Auflösung von Singularitäten

Wintersemester 2014/15

Universität Heidelberg Mathematisches Institut Dr. A. Holschbach

Übungsblatt 9 zu bearbeiten bis Dienstag, 20.01.2015

Aufgabe 1. (Vertauschungsregeln für strikte Transformationen von markierten Idealgarben) Sei W eine glatte Varietät, (\mathcal{I}, j) eine markierte Idealgarbe auf W und $\pi \colon W' \to W$ eine Aufblasung mit glattem Zentrum $Z \subset V(\mathcal{I}, j)$. Zeige:

- (a) Es gilt $\pi_*^{-1}(D^i(\mathcal{I},j)) \subset D^i(\pi_*^{-1}(\mathcal{I},j))$ für alle $0 \leq i \leq j$.
- (b) Sei $H \subset W$ eine glatte Hyperfläche mit $Z \subsetneq H$, H' die strikte Transformierte von H in W' und $\pi_H : H' \to H$ die eingeschränkte Aufblasung. Dann gilt

$$(\pi_H)_*^{-1}(\mathcal{I}|_H, j) = (\pi_*^{-1}(\mathcal{I}, j))|_{H'}.$$

In den folgenden beiden Aufgaben sei W eine glatte Varietät, $S \subset W$ eine glatte Hyperfläche und \mathcal{I} eine Idealgarbe auf W.

Die logarithmische Ableitung $D(-\log S)(\mathcal{I})$ von \mathcal{I} entlang S ist die Idealgarbe, die von allen Bildern von \mathcal{I} unter k-Derivationen $d: \mathcal{O}_W \to \mathcal{O}_W$ mit $d(\mathcal{O}_W(-S)) \subset \mathcal{O}_W(-S)$ erzeugt wird. Die höheren logarithmischen Ableitungen von \mathcal{I} entlang S definieren wir rekursiv durch

$$D^{s}(-\log S)(\mathcal{I}) := D(-\log S)(D^{s-1}(-\log S)(\mathcal{I}))$$
 für $s > 1$

Für $p \in W \setminus S$ gilt offenbar $D^s(-\log S)(\mathcal{I})_p = D^s(\mathcal{I})_p$ für alle $s \in \mathbb{N}$.

Aufgabe 2. (Logarithmisch abgeleitete Idealgarben I)

(a) Sei $p \in S$ ein abgeschlossener Punkt und x_1, \ldots, x_n ein lokales System von Parametern bei p, so dass S in einer Umgebung von p durch $x_1 = 0$ beschrieben wird. Für $f \in \mathcal{O}_{W,p}$ setzen wir

$$\partial_j^{\log} f = \begin{cases} x_1 \frac{\partial f}{\partial x_1} & \text{für } j = 1, \\ \frac{\partial f}{\partial x_j} & \text{für } 2 \le j \le n. \end{cases}$$

Zeige, dass $D(-\log S)(\mathcal{I})_p = (\partial_j^{\log} f \mid f \in \mathcal{I}_p, 1 \leq j \leq n)$. Ist $\mathcal{I}_p = (f_1, \dots, f_r)$ und n > 1, so wird $D(-\log S)(\mathcal{I})_p$ von den f_i und den $\partial_j^{\log} f_i$ erzeugt.

(b) Zeige, dass $(D^s(-\log S)(\mathcal{I}))|_S = D^s(\mathcal{I}|_S)$ für alle $s \in \mathbb{N}$.

Aufgabe 3. (Logarithmisch abgeleitete Idealgarben II)

Sei $j \in \mathbb{N}$, $\pi \colon W' \to W$ eine Aufblasung mit glattem Zentrum $Z \subset S \cap V(\mathcal{I}, j)$ und S' die strikte Transformierte von S in W'. Zeige: Für alle $0 \le s < j$ gilt

$$\pi_*^{-1}(D^s(-\log S)(\mathcal{I},j)) \subset D^s(-\log S')(\pi_*^{-1}(\mathcal{I},j))$$

und

$$D^{s}\pi_{*}^{-1}(\mathcal{I},j) = \sum_{i=0}^{s} D^{s-i}(-\log S')(\pi_{*}^{-1}(D^{i}(\mathcal{I},j))).$$

Hierbei sei $D^s(-\log S)(\mathcal{I},j) := (D^s(-\log S)(\mathcal{I}),j-s).$

bitte wenden!

Hinweis: Die zweite Aussage ist nur auf S' nicht-trivial. Sei $p' \in S'$ ein abgeschlossener Punkt und y_1, \ldots, y_n ein lokales System von Parametern bei p, so dass S in einer Umgebung von p durch $y_1 = 0$ beschrieben wird. Zeige für $(\mathcal{I}', j) = \pi_*^{-1}(\mathcal{I}, j)$, dass

$$D^{s}(\mathcal{I}'_{p'}) = D^{s}(-\log S)(\mathcal{I}'_{p'}) + D^{s-1}(-\log S)(\frac{\partial}{\partial y_{1}}\mathcal{I}'_{p'}) + \ldots + \frac{\partial^{s}}{\partial y_{1}^{s}}\mathcal{I}'_{p'},$$

und verwende dann die Berechnungen aus Aufgabe 1.

Aufgabe 4. (Maximaler Kontakt in positiver Charakteristik)

Sei $W = \mathbb{A}^4_k = \operatorname{Spec} k[x,y,z,w]$ der affine vierdimensionale Raum über einem perfekter Körper k der Charakteristik 2, X die Hyperfläche $V(x^2 + yz^3 + zw^3 + y^7w) \subset W$ und $\mathcal{I} = \mathcal{O}_W(-X)$. Zeige:

(a) Es gilt max-ord(\mathcal{I}) = 2; der Ort maximaler Ordnung $V(\mathcal{I},2) = \mathrm{Sing}(X)$ wird als Menge durch die Gleichungen

$$x^{2} + yz^{3} + zw^{3} + y^{7}w = z^{3} + y^{6}w = yz^{2} + w^{3} = zw^{2} + y^{7} = 0$$

beschrieben und ist gerade die monomiale Kurve $C = \operatorname{im}(t \mapsto (t^{32}, t^7, t^{19}, t^{15}))$.

(b) Es gibt keine Hyperfläche in W, die C enthält und im Ursprung glatt ist. Insbesondere gibt es lokal um den Ursprung keine Hyperfläche maximalen Kontakts zu \mathcal{I} (bzw. X).

Hinweis: Zeige und verwende, dass keine der Zahlen 32, 7, 19, 15 als nicht-negative Linear-kombination der anderen drei geschrieben werden kann.