A Chebotarev Density Theorem for Function Fields Armin Holschbach

Let $f: Y \to X$ be a finite branched Galois cover of normal varieties over a field k, and let G = Gal(X/Y) denote its Galois group.

The Serre-Chebotarev density theorem considers the case where k is a finite field. It defines a Dirichlet density on the set of closed points of X and describes the asymptotic decomposition behavior of these points in the cover $Y \to X$ ([4, Theorem 7]).

Instead of looking at closed points, we will consider points of codimension one on X and describe "how many" of those have a given decomposition behavior:

To any codimension 1 point $x \in X$ (or the corresponding Weil prime divisor), we associate a *decomposition type* by taking the conjugacy class of the decomposition group of any point y on Y mapping to x. This notion does not depend on the choice of the point y. If the decomposition type of x is trivial, we say x splits completely in Y. In the following we restrict ourselves to Weil prime divisors that stay prime after finite base extensions, i.e. geometrically integral divisors.

1. Density Results for Divisors

Assume k is perfect and X, Y are projective and geometrically integral over k. Moreover, assume $d := \dim X \ge 2$ and char k = 0 if d > 3.

We fix a very ample divisor D on X and consider the linear systems |mD| for $m \in \mathbf{N}$. Every such |mD| can be considered as the set of closed points of a projective space, and we will indeed identify |mD| with the corresponding projective space over k.

Theorem 1. For any $m \in \mathbf{N}$, the geometrically integral divisors in the linear system |mD| form an open subvariety \mathcal{P}_{mD} . For any conjugacy class \mathcal{C} of a subgroup H of G, there is a locally closed subvariety $\mathcal{D}_{mD}^{\mathcal{C}}$ consisting of those divisors in \mathcal{P}_{mD} of decomposition type \mathcal{C} , and

$$\limsup_{m \to \infty} \frac{\dim \mathcal{D}_{mD}^{\mathcal{C}}}{\dim \mathcal{P}_{mD}} = \frac{1}{[G:H]^{d-1}}.$$

Moreover, this limit inferior becomes a limit if D (or any linearly equivalent prime divisor) splits completely in Y.

In particular, for every subgroup H of G there are infinitely many Weil prime divisors on Y with decomposition group H. Furthermore, for fixed X, one can deduce that a finite branched Galois cover $f: Y \to X$ is completely described by the set of Weil prime divisors that split completely.

One side note: The more precise description of \mathcal{P}_{mD} is that for *every* field extension k'|k, $\mathcal{P}_{mD}(k')$ consists exactly of those effective divisors on $X' := X \times_{\text{Spec } k}$ Spec k' which are linearly equivalent to the base change D' of D to X'. Similarly, one describes $\mathcal{D}_{mD}^{\mathcal{C}}$. This way, the scheme structures and hence dimensions of \mathcal{P}_{mD} and $\mathcal{D}_{mD}^{\mathcal{C}}$ are indeed uniquely defined.

2. Special Case: $k = \mathbf{F}_q$

In the case where k is a finite field, the sets $\mathcal{P}_{mD}(k)$, $\mathcal{D}_{mD}(k)$ are finite, and we can actually *count* divisors:

Theorem 2. Under the assumptions from above, let k be a finite field. Then

$$\limsup_{m \to \infty} \frac{\log \# \mathcal{D}_{mD}^c(k)}{\log \# \mathcal{P}_{mD}(k)} = \frac{1}{[G:H]^{d-1}}$$

Both theorems are proven in a similar manner using considerations on the behavior of volumes of divisors under pullback and push-forward. The only major difference of the two proofs is that the first one uses the classical Bertini theorem whereas the second one use Poonen's Bertini theorem over finite fields ([2]).

3. Connection with a Result of F.K. Schmidt

The above-mentioned statements can also be reinterpreted as giving effective versions of (a special case of) a result of F.K. Schmidt ([3]):

Theorem 3 (F.K. Schmidt). Suppose Ω is a Hilbertian field, and $K|\Omega$ is a separably generated function field in one variable. Let L|K be a finite Galois extension. Then for any subgroup H of $\operatorname{Gal}(L|K)$, there are infinitely many valuations on L which are constant on Ω and have decomposition group H.

An important case of Hilbertian fields are function fields. For these fields, our theorem can be used to describe more explicitly "how often" a particular subgroup H actually occurs as a decomposition group, at least under some mild additional assumptions:

Assume Ω itself is a function field in one variable over a perfect field k, i.e. L and K are both function fields in two variables over k; and assume k is relatively algebraically closed in L. Then we can choose a normal projective model X/k for K|k and take its normalization Y in L to get a finite branched Galois cover $f: Y \to X$ of two-dimensional, normal, geometrically integral projective k-varieties. F.K. Schmidt's theorem follows from ours by identifying Weil prime divisors on Y with the corresponding valuations.

References

- A. Holschbach, A Chebotarev-like Density Theorem in Algebraic Geometry, Ph.D. Thesis, University of Pennsylvania (2008).
- [2] B. Poonen, Bertini Theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099–1127.
- [3] F.K. Schmidt, Über die Kennzeichnung algebraischer Funktionenkörper durch ihren Regularitätsbereich, J. Reine Angew. Math. 171 (1934), 162–169.
- [4] J.-P. Serre, Zeta and L functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), 82–92. Harper & Row, New York, 1965.