Automorphe Produkte für Unitäre Gruppen Dipl. Math. Eric F. W. Hofmann 8.2.2011

Unendliche Produkte

Betrachten wir zunächst ein einfaches Beispiel

$$h(q) = \prod_{n=1}^{\infty} (1 - q^n)$$
 (absolut konvergent für $|q| < 1$).

Dies ist das Weierstraßprodukt zur geometrischen Reihe $\sum_{n=0}^{\infty} q^n$. Bereits dieses Beispiel hat einen interessanten Anwendungsbezug: In der q-Entwicklung von $h(q)^{-1}$ taucht die Partitionsfunktion p(n) au

$$\frac{1}{h(q)} = \sum_{n=0}^{\infty} p(n) q^n = 1 + q + 2q^2 + 3q^3 + 5q^4 + 7q^5 + \cdots$$

welche weiterhin Gegenstand aktueller Forschung ist

Unendliche Produkte

Betrachten wir zunächst ein einfaches Beispiel

$$h(q) = \prod_{n=1}^{\infty} (1 - q^n)$$
 (absolut konvergent für $|q| < 1$).

Dies ist das Weierstraßprodukt zur geometrischen Reihe $\sum_{n=0}^{\infty} q^n$. Bereits dieses Beispiel hat einen interessanten Anwendungsbezug: In der q-Entwicklung von $h(q)^{-1}$ taucht die Partitionsfunktion p(n) auf:

$$\frac{1}{h(q)} = \sum_{n=0}^{\infty} p(n) q^n = 1 + q + 2q^2 + 3q^3 + 5q^4 + 7q^5 + \cdots,$$

welche weiterhin Gegenstand aktueller Forschung ist.

Die △-Funktion

Betrachten wir folgendes Beispiel

$$\Delta(q) = q h(q)^{24} = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$
, für $|q| < 1$.

Bezeichne mit III die obere Halbebene

$$\mathbb{H} = \{ \tau \in \mathbb{C} ; \ \Im \tau > 0 \} .$$

Jedes $q \in \mathbb{C}$ mit |q| < 1 lässt sich als $q = e^{2\pi i \tau}$ für ein $\tau \in \mathbb{H}$ schreiben. Damit wird $\Delta(\tau)$ zu einer holomorphen Funktion auf \mathbb{H} .

Diese weist eine bemerkenswerte Symmetrieeigenschaft auf:

$$\Delta\left(\frac{a\tau+b}{c\tau+d}\right)=\left(c\tau+d\right)^{12}\Delta(\tau),$$

für $a, b, c, d \in \mathbb{Z}$, mit ad - bc = 1.

Die △-Funktion

Betrachten wir folgendes Beispiel

$$\Delta(q) = q h(q)^{24} = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$
, für $|q| < 1$.

Bezeichne mit III die obere Halbebene

$$\mathbb{H} = \{ \tau \in \mathbb{C} ; \ \Im \tau > 0 \} .$$

Jedes $q \in \mathbb{C}$ mit |q| < 1 lässt sich als $q = e^{2\pi i \tau}$ für ein $\tau \in \mathbb{H}$ schreiben. Damit wird $\Delta(\tau)$ zu einer holomorphen Funktion auf \mathbb{H} .

Diese weist eine bemerkenswerte Symmetrieeigenschaft auf:

$$\Delta\left(\frac{a\tau+b}{c\tau+d}\right)=\left(c\tau+d\right)^{12}\Delta(\tau),$$

für $a, b, c, d \in \mathbb{Z}$, mit ad - bc = 1.

Die Operation von $SL_2(\mathbb{Z})$ auf \mathbb{H}

Die Gruppe $SL_2(\mathbb{Z})$, der Matrizen

$$\Gamma(1) = \operatorname{SL}_2(\mathbb{Z}) = \left\{ \left(egin{array}{c} a \ b \ c \ d \end{array} \right) \in \operatorname{GL}_2(\mathbb{Z}) \, ; \ ad - bc = 1
ight\}$$

Operiert auf III durch Möbiustransformationen.

Für $M \in \Gamma(1)$ mit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ und $\tau \in \mathbb{H}$ hat mar

$$M: \tau \longmapsto \frac{a\tau + b}{c\tau + d}$$

Neben $\Gamma(1)$ betrachtet man auch *Kongruenzuntergruppen* wie $\Gamma(N)$ und $\Gamma_0(N)$:

$$\begin{split} \Gamma(N) &= \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \operatorname{SL}_2(\mathbb{Z}) \, ; \, \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \equiv \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) \, \operatorname{mod} \, N \right\} \\ \Gamma_0(N) &= \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \operatorname{SL}_2(\mathbb{Z}) \, ; \, c \equiv 0 \, \operatorname{mod} \, N \right\} \end{split}$$

Die Operation von $SL_2(\mathbb{Z})$ auf \mathbb{H}

Die Gruppe $SL_2(\mathbb{Z})$, der Matrizen

$$\Gamma(1) = \operatorname{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z}); \ ad - bc = 1 \right\}$$

Operiert auf \mathbb{H} durch *Möbiustransformationen*.

Für $M \in \Gamma(1)$ mit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ und $\tau \in \mathbb{H}$ hat man

$$M: \tau \longmapsto \frac{a\tau + b}{c\tau + d}.$$

Neben $\Gamma(1)$ betrachtet man auch *Kongruenzuntergruppen* wie $\Gamma(N)$ und $\Gamma_0(N)$:

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \; ; \; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \bmod N \right\}$$

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \; ; \; c \equiv 0 \bmod N \right\}$$

Die Operation von $SL_2(\mathbb{Z})$ auf \mathbb{H}

Die Gruppe $SL_2(\mathbb{Z})$, der Matrizen

$$\Gamma(1) = \operatorname{SL}_2(\mathbb{Z}) = \left\{ \left(egin{array}{c} a \ b \ c \ d \end{array} \right) \in \operatorname{GL}_2(\mathbb{Z}) \, ; \ ad-bc=1
ight\}$$

Operiert auf \mathbb{H} durch *Möbiustransformationen*.

Für $M \in \Gamma(1)$ mit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ und $\tau \in \mathbb{H}$ hat man

$$M: \tau \longmapsto \frac{a\tau + b}{c\tau + d}.$$

Neben $\Gamma(1)$ betrachtet man auch *Kongruenzuntergruppen* wie $\Gamma(N)$ und $\Gamma_0(N)$:

$$\begin{split} &\Gamma(\textit{N}) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \mathsf{SL}_2(\mathbb{Z}) \, ; \, \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \equiv \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) \; \mathsf{mod} \; \textit{N} \right\} \\ &\Gamma_0(\textit{N}) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \mathsf{SL}_2(\mathbb{Z}) \, ; \; c \equiv 0 \; \mathsf{mod} \; \textit{N} \right\} \end{split}$$

Definition

Sei Γ eine Untergruppe von endlichem Index in $\Gamma(1)$, und $k \in \mathbb{Z}$. Eine Funktion $f : \mathbb{H} \to \mathbb{C}$ heißt *schwach holomorphe Modulform*, wenn

- 1. $f(\tau)$ ist holomorph auf \mathbb{H} .
- 2. Es gilt

$$f(M\tau) = (c\tau + d)^k f(\tau)$$
, für jedes $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$

3. f ist (höchstens) meromorph in den Spitzen von Γ .

Man schreibt nun $f \in \mathcal{M}_k^1(\Gamma)$.

Die letzte Bedingung bedarf einer kurzen Erläuterung ..

Definition

Sei Γ eine Untergruppe von endlichem Index in $\Gamma(1)$, und $k \in \mathbb{Z}$. Eine Funktion $f : \mathbb{H} \to \mathbb{C}$ heißt *schwach holomorphe Modulform*, wenn

- 1. $f(\tau)$ ist holomorph auf \mathbb{H} .
- 2. Es gilt

$$f(M\tau) = (c\tau + d)^k f(\tau)$$
, für jedes $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$

3. f ist (höchstens) meromorph in den Spitzen von Γ .

Man schreibt nun $f \in \mathcal{M}_k^!(\Gamma)$.

Die letzte Bedingung bedarf einer kurzen Erläuterung ...

Definition

Sei Γ eine Untergruppe von endlichem Index in $\Gamma(1)$, und $k \in \mathbb{Z}$. Eine Funktion $f : \mathbb{H} \to \mathbb{C}$ heißt *schwach holomorphe Modulform*, wenn

- 1. $f(\tau)$ ist holomorph auf \mathbb{H} .
- 2. Es gilt

$$f(M\tau) = (c\tau + d)^k f(\tau)$$
, für jedes $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$

3. f ist (höchstens) meromorph in den Spitzen von Γ .

Man schreibt nun $f \in \mathcal{M}_k^!(\Gamma)$.

Die letzte Bedingung bedarf einer kurzen Erläuterung ...

Definition

Sei Γ eine Untergruppe von endlichem Index in $\Gamma(1)$, und $k \in \mathbb{Z}$. Eine Funktion $f : \mathbb{H} \to \mathbb{C}$ heißt *schwach holomorphe Modulform*, wenn

- 1. $f(\tau)$ ist holomorph auf \mathbb{H} .
- 2. Es gilt

$$f(M\tau) = (c\tau + d)^k f(\tau)$$
, für jedes $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$

3. f ist (höchstens) meromorph in den Spitzen von Γ .

Man schreibt nun $f \in \mathcal{M}_k^!(\Gamma)$.

Die letzte Bedingung bedarf einer kurzen Erläuterung ...

Unter den *Spitzen* von Γ versteht man Γ-Äquivalenzklassen von Punkten in

 $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{\infty\}$. Sei nun $\Gamma = \Gamma(1)$, dann gibt es nur die Spitze $[\infty] = \mathbb{P}^1(\mathbb{Q})$. Für $f \in \mathcal{M}_k^!(\Gamma(1))$ gilt

$$f(\tau + 1) = f(\tau)$$
, da $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma(1)$.

Somit hat f eine Fourierentwicklung in $q = e^{2\pi i \tau} = e(\tau)$

$$f(\tau) = \sum_{n \in \mathbb{Z}} c(n) q^n$$

Man bezeichnet nun f als meromorph in der Spitze ∞ , wenn $c(n) \neq 0$ nur für $n \gg -\infty$ holomorph in der Spitze ∞ , wenn $c(n) \neq 0$ nur für $n \geq 0$. Spitzenform, wenn $c(n) \neq 0$ nur für n > 0.

Unter den Spitzen von Γ versteht man Γ -Äquivalenzklassen von Punkten in $\mathbb{P}^1(\mathbb{Q})=\mathbb{Q}\cup\{\infty\}$. Sei nun $\Gamma=\Gamma(1)$, dann gibt es nur die Spitze $[\infty]=\mathbb{P}^1(\mathbb{Q})$. Für $f\in\mathcal{M}^1_k(\Gamma(1))$ gilt

$$f(\tau + 1) = f(\tau)$$
, da $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma(1)$.

Somit hat f eine Fourierentwicklung in $q = e^{2\pi i \tau} = e(\tau)$

$$f(\tau) = \sum_{n \in \mathbb{Z}} c(n)q^n.$$

Man bezeichnet nun f als meromorph in der Spitze ∞ , wenn $c(n) \neq 0$ nur für $n \gg -\infty$ holomorph in der Spitze ∞ , wenn $c(n) \neq 0$ nur für $n \geq 0$. Spitzenform, wenn $c(n) \neq 0$ nur für n > 0.

Unter den Spitzen von Γ versteht man Γ -Äquivalenzklassen von Punkten in $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{\infty\}$. Sei nun $\Gamma = \Gamma(1)$, dann gibt es nur die Spitze $[\infty] = \mathbb{P}^1(\mathbb{Q})$. Für $f \in \mathcal{M}^1_k(\Gamma(1))$ gilt

$$f(\tau + 1) = f(\tau)$$
, da $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma(1)$.

Somit hat f eine Fourierentwicklung in $q = e^{2\pi i \tau} = e(\tau)$

$$f(\tau) = \sum_{n \in \mathbb{Z}} c(n)q^n.$$

Man bezeichnet nun f als meromorph in der Spitze ∞ , wenn $c(n) \neq 0$ nur für $n \gg -\infty$. holomorph in der Spitze ∞ , wenn $c(n) \neq 0$ nur für $n \geq 0$. Spitzenform, wenn $c(n) \neq 0$ nur für n > 0.

Unter den *Spitzen* von Γ versteht man Γ -Äquivalenzklassen von Punkten in $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{\infty\}$. Sei nun $\Gamma = \Gamma(1)$, dann gibt es nur die Spitze $[\infty] = \mathbb{P}^1(\mathbb{Q})$. Für $f \in \mathcal{M}^1_k(\Gamma(1))$ gilt

$$f(\tau + 1) = f(\tau)$$
, da $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma(1)$.

Somit hat f eine Fourierentwicklung in $q = e^{2\pi i \tau} = e(\tau)$

$$f(\tau) = \sum_{n \in \mathbb{Z}} c(n)q^n.$$

Man bezeichnet nun f als meromorph in der Spitze ∞ , wenn $c(n) \neq 0$ nur für $n \gg -\infty$. $f \in \mathcal{M}_k^1(\Gamma(1))$ holomorph in der Spitze ∞ , wenn $c(n) \neq 0$ nur für $n \geq 0$. $f \in \mathcal{M}_k(\Gamma(1))$ Spitzenform, wenn $c(n) \neq 0$ nur für n > 0. $f \in \mathcal{S}_k(\Gamma(1))$

Die Deltafunktion ist demnach eine *Spitzenform* vom Gewicht 12, ihre Fourierentwicklung lautet

$$\Delta(\tau) = \sum_{n=1}^{\infty} \tau(n) \, q^n = q - 24 \, q^2 + 252 \, q^3 - 1472 \, q^4 + \cdots \in \mathcal{S}_{12}(\Gamma(1)).$$

Eisensteinreihen (für $k \ge 4$, k gerade

$$E_k(\tau) = \frac{1}{2} \sum_{\substack{m,n \in \mathbb{Z} \\ \text{qqT}(m,n)=1}} \frac{1}{(m\tau+n)^k} = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n \in \mathcal{M}_k(\Gamma(1)),$$

mit B_k der k-ten Bernoulli-Zahl und $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$. Die modulare Invariante j

$$j(\tau) = \frac{E_4(\tau)^3}{\Delta(\tau)} = q^{-1} + 744 + 196884 \, q + 21493760 \, q^2 + \dots \in \mathcal{M}_0^!(\Gamma(1)).$$

Die Deltafunktion ist demnach eine *Spitzenform* vom Gewicht 12, ihre Fourierentwicklung lautet

$$\Delta(\tau) = \sum_{n=1}^{\infty} \tau(n) \, q^n = q - 24 \, q^2 + 252 \, q^3 - 1472 \, q^4 + \cdots \in \mathcal{S}_{12}(\Gamma(1)).$$

Eisensteinreihen (für $k \ge 4$, k gerade)

$$E_k(\tau) = \frac{1}{2} \sum_{\substack{m,n \in \mathbb{Z} \\ ggT(m,n)=1}} \frac{1}{(m\tau + n)^k} = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n \in \mathcal{M}_k(\Gamma(1)),$$

mit B_k der k-ten Bernoulli-Zahl und $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$. Die modulare Invariante j

$$j(\tau) = \frac{E_4(\tau)^3}{\Delta(\tau)} = q^{-1} + 744 + 196884 \, q + 21493760 \, q^2 + \dots \in \mathcal{M}_0^!(\Gamma(1)).$$

Die Deltafunktion ist demnach eine *Spitzenform* vom Gewicht 12, ihre Fourierentwicklung lautet

$$\Delta(\tau) = \sum_{n=1}^{\infty} \tau(n) \, q^n = q - 24 \, q^2 + 252 \, q^3 - 1472 \, q^4 + \cdots \in \mathcal{S}_{12}(\Gamma(1)).$$

Eisensteinreihen (für $k \ge 4$, k gerade)

$$E_k(\tau) = \frac{1}{2} \sum_{\substack{m,n \in \mathbb{Z} \\ \operatorname{ggT}(m,n)=1}} \frac{1}{(m\tau+n)^k} = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n \in \mathcal{M}_k(\Gamma(1)),$$

mit B_k der k-ten Bernoulli-Zahl und $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$.

Die modulare Invariante

$$j(\tau) = \frac{E_4(\tau)^3}{\Delta(\tau)} = q^{-1} + 744 + 196884 \, q + 21493760 \, q^2 + \dots \in \mathcal{M}_0^1(\Gamma(1)).$$

Die Deltafunktion ist demnach eine *Spitzenform* vom Gewicht 12, ihre Fourierentwicklung lautet

$$\Delta(\tau) = \sum_{n=1}^{\infty} \tau(n) \, q^n = q - 24 \, q^2 + 252 \, q^3 - 1472 \, q^4 + \cdots \in \mathcal{S}_{12}(\Gamma(1)).$$

Eisensteinreihen (für $k \ge 4$, k gerade)

$$E_k(\tau) = \frac{1}{2} \sum_{\substack{m,n \in \mathbb{Z} \\ \operatorname{ggT}(m,n)=1}} \frac{1}{(m\tau + n)^k} = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n \in \mathcal{M}_k(\Gamma(1)),$$

mit B_k der k-ten Bernoulli-Zahl und $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$. Die modulare Invariante i

$$j(\tau) = \frac{E_4(\tau)^3}{\Delta(\tau)} = q^{-1} + 744 + 196884 \, q + 21493760 \, q^2 + \cdots \in \mathcal{M}_0^!(\Gamma(1)).$$

Aus *Liftungen* ergeben sich überraschende Korrespondenzen zwischen Modulformen. Die *Liftung von Borcherds* erlaubt es, aus der Fourierentwicklung einer Modulformen eine andere Modulform als undendliches Produkt zu erhalten. Beispielsweise

Aus *Liftungen* ergeben sich überraschende Korrespondenzen zwischen Modulformen. Die *Liftung von Borcherds* erlaubt es, aus der Fourierentwicklung einer Modulformen eine andere Modulform als undendliches Produkt zu erhalten. Beispielsweise

$$\Delta(\tau)$$
 \uparrow
 $12\theta(\tau)$

Dabei bezeichnet $\theta(\tau)$ folgende Funktion:

$$\theta(\tau) = \sum_{n \in \mathbb{Z}} q^{n^2} = 1 + 2 \sum_{n > 0} q^{n^2}$$
 (Jacobische Theta-Funktion)

Aus *Liftungen* ergeben sich überraschende Korrespondenzen zwischen Modulformen. Die *Liftung von Borcherds* erlaubt es, aus der Fourierentwicklung einer Modulformen eine andere Modulform als undendliches Produkt zu erhalten. Beispielsweise

$$\begin{array}{ccc}
\Delta(\tau) & & j(\tau) \\
\uparrow & & \uparrow \\
12\theta(\tau) & & f(\tau)
\end{array}$$

Dabei bezeichnen $\theta(\tau)$ und $f(\tau)$ folgende Funktionen:

$$\theta(\tau)=\sum_{n\in\mathbb{Z}}q^{n^2}=1+2\sum_{n>0}q^{n^2}\quad \text{(Jacobische Theta-Funktion)}$$

$$f(\tau)=3q^{-3}-744q+80256q^4+\cdots,$$

Aus *Liftungen* ergeben sich überraschende Korrespondenzen zwischen Modulformen. Die *Liftung von Borcherds* erlaubt es, aus der Fourierentwicklung einer Modulformen eine andere Modulform als undendliches Produkt zu erhalten. Beispielsweise

$$\begin{array}{cccc}
\Delta(\tau) & j(\tau) & E_4(\tau) \\
\uparrow & & \uparrow & \uparrow \\
12\theta(\tau) & f(\tau) & g(\tau)
\end{array}$$

Dabei bezeichnen $\theta(\tau)$, $f(\tau)$ und $g(\tau)$ folgende Funktionen:

$$\theta(\tau) = \sum_{n \in \mathbb{Z}} q^{n^2} = 1 + 2 \sum_{n > 0} q^{n^2} \quad \text{(Jacobische Theta-Funktion)}$$

$$f(\tau) = 3q^{-3} - 744q + 80256q^4 + \cdots, \qquad g(\tau) = q^{-3} + 4 - 240 \ q + \cdots$$

Aus *Liftungen* ergeben sich überraschende Korrespondenzen zwischen Modulformen. Die *Liftung von Borcherds* erlaubt es, aus der Fourierentwicklung einer Modulformen eine andere Modulform als undendliches Produkt zu erhalten. Beispielsweise

$$\begin{array}{cccc}
\Delta(\tau) & j(\tau) & E_4(\tau) \\
\uparrow & & \uparrow & \\
12\theta(\tau) & f(\tau) & g(\tau)
\end{array}$$

Dabei bezeichnen $\theta(\tau)$, $f(\tau)$ und $g(\tau)$ folgende Funktionen:

$$\theta(\tau) = \sum_{n \in \mathbb{Z}} q^{n^2} = 1 + 2 \sum_{n > 0} q^{n^2} \quad \text{(Jacobische Theta-Funktion)}$$

$$f(\tau) = 3q^{-3} - 744q + 80256q^4 + \cdots, \qquad g(\tau) = q^{-3} + 4 - 240 \, q + \cdots$$

(Hierbei sind $\theta(\tau)$, $f(\tau)$ und $g(\tau)$ alle aus $\mathcal{M}_{1/2}^{!}(\Gamma_{0}(4))$.)

Sei $(V, (\cdot, \cdot))$ ein quadratischer Raum mit (\cdot, \cdot) einer symmetrischen, nicht ausgearteten Bilinearform der Signatur (2, b). Die spezielle orthogonale Gruppe SO(V) ist über $\mathbb R$ isomorph zu SO(2, b).

Ein symmetrisches Gebiet für die Operation von SO(V) auf V erhält man als Quotient

$$\mathsf{SO}(V)(\mathbb{R})/\mathcal{C} \simeq \mathsf{SO}(\mathsf{2},b)/\left(\mathsf{SO}(\mathsf{2}) imes \mathsf{SO}(b)
ight) \simeq \mathcal{H}_\mathsf{C}$$

(Das Tubengebietsmodell $\mathcal{H}_{\mathbb{O}}$ trägt die Struktur einer komplexen Mannigfaltigkeit.

Sei $(V, (\cdot, \cdot))$ ein quadratischer Raum mit (\cdot, \cdot) einer symmetrischen, nicht ausgearteten Bilinearform der Signatur (2, b). Die spezielle orthogonale Gruppe SO(V) ist über $\mathbb R$ isomorph zu SO(2, b).

Ein symmetrisches Gebiet für die Operation von SO(V) auf V erhält man als Quotient

$$\mathsf{SO}(V)(\mathbb{R})/\mathcal{C} \simeq \mathsf{SO}(2,b)/\left(\mathsf{SO}(2) \times \mathsf{SO}(b)\right) \simeq \mathcal{H}_{\mathbb{O}}$$

(Das Tubengebietsmodell \mathcal{H}_{O} trägt die Struktur einer komplexen Mannigfaltigkeit.

Sei $(V, (\cdot, \cdot))$ ein quadratischer Raum mit (\cdot, \cdot) einer symmetrischen, nicht ausgearteten Bilinearform der Signatur (2, b). Die spezielle orthogonale Gruppe SO(V) ist über $\mathbb R$ isomorph zu SO(2, b).

Ein symmetrisches Gebiet für die Operation von SO(V) auf V erhält man als Quotient

$$\mathsf{SO}(\mathit{V})(\mathbb{R})/\mathcal{C} \simeq \mathsf{SO}(2,\mathit{b})/\left(\mathsf{SO}(2) \times \mathsf{SO}(\mathit{b})\right) \simeq \mathcal{H}_\mathsf{O}$$

(Das Tubengebietsmodell \mathcal{H}_{O} trägt die Struktur einer komplexen Mannigfaltigkeit.)

Sei $(V, (\cdot, \cdot))$ ein quadratischer Raum mit (\cdot, \cdot) einer symmetrischen, nicht ausgearteten Bilinearform der Signatur (2, b). Die spezielle orthogonale Gruppe SO(V) ist über $\mathbb R$ isomorph zu SO(2, b).

Ein symmetrisches Gebiet für die Operation von SO(V) auf V erhält man als Quotient

$$\mathsf{SO}(\mathit{V})(\mathbb{R})/\mathcal{C} \simeq \mathsf{SO}(2,\mathit{b})/\left(\mathsf{SO}(2) \times \mathsf{SO}(\mathit{b})\right) \simeq \mathcal{H}_\mathsf{O}$$

(Das Tubengebietsmodell \mathcal{H}_{O} trägt die Struktur einer komplexen Mannigfaltigkeit.)

Sei *L* eine gerades Gitter in *V*, wir nehmen an, *L* sei unimodular.

Die arithmetische Gruppe $\Gamma_L = SO(L)^+$ operiert auf \mathcal{H}_O . Man definiert nun orthogonale Modulformen für Γ_L auf \mathcal{H}_O ähnlich wie für $SL_2(\mathbb{Z})$ auf \mathbb{H} .

Sei $(V, (\cdot, \cdot))$ ein quadratischer Raum mit (\cdot, \cdot) einer symmetrischen, nicht ausgearteten Bilinearform der Signatur (2, b). Die spezielle orthogonale Gruppe SO(V) ist über $\mathbb R$ isomorph zu SO(2, b).

Ein symmetrisches Gebiet für die Operation von SO(V) auf V erhält man als Quotient

$$\mathsf{SO}(\mathit{V})(\mathbb{R})/\mathcal{C} \simeq \mathsf{SO}(2,\mathit{b})/\left(\mathsf{SO}(2) \times \mathsf{SO}(\mathit{b})\right) \simeq \mathcal{H}_\mathsf{O}$$

(Das Tubengebietsmodell \mathcal{H}_{O} trägt die Struktur einer komplexen Mannigfaltigkeit.)

$$\mathcal{M}^!_{1-b/2}(\Gamma(1))\ni f(\tau)=\sum_{\substack{n\in\mathbb{Z}\\n\gg-\infty}}c(n)e(n\tau),\quad \tau\in\mathbb{H}.$$

$$\mathcal{M}^!_{1-b/2}(\Gamma(1))\ni f(\tau)=\sum_{\substack{n\in\mathbb{Z}\\n\gg-\infty}}c(n)e(n\tau),\quad \tau\in\mathbb{H}.$$

$$\begin{split} \Psi_L(Z;f) &= e\big((\rho,Z)\big) \prod_{\substack{\lambda \in K \\ (\lambda,W) > 0}} \left(1 - e\big((\lambda,Z)\big)\right)^{c\big(\lambda^2/2\big)}, \quad Z \in \mathcal{H}_O. \\ & \qquad \qquad \bigwedge_{\substack{1 - b/2} \\ n \gg -\infty}} c(n)e(n\tau), \quad \tau \in \mathbb{H}. \end{split}$$

$$\Psi_{L}(Z;f) = e((\rho,Z)) \prod_{\substack{\lambda \in K \\ (\lambda,W) > 0}} (1 - e((\lambda,Z)))^{c(\lambda^{2}/2)}, \quad Z \in \mathcal{H}_{O}.$$

$$\uparrow$$

$$M_{1-b/2}^{!}(\Gamma(1)) \ni f(\tau) = \sum_{\substack{n \in \mathbb{Z} \\ n \in \mathbb{Z}}} c(n)e(n\tau), \quad \tau \in \mathbb{H}.$$

- 1. Meromorphe orthogonale Modulform für Γ_L auf \mathcal{H}_O vom Gewicht c(0)/2.
- 2. Null- und Polstellen auf *Heegner Divisoren* (durch den Hauptteil von $f(\tau)$ bestimmt).
- 3. Die Liftung ist multiplikativ: $\Psi_L(Z; f + g) = \Psi_L(Z; f) \cdot \Psi_L(Z; g)$.

$$\Psi_{L}(Z; f) = e((\rho, Z)) \prod_{\substack{\lambda \in K \\ (\lambda, W) > 0}} (1 - e((\lambda, Z)))^{c(\lambda^{2}/2)}, \quad Z \in \mathcal{H}_{O}.$$

$$\uparrow$$

$$M_{1-b/2}^{!}(\Gamma(1)) \ni f(\tau) = \sum_{\substack{n \in \mathbb{Z} \\ n \in \mathbb{Z}}} c(n)e(n\tau), \quad \tau \in \mathbb{H}.$$

- 1. Meromorphe orthogonale Modulform für Γ_L auf \mathcal{H}_O vom Gewicht c(0)/2.
- 2. Null- und Polstellen auf *Heegner Divisoren* (durch den Hauptteil von $f(\tau)$ bestimmt).
- 3. Die Liftung ist multiplikativ: $\Psi_L(Z; f + g) = \Psi_L(Z; f) \cdot \Psi_L(Z; g)$.

$$\Psi_{L}(Z; f) = e((\rho, Z)) \prod_{\substack{\lambda \in K \\ (\lambda, W) > 0}} (1 - e((\lambda, Z)))^{c(\lambda^{2}/2)}, \quad Z \in \mathcal{H}_{O}.$$

$$\uparrow$$

$$M_{1-b/2}^{!}(\Gamma(1)) \ni f(\tau) = \sum_{\substack{n \in \mathbb{Z} \\ n \in \mathbb{Z}}} c(n)e(n\tau), \quad \tau \in \mathbb{H}.$$

- 1. Meromorphe orthogonale Modulform für Γ_L auf \mathcal{H}_O vom Gewicht c(0)/2.
- 2. Null- und Polstellen auf *Heegner Divisoren* (durch den Hauptteil von $f(\tau)$ bestimmt).
- 3. Die Liftung ist multiplikativ: $\Psi_L(Z; f + g) = \Psi_L(Z; f) \cdot \Psi_L(Z; g)$.

Hermitesche Räume über imaginärquadratischen Zahlkörpern

Sei $d \in \mathbb{Z}$, d < 0 und quadratfrei. Sei $\mathbb{F} = \mathbb{Q}(\sqrt{d})$.

Weiter bezeichne $\mathcal{O}_{\mathbb{F}}$ den Ring der ganzen Zahlen in \mathbb{F} und $\mathcal{D}_{\mathbb{F}}^{-1}$ das Dedekindsche Komplementärmodul, $\mathcal{D}_{\mathbb{F}}$ die Diskriminante von \mathbb{F} und $\delta = \sqrt{\mathcal{D}_{\mathbb{F}}}$.

Sei $(V, \langle \cdot, \cdot \rangle)$ ein hermitescher Raum über $\mathbb F$ und $(V_{\mathbb R}, \langle \cdot, \cdot \rangle)$ der zugehörige komplexe hermitesche Raum mit der hermiteschen Form

$$\langle \alpha \, v, \beta \, w \rangle = \alpha \bar{\beta} \, \langle v, w \rangle$$
 der Signatur (1, *m*).

$$SU(V)(\mathbb{R})/\mathcal{C}_U \simeq SU(1, m)/\left(SU(1) \times SU(m)\right) \simeq \mathcal{K}_U$$
.

Hermitesche Räume über imaginärquadratischen Zahlkörpern

Sei $d \in \mathbb{Z}$, d < 0 und quadratfrei. Sei $\mathbb{F} = \mathbb{Q}(\sqrt{d})$. Weiter bezeichne $\mathcal{O}_{\mathbb{F}}$ den Ring der ganzen Zahlen in \mathbb{F} und $\mathcal{D}_{\mathbb{F}}^{-1}$ das Dedekindsche Komplementärmodul, $\mathcal{D}_{\mathbb{F}}$ die Diskriminante von \mathbb{F} und $\delta = \sqrt{\mathcal{D}_{\mathbb{F}}}$.

Sei $(V,\langle\cdot,\cdot
angle)$ ein hermitescher Raum über $\mathbb F$ und $(V_{\mathbb R},\langle\cdot,\cdot
angle)$ der zugehörige komplexe hermitesche Raum mit der hermiteschen Form

$$\langle \alpha \, v, \beta \, w \rangle = \alpha \bar{\beta} \, \langle v, w \rangle$$
 der Signatur (1, *m*).

$$SU(V)(\mathbb{R})/\mathcal{C}_U \simeq SU(1, m)/\left(SU(1) \times SU(m)\right) \simeq \mathcal{K}_U$$
.

Hermitesche Räume über imaginärquadratischen Zahlkörpern

Sei $d\in\mathbb{Z}$, d<0 und quadratfrei. Sei $\mathbb{F}=\mathbb{Q}(\sqrt{d})$. Weiter bezeichne $\mathcal{O}_{\mathbb{F}}$ den Ring der ganzen Zahlen in \mathbb{F} und $\mathcal{D}_{\mathbb{F}}^{-1}$ das Dedekindsche Komplementärmodul, $\mathcal{D}_{\mathbb{F}}$ die Diskriminante von \mathbb{F} und $\delta=\sqrt{\mathcal{D}_{\mathbb{F}}}$.

Sei $(V,\langle\cdot,\cdot\rangle)$ ein hermitescher Raum über $\mathbb F$ und $(V_{\mathbb R},\langle\cdot,\cdot\rangle)$ der zugehörige komplexe hermitesche Raum mit der hermiteschen Form

$$\langle \alpha \mathbf{v}, \beta \mathbf{w} \rangle = \alpha \bar{\beta} \langle \mathbf{v}, \mathbf{w} \rangle$$
 der Signatur (1, *m*).

$$SU(V)(\mathbb{R})/\mathcal{C}_U \simeq SU(1, m)/(SU(1) \times SU(m)) \simeq \mathcal{K}_U$$
.

Hermitesche Räume über imaginärguadratischen Zahlkörpern

Sei $d \in \mathbb{Z}$, d < 0 und quadratfrei. Sei $\mathbb{F} = \mathbb{Q}(\sqrt{d})$. Weiter bezeichne $\mathcal{O}_{\mathbb{F}}$ den Ring der ganzen Zahlen in \mathbb{F} und $\mathcal{D}_{\mathbb{F}}^{-1}$ das Dedekindsche Komplementärmodul, $D_{\mathbb{F}}$ die Diskriminante von \mathbb{F} und $\delta = \sqrt{D_{\mathbb{F}}}$.

Sei $(V, \langle \cdot, \cdot \rangle)$ ein hermitescher Raum über $\mathbb F$ und $(V_{\mathbb R}, \langle \cdot, \cdot \rangle)$ der zugehörige komplexe hermitesche Raum mit der hermiteschen Form

$$\langle \alpha \mathbf{v}, \beta \mathbf{w} \rangle = \alpha \bar{\beta} \langle \mathbf{v}, \mathbf{w} \rangle$$
 der Signatur (1, *m*).

$$SU(V)(\mathbb{R})/\mathcal{C}_U \simeq SU(1,m)/\left(SU(1) \times SU(m)\right) \simeq \mathcal{K}_U$$
.

Hermitesche Räume über imaginärguadratischen Zahlkörpern

Sei $d \in \mathbb{Z}$, d < 0 und quadratfrei. Sei $\mathbb{F} = \mathbb{Q}(\sqrt{d})$. Weiter bezeichne $\mathcal{O}_{\mathbb{F}}$ den Ring der ganzen Zahlen in \mathbb{F} und $\mathcal{D}_{\mathbb{F}}^{-1}$ das Dedekindsche Komplementärmodul, $D_{\mathbb{F}}$ die Diskriminante von \mathbb{F} und $\delta = \sqrt{D_{\mathbb{F}}}$.

Sei $(V, \langle \cdot, \cdot \rangle)$ ein hermitescher Raum über $\mathbb F$ und $(V_{\mathbb R}, \langle \cdot, \cdot \rangle)$ der zugehörige komplexe hermitesche Raum mit der hermiteschen Form

$$\langle \alpha \mathbf{v}, \beta \mathbf{w} \rangle = \alpha \bar{\beta} \langle \mathbf{v}, \mathbf{w} \rangle$$
 der Signatur (1, *m*).

$$SU(V)(\mathbb{R})/\mathcal{C}_U \simeq SU(1,m)/\left(SU(1) \times SU(m)\right) \simeq \mathcal{K}_U$$
.

Hermitesche Gitter

und das Siegelgebietsmodell

Sei nun L ein hermitesches Gitter in V, d.h. ein $\mathcal{O}_{\mathbb{F}}$ -Modul mit $L \otimes_{\mathcal{O}_{\mathbb{F}}} \mathbb{F} = V$. Wir nehmen an, L sei gerade und unimodular (d.h. $\langle \lambda, \lambda \rangle \in \mathbb{Z}$ und $\langle L, L \rangle = \mathcal{D}_{\mathbb{F}}^{-1}$.) Die arithmetische Untergruppe $\Gamma_{L} = \mathrm{SU}(L) \subset \mathrm{SU}(V)$ operiert auf \mathcal{K}_{\square} .

Sei $\ell \in L$ primitiv und isotrop, $\ell' \in L$

Sei $z=\ell'+\tau\ell+\sigma\in V_{\mathbb{R}}$, mit $\tau\in\mathbb{C}$ und $\sigma\in\mathbb{C}^{m-1}$ negativ definit. Ist $\langle z,z\rangle>0$, so repräsentiert z eine Element $[z]\in\mathcal{K}_{\cup}\subset\mathbb{P}(V)(\mathbb{R})$.

Das Siegelgebiet

Man erhält so ein affines Modell für \mathcal{K}_U , das Siegelgebiet

$$\mathcal{H}_{U} = \left\{ (\tau, \sigma); \ 2\Im \tau |\delta|^{-1} > -\langle \sigma, \sigma \rangle \right\}.$$

Hermitesche Gitter

und das Siegelgebietsmodell

Sei nun L ein hermitesches Gitter in V, d.h. ein $\mathcal{O}_{\mathbb{F}}$ -Modul mit $L\otimes_{\mathcal{O}_{\mathbb{F}}}\mathbb{F}=V$. Wir nehmen an, L sei gerade und unimodular (d.h. $\langle \lambda, \lambda \rangle \in \mathbb{Z}$ und $\langle L, L \rangle = \mathcal{D}_{\mathbb{F}}^{-1}$.) Die arithmetische Untergruppe $\Gamma_L = \operatorname{SU}(L) \subset \operatorname{SU}(V)$ operiert auf \mathcal{K}_U .

Sei $\ell \in L$ primitiv und isotrop, $\ell' \in L$

Sei $z = \ell' + \tau \ell + \sigma \in V_{\mathbb{R}}$, mit $\tau \in \mathbb{C}$ und $\sigma \in \mathbb{C}^{m-1}$ negativ definit. Ist $\langle z, z \rangle > 0$, so repräsentiert z eine Element $[z] \in \mathcal{K}_{U} \subset \mathbb{P}(V)(\mathbb{R})$.

Das Siegelgebiet

Man erhält so ein affines Modell für \mathcal{K}_U , das Siegelgebiet

$$\mathcal{H}_{U} = \left\{ (\tau, \sigma); \ 2\Im \tau |\delta|^{-1} > -\langle \sigma, \sigma \rangle \right\}.$$

Hermitesche Gitter

und das Siegelgebietsmodell

Sei nun L ein hermitesches Gitter in V, d.h. ein $\mathcal{O}_{\mathbb{F}}$ -Modul mit $L\otimes_{\mathcal{O}_{\mathbb{F}}}\mathbb{F}=V$. Wir nehmen an, L sei gerade und unimodular (d.h. $\langle \lambda, \lambda \rangle \in \mathbb{Z}$ und $\langle L, L \rangle = \mathcal{D}_{\mathbb{F}}^{-1}$.) Die arithmetische Untergruppe $\Gamma_L = \mathrm{SU}(L) \subset \mathrm{SU}(V)$ operiert auf $\mathcal{K}_{\mathbb{U}}$.

Sei $\ell \in L$ primitiv und isotrop, $\ell' \in L$ mit $\langle \ell, \ell' \rangle \neq 0$.

Sei $z = \ell' + \tau \ell + \sigma \in V_{\mathbb{R}}$, mit $\tau \in \mathbb{C}$ und $\sigma \in \mathbb{C}^{m-1}$ negativ definit. Ist $\langle z, z \rangle > 0$, so repräsentiert z eine Element $[z] \in \mathcal{K}_{\mathsf{U}} \subset \mathbb{P}(V)(\mathbb{R})$.

Das Siegelgebiet

Man erhält so ein affines Modell für \mathcal{K}_U , das Siegelgebiet

$$\mathcal{H}_{\mathsf{U}} = \left\{ (\tau, \sigma) \, ; \, 2\Im \tau |\delta|^{-1} > -\langle \sigma, \sigma \rangle \right\}.$$

Hermitesche Gitter und das Siegelgebietsmodell

Sei nun L ein hermitesches Gitter in V, d.h. ein $\mathcal{O}_{\mathbb{F}}$ -Modul mit $L\otimes_{\mathcal{O}_{\mathbb{F}}}\mathbb{F}=V$. Wir nehmen an, L sei gerade und unimodular (d.h. $\langle \lambda, \lambda \rangle \in \mathbb{Z}$ und $\langle L, L \rangle = \mathcal{D}_{\mathbb{F}}^{-1}$.) Die arithmetische Untergruppe $\Gamma_L = \operatorname{SU}(L) \subset \operatorname{SU}(V)$ operiert auf \mathcal{K}_U .

Sei $\ell \in L$ primitiv und isotrop, $\ell' \in L$ ebenfalls isotrop und $\langle \ell, \ell' \rangle = -\delta^{-1}$. Sei $z = \ell' + \tau \ell + \sigma \in V_{\mathbb{R}}$, mit $\tau \in \mathbb{C}$ und $\sigma \in \mathbb{C}^{m-1}$ negativ definit. Ist $\langle z, z \rangle > 0$, so repräsentiert z eine Element $[z] \in \mathcal{K}_{\mathsf{U}} \subset \mathbb{P}(V)(\mathbb{R})$.

Das Siegelgebie

Man erhält so ein affines Modell für \mathcal{K}_U , das Siegelgebiet

$$\mathcal{H}_{\mathsf{U}} = \left\{ (\tau, \sigma) \, ; \, 2\Im \tau |\delta|^{-1} > -\langle \sigma, \sigma \rangle \right\}.$$

Hermitesche Gitter und das Siegelgebietsmodell

Sei nun L ein hermitesches Gitter in V, d.h. ein $\mathcal{O}_{\mathbb{F}}$ -Modul mit $L\otimes_{\mathcal{O}_{\mathbb{F}}}\mathbb{F}=V$. Wir nehmen an, L sei gerade und unimodular (d.h. $\langle \lambda, \lambda \rangle \in \mathbb{Z}$ und $\langle L, L \rangle = \mathcal{D}_{\mathbb{F}}^{-1}$.) Die arithmetische Untergruppe $\Gamma_L = \operatorname{SU}(L) \subset \operatorname{SU}(V)$ operiert auf \mathcal{K}_U .

Sei $\ell \in L$ primitiv und isotrop, $\ell' \in L$ ebenfalls isotrop und $\langle \ell, \ell' \rangle = -\delta^{-1}$.

Sei $z = \ell' + \tau \ell + \sigma \in V_{\mathbb{R}}$, mit $\tau \in \mathbb{C}$ und $\sigma \in \mathbb{C}^{m-1}$ negativ definit. Ist $\langle z, z \rangle > 0$, so repräsentiert z eine Element $[z] \in \mathcal{K}_{\square} \subset \mathbb{P}(V)(\mathbb{R})$.

Das Siegelgebiet

Man erhält so ein affines Modell für \mathcal{K}_U , das Siegelgebiet

$$\mathcal{H}_{\mathsf{U}} = \left\{ (\tau, \sigma) \, ; \, 2\Im \tau |\delta|^{-1} > -\langle \sigma, \sigma \rangle \right\}.$$

Hermitesche Gitter und das Siegelgebietsmodell

Sei nun L ein hermitesches Gitter in V, d.h. ein $\mathcal{O}_{\mathbb{F}}$ -Modul mit $L\otimes_{\mathcal{O}_{\mathbb{F}}}\mathbb{F}=V$. Wir nehmen an, L sei gerade und unimodular (d.h. $\langle \lambda, \lambda \rangle \in \mathbb{Z}$ und $\langle L, L \rangle = \mathcal{D}_{\mathbb{F}}^{-1}$.) Die arithmetische Untergruppe $\Gamma_L = \mathrm{SU}(L) \subset \mathrm{SU}(V)$ operiert auf \mathcal{K}_{U} .

Sei $\ell \in L$ primitiv und isotrop, $\ell' \in L$ ebenfalls isotrop und $\langle \ell, \ell' \rangle = -\delta^{-1}$.

Sei $z = \ell' + \tau \ell + \sigma \in V_{\mathbb{R}}$, mit $\tau \in \mathbb{C}$ und $\sigma \in \mathbb{C}^{m-1}$ negativ definit. Ist $\langle z, z \rangle > 0$, so repräsentiert z eine Element $[z] \in \mathcal{K}_{\mathsf{U}} \subset \mathbb{P}(V)(\mathbb{R})$.

Das Siegelgebiet

Man erhält so ein affines Modell für \mathcal{K}_U , das Siegelgebiet

$$\mathcal{H}_{\mathsf{U}} = \left\{ (\tau, \sigma) \, ; \, 2\Im \tau |\delta|^{-1} > -\langle \sigma, \sigma \rangle \right\}.$$

Definition

Sei Γ eine Untergruppe von endlichem Index in Γ_L , und k eine ganze Zahl. Eine Funktion $f: \mathcal{H}_U \to \mathbb{C}$ heißt *unitäre Modulform* (für Γ zum Gewicht k), wenn

- 1. f auf \mathcal{H}_{IJ} holomorph ist.
- 2. Für jedes $\gamma \in \Gamma$ gilt $f(\gamma(\tau, \sigma)) = j(\gamma; \tau, \sigma)^k f(\tau, \sigma)$.
- 3. f regulär in den Spitzen (Randkomponenten) von \mathcal{H}_U ist (Folgt für m>1 aus dem Köcherprinzip).

$$f(\tau,\sigma)=\sum_{n\in\mathbb{Q}}a_n(\sigma)e(n\tau).$$

Definition

Sei Γ eine Untergruppe von endlichem Index in Γ_L , und k eine ganze Zahl. Eine Funktion $f: \mathcal{H}_U \to \mathbb{C}$ heißt *unitäre Modulform* (für Γ zum Gewicht k), wenn

- 1. f auf \mathcal{H}_U holomorph ist.
- 2. Für jedes $\gamma \in \Gamma$ gilt $f(\gamma(\tau, \sigma)) = j(\gamma; \tau, \sigma)^k f(\tau, \sigma)$.
- 3. f regulär in den Spitzen (Randkomponenten) von \mathcal{H}_U ist (Folgt für m>1 aus dem Köcherprinzip).

$$f(\tau, \sigma) = \sum_{n \in \mathbb{Q}} a_n(\sigma) e(n\tau).$$

Definition

Sei Γ eine Untergruppe von endlichem Index in Γ_L , und k eine ganze Zahl. Eine Funktion $f: \mathcal{H}_U \to \mathbb{C}$ heißt *unitäre Modulform* (für Γ zum Gewicht k), wenn

- 1. f auf \mathcal{H}_U holomorph ist.
- 2. Für jedes $\gamma \in \Gamma$ gilt $f(\gamma(\tau, \sigma)) = j(\gamma; \tau, \sigma)^k f(\tau, \sigma)$.
- 3. f regulär in den Spitzen (Randkomponenten) von \mathcal{H}_{U} ist (Folgt für m>1 aus dem Köcherprinzip).

$$f(\tau,\sigma)=\sum_{n\in\mathbb{Q}}a_n(\sigma)e(n\tau).$$

Definition

Sei Γ eine Untergruppe von endlichem Index in Γ_L , und k eine ganze Zahl. Eine Funktion $f: \mathcal{H}_U \to \mathbb{C}$ heißt *unitäre Modulform* (für Γ zum Gewicht k), wenn

- 1. f auf \mathcal{H}_U holomorph ist.
- 2. Für jedes $\gamma \in \Gamma$ gilt $f(\gamma(\tau, \sigma)) = j(\gamma; \tau, \sigma)^k f(\tau, \sigma)$.
- 3. f regulär in den Spitzen (Randkomponenten) von \mathcal{H}_{U} ist. (Folgt für m>1 aus dem Köcherprinzip).

$$f(\tau,\sigma)=\sum_{n\in\mathbb{Q}}a_n(\sigma)e(n\tau).$$

Definition

Sei Γ eine Untergruppe von endlichem Index in Γ_L , und k eine ganze Zahl. Eine Funktion $f: \mathcal{H}_U \to \mathbb{C}$ heißt *unitäre Modulform* (für Γ zum Gewicht k), wenn

- 1. f auf \mathcal{H}_U holomorph ist.
- 2. Für jedes $\gamma \in \Gamma$ gilt $f(\gamma(\tau, \sigma)) = j(\gamma; \tau, \sigma)^k f(\tau, \sigma)$.
- 3. f regulär in den Spitzen (Randkomponenten) von \mathcal{H}_{U} ist. (Folgt für m>1 aus dem Köcherprinzip).

$$f(\tau,\sigma) = \sum_{n\in\mathbb{Q}} a_n(\sigma)e(n\tau).$$

Setze $(\cdot,\cdot):=\operatorname{Tr}_{\mathbb{F}/\mathbb{Q}}\langle\cdot,\cdot\rangle=2\Re\langle\cdot,\cdot\rangle$. Damit wird $(V,(\cdot,\cdot))$ zu einem quadratischen Raum der Signatur (2,2m). Man erhält so eine Einbettung

$$SU(V) \hookrightarrow SO(V)$$

Diese induziert wiederum eine Einbettung der symmetrischen Gebiete

$$\alpha: \mathcal{H}_{\mathsf{U}} \hookrightarrow \mathcal{H}_{\mathsf{O}}.$$

Durch Rückzug lässt sich nun der Borcherds-Lift auf SU(1, n) übertragen.

$$\alpha^*(\Psi_L)(\tau,\sigma) \longleftarrow \Psi_L(Z;f).$$

- 1. Verschiedene komplexe Strukturen auf $V, \langle \cdot, \cdot \rangle$ und $V, (\cdot, \cdot)$.
- 2. Wahl der Gitterbasis für L als $\mathcal{O}_{\mathbb{F}}$ -Modul und als \mathbb{Z} -Modul.
- 3. Wahl der Spitzen, Berücksichtigung der Geometrie der Randkomponenten.

Setze $(\cdot,\cdot):=\operatorname{Tr}_{\mathbb{F}/\mathbb{Q}}\langle\cdot,\cdot\rangle=2\Re\langle\cdot,\cdot\rangle$. Damit wird $(V,(\cdot,\cdot))$ zu einem quadratischen Raum der Signatur (2,2m). Man erhält so eine Einbettung

$$SU(V) \hookrightarrow SO(V)$$

Diese induziert wiederum eine Einbettung der symmetrischen Gebiete

$$\alpha: \mathcal{H}_{\mathsf{U}} \hookrightarrow \mathcal{H}_{\mathsf{O}}.$$

Durch Rückzug lässt sich nun der Borcherds-Lift auf SU(1, n) übertragen.

$$\alpha^*(\Psi_L)(\tau,\sigma) \longleftarrow \Psi_L(Z;f).$$

- 1. Verschiedene komplexe Strukturen auf $V, \langle \cdot, \cdot \rangle$ und $V, (\cdot, \cdot)$.
- 2. Wahl der Gitterbasis für L als $\mathcal{O}_{\mathbb{F}}$ -Modul und als \mathbb{Z} -Modul
- 3. Wahl der Spitzen, Berücksichtigung der Geometrie der Randkomponenten.

Setze $(\cdot,\cdot):=\operatorname{Tr}_{\mathbb{F}/\mathbb{Q}}\langle\cdot,\cdot\rangle=2\Re\langle\cdot,\cdot\rangle$. Damit wird $(V,(\cdot,\cdot))$ zu einem quadratischen Raum der Signatur (2,2m). Man erhält so eine Einbettung

$$SU(V) \hookrightarrow SO(V)$$

Diese induziert wiederum eine Einbettung der symmetrischen Gebiete

$$\alpha: \mathcal{H}_{\mathsf{U}} \hookrightarrow \mathcal{H}_{\mathsf{O}}.$$

Durch Rückzug lässt sich nun der Borcherds-Lift auf SU(1, n) übertragen.

$$\alpha^*(\Psi_L)(\tau,\sigma) \longleftarrow \Psi_L(Z;f).$$

- 1. Verschiedene komplexe Strukturen auf $V, \langle \cdot, \cdot \rangle$ und $V, (\cdot, \cdot)$.
- 2. Wahl der Gitterbasis für L als $\mathcal{O}_{\mathbb{F}}$ -Modul und als \mathbb{Z} -Modul.
- 3. Wahl der Spitzen, Berücksichtigung der Geometrie der Randkomponenten.

Setze $(\cdot,\cdot):=\mathrm{Tr}_{\mathbb{F}/\mathbb{Q}}\langle\cdot,\cdot\rangle=2\Re\langle\cdot,\cdot\rangle$. Damit wird $(V,(\cdot,\cdot))$ zu einem quadratischen Raum der Signatur (2,2m). Man erhält so eine Einbettung

$$SU(V) \hookrightarrow SO(V)$$

Diese induziert wiederum eine Einbettung der symmetrischen Gebiete

$$\alpha: \mathcal{H}_{\mathsf{U}} \hookrightarrow \mathcal{H}_{\mathsf{O}}.$$

Durch Rückzug lässt sich nun der Borcherds-Lift auf SU(1, n) übertragen.

$$\alpha^*(\Psi_L)(\tau,\sigma) \longleftarrow \Psi_L(Z;f).$$

- 1. Verschiedene komplexe Strukturen auf $V, \langle \cdot, \cdot \rangle$ und $V, (\cdot, \cdot)$.
- 2. Wahl der Gitterbasis für L als $\mathcal{O}_{\mathbb{F}}$ -Modul und als \mathbb{Z} -Modul.
- 3. Wahl der Spitzen, Berücksichtigung der Geometrie der Randkomponenten.

$$f(\tau) = \sum_{\substack{n \in \mathbb{Z} \\ n \gg -\infty}} c(n)e(n\tau) \in \mathcal{M}^{!}_{1-m}(\Gamma(1))$$
wobei $z = \ell' + \tau\ell + \sigma \in \mathcal{K}_{U}$.

- 1. Meromorphe unitäre Modulform für Γ_L auf \mathcal{H}_U vom Gewicht c(0)/2.
- 2. Null- und Polstellen auf Heegner Divisoren
- 3. Die Liftung ist multiplikativ.

$$\Xi_{L}(Z;f) = e\left(\delta \langle Z, \rho \rangle\right) \prod_{\substack{\lambda \in K \\ (\lambda, W) > 0}} \left(1 - e\left(\delta \langle Z, \lambda \rangle\right)\right)^{c\left(\langle \lambda \rangle\right)} f(\tau) = \sum_{\substack{n \in \mathbb{Z} \\ n \gg -\infty}} c(n)e(n\tau) \in \mathcal{M}^{!}_{1-m}(\Gamma(1))$$
wobei $Z = \ell' + \tau\ell + \sigma \in \mathcal{K}_{U}$.

- 1. Meromorphe unitäre Modulform für Γ_L auf \mathcal{H}_U vom Gewicht c(0)/2.
- 2. Null- und Polstellen auf Heegner Divisoren
- 3. Die Liftung ist multiplikativ.

$$\Xi_{L}(z; f) = e(\delta \langle z, \rho \rangle) \prod_{\substack{\lambda \in K \\ (\lambda, W) > 0}} (1 - e(\delta \langle z, \lambda \rangle))^{c(\langle \lambda, \lambda \rangle)}$$

$$f(\tau) = \sum_{\substack{n \in \mathbb{Z} \\ n \gg -\infty}} c(n)e(n\tau) \in \mathcal{M}^{!}_{1-m}(\Gamma(1)),$$
wobei $z = \ell' + \tau\ell + \sigma \in \mathcal{K}_{H}.$

- 1. Meromorphe unitäre Modulform für Γ_L auf \mathcal{H}_U vom Gewicht c(0)/2.
- 2. Null- und Polstellen auf Heegner Divisorer
- 3. Die Liftung ist multiplikativ.

$$\Xi_{L}(Z;f) = e\left(\delta \langle Z, \rho \rangle\right) \prod_{\substack{\lambda \in K \\ (\lambda, W) > 0}} \left(1 - e\left(\delta \langle Z, \lambda \rangle\right)\right)^{c\left(\langle \lambda, \lambda \rangle\right)}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

- 1. Meromorphe unitäre Modulform für Γ_L auf \mathcal{H}_U vom Gewicht c(0)/2.
- 2. Null- und Polstellen auf Heegner Divisoren
- 3. Die Liftung ist multiplikativ.

$$\Xi_{L}(Z;f) = e\left(\delta \langle Z, \rho \rangle\right) \prod_{\substack{\lambda \in K \\ (\lambda, W) > 0}} \left(1 - e\left(\delta \langle Z, \lambda \rangle\right)\right)^{c\left(\langle \lambda, \lambda \rangle\right)}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

- 1. Meromorphe unitäre Modulform für Γ_L auf \mathcal{H}_U vom Gewicht c(0)/2.
- 2. Null- und Polstellen auf Heegner Divisoren
- 3. Die Liftung ist multiplikativ.

$$\Xi_{L}(z;f) = e(\delta \langle z, \rho \rangle) \prod_{\substack{\lambda \in K \\ (\lambda, W) > 0}} (1 - e(\delta \langle z, \lambda \rangle))^{c(\langle \lambda, \lambda \rangle)}$$

$$\uparrow f(\tau) = \sum_{\substack{n \in \mathbb{Z} \\ n \gg -\infty}} c(n)e(n\tau) \in \mathcal{M}^{!}_{1-m}(\Gamma(1)),$$
wobei $z = \ell' + \tau\ell + \sigma \in \mathcal{K}_{H}$

- 1. Meromorphe unitäre Modulform für Γ_L auf \mathcal{H}_U vom Gewicht c(0)/2.
- 2. Null- und Polstellen auf Heegner Divisoren
- 3. Die Liftung ist multiplikativ.

Sei $\mathbb{F}=\mathbb{Q}(\sqrt{d})$ für d<0 und quadratfrei, sei $V=\mathbb{F}\times\mathbb{F}$ und L das Gitter $L=\mathcal{O}_{\mathbb{F}}\oplus\mathcal{D}_{\mathbb{F}}^{-1}$, mit der hermiteschen Form

$$\langle x, y \rangle = x_1 \bar{y}_2 - x_2 \bar{y}_1.$$

In dieser Situation ist \mathcal{H}_{U} = $\{ au\in\mathbb{C}\,;\;\Im au>0\}\simeq\mathbb{H}.$

Sei $J_m(\tau) = q^{-m} + O(q) \in \mathcal{M}_0^1(\Gamma(1))$, für m > 0 quadratfrei $(J_m \text{ ist eindeutig bestimmt})$.

Die Liftung $\Xi_{J_m}(\tau)$ von J_m ist eine meromorphe Modulform auf $\mathbb H$ und besitzt folgende Produktenwicklung (absolut konvergent für $\Im \tau > 2m|\delta|^{-1}$):

$$\Xi_{J_m}(\tau) = e(-\sigma_m \tau) \prod_{\substack{k,l \in \mathbb{Z} \\ l > -km}} (1 - e(k\tau - l\bar{\zeta}))^{c(kl)},$$

wobei
$$\sigma_m = \sum_{d \mid m} d$$
 und $\zeta \in \mathbb{F}$, mit $\mathcal{O}_{\mathbb{F}} = \mathbb{Z} + \zeta \mathbb{Z}$.

Sei $\mathbb{F}=\mathbb{Q}(\sqrt{d})$ für d<0 und quadratfrei, sei $V=\mathbb{F}\times\mathbb{F}$ und L das Gitter $L=\mathcal{O}_{\mathbb{F}}\oplus\mathcal{D}_{\mathbb{F}}^{-1}$, mit der hermiteschen Form

$$\langle x,y\rangle=x_1\bar{y}_2-x_2\bar{y}_1.$$

In dieser Situation ist $\mathcal{H}_U = \{ \tau \in \mathbb{C} : \Im \tau > 0 \} \simeq \mathbb{H}$. Sei $J_m(\tau) = q^{-m} + O(q) \in \mathcal{M}_0^!(\Gamma(1))$, für m > 0 quadratfrei $(J_m$ ist eindeutig bestimmt).

Die Liftung $\Xi_{J_m}(\tau)$ von J_m ist eine meromorphe Modulform auf $\mathbb H$ und besitzt folgende Produktenwicklung (absolut konvergent für $\Im \tau > 2m|\delta|^{-1}$):

$$\Xi_{J_m}(\tau) = e(-\sigma_m \tau) \prod_{\substack{k,l \in \mathbb{Z} \\ l > -km}} (1 - e(k\tau - l\bar{\zeta}))^{c(kl)},$$

wobei
$$\sigma_m = \sum_{d \mid m} d$$
 und $\zeta \in \mathbb{F}$, mit $\mathcal{O}_{\mathbb{F}} = \mathbb{Z} + \zeta \mathbb{Z}$.

Sei $\mathbb{F} = \mathbb{Q}(\sqrt{d})$ für d < 0 und quadratfrei, sei $V = \mathbb{F} \times \mathbb{F}$ und L das Gitter $L = \mathcal{O}_{\mathbb{F}} \oplus \mathcal{D}_{\mathbb{F}}^{-1}$, mit der hermiteschen Form

$$\langle x,y\rangle=x_1\bar{y}_2-x_2\bar{y}_1.$$

In dieser Situation ist \mathcal{H}_U = $\{ au\in\mathbb{C}\,;\;\Im au>0\}\simeq\mathbb{H}.$

Sei $J_m(\tau) = q^{-m} + O(q) \in \mathcal{M}_0^!(\Gamma(1))$, für m > 0 quadratfrei $(J_m \text{ ist eindeutig bestimmt})$.

Die Liftung $\Xi_{J_m}(\tau)$ von J_m ist eine meromorphe Modulform auf $\mathbb H$ und besitzt folgende Produktenwicklung: (absolut konvergent für $\Im \tau > 2m|\delta|^{-1}$):

$$\Xi_{J_m}(\tau) = e(-\sigma_m \tau) \prod_{\substack{k,l \in \mathbb{Z} \\ l > -km}} (1 - e(k\tau - l\bar{\zeta}))^{c(kl)}$$

wobei
$$\sigma_m = \sum_{d \mid m} d$$
 und $\zeta \in \mathbb{F}$, mit $\mathcal{O}_{\mathbb{F}} = \mathbb{Z} + \zeta \mathbb{Z}$.

Sei $\mathbb{F}=\mathbb{Q}(\sqrt{d})$ für d<0 und quadratfrei, sei $V=\mathbb{F}\times\mathbb{F}$ und L das Gitter $L=\mathcal{O}_{\mathbb{F}}\oplus\mathcal{D}_{\mathbb{F}}^{-1}$, mit der hermiteschen Form

$$\langle x,y\rangle=x_1\bar{y}_2-x_2\bar{y}_1.$$

In dieser Situation ist $\mathcal{H}_U = \{ \tau \in \mathbb{C} : \Im \tau > 0 \} \simeq \mathbb{H}$. Sei $J_m(\tau) = q^{-m} + O(q) \in \mathcal{M}_0^!(\Gamma(1))$, für m > 0 quadratfrei. (J_m ist eindeutig bestimmt).

Die Liftung $\Xi_{J_m}(\tau)$ von J_m ist eine meromorphe Modulform auf $\mathbb H$ und besitzt folgende Produktenwicklung: (absolut konvergent für $\Im \tau > 2m|\delta|^{-1}$):

$$\Xi_{J_m}(\tau) = e(-\sigma_m \tau) \prod_{\substack{k,l \in \mathbb{Z} \\ l \geq -km}} (1 - e(k\tau - l\bar{\zeta}))^{c(kl)},$$

wobei
$$\sigma_m = \sum_{d \mid m} d$$
 und $\zeta \in \mathbb{F}$, mit $\mathcal{O}_{\mathbb{F}} = \mathbb{Z} + \zeta \mathbb{Z}$.

Sei $\mathbb{F} = \mathbb{Q}(\sqrt{d})$ für d < 0 und quadratfrei, sei $V = \mathbb{F} \times \mathbb{F}$ und L das Gitter $L = \mathcal{O}_{\mathbb{F}} \oplus \mathcal{D}_{\mathbb{F}}^{-1}$, mit der hermiteschen Form

$$\langle x,y\rangle=x_1\bar{y}_2-x_2\bar{y}_1.$$

In dieser Situation ist $\mathcal{H}_U = \{ \tau \in \mathbb{C} : \Im \tau > 0 \} \simeq \mathbb{H}$. Sei $J_m(\tau) = q^{-m} + O(q) \in \mathcal{M}_0^!(\Gamma(1))$, für m > 0 quadratfrei. (J_m ist eindeutig bestimmt).

Die Liftung $\Xi_{J_m}(\tau)$ von J_m ist eine meromorphe Modulform auf $\mathbb H$ und besitzt folgende Produktenwicklung (absolut konvergent für $\Im \tau > 2m|\delta|^{-1}$):

$$\Xi_{J_m}(\tau) = e(-\sigma_m \tau) \prod_{\substack{k,l \in \mathbb{Z} \\ l \ge -km}} (1 - e(k\tau - l\bar{\zeta}))^{c(kl)},$$

wobei
$$\sigma_m = \sum_{d \mid m} d$$
 und $\zeta \in \mathbb{F}$, mit $\mathcal{O}_{\mathbb{F}} = \mathbb{Z} + \zeta \mathbb{Z}$.