Übungen zur Algebraischen Zahlentheorie II

Sommersemester 2011

Universität Heidelberg Mathematisches Institut Dr. A. Holschbach

Blatt 2

Abgabe bis Freitag, den 29.04.2011, um 14.00 Uhr

Aufgabe 1. Es sei I eine gerichtete halbgeordnete Menge und $(X_i)_{i \in I}$ eine projektives System topologischer Räume (mit stetigen Übergangsabbildungen φ_{ij}). Zeigen Sie, dass der in der Vorlesung definierte topologische Raum $X = \varprojlim X_i$ die universelle Eigenschaft des projektiven Limes topologischer Räume erfüllt:

Ist Y ein topologischer Raum und ist $(f_i: Y \to X_i)_{i \in I}$ eine Familie stetiger Abbildungen mit $f_i = \varphi_{ij} \circ f_j$ für $i \leq j$, so existiert genau eine stetige Abbildung $f: Y \to X$ mit $f_i = \pi_i \circ f$ für alle $i \in I$. Hierbei bezeichnet $\pi_i: X \to X_i$ die kanonische Projektion.

Aufgabe 2. Unter den Bedingungen und Bezeichnungen von Aufgabe 1 nehme man zusätzlich an, dass alle f_i surjektiv sind. Zeigen Sie: f(Y) ist dicht in X. Ist zudem Y kompakt und alle X_i hausdorffsch, so ist f sogar surjektiv.

Aufgabe 3. Es sei X ein topologischer Raum. Zeigen Sie, dass X genau dann hausdorffsch ist, wenn die Diagonale

$$\Delta = \{(x, x) \mid x \in X\} \subset X \times X$$

eine abgeschlossene Teilmenge des Produktraumes $X \times X$ ist.

Folgern Sie daraus: Sind f und g stetige Abbildungen eines topologischen Raumes Y in einen Hausdorffraum X, so gilt:

f und q stimmen auf einer dichten Teilmenge von Y überein \implies f = q.

Aufgabe 4. Es sei G eine topologische Gruppe. Zeigen Sie:

- (a) Ist H eine Untergruppe von G, dann ist auch ihr Abschluss \overline{H} eine Untergruppe von G. Ist H ein Normalteiler von G, dann ist auch \overline{H} ein Normalteiler von G.
- (b) Ist G hausdorffsch und H eine abelsche Untergruppe von G, dann ist auch \overline{H} eine abelsche Untergruppe von G.

Hinweis. Reduzieren Sie auf den Fall, dass H dicht in G ist, und wenden Sie das Ergebnis von Aufgabe 3 auf geeignete Abbildungen $G \times G \to G$ an.

Aufgabe 5*. Sei G eine zusammenhängende topologische Gruppe.

(a) Zeigen Sie: Ist U eine beliebige offene 1-Umgebung, so gilt

$$\bigcup_{n\in\mathbb{N}} U^n = G,$$

wobei $U^n = \{u_1 \cdots u_n \mid u_1, \dots, u_n \in U\}.$

Hinweis. Beweisen Sie, dass die Menge $V:=\bigcup_{n\in\mathbb{N}}U^n$ offen und abgeschlossen ist.

- (b) Eine surjektive stetige Abbildung $p: X \to Y$ zwischen topologischen Räumen heißt **Überlagerung**, wenn es zu jedem $y \in Y$ eine offene Umgebung V von y gibt, deren Urbild $p^{-1}(V)$ eine disjunkte Vereinigung offener Mengen U_i ist, die jeweils unter p homöomorph auf V abgebildet werden. Zeigen Sie:
 - Sei $p:G\to H$ eine Überlagerung topologischer Gruppen, d. h. ein stetiger Gruppenhomomorphismus, der als Abbildung topologischer Räume eine Überlagerung ist. Dann ist $\ker(p)$ im Zentralisator von G enthalten, also insbesondere abelsch.

Hinweis. Zeigen Sie zunächst, dass $N = \ker(p)$ eine diskrete Untergruppe ist, d. h. zu jedem $g \in N$ gibt es eine offene Umgebung $V \subset G$ mit $V \cap N = \{g\}$. Zu diesem Paar g, V lässt sich eine offene 1-Umgebung U finden, so dass $UgU^{-1} \subset V$. Zeigen Sie $ugu^{-1} = g$ für $u \in U$ und verwenden Sie (a).