z(u1)

T—x ['(s) u=1 a=1
1<]<l

X

wh, (uriz/N) - - - wy, (wiz/N)x*'dz.

Together with [3.8 we obtain

Z Z Ha (HU a] U] tha])(Uj)> (U1U1 4+t Ul'Ul)_S

uj,vj=1a=1

1<yl
0 l R l
ki—1 _
D0 T 2 ma [ Tt (a) Fashrag) () ) (o + - 4 ) ™
uj,vj=1j=1 a=1 j=1
1<y<i



18 J. FRANKE

provides us coefficients a(u, v) that belong to splittings of L(f,s) over Q = N! x N,
However, as we have already pointed out, this is not a well-defined linear map in general,
since the coefficients are not uniquely determined. We are especially interested in a
reasonable subset of the large set of all possible splittings of L(f,s), this becomes clear
in the following discussion.

Put l

U1, @ ,(L1(M, N))

and

AMN —{g:IFl]\4><IF§V—>C|(*)}.
Here the condition () means that g is zero whenever a component of the argument is
zero. Note that Aé\/f, y 1s clearly isomorphic to the corresponding space Aé\/], y of periodic
maps ¢ : Z' x Z' — C. Consider the commutative diagram

Uy (1 (M, N))

Al
AM,N

Pl Provt =1y,

where ¢ and ¢y, are determined by
!
ﬁkfl(whl ®wt1) Q- ®19kl(whl ®wtl) — Ht](‘FMhJ)
j=1

and
I

gy (Why Qwyy) ® -+ - @ Vg, (wh, @ wy,) — Hﬁkj (wh;, ® wy,),
j=1
respectively. The linear map ¢y : UD(T'1(M, N)) — Ux(T'1(M, N)) is surjective by con-
struction, however, no isomorphism in general (indeed, this is the case if and only if [ = 1).
We shall write Ay for the kernel of (. now gives us a map that equips a modular
form f € Ug(T'1(M, N)) with a pre-image of ¢, but of course, this pre-image is in general
not uniquely determined. Therefore it is more reasonable to consider a map

fr—=vo(f) + v(Ag)

that sends f to a complete family of coefficients a(u,v) in the sense of 3.9} Here, vy(f)
is any fixed pre-image of f under .

Proposition 3.10. For every f € Ug(I'1 (M, N)) consider the family a(f) = g (w)(vo(f)+
L(Ag))(u,v) of coefficients with arguments (u,v) € N' x NL. All of them define splittings
of L(f,s) (S =N) over Q@ = N x N' equipped with the integer map |(u,v)| := (u,v).

Of course, when using one could reconstruct the original ordinary Dirichlet series with
a standard rearrangement. However, in the following we study a completely different
rearrangement (Unm)men that arises from the results in the previous section. With this
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we want to extend the region of convergence of the series L(f,s) = > a(u,v) (u,v) "’
naturally. Fix an integer N. We define for p,q e N

Tnpg = {t = (u,v) e N x N'| N(p — 1) < max(u) < Np, max(v) = ¢}.
Note that the Ty, , define a disjoint covering of N x N'. We then define

UN,1 = TN,1,1
UN,2 = TN,1,2 U TN,2,1 U TN,2,2

Unz =Tn13VINn23UTNng1 UTns2UTnss

and so on. After m provided us some natural splittings (in fact, all Dirichlet series of
L(f, s) arising from products of weak functions for k and not from the usual Fourier series)
we show that we can improve the region of convergence by rearranging the splittings by

UN.m.-

Theorem 3.11. Let N > 1 and | > 1 be integers and h; € [M,0], t; € [N, d;] be even or
odd functions for 1 < j <1 and some non-negative integers d;. We further assume that
we have sgn(h;t;) = (—1)% for every 1 < j < 1. Consider the modular form

l
F) =] [0, (wn, @wi,37) € U(T1(M, N)).

j=1

For all values s € C with Re(s) > |k| — [ — d, where d = 23:1 dj, we have the series
representation

L(f,s) = N7F S g (w)t(u) (FYR) (v) (u,v)

(u,v)eN! x N

where t(w) = t1(u1) - ti(w) and (FVR)(v) == (Fyhy)(v1) -+ (Fyh)(v) is the multidi-
mensional Fourier transform. The summation respects the rearrangement (Unm)men. In
particular, we have

inf & b <k —1—d
k5 D b(u,v) (u,v) K|

(u,v)eN! x NI
The short notation a(f) was introduced in [3.10]

Proof. The series on the right of (3.2) converges absolutely for all s with Re(s) > |k|.
Since t;(0) = h;(0) = 0 for all 1 < j < [, all involved weak functions are removable in
z = 0 and so is their product. We have for all s € C

!
H O, (wn, @ wy,; wi)a® ' da.

j=1

2T

AU&%=(N)ﬂF@ﬂUﬁ)=TﬂWWSH$=

S——s
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The functions ¢y, ..., t; have degrees dy, ..., d; which means by that there is a constant
C > 0 such that for all Te Nand 0 < x < 1:

Z ukl 1 kl 1t1(u1) -ty (w)wn, (Wi /N) - - - wp, (wiz/N)x® '

uj=1
1<j<l

]

7j=1
d—1—(|k|-1
<o td-1-(k|-D

Z u;’ i (ug)wn, (ujm/N)‘

uj=1

and the right hand side is an integrable majorant for o > |k| — [ — d. For these values we
therefore have dominated convergence on the interval [0, 1] and uniform convergence on
the interval [1,00), hence we obtain for Re(s) > |k| — [ —d

1 /2r\* [ .. A
L(f,s) =T (F) JTh_I}gONl_kl Dt e () -y ()
0

uj=1
1<y<l

X wp, (uriz/N) - - - wp, (ulix/N)xS_lda:

) 1 2
=g () N X )

uj=1
1<]<l

x | wp, (uyiz/N) - wp, (wiz/N)z* dz.

S— 38

In the proof of the dominated convergence theorem the upper bound was independent of
the choice of the partial sums for the series of w. Hence, together with we obtain

T ()
Fx' h(v)
== 1. Nl_|k| kl 1t A t N M
Tl_I)I(}O Z u l(ul) l(ul) Z_ (U1U1 4. F UZUI)S
u]—l ’Uj—l
1<j<l 1<5<l

Since the order of summation in the partial sums respects the rearrangement (Un ) men
the theorem is proved. 0]

From this we obtain a much more general result as (ii) presented in the above exam-
ples.

=

Corollary 3.12. Let t 0 be in [N,d]. Then the series

M8
M=

t(l)(Nr+£)~°

o~
&i

r=0

converges for all s € C with Re(s) > —d to a holomorphic function L(t,s). In particular,

L(t,—a) =0 for all 0 < a < d.
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Proof. Put k = d + 1. Choose h % 0 such that sgn(¢ - h) = (—1)*. Then we obtain with
B.11] that the series

Th_I)IOIONl k%i uk— lt ho)( ) Th_r,%ONlik (NZ::F udst(u)) (i (]:Nyhs)(y)>

u=1v=1 u=1 v=1

converges for all s € C with Re(s) > 0 to a holomorphic function. Since

NT o N
: d—s _ —s+d
Th_r)réo uzlu t(u) = ;;M:l t(0)(Nr +0)

the claim follows. O
One consequence of this observation is an application to infinite products.

Example 3.13. Consider the function

—1, n=+1 (mod 4),
as(n) = < 2, n=2 (mod4),
0, n=0 (mod 4)

Then ay has degree 1, since obviously 2?21 as(j) = au(j)j = —1+4—3=0. One

sees quickly that
o0
Z (3-27° =247 —1)((s),

where ((s) denotes the Riemann zeta function. Together with we conclude that

2 Z as(4n + j)(4n + j)7°

n=0j=1

converges to a holomorphic function for all s € C with Re(s) > —1 and we find
0
> [(log(4n + 1) — 2log(4n + 2) + log(4n + 3)) = f(0).
n=0

Since ¢(0) = —

we obtain

N =

ﬁ (4n + 1)(4n + 3) 1
14 (dn+2)? N

Remark 3.14. With a rearranged splitting
0
Z (20 —1)7° —2(2n) " + (2n + 1)7%) = 2(1 — 2')¢(s) — 1,

that converges for Re(s) > —1, we similarly conclude (when using ¢'(0) = —1 log(2m)) the
Wallis product

ﬁ n—l 2n+1)

2
-

n=1
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Example 3.15. Let x be a non-principal even character modulo N. Then, using the
well-known Weierstrafiproduct expansion

L _ se™? ﬁ (1 + f) e/
I'(s) n ’

n=1
we find
0 N X(m
[T(Vn+ 1) (Nn+ 2 (Nn + =38 (Nn + N — 1)V D = T T ( ) .
n=0 m=1

As a consequence, we obtain the following well-known identity

N mA x(m)
L'(x,0) _ T (_> .
e H v

m=1

The next final corollary provides natural generalized Dirichlet series representations for L-
functions associated to products of Eisenstein series for non-principal primitive Dirichlet
characters.

Corollary 3.16. Let x,v : Z' — C* be non-principal, primitive characters modulo M
and N, respectively, such that x;(—1);(=1) = (=1)% for all j = 1,...,1. For all s € C
with Re(s) > |k| — 1 — %Z;Zl(@/)j(—l) + 1) we have

: mi\ _
L(EEMX%WH):(—%) 5= TN M) (o)

(u,v)eNt x N

where the summation respects the rearrangement (U m)men-

Proof. Since all characters are primitive we have

) (—=1)(=27)i G (1
Hence we obtain with B.11]

l
L<HEkj<xj,¢j;r>,s>=A1~-wl—'k Y () d(w)(Fy'X) (v) (u,0) ™,

Jj=1 (u,v)eN! x N

j(wﬁ®%; 7_)'

where

A\ X;(=1)(— 27”) (@Z’J)

a N(k; = )IG(X;)
We can simplify the expression (Fj © )(X) by

(FV)@) (@) = x(0)(FYD Q) = x(0) [ [, (D).
so we obtain

i\ ;
n ANHED ) = (<5 T o)
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The extended domain of convergence follows, because of the rearrangement, with
and the fact that the degree of v; is given by 3 (¢;(—1) + 1). O

Finally, we give an example.

Example 3.17. Let x be a primitive even Dirichlet character modulo N > 1. We then
look on the Eisenstein series Es(x, x;T) of weight k = 2 and define

f(r) = Ba(x, x; 7).
Then f is a modular form of weight 4 for the group T'(N?) and vanishes in the cusps z = 0

and z = 100, hence its L-function L(f,s) is entire. We are especially interested in the
critical value L(f,1). With we obtain

0 N-1

L(f,1)=C ), > xla)x(@)X ()X (v)

r1,72,v1,v2=1 \q1,92=0

(er—Q1)(N7“2—Q2)
(Nry — qi)vi + (Nrg — q2) s

where the constant C is given by

x(=1)(2ri)*
O = AL
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