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Setup 1: A hermitian space

F = Q(
√

d), d ∈ Z<0, d square-free.
DF the discriminant, δ =

√
DF the different of F.

OF ring of integers, D−1
F inverse different ideal of F

OF = Z⊕ ζZ, D−1
F = δ−1OF

VF, 〈·, ·〉 a hermitian space over F, of dimension q + 1
〈·, ·〉 a non-degenerate, indefinite hermitian form, of signature
(1, q).
L ⊂ V an even hermitian lattice, L⊗OF F = VF, with dual L′
Fix two vectors u, u′ with u ∈ L primitive, u′ ∈ L′ and

〈u, u〉 =
〈
u′, u′

〉
= 0,

〈
u, u′

〉
6= 0
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Setup 2: Unitary group

Let U(V ) be the unitary group of VF

Γ ⊂ U(L) = Stab(L) ⊂ U(V )
(In particular, Γ = ΓL the discriminant kernel)

Symmetric domain U(V )(R)/C ' KU (with C max. compact)

KU =
{

[v ] ; 〈v , v〉 > 0
}
⊂ P1C.

The modular variety XΓ = Γ\KU is called a ball-quotient.
For each [z ] ∈ KU fix a representative of the form
z = u′ − τδ〈u′, u〉u + σ.
Then, with 〈z , z〉 > 0, we get the following affine model

HU =
{

(τ, σ) ∈ C× Cq−1 ; 2=τ |δ||
〈
u, u′

〉
|2 > −〈σ, σ〉

}
' KU.

(the Siegel domain model)
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Example q = 1

Let q = 1, i.e. VF ' F2 and 〈·, ·〉 has signature (1, 1), then
HU is just the usual complex upper half-plane,

H = {τ ∈ C ; =τ > 0}.

SU(V )(R) ' SL2(R).
In VF, consider the lattice L = OF ⊕D−1

F :
L is unimodular (i.e. L′ = L).
ΓL = SU(L) is isomorphic to SL2(Z).
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Unitary modular forms

Definition
Let Γ be of finite index in ΓL, and k ∈ Z. Then, f : HU → C is a
unitary modular form (for Γ with weight k), if

1 f is holomorphic on HU.
2 For all γ ∈ Γ, f (γ(τ, σ)) = j

(
γ; τ, σ

)k f (τ, σ).

3 f is entire at the cusps of HU.
(For q > 1 this follows from the Köcher-principle.)

Modular forms on HU can be developed as Fourier-Jacobi series

f (τ, σ) =
∑
n∈Q

an(σ)e(nτ).
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The embedding: Overview
Let (·, ·) := TrF/Q〈·, ·〉. Then, VF becomes a quadratic space
(VQ, (·, ·)) over Q of signature (2, 2q). Hence, there is an
embedding

U(V )(R) ↪→ SO(V )(R)+,

which, in turn, induces an embedding of the symmetric domains

α : HU ↪→ HO.

The Borcherds lift can then be transferred to U(1, q) by pull-back
under α.

Ξ(τ, σ; f ) := α∗(ΨL(f ))(τ, σ)←− ΨL(Z ; f ).

Difficulties to surmount:
1 Different complex structures on the symmetric domains of

SO(V )(R) and U(V )(R).
2 Choice of basis for L as module over Z and over OF.
3 Compatible choice of cusps, geometry of boundary

components.
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The embedding on the Grassmannian
The symmetric domain of SO(V )(R) ' SO(2, 2q) is given by

SO(V )(R)/CSO ' SO(2, 2q)/ (SO(2)× SO(2q)) ' GrO,

a Grassmannian of two dimensional positive definite subspaces,
complex structure through ‘spin-orientation’.

GrO = {v ⊂ VQ(R); dim(v) = 2, (·, ·) |v> 0}.

The embedding
Image of [z ] ∈ KU under α: [z ] 7→ RXL + RYL ∈ GrO, with

XL

∼

=
1

2〈u′, u〉z , YL

∼

=
−i

2〈u′, u〉

−i

z .

Note: XL ⊥ YL, X 2
L = Y 2

L > 0 and (XL, u) = 1.
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The embedding in coordinates

With suitable basis vectors u = e1, e3 ∈ L, e2, e4 ∈ L′, satisfying
e2

i = 0, (e1, e2) = (e3, e4) = 1, {e1, e2} ⊥ {e3, e4}, we get

ZL(τ, σ) = XL(τ, σ) + iYL(τ, σ) = (q(Z ) , 1,Z )

Z = (τ,−ζ̄, z(σ)
)
∈ HO,

where HO ' GrO is the tube-domain model.

Example
For SO(2, 2), HO ' H×H, and the embedding takes the form

H ↪→ H×H, τ 7→ (τ,−ζ̄).

e1 = u, e2 =
ζ

δ〈u′, u〉u
′, e3 = −ζu, e4 =

1
δ〈u′, u〉u

′.
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Main theorem: The Borcherds lift

Ξ(z ; f ,W ) = Ce
(
〈z,ρ〉
〈`′,`〉

) ∏
λ∈K ′

(λ,W )>0

∏
γ∈L′0/L

p(γ)=λ+K

(
1− e

(
〈z,λ〉
〈`′,`〉

))c(〈λ,λ〉,γ)

OO

f (τ) =
∑

γ∈L′/L

∑
n∈Z−q(γ)

n�−∞

c(n, γ)e(nτ)eγ ∈M!
1−q,ρL(Γ(1))

,

with z = u′ − τδ
〈
u′, u

〉
u + σ ∈ KU.

1 Meromorphic modular form for ΓL on HU of weight c(0, 0)/2.
2 Zeros and poles lie on Heegner-divisors
3 The lifting is multiplicative.
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Heegner-divisors

The divisor of Ξ(f )

div(Ξ(f )) =
1
2
∑

γ∈L′/L

∑
n∈Z+q(γ)

n<0

c(n, γ)H(n, γ)

The Heegner-divisor of index (n, γ), H(n, γ) is defined as follows:
Forλ ∈ L′ with〈λ, λ〉 = n, n ∈ Z<0 define

H(λ) := {(τ, σ) ∈ HU; 〈z(τ, σ), λ〉 = 0} .

For an index (n, γ), with γ ∈ L′/L and n ∈ Z<0, set

H(n, γ) :=
∑

λ∈γ+L
〈λ,λ〉=n

H(λ).
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Values around the cusps

Theorem
If Ξ(z ; f ) is regular at the cusp [u] of HU and not a cusp form,
then

lim
τ→i∞

Ξ(z ; f ) = e(ρ̄u)
∏

λ=κζu∈K
κ∈Q+

(
1− e(−κζ̄)

)c(0,λ)
,

with ζ = δ for DF ≡ 0 (mod 2) and ζ = 1
2 (1 + δ) otherwise.

Eric Hofmann University of Heidelberg Borcherds Products for Unitary Groups



Example: U(1, 1)

Let VF = F2 and L = OF ⊕D−1
F , Γ(1) = SL2(Z).

Let Jm(τ) = q−m + O(q) ∈M!
0(Γ(1)), for m ∈ Z>0.

Then, Ξ(τ ; Jm) is a meromorphic modular form on H with product
expansion (absolutely convergent for =τ > 2m|δ|−1) given by

Ξ(τ ; Jm,W ) = e
(
−σmτ

) ∏
k,l∈Z

l≥−km

(
1− e

(
kτ − l ζ̄

))c(kl)
,

where σm =
∑
d |m

d and ζ ∈ F, with OF = Z + ζZ.

(Here, the Weyl-chamber W is defined through 2=τ > |δ|m.)
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Modularity of divisors

Let XΓ = ΓL\HU. Consider the first Chow-group
CH1(XΓ) ' Pic(XΓ).
We introduce a modified Chow-group as follows:

Let π : X̃Γ → XΓ be a desingularization.
Denote by B the boundary divisors of of X̃Γ and introduce the
modified Chow-group CH1(X̃Γ)/B.
Denote by Lk the line bdl. of meromorphic automorphic forms
of weight k on XΓ, and by c1(Lk) its class in

(
CH1(X̃Γ)/B

)
Q.
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Theorem: Modularity of divisors

Lemma (Borcherds)
A power series g ∈ C[L′/L][[q]] is contained in M1+q,ρ∗L iff
{f , g} = 0 for every f ∈M!

1−q,ρL
.

Theorem
The generating series A(τ) in Q[L′/L][[q]]⊗

(
CH1(X̃Γ)/B

)
Q given

by

A(τ) = c1(L−1/2) +
∑

β∈L′/L

∑
n∈Z+q(β)

n>0

π∗ (H(−n, β)) qneβ,

is a modular form contained in M1+q,ρ∗L ⊗
(
CH1(X̃Γ)/B

)
Q.
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Theorem: Modularity of divisors

Lemma (Borcherds)
A power series g ∈ C[L′/L][[q]] is contained in M1+q,ρ∗L iff
{f , g} = 0 for every f ∈M!

1−q,ρL
.

Theorem
The generating series A(τ) in Q[L′/L][[q]]⊗

(
CH1(X̃Γ)/B

)
Q given

by

A(τ) = c1(L−1/2) +
∑

β∈L′/L

∑
n∈Z+q(β)

n>0

π∗ (H(−n, β)) qneβ,

is a modular form contained in M1+q,ρ∗L ⊗
(
CH1(X̃Γ)/B

)
Q.
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Thank you!
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