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Lattices and
groups

Let F be an imaginary quadratic number field, F = Q(+/d),
d < 0, with discriminant Dy, different § and ring of integers
Or.

Let L be a hermitian lattice of signature (1, q) over Op, with
(-,) a nondegenerate hermitian form

(av, bw) = ab (v, w) = (bw, av),

extended to the F-vectorspace V = L ® F and to the complex
space Vg = V ®rR.

Assume L to be integral and even, that is trg /g (A, ) € Z and
trr/ (A, A) € 2Z for all A\, € L.

Denote by L’ the Z-dual of L,

U'={veV;trpg(\v)eZ, forall Xel}.




The symmetric domain

Borcherds

G Denote by U(V) the unitary group of V/,(-,-) and by U(V)(R)

Unitary . ) . 3 . )
Groups its real points. The isometries of L, form an arithmetic

Eric Hofmann Subgroup, U(L)

Symmetric domain

The symmetric domain attached to U(V/) can be obtained as
the Grassmannian

Gry = U(V)(R)/%, with € C U(V)(R),

% a maximal compact subgroup isomorphic to U(1) x U(q)
under Vg — C%9. Gry is isomorphic to the projective cone

Ky =A{[z] e P(W); (z,2z) > 0}.

We will give an affine model for this later on.



Modified Witt basis
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Eric Hofmann L — H @ D, Wlth <H7 D> — O7
H of signature (1,1) and D negative definite.

Choose lattice vectors ¢, ¢’ with £ € L primitive isotropic and
¢ € I also isotropic, such that (¢,¢') # 0. Then,

L= (al+bl)a D,

with a,b (fractional) Op-ideals.

<

We call an F-basis of V of the form ¢, ¢/, vy,...,vq—1 € L’ with
¢, ¢' as above a modified Witt basis.



A Siegel domain model
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G Now, for the elements of Ky, consider representatives z € V of
Eric Hofmann the form

z:€'—7<€',€>5£+a, with o€ D ®rR.

The symmetric
domain

The condition (z,z) > 0 yields the following description.
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z:€'—7<€',€>5£+a, with o€ D ®rR.

The symmetric
domain

The condition (z,z) > 0 yields the following description.

Siegel domain

The following subset of C9 is an affine model for Gry:

Hy={(r,0) CCx (DRrR); [{£,0)PST > —(0,0)}.

Note that Hy is not a tube domain, unless g = 1, in which
case Hy ~ H, the upper half plane in C.
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Let ' C U(L) be an arithmetic subgroup. Then, I acts on Hy
with an automorphy factor j : I x Hy — C*.

Eric Hofmann

Definition

An automorphic form of weight k on I is a meromorphic
function f : Hy — C satisfying

Automorphic
forms

f(y(r,0)) = j(v;7,0) *f(r,0) forallyeT.

If in addition f is holomorphic and regular at the cusps, f is
called a modular form.




Fourier-Jacobi expansion
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Eric Hofmann a Foul’ier Sel’ieSZ

f(r,0) = Zan(a)e(% +b), with NeZ beQ.
nezZ

Automorphic
forms

The coefficients a,(o) transform as Jacobi-forms.

@ ag is constant, we have lim,_,;s f(7,0) = ao.
@ For g > 1 the Koecher principle holds: If f is holomorphic,
a, =0 for n <0, so f is regular at the cusps.

o If g =1, f is an elliptic modular form and all the a, are
constant.




The Heisenberg Group
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CletEs The arithmetic Heisenberg group in in U(L) consists of pairs
SRR [h, t], with h € %Z for some integer N, t from a sublattice of
D’. The group law is given by

Cx /4!
bt o [H ] = [h+H + > <|g|’ t>,t +t].

Automorphic
forms
On Hy, the Heisenberg group acts according to

[h,0](T,0) = (T + h,0)

0.0m) = (r 5504 2D ) e).




V' as a quadratic space
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The hermitian space V also carries a structure as a quadratic
space over Q:

Eric Hofmann

The following is a non-degenerate symmetric form, bilinear of
signature (2,2q) on V as a Q-vectorspace

(" ) = trp/Q () = 2R () -

representation Attached to this is the quadratic form g (:) = (-, -).

By extension of scalars, (-,-) is a real bilinear form on W as a
vector space over R.



Weil-representation
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Unitary The double cover of SLy(R), the metaplectic group Mp,(R)
consists of elements

(M, (1)), M= (25), ¢(r)* = cT +d.

Eric Hofmann

The subgroup Mp,(Z) has two generators,

T=((61).0, S=((17%) V)

It has a representation p; on the group algebra C[L/L’].

pr(T)ey = e(q(7))ers pL(S)ey = \/f Z

sel’/L



Vector-values modular forms

poorcherds There is also a ‘dual’ representation of Mp,(Z) on the
Unitay vector-valued functions H — C[L"/L],

(F 2 (M. 9))(r) = 6(r)>p; * (M., 6) (M),

Definition

The space M. (p.) of nearly holomorphic modular forms
consists of functions f : H — C[L’/L] satisfying

o f |t (M,p) =", forall (M,p) € Mp,(Z).
o f is holomorphic on H.
@ f is meromorphic at the cusp ico.

Such a modular form has a Fourier expansion

fr)=> > ¢ nT)e,.

YEL'/L n€Z—q(y)
n> —oo



Borcherds products for U(1, q)
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c(vy,n) € Z for n < 1, there is a meromorphic function
= : Hy — C with the following properties:

Theorem

® =¢ is an automorphic form of weight c(0,0)/2.
@ [ts poles and zeros lie on generalized Heegner divisors.

@ On each Weyl chamber W of Hy, =¢ has an absolutely
converging infinite product expansion around the cusps,

) @ H <1 . <§Z”2;>>c(>\,<>\,>\>)‘

AeK'
AELF (W)

The main
theorem
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@ The product converges absolutely when (z,z) > 0.

Hy={[z] € Ky; (z,\) =0}, foraxel, (\ )\ <O0.

@ For c(7, n) with n < 0, the Heegner divisors H, dissect ICy
respectively Hy into components called Weyl chambers.

o Considering L as a lattice over Z, K is a Z-sublattice of
rank 2q of the form K = (Za+ Zb) & D, with a,b € H.

ot @ The positivity condition A € LT(W) means that
S|z ({07 >0 forallzewc Ky,

o C is a constant, while p = 2i (z, p{,,) (¢, £)"", where pf,,
is the Weyl vector attached to f and W.



Sketch of the proof
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Unitary Consider Vi with the form (-,-) as a real quadratic space. The
croves orthogonal group O(V)(R) is isomorphic to O(2,2q).
Since (-,-) = 2R (-,-), we have an embedding of groups

Eric Hofmann

U(V)(R) — O(V)(R),
This induces an embedding of the attached symmetric domains
a: Hy — Ho,

permitting us to pull back the automorphic products
constructed by Borcherds to the unitary side,

Sketch of Proof

=(2(7,0)) = *(W(Ff; 2))(, o). ]
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Some remarks on the embedding:
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@ Since Endc(VR) € Endr(VR), a complex scalar defines an
endomorphism of the real space Vg, (-,-).

@ U(L) is embedded into the orthogonal group O(L) of L (as
a Z-lattice). The discriminant kernel is mapped to the
discriminant kernel.

@ Subgroups of finite index remain subgroups of finite index.
(Similarly for commensurable subgroups.)

Sketch of Proof

@ The Heisenberg group in U(V) is mapped into the
Heisenberg group of O(V).



A symmetric domain for O(V)
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Graups The symmetric domain for O(V) can be obtained as a
Eric Hofmann Grassmannian

Gro = O(V)(R)/A",

where # ~ O(2) x O(2q) is a maximal compact subgroup.
The points of Grp are 2-dimensional positive definite
subspaces of Wg.

Choose a continuously varying orientation on these and for
each v € Grp an orthogonal basis

Sketch of Proof X, Y., with XL2 = YL2a Xt LY.

With this, we introduce a complex structure on Grop.



A positive cone in V.
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The real quadratic space Vg is complexified to Vo = Vg ®r C
and (-,-) is extended to a complex bilinear form.
Now, consider the maps

Eric Hofmann

X[_, Y — Z =X +iY € Vg,
and Grpos v+— [Z1] € P(Vp).

This sends Grgp to either of the two components of the set
Sketch of Proof K:O = {[ZL] S ]P( V(C); (ZL7 ZL) = 0’ (ZL> Z_L) > 0}

Choose one component, ICJ(S. It is isomorphic to Grop.



Construction of the tube domain
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For the construction of the tube domain, we require a primitive
vector e; € L and an e, € L’ satisfying

Eric Hofmann 2
e =0, (e1,e) = 1.
Normalize X; and Y} as follows

()(L7 61) = ]_, (YL7 61) =0.

Set K = LNef Ney and denote by X and Y the projections
of X; and Y} to the subspace K ® R.

Sketch of Proof

The tube domain model Ho is defined as the image of ICg
under [Z;] — Z € K® C:

HoC{Z=X+iYeK®C; Y>>0},




Matching basis
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Groups We already have a C-basis ¢,/ consisting of lattice vectors for
SRR the hyperbolic space H @ R, (-, ).
To fix the embedding Hy — Ho induced by «, we need to
choose an R-basis of H ®qg R, (-,-), as well.

Since ¢ corresponds to the cusp it should be part of this new
basis.

Sketch of Proof



Matching basis
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Groupe We already have a C-basis /,¢' consisting of lattice vectors for
SRR the hyperbolic space H @ R, (-, ).
To fix the embedding Hy — Ho induced by «, we need to
choose an R-basis of H ®qg R, (-,-), as well.
Since ¢ corresponds to the cusp it should be part of this new

basis.

Set e; = ¢, and choose lattice vectors e, €3, €4 € H' with the
following properties

Sketch of Proof

(e1,e) = (e3,e4) = 1 and (e, g) = 0 otherwise.

Clearly, e1,...,e4 span H ® R as a real quadratic space.
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z —iz

Y, = .
(0 "t 200

[z] — RX;, + RY,, X, = >

It is quickly checked that the following statements hold:
@ The two complex structures are compatible. For example,
we have iz — =Y, +iX, = iZ.
Sketch of Proof @ We have (X,¢) =1, (Y.,¢)=0.
© Further X, L Y;, and X? = Y2 > 0.



Example: Choice of basis
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vl Assume Dy to be even. Consider a lattice L of the form
Groups L=0p® 06 'OF. Clearly L =1L".

S Fix an isometry L ® C to CH1. Set £ = (1,0), ¢/ = (0,57 1).

Then, (£,¢') =671 and L = Opl @ Op/'.

For L as the Z-lattice (Z + §/2Z)¢ & (Z + § /2Z)¢', a basis of

the required form is given by

o, 0
= — = —— :_el.
l, e 26,63 26, €4

With this, the representative z = ¢/ — 7/ maps to

Examples

)
v =RX, +RY;, where X; = 52, Y, = —2|5|Z.

Finally, 7 € Hy maps to Z = §/2e4 + Te3 in Ho.



Example: Liftings from Mg (p.)
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X Assume Dy = 1(2), L = Op @ 6 1Op. Denote w = (1 +6).

Unitary

Groups Consider the function J(7) € M{(pL) given by
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J(r)=j(r) — 744 =q ' +196884q + ...,

where j(7) is the usual j-function.

We find that there are two Weyl chambers, W~ and W,
defined by &7 > [§] and ST < |4].

On the WA, the Weyl vector is found to be pﬂv> = —ey and
the constant C equals 1. Thus, the infinite product expansion
of the lift =, takes the form

= () =e(-7) [ (1 - e(mr—n2))<™.
m,n€Z
m>0

Examples
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