Übungen zur Algebraischen Zahlentheorie II

Sommersemester 2011

Universität Heidelberg Mathematisches Institut Dr. A. Holschbach

Blatt 7

Abgabe bis Montag, den 06.06.2011, um 14.00 Uhr

Aufgabe 1. Bestimmen Sie explizit alle Bewertungen des Körpers $\mathbb{Q}(i)$ bis auf Äquivalenz.

Aufgabe 2. Es sei (K, v) ein vollständig nicht-archimedisch bewerteter Körper und $f = X^n + a_1 X^{n-1} + \ldots + a_n \in K[X]$ ein irreduzibles Polynom. Zeigen Sie: Es gilt

$$\min_{1 \le i \le n} \left(\frac{v(a_i)}{i} \right) = \frac{v(a_n)}{n}.$$

Folgern Sie: Gilt $a_n \in \mathcal{O}_v$, so gilt $f \in \mathcal{O}_v[X]$.

Hinweis. Sei (L, w) der Zerfällungskörper von f, und seien $\alpha_1, \ldots, \alpha_n \in L$ die Nullstellen von f. Zeigen Sie, dass $w(\alpha_1) = \ldots = w(\alpha_n)$ und $v(a_i) \geq iw(\alpha_1), v(a_n) = nw(\alpha_1)$.

Aufgabe 3. Sei K ein Zahlkörper. Eine Äquivalenzklasse von Bewertungen auf K nennt man **Primstelle**. Für eine Primstelle \mathfrak{p} von K bezeichne | $|_{\mathfrak{p}}$ die normalisierte Bewertung auf $K_{\mathfrak{p}}$. Zeigen Sie:

(a) Sei L|K eine endliche Erweiterung und \mathfrak{p} eine Primstelle von K. Dann gilt für jedes $x \in L$

$$\prod_{\mathfrak{q}|\mathfrak{p}} |x|_{\mathfrak{q}} = |N_{L|K}(x)|_{\mathfrak{p}},$$

wobei \mathfrak{q} alle Primstellen von L über \mathfrak{p} durchläuft.

Hinweis. Zeigen Sie mit Hilfe von 2.29 und 2.34, dass $|x|_{\mathfrak{q}} = |N_{L_{\mathfrak{q}}|K_{\mathfrak{p}}}(x)|_{\mathfrak{p}}$. Verwenden Sie dann die Tatsache, dass $N_{L|K}(x) = \det(m_x)$, wobei $m_x : L \to L$ die K-lineare Abbildung $y \mapsto xy$ ist, um zu zeigen, dass $N_{L|K}(x) = \prod_{\mathfrak{q}|\mathfrak{p}} N_{L_{\mathfrak{q}}|K_{\mathfrak{p}}}(x)$.

(b) Für jedes $x \in K$ gilt $|x|_{\mathfrak{p}} = 1$ für fast alle \mathfrak{p} und

$$\prod_{\mathfrak{p}} |x|_{\mathfrak{p}} = 1.$$

Hinweis. Zeigen Sie diese Aussage zunächst im Fall $K = \mathbb{Q}$, benutzen Sie dann (a).

Aufgabe 4. Es sei (K, | |) ein vollständig nicht-archimedisch bewerteter Körper, und sei $(\overline{K}, | |)$ ein algebraischer Abschluss von K. Sei $\alpha \in \overline{K}$ separabel über K, und seien $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_n$ die Konjugierten über K. Ist dann $\beta \in \overline{K}$ mit

$$|\alpha - \beta| < |\alpha - \alpha_i|$$
 für $i = 2, \dots, n$,

so gilt $K(\alpha) \subset K(\beta)$.

Hinweis. Sei $L = K(\beta)$, $M \subset \overline{K}$ die normale Hülle von $K(\alpha, \beta)|L$, und sei $\sigma \in \operatorname{Gal}(M|L)$ beliebig. Zeigen Sie, dass $|\sigma(\alpha) - \beta| = |\alpha - \beta|$. Schätzen Sie $|\alpha - \sigma(\alpha)|$ ab und folgern Sie, dass $\sigma(\alpha) = \alpha$.

Aufgabe 5*. Sei p eine Primzahl. Zeigen Sie:

(a) Sei $\overline{\mathbb{Q}}_p$ ein algebraischer Abschluss von \mathbb{Q}_p . Zeigen Sie: $\overline{\mathbb{Q}}_p$ ist nicht vollständig bzgl. der (Fortsetzung der) p-adischen Bewertung.

 $\mathit{Hinweis}.$ Angenommen, $\overline{\mathbb{Q}}_p$ wäre vollständig. Man betrachte das Element

$$\gamma = \sum_{i=1}^{\infty} \zeta_{p^i - 1} p^i \in \overline{\mathbb{Q}}_p,$$

wobei ζ_{p^i-1} für jedes i eine primitive (p^i-1) -te Einheitswurzel ist. Sei $K=\mathbb{Q}_p(\gamma)$ und k der zugehörige Restklassenkörper. Zeigen Sie induktiv, dass k und damit auch K für jedes i die (p^i-1) -ten Einheitswurzeln enthält. Folgern Sie, dass k nicht endlich und γ daher nicht algebraisch sein kann.

(b) Sei \mathbb{C}_p die Vervollständigung von $\overline{\mathbb{Q}}_p$. Zeigen Sie: \mathbb{C}_p ist algebraisch abgeschlossen.[†]

Hinweis. Sei $\alpha \in \overline{\mathbb{C}}_p$, $f \in \mathbb{C}_p[T]$ das Minimalpolynom von α über \mathbb{C}_p . Man wähle $g \in \overline{\mathbb{Q}}_p[T]$ mit |f - g| (Notation aus Blatt 5, Aufgabe 4) klein genug. Zeigen Sie: Bei geeigneter Wahl von g und einer Nullstelle $\beta \in \overline{\mathbb{Q}}_p$ von g kann $|\alpha - \beta|$ beliebig klein werden. Verwenden Sie nun Aufgabe 4.

[†]Erstaunlicherweise kann man zeigen, dass \mathbb{C}_p als abstrakter Körper (also ohne topologische Struktur) isomorph zu \mathbb{C} ist.