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0. Introduction

Around the mid 1990s, Borcherds developed the theory of his famous Borcherds products.
In [2], he gave a construction for them using a singular theta lift for the dual reductive
pair O(p, 2)× SL2(R), also extending a number of previously known liftings along the
way. The singular theta lift of this type allows the construction of automorphic functions
with take their zeros and poles along algebraically defined divisors prescribed by the
Fourier expansion of the input function, a weakly holomorphic elliptic modular form. It
has been generalized in a number of ways and has found numerous applications.

For instance, Borcherds used his lifting to obtain a modularity result for a generating
series of divisors, see [3]. His argument is fairly algebraic in nature, using Serre duality
between different spaces of formal generating series.

At about this time, Kudla initiated what became known as the Kudla program [41]. It
asserts the modularity of certain generating series of ‘special cycles’ in the cohomology
on (integral models of) Shimura varieties for orthogonal and unitary groups. In a way,
this program can be viewed as an extension and a considerable refinement of his joint
work with Millson during the 1980s, where in a series of papers [44, 45, 46] they used
a theta lift to show the modularity of certain generating series in the cohomology on
symmetric spaces for orthogonal and unitary groups.

At the intersection of algebraic geometry and number theory, the Kudla program has
yielded many key insights into both fields. Speaking in broad terms, in this program
special cycles are interpreted as elements in the arithmetic Chow group of the Shimura
variety, using suitable Green currents for the complex points of these cycles, see [43] for
an overview. Hence, the construction of such currents is of key importance. Indeed, in
[41, 42], Kudla constructed one type of Green functions for special cycles on the hermitian
spaces of orthogonal groups O(p, 2) via an exponential integral.

In [5] Bruinier extended the singular theta lift of Borcherds by taking Maass Poincaré
series as inputs, and obtained a lifting into the cohomology. This lifting can then be
utilized to construct a further type of Green functions [5], [11], [10].

Note that Maass Poincaré series span the space of weak harmonic Maass form, the
importance of which as a space of inputs was first recognized by Bruinier and Funke, who
in [10] used the singular theta lift to construct Green functions for the special divisors.
They clarified the relationship between the singular theta lift of Borcherds type and
the more classical theta lift of Kudla and Millson, in terms of the geometric currents
which can be associated to both. The underlying structure here is the dual reductive
pair O(p, q)× SL2(R).

The singular theta lift for unitary groups U(p, 1) was first studied in detail by the author
in his doctoral thesis [33] and subsequently in [34, 35], with weakly holomorphic inputs.
We note that while the construction from [33] uses an embedding U(p, 1) ↪→ O(2p, 2), the
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0. Introduction

dual reductive pair U(p, 1)× U(1, 1) is accessible via the singular theta lift of Borcherds
type, as U(1, 1) is isomorphic to SL2(R). The extension of this lift to weak harmonic
Maass forms has been utilized to again construct Green functions for the special cycles
in [14] and [15, 16].

Also, quite recently, Ehlen and Sankaran uncovered a fairly subtle relationship between
the difference of the two Green functions (i.e. those of ‘Kudla type’ and those of ‘Bruinier
type’). They showed, both for O(p, 2) and U(p, 1), that the difference of their generating
series can be interpreted as a smooth modular form, of weight p

2
+1 and p+1, respectively.

In [9], Bruinier studied the case of the Hilbert modular group. Here, faced with the
problem of the non-existence of weak harmonic Maass forms, he replaced them with
‘Whittaker-forms’ as input functions for the lift, again yielding Green functions for the
special divisors.

In the joint work of the author with Funke [25], we carried out the construction of
Green currents, actually Green functions, for the dual pair U(p, q)× U(1, 1). On the one
hand, since U(1, 1) ' SL2(R) this case is still accessible through a singular theta lift of
Borcherds type. On the other hand, the special cycles have codimension q and hence for
q > 1 are no longer divisors.

Let us briefly mention some other results on the construction of Green forms for cycles
of higher codimension in the context of the Kudla program. Since Kudla’s original
[41] and the work of Liu [47], further progress has been made only quite recently by
Bruinier and Yang [12], who used star-products to construct Green forms for cycles
of higher codimension for O(p, 2) and U(p, 1), and by Garcia and Sankaran [29], who
utilized Quillen’s theory of supercongruences. Actually, in this manner, they were able
to construct Green forms for cycles in any codimension in U(p, q).

In the context of the Kudla program and the developments described above, the
author’s own work has revolved around two main focal points, the first being Borcherds
products for U(p, 1) and related constructions such as local Borcherds products, with
some applications to modularity results for generating series [33, 34, 35, 37], and second,
more recently, the construction of Green functions and the singular theta lift for U(p, q)
[25].

It is the aim of the present postdoctoral thesis, on the one hand to present and
summarize this work in a uniform setting and notation, on the other hand, beyond this,
to present an explicit calculation of the Fourier-Jacobi expansion of the singular theta
lift of a weak harmonic Maass form in any signature U(p, q).

Structure The main text is organized as follows, a detailed overview of the results
presented in the Chapters 2,3 and 4 is given further below:

Chapter 1 provides the common setup and notation, for unitary groups and their Lie
algebras, hermitian lattices and special cycles. We give a brief review of the Schrödinger
model for Weil representation for the dual pair U(p, q)× U(1, 1) and introduce the finite
Weil representation via the transformation behavior of theta functions. Finally, we
introduce some spaces of vector valued modular forms.
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In Chapter 2, we relate the author’s previous work in the setting of unitary groups
U(p, 1), from [33, 34, 35] and [37], the main focus of which is Borcherds products as well
as, in [37], local Borcherds products and applications thereof.

Chapter 3 treats the joint work of the author and Funke [25], in which we construct
Green functions and introduce a singular theta lift for the dual pair U(p, q) × U(1, 1).
Two types of Green functions are constructed, one through a ‘singular’ Schwartz form
and another via the singular theta lift. We prove the analogue of the results of [10],
show the modularity of the difference of the generating series, along the lines of [19], and
finally consider a further kind of Green object, which we relate to the results of [53].

In Chapter 4, we explicitly calculate a form of the Fourier-Jacobi expansion for the
singular theta lift of a weak harmonic Maass form, adapting a fairly recent method for
the evaluation of the theta integral introduced by Kudla [40].

Appendix A contains some results from representation theory used in Chapters 3 and 4.

Appendix B gathers some useful formulas for special functions and their integral repre-
sentations, and for some Fourier transforms, mainly used in Chapter 4.

Overview of results Now, we give an overview of the results presented in the main
text.

Let V be a complex hermitian space with a hermitian form (·, ·) of signature (p, q).
The associated symmetric domain D can be considered as the Grassmannian of negative
definite q-planes. Let F be an imaginary quadratic number field, which we will view as a
subfield of C. Denote by OF the ring of integers and by D−1

F the inverse different ideal in
F. Let L be an even (hermitian) lattice of full rank in V , i.e. a projective module over
OF for the which the restriction of (·, ·) is OF-valued, and with V = L⊗OF C. Here, in
the introduction, we assume L to be unimodular. Denote by Γ a finite-index subgroup
in the stabilizer1 of L in U(V ). We define a quasi-projective variety of dimension pq by
setting X = Γ\D.

For a vector of positive norm, define the subsymmetric space

D(x) = {z ∈ D; z ⊥ x} .

Let Γx be the stabilizer of x in Γ and define the cycle Z(x) as the image of Γx\D(x) in
X. Note that these cycles have codimension q. Further, for n > 0 set

Z(n) =
∑
x∈L

(x,x)=n

Z(x) ∈ Hq,q(X)

and Z(n) = ∅ for n < 0. Also, we let Z(0) = cq, the q-th Chern form on D. Finally, we
denote by D(n) the preimage of Z(n) in D.

1In the main text, we consider finite-index subgroups of Fix(L]/L) ⊂ U(V ), where L] is the dual
lattice.
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0. Introduction

Chapter 2 In this chapter, we study the case of signature (p, 1). It is based on the
author’s work on Borcherds products [33], [35] and [34] and local Borcherds products
[37].

In this signature, D consists of 1-dimensional negative definite lines. Let `, `′ ∈ L be
two isotropic lattice vectors with (`, `′) 6= 0. Denote by D the definite lattice L∩ `⊥ ∩ `′⊥
and set W = D ⊗OF C. Then, the Siegel domain model for D is given by the set

H`,`′ =
{

(τ, σ) ∈ C×W ; 2|δ|=τ |(`, `′)|2 − (σ, σ) > 0
}
.

To each element (τ, σ) ∈ H`,`′ , we associated a negative line z with Cz ∈ D by setting
z(τ, σ) = `′+ τδ(`′, `)`+ σ. The isotropic line [`] = C` corresponds to the cusp at infinity
of H`,`′ . We remark that here the special cycles D(n) are usually called Heegner divisors.

In Section 2.5 we give a version of the main theorem on Borcherds products [see 35,
Theorem 4] based on [5] see Theorem 2.29 below. The construction is realized through
an embedding ε : U(p, 1) ↪→ O(2p, 2) and the induced embedding of H`,`′ into the
symmetric domain for the orthogonal group. The embedding is developed in Section 2.3,
the necessary background on orthogonal groups is provided in Section 2.2.

Here, we reproduce the following simpler version of Theorem 2.29 for unimodular
latices [cf. 35, Corollary 1].

Theorem 0.1 (Corollary 2.30). Given a weakly holomorphic modular form f for SL2(Z)
of weight 1− p, with a Fourier expansion of the form

∑
n�−∞ a(n) e(nτ). Assume that

f has integer coefficients in its principal part. Then, there is a meromorphic function
Ψf (τ, σ) on H`,`′ with the following properties

1. Ψf (τ, σ) is an automorphic form of weight a(0)/2 for U(L).

2. The zeros and poles of Ψf lie on divisors of the form

div
(
Ψf

)
=

1

2

∑
n<0

a(n) 6=0

a(n)D(n),

with the special cycles D(n) introduced above.

3. Near the cusp corresponding to `, the function Ψf (τ, σ) has an absolutely converging
infinite product expansion, for every Weyl chamber W , of the form

Ψf (τ, σ) = Ce

(
(ρf (W ), z)

(`, `′)

) ∏
µ∈K

(µ,εK(W ))R>0

(
1− e

(
(µ, z)

(`, `′)

))
,

where, as above, z = `′ + τδ(`, `′)` + σ, C is a constant of absolute value 1 and
ρf(W ) is the Weyl vector attached to W ; K denotes a Z-submodule of L. Here,
K can be written in the form K = Zζ`⊕ Z`′ ⊕D, with D positive definite. The
positivity condition (µ, εK(W ))R > 0 depends on the Weyl chamber.
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The Weyl chambers occurring here are connected components of D defined by inequal-
ities depending on the principal part of f , and ρf (W ) is the Weyl-vector attached to f
and W , see Section 2.5 for details.

Further, following [35, Sec. 9] we determine the value of Ψf at the cusp, i.e. in the
limit τ → i∞.

Theorem 0.2 (Theorem 2.35). Let W be a Weyl chamber such that the cusp corresponding
to ` is contained in the closure of W (viewed as a subset of D). If the cusp is neither a
zero nor a pole of Ψf , then the limit limr→∞Ψf (ir, σ) is given by

lim
r→∞

Ψf (ir, σ) = Ce
(
ρf (W )`

) ∏
µ∈K]

µ=aκF`
a∈Q<0

(1− e (aκ̄F))a(µ,0) .

Finally, in Section 2.6, we give a modularity statement for generating series of Heegner
divisors in the style of [3] from [35, Sec. 10].

Let CH1(X) be the first Chow group of the modular variety X. Recall that CH1(X)
is isomorphic to the Picard group Pic(X). Now, let π : X̃ → X be a desingularization
and let B = B(X̃) the group of boundary divisors of X̃. We consider a modified Chow
group, the quotient CH1(X̃)/B. Put (CH1(X̃)/B)Q = (CH1(X̃)/B)⊗Z Q.

Denote by Lk the sheaf of meromorphic automorphic forms on X. By the theory of
Baily-Borel, there is a positive integer n(Γ), such that if k is a positive integer divisible
by n(Γ), the sheaf Lk is an algebraic line bundle and thus defines an element in Pic(X).
The pullback of Lk to X̃ defines a class in CH1(X̃)/B, which we denote c1(Lk). More
generally, if k is rational, we choose an integer n such that nk is a positive integer divisible
by n(Γ) and put c1(Lk) = 1

n
c1(Lnk) ∈ (CH1(X̃)/B)Q.

As the Heegner divisors are Q-Cartier on X, their pullbacks define elements in the
modified Chow group (CH1(X)/B)Q.

Theorem 0.3 (Theorem 2.37). The generating series in Q[L′/L][[q]] ⊗ (CH1(X̃)/B)Q
given by

A(τ) = c1(L−1/2) +
∑
n∈Z
n>0

π∗
(
D(n)

)
qn

is a modular form in M1+p with values in (CH1(X̃)/B)Q, i.e. A(τ) is contained in
M1+p ⊗ (CH1(X̃)/B)Q.

Local Borcherds products In Section 2.7 we review [37], where, inspired by the work
of Bruinier and Freitag [7], the author used ‘local’ Borcherds products to describe the
position of (local) Heegner divisors in the cohomology. The term local in this context
refers to a neighborhood of the boundary component.

Denote by X∗Γ,BB the Baily-Borel compactification of X. The local Picard group
Pic(XΓ, `) is defined as the direct limit of the Picard groups of the regular loci of the
open neighborhoods Uε(`) of this cup,

Pic(XΓ, `) = lim−→Pic (U reg
ε (`)) .
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0. Introduction

For the definition for Uε(`) and a brief review of the compactification theory see Section
2.1.2.

Consider a lattice vector λ ∈ L of positive norm with λ ⊥ `. Then, a local Heegner
divisor attached to λ is defined by setting

D(λ)` =
∑
α∈D−1

F

D(λ+ α`).

Note that Γ contains a Heisenberg group stabilizing `, which acts with only finitely many
orbits on the set {λ+ α`; α ∈ D−1

F }, hence this definition. A local version of the cycles
D(n) for n > 0 is then given by

D(n)` =
∑
δ∈D

(δ,δ)=n

D(δ)`.

Now, the local Borcherds product Ψλ(z) attached to λ and D(λ)` is defined as

Ψλ(z) =
∏
α∈OF

(
1− e

(
σ (=α)

[
(λ, z) +

α

|δF|2

]))
,

where σ(=α) ∈ {±1} is +1 if =α ≥ 0 and −1 otherwise. Note that Ψλ(z) is an absolutely
convergent product with D(λ) as its divisor.

Denote by N the Heisenberg group in Γ. We note that N can be parameterized by
pairs [w, r] with r ∈ Q and w from a sublattice DΓ ⊂ D. The local Borcherds product
is only invariant under the action of the center of N , otherwise there is a non-trivial
automorphy factor, which can be utilized to determine the Chern class of D(λ)` in the
local Picard group. In this manner and with a torsion criterion from local cohomology
theory, one obtains the following theorem [cf. 37, Theorem 4.1])

Theorem 0.4 (Theorem 2.44). Let D be finite linear combination of local Heegner
divisors of the form

D =
1

2

∑
n∈Z
n<0

a(n)D(−n)`,

with integer coefficients a(n). Then D is a torsion element in the Picard group Pic (H`\Uε(`))
if and only if for all w,w′ ∈ DΓ the equation∑

m∈Z
n<0

a(n)
∑
λ∈D

Q(λ)=−n

[
Fλ(w,w

′)− Q (λ)

p− 1
(w,w′)

]
= 0 (0.0.1)

holds. Further, as a necessary condition for this to be the case, the following equation
must hold for the bilinear form Bλ(·, ·) = (λ, ·)(λ, ·):∑

h∈L

∑
m∈Z+Q(h)

n<0

a(h, n)
∑
λ∈D]

λ+D≡π(h)
Q(λ)=−n

traceBλ = 0.
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Finally, as an application of Theorem 0.4 one can prove an obstruction statement in
terms of certain spaces of cusp forms [37, Theorem 5.1].

Theorem 0.5 (Theorem 2.45). A finite linear combination of local Heegner divisors of
the form

D =
1

2

∑
n∈Z
n<0

a(n)D(n)`

with integer coefficients a(n) is a torsion element in the local Picard group Pic (H`\Uε(`))
if any only if ∑

n∈Z
n<0

a(n)b(−n) = 0 (0.0.2)

for every cusp form g =
∑

n∈Z b(n)e (nτ) in SΘ
l , where SΘ

l denotes a space of cusp forms
spanned by certain definite theta series (see Section 2.7.4 for the precise definition).

Chapter 3 In this chapter, we follow closely the joint work of the author and Jens
Funke [25]. The starting point for our considerations is the Kudla-Millson Schwartz form
introduced in [44, 45, 46]

ϕKM ∈
[
S(V )⊗Aq,q(D)

]G
,

which takes values in the closed differential (q, q)-forms in D. Under the action of the Weil
representation of SO(2) ⊂ SL2(R) ' SU(1, 1) it is an eigenfunction of weight p+ q. Then,
the associated theta series θ(z, τ, ϕKM) to L (τ = u + iv ∈ H) is a (non-holomorphic)
modular form of weight p+ q for a congruence subgroup Γ′ ⊆ SL2(Z) with values in the
closed differential (q, q)-forms in X. Furthermore, in the cohomology we have

[θ(z, τ, ϕKM)] =
∑
m≥0

[Z(m)]qm (q = e2πiτ ).

The key observation for our construction, see Section 3.3 is

Theorem 0.6 (Theorem 3.3). There exists a Schwartz form

ψ ∈
[
S(V )⊗Aq−1,q−1(D)

]G
such that

ω(L)ϕKM = ddc ψ. (0.0.3)

Here ω(L) is the Weil representation action of L = 1
2

(
1 −i
−i −1

)
∈ sl2(C) ' su(1, 1)(C)

which corresponds to the Maass lowering operator L = Lp+q for forms on the upper half
plane, and d and dc are the standard exterior derivatives acting on A•(D). Furthermore,
ψ has weight p+ q − 2 under the action of SO(2).

Note that the solution to the equation ω(L)ϕKM = dψ′ was already constructed in
[46], in fact, more generally for the dual pairs O(p, q)× Sp(n) and U(p, q)× U(n, n).
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We explicitly construct ψ and establish its properties using the Fock model of the
Weil representation (see Section 3.3.1), a brief review of the Fock model for the dual
pair U(p, q) × U(1, 1) is given below in Appendix A.2.2. In [25, Appendix B] the
formulas for the Weil representation are developed in greater generality for the dual pair
U(p, q)× U(n, n). We remark that similarly to [46], our form ψ can be used to solve the
higher rank equations for U(p, q)× U(n, n), too.

We then define the Green form of Kudla type by setting

Ψ0(x, z) := −
∫ ∞

1

ψ(
√
tx, z)eπt(x,x)dt

t

for nonzero x, and then for n ∈ Q and w > 0 setting

ΞK(m,w)(z) :=
∑

λ∈L,λ 6=0
(λ,λ)=n

Ψ0(
√

2wλ, z),

which defines a (q − 1, q − 1)-form on X with singularities along the cycles Z(n) for
n > 0. For n ≤ 0, the forms are smooth. Note that the principle of this construction and
its properties for the form ψ′ mentioned above were already implicit in [10] in the case
O(p, 2) and also have been outlined in [26]. Garcia and Sankaran [29] follow similar lines,
too, while using supercongruences to solve (0.0.3) for U(p, q)× U(n, n).

On the other hand, we define a singular theta lift (of Borcherds type) using the theta
series θ(z, τ, ψ) as integral kernel. Namely, for f , a harmonic Maass form of weight
k = 2− p− q, we set

Φ(z, f) :=

∫ reg

Γ′\H
f(z)θ(z, τ, ψ)dµ(τ).

Here the regularization follows the by now standard procedure introduced by Harvey
and Moore [32] and Borcherds [2]. We then define for n > 0 the Green form of Bruinier
type by

GB(n)(z) := Φ(z, Fn).

Here Fn(τ) denotes the Maass Poincaré series of weight k which has principal part q−n

and ‘shadow’ ξk(Fn) = Pn, the holomorphic Poincaré series for Γ′ of index n and weight

2− k = p+ q. Here ξk = 2ivk ∂
∂τ̄

= vk−2Lk is the differential operator mapping forms of
weight k to weight 2− k. For n ≤ 0, we set GB(n)(z) = 0. We show

Theorem 0.7 (Theorems 3.14, 3.18). The forms ΞK(n,w) and GB(n) both define Green
currents for the cycle Z(m). More precisely, as currents we have

ddc[ΞK(n,w)] + (−i)qδZ(n) = [ϕ0
KM(n,w)],

ddc[GB(n)] + (−i)qδZ(m) = [ddcΦ(Fn)].

Here ϕ0
KM(n,w) =

∑
λ∈L,(λ,λ)=n ϕKM(

√
2wx)e2πnw.

12



The proof employs the same Lie-theoretic set-up as in [10] and [26] for the orthogonal
case, see Section 1.1.2 and Appendix A.1. We first consider the analogous question for
Ψ0(x), and as a consequence we obtain the Green property for ΞK(n,w). We then show
that GB(n) has the same singularities as ΞK(n,w), and thus yields the same residue.

We can identify the term ddcΦ(z, f) in the previous theorem explicitly as follows:

Theorem 0.8 (Theorem 3.19). Let f be a harmonic weak Maass form for Γ′ of weight
k = 2− p− q with holomorphic constant term a+

0 , and let ξk(f) be its shadow, a cusp
form of weight p+ q. Then

ddcΦ(z, f) = (Θ(·, z, ϕKM), ξk(f))p+q + a+(0, 0)cq

as differential (q, q)-forms on X. Here (α, β)` denotes the Petersson inner product in
weight `. In particular, ddcΦ(z, f) extends to a smooth closed (q, q)-form of moderate
growth and ddcΦ(z, f) = a+(0, 0)cq for f weakly holomorphic.

This result is the analogue of the main result in [10], and the proof is fairly similar. It
can be viewed as an adjointness result between the Kudla-Millson lift and the singular
theta lift associated to ψ.

Following ideas of Ehlen and Sankaran [19] we then compare the two Green forms in a
different way. We show

Theorem 0.9 (Theorem 3.23). Assume p+ q > 2. Then for each z ∈ D, the generating
series

F (τ) = − log(v)ψ(0)(z)−
∑
n∈Q

(
ΞK(n, v)− GB(n)

)
(z) qn

transforms like a smooth modular form of weight p+ q. In addition, F is orthogonal to
cusp forms and satisfies Lp+qF (τ) = −θ(τ, ψ).

Finally, we define a different Green object GBs (n)(z) (n > 0) depending on a complex
parameter s. It is given essentially2 as Φ(Fn(s), z), where Fn(τ, s) is the Hejhal Poincaré
series of weight k with complex parameter s (at s = s0 = 1− k/2 this is the weak Maass
form Fn introduced above). We show

Theorem 0.10 (Theoremen 3.29, Corollary 3.32). Let ∆ be the Laplace operator acting
on differential forms on X. Then

∆GBs (n) =
(
(2s− 1)2 − (2s0 − 1)2

)
GBs (n).

Furthermore, GBs (n) agrees (up to a multiplicative constant) with the Green form con-
structed for n > 0 by Oda and Tsuzuki [53].

2Due to slightly different regularization process GBs0(n)(z) differs from Φ(z, Fn) by a smooth form.
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Chapter 4 In this chapter we calculate an explicit form of the Fourier-Jacobi expansion
for the lift Φ(z, f) for a harmonic Maass form f of weight k = 2− p− q. We adapt a
method of evaluating the theta integral introduced by Kudla [40] and work in the mixed
model of the Weil representation, for the setup of which see Appendix A.2.1.

Let `, `′ be isotropic lattice vectors with (`, `′) = 1. For a vector x ∈ V write x in the
form x = α`+ x0 + β`′, with x0 ∈ W . To pass to the mixed model, one has to carry out
a partial Fourier transform in the variable α. We denote the new variable by β′ and set
η = [β, β′].

Now, the main idea for the evaluation of the regularized integral is that by invariance
under SL2(Z) the regularized integral can be decomposed by systems of representatives
of SL2(Z)-orbits of η (viewed as a rational 2× 2-matrix). Thus, we set

Φ(z, f, ψ) =
2∑
i=0

Φi(z, f, ψ), with

Φi(z, f, ψ) :=

∫ reg

SL2(Z)\H

∑
η=[β,β′]/∼
rank(η)=i

∑
γ∈SL2(Z)η\SL2(Z)

〈
f(γτ), θη(γτ, z)

〉
L
v−2du dv.

Moreover, due to rapid decay of the integrand, the integrals can be evaluated for each
term separately, with fixed η, and summed up later, as

Φi(z, f, ψ) =:
∑

η=[β,β′]/∼
rank(η)=i

∑
γ∈SL2(Z)η\SL2(Z)

∑
n�−∞

(
â+(n)φi(n, η)+ + â−(n)φi(n, η)−

)
,

for i = 0, 1, 2. Here, â±(n) denotes the Fourier coefficients of f in the mixed model, with
â+(n) from the holomorphic part f+ and â−(n) from the non-holomorphic part f−. The
terms φi(n, η)+ and φi(n, η)− are given by

φi(n, η)+ =

∫ reg

SL2(Z)η\H
e2πinuθη(τ, z)dµ(τ), φi(0, η)− =

∫ reg

SL2(Z)η\H
θη(τ, z)v1−kdµ(τ),

and φi(n, η)− =

∫ reg

SL2(Z)η\H
Γ(1− k, 4π|n|)e2πinuθη(τ, z)dµ(τ) (n 6= 0).

The domain of integration is the upper half plane H for i = 2, is given by SL2(Z)∞\H
for i = 1 and is the usual fundamental domain SL2(Z)\H for i = 0.

We remark that in general, we will not determine the ‘rank 0’ (i.e. i = 0) term, which
is given by the convolution integral of an indefinite theta series and contributes only an
additive constant to the lift. However, it falls out in signature (1, q) (an example we
treat prominently, see Example 4.12 and Corollary 4.16) and in signature (p, 1), where
the theta series is definite, it can be worked out the methods of Borcherds [2], [see 40].

To facilitate calculation somewhat we first evaluate all terms at the base point z0 ∈ D,
the results are given in Theorem 4.9. Then, we apply the group action of G = U(V )
to obtain the Fourier-Jacobi expansion, see Theorem 4.14. As coordinates we use
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the group elements of G in terms of the the Levi decomposition G = NAM , where
M ' SU(p− 1, q − 1), A ' GL([`]) and N is the Heisenberg group.

Since the notation is very involved, rather than reproducing Theorems 4.9 and 4.14
here, we will just consider a (simple) example:

If the signature of V is (p, 1), the Schwartz form ψ is essentially the Gaussian, as
ψ = 2iϕ0. In the mixed model and using the coordinates introduced above, it is given by

ψ̂p,1(
√

2(η, x0), τ) = 2i exp

(
−2π

v

[
|β′ + τ̄β|2 + 2v=

(
β′β̄
)])

e2πiτ(x0,x0) ⊗ 1.

Thus, the resulting contributions to the lift of a weak harmonic Maass form take a fairly
simple form, for example one has for fixed η and n

φ2(n, η)+(z0) =

√
2

2
|β|Bη

− 1
2 exp

(
− 2π

|β|2
|Aη|

(
1
2
Bη

) 1
2

)
e−2πiCη((x0,x0)+n),

where Aη,Bη and C are defined as

Aη(n, x0) = n+ 2|β|2 + (x0, x0), Cη =
Re(β′β̄)

|β|2
and Bη = 2=

(
β′β̄
)2
.

The other contributions φ2(n, η)− and φ1(n, η)± can be found in Example 3.5.
For the Fourier-Jacobi expansion, we use the following coordinates. For z ∈ D, let

g(z) ∈ G be an element with g(z)z0 = z. And let g(z) = n(w, r)a(t)µ with n(w, r) ∈ N
(w ∈ W, r ∈ R), a(t) ∈ A (t > 0) and µ ∈ M be the decomposition of g(z). Using w, t
and τ` := r+ it2 as coordinates (and omitting µ), the lift of a weak harmonic Maass form
f ∈ H+

k with Fourier coefficients a(n)± takes the following form (see Corollary 4.15):

1

2i
Φ(z, f, ψ) = c0(t, w) +

∑
κ∈Q×

cκ(t, w)e2πiκRe τ` ,

where the constant term c0(t, w) is given by

c0(t, w) = 4πI0 + t2
∑

β′=(a,b)

[
a−(0)

1

(2πt2|β′|)p+1 Γ(p+ 1) +

∑
n 6=0

(
a+(λ, n)

1

2πt2|β′|2
+ a−(n)(p− 1)!

p−1∑
r=0

πr

r!
(4|n|)

r
2
− 1

4 tr−
1
2 |β′|r−

1
2

· hr

(
1

4πt|β′||n|
1
2

)
e−4πt|β′||n|

1
2

)]
· e
(
−Re (β′(x0, w))

)
,

with a rational constant I0, which can be evaluated using the methods of [2], see [40].
The coefficients cκ(t, w) (κ > 0) take the form

cκ(t, w) =
∑
a,b

∑
m

Aκ(n, [β, β
′])(t, w),

15



0. Introduction

wherein

Aκ(n, [β, β
′])(t, w) =

(
a+(n)

√
2

2

t|β|

B
1
2
η

+ a−(n)A−n (η; t, w)

)

· exp

(
−2

π

|β|2
|Atη(x0 − βw)|

(
1
2
Bη

) 1
2 − 2πi

[
Cη ((x0, x0) + n) + 2α=(x0, w)

])
,

with a term A−n (η; t, w) from the contribution of the non-holomorphic part f−, given by

√
2(p− 1)!

p−1∑
r=0

(4|n|π)r

r!
t2r+1+2|β|B

r−1
2

η

(
1
2
A2
tη(x0 − βw)− 2t2|β|2 (2|n| − n)

)− r
2

· hmax{0,r−1}

(
|β|2

2π

((
1
2
Atη(x0 − βw) + 2t2|β|2(2|n| − n)

)
Bη

)− 1
2

)
.

We remark that for f ∈ M!
k, like in [40], it is possible to obtain another form of the

Borcherds product expansion from this Fourier-Jacobi expansion.

The singular theta lift for U(p, q)×U(1, 1) offers many possibilities for future research.
For example, it should be of considerable interest, both in its own right and in view of
applications in the Kudla program, to consider suitable integrals of the singular theta
lift Φ(z, f), say, along the lines of [42] or [11].

Also, it should be quite interesting to analyze the behavior of the singular theta lift at
the boundary components of suitable toroidal compactifications of X, in terms of the
Fourier-Jacobi expansion.

We hope to come back to these questions in the near future.

Finally, I would like to thank the many colleagues how have encouraged and inspired
me over the years. And especially, I would like to thank Jan Bruinier, Stephan Ehlen
and my coauthor Jens Funke for many helpful and interesting discussions.
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1. Setup

In the present chapter, we establish the setup and notation used. We introduce the
unitary group over an indefinite complex hermitian space V , its symmetric space and
its Lie algebra, following [25]. Further, we describe the setup of the Schrödinger model
of the Weil representation and the construction of theta functions. Through their
transformation behavior, we define the finite Weil representation ρL associated to a
hermitian lattice L ⊂ V . We then review the definitions of some spaces of vector valued
modular forms transforming under ρL and their properties. In the last section of this
chapter we introduce a regularized pairing and define regularized theta integrals, through
the standard regularization procedure used for singular theta lifts of Borcherds type.

1.1. The unitary group

1.1.1. The symmetric space

In the following let (V, (·, ·)) be a complex space of dimension m with a non-degenerate
indefinite hermitian form (·, ·) of signature (p, q), with p, q ≥ 1. We assume that (·, ·) is
C-linear in the second argument and conjugate linear in the first.

We pick standard orthogonal basis elements v1, . . . , vm with (vα, vα) = 1 for α = 1, . . . , p
and (vµ, vµ) = −1 for µ = p + 1, . . . ,m, respectively1. We let zα and zµ denote the
corresponding coordinate functions, so that for x ∈ V ,

x =
∑
α

zαvα +
∑
µ

zµvµ, and (x, x) =

p∑
α=1

|zα|2 +
m∑

µ=p+1

|zµ|2.

This choice of basis also gives rise to an orthogonal decomposition V = V+ ⊕ V− into
definite subspaces.

Further, we will sometimes consider V as a real quadratic space together with the
bilinear form (·, ·)R = Re(·, ·) = 1

2
traceC/R(·, ·). We denote this space by VR. Then, an

orthogonal basis of VR is formed by {vα, ivα, vµ, ivµ}α,µ.
We let G = U(V ) be the unitary group of V and let D = G/K be the associated

symmetric space of complex dimension pq. Here K ' U(p)×U(q) is the maximal compact
subgroup corresponding to the basis of V chosen above. We realize the symmetric space
as the Grassmannian of negative definite q-planes in V :

D ' {z ⊂ V : dim(z) = q, (·, ·)|z < 0} ,
1Throughout, we follow [46] in using ‘early’ Greek letters to denote indices ranging from 1 to p and

’late’ Greek letters for indices from p+ 1 to m.
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1. Setup

and fix z0 := spanC{zµ; µ = p+ 1, . . . ,m} as the base-point of D.
Naturally, isotropic subspaces correspond to to boundary components of D. Thus

beside the standard basis {vj}j=1,...,m introduced above we will also use basis containing
an isotropic vector, denoted by ` and a second vector `′ with (`, `′) 6= 0. Unless stated
otherwise, `′ is assumed to be isotropic, too.

Usually we take spanC{`, `′} = spanC{v1, vm}, so that the set {`, v2, . . . , vm−1, `
′} is a

basis of V . For example, we can set

` =
v1 + vm√

2
and `′ =

v1 − vm√
2

.

Given z ∈ D, the standard majorant (x, x)z is given by

(x, x)z = (xz⊥ , xz⊥)− (xz, xz),

where x = xz + xz⊥ , using the orthogonal decomposition V = z ⊕ z⊥. We also set

R(x, z) := −(xz, xz).

Note that R(x, z) ≥ 0 with R(x, z) = 0 if and only if x ∈ z⊥. In particular for z = z0 we
have the decomposition z0 ⊕ z⊥0 = V− ⊕ V+, hence R(x, z0) = −(x−, x−), with x− ∈ V−.

When x has positive norm, let D(x) denote the codimension q sub-Grassmannian

D(x) := {z ∈ D : z ⊥ x} = {z ∈ D : R(x, z) = 0}. (1.1.1)

Also, for convenience, if x is non-positive, set D(x) = ∅.

Hermitian lattices Let F = Q
(√

DF
)

be an imaginary quadratic number field with
discriminant DF, for which we fix of F into C. We denote by OF the ring of integers and
let δF be the square of the discriminant, with the principal branch of the complex square
root function. Further, denote by D−1

F the inverse different ideal, given by δ−1
F OF. Finally,

we denote by κF a generator of OF as a Z-module with =κF = 1
2
δF, e.g. κF = 1

2
(DF + δF).

Let L ⊂ V be an even hermitian lattice, i.e. a projective module over the ring of
integers OF of F, on which the restriction of (·, ·) is OF-valued. If L has full rank, i.e. if
V = L⊗OF C, we denote by VF the space L⊗OF F, understood as a hermitian space with
the restriction of (·, ·). The dual lattice L] is given by

L] = {x ∈ V ; (x, λ) ∈ D−1
F , ∀λ ∈ L} = {x ∈ V ; traceF/Q(x, λ) ∈ Z, ∀λ ∈ L}.

Note that L ⊂ L], hence L is integral. The quotient L]/L is called the discriminant
group of L.

Remark 1.1. Beside L], more precisely called the Z-dual of L, one can also introduce
an OF-dual L]OF

, defined as

L]OF
:= {x ∈ V ; (x, λ) ∈ OF}.

Then, L] = δ−1
F L]OF

(cf. [14, Section 4.1]).
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We also note that since L is even, (λ, λ) ∈ Z for all λ ∈ L. Thus, L can be considered
as an even, integral lattice over Z, too. Indeed, equipped with the quadratic form
Q (λ) := (λ, λ), the Z-module L is an even and integral lattice contained in the rational
space L⊗Z Q = VQ, which of course is isomorphic to VF, considered as a vector space
over Q. Hence, we extend this quadratic form to V by setting Q (x) = (x, x) = (x, x)R
for x ∈ V . However, note that Q (·) is more commonly associated to a bilinear form2

which coincides with traceC/R(·, ·) = 2(·, ·)R (see [33, 34, 35, 37]).
For n ∈ Q and h ∈ L]/L, we define the special cycle D(n, h) in D by

D(n, h) =
∑
λ∈L+h
(λ,λ)=n

D(λ). (1.1.2)

Note that D(n, h) is locally finite. We let ΓL = Fix(L#/L) ⊂ G and write

X = ΓL\D

for the resulting quasi-projective variety. Further, we let Z(x) and Z(n, h) be the image
in X of D(λ) and D(n, h), respectively.

1.1.2. The unitary Lie algebra

We let g0 = u(V ) be the Lie algebra of G. We define the R-linear surjective map

φV :
∧2

R
V −→ u(V )

by
φV (v ∧ ṽ)(x) = (v, x)ṽ − (ṽ, x)v.

Note that we have
φV (iv ∧ ṽ) = φV (v ∧ −iṽ).

In the following we will abuse notation and drop φV and just write v ∧ ṽ ∈ u(V ). Note

that in this way we realize u(V ) as a quotient of
∧2

R
V by the relation iv∧ ṽ+v∧ iṽ = 0.

We have
g0 = spanR{vr ∧ vs, ivr ∧ vs}.

We put
Xrs = vr ∧ vs and Yrs = ivr ∧ vs.

In the Cartan decomposition g0 = k0 ⊕ p0 with k0 = Lie(K) = u(p)× u(q), we note that

p0 = spanR{Xαµ, Yαµ; 1 ≤ α ≤ p, p+ 1 ≤ µ ≤ m}.

We let {ωαµ, ω′βν} be the corresponding dual basis for p∗0. Furthermore, the natural
complex structure on p0 is given by Xαµ 7→ Yαµ, Yαµ 7→ −Xαµ.

2Denoting this form by B(x, y). One sets Q (x) = 1
2B(x, x), see for example [5]. In this case, one has

the polarization identity B(x, y) = Q (x+ y)−Q (x)−Q (y).
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We let g = g0 ⊗ C be the complexification of g0, which we view as a right C-vector
space. We define

Z ′rs =
1

2
(Xrs − Yrsi) and Z ′′rs =

1

2
(Xrs + Yrsi).

Note that Z ′′rs = −Z ′sr. In the Harish-Chandra decomposition

g = k⊕ p+ ⊕ p−,

we see that

k = spanC{Z ′αβ, Z ′µν}, p+ = spanC{Z ′αµ}, p− = spanC{Z ′′αµ}.
We let {ξ′αµ} and {ξ′′αµ} be the corresponding dual basis of p+ and p−.

We let VC = V ⊗R C. We view VC as a right complex vector space of dimension 2m
and hence write vi for v ⊗ i. Note that iv (internal multiplication of the left C-vector
space V ) is not equal to vi. We decompose VC = V ′⊕ V ′′ into the +i and −i eigenspaces
under left multiplication by i. The maps

v 7−→ v − ivi and v 7−→ v + ivi

realize a C-linear isomorphism of (the left C-vector space) V with (the right C-vector
space) V ′ and a C-anti-linear isomorphism with V and V ′′. Hence we can view V ′′ ' V ∗

as C-vector spaces. We denote the natural bases of V ′ and V ′′ by

v′r := vr − ivri and v′′r := vr + ivri,

respectively. Furthermore, we obtain decompositions V ′ = V ′+ ⊕ V ′− and V ′′ = V ′′+ ⊕ V ′′−
in the natural way. We have

Z ′rs(v
′
t) = −(vs, vt)v

′
r and Z ′rs(v

′′
t ) = (vr, vt)v

′′
s ,

and we note that this realizes the isomorphism g ' glm(C) by the action of g on V ′.
More precisely, we obtain

k ' Hom(V ′+, V
′

+)⊕ Hom(V ′−, V
′
−), p+ ' Hom(V ′−, V

′
+), p− ' Hom(V ′+, V

′
−).

Correspondingly, the action of g on V ′′ realizes the dual of the standard representation
of g.

Recall how we consider V as a real quadratic space (VR, (·, ·)R), with an orthogonal
basis given by {vα, ivα, vµ, ivµ}α,µ. We let oVR be the Lie algebra of the orthogonal group
O(VR). We now have the isomorphism

φVR :
∧2

VR ' o(VR)

given by
φVR(v ∧ ṽ)(x) = (v, x)Rṽ − (ṽ, x)Rv.

We let ι : g0 = u(V ) 7→ o(VR) be the natural embedding. We easily see

ι(φV (v ∧ ṽ)) = φVR(v ∧ ṽ) + φVR(iv ∧ iṽ).

Note this realizes u(V ) as the subspace of
∧2

R
V which is fixed by (left)-multiplication

with i in both factors.
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1.2. Schwartz forms and Weil representation

1.2. Schwartz forms and Weil representation

Let S(V ) be the Schwartz space of V . We now describe the setup of the Weil representation
for the dual reductive pair U(1, 1)×U(V ) in the Schrödinger model, acting on S(V ). We
denote by ψ an additive character of R and by (ω, ψ) the associated Weil representation.
Recall that all such additive characters are given by ψα(t) = e(αt) with α ∈ R, where
e(t) = e2πit, as usual.

Let φ ∈ S(V ) be Schwartz form. The unitary group G = U(V ) acts linearly, through

ω(g)φ(x) = φ(g−1x).

The action of G′ = U(1, 1) ' SL2(R) is given as follows.

ω ((n(b)))φ(x) = ψα
(

1
2
b(x, x)

)
φ(x) for n(b) = ( 1 b

0 1 ) ,

ω (m(a))φ(x) = amφ(ax) for m(a) =
(
a 0
0 a−1

)
with a > 0,

ω (S) = ip−qφ̂(x) for S = ( 0 −1
1 0 ) ,

(1.2.1)

where φ̂(x) = αm
∫
V
φ(y)e (−(x, y)R) dy denotes the Fourier transform of φ(x). Here, we

identify V and R2m and dy is the usual Lebesgue measure.

Note that for α > 0 the representations (ω, ψα) are all isomorphic. Explicitly, the
intertwiner between (ω, ψ1) and (ω, ψα) is given by φ(x) 7→ φ (

√
αx).

For the time being, let α = 1, so that the additive character is given by t 7→ ψ1 = e(t).
We say that φ has weight r ∈ Z if ω(k′θ)φ = eriθφ for k′θ =

(
cos θ sin θ
− sin θ cos θ

)
in K ′ = U(1) '

SO2(R). Now, the standard Gaussian

ϕ0(x, z) := e−π(x,x)z

has weight r = p− q. Sometimes, we will write ϕp,q0 for ϕ0 to emphasize dependence on
the signature.

For τ = u + iv ∈ H, let g′τ be an element of SL2(R) mapping i to τ , e.g. g′τ =

( 1 u
0 1 )

(
v

1
2 0

0 v−
1
2

)
. Then, for a Schwartz form φ of weight r, we set

φ(x, τ) := v−
r
2ω (g′τ )φ(x) = v−

r
2

+ p+q
2 φ0(

√
vx)eπi(x,x)τ ,

where we have set φ0(x) = eπ(x,x)φ(x).

Remark 1.2. We note that using ψ1 as an additive character here and the definition of
ϕ0 allow us to maintain consistency with [25] and ultimately with the convention used
by Kudla and Millson in their construction of Schwartz forms in [45].

However, in dealing with theta functions, this will cause some technical difficulties, as
we shall see presently. In this context, the additive character ψ2, t 7→ e(2t) presents a
better choice. Hence, we will use ψ1 as an additive character in local calculations and
switch to ψ2 when dealing with global objects like theta functions.
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1. Setup

1.2.1. Theta functions and the finite Weil representation

Let L be an even hermitian lattice with the hermitan form (·, ·). For φ ∈ S(V ), and
h ∈ L]/L, we define a theta function

θ(g′, z, φ, h) :=
∑
λ∈h+L

ω(g′, ψα)φ(λ, z).

Further, if φ has weight r ∈ Z, we get a function on the upper half-plane by setting

θ(z, τ, φ, h) = v
r
2

∑
λ∈h+L

ω(g′τ , ψα)φ(λ, z) =
∑
λ∈h+L

φ(λ, τ, z).

However, since (λ, λ) is an integer, but not necessarily even, for α = 1, the function

φ(z, τ, λ) = v
1
2

(−r+p+q)φ0(
√
vλ, z)eπi(λ,λ)τ does not give rise to a q-expansion. Hence, we

introduce a factor of
√

2, which amounts to switching from ω = (ω, ψ1) to (ω, ψα), with
α = 2. Thus, we get the theta function

θ(z, τ, φ)h :=
∑
λ∈h+L

φ(
√

2λ, τ, z),

which under the operation of the generators S and T = n(1) of SL2(Z) = Γ′ transforms
as

ω(T ) θ(τ, z, φ)h = e ((h, h)) θ(τ, z, φ)h,

ω(S) θ(τ, z, φ)h =
ip−q√
|L]/L|

∑
µ∈L]/L

e (−2(µ, h)R) θ(τ, z, φ)µ.
(1.2.2)

This can be used to define a representation of Γ′, the finite Weil representation ρL,
through which Γ′ acts on the group algebra C[L]/L] (cf. [10]). We denote by {eh}h∈L]/L
the standard basis elements of C[L]/L]. Now, introducing the vector

Θ(τ, z;φ)L = (θ(τ, z, φ)h)h∈L]/L =
∑

h∈L]/L

θ(τ, z, φ)heh,

we may define ρL by setting

Θ(γτ, z;φ)L = ρL(γ)Θ(τ, z;φ)L for all γ ∈ Γ′.

Hence, by (1.2.2) the generators of Γ′ act as follows

ρL(T )eh = e ((h, h)) eh, ρL(S)eh =
ip−q√
|L]/L|

∑
µ∈L]/L

e (−2(µ, h)R) eµ.

We denote by ρ∨L ' ρ̄L the dual representation.

Remark. We note that ρL is is essentially the finite Weil representation associated with the
quadratic module (L,Q (·)), since the factor

√
2 introduced above amounts to replacing

the bilinear form (·, ·)R with 2(·, ·)R.
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1.3. Some spaces of vector valued modular forms

Now, let L− be the same OF module as L but with the hermitian form −(·, ·). Similarly
to L, there is a finite Weil representation ρL− through which Γ′ acts on the group algebra
of L−. Note that ρL− ' ρ∨L.

Finally, we introduce the hermitian pairing on C[L]/L]

〈 , 〉L : C[L]/L]× C[L]/L]→ C, by setting 〈eµ, eν〉L = δµ,ν (µ, ν ∈ L]/L).

A similar definition is made for the lattice L−.

Example 1.3. For the standard Gaussian, ϕ0, the theta series is given by

Θ(τ, z;ϕ0)L =
∑

h∈L]/L

∑
λ∈L+h

ϕ0(λ, τ, z)eh,

with

ϕ0(λ, τ, z) = vq exp (2πi ((λ, λ)u+ (λ, λ)ziv)) = vqe ((λz⊥ , λz⊥)τ + (λz, λz)τ̄) .

Essentially, this is the Siegel theta function for the lattice L; we will discuss this example
in somewhat more detail in the next chapter, see Section 2.4.

Remark 1.4. Consider O(VR), the orthogonal group of the quadratic space VR. For the
dual reductive pair SL2(R) and O(VR) the Schrödinger model for the Weil representation
is isomorphic to (ω, ψ1), and the finite Weil representation of the lattice L (as a Z-module
with the quadratic form Q (·)) is isomorphic to ρL.

Somewhat more generally, if V is a real quadratic space of signature (p, q), there is a
representation of the metaplectic double cover Mp2(R) of SL2(R), from which, if M is
an even lattice in V , one obtains a finite Weil representation of the preimage of SL2(Z)
in Mp2(R), acting on C[M ]/M ]. For both representations, the action of the generators
is similar to ω and ρL, except that in (1.2.1) and (1.2.2), p and q are replaced by p

2
and

q
2
, see [10] and [5] for details.

1.3. Some spaces of vector valued modular forms

For k ∈ Z and γ ∈ SL2(Z), define the weight k slash-operation on functions C[L]/L]→ C
as

f |k,L γ = (cτ + d)−kρL(γ)−1f(γτ).

The slash-operation for the dual representation ρ∨L ' ρL− is defined similarly.
The following definitions for vector-valued modular forms transforming under ρL are

well-known.

Definition 1.5. For k ∈ Z, let Sk,L, Mk,L and M!
k,L be the spaces of holomorphic

functions f : H→ C[L]/L] which satisfy

1. f |k,L (γ) = f for all γ ∈ SL2(Z).

2. If f is in M!
k,L, then f is meromorphic at the cusp ∞, while if f ∈ Mk,L, it is

holomorphic at the cusp. Finally if f ∈ Sk,L it vanishes at ∞.
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1. Setup

Clearly, Sk,L ⊂ Mk,L ⊂ M!
k,L. The elements of these spaces are called cusp forms,

(holomorphic) modular forms and weakly holomorphic modular forms, respectively.

As an example for cusp forms, we have the holomorphic Poincaré series.

Definition 1.6. Given h ∈ L]/L and n ∈ Z +Q (h) with n > 0. Let κ = (p+ q)− 2. A
holomorphic Poincaré series Pn,h ∈ Sκ,L of index (n, h) is defined as follows [cf. 5, Section
1.2.1]

Pn,h :=
∑

A∈SL2(Z)∞\SL2(Z)

e(nτ)eh |L,κ A.

Next, following [10], we introduce harmonic weak Maass form.

Definition 1.7 ([see 10, Section 3]). For k ∈ Z, let Hk,L be the space of twice continuously
differentiable functions f : H→ C[L]/L], which satisfy

1. f |k,L (γ) = f for all γ ∈ SL2(Z).

2. There exists a constant C > 0 such that f(τ) = O(eCv) as v →∞.

3. ∆kf = 0.

The elements of Hk,L are called harmonic weak Maass forms. Any such form f has a
decomposition f(τ) = f+(τ) + f−(τ) into a holomorphic and a non-holomorphic part,
where the Fourier expansion of the holomorphic part is

f+(τ) =
∑

h∈L]/L

∑
n∈Q

a+(h, n)e(nτ) eh,

whilst that of the non-holomorphic part is

f−(τ) =
∑

h∈L]/L

(
a−(h, 0)v1−k +

∑
n∈Q
n6=0

a−(h, n)Γ(1− k, 4πnv)e(nu)
)
eh.

We denote by P (f) the principal part of f , i.e. the Fourier polynomial

P (f)(τ) = P (f+)(τ) =
∑

h∈L]/L

∑
n∈Q
n<0

a+(h, n)e(nτ)eh. (1.3.1)

Note that Hk,L contains the spaces of weakly holomorphic modular forms M!
k,L and

holomorphic modular forms Mk,L, with Hk,L ⊃ M!
k,L ⊃ Mk,L.

The Maass differential operators on smooth functions H→ C[L]/L] are defined as

Rk = 2i
∂

∂τ
+
k

v
, Lk = 2iv2 ∂

∂τ̄
. (1.3.2)
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1.3. Some spaces of vector valued modular forms

For any smooth function f : H→ C[L]/L] and γ′ ∈ SL2(Z) one has

(Rkf) |k+2 γ = Rk

(
f |k γ

)
,

(Lkf) |k−2 γ = Lk
(
f |k γ

)
.

Hence, Rk and Lk are called the Maass raising and lowering operator, respectively.
Closely related to Lk, the operator ξk introduced in [10] affords an antilinear mapping

given by

ξk : Hk,L −→ M!
2−k,L− , f(τ) 7−→ 2ivk

∂f(τ)

∂τ̄
= vk−2Lkf(τ). (1.3.3)

Now, the space H+
k,L is defined as the inverse image of the cusp forms S2−k,L− . It follows

immediately from this definition that for f ∈ H+
k,L,

f(τ)− P (f)(τ) = O(e−Cv),

as v → ∞ for some constant C > 0. Further, by [10, Corollary 3.8], there are exact
sequences

0 −→ M!
k,L −→ Hk,L

ξk−→ M!
2−k,L− −→ 0,

and

0 −→ M!
k,L −→ H+

k,L

ξk−→ S2−k,L− −→ 0.

Remark 1.8. For a harmonic weak Maass form f ∈ H+
k,L− , the image under ξk is

sometimes called its ‘shadow’, while its holomorphic part f+ is considered as a ‘mock-
modular form’. This terminology comes from the Zwegers’ seminal thesis [59].

We now introduce a pairing between the spaces M2−k,L− and H+
k,L as follows. For

g ∈ M2−k,L− with Fourier expansion g =
∑

h,n b(h, n)e(nτ)eh and f ∈ H+
k,L with f+ =∑

h,n a
+(h, n)e(nτ), put (see [10, (3.15) on p. 62])

{g, f}′ : =
∑

h∈L]/L

∑
n<0

a+(h, n)b(h,−n)

= (h, ξk(f))2−k,L −
∑

h∈L]/L

a+(h, 0)b(h, 0).

Note that the induced pairing between H+
k,L/M

!
k,L and S2−k,L− is non-degenerate [see 10,

Corollary 3.9].

Remark 1.9. For cusp forms, the pairing {·, ·}′ is essentially the residue pairing, see
Section 2.6 below.

For the following result, see [5, Theorem 1.17], also [2, Theorem 10.3].
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1. Setup

Proposition 1.10. A Fourier polynomial in C[q−1]⊗ C[L]/L]∑
h∈L]/L

∑
n∈Z+Q(h)

n<0

a(h, n)e(nτ)eh,

with a(h, n) = (−1)k+(q−p)a(−h, n), is the principal part of a weakly holomorphic modular
form f ∈ M!

k,L if and only if the functional

S2−k,L− 3 g =
∑
h,n
n>0

b(h, n)e(nτ) 7−→
∑

h∈L]/L

∑
n∈Z+Q(h)

n<0

a(h, n)b(h,−n)

is zero on S2−k,L−.

Further, by [10, Proposition 3.11], for any such Fourier polynomial Q, there is weak
harmonic Maass form f ∈ H+

k,L with principal part P (f) = Q+ c with some T -invariant

constant c ∈ C[L]/L]. (The proof uses Proposition 1.10 and the non-degeneracy of the
pairing {·, ·}′.)

Following Ehlen and Sankaran [19], we generalize the setup by introducing two further
spaces of modular forms, Amod

k,L− and A!
k,L− . For the former space, we use the following,

slightly modified definition from [4, Definition 3.2]:

Definition 1.11. Let Amod
k (ρ∨L) = Amod

k,L− denote the space of C∞-functions f : H →
C[L]/L] satisfying

1. f |k,L− (γ) = f for all γ ∈ SL2(Z).

2. For all a, b ∈ Z≥0, there is an r ∈ Z such that ∂a

∂au
∂b

∂bv
f(τ) = O(vr) as v →∞.

3. If f =
∑

m∈Q c(m, v)e(mτ) denotes the Fourier expansion of f , then the integral∫ ∞
1

c(0, t)t−2−sdv,

has a meromorphic continuation to a half-plane Re(s) > −ε for some ε > 0. (The
integral converges for sufficiently large Re(s)� 0, since by 2., f is of polynomial
growth as v →∞.)

Definition 1.12 ([see 19, Definition 2.8]). Let A!
k(ρ
∨
L) = A!

k,L− denote the space of

C∞-functions f : H→ C[L]/L]∨ satisfying

1. f |k,L− (γ) = f for all γ ∈ SL2(Z).

2. There exists a constant C > 0 such that f(τ) = O(eCv) as v →∞.

3. Lk(f) ∈ Amod
k−2(ρ∨L).
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1.4. Regularized integrals

Hejhal Poincaré series We now introduce non-holomorphic Poincaré series of negative
weight, which span the space of weakly harmonic Maass forms, a good reference is [5,
Chapter 1.2].

Definition 1.13. Let k be a negative integer. The Hejhal Poincaré series, also known as
Maass Poincaré series3, of weight k and index (n, h) with h ∈ L]/L and n ∈ Z is defined
as follows, for τ ∈ H, s ∈ C with Re(s) > 1:

Fn,h(τ, s) :=
1

4Γ(2s)

∑
A∈Γ∞\SL2(Z)

Ms(4π|n|v)e2πinueh |k,L− A, (1.3.4)

where Ms(t) = t−
k
2M− k

2
,s− 1

2
(t), with the usual M-Whittaker function Mν,µ(t) [see 56,

Chap. 13]. Note that this definition differs from [5, Definition 1.8] by a factor of 1
2
.

Set s0 = 1− k
2
. For fixed s = s0 the Poincaré series Fn,h(τ, s0) are weak Maass forms

Fn,h(τ). They have principal parts

e(nτ)eh + (−1)k+(p−q)e(nτ)e−h

and span the space H+
k,L− , see [5, Proposition 1.12] and [10, Remark 3.10].

For example, let f ∈ M!
k,L− be a weakly holomorphic modular form of negative weight

k with Fourier coefficients a(h, n) (h ∈ L]/L, n ∈ Z−Q (h)). Then,

f(τ) =
∑

h∈L]/L

∑
n∈Z−Q(h)

n<0

a(h, n)Fn,h (τ, s0) . (1.3.5)

Further, note that the ‘shadow’ of Fn,h(τ), i.e. the image of Fn,h(τ, s0) under the operator
ξk is given by (see [10])

ξk (Fn,h) = P−n,h,

where P−n,h is a holomorphic, cuspidal Poincaré series of index (−n, h) and weight 2− k
as defined above, see Definition 1.6.

1.4. Regularized integrals

We now introduce a regularized version of the Petersson pairing using the by now standard
regularization procedure originally introduced by Harvey and Moore [32].

The (regularized) Petersson pairing For two modular forms, f, g ∈ Mk,L, of which at
least one is a cusp form, the weight k Petersson pairing is defined as usual,

〈f, g〉L,k =

∫
F
〈f, g〉L v

kdµ,

3We will use both names interchangeably.
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1. Setup

where F ⊂ H is a fundamental domain for the action of SL2(Z) on H and dµ = v−2dudv.
Similarly, for two modular forms f ∈ Mk,L− and g ∈ M−k,L we define the Petersson
pairing

〈f, g〉L− =

∫
F
〈f, ḡ〉L dµ,

whenever the integral converges absolutely.
More generally, we introduce a regularized pairing as follows. Denote by Ft, for t ∈ R>0

the truncated fundamental domain given by

Ft :=
{
τ = u+ iv; |τ | > 1,−1

2
< u < 1

2
, 0 < v ≤ t

}
.

For f ∈ H+
k,L− be a weak harmonic Maass form, and g transforming as a modular form

of weight κ under ρL, for the regularized pairing of f and g, we set

(f, g)regL− :=

∫ reg

SL2(Z)H
〈f, ḡ〉L dµ

:= CT
s=0

[
lim
t→∞

∫
Ft
〈f, ḡ〉L v

−s dµ

]
,

(1.4.1)

where the notation CTs=0 denotes the constant term at s = 0 of the meromorphic
continuation of the limit4 We say that the pairing exists if for sufficiently large Re(s) the
limit t→∞ defines a holomorphic function in s for which a meromorphic continuation
to some Re(s) < 0 exists, so that the constant term of the Laurent expansion around
s = 0 can be evaluated.

Regularized theta integrals Given a theta-function Θ(τ, z) = Θ(τ, z;φ)L, with a
Schwartz form φ of weight r ∈ Z, and a weak harmonic Maass form f ∈ H+

−r,L− , of weight
−r, the regularized pairing

(f,Θ(·, z))regL− = CT
s=0

[
lim
t→∞

∫
Ft

〈
f(τ),Θ(τ, z)

〉
L
v−s dµ

]
, (1.4.2)

is called a regularized theta integral.

Remark 1.14. If in the Fourier expansion of f the term a+(0, 0) is zero, in (1.4.1) a
somewhat simpler regularization procedure can be used: simply taking the limit t→∞
for the integrand with s = 0.

Regularized integrals of this type can be used to realize singular theta lifts (of Borcherds
type), see [32, 2, 5, 10]. In the following we will be studying such theta lifts and further
related topics. In Chapter 2 we will treat the case where the signature of V is (p, 1),
in which case VR is a quadratic space of signature (2p, 2). In this setting, consider the
Gaussian ϕp,10 , which gives rise to the Siegel theta function from Example 1.3. Now,
for VR and the reductive pair SL2(R)×O(VR) (see Remark 1.4) we have essentially the

4If 0 happens to be a pole, a slight variation of this recipe is required, see [5].
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1.4. Regularized integrals

same Siegel theta function, and this kind of theta function5 was used by Borcherds in his
seminal construction of Borcherds products in [2, Sec. 13]. One can exploit this fact to
obtain the theta lift and, in particular, the Borcherds products by using an embedding
between the symmetric domain D of U(V ) and the symmetric domain of the orthogonal
group O(VR), see [33, 35]. We will explore all this in Chapter 2.

In Chapter 3 we will carry out the construction of a regularized theta lift in arbitary
signature (p, q) using a Schwartz form ψ which coincides with ϕp,10 in the special case of
signature (p, 1). The construction of ψ and the theta-lift Θ(τ, z;ψ)L is joint work of the
author and Jens Funke [25] and is based on previous work by Kudla and Millson, who,
somewhat implicitly, constructed ψ in [46], and also on work of Bruinier and Funke [10],
who carried out a similar construction for orthogonal groups, i.e. for the dual reductive
pair SL2(R)×O(p, q).

Finally, in Chapter 4, we will explicitly calculate the lift of a weak harmonic Maass form
using the regularized theta integral against Θ(τ, z;ψ)L and determine its Fourier-Jacobi
expansion, up to an additive constant.

5Of course Borcherds’ construction of a theta lift in [2] is much more general, and covers a considerable
numbers of previously known liftings for indefinite orthogonal groups. However, Borcherds products
require the symmetric domain of the orthogonal group to bear a hermitian structure, hence restricting
to the case where the quadratic space has signature (p, 2).
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2. The case of signature (p, 1) and
Borcherds products

In the present chapter, we focus on the case where the signature (p, q) of V is (p, 1) with
p ≥ 1. References for this case are [33, 35, 37]. As in Chapter 1, denote by D the symmetric
domain for the operation of G = U(V ) given by {z ⊂ V ; dim z = q, v neg. definite}. In
the present case, D can be identified with the projective cone

CU =
{

[z] ∈ P1V ; (z, z) < 0
}
,

where P1V denotes the projective space of V , and the elements of CU are just the negative
definite lines in V .

First, in Section 2.1, we construct an affine model for D by choosing a representative
for each negative line z. After that, in Section 2.2, we will review the construction of
the symmetric domain for orthogonal groups for signature (2p, 2). In Section 2.3 we
then introduce an embedding, originally from [33], between the symmetric domains for
U(V ) and O(VR), which, after a brief review of Bruinier’s construction of the Borcherds
products (Section 2.4) is then used in Section 2.5 to construct Borcherds products for
the unitary group, in a slight variation on [33, 35].

In Section 2.6 the existence of Borcherds products is used (following [35]) to prove a
modularity statement for certain generating series, along the lines of [3]. At the end of
the chapter, in Section 2.7 we will briefly present the construction of ‘local’ Borcherds
products from [37], inspired by the work of Bruinier and Freitag [7].

2.1. The Siegel domain model

Let L be an even lattice in V , with dual L]. Denote by IsoF(V ) the set of one-dimensional
isotropic subspaces of VF. Its elements are in one-to-one correspondence with the rational
boundary components of the symmetric domain. We fix an element I` in IsoF(V ) by
choosing a primitive isotropic lattice vector ` ∈ L, and setting I` = F`. Further, we
choose a primitive vector `′ in L] with (`, `′) 6= 0.

We denote by D the lattice L∩`⊥∩`′⊥, where, naturally, the complement is taken with
respect to (·, ·). Equipped with the restriction of (·, ·), it is an even definite hermitian
lattice, with signature (p− 1, 0). Set WF := D⊗OF F and W := WF ⊗F C. Hence, W is a
definite p− 1 dimensional complex hermitian space.

Denote by v2, . . . , vp the standard orthogonal basis1 of W . Let δ be a purely imaginary

1Strictly speaking, with the notation from Chapter 1, we are assuming here that `, `′ ∈ spanC{v1, vm},
which, of course, is possible without any loss of generality.
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2. The case of signature (p, 1) and Borcherds products

constant with δ ∈ iR>0, for example δ = δF. For z in D, choose a vector z ∈ z, and write
z in the form

z = z(τ, σ) = `′ + τδ(`, `′)`+ σ, (2.1.1)

with σ ∈ W . Then, since z is negative definite, we have

0 > (z, z) = 2 Re (τδ(`, `′)(`′, `)) + (σ, σ) + (`′, `′) = −2=τ |δ||(`, `′)|2 + (σ, σ) + (`′, `′),

whence

=τ > (σ, σ) + (`′, `′)

2|δ||(`, `′)|2
.

We can thus define an affine model for D as follows.

Definition 2.1. The Siegel domain model H`,`′ is the generalized upper half-plane given
by

H`,`′ :=
{

(τ`, σ) ∈ C×W ; 2|δ||(`′, `)|2=τ − (σ, σ)− (`′, `′) > 0
}
.

An isomorphism between H`,`′ and D is given by

H`,`′ −→ D, (τ, σ) 7−→ Cz(τ, σ)

and D −→ H`,`′ , z 7−→ (τ, σ),

where z(τ, σ) = `′+ τδ(`, `′)`+σ, and the converse map in the last line is the composition
of z 7→ Cz (assigning to z a representative of the form (2.1.1)) with z 7→ (τ, σ). We note
that the isotopic line I`,C = C` = [`] corresponds to the cusp at infinity of the generalized
upper-half plane H`,`′ .

In the following, we will assume that `′, too, is an isotropic vector. Note that this is a
non-trivial assumption about the hermitan lattice L and its dual.

Remark 2.2. We note that H`,`′ is not a tube-domain. This means for example, that
functions H`,`′ → C which are translation invariant do not posses an expansion as Fourier
series, i.e. with constant coefficients, instead, there is a Fourier-Jacobi expansion with
coefficients depending on σ, see Section 2.1.3.

Finally, we note that the action of G on H`,`′ gives rise to a non-trivial automorphy
factor, explicitly given by the `′-component of z(τ, σ):

j : G×H`,`′ −→ C×, (g, (τ, σ)) 7−→ j(g, (τ, σ)) =
(`, g ◦ z(τ, σ))

(`, z)
, (2.1.2)

where g operates on the vector z(τ, σ) through matrix multiplication.
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2.1. The Siegel domain model

2.1.1. Operation of the parabolic group

Denote by P` the stabilizer of the cusp [`] i.e. of I`,C = I` ⊗ C in G = U(V ). We denote
by N the unipotent radical of P`. Consider the Levi-decomposition G = NAM , where
the Levi-factor is given by the direct product of the groups M = SU(W ) ' SU(p− 1)
and A = GL([`]).

Written as matrices in the basis `, v2, . . . , vp, `
′ the elements of A and M take the form

a(t) =

t 1p−1

t−1

 (
t ∈ R>0

)
, µ =

1
µ′

1

 (
µ′ ∈ SU(W )

)
,

while the elements of N are parameterized by pairs (w, r) with w ∈ W and r ∈ R. We
will denote them either using the notation [w, r], or as matrices n(w, r) = n(w, 0) ·n(0, r).
In matrix notation, we have

n(0, r) =

1 0 δ(`, `′)r
1p−1

1


n(w, 0) =

1 −w̄t −1
2
(`, `′)w̄tw̄

1p−1 (`, `′)w
1

 .

The operation on H`,`′ is given as follows (recall that w, σ ∈ W both have positive norm)

[0, r] : (τ, σ) 7−→ (τ + r, σ),

[w, 0] : (τ, σ) 7−→
(
τ − (w, σ)

δ(`, `′)
− (w,w)

2δ
, σ + (`, `′)w

)
.

Note that the unipotent radical N has the structure of a Heisenberg group, the center of
which is formed by the transformations of type [0, r]. The transformations of the type
[w, 0] are also known as Eichler elements.

By direct calculation, we derive the group law2 for N ,

[w, r] ◦ [w′, r′] =
[
w + w′, r + r′ − =(w,w′)

|δ|
]
, (2.1.3)

and the commutation relation

[w, 0] ◦ [w′, 0] =

[
w + w′,−=(w,w′)

|δ|

]
. (2.1.4)

Remark 2.3. We remark that the for transformation in N and M the automorphy
factor j(g, z) from (2.1.2) is trivial, while for the elements of A one has j (a(t), z) = t−1.

2The notational convention for concatenation used here is (g′ ◦ g)(v) = g′(g(v)), consistent with matrix
multiplication.
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2. The case of signature (p, 1) and Borcherds products

If Γ is a discrete subgroup of G, e.g. the discriminant kernel ΓL, we denote the discrete
Heisenberg group N ∩ Γ by Heis(Γ). The stabilizer in Γ of the cusp I` = F` is given by
the semi-direct product

Γ` := stabΓ(`) = Heis(Γ)︸ ︷︷ ︸
N∩Γ

n (U(W ) ∩ Γ)︸ ︷︷ ︸
M∩Γ

= P` ∩ Γ.

Remark 2.4. Naturally, the description of N , A and K using matrices generalizes to
other signatures (p, q), with q > 1. We will come back to this later, see Sections A.2.1,
4.1.1 and 4.4.

The following Lemma is well-known:

Lemma 2.5. Let Γ be a discrete subgroup of U(V ), commensurable with ΓL. Then, there
is a positive integer NΓ,` and a lattice DΓ of finite index in D, such that n(w, r) is an
element of Heis(Γ) for all w ∈ DΓ and all r ∈ NΓ,`. Also,

=(w,w′)

|δ|
∈ ZNΓ,` for all w,w′ ∈ DΓ.

2.1.2. Boundary components and compactification

Recall from Chapter 1 the definition of the discriminant kernel ΓL as the subgroup
FixG(L]/L) ⊂ G, and of the modular variety X = ΓL\D. Somewhat more generally,
let Γ be discrete subgroup commensurable with ΓL and denote by XΓ the variety
Γ\D, which is non-compact quasi-projective. In this section, we want to discuss two
compactifications which can be applied to modular varieties of tis type, namely the
Baily-Borel compactification and the toroidal compactification see [33, 34, 37] or [14].
For further background on the toroidal compactification see [38, Section 3.3].

With the affine model H`,`′ , we have the following isomorphisms

XΓ = Γ\D ' Γ\SU(V )(R)/
(
SU(W )(R)× SU(W⊥)(R)

)
' Γ\H`,`′ .

The Baily-Borel compactification, denoted X∗Γ,BB, is obtained by forming the union of
XΓ with IC for all rational isotropic subspaces I ∈ Iso(V ) and defining a topology and
complex structure on the quotient

Γ\
(
H`,`′ ∪ {IC; I ∈ Iso(V )}

)
.

Since compactification is a local process, it suffices for us to sketch the construction for
the istropic line C`, which we denote I`,C here. It corresponds to the cusp at infinity [`]
of H`,`′ . A system of neighborhoods of this cusp is given by

Uε(`) =

{
[z] ∈ CU;

(z, z)

|(`, z)|2
|(`, `′)|2 > C =

1

ε

}
'
{

(τ, σ) ∈ H`,`′ ; 2=τ |δ||(`, `′)|2 − (σ, σ) > C =
1

ε

}
(ε > 0)

(2.1.5)
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2.1. The Siegel domain model

A subset V of CU ∪ I`,C is called open, if V ∩ CU is open in the usual sense and if further
I`,C ∈ V implies Uε(`) ⊂ V for some ε > 0. By repeating this construction for every
I ∈ Iso(V ), one obtains a topology on C∗U = CU ∪ {IC; I ∈ Iso(V )}. Moreover, the
quotient topology yields a topology on Γ\C∗U.

The complex structure is defined through pullback under the canonical projection
C∗U = CU ∪ {IC; I ∈ Iso(V )} → X∗Γ,BB, locally for each cusp. We give a brief sketch, for
more details see [33, p. 30] and [35, Sec. 1].

Denote by pr the canonical projection pr : C∗U → Γ\C∗U. For an open set U ⊂ Γ\C∗U, let
U ′ ∈ C∗U be the inverse image under pr and let U ′′ be the inverse image of U ′ in CU, as
depicted in the following diagram

CU C∗U Γ\C∗U

U ′′ U ′ U.

pr

Now, define O(U) as the ring of continuous functions f : U → C, which have holomorphic
pullback pr∗(f) to U ′ (and to U ′′). With the usual methods of algebraic geometry this
defines the sheaf O of holomorphic functions on X∗Γ,BB. Hence, this construction yields
the structure of a normal complex space on X∗Γ,BB. Its drawback however, is that in
general, there are still singularities at the boundary points.

The toroidal compactification3, denoted X∗Γ,tor, presents an alternative. In sketching
this construction, we can again restrict our attention to the boundary component I`,C.
For more details see [14, Section 4.3]. In the following, identify the sets Uε(`) ⊂ CU with
the corresponding sets of representatives in H`,`′ from (2.1.5). Clearly, the Heisenberg
group N operates on Uε(`). For sufficiently small ε, there is an open immersion

Heis(Γ)\Uε(`)→ XΓ.

Let C`(ΓL) denote the center of Heis(Γ), i.e. C`(ΓL) = {n(0, r) ∈ N ∩ Γ}. Recall that
C`(Γ) ' ZNΓ,`, and set q` := exp(2πiτ/NΓ,`).

The quotient C`(Γ)\Uε(`) can now be viewed as bundle of punctured disks over W :

Vε(`) := C`(Γ)\Uε(`) '
{

(q`, σ); 0 < |q`| < exp

(
π(σ, σ) + ε−1

δ|(`, `′)|2

)}
.

Adding the center to each disk, we get the disk bundle

Ṽε(`) :=

{
(q`, σ); |q`| < exp

(
π(σ, σ) + ε−1

|δ|2|(`′, `)|2

)}
.

The action of Heis(Γ) is well-defined at each center, leaving the divisor q = 0 fixed.
Also, if Γ is sufficiently small, the operation is free, hence we get an open immersion

Heis(Γ)\Uε(`)→ (Heis(Γ)/C`(Γ)) \Ṽε(`), (2.1.6)

3This type of compactification can also be approached as a resolution of the remaining singularities.
This point of view is taken in [33, Sec. 1.1.5].
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2. The case of signature (p, 1) and Borcherds products

by which the right hand side can be glued to XΓ, yielding a partial compactification. For
a point (0, σ0) ∈ Ṽε(`), we define a system of open sets

Bδ(0, σ0) =
{

(q`, σ) ∈ Ṽε(`) ; (σ − σ0, σ − σ0) < δ, |q`| < δ
}

(δ > 0).

Under the immersion (2.1.6) the images of these sets form a system of open neighborhoods
for the boundary point at (0, σ0).

Repeating this construction and the gluing procedure for every Γ-equivalence class of
isotropic spaces in Iso(V ) yields a compactification of XΓ, which we denote X∗Γ,tor.

2.1.3. Modular forms

For γ ∈ G and (τ, σ) ∈ H`,`′ denote by j(g, (τ, σ)) the automorphy factor for the operation
of g on H`,`′ , as introduced in (2.1.2).

Definition 2.6. Let Γ be a unitary modular group, i.e. commensurable with ΓL, χ a
character of Γ and k an integer. A holomorphic automorphic form of weight k and with
character χ for Γ is a holomorphic function f : H`,`′ → C which satisfies

f (γ ◦ (τ, σ)) = j (γ, (τ, σ))k χ(γ)f(τ, σ) for all γ ∈ Γ.

A holomorphic modular form which is regular at every cusp is called a modular form.

Meromorphic automorphic forms are defined similarly. Note that by the Koecher-
principle, if p > 1, holomorphicity on H`,`′ automatically entails regularity at all cusps,
and hence any holomorphic automorphic form is already a modular form. (See [33, p. 33]
for a simple proof in the present signature.)

Immediately from the transformation behavior, it follows that an automorphic form
is invariant under the operation of the translations [0, r] ∈ N . Hence, a holomorphic
automorphic form f with character χ has a Fourier-Jacobi expansion of the form

f(τ, σ) =
∑
κ∈Q

cκ(σ)e2πiκτ , (2.1.7)

where κ in N−1
Γ,` (Z+ r0) with NΓ,` from Lemma 2.5 and non-negative constant r0 ∈ Z ≥ 0.

Further, if f is a modular form, κ ≥ 0. The coefficients cκ(σ) exhibit the transformation
behavior of theta functions, i.e.

cκ([w, 0] ◦ σ) = χ([w, 0]) · cκ(σ) · e
(

+κ

(
(w, σ)

δ(`, `′)
+

(w,w)

2δ

))
Hence, the coefficient c0 = c0(σ) is a constant.

Remark 2.7. In Chapter 4, where we allow V to have arbitrary signature (p, q), and
in the absence of the tube-domain coordinate τ , we will use a slightly different (and
more general) notion of the Fourier-Jacobi expansion, based on the operation of the
translations [0, r] in the Heisenberg group from Section 4.4.2. In the present case, for
holomorphic automorphic forms on H`,`′ , basically just consider (2.1.7) as an expansion
in Re τ with coefficients cκ(σ,=τ) = cκ(σ) exp (−2πκ=τ).
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2.2. Orthogonal groups

2.2. Orthogonal groups

In his seminal paper [2], Borcherds constructed a regularized lifting for the dual reductive
pair consisting of SL2(R) and an indefinite real orthogonal group O(b+, b−) of signature4

(b+, b−), for which he used a (slightly generalized) Siegel theta function. If b− = 2, the
symmetric domain for O(b+, 2) carries the structure of a hermitian symmetric domain.
In this setting5, Borcherds’ lifting gives rise to his celebrated Borcherds products and a
multiplicative lift.

A construction of Borcherds products for unitary groups of signature (p, 1) was de-
veloped by the author in [33], [35] and, for the case of signature (1, 1) [34], using an
embedding from unitary into orthogonal groups. With a view to this embedding, we will
mainly consider the case in which the quadratic space is a real vector space VR underlying
a complex hermitian space V as in Chapter 1 and hence has signature (b+, b−) = (2p, 2q).
Mostly, we will have q = 1.

Later in this chapter, we will review the theory of Borcherds products for orthogonal
groups using a generalization of Borcherds’ work due to Bruinier [5].

2.2.1. Orthogonal groups and their symmetric domains

In this section, in view of the embedding from [33, 34], we use the following setup for
orthogonal groups. References for this, besides [33, Chapter 1.2] and [36], can be found
in [22] and [5, Chapter 3]. Consider VR as a quadratic space of signature (2p, 2q) with
the bilinear form (·, ·)R. Let L be an even lattice in V (as in Section 2.1). Thus, L is
also an even lattice in VR, with the quadratic form Q (·).

We denote by O(VR) ' O(2p, 2q) the orthogonal group of VR and by SO(VR) the special
orthogonal group. Further, we denote by DO a symmetric domain for the operation of
O(VR), given as follows

DO = O(VR)/KO ' O(2p, 2q)/ (O(2p)×O(2q))

' {v ⊂ VR dim(v) = 2q, (·, ·)R |v< 0} ,
wherein KO is a maximal compact subgroup. This set of two-dimensional definite
subspaces is also called a Grassmannian model for the symmetric domain.

Remark 2.8. We note that the same Grassmannian can also be viewed as a symmetric
domain for the operation of SO(VR), since the group quotients are isomorphic

DO ' SO(VR)/KSO ' SO(2p, 2q)/S (O(2p)×O(2q)) .

Also note that DO is path-connected. If, alternatively, one considers the quotient of
SO(VR) by a maximal path-connected and compact subgroup,

D	
SO :=SO(VR)/ {max. path-connected} ' SO(2p, 2q)/ (SO(2p)× SO(2q))

' {v ⊂ VR; dim(v) = 2q, (·, ·)R |v< 0, v oriented},
4We will use this notation in the present chapter for the signature of an (arbitrary) indefinite orthogonal

group and reserve (p, q) for the signature of a hermitian space V and its unitary group.
5Strictly speaking, this is the opposite of Borcherds’ convention for the signature in [2], but we prefer

the present setup to maintain consistency with [25] and [46]
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2. The case of signature (p, 1) and Borcherds products

one obtains a realization of a symmetric domain for SO(VR) as a Grassmannian of oriented
two-dimensional negative definite subspaces, which has two connected components, since
it contains spaces of both orientations.

Denote by SO+(VR) the subgroup of orientation preserving transformations in SO(VR).
In the following exact sequence,

1 {±1} Spin(VR) SO(VR) R×/R×2
,θ

SO+(VR) is the image of the spin group Spin(VR) in SO(VR) and hence the kernel of the
map θ. It is thus called the spinor kernel (θ is known as the spinor norm), and is the
connected component of the identity in SO(VR).

We denote by O(L) the isometry group with respect to (·, ·)R of L, and by SO+(L) the
subgroup O(L)∩ SO+(VR). By the discriminant kernel of L we understand the subgroup
ΓO
L := FixSO+(L)(L

]/L). We shall consider subgroups of finite index in the discriminant
kernel as (orthogonal) modular groups. We remark here that ΓL, the discriminant kernel
in U(L), see Section 1.1.1, is contained as a subgroup in ΓO

L .
Now, if q = 1, DO is a hermitian space. It can be equipped with a complex structure by

a ‘spin-orientation’, a continuously varying choice of oriented basis. Indeed, let v ∈ DO.
After setting

v = spanR (XL, YL) , with XL ⊥ YL, (XL, XL)R = (YL, YL)R < 0, (2.2.1)

the two real vectors XL and YL can be interpreted as the real and the imaginary part of
a complex vector. Denote by VC = VR ⊗R C the complexifcation of VR and extend (·, ·)R
to a complex valued bilinear form on VC. Note that VC has real dimension 2m. Now,
setting

ZL := XL + iYL,

we have

(ZL, ZL)R = 0 and
(
ZL, Z̄L

)
R = (XL, XL)R + (YL, YL)R < 0.

Thus, associating to v ∈ DO the line CZL ⊂ VC affords an isomorphism of DO to (a
connected component of) a negative-definite cone in a null-quadric in the projective space
P1VC of VC. For an element [Z] ∈ P1VC, denote by Z the preimage under the canonical
projection πC : VC 7−→ P1VC. Then, the null-quadric and the negative cone are given by

N = {[Z]; (Z,Z)R = 0} ⊂ P1(VC)

and C =
{

[Z] ∈ N ;
(
Z, Z̄

)
R < 0

}
,

respectively. We note that C has two connected components, which we write as C =
C+ ] C−. Either of these may be used as complex projective model for the symmetric
domain. Hence we choose one of the two and denote it by CO.

To construct an affine model, we take a rational hyperbolic plane in V , spanned by
two lattice vectors e1, e2 ∈ L, both assumed to be isotropic and with (e1, e2)R 6= 0. This
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2.2. Orthogonal groups

amounts to fixing a boundary component of DO. Denote by K the lattice L ∩ e⊥1 ∩ e⊥2 ,
equipped with the restriction of the bilinear form. Now we can write ZL in the form

ZL = e2 + be1 + Z with Z ∈ K ⊗Z C.

In the following, assume that (e1, e2)R = 1. Then,

ZL = e2 − 1
2
(Z,Z)Re1 + Z = (−1

2
(Z,Z)R, 1, Z),

XL = (−1
2
(X,X)R + 1

2
(Y, Y )R, 1, X), YL = (−(X, Y )R, 0, Y ).

(2.2.2)

Note that Q (Y ) = Q (YL) = Q (XL), since the projection pK : x 7→ xK = x− (x, e1)Re2

is an isometry for any x ∈ VR with (x, e1)R = 0.
Also, we remark that for this construction, the assumption that e2 is isotropic is not

essential; dropping it one merely needs to add −(e2, e2)Re1 to ZL.
Now, denote by H± the two connected components of the set

H = {Z = X + iY, X, Y ∈ K ⊗Z R, (Y, Y )R < 0} .

We remark that the connected components are stabilized by the action of SO+(VR) and
interchanged by the action of SO(VR)/SO+(VR).

The tube-domain model is defined as the connected component of H mapped to CO by
the biholomorphic map Z 7→ [ZL],

Hp :=
{
Z = X + iY ; X, Y ∈ K ⊗Z R, [(−1

2
(Z,Z)R, 1, Z)] ∈ CO

}
.

Remark 2.9. Naturally, if we start out with the special orthogonal group and a Grass-
mannian model D	

SO with two connected components for its symmetric domain, see
Remark 2.8, picking one component of C± and of H± is not necessary, as D	

SO is isomor-
phic to the entire projective cone. In this case, H+ ]H− is an affine model.

Remark 2.10. The spin-orientations on the Grassmannian play the role of conjugacy
classes under complex conjugation. If for v ∈ DO we have (XL, YL) as an oriented basis,
a basis with the opposite orientation is given by (XL,−YL), which obviously corresponds
to ZL ∈ VC. Thus H+ and H− play the role of upper and lower half-spaces. Indeed

H = K ⊗ R + i{Y ∈ K ⊗Z R; (Y, Y )R < 0},

and the set of imaginary parts is a quadratic cone with two connected components
switched by complex conjugation.

We note that the operation of SO+(VR) on the tube-domain model gives rize to a
non-trivial automorphy factor, which we denote by J(g, Z) for g ∈ SO+(VR), Z ∈ Hp.
Similarly to the unitary case (see (2.1.2)), the automorphy factor is explicitly given by

SO+(VR)×Hp → C, (g, Z) 7→ J(g, Z) = (gZL, e2)R, (2.2.3)

where, naturally, ZL is the element of π−1
C
(
CO

)
corresponding to Z ∈ Hp.
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2. The case of signature (p, 1) and Borcherds products

Coordinates for the Grassmannian We remark that beside the coordinates XL and
YL related to the tube-domain model, another system of coordinates is often used for the
elements of the Grassmannian (see [2], [5] or [54]).

For v ∈ DO, let v⊥ be the orthogonal complement, and denote by ev and ev⊥ the
orthogonal projection (with repect to (·, ·)R) of e1 to v and v⊥, respectively. Define a
subspace w through the orthogonal decomposition v = w⊕Rev. Then, VR can be written
as

VR = v ⊕ v⊥ = (w ⊕ Rev)⊕ (w⊥ ⊕ Rev⊥).

Consider the vector defined by

µ := −e2 +
ev

(ev, ev)R
+

ev⊥

(ev⊥ , ev⊥)R
= −e2 +

ev
(ev, ev)R

− e1

2(ev, ev)R
. (2.2.4)

We can express v through w and µv = e2,v + 1
2
ev(ev, ev)

−1
R , since

v = w + Rµv and v⊥ = w⊥ + Rµv⊥ .

Using w and µ or µv as coordinates for the Grassmannian has the advantage of being
independent of the definition of a complex structure. In fact, the use of such Grassmannian
coordinates is not limited to the present signature (2p, 2). Here, they are related to the
tube domain coordinates in the following manner

µ =

(
−1

2
(X,X)R, 0, X

)
, µK = X, w = RYL and wK = RY .

Remark 2.11. The definition of µ follows [2] and [5]. The following version [see 54,
Theorem 3.3.11 on p. 111] can be used without requiring (e1, e2)R = 1:

µ = −e2 +
(ev⊥ , e2)R
(ev, ev)R

ev +
(ev, e2)R

(ev⊥ , ev⊥)R
ev⊥ .

2.2.2. Boundary components

Next, we will briefly describe the boundary components of Hp, introducing a more refined
version of the coordinates Z = X + iY along the way (see e.g. [7]). Further, similarly to
2.1.1, we describe the action of the stabilizer of a boundary component.

The boundary components Let F denote a (totally) isotropic subspace of VR, and
FC := F ⊗RC its complexification. Isotropic subspaces of VR define boundary components
of H = Hp ]Hp, which can be described as follows (see [7]):

(i) Let F be a one-dimensional isotropic subspace of VR. Then, F represents a
boundary-point of H. A boundary point of this type is called special. A zero-
dimensional boundary component is a set consisting of one special boundary point.
Boundary points, which are not special, are called generic.
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2.2. Orthogonal groups

(ii) Let F be a two-dimensional totally isotropic subspace of VR. Then, the set of all
generic boundary points, which can be represented by elements of FC is called a
one-dimensional boundary component.

Further, there is a one-to-one correspondence between boundary components and isotro-
pic subspaces of VR of the corresponding dimensions. The boundary of H is the disjoint
union of all zero- and one-dimensional boundary components.

A boundary component is called rational if the corresponding isotropic subspace F
is defined over Q. Cusps are defined by equivalence classes of rational one-dimensional
isotropic subspace under the operation of an orthogonal modular group.

Following [7], we give a brief description of the neighborhoods in Hp of te cusp defined
by e1: Let FQ be a rational totally isotropic subspace in L⊗Q, and let F ′Q be second
such (i.e. rational and isotropic) subspace. (For example, a lattice of signature (l, 2) with
l > 5 splits two hyperbolic planes. So, if we assume p > 2, we have two two-dimensional
isotropic subspaces spanned by lattice vectors.)

We may assume e1 ∈ FQ and e2 ∈ F ′Q. Then, there are vectors e3 and e2, with the
properties

FQ = spanQ{e1, e3}, F ′Q = spanQ{e2, e4}
and (ej, ek)R = δj1δk2 + δj3δk4 (j ≤ k),

where δjl denotes the usual Kronecker symbol. Using this basis, we can write Z ∈ Hp in
the form

Z = z1e3 + z2e4 + Z = (z1, z2,Z),

with Z = X + iY contained in the definite space VR ⊗ C ∩ F⊥ ∩ F ′⊥. Then,

ZL = −
(
z1z2 + 1

2
(Z,Z)R

)
e1 + e2 + z1e3 + z2e4 + Z. (2.2.5)

Since 0 > (Y, Y )R = y1y2 + (Y,Y)R, one can define an embedding of two complex upper
half-planes H×H into the boundary of the projective cone C via

(z1, z2) 7→ [(z1z2)e1 + e2 + z1e3 − z2e4] ∈ P1VC. (2.2.6)

Setting z2 = it and taking the limit z2 → i∞ we get

lim
t→∞

[z1it, 1, z1,−it] = [z1, 0, 0,−1].

Thus, we have showed to first statment of the following remark.

Remark 2.12. A one-dimensional boundary component can be identified with a copy
of a complex upper half-plane.

Quite similarly, see [22, 23], the set of all boundary points attached to FC = F ⊗R C
(both special and generic) can be identified with H ∪ R ∪ {∞}.

Now, we can use this observation to define a system of neighborhoods of the cusp
of Hp attached to e1. Let F be the rational isotropic subspace spanned by e1 and e3.
For FC, we use (2.2.6), to identify FC ∩ π−1

C (∂C+) with the complex upper half-plane H.
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2. The case of signature (p, 1) and Borcherds products

Thus, for z′ ∈ H, let x = z′e1 − e3. A fundamental system of neighborhoods of x is given
by the sets U(x, ε) ∪ V (x, ε) (ε > 0), with

V (x, ε) = {z′′ ∈ H; |z′′ − z′| < ε} ,
U(x, ε) =

{
(z1, z2,Z) ∈ Hp; z2 ∈ V (x, ε),−y1y2 − 1

2
(Y,Y)R > ε−1

}
.

(2.2.7)

Let Γ be an orthogonal modular group. Then, a modular variety XO
Γ is given by the

quotient

XO
Γ = Γ\CO ' Γ\Hp.

It has the structure of a projective variety, contained as a Zariski open subset in its
Baily-Borel compactification6 XO∗

Γ ' Γ\C∗O, where C∗O is the union of CO with all its
(rational) boundary components. For any point x ∈ C∗O, with stabilizer Γx in Γ, there is
an open embedding

Γx\C∗O −→ Γ\C∗O.

Now, if x is contained in a boundary component, it is easily seen that the stabilizer Γx
of x is contained in the normalizer of that boundary component.

The normalizer of a boundary component We want to describe the centralizer and
the normalizer of a one-dimensional boundary component. Thus, let FQ = spanQ{e1, e3},
we denote the centralizer of FQ in SO+(VQ) by CF (Q) and by NF (Q) the normalizer.
Thus,

CF (Q) = {g ∈ SO+(VQ); g |FQ= IdFQ} and NF (Q) = {g ∈ SO+(VQ); g ◦ FQ = FQ}.

For an explicit description of both, we use Eichler elements, defined as follows:

Definition 2.13. Let u ∈ VR be an isotropic vector and v ∈ VR a vector perpendicular
to u. Then, the Eichler element E(u, v) is a transformation defined by

E(u, v) : VR → VR, x 7→ x− (x, u)Rv + (x, v)Ru−
1
2
(v, v)R(x, u)Ru.

Obviously, for fixed u, Eichler elements are additive, with

E(u, v1) ◦ E(u, v2) = E(u, v1 + v2).

Further, we note that Eichler elements are contained in SO+(VR) and that, if u and v
are contained in an even lattice L, then E(u, v) lies in the discriminant kernel of L.

Finally, if u, u′ are isotropic with u ⊥ u′ and v, v′ are both perpendicular to Ru+ Ru′,
then the following relations hold

E(u, u′) = E(u′, u)−1,

E(u, v) ◦ E(u′, v′) = E(u′, v′ + (v, v′)Ru) ◦ E(u, v).

6For a detailed account of the construction of the (Satake-)Baily-Borel compactification see [22].
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2.2. Orthogonal groups

Denote by D the definite lattice K ∩ e⊥3 ∩ e⊥4 , and consider Eichler elements of the form
E(e3, µ), with µ ∈ D ⊗Z Q. Clearly, their action on Qe1 is trivial. Their action on Hp is
given by

Z = (z1, z2,Z) 7→
Z + ((µ,Z)R −

1
2
(µ, µ)Rz2)e3 − z2µ = (z1 + (µ,Z)R −

1
2
(µ, µ)Rz2, z2,Z− z2µ).

Denote [0, µ, 0] := E(e3, µ), and set

[λ, 0, t] := E(e3, te1) ◦ E(e1, λ) (t ∈ Q, λ ∈ D ⊗Z Q).

Note that transformations of the type E(e1, λ) act trivially on Qe3. Also, the two types
of Eichler elements commute and hence form an additive group. On Hp the action of an
element [λ, 0, t] is given by

[λ, 0, t] : Z = (z1, z2,Z) 7−→ (z1 + t, z2,Z− λ).

Further, one finds

[0, µ, 0] ◦ [λ, 0, t] = [λ, 0, t− (µ, λ)R] ◦ [0, µ, 0].

Hence the triples [λ, µ, t], λ, µ ∈ D ⊗Z Q, t ∈ Q form a group, as a semi-direct product
with the direct factor consisting of elements of the form [0, 0, t]. This algebraic group has
the group law

[λ, µ, t] ◦ [λ′, µ′, t′] = [λ+ λ′, µ+ µ′, t+ t′ − (µ, λ′)R],

and thus is a (rational) Heisenberg group, which we denote by Heis(D). Its set of real
points Heis(D)(R) is given by {[λ, µ, t];λ, µ ∈ D ⊗ R, t ∈ R}, and it acts on Hp via

[λ, µ, t] : Z = (z1, z2,Z) 7−→
(
z1 + t+ (µ,Z)R −

1
2
(µ, µ)Rz2, z2,Z− λ− µz2

)
.

It is easily seen that the centralizer CF (Q) of FQ is given by the semi-direct product
CF (Q) = Heis(D)n SO+(D⊗Q), while the normalizer NF (Q) sits in the exact sequence

1 CF (Q) NF (Q) GL+
2 (FQ) 1.

Now, assuming that e3, like e1, is contained in the even lattice L, those Eichler elements
from Heis(D) for which λ, µ ∈ D and t ∈ Z are contained in the discriminant kernel ΓO

L

in SO+(L).

More generally, since u, v ∈ L implies that E(u, v) lies in the discriminant kernel, for
any orthogonal modular group Γ, there are lattices K̃ ⊂ K ⊗Z Q, D̃ ⊂ D ⊗Z Q and an
integer M ∈ Z, such that [κ, ν, r] ∈ Γ for all κ ∈ K̃ all ν ∈ D̃ and r ∈MZ.
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2. The case of signature (p, 1) and Borcherds products

Modular forms Automorphic forms and modular forms as complex-valued functions
on the tube domain Hp are defined as usual, using the automorphy factor J(g, Z) from
(2.2.3).

Definition 2.14. Let Γ be an orthogonal modular group, χ a character of Γ and k an
integer. A holomorphic automorphic form of weight k and multiplier system χ for Γ is a
holomorphic function F : Hp → C which satisfies

F (γ ◦ Z) = J(γ, Z)kχ(γ)F (Z) for all γ ∈ Γ.

If additionally F is regular on the boundary of H∗p, it is called a holomorphic modular
form.

If the signature of VR is (b+, b−) with b+ ≥ 3 the Koecher principle implies that
holomorphic modular forms are automatically regular on the boundary of Hp (see [22,
Chapter IV.3] for a proof). Also note that in this case (i.e. b+ > 3) multiplier systems
are always of finite order by a result of Margulis [49]. In particular, this is the case for
VR with the real bilinear form (·, ·)R of signature (2p, 2) if p > 1.

2.3. The embedding

In this section, following [33, 35, 34] we describe the setup of the embedding between
the symmetric domains of U(p, 1) and O(2p, 2), which is used in Section 2.5 to construct
Borcherds products (see Section 2.4) via pull-back.

The underlying quadratic space The identification of V, (·, ·) with the underlying
rational quadratic VR, (·, ·)R induces am embedding of the unitary group U(V ) into the
special orthogonal group SO(VR) associated with the bilinear form (·, ·)R. Thus, we may
consider U(V ) as a subgroup of SO(VR).

Similarly, an even hermitian lattice L ⊂ VF is also an even lattice in VQ, with the
quadratic form Q (·), and the Z-dual L] is the dual of L both as a hermitian lattice over
OF and as a quadratic module over Z. Thus, L]/L is the discriminant group, either
way, and the discriminant kernel ΓL ⊂ U(L) is a subgroup of the discriminant kernel
ΓO
L ⊂ SO+(L).

We introduce the following notation for endomorphisms of the real space VR induced
from scalar multiplication on V (which are trivial for real scalars, of course):

Definition 2.15. Let α be in C \ R. We denote by α̂ the endomorphism of VR, (·, ·)R
induced from the scalar multiplication with α in the complex hermitian space V , (·, ·).
For typographic reasons, the endomorphism induced by the complex unit i is denoted ı̂.
Note that ı̂ ∈ SO(VR).

We note that if α ∈ F, then α̂ is an endomorphism of VQ defined over Q.
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2.3. The embedding

Embedding of symmetric domains If K is a maximal compact subgroup of U(V ),
embedded into SO(VR), there exists a maximal compact subgroup KSO of SO(VR) with
K ↪→ KSO. Thus, we can embed the respective symmetric domains given by the group
quotients

ε : D = U(V )/K ↪→ SO(VR)/KSO = DO. (2.3.1)

Also, since D ' CU, through this embedding, we can identifying an element [z] ∈ CU

with a subspace v = RXL + RYL contained in DO. Further, the bijection between DO

and CO yields an embedding of CU into CO. Like the bijection between DO and CO, this
embedding is real analytic. Moreover, by carefully choosing the oriented basis vectors
XL, YL for the image of [z] in CO, it can be realized as a holomorphic embedding. Then,
finally, with suitable coordinates, we also obtain an embedding of H`,`′ into the tube
domain Hp.

To summarize, the embedding in (2.3.1) induces embeddings between the different
models, Grassmannian, projective cones or affine, for the symmetric domains of the
unitary group in the left column and the orthogonal group in the right column of the
following diagram:

z ∈ D DO 3 v

[z] ∈ CU CO 3 ZL

(τ, σ) ∈ H`,`′ Hp 3 Z

ε=εGr

εpr

εaf

(2.3.2)

To facilitate notation, we will usually denote all of these maps simply by ε, since its should
usually be clear from the context which of them is the actual map under consideration.

Choice of cusp Assume that as in Section 2.1 we are given H`,`′ with a fixed choice of
a primitive isotropic vector ` ∈ L and of `′ ∈ L] with (`, `′) 6= 0. We want to explicitly
describe the embedding of the Siegel domain model H`,`′ into the tube domain model
Hp. Since the cusp at infinity of Hp is given by a primitive isotropic lattice vector e1, we
set e1 = `. Hence, ` corresponds to the cusp at infinity both for H`,`′ and for Hp.

Remark 2.16. With this definition, the parabolic subgroup P` ⊂ U(V ) stabilizing ` is
mapped into the stabilizer of e1 in SO(VR). In particular, the elements of the Heisenberg
group Heis(ΓL) are mapped to transformations generated by Eichler elements in SO+(V ).
For example, it is easily verified that a translation of the forms [0, r] can be identified
with an Eichler element of the form E(`, r

2
ı̂`), see [33, Chapter 3.1.1].

Complex structure Now recall how on the one hand, for every projective line in CU

represented by z ∈ V , the negative definite line z = Cz (i.e. the corresponding element of
D) can be considered as a two-dimensional (real) subspace of VR contained in DO. While
on the other hand, for an element of DO, the choice of an oriented basis (XL, YL), of the
form (2.2.1), determines an element [XL + iYL = ZL] in CO.
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2. The case of signature (p, 1) and Borcherds products

Thus, for each representative z for [z] of the form (2.1.1), i.e. z = z(τ, σ) we want to
fix the choice of XL and YL, in such a manner that the map εpr : CU 7→ CO extends to a
homomorphism between the complex projective spaces P1V and P1VC.

Consider the following diagram:

z (XL, YL) ZL = XL + iYL

iz (̂ıXL, ı̂YL) iZL = −YL + iXL

i ı̂ i (2.3.3)

To the left and to the right of the diagram, the complex unit i acts as a scalar of the
complex spaces V, (·, ·) and VC = VR ⊗ C, (·, ·)R, respectively. In the middle column of
the diagram, by definition, it acts as the endomorphism ı̂ on the real space VR 3 XL, YL.
Note that all arrows in (2.3.3) represent R-linear maps. Thus, if (2.3.3) commutes, the
following diagram also commutes for every α ∈ C \ {0}

[z] [ZL]

[αz] [αZL].

ε

ε

Then, the embedding εpr between CU ⊂ P1V and CO ⊂ P1VC is indeed a homomorphism
of complex projective spaces. Moreover, the induced embedding εaf between the affine
models H`,`′ and Hp in (2.3.2) is holomorphic, too.

Since XL and YL are contained in Cz, we set XL = ψ̂z. Then, clearly (2.3.3) commutes
exactly if ı̂XL = −YL. Also, in this case, XL ⊥ YL and X2

L = Y 2
L = |ψ|2(z, z) > 0, as

required in (2.2.1).

Normalization with respect to e1. Now, with XL = ψ̂z, YL = −ı̂ψ̂z the point [ZL] in
P1VC with ZL = XL + iYL lies in the positive cone C of the zero quadric N . We may also
assume that it lies in the correct connected component CO.

To complete the definition of the affine embedding εaf : H`,`′ → Hp, we should fix
ψ. Recall that for each point in the image of the map H± → C±, there is unique
representative of the form (2.2.2). Thus, for ZL = XL + iYL to be of this form, we require

(XL, e1)R = Re(ψz, `) = 1 and (YL, e1)R = Re(−iψz, `) = 0.

Hence, we set ψ = (`′, `)−1.
To summarize, for each z with z = Cz, a suitable choice of basis vectors for its image

v in DO, is given by

XL =

(
1

(`, `′)

)̂
z and YL =

(
−i

(`, `′)

)̂
z, (2.3.4)

where z is a representative for [z] of the form (2.1.1).
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2.3. The embedding

Lemma 2.17. The pullback of a holomorphic (meromorphic) automorphic form on Hp

is a holomorphic (meromorphic) automorphic form on H`,`′.

Proof. Denote by C̃O and C̃U the preimages of CO and CU under the canonical projections
π : V → P1V and πC : VC → P1VC, respectively. Denote by ε̃ the map V → VC induced
from ε. Note that with the above choice, ε̃ is C-linear.

Let f : Hp → C be a holomorphic automorphic form of weight k for some modular

group Γ ⊂ ΓO
L . Then, f can be identified with a holomorphic function f̃ : C̃O → C, which

is C-homogeneous of weight −k and invariant under the operation of Γ on VC.
Consider the pullback ε̃∗f̃ . Since ε̃ is C-linear, the pullback is holomorphic and also

C-homogeneous of weight −k. Further, it is invariant under Γ′ := Γ ∩ U(L). Clearly Γ′

has finite index in ΓL ⊂ SO+(L), as the index of Γ in ΓO
L is finite and ΓL ⊂ ΓO

L . Then,
ε∗f , the attached function on H`,`′ , is a holomorphic automorphic form of weight k on
Γ′. The proof for meromorphic f is similar.

A choice of basis for the isotropic subspaces The four dimensional real subspace
of VR defined by the C-span of ` and `′ in V can obviously be decomposed into two
totally real isotropic subspaces F and F ′. Recall that we have set e1 = `, we want
to find further (rational) basis vectors e2, e3 and e4 such that F = spanR{e1, e3} and
F ′ = spanR{e2, e4}, and satisfying (ej, ej)R = 0 for j ∈ {1, . . . , 4} and (ej, ek)R = 0 for
j < k, unless (j, k) ∈ {(1, 2), (3, 4)}.

In a basis with these properties, by (2.2.5), we can write a point ZL in the image of
the embedding ε (H`,`′) in the form

ZL(τ, σ) = −z1z2e1 + e2 + z1e3 + z4e4 + Z(σ),

with Z = X + iY =
(

1̂
(`,`′)

)
σ + i

(
−̂i

(`,`′)

)
σ.

(2.3.5)

Note that since X and Y have the same norm and X ⊥ Y (as (x, ı̂x)R = 0 for all x ∈ VR),

Q (Z) = Q (X)−Q (Y) = 0, whereas
(
Z,Z

)
R = Q (X) +Q (Y) > 0.

To determine the basis vectors, we set

e3 = γ̂`, e2 = â`′, e4 = b̂`′,

with complex parameters γ, a, b ∈ C×, with γ, a
b
6∈ R, and find that a and b are given by

a =
1

(`, `′)

(
1− iRe γ

=γ

)
, b =

i

(`, `′)=γ
,

leaving γ as the only parameter, which we are free to choose.
Since ZL = XL + iYL is of the form (2.3.5), using (2.3.4), one finds

ZL = (−θγ̄τ, 1, θτ, γ̄,Z) ,

where we have set θ := |δ|
2=γ , with δ from (2.1.1).
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2. The case of signature (p, 1) and Borcherds products

If one now chooses γ with =γ = 1
2
|δ|, then θ becomes 1. Also note that if γ ∈ OF,

we have e3 ∈ L and e4 ∈ L]. Further, if δ = δF, let κF be a generator κF ∈ OF with
OF = Z + κFZ and i=κF = 1

2
δF. Then, after setting γ = κF, one has

ZL = (−κ̄Fτ, 1, τ, κ̄F,Z) .

Further, in this case, the basis vectors ej, j = 1, . . . , 4 are all contained in L]:

e1 = `, e3 = κF`, e2 =
2κF

δF(`, `′)
`′, e4 = − 2

(`, `′)δF
`′, (2.3.6)

wherein all complex factors are to be understood as scalars for the complex hermitian
space V , thus acting as endomorphisms of VR.

The embedding on the boundary

Proposition 2.18. Boundary points of H`,`′ are mapped to one-dimensional boundary
components of Hp. The boundary point attached to the primitive isotropic lattice vector
` is mapped into the boundary component attached to the rational isotropic subspace
FQ = Q`⊕Qκ̂F` ⊂ VQ of the quadratic space VR, (·, ·)R.

Proof. The boundary points of H`,`′ can be described by isotropic lines in V . Let
0 6= x ∈ V with (x, x) = 0. Then, in the quadratic space VR, (·, ·)R, the two vectors

x and ξ̂x, are isotropic and, for ξ 6∈ R, linear independent. Hence, F = Rx ⊕ Rξ̂x
is a two-dimensional isotropic subspace of VR, (·, ·)R and corresponds to a boundary
component of Hp.

Further, if x ∈ VF, the isotropic line Fx ⊂ VF defines a two-dimensional rational (i.e.
contained in VQ) isotopic subspace of VR, (·, ·)R, and thus defines a rational boundary
component. In particular, this is the case for x = `.

We now examine how the neighborhood of a cusp behaves under the embedding ε. It
suffices to consider the cusp at infinity, [`].

Lemma 2.19. Consider the boundary point at infinity of H`,`′, attached to `. The inverse
image of every open neighborhood in the closure of CO of this the boundary point contains
an open neighborhood of infinity in CU ∪ I`,C.

Proof. Consider the two-dimensional rational isotropic subspace FQ = Qe1 ⊕Qe2 of VQ,
and let FC = F ⊗Q C. Then FC is the image of I`,C under ε. Let [x] be a point in the
one-dimensional boundary component of CO defined by FC. Denote by πC the canonical
projection from VC to P1VC. In the zero quadric N , a neighborhood of [x] is a union of
the form U ∪ V , with U open in CO and V a subset of πC(FC) ∩ ∂CO, open with respect
to the subset topology. For a more precise description, identify FC ∩ π−1

C (∂CO) with the
upper half-plane H ⊂ C via (2.2.6). Recall the definition of the neighborhoods V (x, ε)
and U(x, ε) of x from (2.2.7). Now,

lim
t→∞

ε(z(it, σ)) = lim
t→∞

[−itκ̄F, 1, it, κ̄F, ε(σ)] = [−κ̄, 0, 1, 0, 0], (2.3.7)
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2.4. Borcherds products for orthogonal groups

we have x = κ̄Fe1 − e3. Now, for every Z ∈ ε(H`,`′), clearly z2 = κ̄F ∈ V (x, ε) for all
ε > 0. For Z ∈ ε(H`,`′), the imaginary part Y is given by

Y = =τe3 −
|δ|
2
e4 − ̂(i(`, `′))−1σ

for some (τ, σ) ∈ H`,`′ . Thus, if Z ∈ U(x, ε) ∩ ε(H`,`′), we have

+
|δ|
2
=τ − (σ, σ)

|(`′, `)|2
>

1

ε
.

It follows that (τ, σ) is contained in one of the neighborhoods of infinity U(ε′, `), as
introduced in (2.1.5)

U(ε′, `) =

{
(τ, σ) ∈ H`,`′ ; 2=τ |δ||(`, `′)|2 − (σ, σ) > C =

1

ε′

}
,

where, in this case, C = 2|(`′, `)|2/ε.

2.4. Borcherds products for orthogonal groups

2.4.1. The work of Borcherds and Bruinier’s take

In [2], Borcherds used a generalized Siegel theta function on DO to construct a lifting of
weakly holomorphic modular forms to automorphic forms for the orthogonal group. In
our overall setting and with the notation of the current section, one can use the following
Siegel theta function. Let v ∈ DO, τ ∈ H and r, t ∈ VR and set

Θ(τ, v; r, t)L =
∑

h∈L]/L

∑
λ∈L+h

e
(
τQ ((λ+ t)v⊥) + τ̄Q ((λ+ t)v)−

(
λ+ 1

2
t, r
)
R

)
eh.

Now, we define the regularized theta lift of a weakly holomorphic modular form f ∈ M!
k,L−

of weight k = 1− p as

Φf (v) =

∫ reg

SL2(R)\H

〈
f(·),Θ(·, v)L

〉
L
dµ = (f,Θ(·, z))regL− .

with the regularized pairing and the regularization procedure introduced in Section 1.4.

Remark 2.20. We note that in [2] and [5] a slightly different definition of the theta
integral was used. In our signature convention (the opposite of that in loc. cit.) and for
the theta function Θ(τ, v)L introduced above one could similarly define the regularized
lift of a weakly holomorphic modular form g ∈ M!

p−1,L transforming under ρL by setting

Φg(v) =

∫ reg

SL2(R)\H
〈g(·),Θ(·, v)L〉L v

p−1dµ.

Essentially, this is a regularized form of the weight k Petersson pairing for ρL defined
analogously to (·, ·)regL− . See also [10, Remark 5.3].
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2. The case of signature (p, 1) and Borcherds products

Borcherds’ approach to evaluating this type of integral involved using a partial Poisson
summation to express the integral in terms of Poincaré series for the lattice K = L∩e⊥1 ∩e⊥2
(a further reduction step also gives a contribution for the – in the present signature –
definite lattice K ∩ e⊥3 ∩ e⊥4 ). This yields an additive lifting, the Fourier expansion of
which is essentially the logarithm of the absolute value of a function Ψ(Z) (Z ∈ Hp)
(similar to (2.4.6) below), the multiplicative lift f . The function Ψ(Z) is a meromorphic
automorphic form taking its zeros and poles along special cycles and with an absolutely
convergent infinite product expansion (see Theorem 2.24).

Bruinier generalized Borcherds’ construction by using a regularized pairing of Hejhal
Poincarè series with the Siegel theta function. Set

Φn,h(v, s) := lim
t→∞

∫
Ft

〈Fn,h(·, s),Θ(·, v)L〉L dµ,

with the Hejhal Poincaré series of weight k and index (n, h) and let s0 = 1− k
2
. Up to a

constant term resulting from the slightly different regularization procedure, Φn,h(v, s0)
agrees with ΦFn,h(Z) see [5, Prop 2.11]. Since the Hejhal Poincaré series span the weak
harmonic Maass forms, the lift of a weakly holomorphic modular form f ∈ M!

k,L− , in
particular, can be expressed in terms of the Φn,h’s. Using these Poincaré series yields not
only the terms contributing to the product expansion but also further contributions which
allowed Bruinier to extend his lifting into the cohomology [see 5, Chap. 5]. In Chapter 3
we will use the pairing of Hejhal Poincaré series with the theta function associated to the
Schwartz form ψ (which replaces ϕ0 for unitary groups in signatures (p, q) with q > 1) in
a somewhat similar fashion to construct Green functions, see Sections 3.6 and 3.7.

First we review some of the results on the construction of Borcherds products from [5].

2.4.2. Special cycles and Weyl chambers

v Similar to (1.1.1) and (1.1.2), one defines codimension one sub-Grassmannians in DO

associated to lattice vectors by setting

DO(x) := {v ∈ DO; v ⊥ x} (x ∈ L], Q (x) > 0)

and DO(x) = ∅ (x ∈ L], Q (x) ≤ 0).

Further for an index (n, h) with n ∈ Q and h ∈ L]/L, one defines a special cycle, also
known as a Heegner divisor, by setting

DO(n, h) :=
∑
λ∈L+h
(λ,λ)=n

DO(λ). (2.4.1)

As in the unitary case, special cycles of this type are invariant under the action of an
orthogonal modular group hence can viewed as the preimage of a special cycle on the
modular variety.

We will use the same notation, DO(x) and DO(n, h) to denote the corresponding special
cycles in the complex cone CO and in the tube domain model Hp.
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2.4. Borcherds products for orthogonal groups

Now, assume that e1 ∈ L is primitive. Define Ne1 as the unique positive integer such
that 2(L, e1)R = Ne1Z. Now, define a Z-submodule of the dual lattice L] as follows:

L]0 :=
{
λ ∈ L] ; 2(λ, e1)R ≡ 0 mod Ne1

}
.

Clearly, L ⊆ L]0 ⊂ L] and L]0/L ⊆ L]/L.

Remark 2.21. We remark that if L and L] are hermitian lattices in the sense defined in
Chapter 1 (i.e. projective modules over the ring of integers OF in an imaginary quadratic
number field F), the lattice L]0 is not, in general, hermitian in this sense, but the multiplier
ideal of L]0 is an order O of F, with Ne1OF ⊂ O ⊂ OF.

The Lorentzian space and Weyl chambers Next, we define Weyl chambers for an
index (n, h), where n ∈ Q, h ∈ L]/L, as connected components of Hp (and the corre-
sponding subsets of CO and DO). For this, we need to take a look at the Lorentzian space
K ⊗R, where K = L∩ e⊥1 ∩ e⊥2 , with the restriction of (·, ·)R to K ⊗R ⊂ VR. The reason
for this lies in the reduction process described above.

Denote by DO(K) the symmetric domain for the operation of SO(K ⊗ R) on K ⊗ R.
Beside the Grassmannian model, which in this case consists of one-dimensional negative
definite subspaces, there is also a hyperboloid model and an upper half-space model, cf.
[5, Chap. 3.1] for details.

Now as before, define special cycles with DO(x) for x ∈ K ⊗ R as codimension one
sub-Grassmannians, i.e. as codimension one hyperplanes. Further, define Heegner divisors
DO(m,h) for m ∈ Q and h ∈ K]/K, as locally finite sums of special cycles DO(κ), with
κ ∈ K + h and Q (κ) = n, similarly to (2.4.1). We note that the discriminant group
K]/K has cardinality

∣∣L]/L∣∣ = N2
e1
·
∣∣K]/K

∣∣.
For n ∈ Q and h ∈ K]/K, Weyl chambers of index (n, h) in DO(K) are defined as

the connected components of DO(K) \ DO(n, h) in the hyperboloid model. If W is a
Weyl chamber of index (n, h), viewed as a subset of K ⊗ R, then for any λ ∈ L], with
Q (λ) = n and λ ≡ h (mod L), the inner product (λ, x)R has constant sign on W , i.e.
if (λ, x0)R > 0 for one x0 ∈ W , it is non-negative for every x ∈ W [cf. 5, Lemma 3.2].
Hence, in this case, we write (W,λ)R > 0, and similarly (W,λ)R < 0 if (x0, λ)R < 0 for
any x0 ∈ W .

Further, one defines a projection from L]0 to K] with the property that p(L) = K as
follows. If ν is a vector in L with 2(ν, ν)R = Ne1 and λ ∈ L], denote by νK = pK(ν)
and λK = pK(λ) the projections to the rational Lorentzian space K ⊗ Q. Then, the
projection

p(λ) = λK −
2(λ, e1)R
Ne1

νK (2.4.2)

takes L to K and induces a surjective map from L]0/L to K]/K. Let κ ∈ K]. A system of
representatives for β ∈ L]0/L, with p(β) = κ+K is given by β − 2(β, µ)R/Ne1 + be1/Ne1 ,
where b runs over a system of representatives modulo Ne1 .

Finally, one defines Weyl chambers in DO with index (n, h), with n ∈ Q and h ∈ L]/L,
by considering the projection p(h) ∈ K]/K and the Weyl chambers in DO(K) with index
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2. The case of signature (p, 1) and Borcherds products

(m, p(h)). Thus, if W is such a Weyl chamber in DO(K), the set{
Z = X + iY ∈ Hp ;

Y

|Y |
∈ W

}
⊂ Hp,

is called a Weyl chamber of Hp, also denoted by W . The corresponding subsets of DO

are similarly considered as Weyl chambers.

Then, for a lattice vector λ ∈ L], the sign with respect to a given Weyl chamber W
is defined as the sign of the projection p(λ) with respect to the corresponding Weyl
chamber of DO(K), i.e. as the sign of (x, p(λ))R for any x ∈ W ⊂ K ⊗ R.

2.4.3. Decomposition of the lift

As indicated at the beginning of this section, the lift Φn,h(Z) of the Hejhal Poincaré
Fn,h series in [5] yields not only infinite product expansions of Borcherds type, but also
terms bearing on a lifting into the cohomology. To separate the two, one decomposes the
function Φn,h(Z) as follows, see [5, Definition 3.11],

Φn,h(Z) = ψn,h(Z) + ξn,h(Z).

For γ ∈ L]/L and ` ∈ Z +Q (γ), denote by b(γ, `) = bn.h(γ, k) the Fourier coefficients of
Fn,h(τ, 1− k

2
). The first component function ξn,h : Hp → R is given by

ξn,h = 1
2

√
2|Y | ξKn,h − b(0, 0) log

(
Y 2
)

+
2√
π

∑
λ∈K]

Q(λ)>0

∑
δ∈L]0/L

p(δ)=λ+K

b(δ,−Q (λ))

·
∑
`≥1

1

`
· e (`(δ, e2)R + `(λ,X)R) · V2−l

(
π`|λ||Y |, π`(λ, Y )R

)
,

(2.4.3)

wherein ξKn,h is either zero, if (h, z)R 6≡ 0 (mod Ne1), or, if (h, z)R ≡ 0 (mod Ne1), it is
given by ξKn,p(h), defined in loc.cit. Definition 3.3. This is a part of the similar decomposition

of the lift ΦK
n,p(h) = ξKn,p(h) + ψKn,p(h), the second part of which, ψKn,p(h), in turn, contributes

to ψn,h, the second component function of Φn,h. It turns out (see loc. cit. Theorem 3.4),
that ψKn,p(h) is piecewise linear on DO(K), with singularities along the Heegner divisor

DO(n, p(h)). Hence, for a Weyl chamber W of DO(K), following loc. cit. Definition 3.5,
one defines a Weyl vector ρn,p(h)(W ) by setting (recall that our definition of Fn,h differs
from Bruinier’s by a factor of 1

2
)

ψKn,p(h)(v1) =: 4π
√

2
(
v1, ρn,p(h)(W )

)
R, (2.4.4)

where v1 is a vector of norm one contained in the hyperboloid model of DO(K) see
loc. cit. p. 66f for details.
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2.4. Borcherds products for orthogonal groups

The Fourier expansion of ψn,h can be written in the form (cf. loc. cit. (3.38))

ψn,h(Z) = Cn,h + 8π(ρn,h(W ), Y )R − 4
∑

λ∈±p(h)+K
(λ,W )R>0
Q(λ)=−n

log|1− e (±(h, e2)R + (λ, Z)R)|

−4
∑
λ∈K

(λ,W )R>0
Q(λ)≤0

∑
δ∈L]0/L

p(δ)=λ+K

b(δ,−Q (Y )) log|1− e ((δ, e2)R + (λ, Z)R)|,

where W is used to denote a Weyl chamber of DO and the corresponding Weyl chamber
of DO(K), i.e. containing the normalized imaginary parts Y

|Y | of Z ∈ W ⊂ DO.

Hence, for Z ∈ Hp with Q (Y ) < |n|, one defines

Ψn,h(Z) := e
(
(ρn,h(W ), Z)R

) ∏
λ∈±p(h)+K
(λ,W )R>0
Q(λ)=−n

(1− e (±(h, e2)R + (λ, Z)R))

·
∏
λ∈K

(λ,W )R>0
Q(λ)≤0

∏
δ∈L]0/L

p(δ)=λ+K

(1− e ((δ, e2)R + (λ, Z)R))b(δ,−Q(λ)) .

(2.4.5)
The product expansion is absolutely convergent for Q (Y ) < n and, on the complement
of DO(n, h), satisfies

log|Ψn,h|(Z) = −1

4
(ψn,h − Cn,h) . (2.4.6)

Further, Ψn,h has a holomorphic continuation to Hp and (2.4.6) holds on Hp − DO(n, h).
The zero divisor of Ψn,h can be described as follows [5, Theorem 3.16]: For a relatively

compact open neighborhood U ⊂ Hp, define the set

Sn,h(U) = {λ ∈ h+ L; Q (λ) = −n, (ZL, λ)R = 0 for some Z ∈ U} . (2.4.7)

Then, the zeros of Ψn,h(Z) on U are located in (ZL, λ)R for λ ∈ Sn,h(U), and their
multiplicity is given by the product

∏
λ∈Sn,h(U)(ZL, λ)R, in other words, a holomorphic

and zero-free function on U is given by

Ψn,h(Z)
∏

λ∈Sn,h(U)

(ZL, λ)−1
R .

Remark 2.22. We note that Ψn,h is not necessarily automorphic. However, by construc-
tion and through the properties of the theta-integral, the function

|Ψn,h|e−
1
4
ξn,h

is invariant under the discriminant kernel ΓO
L .

53



2. The case of signature (p, 1) and Borcherds products

Remark 2.23. A twice continuously differentiable real function f on a domain D ⊂ Cp

is called pluriharmonic if all mixed second derivatives vanish, i.e. if

∂2f

∂zj∂z̄k
= 0 (1 ≤ j, k ≤ p) .

If D is simply connected, a twice continuously differentiable function f is pluriharmonic
if and only if there is a holomorphic function h : D → C with f = Re(h) [see 31, Section
IX.C].

Also since the components of H± are convex, in particular, the multiplicative Cousin
problem is universally solvable on Hp \ DO(h, n) [see 30, Section V.2]. Thus, there exists
a meromorpic function g =

∏
(ZL, λ)R with the same divisor as Φh,n. Then Φn,h − log|g|

extends to a pluriharmonic function on Hp and hence there is a holomorphic function h
with Re(h) = Ψn,h − log|g|, and one can set Ψn,h = ehg. (For a detailed version of this
argument [see 5, p. 82ff] or [6, Lemma 6.6]).

2.4.4. Infinite product expansion

Next, we review the main result concerning Borcherds products for orthogonal groups of
signature (2p, 2), [2, Theorem 13.2] in the version by Bruinier [5, Theorem 3.22]. First,
some further definitions.

For a weakly holomorphic modular form f transforming under the Weil representation
ρL− with principal part

P (f) =
∑

h∈L]/L

∑
n∈Z−Q(h)

n<0

a+(h, n)e(nτ)eh,

the Weyl chambers of DO(K) with respect to f are defined as the connected components
of

DO(K)−
⋃

h∈L]0/L

⋃
n∈Z−Q(h)

n<0
a+(h,n)6=0

DO(−n, p(h)).

Let W be one of these Weyl chambers. Then, for every h ∈ L]0/L, and n ∈ Z − Q (h)
with a+(h, n) 6= 0, there is a Weyl chamber Wn,h ⊂ DO(K) of index (−n, p(h)) with
W ⊂ Wn,h hence W can be written as the intersection

W =
⋂

h∈L]0/L

⋂
n∈Z−Q(h)

n<0
a+(h,n) 6=0

Wn,h. (2.4.8)

Further, the Weyl vector attached to W and f is defined as

ρf (W ) =
1

2

∑
h∈L]0/L

∑
n∈Z−Q(h)

n<0

a+(h, n)ρn,p(h)(Wn,h), (2.4.9)
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2.4. Borcherds products for orthogonal groups

where ρn,p(h)(Wn,h) denotes a Weyl vector for Wn,h of the form (2.4.4). As before, the
subset of DO attached to W is also considered as a Weyl chamber attached to f and
denoted by W . In the tube domain, it consists of all Z ∈ Hp, with Y/|Y | ∈ W ⊂ DO(K).

Theorem 2.24 (Borcherds-Bruinier). Let L be an even lattice of signature (2p, 2),
with p ≥ 2 and e1 ∈ L a primitive isotropic vector, e2 ∈ L′ with (e1, e2)R = 1 and
K = L∩ e⊥1 ∩ e⊥2 , and denote by p the projection defined in (2.4.2). Further, assume that
K, too, contains an isotropic vector.

Let f ∈ M!
L−,1−p be a weakly holomorphic modular form of weight 1− k, the Fourier

coefficients a(h, n) of whose principal part P (f) are integral for n < 0. Then,

Ψ(Z) =
∏

h∈L]/L

∏
n∈Z−Q(h)

n<0

Ψn,h(Z)
1
2
a(h,n)

is a meromorphic function on Hp with the following properties

1. Ψ(Z) is a meromorphic modular form of weight 1
2
a(0, 0) for ΓO

L with some multiplier
system of at most finite order. If a(0, 0) is even, the multiplier system is, in fact, a
character.

2. The divisor of Ψ(Z) is given by

1

2

∑
h∈L]/L

∑
n∈Z−Q(h)

n<0

a(h, n)DO(−n, h).

3. Let W ⊂ Hp be a Weyl chamber with respect to f and n0 = min{n ∈ Q; a(h, n) 6= 0}.
On the set of Z ∈ Hp, which lie in the complement of the set of poles of Ψ(Z) and
which satisfy Q (Y ) < |n0|, there is a normally convergent product expansion

Ψ(Z) = Ce
(
(ρf (W ), Z)R

) ∏
µ∈K]

(µ,W )R>0

∏
h∈L]0/L
p(h)∈µ+K

(1− e ((h, e2)R + (µ, Z)R))a(h,−Q(µ)) ,

where C is a constant of absolute value one and ρf (W ) is the Weyl vector attached
to W and f .

Remark 2.25. By part 3. of Theorem 2.24, the infinite product expansion is absolutely
convergent in a suitable neighborhood of the cusp at infinity of Hp. In other words near
the zero-dimensional boundary component attached to the isotropic vector e1. Quite
recently, Kudla [see 40] came up with a different infinite product expansion for Ψ(Z),
which puts one-dimensional boundary components into focus. It is based on a slightly
different procedure for evaluating the singular theta integral. Interestingly enough, this
also avoids the reduction step from L⊗Z R to K ⊗Z R and hence, there is no immediate
equivalent to the Weil-vector term, which in Borcherds’ setup comes from the contribution
of ΦK(v1).

We will use an adaptation of Kudla’s method in Chapter 4 to evaluate the singular
theta lift to be constructed in Chapter 3.
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2. The case of signature (p, 1) and Borcherds products

2.5. Borcherds products for U(p, 1)

Now, we will use the embedding ε to pull back the Borcherds products of Theorem 2.24
from Hp to H. The main result of this section, Theorem 2.29 is a slight variation of the
main result of [33] and [35], where Borcherds’ original version [2, Theorem 13.3] was
subject to the pull back, with some results from [5] used for the Weyl chambers and Weyl
vector terms. First, we establish the analogue of Section 2.4.2 by studying the behavior
of the special cycles and Weyl chambers under pull-back.

Behavior of special cycles and Weyl chambers under pull-back

Lemma 2.26. Let λ ∈ L] be a lattice vector with (λ, λ) > 0 and D(λ) the attached
special cycle, and denote by ε : H`,`′ ↪→ Hp the embedding from Section 2.3. Then, the
image of the special cycle under ε has the following properties:

1. It is given by the non-empty intersection ε (D(λ)) = (ε(H`,`′) ∩ DO(λ)) ⊂ Hp, where
DO(λ) ⊂ Hp is the special cycle in Hp attached to λ.

2. For all u ∈ O×F , the special cycles given by DO(ûλ) intersect in ε (D(λ)) ⊂ ε (H`,`′).

Further, if DO(n, h) is a Heegner divisor of index (n, h) in Hp, we have DO(n, h) ∩
ε (H`,`′) = ε (D(n, h)), with D(n, h) the special cycle of index (n, h) in H`,`′.

Proof. To show the first statement, we use the isomorphisms between CO and Hp and
CU and H`,`′ respectively. Thus, for Z ∈ Hp, let ZL ∈ pr−1

O (CO) be the attached vector
in VR ⊗ C, and for (τ, σ) ∈ H`,`′ , let z = z(τ, σ) be the corresponding normalized
representative for a negative definite line in V . Assume ZL ∈ ε(H`,`′). Then

ZL ∈ DO(λ)⇐⇒ ZL ⊥ λ⇐⇒
(

z

(`, `′)
+ i
−ı̂z

(`, `′)
, λ

)
R

= 0

⇐⇒ (`, `′)(z, λ) = 0⇐⇒ z ∈ D(λ).

Also, since ε is injective and both D(λ) ⊂ H`,`′ and DO(λ) ⊂ Hp are non-empty, the
intersection ε(H`,`′) ∩ DO(λ) is non-empty.

The second statement is immediate.
Since both kinds of special cycles are given by linear combinations of special cycles of

the form D(λ) and DO(λ), and for both, the λ’s satisfy the same conditions concerning
their norm and their class in the discriminant group, the third statement follows from
the first two.

Definition 2.27. Denote by V the collection of all Weyl chambers of DO(K) (which, of
course correspond to Weyl chambers of DO), and let εK be map given by

εK : (τ, σ) 7→ RY (τ, σ) = R
(
−ı̂(̂`, `′)

−1

z(τ, σ)
)

A Weyl chamber of H`,`′ is a connected subset W with εK(W ) = V ∩ εK(H`,`′) for some
V ∈ V. We say that the Weyl chamber W ⊂ H`,`′ has index (n, h) if the corresponding
Weyl chamber V ⊂ Hp has this index.
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2.5. Borcherds products for U(p, 1)

Let V be a Weyl chamber of DO(K) with index (n, p(h)). Recall that W can be
described through inequalities of the form ±(YL, µ)R > 0 with lattice vectors µ with
µ ∈ p(h) +K and Q (µ) = n.

Since for YL = εK(τ, σ) we have (YL, µ)R = (Y, µ)R, it follows that a Weyl chamber
of index (n, p(h)) (n ∈ Z, h ∈ L]/L) in H`,`′ is defined geometrically (as a subset of
pr−1(CU)) by a set of inequalities of the form

±=
(

(z(τ, σ), µ)

(`, `′)

)
> 0

for µ ∈ p(h) +K, Q (µ) = n.
Since from the properties of Weyl chambers in DO(K), it follows that the sign is

constant throughout the Weyl chamber, we will write these inequalities in the form

(εK(W ), µ)R > 0 and (εK(W ), µ)R < 0.

For a weakly holomorphic modular form f with principal part

P (f) =
∑

h∈L]/L

∑
n∈Z−Q(h)

n<0

a(h, n)e(nτ)eh,

by the above considerations, the Weyl chambers with respect to f in Hp define Weyl
chambers in H`,`′ which can be described as an intersection (cf. (2.4.8)) of Weyl chambers

of index (−n, p(h)) for h ∈ L]0/L, 0 > n ∈ Z − Q (h) with a+(h, n) 6= 0. Thus, if
Vn,h ⊂ Hp is one of these Weyl chambers in Hp from (2.4.8), denote by Wn,h ⊂ H`,`′ the
Weyl chamber with index (p(h), n) with εK (Wh,n) ⊂ Vh,n. Then, a Weyl chanber W
with respect to f is given by

W =
⋂

h∈L]0/L

⋂
n∈Z−Q(h)

n<0
a(h,n)6=0

Wn,h.

2.5.1. Infinite products

We use the embedding to pull back the infinite products Ψn,h from (2.4.5) on p. 53
associated to the lift of the Hejhal Poincaré series Fn,h and get

Lemma 2.28. For h ∈ L]/L and n ∈ Z, the infinite product

Ψn,h(z) = e

(
(ρh,n, z)

(`, `′)

) ∏
λ∈p(h)+K

(εK(W ),λ)R>0
Q(λ)=−n

(
1− e

(
±Re

(
2(h, `′)κF
δF(`, `′)

)
+

(λ, z)

(`, `′)

))

·
∏
µ∈K]

(µ,εK(W ))R>0
Q(µ)≤0

∏
h∈L]0/L

p(h)=µ+K

(
1− e

(
Re

(
2κF(h, `′)

δF(`, `′)

)
+

(λ, z)

(`, `′)

))b(h,−Q(µ))

.

(2.5.1)
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2. The case of signature (p, 1) and Borcherds products

is normally convergent for z with (z, z) < 4|(`, `′)|2|n|. Here, ρh,n is the Weyl-vector from
(2.4.4).

Proof. This is an immediate consequence of the results of Bruinier, see [5], Lemma 3.15
and Theorem 3.16, with the properties of the embedding ε with the choice of the basis
vector e2 = â`′ with a = (δF(`, `′))−1 κF.

Now, we can formulate the main theorem of this section (cf. [33, Theorem 4.21] and
[35, Theorem])

Theorem 2.29. Let L be an even hermitian lattice of signature (p, 1), with p ≥ 1 and
` ∈ L a primitive isotropic vector. Let `′ ∈ L] with (`′, `) 6= 0 and assume that `′ is also
isotropic. Given a weakly holomorphic modular form f ∈ M!

L−,1−p with principal part∑
h,n a(h, n) with a(h, n) ∈ Z for n < 0, the function

Ψf (z) =
∏

h∈L]0/L

∏
n∈Z−Q(h)

n<0

Ψn,h(z)
1
2
a(h,n),

with Ψn,h from (2.5.1), is a meromorphic function on H`,`′ with the following properties:

1. Ψf is meromorphic modular form of weight 1
2
a(0, 0) for ΓL with some multiplier

system χ of finite order. If a(0, 0) is even, χ is a character.

2. The zeros and poles of Ψf lie on the special cycles. The divisor in H`,`′ of Ψf is
given by

div (Ψf ) =
1

2

∑
h∈L]/L

∑
n∈Z−Q(h)

n<0

a(h, n)D(−n, h).

The multiplicity of D(−n, h) is 2 if 2h = 0 ∈ L]0/L and 1 otherwise. Note that
a(h,−n) = a(−h,−n) and that D(−n, h) = D(−n, uh) for all u ∈ O×F , h 6= 0.

3. Let W be a Weyl chamber of H`,`′ with respect to f , and ρf(W ) the attached
Weyl-vector. Then, Ψf (z) has an infinite product expansion of the form

Ψf (z) =

Ce

(
(ρf (W ), z)

(`, `′)

) ∏
µ∈K]

(µ,εK(W ))R>0

∏
h∈L]0/L

p(h)=µ+K

(
1− e

(
Re

(
2κF(h, `′)

δF(`, `′)

)
+

(µ, z)

(`, `′)

))a(h,−Q(µ))

,

where C is a constant of absolute value one and ρf(W ) is the Weyl vector at-
tached to W . The product converges normally on the set of z in the comple-
ment of the set of poles of Ψf(z) and satisfying (z, z) < 4|(`, `′)|2|n0| with n0 =
min {n ∈ Z; a(h, n) 6= 0}.
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Proof. In principle, it is only necessary to apply the pull-back under the embedding ε
to Theorem 2.24 and keep in mind our remarks concerning Weyl chambers and Weyl
vectors. However, we will reproduce some of the argumentation for the proof of Theorem
2.24 from [5, proof of Theorem 3.22].

Let f =
∑

h

∑
n a(h, n)Fn,h(τ,

p−1
2

) be the decomposition of f ∈ M!
L−,1−p in terms of

Maass-Poincaré series. Set

Φ(z) =
∑
h,n

a(h, n)ε∗ (Φh,n(Z)) , ξ(z) =
∑
h,n

a(h, n)ε∗ (ξh,n(Z)) .

From (2.4.3) we get

ξ(z) =
∑

h∈L]/L

∑
n∈Z−Q(h)

n<0

a(h, n)

[
(z, z)

1
2

√
2|(`, `′)|

ε∗K

(
ξKh,n

(
−ı̂z
|(z, z)|

1
2

(`, `′)

|(`, `′)|

))

− bh,n(0, 0) log

(
|(z, z)|
|(`, `′)|

)]
− 1√

π · Γ(p)

∑
µ∈K]

Q(µ)≤0

∑
δ∈L]0/L

p(δ)=µ+K

∑
h∈L]/L
n∈Z−Q(h)

n<0

a(h, n) · pδ,Q(µ)(h,−n)

·
∑
m≥1

1

m
e

(
mRe

[
κF(δ, `′)

δF(`, `′)

]
+ Re

(µ, z)

(`, `′)

)
Vp+1

(
πm|µ| (z, z)

1
2

|(`′, `)|
, πmRe

(
(µ,−iz)
(`, `′)

))

Here, in the second line, the Fourier coefficients bh,n(δ,−Q (µ)) of the Maass-Poincaré
have been expressed in terms of the coefficients pδ,Q(µ) of a holomorphic Poincaré series
via [see 5, Prop. 1.16]

bh,n (δ,−Q (µ)) = − 1

Γ(p)
· pδ,Q(µ)(h,−n),

an explicit formula for these coefficients is given in [5, Theorem 1.4]. Since f is in M!
1−p,L−

and the Poincaré series are contained in M!
p+1,L, by the duality result in Proposition

1.10, one finds that the sum
∑

h,n a(h, n)pδ,Q(µ)(h,−n) vanishes. Thus, only the first
line in the above expression for ξ(z) remains. By similar arguments, one can show that∑

h,n a(h, n)ξKn,h is a rational function, which then implies, see [2, Theorem 10.3], [5,
Theorem 3.6], that the sum is identically zero. Thus, ξ(z) is given by the only remaining
term,

ξ(z) = −a(0, 0) log
|(z, z)|
|(`, `′)|2

.

Hence,

Φ(z) = −a(0, 0) log
|(z, z)|
|(`, `′)|2

+
∑

h∈L]/L

∑
n∈Z−Q(h)

n<0

a(n, h) ε∗ (ψn,h) (z).
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2. The case of signature (p, 1) and Borcherds products

Now, recall the definition of Ψn,h and the location of zeros of Ψn,h (see p. 53) these imply
that

|Ψf (z)| = C exp
(
−1

4

∑
h∈L]/L

∑
n∈Z−Q(h)

n<0

a(h, n)ψn,h(z)
)

with a real constant C. Hence,

|Ψf (z)|
(

(z, z)

|(`, `′)|

)a(0,0)
4

= C ′ exp

(
−1

4
Φ(z)

)
.

Since Φ(z) is invariant under ΓL, it follows that the left hand side of this equation is
invariant, too, and hence Ψf (z) is a modular form of weight 1

2
a(0, 0) with some multiplier

system for ΓL.

The infinite product expansion in part 3. of the Theorem 2.29 can be simplified
considerable for suitable lattices L, for instance, we have the following Corollary [see 35,
Corollary 1].

Corollary 2.30. Assume that L is the direct sum of a unimodular lattice OF`+D−1
F `′

and a definite lattice D. Then, in the notation of Theorem 2.29, for every Weyl chamber
W ⊂ H`,`′, the infinite product expansion of Ψf (z) takes the form

Ψf (z) = Ce

(
(ρf (W ), z)

(`, `′)

) ∏
µ∈K]

(µ,εK(W ))R>0

(
1− e

(
(µ, z)

(`, `′)

))a(µ,−Q(µ))

.

Proof. It easily seen that Ne1 = N` = 1, hence L0 = L. Further, the elements K]/K and
L]/L are in one-to-one correspondence, and one can identify µ ∈ K] with h ∈ L], its
preimage under the projection p. Finally, the `-component of µ is given by µ3e3 with a
rational number µ3, and it follows by (2.3.6) that

Re

(
κF(µ, `′)

δF(`, `)

)
= Re

(
δ−1
F |κF|

2µ3

)
= 0.

Remark 2.31. The pull-back ε∗ can also be used directly on the Borcherds lift of a
weakly holomorphic modular form or, more generally, of a weak harmonic Maass form.
For example, the pull-back of the functions Φn,h(Z) features in [14, Sec. 4].

Examples

Example 2.32. As an example, we consider the case where p = q = 1, treated in [33,
Chapter 6] and [34]. In V = C2, consider the self-dual lattice L = OF ⊕ D−1

F spanned
by two isotropic vectors ` = 1 and `′ = δ−1. Then, H`,`′ is just the usual complex upper
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2.5. Borcherds products for U(p, 1)

half-plane H = {τ ∈ C; =(τ) > 0}. The special unitary group SU(V ) is isomorphic to
SL2(R) via

SL2(R) 3
(
a b
c d

)
7−→

(
a bε
cε−1 d

)
∈ SU(V ),

wherein ε := δ(`′, `) and and where matrices are written in terms of ` and `′. The matrix
groups operate on H through fractional linear transformations, as usual.

Since the lattice L is unimodular, the discriminant group L]/L is trivial and the
discrete Weil represenation reduces to the usual operation on C.

A basis of M!
0 is given by the family of modular forms with principal part q−n and

constant term 0, jn = q−n + O(q) for n ≥ 1. For example, j1 is the modular invariant
less its constant term, j1 = j − 744, indeed, M!

0 = C[j]. Note also that jn can expressed
through the non-holomorphic Poincaré series F−n though

jn(τ) = F−n(τ, 1)− 24σ(n),

where σ(n) denotes the divisor sum
∑

d|n d.
In determining the Weyl vector for the lift of jn, it is necessary to take into account

the contribution of the constant term bn(0, 1) (see [34, Sec. 9]). The Borcherds product
for the lift of this term is given by

Ψ1(τ)24σ(n) = (η(τ)η(−κ̄F))24σ(n) .

Now, the (multiplicative) Borcherds lift Ψjn of jn (n ∈ N) is a meromophic modular
form of weight 0 on H, with zeros poles lying along a special cycle given by

div(Ψjn) =
1

2

∑
λ∈L

(λ,λ)=n

[τλ],

where the [τλ]’s denotes the ΓL-orbits of points defined by (z(τλ), λ) = 0, with z(τλ) =
`′ + τλδF(`, `)`. In fact, the τλ are Heegner points in the sense of CM-theory for elliptic
curves.

The Weyl chambers with respect to jn are stripe-shaped regions of H defined as follows:
Denote by 1 = t1 ≤ t2 ≤ . . . td(n) = n the positive divisors of n, arranged by their size
and set t0 = 0 and tn+1 =∞. Then, the Weyl chambers are given by

W (ti, ti+1) =
{
τ ∈ C; |δF|t2i < 2=τn < |δF|t2i+1

}
, i = 1, . . . , n

and

W (0, 1) =
{
τ ∈ C; 0 < =τ < 1

2
|δF|
}
, W (n,∞) =

{
τ ∈ C; 1

2
|δF|n < =τ

}
.

For each Weyl chamber W (ti, ti+1), we have a Borcherds product expansion, absolutely
convergent for all τ in the complement of the set of poles satisfying |δF|=τ > 2n, given by

Ψjn (τ ;W (ti, ti+1)) = Ce (ρ2τ − κ̄Fρ1)
∏
l,k∈Z

nl>−kt2i

(1− e (lr − κ̄F))a(kl) ,
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2. The case of signature (p, 1) and Borcherds products

where C is a constant of absolute value one, and the components ρ1 and ρ2 of the Weyl
vector are given by

ρ1 = −
∑
t|n

t≥ti+1

t, and ρ2 = −
∑
t|n

0<t≤ti

n

t
.

Remark 2.33. In order to determine the Weyl vector in the previous Example 2.32, in
[33, 34] the additive Borcherds lift with respect to the quadratic space K ⊗ R = Z2 ⊗ R
was explicitly calculated, too. For the functions jn ∈ M!

0, it is given by

ΦK(Y ; jn) =
4
√

2π

|Y |
∑
t>0
t|n

(∣∣∣ty2 +
n

t
y1

∣∣∣− ∣∣∣ty2 +
n

t
y1

∣∣∣) .
Further, the additive lift for SO(2, 2) and the multiplicative lift are explicitly determined
in [33, Chapter 6], thus covering a case not treated in [5] and [2]. The Borcherds product
expansion for the lift of jn is absolutely convergent for those Z in Hp ' H×H which are
not contained in the set of poles and satisfy =(y1)=(y2) > n. It is given by

Ψ(Z; jn) = e (ρ1z2 + ρ2z1)
∏
m,n∈Z

((m,n),W )R>0

(1− e (mz2 + nz1))c(mn) ,

with ρ1 and ρ2 from Example 2.32. The Weyl chambers here can be described as follows.
Denote by K− the connected component of the quadratic cone from Remark 2.10 with
=(Z) ∈ K−. Then (with similar notation to Example 2.32) one has

W (ti, ti+1) = {Y ∈ K−; t2i y2 < y1n < t2i+1y2}.

Example 2.34. We mention that Yang and Ye in [57] use the results of [35] to construct
examples of modular forms for U(2, 1). More precisely, in the first part of their paper,
they construct a basis for each of the spaces of weakly holomorphic modular forms of
negative integer weight for the congruence subgroup Γ0(4) having poles at only one of
the three cusps {0, 1

2
,∞} of this group and with a quadratic character. They then use

an induction process to obtain vector valued modular forms for the hermitian lattice
L = Z[i]⊕ Z[i]⊕ 1

2
Z[i], equipped with the form (x, y) = x1ȳ3 + x3ȳ1 + x2ȳ2.

In the second part of their paper, they explicitly calculate the lift for forms Fn obtained
from a basis of M !,∞

−1

(
Γ0(4), χk−4

)
, the space of weight −1 weakly holomorphic forms for

Γ0(4), having a pole at ∞ and with the quadratic character χ−4(·) =
(−4
·

)
. The lift is

an automorphic form of weight 32
∑

d|n χ−4(n/d)d2 + 2
∑

d|n χ−4(d)d2 for ΓL. They give
an explicit description of the Heegner divisor, of the Weyl chambers and of the factors
in the Borcherds product. They also determine the value at the boundary using [35,
Theorem 5] (see Theorem 2.35 below).

2.5.2. Boundary values

The behavior of Ψf near the cusp [`] can be determined either by calculating the behavior
of Borcherds products on boundary components of Hp (cf. the examples in [2, Section
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2.5. Borcherds products for U(p, 1)

13]) and pulling back under ε, or by expanding the infinite products from Theorem 2.29
and taking the limit τ → i∞. The first approach was used in the proof of [33, Theorem
4.3.3], while the second approach was used in the proof of [35, Theorem 5]. Assume that
the width of the cusp [`] is given by N` = 1. One gets

Theorem 2.35. Let W be a Weyl chamber, such that the cusp corresponding to ` is
contained in the closure of W (viewed as a subset of CU). If the cusp is neither a zero
nor a pole of Ψf , then the limit limr→∞Ψf (ir, σ) is given by

lim
r→∞

Ψf (ir, σ) = Ce
(
ρf (W )`

) ∏
µ∈K]

µ=aκF`
a∈Q<0

(1− e (aκ̄F))a(µ,0) .

Proof. We denote the `- and `′-components of ρf by ρ` and ρ`′ and the definite part by
ρD ∈ D ⊗OF C. Since ρf ∈ K ⊗Z Q, we have ρ`` = ρ3e3, ρ`′`

′ = ρ4e4, where ρ3 and ρ4

denote the e3- and e4-components. Similarly for a lattice vector λ ∈ K], we write

λ = λ``+ λ`′`
′ + λD = λ3e3 + λ4e4 + λD.

With (2.3.6), which gives e3 and e4 in terms of ρ` and ρ`′ , we get

(ρf , z) = ρ̄`(`, `
′) + ρ̄`′τδF|(`′, `)|2 + (ρD, σ) = κ̄Fρ3(`, `′)− 2τρ4(`, `′) + (ρD, σ).

The Weyl vector in the product expansion of Ψf is thus given by

e

(
(ρF , z)

(`, `′)

)
= e

(
κ̄Fρ3 − 2ρ4τ +

(ρD, σ)

(`, `′)

)
.

Clearly, Ψf(z) has a zero at infinity if ρ4 < 0 and a pole if ρ4 > 0. From now on, we
assume that limr→∞Ψf (τ, σ) is neither zero nor infinity.

Next, we claim that λ4 is non-positive. To see this, consider the Weyl chamber condition
(εK(W ), λ)R > 0 for z with τ = ir, r � 0 and σ of fixed norm We have:

(λ, z(ir, σ)) = κ̄Fλ3(`, `′)− 2irλ4(`, `′) + (λD, σ).

Clearly, for large r, the Weyl chamber condition, (εK(W ), λ)R > 0 is satisfied only if
λ4 ≤ 0. Since the corresponding factor in the product is trivial for λ4 < 0, we can restrict
to λ with λ4 = λ`′ = 0.

Thus, in a suitable neighborhood of infinity, Ψf can be written in the form

Ψf (τ, σ) = Ce

(
ρ̄` +

(ρD, σ)

(`, `′)

) ∏
λ∈K]

λ`′=0
(εK(W ),λ)R>0

(
1− e

(
λ̄` +

(λD, σ)

(`, `′)

))a(λ,−Q(λD))

. (2.5.2)

As an automorphic form, Ψf (τ, σ) has a Fourier-Jacobi expansion of the form

Ψf (τ, σ) =
∑
n≥0

cn(σ)e
( n
N
τ
)
. (2.5.3)
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2. The case of signature (p, 1) and Borcherds products

Note that by the non-vanishing assumption, n ∈ Z, and by regularity, n ≥ 0. We thus
have

c0 = lim
r→∞

Ψf (ir, σ). (2.5.4)

Beside the Fourier-Jacobi expansion (2.5.3), the Borcherds product can also be rewritten
as a series by expanding each factor as a binomial series and taking the resulting product.
Thus, with the binomial series expansion, the right hand side of (2.5.2) becomes

Ce

(
ρ̄` +

(ρD, σ)

(`, `′)

)
·

∏
λ∈K]

λ`′=0
(εK(W ),λ)R>0

∑
n≥0

(−1)n
(
a(λ,−Q (λD))

n

)
e

(
λ̄` +

(ρD, σ)

(`, `′)

)n
.

By multiplying all remaining factors, we obtain

e

(
ρ̄` +

(ρD, σ)

(`, `′)

)
·
[
1 +

∑
k>0

∑
λ1,...,λk∈K]

(εK(W ),λk)R>0
λk,`′=0

∑
n1,...,nk∈Z

ni≥0

b
(
(λi, ni)i=1,...,k

)
e

(
k∑
i=1

ni
(λi, z)

(`, `′)

)]
,

with coefficients b
(
(λi, ni)i=1,...,k

)
indexed by tuples of lattice vectors λi ∈ K] and integers

ni. We set λ̃ :=
∑k

i=1 niλi. clearly, λ̃ ∈ K] and λ̃`′ = 0, since K] is a Z-module.
Further, since the λi satisfy the Weyl chamber condition (εK(W ), λ)R > 0 and the ni are

non-negative, each λ̃ also satisfies
(
εK(W ), λ̃

)
R ≥ 0. Comparing coefficients with (2.5.4)

gives

a0 = C

[
e

(
ρ̄` +

(ρD, σ)

(`, `′)

)
+ e
(
ρ̄`
) ∑

λ̃∈K]

(εK(W ),λ̃)R
≥0

b
(
λ̃
)
e

(
λ̃` +

(λD + ρD, σ)

(`, `′)

)]
.

As the left hand side is constant, it follows that ρD = 0 and further that λ̃D = 0 for all
λ̃. Whence λD = 0 for all those λ, which contribute non-trivial factors to the Borcherds
product (2.5.2). Thus, re-inserting into the right-hand side of (2.5.2) we get

lim
r→∞

Ψf (ir, σ) = Ce(ρ̄`)
∏

λ=λ``∈K]

(εK(W ),λ)R>0

(
1− e(λ̄`)

)a(λ,0)
.

Since λ = λ`` is contained in K], it follows that λ = ae3 = aκF`, with a ∈ Q. By the
Weyl chamber condition, 0 < =(aκ̄F) = −1

2
|δF|a. Thus, a < 0,as claimed.

2.6. Modularity of generating series

In this section, we review the result from [35, Sec. 10], which represents an analogue of
Borcherds’ result on the modularity of Heegner divisors in the case of modular surfaces
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for orthogonal groups from [3]. A result similar to our Theorem 2.37 below, has been
obtained independently by Liu in [47], using rather different methods. See [48] for some
newer developments in this direction.

We now introduce the residue-paring {·, ·}, which is closely related to the pairing
{·, ·}′ introduced in Section 1.3 (see p.25). Let C[L]/L][q−1] be the space of Fourier
polynomials (including constant terms) and C[L′/L][[q]] the space of formal power series.
Now, a non-degenerate pairing between these two spaces, called the residue-pairing, can
be defined by putting

{f, g} :=
∑
n≤0

h∈L]/L

a(h, n)b(h,−n),

for f =
∑

h,n≤0 a(h, n)qn ∈ C[L]/L][q−1] and g =
∑

h,m≥0 b(h,m)qm ∈ C[L]/L][[q]]. The

space M!
L,1−p can be identified with a subspace of C[L]/L][q−1] by mapping a weakly

holomorphic modular form to the non-positive part of its Fourier expansion. Likewise, the
space ML−,1+p can be identified with a subspace of C[L]/L][[q]] by mapping a holomorphic
modular form to its Fourier expansion.

Using Serre duality for vector-bundles on Riemann surfaces, in [3], Borcherds showed
that7 the space M!

L−,1−p is the orthogonal complement of ML,1+p with respect to the
residue-paring { , }. Since the pairing is non-degenerate and ML,1+p has finite dimension,
ML,1+p is also the orthogonal complement of ML−,1−p. In particular, the following holds
[cf. 3, Theorem 10.3] (see also Proposition 1.10)

Lemma 2.36. A formal power series
∑

h

∑
n>0 b(n, h)qneh ∈ C[L]/L] ⊗ C[[q]] is the

Fourier expansion of a modular form g ∈ ML,1+p if and only if∑
h∈L]/L

∑
n∈Z−Q(h)

n≤0

a(h, n)b(h,−n) = 0

for every f =
∑

n,h a(h, n)qneh ∈ M!
L−,1−p.

By a result of McGraw [see 50, Theorem 5.6] the spaces M!
L−,1−p and ML,1+p have

bases of modular forms with integer coefficients. Thus, a statement analogous to Lemma
2.36 holds for power series and modular forms over Q. Moreover, it suffices to check the
vanishing condition for every f with integral Fourier coefficients.

Consider CH1(X), the first Chow group of the modular variety X = D/ΓL. Recall
that CH1(X) is isomorphic to the Picard group Pic(X).

Let π : X̃ → X be a desingularization and denote by B = B(X̃) the group of boundary
divisors of X̃. We now consider a modified Chow group, the quotient CH1(X̃)/B. Put
(CH1(X̃)/B)Q = (CH1(X̃)/B)⊗Z Q.

Denote by Lk the sheaf of meromorphic automorphic forms on X. By the theory of
Baily-Borel, there is a positive integer n(Γ), such that if k is a positive integer divisible
by n(Γ), the sheaf Lk is an algebraic line bundle and thus defines an element in Pic(X).

7In keeping with the notation from the beginning of Section 2.4, compared to [2], we have switched ρL
and ρL− .
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2. The case of signature (p, 1) and Borcherds products

The pullback of Lk to X̃ defines a class in CH1(X̃)/B, which we denote c1(Lk). More
generally, if k is rational, we choose an integer n such that nk is a positive integer divisible
by n(Γ) and put c1(Lk) = 1

n
c1(Lnk) ∈ (CH1(X̃)/B)Q.

As the Heegner divisors are Q-Cartier on X, their pullbacks define elements in the
modified Chow group (CH1(X)/B)Q.

Theorem 2.37. The generating series in Q[L′/L][[q]]⊗ (CH1(X̃)/B)Q given by

A(τ) = c1(L−1/2) +
∑

h∈L]/L

∑
n∈Z+Q(h)

n>0

π∗
(
D(n, h)

)
qneh

is a modular form in ML,1+p with values in (CH1(X̃)/B)Q, i.e. A(τ) is contained in
ML,1+p ⊗ (CH1(X̃)/B)Q.

Proof. This follows from Theorem 2.29 and Lemma 2.36. Indeed, by the Lemma it
suffices to show that

a(0, 0) · c1(L−1/2) +
∑

h∈L]/L

∑
n∈Z−Q(h)

n<0

a(h, n) π∗D(−n, h) = 0 in (CH1(X̃)/B)Q,

for every f =
∑

h,n a(h, n)qneh in M!
L−,1−p with integral Fourier coefficients. But this

follows immediately from Theorem 2.29, as the Borcherds lift Ψf of f is an automorphic
form with divisor 1

2

∑
n,h a(h, n)D(−n, h) of weight 1

2
a(0, 0), i.e. up to torsion a rational

section of La(0,0)/2.

Theorem 2.37 is one of several modularity results for generating series, that we will
encounter in the following sections. See Theorem 3.23 in Section 3.6 and Theorem 2.45
in Section 2.7 below.

2.7. Local Borcherds products

In this section, we will give a brief overview of [37], concerning local Borcherds products.
Local here refers to a neighborhood of a cusp of the form Uε(`), a notation that we recall
from Section 2.1.2. Such local Borcherds products were introduced by Bruinier and
Freitag in the context of orthogonal groups [see 7] and have since appeared in different
contexts, e.g. Hilbert modular forms in [13, Chap. 2, Section 3.2] and Siegel modular
threefolds in [24].

The aim of [37] is to study the local Picard group over a boundary component of XΓ

for a unitary modular group Γ. Since the construction is local in nature, it suffices to
study one fixed boundary component, associated with the cusp [`] of H`,`′ , as in Section
2.1.2.
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2.7.1. Local Picard group and local cohomology

With the notation of Section 2.1.2, we consider the fixed isotropic space C` = I`,C
corresponding to the cusp at infinity [`] of H`,`′ . Using the Baily-Borel compactification
X∗Γ,BB, the local Picard group Pic(XΓ, `) is defined as the direct limit of the Picard
groups of the regular loci of the open neighborhoods Uε(`) of this cup,

Pic(XΓ, `) = lim−→Pic (U reg
ε (`)) .

As the Heisenberg group H` := Heis(Γ) has finite index in the stabilizer Γ` = stabΓ(`)
of the cusp, the local Picard group can be described, up to torsion, through the direct
system Pic (H`\Uε(`)). Since Γ`/H` operates on the direct limit lim−→Pic (H`\Uε(`)), for
the invariant part, we have

Pic(XΓ, `)⊗Q =
(
lim−→Pic (H`\Uε(`))⊗Q

)ΓL .

Thus, to describe the position of local divisors in the Picard group, at least up to torsion,
it suffices to consider a Picard group Pic (H`\Uε(`)) for a fixed sufficiently small ε > 0.

In the following, we will assume that ε is small enough for the map H`\Uε ↪→ XΓ from
p.35 to be an open immersion.

Local divisors Recall the definition of the special cycles D(λ) (λ ∈ L]) and D(n, h)
(n ∈ Z, h ∈ L]/L). Clearly, for D(λ) to intersect the neighborhood Uε(`), the lattice
vector λ must lie in the complement of ` with respect to (·, ·). Hence, λ = λ``+ λD with
λD ∈ WF = D ⊗ F and D(λ) is defined by an equation of the form

λ`(`, `
′) + (λD, σ) = 0.

Now for such a λ consider its orbit under the action of the Heisenberg group H`. Clearly,
since λ ⊥ `, the action of the translations n(0, r) ∈ C`(Γ) is trivial. The orbit under
H`/C`(Γ), i.e. under the elements n(w, 0) with w ∈ DΓ (recall Lemma 2.5), is given by

λ− t`, with t ∈ {(w, λ);w ∈ DΓ} ⊆ D−1
F .

Hence, the group H` operates on the set λ + D−1
F ` with only finitely many orbits and

therefore, the special cyle defined by setting

D(λ)` :=
∑
α∈D−1

F

D(λ+ α`)

is invariant under the action of the Heisenberg group H`. It thus defines an element of
the divisor class group Div (H`\Uε(`)).

Now, to obtain a ‘local’ version of the Heegner divisors D(n, h). Consider the following
commutative diagram

Div (XΓ) Div (H`\Uε(`))

Div(H`,`′) Div (Uε(`)),

(2.7.1)
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2. The case of signature (p, 1) and Borcherds products

where maps from left to right are the pre-images under the open immersion H`\Uε(`) ↪→
Γ\H`,`′ = XΓ and the inclusion of the subset Uε(`) ↪→ H`,`′ , respectively, while from the
top to bottom they are given by the pre-image under the projection maps.

Now we define D(n, h)` as the image in H`\Uε(`) of the divisor D(n, h) ∈ Div(XΓ) in
the diagram (2.7.1). We will use the same notation, D(n, h)`, to denote the associated
H`-invariant divisor in Div (Uε(`)).

If ε is sufficiently small, the divisor D(n, h)` is the restriction of D(n, h) to Uε(`), and,
indeed, the restriction of the locally finite sum of component cycles D(λ) of D(n, h).
However, here only the λ’s with λ ⊥ ` contribute.

Note that if D(n, h)` is nonzero, then h is contained in the following subgroup of L]/L

L :=
{
µ ∈ L]/L; 2(`, µ)R ≡ 0 mod M1 and |δF|=(`, µ) ≡ 0 mod M2

}
,

where M1 and M2 are the integers uniquely determined by 2(`, L)R = M1Z and by
|δF|=(L, `) = M2Z, respectively. Then, for h ∈ L the divisor D(n, h)` can be written in
the form

D(n, h)` =
∑
δ∈D

Q(δ+ḣ)=n

D(δ + ḣ)`,

where we use the notation8 that ḣ denotes a representative of h ∈ L, with ḣ ∈ L] ∩ `⊥,
fixed once and for all for every such h. Note that there is a surjective homomorphism
given by

π : L → D]/D, h 7→ ḣD,

where ḣD denotes the definite part of ḣ.

The local cohomology The Picard groups Pic (H`\Uε(`)) can also be described through
a local cohomology group. As usual, for a group G acting on an abelian group A, the
n-th cohomology group is defined as follows

Hn(G,A) =
ker
(
Cn(G,A)

∂−→ Cn+1(G,A)
)

im
(
Cn−1(G,A)

∂−→ Cn(G,A)
) ,

with Cn the set of n-cocycles, consisting of all functions f : Gn → A, and with the
coboundary operator ∂. Now consider G = H`, acting trivially on A = Z.

Now denote by Oε = Oε(Uε(`)) the sheaf of holomorphic functions on Uε(`) and by O∗ε
the sheaf of invertible holomorphic functions. Through the action of H` on Oε and O∗ε ,
induced from the action on Uε(`), the exact sequence

0 Z Oε O∗ε 0ı e (2.7.2)

induces an exact sequence of cohomology groups

H1(H`, Z) H1 (H`,Oε) H1 (H`,O∗ε ) H2 (H`,Z) H2 (H`,Oε) .δ (2.7.3)

8This notation was originally introduced in [7, Section 4].
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Now, Pic(H`\Uε(`)) is given by the cohomology group H1 (H`\Uε(`),O∗ε ). Since the open
neighborhoods Uε(`) are contractible, all analytic line bundles on Uε(`) are trivial. Thus,
in fact

Pic(H`\Uε(`)) = H1 (H`,O∗ε ) .

Now, denote by Pε the functions in Oε which are periodic for the action of ZNΓ,` ' C`(Γ)
(see Lemma 2.5), similar for P∗ε . Since C`(Γ), the center of the Heisenberg group, is a
normal subgroup satisfying H`/ZNΓ,` = DΓ, and as NΓ,`Z\Uε(`) is contractible, we have
Hp (H`,Oε) = Hp (DΓ,Pε) for p = 1, 2, . . . . Therefore, from (2.7.2) and (2.7.3), we get
another exact sequence:

Hom(DΓ,Pε)
Hom(DΓ,Z)

Pic (H`\Uε(`)) H2(H`,Z) H2(H`,Oε) . (2.7.4)

Moreover, since DΓ is a free group, the following sequence is also exact

0 Hom (DΓ,Z) Hom (DΓ,Pε) Hom (DΓ,P∗ε ) 0.

Thus, from (2.7.4) we obtain the new exact sequence

Hom (DΓ,P∗ε ) Pic (H`\Uε(`)) H2 (H`,Z) H2 (H`,Oε) .

Thus, the local Picard group can be studied through H2(H`,Z).

2.7.2. Local Borcherds products

Now, our aim is to describe the position of the local Heegner cycles in the cohomology
group. For this purpose, given λ ∈ L] ∩ `⊥, one defines an absolutely convergent infinite
product with zero-divisor D(λ)`.

From here on, until the end of the section, we assume that (`′, `) = δ−1
F and that the

constant δ in the setup of the Siegel domain H`,`′ is equal to δF.

Definition 2.38. Let λ ∈ L] be a positive norm lattice in the orthogonal complement
of `. The local Borcherds product Ψλ(z) is defined as

Ψλ(z) :=
∏
α∈OF

(
1− e

(
σ (=α)

[
(λ, z) +

α

|δF|2

]))
,

where σ(=α) ∈ {±1} is +1 if =α ≥ 0 and −1 otherwise.

Clearly, Ψλ(z) is an absolutely convergent infinite product with divisor D(λ)`. Note
that Ψλ(z) can also be written in the form

Ψλ(z) =
∏

p (mod DF)
q∈Z

(
1− e

(
σ(q)

[
(λ, z) +

1

|DF|
(p+ κq)

]))
,
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2. The case of signature (p, 1) and Borcherds products

where σ(q) = sign(q) if q 6= 0 and σ(0) = +1. Further, we remark that without the
sign σ, which of course assures the convergence of the infinite product Ψλ, the (formal)
product would be invariant under the operation of H`.

As it is defined however, Ψλ(z) is invariant only under the translations n(0, r) ∈ C`(Γ),
while the operation of the Eichler elements n(w, 0) with w ∈ DΓ gives rise to a non-trivial
automorphy factor, given by

Jλ(n(w, r), z) =
Ψλ (n(w, 0)z)

Ψλ(z)
(n(w, r) ∈ H`) .

We will use this automorphy factor, viewed as a one-cocycle attached to D(λ)` to define
a two-cocycle, with which to find the Chern class of this special cycle. After a brief
calculation, one finds [see 37, Prop. 4.1]

Proposition 2.39. The automorphy factor Jλ associated associated with Ψλ(z) takes the
form

Jλ(n(w, r), z) = e
(
−2|DF|(λ, z)(λ,w)R − 2(λ,w)2

RκF + (λ,w)R (κF + 1)
)
,

where κF is element of OF with =κF = 1
2
δF and OF = Z + ZκF.

Now, one can define a two-cocycle a follows. One chooses a holomorphic function
A(g, z) which satisfies Jλ(g, z) = e(A(g, z)), and sets

c(g, g′) = A(gg′, z)− A(g, g′z)− A(g′, z) (∀g, g′ ∈ H`) .

Thus, the map (g, g′) 7→ c(g, g′) defines a two-cocyle. Note that c(g, g′) is independent
of the choice of A(g, z) and changes only by a co-boundary after multiplying Jλ with a
trivial automorphy factor. The two-cocycle obtained in this manner is a representative
for the Chern class of D(λ)` in the second cohomology group H2(H`,Z). Directly by
calculating c(n(w, 0), n(w′, 0)) with w,w′ ∈ DΓ (clearly, it suffices to consider Eichler
transformations from H`) one finds the following Proposition [37, Prop. 4.2].

Proposition 2.40. The Chern class δ (D(λ)`) of the local divisor D(λ)` in H2(H`,Z) is
determined by the two-cocycle

[cλ] : (n(w, 0), n(w′, 0)) 7−→ −2|δF|(λ,w)R=(λ,w′) = = (−|δF|(λ,w)R(λ,w′)) .

We now define a bilinear form Fλ(·, ·) by setting for a, b ∈ WF

Fλ(a, b) = (λ, a)R(λ, b) = (a, λ)(λ, b) + (λ, a)(λ, b). (2.7.5)

Note that the value of Fλ(·, ·) depends only on the definite part λD of λ.
Then, by Proposition 2.40 the Chern class δ (D) of a finite linear combination

D :=
∑

λ∈L]∩`⊥
Q(λ)>0

a(λ)D(λ)` (2.7.6)
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2.7. Local Borcherds products

with integer coefficients a(λ) is determined by the two-cocycle

(n(w, 0), n(w′, 0)) 7−→
∑

λ∈L]∩`⊥
Q(λ)>0

= (|δF|Fλ(w,w′)) .

In particular, we can thus describe the Chern class δ (D(n, h)`) for a local Heegner divisor
of the form D(n, h)`. Now, we want to find out when this Chern class is a torsion element
in H2(H`,Z).

2.7.3. Torsion critera

Bilinear forms in the cohomology Consider the set of real-valued bilinear forms
B : W ⊗W → R and denote this set by BIL. Naturally, BIL has the structure of a real
vector space. Let BILZ ⊂ BIL the subset of forms which are Z-valued on the lattice DΓ.

Associate to every element B ∈ BIL a two-cocycle in C2(H`,Oε) by setting

B(n(w, r), n(w′, r′)) := B(w,w′) (n(w, r), n(w′, r′) ∈ H`) ,

and denote by [B] its class in H2(H`,Oε). Similarly, we attach to every element of BILZ
a class in H2(H`,Z). By composition with the natural map from (2.7.3), H2(H`,Z)→
H2(H`,Oε), we get a sequence

BILZ H2(H`,Z) H2(H`,Oε).

This sequence turns out to be exact. Indeed, one can show the following [see 37, Prop.
3.1]:

Proposition 2.41. The image of BIL in H2(H`,Oε) vanishes.

Proof. We give a brief sketch of the proof, see loc. cit. for details. It suffices to consider
two cases, either that B is the imaginary part of a symmetric complex-valued bilinear
form or that B is the real part of a complex hermitan form.

We consider the first case. Thus let G : W ×W → C be a symmetric bilinear form
with =G = B and consider the following Oε-valued one-cocycle:

u(n(w, r), z) =
i

2

(
δ−1
F G(w, σ) +

1

2
G(w,w)

)
.

The image under the coboundary map is given by

∂u(n(w, r), n(w′, r′), z) =
1

2i

(
G(w′, w)− 1

2

(
G(w,w′) +G(w′, w)

))
=

1

2i

(
G(w,w′)−G(w′, w)

)
= B(w′, w).

Thus, we see that B is trivialized by a cochain and thus [B] = 0 in H2(H`,Oε).
The second case, where B = ReH for a hermitian form H is quite similar. (Clearly, it

suffices to consider these two cases.)
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2. The case of signature (p, 1) and Borcherds products

The following Lemma9 is crucial, since it gives a straight forward criterion for bilinear
forms to be torsion elements in the cohomology group H2(H`,Z), which we can apply to
linear combinations of two-cocycles of the form [cλ] from Proposition 2.40. For the proof
see [37].

Lemma 2.42 ([37, Lemma 3.1]). The kernel of the map BILZ 7→ H2(H`,Z) is the cyclic
group generated by the antisymmetric bilinear form

1

NΓ,`|δF|
=(·, ·).

In particular, the image of an element B ∈ BILZ is a torsion element in the cohomology
group H2(H`,Z) if an only if B and |δF|−1=(·, ·) are linear dependent over Z.

Torsion criteria for local Heegner divisors Using the criterion from Lemma 2.42 and
Proposition 2.40, one can now give the following criterion for a linear combination of
local Heegner divisors to be torsion.

Lemma 2.43 ([37, Lemma 4.1, Corollary 4.1]). Let D be a finite linear combination of
local Heegner divisors of the form (2.7.6), i.e.

D =
∑

λ∈L]∩`⊥
Q(λ)>0

a(λ)D(λ)`.

Then, the following statements hold

1. The Chern class δ(D) of D is a torsion element in H2 (H`,Z) if and only if the
following equation holds∑

λ∈L]∩`⊥
Q(λ)>0

a(λ)

[
Fλ(w,w

′)− Q (λ)

p− 1
(w,w′)

]
= 0

for all w,w′ ∈ DΓ.

2. Let Bλ be the complex-valued bilinear form defined by Bλ(a, b) := (λ, a)(λ, b) for
a, b ∈ W . If δ(D), the Chern class of D, is a torsion element in H2 (H`,Z), then∑

λ∈L]∩`⊥
Q(λ)>0

a(λ) traceBλ = 0.

(Where the trace is taken with respect to the standard orthogonal basis v1, . . . , vm
of V , (·, ·).)

9This result is originally due to Freitag.
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2.7. Local Borcherds products

Proof. By Proposition 2.40 and the subsequent remarks, the Chern class of D is given
by a linear combination of cocycles [cλ] in H2(H`,Z). By Proposition 2.41 the images of
the [cλ]’s and hence that of δ(D) in H2(H`,Oε) vanish.

Further, by Lemma 2.42, δ(D) is a torsion element in H2 (H`,Z) precisely if there is a
rational number R for which the equation∑

λ∈L]∩`⊥
Q(λ)>0

a(λ)|δF| · = (Fλ(w,w
′)) = R

=(w,w′)

|δF|
(2.7.7)

holds for all w,w′ ∈ DΓ. We can now extend this equation linearly to W = DΓ ⊗ C,
noting that DΓ has full rank in W . We thus get∑

λ∈L]∩`⊥
Q(λ)>0

a(λ)|δF| · (Fλ(w,w′)) = R
(w,w′)

|δF|
. (2.7.8)

Indeed, by multiplying any pair of vectors (w,w′) ∈ DΓ × DΓ by a purely imaginary
multiple, from (2.7.7), one obtains a similar equation with real parts of Fλ(·, ·) and (·, ·),
respectively. Adding the two equations yields (2.7.8).

Now, to determine R, we take the trace of both sides of (2.7.8), using the standard
orthogonal basis v2, . . . , vm−1 for W . Of course, trace(·, ·) = m − 2 = p − 1. Recall
from (2.7.5) that we can write Fλ in the form (λ, b)(λ, a) + (λ, b)(λ, a). Thus, defining a
hermitian form by Hλ(a, b) = (a, λ)(λ, b) (a, b ∈ W ), we can write Fλ = Bλ + Hλ. An
easy calculation yields traceHλ = (λ, λ) and we get

R · (p− 1) =
∑

λ∈L]∩`⊥
Q(λ)>0

a(λ)|DF| (Q (λ) + traceBλ) .

Repeating the same calculation using the trace for the basis ivj , j = 2, . . . ,m− 1, which,
of course is a standard orthogonal basis for W , too, quite naturally, we get the same
result for the traces of the two hermitian forms (·, ·) and Hλ. However, the new trace
of Bλ is given by −Bλ. Thus, we conclude that the contribution of the Bλ terms must
necessarily vanish, yielding the condition in the second part of the Lemma. Hence R is
given by

R =
∑

λ∈L]∩`⊥
Q(λ)>0

a(λ) · |DF|
Q (λ)

p− 1
.

Reintroducing this into (2.7.8) completes the proof of the first part and thus of the
Lemma.

We can now formulate one of the main results of [37]. It describes the position of local
Heegner divisors of the form D(n, h)` in the local Picard group. Note that such cycles
are given by a finite linear combination of local divisors D(λ)` and, as we have seen, the
Chern class δ (D(λ)`) depends only on the projection λD.
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2. The case of signature (p, 1) and Borcherds products

Theorem 2.44 ([37, Theorem 4.1]). Let D be finite linear combination of local Heegner
divisors of the form

D =
1

2

∑
h∈L

∑
m∈Z+Q(h)

n<0

a(h, n)D(−n, h)`,

with integer coefficients a(h, n) satisfying a(−h, n) = a(h, n). Then D is a torsion
element in the Picard group Pic (H`\Uε(`)) if and only if for all w,w′ ∈ DΓ the equation∑

h∈L

∑
n∈Z+Q(h)

n<0

a(h, n)
∑
λ∈D]

λ+D≡π(h)
Q(λ)=−n

[
Fλ(w,w

′)− Q (λ)

p− 1
(w,w′)

]
= 0. (2.7.9)

holds. Further, as a necessary condition for this to be the case, the following equation
must hold for the bilinear form Bλ(·, ·) = (λ, ·)(λ, ·):∑

h∈L

∑
n∈Z+Q(h)

n<0

a(h, n)
∑
λ∈D]

λ+D≡π(h)
Q(λ)=−n

traceBλ = 0.

Proof. We give an abridged version of the proof from [37], see there for more details.
First note that if D is a torsion element, the first equation (2.7.9) follows from the first
part Lemma 2.43 and second equation follows from the necessary condition in the second
part of that Lemma.

For the converse, assume that (2.7.9) holds for all w,w′ ∈ DΓ. One now uses Proposition
2.39 to explicitly construct an automorphy factor JD(g, z) for g ∈ H` and z ∈ Uε(`),
describing D in Pic(H`\Uε(`)). One then has to show that all factors of JD can be
expressed through (suitable) powers of trivial automorphy factors and factors of finite
order, and hence that D is a torsion element in the local Picard group.

An automorphy factor for D is given as follows

JD(g, z) =
∏
h inL

n∈Z+Q(h)
n<0

∏
µ∈D

Q(µ+ḣ)=−n

Jµ+ḣ(g, z)
a(h,n)/2

=
∏
h inL

n∈Z+Q(h)
n<0

∏
µ∈D

Q(µ+ḣ)=−n

e
(
−2|DF|

(
µ+ ḣ, z

)(
µ+ ḣD, w

)
R

− 2
(
µ+ ḣD, w

)2

R
κF +

(
µ+ ḣD, w

)
R

(κF + 1)
)a(h,n)/2

.

Since a(−h, n) = a(h, n), the last terms, being linear in µ + ḣD cancel. Now, write(
µ+ ḣ, z

)
=
(
µ+ ḣD, z

)
+
(
ḣ− ḣD, z

)
. Since ḣ ⊥ `, the second term is given by ḣ`(`, `

′)
and one can write the factors in JD in the form[

e
(
−2δFḣ`

(
µ+ ḣD, w

)
R

)
e
(
−2|DF|Fµ+ḣD

(w,w)− 2κF ReFµ+ḣD
(w,w)

)]a(h,n)
2

,

74



2.7. Local Borcherds products

Applying (2.7.9) to the second factor, and writing λD = µ+ ḣD (and omitting the 1
2
a(h, n)

power for the time being), we get

e
(
−2δFḣ`(λD, w)R

)
e

(
2|DF|
p− 1

Q (λD)

[
(w, σ) +

Q (w)

2δF

])
e

(
−2 ReκF
p− 1

Q (λ)Q (w)

)
(2.7.10)

Clearly, the last factor has finite order, and is thus a torsion element in the Picard group.
To deal with the first and second term consider the following trivial automorphy factors

j1(n(w, 0), z) = e
(
δ−1
F (λD, w)

)
j2(n(w, 0), z) = e

(
c
(
−(w, σ) + (2δF)−1(w,w)

))
which arise from the action of the Eichler elements of the form n(w, 0) ∈ H` on the two
invertible functions f1(z) = e ((λD, σ)) and f2 = e (cτ) with c ∈ Q×. Now, the second
factor in (2.7.10) is a rational power of j2. For the first factor in (2.7.10), bear in mind
that |δF|=ḣ` is rational (in fact, half-integer). Further, after multiplying with suitable
powers of j1, since |δF|=(λD, w) and Re ḣ` are rational numbers, only a torsion element
remains.

Thus, each of the finitely many factors in JD is either of finite order or a rational power
of a trivial automorphy factor. Hence, D is a torsion element in Pic(H`\Uε(`)).

2.7.4. Application to modular forms and an obstruction result

Now, let l = p+ 1, and consider the space of cusp forms Sl,L− of weight l transforming
under the Weil representation for L−.

We will introduce a subspace SΘ
l,L− of Sl,L− spanned by certain theta series. For this,

define polynomials p1(u, v, w) and p2(u, v, w) by setting

p1(u, v, w) := ReFu(v, w)− Q (u)

p− 1
(v, w)R,

p2(u, v, w) := =Fu(v, w)− Q (u)

p− 1
=(w, v).

Note that, using these polynomials, we can write (2.7.9) in the form∑
h∈L

∑
m∈Z+Q(h)

n<0

a(h, n)
∑
λ∈D]

λ+D≡π(h)
Q(λ)=−n

[p1(λ,w,w′) + ip2(λ,w,w′)] = 0.

Now set P (u, v) := p1(u, v, v). Note that P is homogeneous with degree two in u and
harmonic in both indeterminates. Then, by a well-known results from the theory of theta
series [cf. 2, Theorem 4.1], for every v ∈ W , v 6= 0, the definite theta series defined as

ΘP (τ ; v) :=
∑
λ∈D]

P (λ, v)e (Q (λ) τ) eλ

=
∑

µ∈D]/D

∑
n∈Z−Q(µ)

n>0

( ∑
λ∈D]

λ+D≡µ (mod L)
Q(λ)=n

P (λ, v)
)
· e(nτ)eh (2.7.11)
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2. The case of signature (p, 1) and Borcherds products

is a cusp form of weight p+ 1 transforming under ρL− . The second line in (2.7.11) gives
the Fourier expansion, and we note that the Fourier coefficients are exactly the inner
sum in (2.7.9) with the pair (w,w′) restricted to the diagonal of DΓ ×DΓ. Now letting
the parameter v vary over W , we define SΘ

l,L− as the subspace of cusp forms spanned by
the theta series ΘP (τ ; v) (v ∈ WC).

With these considerations the following is merely a restatement of Theorem 2.44.

Theorem 2.45. A finite linear combination of local Heegner divisors of the form

D =
1

2

∑
h∈L

∑
n∈Z+Q(h)

n<0

a(h, n)D(−n, h)`,

with integer coefficients a(h, n) satisfying a(−h, n) = a(h, n) is a torsion element in the
local Picard group Pic (H`\Uε(`)) if any only if∑

h∈L

∑
n∈Z+Q(h)

n<0

a(h, n)b(π(h),−n) = 0 (2.7.12)

for every cusp form g =
∑

µ∈D]/D
∑

n∈Z−Q(µ) b(µ, n)e (nτ) eµ in SΘ
l,L−.

Remark 2.46. While the construction of local Borcherds products is quite unrelated
to that of Borcherds products through a singular theta-lift, the two are related through
the Heegner divisors and such obstruction statements as Theorem 2.45. Indeed, the
argument in the proof of Theorem 2.37, obtained by combining Theorem 2.29 and
Lemma 2.36 can be stated as follows: A given linear combination of special cycles
H =

∑
h

∑
n<0 a(h, n)D(−n, h) is the divisor a Borcherds product if and only if the

sum
∑

h

∑
n<0 a(h, n)b(h,−n) vanishes for every cusp form g ∈ S1+p,L− with Fourier

coefficients b(h, n). In particular, since SΘ
1+p,L− is contained in S1+p,L− , in this case the

restriction of H` also fulfills (2.7.12) (note that only h ∈ L can occur).
We remark further, that if H the divisor of a Borcherds product Ψf(z), there is a

linear combination HO of Heegner divisors of the form DO(−n, h) ⊂ Hp which restricts
to H on the image ε (H`,`′). Since by a result of Borcherds in [3], the obstruction space
for Borcherds products for the orthogonal groups is SL−,1+p, the same as in the case of
Borcherds products for unitary groups. Thus, HO is the divisor of a Borcherds product
on Hp (the pull-back of which under ε is just Ψf (z)).

By the results of Bruinier and Freitag [7], the divisors of Borcherds products on Hp

restrict to torsion elements in local Picard groups for boundary components of Hp, and
these, moreover are the divisors of local Borcherds products there.

Finally, since the embedding ε is well-behaved when it comes to the neighborhoods of
the cusp, the restriction of a special cycle H to Pic (H`\Uε(`)) can be interpreted as the
preimage of a local Heegner divisor (like in [7]) in a neighborhood of the boundary of Hp,
which is just the restriction of HO.

Thus, if H is the divisor of a Borcherds product on U(p, 1), not only is HO the divisor
of a Borcherds product on O(2p, 2), but both divisors also restrict to divisors of local
Borcherds products, unitary or orthogonal, respectively.
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In this chapter, we present the construction of a Schwartz-form ψ, which coincides with
ϕ0 in signature (p, 1) and takes its role in arbitrary signature. We use it to construct two
types Green functions, one through a ‘singular’ following [43] and another using a singular
theta-lift of Borcherds type associated to ψ, which generalizes important properties of
the Borcherds lift.

For the most part, we follow the joint paper of the author and Jens Funke [25] fairly
closely. Some introductory remarks are in order first.

3.1. Introduction

Besides the infinite products expansions, the Borcherds lift in signature (p, 2) for orthog-
onal groups has a number of remarkable properties, a few of which we have already seen
in Chapter 2. It takes its zeros and poles along arithmetically defined special cycles
prescribed by the Fourier expansion of the input functions. By the work of Bruinier [5]
these geometric properties extend to a lifting into the cohomology, which can be utilized
in the construction of Green objects related to special cycles, see for example [8, 11].
And, hence further can be employed to show the modularity of generating series, two key
aspects of the Kudla program [41], see [43] for an overview.

Similar properties are shared by the unitary version in signature (p, 1). While the
product expansion in [33, 34, 35] and the modularity result from [35] (see Section 2.6)
represent merely first steps in this direction, the deep arithmetic-geometric results from
[14], [19] and [15, 16] demonstrate the usefulness of the geometric lifting in the unitary
setting, similar to the orthogonal case.

Of course, beside the Gaussian ϕ0 there are many other Schwartz forms which can
be used to construct a singular theta lift of Borcherds type. In fact, Borcherds’ fairly
general construction of the singular theta lift in [2] encompasses many previously known
examples for theta lifts, such as the Shintani lift [55], Niwa’s realization of the Shimura
lift [52] or the Doi-Naganuma lift [18, 51, 58].

Generalizing to arbitrary signature (p, q), the theta lift constructed using the Gaussian
ϕp,q0 retains some useful properties. For example, the eigenvalue equation proven by
Bruinier in [5, Chapter 4] generalizes to any signature (see Hufler’s thesis [39] for a proof
of this for unitary groups). However, other features are less salient.

In the seminal paper [10] Bruinier and Funke found a suitable generalization of the
geometric Borcherds lift (for orthogonal groups), which works across all signatures. For
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this, they turned to the work of Kudla and Millson, who in a series of papers, [44],
[45] and [46] constructed a geometric lifting using a Schwartz form ϕKM valued in the
differential forms. In fact, Kudla and Millson constructed two versions of this form, one
for orthogonal and the other for unitary groups. We will review the properties of the
unitary version of ϕKM in Section 3.2 below.

Somewhat more implicitly, Kudla and Millson also constructed a second Schwartz
form ψ′ related to ϕKM via dψ′ = LϕKM , where L denotes the Maass lowering operator.
Denote by ψ the Schwartz form with dcψ = ψ′. This form coincides with ϕ0 if the
signature is (p, 2) or (p, 1) for orthogonal or unitary groups, respectively.

Now, Bruinier and Funke introduced a lift of Borcherds type using the Schwartz form1

ψ′ and studied the relationship between this lift on the one hand and the Kudla-Millson
lift with the Schwartz form ϕKM on the other hand.

In particular, they established an adjointness result between the two geometric theta
lifts, and, further, under a more geometric point of view, they showed a current equation
for the theta lift they had introduced.

In the present chapter, in Section 3.3 we will give an explicit construction of a Schwartz
form ψ with ddcψ = ϕKM for unitary groups U(p, q). We will then proceed to construct
Green forms, first through a ‘singular’ Schwartz form Ψ associated to ψ following Kudla
[43]. Second, following Bruinier [5], using the geometric singular theta lift of Borcherds
type for the Schwartz form ψ. Also, we examine the properties of this singular theta
lift and establish analogous results to those in [10], concerning current equations and
adjointness to (the unitary version of) the Kudla-Millson lift.

Furthermore, we show a modularity result for a generating series of the differences
between the Green forms of Kudla type and the Green forms of Bruinier type, along
the lines of [19] (see Section 3.6). Finally, in Section 3.7, we introduce a Green form
depending on a complex parameter s and identify it with a Green form constructed by
Oda and Tsusuki [53].

3.2. The Kudla-Millson form ϕKM

Recall the notation from Sections 1.1 and 1.2. Consider the complex [S(V )⊗A•(D)]G

of G-invariant Schwartz functions on V with values in the differential forms on D. Note
that evaluation at the base point z0 yields an isomorphism

[S(V )⊗A•(D)]G '
[
S(V )⊗

∧•
(p∗)

]K
.

We use the same symbol for corresponding objects. Note also

ϕ0(x, z) ∈
[
S(V )⊗A0(D)

]G
,

and evaluation at the base point gives ϕ0(x) = ϕ0(x, z0) = e−π
∑m
i=1|zi|

2 ∈ S(V )K .

1Actually, in signature (b+, 2) they considered the ‘original’ version with the Gaussian form ϕ0.
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3.2. The Kudla-Millson form ϕKM

Following [44, Proposition 5.2] and [46, Section 5], we define the two differential
operators

D =
1

22q

m∏
µ=p+1

{
p∑

α=1

(
z̄α −

1

π

∂

∂zα

)
⊗ A′αµ

}
=

1

22q

m∏
µ=p+1

{
p∑

α=1

Dα ⊗ A′αµ

}

and D =
1

22q

m∏
µ=p+1

{
p∑

α=1

(
zα −

1

π

∂

∂z̄α

)
⊗ A′′αµ

}
=

1

22q

m∏
µ=p+1

{
p∑

α=1

Dα ⊗ A′′αµ

}
,

where ∂
∂zα

= 1
2

(
∂
∂xα
− i ∂

∂yα

)
and ∂

∂z̄α
= 1

2

(
∂
∂xα

+ i ∂
∂yα

)
. Further, A′αµ and A′′αµ denote

the left multiplication by ξ′αµ, ξ′′αµ, respectively. Also, we have set

Dα :=

(
z̄α −

1

π

∂

∂zα

)
and Dα :=

(
zα − 1

π
∂
∂z̄α

)
.

Now, the Kudla-Millson Schwartz form from [44] is defined as

ϕKM := DDϕ0 ∈
[
S(V )⊗

∧q,q
(p∗)

]K ' [S(V )⊗Aq,q(D)
]G
.

Thus, using multi-index notation with α = {α1, . . . , αq} and β = {β1, . . . , βq}, it takes
the form

ϕKM =
1

22q

∑
α,β

DαDβ ϕ0 ⊗ Ωq(α; β),

where Dα =
∏q

j=1Dαj and

Ωq(α; β) = ξ′α1p+1 ∧ · · · ∧ ξ′αqp+q ∧ ξ
′′
β1p+1 · · · ∧ ξ′′βqp+q

= (−1)q(q−1)/2ξ′α1p+1 ∧ ξ′′β1p+1 ∧ · · · ∧ ξ′αqp+q ∧ ξ
′′
βqp+q.

The properties of the Schwartz form ϕKM are summarized in the following theorem.

Theorem 3.1 (Kudla-Millson). The Schwarz form ϕKM has the following properties:

i) ϕKM is an eigenfunction of weight p+ q under the operation of K ′ [see 44].

ii) As a differential form, ϕKM(x, z) is closed for every x ∈ V [see 44, Section 4].

iii) The Thom Lemma holds for ϕKM [see 45, Theorem 4.1], i.e.,∫
Γx\D

η ∧ ϕKM(x) = i−q
(∫

Γx\D(x)

η

)
e−π(x,x)

for any compactly supported closed differential 2(p− 1)q form η on Γx\D.

79



3. The singular theta lift in arbitrary signature (p, q)

3.3. The Schwartz form ψ

We define another Schwartz form ψ by setting

ψ :=
2i(−1)q−1

22(q−1)

∑
α={α1,...,αq−1}
β={β1,...,βq−1}

DαDβ ϕ0 ⊗ Ωq−1(α; β)

where

Ωq−1(α; β)

= (−1)q(q−1)/2

q∑
j=1

ξ′α1p+1 ∧ ξ′′β1p+1 ∧ · · · ∧ ̂ξ′·p+j ∧ ξ′′·p+j · · · ∧ ξ′αq−1p+q
∧ ξ′′βq−1p+q

.

The notation here indicates that in the j-th term of the sum, ξ′ and ξ′′ with second index
p+ j are omitted.

In Section 3.3.2 we will employ the Fock model of the Weil representation to show

Proposition 3.2. The Schwartz form ψ has the following properties.

(i) It is invariant under the operation of K, that is,

ψ ∈
[
S(V )⊗

∧q−1,q−1
(p∗)

]K ' [S(V )⊗Aq−1,q−1(D)
]G
.

(ii) Under the operation of K ′, ψ is an eigenfunction of weight p+ q − 2.

The main property linking ϕKM and ψ is the following.

Theorem 3.3. Let d = 1
2

(
∂ + ∂̄

)
and dc = 1

4πi

(
∂ − ∂̄

)
be the standard exterior deriva-

tives acting on A•(D), and let Lκ = −2iv2 ∂
∂τ̄

be the Maass lowering operator of weight κ
acting on functions on the upper half plane. Then

Lp+q ϕKM(x, τ, z) = ddc ψ(x, τ, z).

This implies

v
∂

∂v
ϕ0
KM(
√
vx, z) = ddcψ0(

√
vx, z).

Proof. The proof is carried out in Section 3.3.2, again using the Fock model.

In order to derive a more explicit description of the Schwartz form ψ, when evaluated
at the base point z0, we examine the properties of the differential operators Dα and
D̄α for α ∈ {1, . . . , p}. First, we note that all the differential operators commute, i.e.
DαDβ = DβDα, D̄αD̄β = D̄βD̄α and DαD̄β = D̄αDβ for all α, β ∈ {1, . . . , p}.

Further, by direct calculation, we get

Dαϕ0 = 2z̄αϕ0, D̄αϕ0 = 2zαϕ0 and DαD̄αϕ0 =
(
4|zα|2 − 2

π

)
ϕ0.
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3.3. The Schwartz form ψ

In fact (see e.g., [45, p. 303 (6.41)]),

DkαD̄kαϕ0 =
(
DαD̄α

)k
ϕo =

(
1

π

)k
2kk!Lk

(
2π|zα|2

)
ϕ0, (3.3.1)

where Lk(t) = et

k!

(
d
dt

)k (
e−ttk

)
is the k-the Laguerre polynomial. More generally, we get

DlαD̄kαϕ0 = 2k
l∑

m=0

(
l

m

)min(m,k)∑
n=0

z̄l−nα zk−nα

(
m

n

)
k!

(k − n)!

(
−1

π

)n
ϕ0. (3.3.2)

Hence the Schwartz form ψ can be expressed using (in general non-homogeneous) poly-
nomials P 2q−2

α,β ∈ P(V ) as follows:

ψ(x, z0) =
2i(−1)q−1

22(q−1)

∑
α,β

P 2q−2
α,β

(
x
)
ϕ0(x)⊗ Ωq−1(α; β), (3.3.3)

ψ0(x, z0) =
2i(−1)q−1

22(q−1)

∑
α,β

P 2q−2
α,β (x) e−2πR(x,z0) ⊗ Ωq−1(α; β). (3.3.4)

The following lemma is easily obtained.

Lemma 3.4. For any pair of multi-indices α, β ∈ {1, . . . , p}q−1, the attached polynomial

P 2q−2
α,β (x) has the following properties:

1. It has degree 2q − 2 and depends only on V+.

2. The leading term is given by

22(q−1)

q−1∏
l=1

z̄αl

q−1∏
k=1

zβk .

3. All monomials occurring in P 2q−2
α,β (x) have even degree.

4. The constant term is non-zero if and only if for every α ∈ {1, . . . , p} the multiplicity
of α in the multi-indices α and β is the same. In which case, P 2q−2

α,β (x) is a product

of Laguerre functions, and the constant term is given by

2q−1

(
−1

π

)q−1 ∏
α∈α

m(α)!,

where m(α) is the multiplicity of α.

In particular, the situation in part 4 of the lemma occurs when x = zαvα, and only the
terms with α = β = (α, α, . . . , α) are non-zero.
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3. The singular theta lift in arbitrary signature (p, q)

Example 3.5. Consider the special case of signature (1, q). Then, there is only one
multi-index α = β = 1. Hence, by (3.3.1)

ψ1,q =
2i(−1)q−1

22(q−1)

(
D1D̄1

)q−1
ϕ0 ⊗ Ωq−1(1, 1)

=
2i(−1)q−1

2(q−1)

(q − 1)!

πq−1
Lq−1

(
2π|z1|2

)
ϕ0 ⊗ Ωq−1(1, 1).

We write

Pψ(x, z0) =
2i(−1)q−1

22(q−1)

∑
α,β

P 2q−2
α,β

(
x
)
⊗ Ωq−1(α; β) (3.3.5)

for the polynomial part of ψ. Furthermore, it will be convenient to write P 2q−2
α,β as a sum

of its homogeneous components,

P 2q−2
α,β (x) =

q−1∑
`=0

P 2q−2
α,β;2`(x),

with 2` the respective weight. Note that P 2q−2
α,β;2`(wx) = |w|2`P 2q−2

α,β;2`(x) for any w ∈ C.

Remark 3.6. Note that besides (3.3.2) the polynomials P 2q−2
α,β (x) can also be expressed

using derivatives of Laguerre functions by (3.3.1) or, alternatively through Hermite
functions in the real and imaginary parts of the zα’s as indeterminates.

For this, recall the definition of the Hermite polynomials Hk for k ≥ 0. They are given
by

Hk(t) = (−1)ket
2

(
d

dt

)k
e−t

2

= et
2/2

(
t− d

dt

)k
e−t

2/2.

Since the operators Dα and D̄α commute for α ∈ {1, . . . , p}, with (3.3.1) we get

DkαD̄kαϕ0 =

(
−1

π

)k
2kk!Lk

(
2π|zα|2

)
ϕ0 =

(
DαD̄α

)k
ϕ0

=

[(
xα,1 −

1

2π

d

dxα,1

)2

+

(
xα,2 −

1

2π

d

dxα,2

)2
]k
ϕ0

= (2π)−k
k∑
l=0

(
k

l

)
H2(k−l)(

√
2πxα,1)H2l(

√
2πxα,2)ϕ0. (3.3.6)

Hence, for all α ∈ {1, . . . , p} one has the identity

Dk+1
α D̄kαϕ0 = (2π)−k−

1
2

k∑
l=0

(
k

l

)[
H2(k−l)+1

(√
2πxα,1

)
H2l

(√
2πxα,2

)
− iH2(k−l)

(√
2πxα,1

)
H2l+1

(√
2πxα,2

)]
ϕ0.

Proceeding inductively, one can use this to work out further factors of P 2q−2
α,β .
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3.3. The Schwartz form ψ

Remark 3.7. We note that Dαϕ0 = D̄αϕ0. Indeed, by Remark 3.6

Dαϕ0 =

[(
xα,1 −

1

2π

d

dxα,1

)
− i
(
xα,2 −

1

2π

d

dxα,2

)]
ϕ0

=
1√
2π

(
H1(
√

2πxα1)− iH1(
√

2πxα,2)
)
ϕ0 = (xα − iyα)ϕ0 = D̄αϕ0.

Remark 3.8. We remark that ψ can be also be defined using a so called ‘homotopy’
operator h, somewhat like in [46]. Set

h :=
m∏

µ=p+1

p∏
α,α′=1

(
z̄α′ +

1

π

∂

∂zα′

)(
zα +

1

π

∂

∂z̄α

)
⊗ A′∗αµA′′

∗
α′µ,

where A∗αµ denotes the left multiplication with the dual of ξ′αµ. Then, one has the
following relation between ψ as ϕKM , which can serve as an alternative definition for ψ

ψ =
q2

4π
hϕKM .

We sketch a proof of this using the Fock model of the Weil representation in Remark
3.11 below.

3.3.1. Calculations in the Fock model

In this section, we prove the main properties of the Schwartz functions introduced above.
We use the polynomial Fock model for the Weil representation, see Appendix A.2.2.
We use the intertwining map ι : S(V ) −→ P(C2(p+q)) between the Schrödinger model
and the space of complex polynomials in 2(p+ q) variables, on which the action of the
Weil representation ω is given by the Fock model. Note that ι(ϕ0) = 1. Further main
properties of the intertwining operator are summarized in Lemma A.3.

We abbreviate the variables in the Fock model for U(p, q) × U(1, 1) by z′′α = z′′α1,
z′α = z′α2, z′µ = z′µ1 and z′′µ = z′′µ2. We then have (see Lemma A.3):

D =
1

22q

(
−i√
2π

)q∏
µ

p∑
α=1

z′′α ⊗ A′αµ and D̄ =
1

22q

(
−i√
2π

)q∏
µ

p∑
β=1

z′β ⊗ A′′βµ.

By applying this to 1⊗ 1 = ι(ϕ0 ⊗ 1), we see that ϕKM is given by

ϕKM =
(−1)q

23qπ2q

∑
α1,...,αq
β1,...,βq

z′′α1
· · · z′′αqz

′
β1
· · · z′βq ⊗ Ωq(α1, . . . , αq; β1, . . . , βq),

while the form ψ is given by

ψ =
2i

23(q−1)π2(q−1)

∑
α1,...,αq−1

β1,...,βq−1

z′′α1
· · · z′′αq−1

z′β1
· · · z′βq−1

⊗ Ωq−1(α1, . . . , αq−1; β1, . . . , βq−1).
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3. The singular theta lift in arbitrary signature (p, q)

3.3.2. Proof of Proposition 3.2

We first verify that ψ has the correct transformation behavior under the operation of
k′ ' so2(R).

Lemma 3.9. Under the operation of k′, the form ψ has weight p+ q − 2. That is,

ω
(

0 1
−1 0

)
ψ = i(p+ q − 2)ψ.

Proof. We use the formula for the operation of the generators of k′ through the Weil
representation from Lemma A.5 on p. 140. As su(W ) ' sl2(R), we are mainly interested
in the behavior of ψ under the operation of

(
0 1
−1 0

)
(while of course, ( i 0

0 i ) generates the
center). We have

ω
(

0 1
−1 0

)
= i

[
p∑

α=1

z′′α
∂

∂z′′α
+

p∑
α′=1

z′α′
∂

∂z′α′
−

p+q∑
µ′=p+1

z′µ′
∂

∂z′µ′
−

p+q∑
µ=p+1

z′′µ
∂

∂z′′µ

]
+ i(p− q).

Bearing in mind that ψ doesn’t depend on z′µ′ and z′′µ the claim now follows from

p∑
α=1

z′′α
∂

∂z′′α
ψ =

p∑
α′=1

z′α′
∂

∂z′α′
ψ = (q − 1)ψ,

which is easily checked.

Lemma 3.10. The Schwartz form ψ is invariant under the operation of k.

Proof. We need to show Z(ψ) = 0 for all Z ∈ k. Using the explicit formula for ψ given
above (and ignoring constants), this means, using that Z acts as a derivation,

0 =
∑

α1,...,αq−1

β1,...,βq−1

ω(Z)
(
z′′α1
· · · z′′αq−1

z′β1
· · · z′βq−1

)
⊗ Ωq−1(α1, . . . , αq−1; β1, . . . , βq−1)

+
∑

α1,...,αq−1

β1,...,βq−1

z′′α1
· · · z′′αq−1

z′β1
· · · z′βq−1

⊗ Z. (Ωq−1(α1, . . . , αq−1; β1, . . . , βq−1)) .

Now let Z = Z ′αβ ∈ Hom(V ′+, V
′

+). Then the Weil representation action gives

ω(Z ′αβ)
(
z′′α1
· · · z′′αq−1

z′β1
· · · z′βq−1

)
⊗ Ωq−1(α1, . . . , αq−1; β1, . . . , βq−1)

= −
q−1∑
j=1

z′′αz
′′
α1
· · · ẑ′′αj · · · z

′′
αq−1

z′β1
· · · z′βq−1

⊗ Ωq−1(α1, . . . , β, . . . , αq−1; β1, . . . , βq−1)

+

q−1∑
j=1

z′′α1
· · · z′′αq−1

z′βz
′
β1
· · · ẑ′βj · · · z

′
βq−1
⊗ Ωq−1(α1, . . . , αq−1; β1, . . . , α, . . . , βq−1).
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3.3. The Schwartz form ψ

Now k ' Hom(V ′+, V
′

+) acts on p+ ' Hom(V−, V+) by composition. We obtain

Z ′αβ.Z
′
αjµ

= −δβαjZ ′αµ,

and hence for the dual action we see

Z ′αβ.ξ
′
αjµ

= δααjξ
′
βµ.

In the same way we see
Z ′αβ.ξ

′′
βjµ

= −δββjξ′′αµ.
This gives

z′′α1
· · · z′′αq−1

z′β1
· · · z′βq−1

⊗ Z ′αβ.Ωq−1(α1, . . . , αq−1; β1, . . . , βq−1)

=

q−1∑
j=1

z′′α1
· · · z′′α · · · z′′αq−1

z′β1
· · · z′βq−1

Ωq−1(α1, . . . , β, . . . αq−1; β1, . . . , βq−1)

= −
q−1∑
j=1

z′′α1
· · · z′′αq−1

z′α′1 · · · z
′
β · · · z′α′q−1

Ωq−1(α1, . . . , αq−1; β1, . . . , α, . . . βq−1).

Combining all this shows Z ′αβψ = 0, as desired.
We now consider the action of Z ′µν ∈ Hom(V ′−, V

′
−). The Weil representation action on

ψ clearly vanishes. Now the action on p+ is given by Z ′µν .Z
′
αµ′ = δµµ′Z

′
αν and hence

Z ′µνξ
′
αjµ′

= −δνµ′ξ′αjµ and Z ′µνξ
′′
βjµ′

= δµµ′ξ
′′
βjν
.

From this it is easy to see that

Z ′µνΩq−1(α1, . . . , αq−1; β1, . . . , βq−1) = 0.

for all multi-indices α = {α1, . . . , αq−1}, β = {β1, . . . , βq−1}.

Proof of Theorem 3.3

Recall

d =
1

2

(
∂ + ∂̄

)
, dc =

(
∂ − ∂̄

)
4πi

, ddc = − 1

4πi
∂∂̄. (3.3.7)

In the Fock model, the differential operators ∂, ∂̄ are given by (see Lemmas A.4, A.5)

∂ =
∑
α,µ

[
1

4π
z′′αz

′
µ − 4π

∂2

∂z′α∂z
′′
µ

]
⊗ A′αµ, ∂̄ =

∑
β,ν

[
1

4π
z′βz

′′
ν − 4π

∂2

∂z′′β∂z
′
ν

]
⊗ A′′βν .

For the lowering operator L, we have by Lemma A.5(ii)

L = −4π
∑
γ

∂2

∂z′′γ∂z
′
γ

+
1

4π

∑
µ

z′′µz
′
µ.

85



3. The singular theta lift in arbitrary signature (p, q)

To simplify notation, we drop all constants and consider

ϕ′KM =
∑

α1,...,αq
β1,...,βq

z′′α1
· · · z′′αqz

′
β1
· · · z′βq ⊗ ξ

′
α1p+1 ∧ · · · ξ′αqp+q ∧ ξ

′′
β1p+1 ∧ · · · ∧ ξ′′βqp+q,

ψ′ =
∑

α1,...,αq−1

β1,...,βq−1

z′′α1
· · · z′′αq−1

z′β1
· · · z′βq−1

⊗
q∑
j=1

ξ′α1p+1 ∧ · · · ∧ ξ̂′·p+j · · · ∧ ξ′αq−1p+q
∧ ξ′′β1p+1 ∧ · · · ∧ ξ̂′′·p+j ∧ · · · ∧ ξ′′βq−1p+q

.

Then the claim is equivalent to

Lϕ′KM = (−1)q−14π∂∂̄ψ′,

which we show by a direct calculation of both sides. We have

Lϕ′KM =
1

4π

(∑
µ

z′′µz
′
µ

)
ϕ′KM

− 4π
∑
α,β

q∑
j,k=1

δαjβkz
′′
α1
· · · ẑ′′αj · · · z

′′
αq−1

z′β1
· · · ẑ′βk · · · z

′
βq−1

⊗ ξ′α1p+1 ∧ · · · ∧ ξ′αjp+j ∧ · · · ξ
′
αqp+q ∧ ξ

′′
β1p+1 ∧ · · · ∧ ξ′′βkp+k ∧ · · · ∧ ξ

′′
βqp+q.

On the other hand,

∂∂̄ψ′ =
1

16π2

∑
α,β,µ,ν

(
z′′αz

′
βz
′
νz
′′
µ ⊗ ξ′αν ∧ ξ′′βµ

)
ψ′

−
∑

α1,...,αq−1

β1,...,βq−1

α,β,µ

z′′α1
· · · z′′αq−1

∂

∂z′α

(
z′βz

′
β1
· · · z′βq−1

)

⊗ ξ′αµ ∧ ξ′′βµ ∧
q∑
j=1

ξ′α1p+1 ∧ · · · ξ̂′·p+j · · · ∧ ξ′αq−1p+q
∧ ξ′′β1p+1 ∧ · · · ξ̂′′·p+j · · · ∧ ξ′′βq−1p+q

.

For the first term, it is easy to see that only the terms with µ = ν contribute and one
obtains

(−1)q−1 1

16π2

(∑
µ

z′′µz
′
µ

)
ϕ′KM .

For the second, only terms with µ = p+ j contribute and one obtains

(−1)q
∑

α1,...,αq−1

β1,...,βq−1

α0,β0

z′′α1
· · · z′′αq−1

q−1∑
k=0

δα0βkz
′
β0
z′β1
· · · ẑβk · · · z′βq−1

⊗
q∑
j=1

ξ′α1p+1 ∧ · · · ∧ ξ′α0p+j
· · · ∧ ξ′αq−1p+q

∧ ξ′′β1p+1 ∧ · · · ∧ ξ′′β0p+j
∧ · · · ∧ ξ′′βq−1p+q

.
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3.3. The Schwartz form ψ

Now comparing the formulas for Lϕ′KM and ∂∂̄ψ′ gives the claim.

The auxiliary form dcψ

Beside ψ itself, we also use the form dcψ, see Section 3.4.1. Here, we give a more explicit
description of this auxiliary form. Consider (4π)−1∂ψ. It is given by

1

4π
∂ψ =

i

23(q−1)π2(q−1)

1

2π

∑
α,β
γ,µ

z′′γz
′
µz
′′
αz
′
β ⊗ ξ′γµ ∧ Ωq−1(α; β)

=
i

23q−2π2q−1

∑
γ,α
β

z′′γz
′′
α1
· · · z′′αq−1

z′β

q∑
j=1

(−1)j−1z′p+j

⊗ ξ′α1p+1 ∧ · · · ξ′γp+j · · · ∧ ξ′αq−1p+q
∧ ξ′′β1p+1 ∧ · · · ξ̂′′·p+j · · · ∧ ξ′′βq−1p+q

.

Similarly, (4π)−1∂̄ψ is given by

1

4π
∂̄ψ =

i

23q−2π2q−1

∑
α
γ,β

z′′αz
′
γz
′
β1
· · · z′βq−1

q∑
j=1

(−1)q+jz′′p+j

⊗ ξ′α1p+1 ∧ · · · ξ̂′·p+j · · · ∧ ξ′αq−1p+q
∧ ξ′′β1p+1 ∧ · · · ξ′′γp+j · · · ∧ ξ′′βq−1p+q

.

Now by (3.3.7), dcψ is the difference of these two terms.
Finally, in the Schrödinger model, dcψ takes the following explicit form (note that
Dµϕ0 = 2z̄µϕ0.): We have

dcψ(x) =
1

23q−1π2q−1

[∑
α,γ
β

DαDγD̄βϕ0(x)⊗Q′α,γ;β(x)−
∑
α
γ,β

DαD̄γD̄βϕ0(x)⊗Q′′α;β,γ(x)

]
.

(3.3.8)
Her Q′α,γ;β(x) and Q′′α;β,γ(x) are given by

Q′α,γ;β(x)

=

q∑
j=1

(−1)j−1zp+j ⊗ ξ′α1p+1 ∧ · · · ξ′γp+j · · · ∧ ξ′αq−1p+q
∧ ξ′′β1p+1 ∧ · · · ξ̂′′·p+j · · · ∧ ξ′′βq−1p+q

Q′′α;β,γ(x)

=

q∑
j=1

(−1)q+j z̄p+j ⊗ ξ′α1p+1 ∧ · · · ξ̂′·p+j · · · ∧ ξ′αq−1p+q
∧ ξ′′β1p+1 ∧ · · · ξ′′γp+j · · · ∧ ξ′′βq−1p+q

.

Remark 3.11. Taking up Remark 3.8, we note that in the Fock model, the explicit form
of ψ can be easily recovered from the alternative definition ψ = q2

4π
hϕKM , and we give a

brief sketch of how this can be used to prove of Theorem 3.3.
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In the Fock model, the homotopy operator h takes the form

h =
m∑

µ=p+1

p∑
α,α′=1

∂2

∂z′′α∂z
′
α′
⊗ A′∗αµA′′

∗
α′µ.

By a straightforward calculation (the omitted constants can be easily checked), one has

hϕ′KM =
∑
α,α′
µ

∂2

∂z′′α∂z
′
α′
⊗ A′∗αµA′′

∗
α′µ

∑
α1,...,αq
β1,...,βq

z′′α1
· · · z′′αqz

′
β1
· · · z′βq ⊗ Ωq (α1, . . . , αq, β1, . . . , βq)

=
∑

α1,...,αq−1

β1m...,βq−1

z′′α1
· · · z′′αq−1

z′β1
· · · z′βq−1

⊗ Ωq−1 (α1, . . . , αq−1, β1, . . . , βq−1) = ψ′.

Now for the proof of Theorem 3.3. Since ϕKM is closed, one can use anticommutators to
calculate ∂∂̄hϕKM . A short calculation using Clifford identities [see 46, p.158f] shows
that {

∂̄, h
}
ϕKM = q2

(∑
α,ν

z′′ν
∂

∂z′′α
⊗ A′∗αµ

)
ϕKM .

Quite similarly,

{∂, h}ϕKM = q2

(∑
β′,ν′

z′ν′
∂

∂z′β′
⊗ A′′∗β′ν′

)
ϕKM .

Now, set ∂+ = 1
4π

∑
α,µ z

′′
αz
′
µ and ∂− = 4π

∑
α,µ

∂2

∂z′α∂z
′′
µ

, the the first and second term of ∂

in the Fock model (see p. 3.3.2). Similarly, define ∂̄+ and ∂̄− as the first and second term
of ∂̄. Then

∂∂̄ (hϕKM) =
{
∂∂̄, h

}
ϕKM =

{
∂+∂̄+ + ∂−∂̄−, h

}
ϕKM ,

since ∂z′′µ and ∂z′ν both kill ϕKM and hϕKM . Further, ∂−ϕKM = 0. Now, again by a
calculation involving Clifford identities, and somewhat similar to [46], one gets

∂∂hϕKM =
q2

4π
LϕKM .

We remark that the auxiliary form dcψ can be calculated directly from the anticommuta-
tors via

dcψ =
(∂ − ∂̄)

4πi
(hϕKM) =

1

4πi

(
{∂, h} −

{
∂̄, h
})
ϕKM = −4πi

q2

(
{∂, h} −

{
∂̄, h
})
ϕKM .

Moreover, one may define two new homotopy operators

h∂ :=
1

4πi
{∂, h} , h∂̄ :=

1

4πi

{
∂̄, h
}

with dcψ = (h∂ − h∂̄)ϕKM .
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3.4. A singular Schwartz form

3.4. A singular Schwartz form

Analogously to Kudla [43] for O(p, 2), we define for x 6= 0 the singular Schwartz form

Ψ0(x, z) := −
∫ ∞

1

ψ0(
√
tx, z)

dt

t
. (3.4.1)

The form Ψ0 has its singularities where R(x, z) = 0, i.e., precisely along the cycles D(x).
Thus, in particular, Ψ0(x, z) is smooth for (x, x) ≤ 0. We also set

Ψ(x, z) = Ψ0(x, z)e−π(x,x).

Recall the definition of the incomplete Γ-function, Γ(s, a) =
∫∞
a
ts−1e−tdt (see Appendix

B). The following lemma is obtained by a straightforward calculation.

Lemma 3.12. At the base point z = z0, the singular Schwartz form Ψ0 is given by

Ψ0(x, z0) =
2i(−1)q−1

22(q−1)

∑
α,β

[
q−1∑
`=0

P 2q−2
α,β;2`

(
x
)

(2πR(x, z0))−` Γ (`, 2πR(x, z0))

]
⊗ Ωq−1(α; β).

We conclude that R(x, z)q−1Ψ0(x, z) extends to a smooth differential (q − 1, q − 1)-form
on D.

While it should be emphasized that Ψ is not a Schwartz function on V , we nonetheless
define (as if Ψ had weight p+ q)

Ψ(x, τ, z) = Ψ0(
√
vx, z)eπi(x,x)τ (τ ∈ H).

This is motivated by the second statement in the Proposition below. Note

Ψ(x, τ, z) = −
(∫ ∞

v

ψ0(
√
tx, z)

dt

t

)
eπi(x,x)τ . (3.4.2)

From the definition of Ψ and the properties of ψ, we get

Proposition 3.13. Outside the singularities, Ψ(x, τ, z) has the following properties:

1. For d and dc the standard exterior differentials on A•(D), we have outside D(x)

ddc Ψ(x, τ, z) = ϕKM(x, τ, z).

2. We have
Lp+qΨ(x, τ, z) = ψ(x, τ, z),

with the Maass lowering operator Lp+q as before.
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3. The singular theta lift in arbitrary signature (p, q)

Proof. 1. This follows from Theorem 3.3 and the rapid decay of the Schwartz form
ϕKM :

ddcΨ(x, τ, z) = −
(∫ ∞

v

ddcψ(
√
tx, z)

dt

t

)
eπi(x,x)τ

= −
(∫ ∞

v

∂

∂t
ϕ0
KM(
√
tx, z) dt

)
eπi(x,x)τ = ϕKM(x, τ, z).

2. Immediately from the definition,

Lp+qΨ(x, τ, z) = 2iv
∂

∂τ̄

(∫ ∞
v

ψ0(
√
tx, z)

dt

t

)
eπi(x,x)τ

= −v
(
∂

∂v

∫ ∞
v

ψ0(
√
tx, z)

dt

t

)
eπi(x,x)τ = ψ0(

√
vx, z)eπi(x,x)τ = ψ(x, τ, z),

again by rapid decay.

3.4.1. The current equation

We denote by Akc (D) the space of compactly supported differential forms on D of degree k.
Recall that a locally integrable degree k-form ω on D defines a current, i.e., a (continuous)
linear functional on the compactly supported forms of complementary degree, via

[ω](η) :=

∫
D
η ∧ ω

(
η ∈ A2pq−k

c (D)
)
.

Furthermore, for the exterior derivatives of a current [ω] we have

ddc[ω](η) := [ω](ddcη).

The goal of this section is to prove the following generalization of the Thom Lemma, see
Theorem 3.1 iii), the proof will be carried out in the next two subsections, using the
same method as employed in [10] and [26].

Theorem 3.14. Let x ∈ V and let δZ(x) denote the delta current for the special cycle
Z(x). Then

ddc[Ψ0(x)] + (−i)qδZ(x) = [ϕ0
KM(x)]

as currents on Γx\D. In other words, we have∫
Γx\D

ddcη ∧Ψ0(x) + (−i)q
∫
Z(x)

η =

∫
Γx\D

η ∧ ϕ0
KM(x)

for any η ∈ A2(p−1)q
c (Γx\D).
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3.4. A singular Schwartz form

With this we can now define a Green current for the special cycles Z(n, h) ⊂ X.
Namely, for m ∈ Q, h ∈ L]/L satisfying n ≡ (h, h) mod Z and a real parameter w > 0
we introduce the Green form of Kudla type on X by setting

ΞK(n,w, h)(z) :=
∑
λ∈L+h
(λ,λ)=n
λ6=0

Ψ0(
√

2wλ, z). (3.4.3)

Then by Theorem 3.14 we immediately obtain the following

Corollary 3.15. The singular differential (q−1, q−1)-form ΞK(n,w, h) defines a Green
current for the cycle Z(n, h) on X.

Local integrability

Proposition 3.16. Let x ∈ V . Then Ψ0(x) and dcΨ0(x) are locally integrable differential
forms on D.

Proof. We view a top-degree differential form φ ∈ A2pq(D) via the Hodge ∗-operator as a
(K-invariant) function on G. We pick suitable coordinates on D, using the decomposition
G = HAK, where H is the stabilizer of the first basis vector v1 of V , A is a one
parameter subgroup A = {at = exp(tX1p+q); t ∈ R}. Set A0 = {at : t ≥ 0}. Now, using
Flensted-Jensen theory with the quantity δ(H) determined in Appendix A.1, see (A.1.1),
we get ∫

D
φ =

∫
G

φ(g) dg = C

∫
A0

∫
H

φ(hat)δ(H)dhdt

= C

∫
A0

∫
H

φ(hat) sinh(t)2q−1 cosh(t)2p−1 dh dt,

(3.4.4)

with C a positive constant, depending on the normalization of the invariant measures,
see [21, Sec. 2] or [53, Section 2] for further details.

Now Ψ0(x) is smooth unless (x, x) > 0. In that case we may assume that x =
√
nv1,

for some n > 0. Then for η ∈ A2(pq−(q−1))
c (D). We set φ = η ∧Ψ(x) and see

φ(hat) = η(hat) ∧Ψ0(a−1
t h−1

√
nv1),

wherein

a−1
t h−1

√
nv1 = cosh(t)

√
nv1 − sinh(t)

√
nvp+q.

Hence,(
a−1
t h−1

√
nv1

)
z0

= − sinh(t)
√
nvp+q and

(
a−1
t h−1

√
nv1

)
z⊥0

= cosh(t)
√
nv1. (3.4.5)

Thus, we have (see Lemma 3.12),

Ψ0(a−1
t h−1

√
nv1) =

2i(−1)q−1

22(q−1)

[ q−1∑
`=0

(
2πn sinh2(t)

)−`
Γ
(
`, 2πn sinh2(t)

)
·
∑
α,β

P 2q−2
α,β;2`

(
κ
√
n cosh(t)v1

)]
⊗ Ωq−1(α; β).
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3. The singular theta lift in arbitrary signature (p, q)

We conclude that the integrand of (3.4.4), i.e.,

η(hat) ∧Ψ0(a−1
t h−1

√
nv1) sinh(t)2q−1 cosh(t)2p−1

is bounded, in fact, vanishes, as t→ 0. Further, as η has compact support, the integral
is convergent.

For the local integrability of dcΨ(x) the reasoning is similar, but a bit more tedious.
Again, we may assume that x =

√
nv1, with n > 0. Further, note that we only need to

consider highest-degree terms.
Note dcΨ0(x) = −

∫∞
1
dcψ0(

√
sx)ds

s
, which can be evaluated similarly to Lemma 3.12.

By (3.3.8), dcψ consists of two parts. Both involve polynomials of degree 2q − 1 which
depend on the positive coordinates of x (note that there is no constant part). If by
(3.4.5), we set x = cosh(t)

√
nv1, only the polynomials which depend exclusively on the

first vector can contribute to dcΨ0(x). From their highest-degree terms, we get

2−(2q−1) cosh(t)2q−1nq−
1
2
√
s

2q−1
.

Also, in (3.3.8) there are linear homogeneous polynomials in the negative coordinates,
Qα′q ,α(q−1)

and Q′αq ,α′(q−1)
. From them, again by (3.4.5) we have contributions of

−
√
s
√
n sinh(t)

Hence, gathering the contributions of the non-vanishing highest-degree terms, we still
have the integral∫ ∞

1

sq−1e2πR(x,z0)ds = (2πR(x, z0))−q Γ(q, 2πR(x, z0))

= (2π sinh2(t))−q Γ(q, 2π sinh2(t)).

Thus, up to sign, for t→ 0 the behavior of dcΨ(a−1
t h−1

√
nv1) is dominated by terms of

the form
(−1)q−1π

22q−1
sinh(t) cosh(t)2q−1

(
sinh2(t)

)−q
Γ
(
q, 2π sinh2(t)

)
. (3.4.6)

In particular, it follows that the integrand in∫
A0

∫
H

η(hat) ∧
(
dcΨ(a−1

t h−1
√
nv1)

)
sinh(t)2q−1 cosh(t)2p−1 dh dt,

remains bounded as t→ 0, and hence the integral converges.

Proof of the current equation

Proof of Theorem 3.14. Let η ∈ A2(p−1)q
c (Γx\D), not necessarly closed. First note using

(ddcη) ∧Ψ0(x) = (dη) ∧ dcΨ0(x)− dc (dη ∧Ψ0(x)) and Stokes’ theorem∫
Γx\D

(ddcη) ∧Ψ0(x) = −
∫

Γx\D
(dη) ∧ dcΨ0(x) + lim

ε→0

∫
Γx\∂(D−Uε(x))

(dη) ∧ dcΨ0(x),
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where Uε, (ε > 0) denotes an open neighborhood of the cycle D(x). Next we show that
the limit on the right hand side vanishes. We may again assume x =

√
nv1, with n > 0

and use the HAK coordinates introduced in the proof of Proposition 3.16 and Appendix
A.1. Then for ε > 0, an open neighborhood of D(v1) is defined by

Uε = D− (H × Aε) , (3.4.7)

with Aε = {at : t ≥ ε}. With the analog of the integral formula from (3.4.4) and (A.1.1),
the limit can be written as

C lim
ε→0

∫
Γv1\H

η(haε) ∧Ψ0(a−1
ε h−1

√
nv1) sinh(ε)2q−1 cosh(ε)2p−1 dh

for some constant C. Only the highest degree term of Ψ(a−1
t h−1

√
nv1) (see Lemma 3.12)

can contribute. Further, note that, since
(
a−1
t h−1

√
nv1

)
z⊥0

= cosh(t)
√
nv1 by (3.4.5), we

have P 2q−2
α,β;2q−2 (

√
n cosh(t)v1) 6= 0 only for α = β = (1, . . . , 1), thus, up to constants, the

highest degree term is given by(
n sinh2(t)

)−(q−1)
Γ
(
q − 1, 2πn sinh2(t)

)
(2
√
n cosh(t))2q−1.

Hence, comparing powers of sinh(t) we see that the integrand goes to zero for t = ε→ 0,
and the limit vanishes as claimed.

Now, since ddcΨ(x) = ϕKM(x), we have

−
∫

Γx\D
(dη) ∧ dcΨ0(x) =

∫
Γx\D

η ∧ ddcΨ0(x)−
∫

Γx\D
d
(
η ∧ dcΨ0(x)

)
=

∫
Γx\D

η ∧ ϕ0
KM(x) + lim

ε→0

∫
Γx\∂(D−Uε(x))

η ∧ dcΨ0(x),

again by applying Stokes’ theorem. Thus it remains to show that

lim
ε→0

∫
Γx\∂(D−Uε(x))

η ∧ dcΨ0(x) = (−i)q
∫
Z(x)

η.

We have to consider the limit of the same integral as in the proof of second part of
Proposition 3.16:

C lim
ε→0

∫
Γv1\H

η(haε) ∧ dcΨ0(a−εh
−1
√
nv1) cosh(ε)2p−1 sinh(ε)2q−1 dh, (3.4.8)

with a non-zero constant C, independent of η. With (3.4.6) we see that for both parts of
dcΨ0(x), the integral is bounded as t = ε→ 0. We have

C lim
ε→0

∫
H

η(haε) ∧
(
dcΨ0(a−εh

−1
√
nv1)

)
cosh(ε)2p−1 sinh(ε)2q−1 dh

= C̃

∫
H

η(h) dh,
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3. The singular theta lift in arbitrary signature (p, q)

with a constant C̃ independent of η. By Kudla-Millson theory [see 45, Theorem 6.4], we
see that C̃ = (−i)q for η closed, see Theorem 3.1 iii)..

To summarize, we have showed that for all η ∈ A2(p−1)q
c (Γx\D),∫

Γx\D
(ddcη) ∧Ψ0(x) =

∫
Γx\D

η ∧ ϕ0
KM(x)− (−i)q

∫
Z(x)

η,

as claimed.

3.5. The regularized theta integral

In the following, we set κ = p + q − 2 and k = −κ = −(p + q) + 2. We define a
vector-valued theta function for the Schwartz form ψ introduced in Section 3.3, following
the general recipe from Section 1.2.1. Hence, we set

Θ(τ, z) := Θ(τ, z;ψ)L :=
(
θ(h, z, ψ)h

)
h∈L]/L =

∑
h∈L]/L

θ(τ, h, ψh)eh (τ ∈ H, z ∈ D) ,

with

θ(τ, z, ψ)h =
∑
λ∈L+h

ψ
(√

2λ, τ, z
)

(h ∈ L]/L).

(Recall Remark 1.2 concerning the factor of
√

2 in the exponential.) Explicitly,

Θ(τ, z) =
∑

h∈L]/L

∑
λ∈L+h

Pψ

(√
2vλ, z

)
e4πv(λz ,λz)+2πi(λ,λ)eh, (3.5.1)

where Pψ(x, z) ∈
[
P(V )⊗A•(D)

]G
is the polynomial part of ψ, see (3.3.5).

Following [2, 5, 10], for a weak harmonic Maass form f ∈ H+
k,L− , we consider the

regularized theta integral (evaluated using the regularization procedure from Section 1.4)

Φ(z, f, ψ) :=

∫ reg

SL2(Z)H

〈
f(τ),Θ(τ, z)

〉
L
dµ. (3.5.2)

We call Φ(z, f, ψ) the regularised lift of f .

3.5.1. Singularities and current equation

Let f be a harmonic weak Maass form with holomorphic Fourier coefficients a+(h, n),
h ∈ L]/L, n ∈ Q<0. We define a locally finite cycle D(f) on D by

D(f) :=
∑

h∈L]/L

∑
n∈Q<0

a+(h, n)D(n, h)

and denote by Z(f) the image of D(f) on X.
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Proposition 3.17. The regularized lift Φ(z, f, ψ) converges to a smooth differential form
on D with singularities along the cycle D(f). In a small neighborhood of w ∈ D, the
singularities are of type

−
∑

h∈L]/L

∑
n∈Q
n<0

a+(h, n)
∑
λ∈L+h

(λ,λ)=−n
λ∈w⊥

Ψ0(
√

2λ, τ, z),

i.e., the difference of Φ(z, f, ψ) and this sum extends to a smooth form.

Proof. The argument closely follows [10, Sec. 5]. It suffices to consider the integral up to
smooth functions. Due to the rapid decay of the non-holomorphic part of f , the integral
converges for f− to a smooth form, and we only need to consider∑

h

lim
t→∞

∫ reg

Ft
f+
h (τ)θ(τ, z, ψ)hv

−s dµ.

Also, since the integral over F1 is smooth, it suffices to consider the integral over v > 1:∑
h

lim
t→∞

∫ t

1

∫ 1
2

− 1
2

f+
h (τ)θ(τ, z, ψ)hv

−s−2du dv. (3.5.3)

Now, the integration over u picks out the constant term in the Fourier expansion of the
integrand, which in the notation of (3.5.1) is given by

v
∑
h

∑
λ∈L+h

a+(h,−(λ, λ))Pψ(
√

2vλ, z)e4πv(λz ,λz).

For (3.5.3) we therefore obtain∑
λ∈L]

a+(λ,−(λ, λ))

∫ ∞
1

Pψ(
√

2vλ, z)e4πv(λz ,λz)v−s−1dv. (3.5.4)

For a relatively compact open neighborhood U ⊂ D, define the set

Sf (U, ε) =
{
λ ∈ L] ; a+

(
λ,−(λ, λ)

)
6= 0 and |(λz, λz)| < ε for some z ∈ U

}
.

By reduction theory, this set is finite, as f+ has only finitely many non-vanishing Fourier
coefficients in its principal part.

Using standard arguments, like in [10], one finds that in (3.5.4) the sum of all terms
with λ ∈ L] − Sf(U, ε) is majorized by a convergent sum,

∑
λ∈L] exp (−C(λ, λ)z) for

some C > 0, and hence converges. Further, in (3.5.4), the term with λ = 0 is given by
a+(0, 0)Pψ(0, z)

∫∞
1

1
vs+1dv, which falls out after regularization.

Finally, all that remains of (3.5.4) is the following finite sum, which dictates the
singularities in U :∑

06=λ∈Sf (U,ε)

a+(λ,−(λ, λ))

∫ ∞
1

Pψ(
√

2vλ, z)e4πv(λz ,λz)v−s−1dv.
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3. The singular theta lift in arbitrary signature (p, q)

Clearly, the integral has meromorphic continuation to the entire s-plane, and for s = 0 is
equal to −Ψ0(

√
2λ, τ, z), cf. (3.4.1). Hence, the singularity for z ∈ U is dictated by

−
∑

λ∈Sf (U,ε)
λ 6=0

a+(λ,−(λ, λ))Ψ0(
√

2λ, τ, z).

In particular, z is a singular point precisely if R(λ, z) = −(λz, λz) = 0 for some λ ∈
Sf (U, ε)− {0}.

The singular theta lift as a current Using the relationship between the singular theta
lift and the singular Schwartz form Ψ, already seen in the proof of Proposition 3.17, we
derive a current equation for Φ(f, ψ). The role of ϕKM in Theorem 3.14 is now played by

Λψ(f) := ddcΦ(z, f, ψ), (3.5.5)

where f ∈ H+
k,L− .

Theorem 3.18. The singular theta lift Φ(z, f, ψ) and the lifting Λψ(f) satisfy the
following current equation on X:

ddc[Φ(f, ψ)] + (−i)qδZ(f) = [Λψ(f)].

Proof. This follows directly from Theorem 3.14. For x ∈ V , we have

ddc[Ψ0(x)] + (−i)qδΓ(x)\D(x) = [ϕ0
KM(x)]. (3.5.6)

As usual, denote the Fourier coefficients of f+ by a+(λ, n) for λ ∈ L], n ∈ Q. For any
relatively compact open neighbourhood U ⊂ D and any ε > 0, we consider the set Sf (U, ε)
from p. 95. Then, from the left hand side of (3.5.6), we get

ddc
∑

λ∈Sf (U,ε)
λ 6=0

a+(λ,−(λ, λ))
[
Ψ0(
√

2λ)
]

+ (−i)q
∑

λ∈Sf (U,ε)
λ 6=0

a+(λ,−(λ, λ))δZ(λ).

Now, by Proposition 3.17, and after taking the (locally finite) union over neighborhoods
U containing singular points, we get the current associated to (the singular part of)
Φ(z, f, ψ) plus the delta current for the cycle Z(f):

ddc[Φ(f, ψ)] + (−i)qδZ(f).

(Note that, through Stokes’ theorem, the current is determined by the singular part.)
Repeating the same steps on the right hand side of (3.5.6), by using the identity

ddcΨ(x, τ, z) = ϕKM(x, τ, z) (see Proposition 3.13), we recover the current

[ddcΦ(f, ψ)] = [Λψ(f)],

as claimed.
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3.5. The regularized theta integral

3.5.2. Adjointness to the Kudla-Millson lift

We now show an adjointness result analogous to [10, Theorem 6.1, Theorem 6.2]. Denote
by Θ(τ, z, ϕKM) the theta function for the Schwartz form ϕKM from Section 3.3 (see,
[44, 45, 46]). By Theorem 3.3 it is a closed differential (q, q)-form (in z), which has
weight p+ q as a modular form (in τ). The Kudla-Millson lift ΛKM is now defined for
any rapidly decreasing 2(p− 1)q-form η through the assignment

η 7−→ ΛKM(η) :=

∫
X

η ∧Θ(τ, z, ϕKM).

This map factors through the de Rham cohomology with compact supports on X. By
[46, Theorem 2] if η is closed, Λ(τ, η) is a holomorphic modular form.

From Section 1.3 recall the definition of the pairing {·, ·}′ between the spaces Mk,L−

and H+
k,L: For f ∈ H+

k,L with f+ =
∑

h,n a
+(h, n)e(nτ)eh and g ∈ Mk,L− with q-expansion

g =
∑

h,n b(h, n)e(nτ)eh, the pairing is given by

{g, f}′ = (g, ξk(f))2−k,L −
∑

h∈L]/L

a+(h, 0)b(h, 0) =
∑

h∈L]/L

∑
n∈Q
n<0

a+(h, n)b(h,−n).

The following theorem is analogue of results by Bruinier and Funke in the setting of
orthogonal groups [see 10, Theorem 6.1 – 6.3].

Theorem 3.19. The lift Λψ has the following properties:

1. Let f ∈ H+
k,L−. Then

(Θ(·, z, ϕKM), ξk(f))2−k,L + a+(0, 0)ϕKM(0) = Λψ(f)

as differential forms on X. In particular, Λψ(f) extends to a smooth closed (q, q)-
form of moderate growth.

2. The Kudla-Millson lift ΛKM and Λψ are adjoint in the sense that

(η,Λψ(f))X = {ΛKM(η), f}′

for any f ∈ H+
k,L− and any rapidly decreasing closed 2(p− 1)q-form η.

We note that, in particular, if f ∈ M!
k,L− , we have Λψ(f) = a+(0, 0)ϕKM(0).

Corollary 3.20. For any rapidly decreasing closed 2(p− 1)q-form η and any f ∈ Hk,L,
we have

(η,Λψ(f))X =

∫
Z(f)

η.

Proof of the Theorem. 1. We have

L2−kΘ(τ, z, ϕKM) = Θ(τ, z, ddcψ),
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3. The singular theta lift in arbitrary signature (p, q)

since LϕKM(0) = ddcψ(0), Hence, we have

lim
t→∞

∫
Ft

〈
L2−kΘ(τ, z, ϕKM), f̄

〉
dµ =

∫ reg

F

〈
L2−kΘ(τ, z, ϕKM), f̄

〉
dµ

=

∫ reg

F

〈
Θ(τ, z, ddcψ), f̄

〉
dµ,

and this quantity defines a smooth form on D− D(f), which extends smoothly to
D. With [10, Lemmas 6.6, 6.7] we get the following identity, valid outside D(f):

(Θ(z, ϕKM), ξk(f))2−k,L =

∫ reg

F

〈
Θ(τ, z, ddcψ), f̄

〉
dµ+ a+(0, 0)ϕKM(0).

Now, the statement follows by showing that∫ reg

F

〈
Θ(τ, z, ddcψ), f̄

〉
dµ = ddc

∫ reg

F

〈
Θ(τ, z, ψ), f̄

〉
dµ. (3.5.7)

First, note that∫ reg

F

〈
Θ(τ, z, ψ), f̄

〉
dµ = lim

t→∞

∫
Ft

(〈
Θ(τ, z, ψ), f̄

〉
− a+(0, 0)v

)
dµ+ Ca+(0, 0),

(3.5.8)
with a constant C, coming from the regularization of the constant term. Arguing
along the same lines as in the proof of Proposition 3.17, we see that in the integrand,
the sum over λ ∈ L] − Sf(U, ε) (see p. 95) converges uniformly for any relatively
compact open neighborhood U ⊂ D and any ε > 0. For the remaining terms, with
λ ∈ Sf (U, ε) the integrand decays exponentially.

Thus, switching the order of differentiation from the right hand side of (3.5.7) and
the limit from (3.5.8) is justified, which completes the proof.

2. The second statement follows from the first, the proof is exactly like the one of [10,
Theorem 6.3], which we briefly reproduce here. Denote by (·, ·)X the natural pairing
between closed forms of complementary degree (where one is rapidly decreasing
and the other of moderate growth). We have

(η,Λψ(f))X =
(
η, (Θ(·, z, ϕKM), ξk(f))k,L

)
X

= ((η,Θ(·, z, ϕKM))X , ξk(f))k,L = {ΛKM(η), f} .

Note only that the order of integration can be switched by absolute convergence.

3.6. Comparison of the two Green forms

In this section, we compare the Green forms of Kudla type GK(m,w, h), for m ∈ Q,
h ∈ L]/L and w ∈ R>0, and those of Bruinier type GB(m,h) (see below). The aim is
to transfer some of the results of Ehlen and Sankaran from [19] to the present setting.
Thus, we obtain a modularity result for the difference of the generating series of the two
Green forms.
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3.6. Comparison of the two Green forms

3.6.1. Green form of Bruinier type

We first introduce the Green form of Bruinier type.

Recall Definition 1.13 for Hejhal Poincaré series of weight k and index (n, h), h ∈ L]/L,
n ∈ Z for τ ∈ H, s ∈ C with σ = Re(s) > 1:

Fn,h(τ, s) =
1

4Γ(2s)

∑
A∈Γ∞\SL2(Z)

Ms(4π|n|v)e2πinueh |k,L− A, (3.6.1)

where Ms(t) = t−
k
2M− k

2
,s− 1

2
(t), with the M-Whittaker function Mκ,µ(t).

Set s0 = 1− k
2
. For fixed s = s0, the Poincaré series Fn,h(τ, s0) have principal part qneh

and form a basis of H+
k,L− , [see 5, Proposition 1.12]. Note further that by [10, Remark

3.10] the image under the ξ-operator, ξk(Fn,h(τ, s0)) is a holomorphic, cuspidal Poincaré
series of index (−n, h).

We now introduce two Green forms through the regularized pairing (see p. 28) of
the Hejhal Poincaré series with Θ(τ, z). First, we define the Bruinier type Green form
GB(n, h) by setting

GB(n, h)(z) := (Fn,h(τ, s0),Θ(·, z))regL− , (3.6.2)

i.e., the regularized theta lift of the weak Maass form Fn,h(τ, s0). By Theorem 3.18
GB(n, h) is thus a Green current for the cycle Z(n, h).

3.6.2. The Kudla type Green form as a theta lift

Following [19, Section 2.4], we introduce truncated Poincaré series Pn,w,h with n ∈ Z,
w ∈ R>0 and h ∈ L]/L, of weight k = 2− (p+ q):

Pn,w,h(τ) =
1

2

∑
A∈Γ∞\SL2(Z)

[
σw(τ)q−neh

]
|k,L−A,

where σw(τ) =

{
1 if v ≥ w

0 if v < w.

Further, if n 6∈ 1
2
(h, h) + Z we set Pn,w,h = 0.

Proposition 3.21. The regularized pairing (Pn,w,h,Θ(·, z))regL− exists. On D \ D(n, h), it
satisfies the identity

(Pn,w,h,Θ(·, z))regL− = −ΞK(n,w, h)− δn,0δh,0ψ(0) log(w).

The Kudla type Green form ΞK(n,w, h) can thus be expressed as a regularized theta lifting.
This also affords an (albeit discontinuous) extension of ΞK(n,w, h) to all D.
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3. The singular theta lift in arbitrary signature (p, q)

Proof. Assume that z /∈ D(n, h). We evaluate the regularized pairing by unfolding using
the modularity of Θ and see

(Pn,w,h,Θ(·, z))regL− = CT
s=0

lim
t→∞

∫
Ft−Fw

∑
λ∈L+h
(λ,λ)=n

q−nψ(
√

2vλ)v−sdµ

= CT
s=0

∫ ∞
w

∑
λ∈L+h
(λ,λ)=n

ψ0(
√

2vλ, z)v−s−1dv.

Now, for n 6= 0 this extends smoothly to the entire s-plane and for s = 0, we obtain

−
∑
λ∈L+h
(λ,λ)=n

Ψ0(
√

2vλ, z) = −ΞK(n,w, h).

Similarly, for n = 0 we obtain −ΞK(n,w, h) from the sum over λ 6= 0. The term for
λ = 0 contributes

ψ(0) CT
s=0

lim
t→∞

∫ t

w

v−s−1dv = −ψ(0) CT
s=0

lim
t→∞

1
s

(
t−s − w−s

)
= −ψ(0) log(w).

3.6.3. The difference of the two Green forms as a modular form

Now, with the results of [19], we can show that the difference of GK(n, v) and GB(n) is,
essentially a modular form.

Lemma 3.22. The difference

(Pn,w,h,Θ(·, z))regL− − (Fn,h,Θ(·, z))regL−

extends to a smooth differential (q − 1, q − 1)-form on D.

Proof. Since the principal part of Fn,h is given by q−neh this is immediate from Proposi-
tion 3.17 and Proposition 3.21.

We now assume p+ q > 2. Using [19, Theorem 1.1], we show the following:

Theorem 3.23. Assume p+ q > 2, and fix z ∈ D. The generating series

F (τ, z) = − log(v)ψ(0)e0 −
∑
n∈Q

(
ΞK(n, v)− GB(n)

)
(z) qn

is an element of A!
p+q,L. Furthermore, F satisfies Lp+q(F )(τ, z) = −Θ(τ, z) and is

orthogonal to cusp forms.
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3.7. Poincaré series

Proof. We observe that Θ(τ, z;ψ), as a function on H is contained in the space Amod
(p+q−2),L,

see Definition 1.11. Clearly by Proposition 3.21 the generating series above can be written
as ∑

n∈Q

∑
h∈L]/L

(Pn,v,h − Fn,h,Θh(·, z))regL− q
neh.

Since κ is an integer and satisfies κ = p+ q− 2 > 0, by [19, Theorem 1.1], this generating
series, as a function on H, is the q-expansion of a modular form F in A!

p+q,L, which satisfies
Lp+q(F ) = −Θ, has trivial principal part and trivial cuspidal holomorphic projection, i.e.
for every cusp form G in Sκ,L, the (regularized) Petersson product 〈F,G〉reg vanishes.

Remark 3.24. We note that Theorem 3.23 also gives a different approach to the duality
statement Theorem 3.19. Namely, consider ddcF (τ) and take the Petersson inner product
with the holomorphic Poincare series ξk(Fn,h(τ, s0)) of index (−n, h). This vanishes and
computing the inner product explicitly (using the formulas for holomorphic projection)
one obtains Theorem 3.19. We leave the details to the reader.

We thank Stephan Ehlen for this comment.

Remark 3.25. As Stephan Ehlen also pointed out, it should be possible to show that
the generating series from Theorem 3.23 also satisfies a current equation.

3.7. Poincaré series

In this section we introduce and study the form GBs (n, h) depending on a complex
parameter s and identify it with the Green form constructed by Oda-Tsuzuki [53].

Namely, for s ∈ C with Re(s) = σ > 1, we define

GBs (n, h)(z) := lim
t→∞

∫
Ft
〈Fn,h(τ, s),Θ(τ, z)〉L dµ

Similar to Section 2.2 in [5] it can be seen that the (regularized) integral converges for σ
sufficiently large and can be analytically continued to the region σ > 1 with s 6= s0.

Remark 3.26. We can also define GBs0(n, h)(z) for s = s0 as the constant term of the
Laurent expansion of GBs (n, h)(z) at s = s0. We note that GB(n, h), see (3.6.2) and
GBs0(n, h) are not quite identical; due to the different regularization procedures, they differ
by a smooth term. See [5, Proposition 2.11] for further details in the orthogonal case.

To ease the comparison with the work of Oda-Tsuzuki, we use the identification of

differential forms on D with K-invariant functions on G with values in
∧•

p∗. In our

situation, this means to consider GBs (n, h) as a function on G with values in
∧q−1,q−1

p∗

by first setting ψ(x, g) := ψ(g−1x, z0) for g ∈ G and then defining

GBs (n, h)(g) := lim
t→∞

∫
Ft
〈Fn,h(τ, s),Θ(τ, g)〉L dµ.

It is then clear that GBs (n, h) is holomorphic in s in the convergent range.
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3. The singular theta lift in arbitrary signature (p, q)

3.7.1. An eigenvalue equation

Now, we show that the Green form GBs (m,h) satisfies an eigenvalue equation under the
action of the Casimir element for U(p, q) as the one in [53], Theorem 18 (iii) (with a
different normalization of the holomorphic parameter s). The overall strategy follows of
[5, Chapter 4.1] using results of Shintani [55] and additionally Hufler [39]. We denote
by CSL2 , CU(p,q) and CO(2p,2q) the respective Casimir elements of SL2(R), U(p, q) and
O(2p, 2q) in the universal enveloping algebra.

Let φ = φ(x, τ, z0) be a Schwartz form and κ the weight of φ(τ) under the Weil
representation. As φ satisfies condition (1.19) of [55] with m = 2κ, by [55, Lemma 1.4]
we have

ω(g′τ )CSL2 φ(x) = 4

[
v2

(
∂2

∂2u
+

∂2

∂2v

)
− κiv ∂

∂u

]
ω(gτ )φ(x)

= −4

[
∆κ − vκ

∂

∂v

]
ω(gτ )φ(x),

wherein g′τ =
(√

v u
√
v
−1

√
v
−1

)
. By a brief calculation we thus have

4∆κφ(x, τ) = κ(κ− 2)φ(x, τ)− v−
κ
2ω(g′τ )CSL2 φ(x).

Now, by [55, Lemma 1.5] we have with m = dimC(V ) = p+ q

CSL2 φ(x) =
[
CO(2p,2q) +m(m− 2)

]
φ(x).

We note that the operation of SL2(R) by the Weil representation commutes with CO(2p,2q).
Hence, we get

4∆κφ(x, τ) = [κ(κ− 2)−m(m− 2)]φ(x, τ)− CO(2p,2q) φ(x, τ).

Now, by a result of Hufler [see 39, Satz 6.10], who carries out the analogous computations
for the Schwartz form ϕ0,

CU(p,q) φ(x) = CO(2p,2q)φ(x)− 2

(
=

(
m∑
j=1

zj
∂

∂zj

))2

φ(x). (3.7.1)

Now set φ = ψ. The second term on the right hand side of (3.7.1) vanishes for ψ and
with κ = p+ q − 2 = m− 2, we get

4∆κψ = −4κψ − CU(p,q)ψ.

The following Lemma is an immediate consequence.

Lemma 3.27. The theta function Θ(τ, z), considered as a function on H, satisfies the
following differential equation:

4∆κΘ(τ, z0) =
[
−4κ− CU(p,q)

]
Θ(τ, z0).
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3.7. Poincaré series

Noting that the Poincaré series Fm,h is an eigenfunction of ∆k with eigenvalue κ2

4
+

κ
2

+ s(1− s) [see 5, p. 29], we have the following analogue of [5, Lemma 4.4], the proof of
which is quite similar:

Lemma 3.28. For the regularized pairing of Θ(τ, z) and the Maass Poincaré series Fn,h
of weight −κ, we have

(Fn,h,∆κΘ(·, z))regL− = (∆−κFn,h,Θ(·, z))regL− − κ (Fn,h,Θ(·, z)))regL−
=
(
κ2

4
− κ

2
+ s(1− s)

)
(Fn,h,Θ(·, z)))regL− .

By combining the two Lemmas we get

Theorem 3.29. Recall κ = p+ q − 2. The Green form GBs (n, h) is an eigenfunction of
the Casimir operator CU(p,q), with

CU(p,q) GBs (n, h) =
(
(2s− 1)2 − (κ+ 1)2

)
GBs (n, h). (3.7.2)

Proof. Due to locally uniform convergence of the regularized lift and all partial derivatives,
we have

CU(p,q) (Fn,h(·, s),Θ(·, z))regL− =
(
Fn,h(·, s),CU(p,q)Θ(·, z)

)reg
L−

= −4 (Fn,h(·, s), (∆κΘ)(·, z))regL− − 4k (Fn,h(·, s),Θ(·, z))regL− ,

by Lemma 3.27. The statement then follows by Lemma 3.28.

3.7.2. Unfolding against the Poincaré series

In this section, we calculate GB(n, h)(z0) by unfolding the theta integral against the
Poincaré series Fn,h(τ, s). To facilitate notation we write

Pψ
2`(λ) :=

2i(−1)q−1

22(q−1)

∑
α,β

P 2q−2
α,β;2`(λ)⊗ Ωq−1(α; β) (3.7.3)

for the homogeneous component of degree 2` of the polynomial part Pψ(λ) of the Schwartz
form ψ.

Theorem 3.30. We have

GBs (n, h) =
(2π|n|)s−

k
2

2Γ(2s)

×
∑
λ∈h+L
(λ,λ)=n

q−1∑
`=0

Pψ
2`(λ)

Γ(s− k
2

+ `)(
2π
(
λz⊥0 , λz⊥0

))s− k2 +`
2F1

(
s− k

2
+ `, s+ k

2
; 2s;

|n|(
λz⊥0 , λz⊥0

)).
Here 2F1 denotes the standard Gaussian hypergeometric function.
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3. The singular theta lift in arbitrary signature (p, q)

Proof. From the definition of Fn,h (3.6.1), and using the unitarity of ρL and the transfor-
mation property of Θ(τ) we have

GBs (n, h)

=
1

4Γ(2s)

∫ reg

F
〈

∑
A∈Γ∞\SL2(Z)

Ms(4π|n|=(Aτ))e2πinRe(Aτ)j(A, τ)−keh, ρL(A)Θ(τ, z0)〉L− dµ

=
1

4Γ(2s)

∫ reg

F

∑
A∈Γ∞\SL2(Z)

Ms(4π|n|=(Aτ))e2πinRe(Aτ)θh(Aτ, z0) dµ.

Now, arguing exactly as in [5, p.55f], the unfolding (justified by absolute convergence for
σ > 1 + p

2
+ q

2
) is allowed, and we obtain

GBs (n, h) =
2

4Γ(2s)

∫ ∞
v=0

∫ 1

u=0

Ms(4π|n|v)e2πinuθh(τ, z0)v−2 du dv.

Inserting the Fourier expansion of θh(τ, z) and integrating over u one sees

(4π|n|)−
k
2

2Γ(2s)

∫ ∞
v=0

∑
λ∈h+L

(λ,λ)=−n

M− k
2
,s− 1

2
(4π|n|v)e4π(λz0 ,λz0)v−2π(λ,λ)vv−

k
2
−1

q−1∑
`=0

v`Pψ
2`(
√

2λ)

=
(4π|n|)−

k
2

2Γ(2s)

∑
λ∈h+L

(λ,λ)=−n

q−1∑
`=0

2`Pψ
2`(λ)

∫ ∞
v=0

v−
k
2

+`−1M− k
2
,s− 1

2
(4π|n|v)e−2πv(λ,λ)z0dv.

The integrals are Laplace transforms, which can be evaluated as usual [see 20, p. 215].
We get for each integral

(4π|n|)s(
4π
(
λz⊥0 , λz⊥0

))s− k2 +`
Γ
(
s− k

2
+ `
)

2F1

(
s− k

2
+ `, s+ k

2
; 2s;

|n|(
λz⊥0 , λz⊥0

)),
and the result follows.

We denote the individual summands for GBs (n, h) in Theorem 3.30 by φs(λ), that is,

φs(λ) :=

(2π|n|)s−
k
2

2Γ(2s)

q−1∑
`=0

Pψ
2`(λ)

Γ(s− k
2

+ `)(
2π
(
λz⊥0 , λz⊥0

))s− k2 +`
2F1

(
s− k

2
+ `, s+ k

2
; 2s; |n|(

λ
z⊥0
,λ
z⊥0

)).
Proposition 3.31. Assume m > 0. Let H be the stabilizer of λ in G. Then

(i)

φs(λ) ∈ C∞
(

(G−HK)/K;
∧(q−1),(q−1)

p∗
)
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3.7. Poincaré series

(ii) φs(λ) is holomorphic in s.

(iii) Let λ =
√
nv1 and consider g = at = exp(tX1p+q) as in the proof of Proposition 3.16.

Then there exists a non-zero constant C such that

lim
t→0

t2(q−1)φs(λ, at) = CΩq−1(1, 1).

(iv) With the hypothesis as in (iv) we have

φs(λ, at) = O(e−(2Re(s)+p+q)t))

as t→∞.

Proof. (i) and (ii) are clear. Now assume λ =
√
nv1 and take g = at = exp(tX1p+q).

Then a−1
t λz⊥0 = cosh(t)

√
nv1, and we calculate

φs(λ, at) =
1

2Γ(2s)

q−1∑
`=0

Pψ
2`(
√
nv1)

×
Γ(s− k

2
+ `)

(2πn)` (cosh t)2s−k+2` 2F1

(
s− k

2
+ `, s+ k

2
; 2s;

1

cosh2 t

)
=

1

2Γ(2s)

q−1∑
`=0

Pψ
2`(v1)

Γ(s− k
2

+ `)

(2π)` (cosh t)2s−k 2F1

(
s− k

2
+ `, s+ k

2
; 2s;

1

cosh2 t

)
=

1

2Γ(2s)

q−1∑
`=0

Pψ
2`(v1)

Γ(s− k
2

+ `)

(2π)` (cosh t)2s−k

(
sinh t

cosh t

)−2`

2F1

(
s+ k

2
− `, s− k

2
; 2s;

1

cosh2 t

)
.

Here we used 2F1(a, b; c, z) = (1− z)c−a−b2F1(c−a, b−a; c, z). Then (iii) follows from the
second line of the previous equation, while (iv) from the third line, properties of Pψ

2`(v1)
and 2F1(s+ k

2
− (q − 1), s− k

2
; 2s; 1) = Γ(2s)Γ(q − 1)/Γ(s− k

2
+ q − 1)Γ(s+ k

2
).

Oda and Tsuzuki in [53], Theorem 18, show that the properties (i)-(iv) in Theorem 3.31
together with the Casimir equation uniquely determine the function. Using Theorem 3.29
we conclude

Corollary 3.32. The Green forms GBs (n, h) agree (up to a constant) with the (global)
Green forms constructed by Oda and Tsuzuki in [53].

Remark 3.33. Similarly one can evaluate the regularized pairing of Θ(τ, z) with the
non-holomorphic Eisenstein series

Eh(τ, s) =
∑

A∈Γ∞\SL2(Z)

vseh |k,L− A,
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3. The singular theta lift in arbitrary signature (p, q)

corresponding to GBs (0, h). After unfolding, and integration one has

(Eh(·, s),Θ(·, z))regL− |z=z0= 2

q−1∑
`=0

Γ(s+ `)

(2π)s+`

∑
λ∈L+h
(λ,λ)=0

(λz0 , λz0)−s−`Pψ
2`(λ).

This expression can be written in terms of Eisenstein series for the discriminant kernel
ΓL in G = U(V ). After setting

ζh,λ(s) :=
∑
a∈O×F
aλ∈L+h

NF/Q(a)−s, P (L) = {λ ∈ L]; λ primitive, (λ, λ) = 0}.

where, as usual, F is the underlying imaginary quadratic field, one obtains

2

q−1∑
`=0

Γ(s+ `)∣∣O×F ∣∣(2π)s+`

∑
λ∈ΓL\P (L)

ζh,λ(s) Pψ
2`(λ)

∑
γ∈ΓL,λ\ΓL

(λγz0 , λ)−s−`.

Here, ΓL,λ denotes the stabilizer of λ in ΓL.
The properties of these Eisenstein series should be of interest for future investigation.
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4. The Fourier-Jacobi expansion of the
singular theta lift

Our intent in the present chapter is to evaluate the singular theta lift Φ(z, f, ψ) with f
a weak harmonic Maass form from H+

k,L− and to explicitly determine its Fourier-Jacobi
expansion. For this purpose, we adapt a method introduced by Kudla in [40]. We will
explain this procedure in Section 4.2, and evaluate the actual unfolding integrals in
Section 4.5. From this, we recover an explicit form of the Fourier-Jacobi expansion in
Section 4.4. For our approach it is advantageous to use the mixed model of the Weil
representation, thus, as a first step we will translate the Schwartz form ψ into the mixed
model in Section 4.1, using the intertwining operators from Appendix A.2.1.

Some problems remain open for future work. For example, it should be interesting
to study the behavior of the lift on the boundary of D in terms of the Fourier-Jacobi
expansion. In particular, this seems quite feasible in signature (1, q) where the com-
pactification theory is essentially the same (via complementary spaces) as that for (p, 1)
described in Section 2.1.2. Also, we should mention that for p, q > 1 we determine the
Fourier-Jacobi expansion only up to a constant (see Remark 4.7). To explicitly calculate
this final contribution is thus also left open for the time being.

4.1. Passage to the mixed model

As usual, let (p, q) be the signature of the complex hermitian space V . In the following,
to emphasize the dependence on the signature we will denote Schwartz functions φ in
[S(V ) ⊗ A•(D]G by φp,q. Recall that evaluation at the base point z0 ∈ D yields an
isomorphism [

S(V )⊗A•(D)
]G ' [S(V )⊗

∧•
(p∗)

]K
.

Further, recall the definition of the Schwartz form ψ = ψp,q contained in [S(V ) ⊗
Aq−1,q−1(D)]G from Section 3.3,

ψp,q =
2i(−1)q−1

22(q−1)

∑
γ={γ1,...,γq−1}
δ={δ1,...,δq−1}

DγDδ ⊗ Ωq−1(γ, δ) ∈
[
S(V )⊗

∧•
(p∗)

]K
,

withDγ andDδ as defined in Section 3.2, and finally, recall that ψp,q has weight r = p+q−2
under the operation of SL2(R) ' U(1, 1).

We now use the notation from appendix A.2.1. Thus, let ` and `′ be two isotropic
vectors, defined as ` = 1√

2
(v1 + vm) and `′ = 1√

2
(v1− vm). The complement V ∩ `⊥∩ `′⊥ is
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4. The Fourier-Jacobi expansion of the singular theta lift

denoted by W , and for x ∈ V , we write x = (α, x0, β) = α`+x0 +β`′, with x0 ∈ W . The
real and imaginary parts of the coordinates are denoted by subscripts, e.g. α = α1 + iα2.

Now, as in Section A.2.1, passage to the mixed model is obtained by a partial Fourier
transform in α, the coordinate attached to `. We denote the new `-coordinate by β′.

The partial Fourier-transform of ψp,q, evaluated at the base-point is given as follows
(with the partial Fourier-transform of ϕp,q0 from (A.2.1)):

Proposition 4.1. For a multi-index γ denote by nγ the multiplicity of 1 in γ and denote
by γ̃ the multi-index obtained from γ by removing all occurrences of 1.

The partial Fourier transform of ψp,q is given by

ψ̂p,q(β
′, x0, β) =

2i(−1)q−1

22(q−1)

∑
γ={γ1,...,γq−1}
δ={δ1,...,δq−1}

(
−i
√
π√

2

)nγ+nδ

(β′ − iβ)
nδ
(
β̄′ − iβ̄

)nγ
Pγ̃,δ̃(x0,+)ϕ̂p,q0 ⊗ Ωq−1(γ; δ).

Here, Pγ̃,δ̃(x0,+) denotes the polynomial in the positive components of x0, i.e. z2, . . . zp,

obtained by applying Dγ̃D̄δ̃ to ϕ0. Its degree is 2q− 2− nγ − nδ. Further, ϕ̂p,q0 is given by

ϕ̂p,q0 = exp
(
−π
(
|β′ − iβ|2 + 2=

(
β′β̄
)

+ 2i(x0, x0)z0

))
.

In particular, for (p, q) ∈ {(p, 1), (q, 1)}. we have

ψ̂p,1 = 2i ϕ̂p,10 ⊗ 1 and (4.1.1)

ψ̂1,q =
2iπq−1

23(q−1)
(β′ − iβ)

q−1 (
β̄′ − iβ̄

)q−1
ϕ̂1,q

0 ⊗ Ωq−1 (1; 1) . (4.1.2)

Proof. Follows immediately from Lemma 4.2.

Lemma 4.2. Denote by ϕk1,k2 the Schwartz function given by Dk1
1 D̄k2

1 ϕ0. Then, the
partial Fourier transform of ϕk1,k2 with respect to α is given by

ϕ̂k1,k2(β′, β, x0) =

(
−i
√
π√

2

)k1+k2

(β′ − iβ)
k2
(
β̄′ − iβ̄

)k1 ϕ̂p,q0 .

Proof. If k1 = k2, ϕk,k(x) takes the form(
−1

π

)k
2kk!Lk

(
2π|z1|2

)
ϕ0(x) =

(
−1

π

)k
2kk!Lk

(
2π|α + β|2

)
ϕ0(x),

and the statement follows from Lemma B.4 and the conclusions immediately following
that Lemma, see p. 145. Indeed,

ϕ̂k(β
′, β, x0) =

(
−π
2

)k (
(β′1 − iβ1)

2
+ (β′2 − iβ2)

2
)k
ϕ̂p,q0

=

(
−π
2

)k
(β′ − iβ)

k (
β̄′ − iβ̄

)k
ϕ̂p,q0 .
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4.1. Passage to the mixed model

For the general case, we can assume k1 > k2. Further, it suffices to consider ϕk+1,k, as
the rest follows through symmetry and by induction. Set xi = αi + βi, i = 1, 2. By
Remark 3.6 we have

(2π)k+ 1
2Dk+1

1 D̄k1ϕ0 = (2π)k+ 1
2D1

(
Dk1D̄k1ϕ0

)
=

k∑
l=0

(
k

l

)[
H2(k−l)+1

(√
2πx1

)
H2l

(√
2πx2

)
− iH2(k−l)

(√
2πx1

)
H2l+1

(√
2πx2

)]
ϕ0.

Thus, with Lemma B.3, and arguing as before, the Fourier transform of ϕk+1,k with
respect to α is given by

(−i
√
π)2k+1

2
2k+1

2

k∑
l=0

(
k

l

)[
(β′1 − iβ1)2(k−l)+1(β′2 − iβ2)2l − i(β′1 − iβ1)2(k−l)(β′2 − iβ2)2l+1

]
ϕ̂p,q0

= i
√
π(−1)k+1

(π
2

)k
((β′1 − iβ1)− i(β′2 − iβ2))

(
(β′1 − iβ1)

2
+ (β′2 − iβ2)

2
)k
ϕ̂p,q0

= i
√
π(−1)k+1 (β′ − iβ)

k (
β̄′ − iβ̄

)k+1
ϕ̂p,q0 .

This proves the Lemma.

4.1.1. Intertwining for G′ and G.

Up to here, through Proposition 4.1 one has ψp,q in the mixed model only at the base-
point z0 of D, and with τ fixed at the base point i of the complex upper-half plane H.
Moving away from the respective base points is accomplished by applying the intertwining
operators for G′ = SL2(R) from Lemma A.1 and for G from Lemma A.2.

Intertwining for G′. First the operation of G′. With the notation from Proposition 4.1,
let Pγ̃,δ̃;` denote the homogeneous component of weight ` of the polynomial Pγ̃,δ̃:

Pγ̃,δ̃(x0,+) =

2q−2−nγ−nδ∑
`=0

Pγ̃,δ̃;`(x0,+). (4.1.3)

Using Lemma A.1, which gives the intertwining for the operation of gτ =
(√

v u
√
v
−1

0
√
v
−1

)
,

we get ψp,q(x, τ) in the mixed model, given by ψ̂p,q(x, τ) = F(ω(gτ )ψp,q(x))(β′, β).

Proposition 4.3. In the mixed model the Schwartz form ψp,q(x, τ) takes the following
form:

ψ̂p,q((η, x0), τ) =
2i(−1)q−1

22(q−1)

∑
γ={γ1,...,γq−1}
δ={δ1,...,δq−1}

(
−iπ

1
2

)nγ+nδ (2v)−
nγ+nδ

2 (β′ + τ̄β)
nδ
(
β̄′ + τ̄β

)nγ

·
2q−2−nγ−nδ∑

`=0

v
`
2Pγ̃,δ̃;`(x0,+) · ϕ̂0

p,q ⊗ Ωq−1(γ; δ),

(4.1.4)
with the polynomials Pγ̃,δ̃;` from (4.1.3).
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4. The Fourier-Jacobi expansion of the singular theta lift

Proof. The Proposition follows directly from Lemma A.1 with (A.2.1). Recall only that
ψp,q has weight r = p+ q − 2.

A special case of the proposition, when the signature of V is (1, q), is the following:

Corollary 4.4. In the mixed model, ψ1,q(x, τ) is given by

ψ̂1,q((η, x0), τ) =
2iπq−1

23(q−1)
v−q+1

(
[β, β′]g′τ , [1, i]

)k(
[β, β′]g′τ , [1, i]

)k
ϕ̂0

1,q ⊗ Ωq−1(1; 1)

=
2iπq−1

23(q−1)
v−q+1 (β′ + τ̄β)

q−1 (
β̄′ + τ̄ β̄

)q−1 · ϕ̂0
1,q ⊗ Ωq−1(1; 1).

Note that for the special case of signature (p, 1), the Schwartz form ψ(x, τ) is given by
the Gaußian 2iϕp,10 (x, τ) and hence, by (A.2.1) the partial Fourier transform at the base
point is given by

ψ̂p,1((η, x0), τ) = 2i exp
(
−π
v

(
|β′|2 + |τ̄β|2 + 2uRe

(
β′β̄
))

+ 2πτ(x0, x0)
)

= 2i exp
(
−π
v

(
|β′ + τ̄β|2 + 2vRe

(
β′β̄
))

+ 2πτ(x0, x0)
)
.

Intertwining for G Now, the intertwining operators for the operation of G, with the
Levi decomposition G = NAM are given by Lemma A.2 (see p. 138). From Proposition
4.3, we thus get

Proposition 4.5. Let g = m(w, 0) ◦m(0, r) ◦ a(t). Then, ψ̂p,q(gz0) is given by

ψ̂p,q((η, x0), τ)(gz0) =
2i(−1)q−1

22(q−1)

∑
γ={γ1,...,γq−1}
δ={δ1,...,δq−1}

(
−iπ

1
2

)nγ+nδ (2v)−
nγ+nδ

2 t2+
nγ+nδ

2

· (β′ + τ̄β)
nδ
(
β̄′ + τ̄β

)nγ 2q−2−nγ−nδ∑
`=0

v
`
2Pγ̃,δ̃;`(x0,+ − βw+) · ϕ̂p,q0 ((tη, x0,+ − βw+), τ)

· e
(
r=(β′β̄) +

1

2
Re(β′β̄)(w,w)− Re (β′(x0, w))

)
⊗ Ωq−1(γ; δ).

We note that the intertwining operation for the action of µ ∈ M ' SU(p− 1, q − 1) is
the identity.

4.1.2. Fourier expansion of a weak harmonic Maass form in the
mixed model

Let f ∈ H+
k,L− be a weak harmonic Maass with weight k = 2− (p+ q) under the discrete

Weil representation of ρL− . Let a+(h, n) and a−(h, n) denote the Fourier coefficients of
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4.2. Evaluating the singular theta lift, Kudla’s approach

its holomorphic part and non-holomorphic part, respectively. The Fourier expansion of f
in the mixed model can be described as follows, see [40, p. 23]:

f(τ) =
∑

n�−∞

â+(n)qn + â−(0)v1−k +
∑

n�−∞
n6=0

â−(n)Γ (1− k, 4π|n|v) e2πinu

where for the Fourier coefficients we have set

â±(n) :=
∑

λ=λ``+λW+λ`′`

λ∈L]/L

a±(λ, n)êλ =
∑

λ=λ``+λW+λ`′`

λ∈L]/L

a±(λ, n)e (−λ2 · β′) eλ.

4.2. Evaluating the singular theta lift based on Kudla’s
approach

To evaluate the regularized theta integral and to calculate the Fourier-Jacobi expansion
of Φ(z, f, ψ) from Chapter 3.5 we employ a method recently introduced by Kudla in [40].
The key observation is that, due to invariance under the action1 of Γ = SL2(Z), the theta
function can be decomposed along Γ-orbits of η = [β, β′]:

Θ(τ, z;ψp,q) =
∑

h∈L]/L

∑
λ∈L+h

λ=(α,x0,β)

F
(
ω
(
gτ , ψ√2

)
ψp,q(λ, z)

)
eh

=
∑

h∈L]/L

∑
(η,x0)∈L+h

η=[β,β′], x0∈W

ψ̂p,q

(√
2(η, x0), τ, z

)
eh

=
∑
η/∼

∑
γ∈Γη\Γ

θγη(τ, z),

with

θγη(τ, z) =
∑

h∈L]/L

∑
x0∈W

(η,x0)∈L+h

ψ̂p,q

(√
2(ηg, x0), τ, z

)
eh

Here, Γη denotes the stabilizer of η in Γ, and η/ ∼ denotes the orbit of η under the action
of Γ. A set of orbit representatives is given by the following lemma.

Lemma 4.6. ([see 40, p. 20]) The orbits of matrices in M2(Q) under the operation
of SL2(Z) with their respective sets of representatives and stabilizers in SL2(Z) are the
following:

1. The zero orbit, stabilized by the whole of SL2(Z).

1While Γ′ would be more in keeping with our convention that G′ = SL2(R), in this chapter, to lighten
notation, we denote the elliptic modular group by Γ.
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4. The Fourier-Jacobi expansion of the singular theta lift

2. The orbits of rank 1 matrices. A set of representatives is given by(
0 a
0 b

)
with a > 0 or a = 0 and b > 0.

They are stabilized by SL2(Z)∞ = {( 1 n
0 1 ); n ∈ Z}.

3. The orbits of rank 2 matrices. A set of representatives is given by all matrices of
the form (

a b
0 α

)
with a, α ∈ Q×, a > 0 and b ∈ Q mod aZ. (4.2.1)

The stabilizer of any such orbit is trivial.

Consequently, the hermitian product in the integrand of the regularized integral∫ reg

Γ\H

〈
f(τ),Θ(τ, z)

〉
L
dµ

decomposes along Γ-orbits, which can be sorted according to the rank of their represen-
tatives, 〈

f,Θ
〉
L

=
2∑
i=0

∑
η/∼

rank(η)=i

∑
γ∈Γη\Γ

〈
f(γτ), θγη(τ, z)

〉
L
.

Since each term is Γ-invariant, the regularized integral can be decomposed similarly.
Thus, we write

Φ(z, f, ψ) =
2∑
i=0

Φi(z, f, ψ), with

Φi(z, f, ψ) :=

∫ reg

Γ\H

∑
η=[β,β′]/∼
rank(η)=i

∑
γ∈Γη\Γ

〈
f(γτ), θη(γτ, z)

〉
L
v−2du dv.

Moreover, due to rapid decay of the integrand, the integrals can be evaluated for each
term separately, with fixed η, and summed up later, as

Φi(z, f, ψ) =:
∑

η=[β,β′]/∼
rank(η)=i

∑
γ∈Γη\Γ

∑
n�−∞

(
â+(n)φi(n, η)+ + â−(n)φi(n, η)−

)
(i = 0, 1, 2) ,

with â± the mixed model Fourier coefficients introduced in Section 4.1.2, and with

φi(n, η)+ =

∫ reg

Γη\H
e2πinuθη(τ, z) dµ(τ)

φi(n, η)− =

∫ reg

Γη\H
Γ(1− k, 4π|n|)e2πinuθη(τ, z) dµ(τ) (n 6= 0),

φi(0, η)− =

∫ reg

Γη\H
θη(τ, z)v1−k dµ(τ).
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4.3. The lift at the base point

While for i = 0, the domain of integration is the usual fundamental domain Γ\H, for
i = 1, it is given by Γ∞\H. Finally, for i = 2, integration ranges over the whole upper
half plane.

An advantage of this approach is that the Fourier-Jacobi expansion of the theta lift is
more easily calculated this way. In fact, the constant term of the Fourier expansion is
obtained from the rank 1 terms of the lift and the zero-orbit, while the remaining terms
can be read off from the terms for non-singular η, see Section 4.4 below.

To facilitate calculation across different signatures, we will first evaluate the integrals
at the base point z = z0 ∈ D and apply intertwining operators for the operation of G to
the individual terms φi(n, η)± after integration. These unfolding integrals are evaluated
in Section 4.5.

Recall the NAM decomposition of G from Sections 2.1.1 and A.2.1 (see p. 138).
Assume that for every z in D a continuous choice of n(w, r) ∈ N , a(t) ∈ A and µ ∈M
has been fixed such that z = (n(w, r)a(t)µ)(z0). We will use w, r.a and µ as coordinates
to describe the Fourier-Jacobi expansion, see Theorem 4.14. Since the Fourier-Jacobi
expansion is closely linked to the operation of the Heisenberg group N , this appears as a
natural choice for our purpose.

Remark 4.7. As mentioned in the introduction to this chapter, we should point out that
we will not evaluate the rank 0 term Φ0(z, f, ψ), in general, at least not if p, q > 1. This
term is given by a convolution integral of the harmonic Maass form f with an indefinite
theta series for the lattice L∩W . Of course, if q = 1, there is no contribution of the rank
0 term, so Φ0 ≡ 0. While if p = 1, the theta series is definite, and this kind of integral, at
least for f ∈ M!

k,L− , has already been treated by Borcherds [see 2, Sec. 9]. Hence, in this
special case, the value of Φ0(z0, f) can be deduced from Borcherds’ results, see cite [40].

4.3. The lift at the base point

In this section, we state our first main result, an explicit expression for the singular theta
lift of a weak harmonic Maass form f evaluated at the base point. Our Theorem 4.9
covers the general case of signature (p, q) with p, q ≥ 1 and p+ q > 2. The calculations
for this are carried out in Section 4.5. Two special cases, where either q = 1 or p = 1 are
treated in Examples 4.11 and 4.12.

Recall the kernel function from Proposition 4.3. We have

ψ̂p,q(
√

2(η, x0), τ) =
2i(−1)q−1

22(q−1)

∑
γ={γ1,...,γq−1}
δ={δ1,...,δq−1}

(
−i
√
π
)nγ+nδ (β′ + τ̄β)

nδ
(
β̄′ + τ̄β

)nγ

·
2q−nγ−nδ−2∑

`=0

2
`
2v

(`−nγ−nδ)

2 Pγ̃,δ̃;`(x0,+) exp

(
−2π

v

(
|β′ + τ̄β|2 + 2v=

(
β′β̄
)))

· e
(
τ̄(x0,−, x0,−) + τ(x0,+, x0,+)

)
⊗ Ωq−1(γ; δ),

(4.3.1)
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4. The Fourier-Jacobi expansion of the singular theta lift

where nγ and nδ denote the number of 1’s occurring in the respective multi-index, and
γ̃ and δ̃ denote the remaining multi-indices after striking out all occurences of 1. The
ranks of γ̃ and δ̃ are q − 1− nγ and q − 1− nδ, respectively.

First, we introduce some notation which will be used in this and the following sections:

Notation 4.8. If η = [β, β′] is non-singular, define Aη, Aη, Aη, Bη and Cη by setting

Aη(n, x0) := n+ 2|β|2 + (x0, x0), Aη(n, x0) := n− 2|β|2 + (x0, x0)

Aη(n, x0) :=
1

2
(n+ (x0, x0))2 + 2|β|4 + 2|β|2(x0, x0)z0 + 2|β|2n,

=
1

2
Aη(n, x0)2 − 4(x0,−, x0,−)

(4.3.2)

and

Bη := 2
(
|β′|2|β|2 − Re

(
β′β̄
)2
)

= 2=
(
β′β̄
)2

and Cη :=
Re(β′β̄)

|β|2
. (4.3.3)

When n or x0 are fixed, we will drop either (or both) and just write, e.g. Aη if both x0

and n are fixed. We note that both Bη and Aη are non-negative real numbers, and if
β 6= 0 they are both positive.

Further, generalizing [5, (3.25)], we introduce the following special function

VN,µ (A,B, c) :=

∫ ∞
0

Γ(N − 1, cv)v−µe−Av−Bv
−1

dv
(
N ≥ 2,Re(A+ c),Re(B) > 0

)
= 2(N − 2)!

N−2∑
r=0

cr

r!

(
A+ c

B

)µ−r−1
2

Kr+1−µ

(
2
√

(A+ c)B
)
,

(4.3.4)
see Lemma B.1 concerning the evaluation of the integral. Also note that for N = p+ q
one has N − 1 = 1− k and N − 2 = −k = κ.

Now, with the notation from Section 4.2, consider the terms φi(n, η)±, i = 1, 2. Since
the differential form part Ωq−1(γ, δ) of the Schwartz form ψp,q depends on the multi-indices

γ, δ ∈ {1, . . . , p}q−1, each term φi(n, η)± can be decomposed as

φi(n, η)± =
2i(−1)q−1

22(q−1)

∑
γ,δ

φ
γ,δ

i (n, η)± ⊗ Ωq−1

(
γ, δ
)
.

Hence, for f ∈ H+
k,L− the regularized integral Φ(z0, f, ψ) can be written in the form

Φ(z0, f, ψ) = Φ12(z0, f, ψ) + Φ0(z0, f, ψ)

=
2∑
i=1

(
Φi(z0, f

+, ψ) + Φi(z0, f
−, ψ)

)
+ Φ0(z0, f, ψ)
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4.3. The lift at the base point

with

Φi(z0, f
±, ψ) =

2i(−1)q−1

22(q−1)

∑
γ,δ

( ∑
η=[β,β′]/∼
rank(η)=i

∑
γ∈Γη\Γ

∑
n�−∞

â±(n)φ
γ,δ

i (n, η)±
)
⊗ Ωq−1

(
γ, δ
)
.

The individual terms φ
γ,δ

i (n, η)± (i = 1, 2) are calculated in Section 4.5. The Lemmas
there are the basis for the proof the main result of this section, Theorem 4.9.

We fix some more notation. Given nγ, nδ as defined above, with 0 ≤ nγ, nδ ≤ q − 1,
and 0 ≤M ≤ nγ + nδ, set

Rnδ,nγ (η,M) :=
∑

0≤µ1≤nδ
0≤µ2≤nγ
µ1+µ2=M

βµ1 β̄µ2β′nδ−µ1 β̄′nγ−µ2

(
nδ
µ1

)(
nγ
µ2

)
.

Now, we can state the Theorem.

Theorem 4.9. For a weak harmonic Maass form f ∈ H+
k,L− with Fourier coefficients

a±(h, n) (h ∈ L]/L, n ∈ Q,−∞� n) the regularized theta integral Φ12(z0, f, ψ) is given
by

Φ12(z0, f, ψ) =
2i(−1)q−1

22(q−1)

∑
γ,δ

{ 2∑
i=1

∑
η=[β,β′]/∼
rank(η)=i

·
∑

γ∈Γη\Γ′

∑
n�−∞

(
â+(n)φ

γ,δ

i (n, η)+(z0) + â−(n)φ
γ,δ

i (n, η)−(z0)
)}
⊗ Ωq−1

(
γ, δ
)
,

where for fixed m and η the contributions to the inner sum are the following:

1. The non-singular terms φ
γ,δ

2 (n, η)+(z0) and φ
γ,δ

2 (n, η)−(z0) are given by the sum

(
−i
√
π
)nγ+nδ

2q−2−nγ−nδ∑
`=0

2
`+1

2 Pγ̃,δ̃,`(x0,+)

nγ+nδ∑
M=0

Rnδ,nγ (η,M)

·
bM2 c∑
j=0

1

πj

M−2j∑
h=0

ih

2h+3j
Ah
η (−Cη)

M−2j−h |β|−2h−2j

(
M − 2j

h

)
M !

j!(M − 2j)!

· a±ν (η;n) exp
(
−2πiCη ((x0, x0) + n)

)
.

(4.3.5)

The factor a±ν (η;n) in the inner sum, with index ν = h + j + 1
2
(` − nγ − nδ − 1)

takes the form

a+
ν (η;n) =

(
Aη

Bη

)− ν
2

Kν

(
2π

|β|2
(AηBη)

1
2

)
, (4.3.6)
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4. The Fourier-Jacobi expansion of the singular theta lift

for φ
γ,δ

2 (n, η)+(z0), while while for φ
γ,δ

2 (n, η)−(z0) if n 6= 0, it is given by

a−ν (η;n) = 1
2
Vp+q,1−ν

(
π

(
Aη

|β|2
− 2n

)
,
πBη

|β|2
, 4π|n|

)
. (4.3.7)

Finally for n = 0, the non-holomorphic part φγ,δ(0, η)− takes the same form as
φγ,δ(0, η)+ but with a shifted index, as ν is replaced by ν − k + 1.

2. The terms φ
γ,δ

1 (n, η)+(z0) and φ
γ,δ

1 (n, η)−(z0) consist of a sum

(
−i
√
π
)nγ+nδ β′nγβ̄′nδ

2q−2−nγ−nδ∑
`=0

2
`
2Pγ̃,δ̃,`(x0,+)b±ν (η;n),

wherein the factor b±ν (η;n) with index ν = 1
2

(`− nγ − nδ)− 1 is given by

b+
ν (η;n) = 2|β′|ν (2|(x0,−, x0,−)|)−

ν
2 Kν

(
2
√

2π|β′||(x0,−, x0,−)|
)
,

for the holomorphic term and by

b−ν (η;n) = Vp+q,1−ν
(

2π(x0,−, x0,−), π|β′|2, 4π|n|
)

for the non holomorphic term if n 6= 0.

For n = 0, the contribution for the non-holomorphic part is the same as for the
holomorphic part, but with index shifted by −k+1, i.e. with b−ν′(η; 0) = b+

ν−k+1(η; 0).

Proof. Follows directly from the calculations in Section 4.5. The results for the non-
singular terms can be found in Lemmas 4.22 and 4.23, for the results on rank 1 terms
see Lemmas 4.24 and 4.25.

Remark 4.10. In Theorem 4.9, whenever the index ν is a half-integer, i.e. ν ≡ 1
2

(mod 1), the Bessel functions can be expressed through Bessel polynomials.
For example, for the non-singular terms, if 1

2
(`− nγ − nδ − 1) ≡ 1

2
(mod 1), the Bessel

function in (4.3.6) can be replaced by an expression of the form

1

2
|β| (AηBη)

− 1
4 hν′

((
2π
√
AηBη

)−1
)

exp

(
− 2π

|β|2
(AηBη)

1
2

)
, (4.3.8)

with ν ′ = |ν| − 1
2
. Likewise, in this case, the Bessel functions occuring in the expansion

of Vp+q,1−ν in (4.3.7) can be replaced by a similar expression, with ν ′ = |ν + r| − 1
2

and

Aη replaced by Aη + 4|n||β|2 − 2n|β|2.
For the rank 1 terms, if 1

2
(`− nγ − nδ) ≡ 1

2
(mod 1), the Bessel functions in the

holomorphic term φ
γ,δ

1 (n, η)+ can be replaced by expressions of the form

1

2
|β′|−

1
2 (2(x0,−, x0,−))−

1
4 hν′

((
2
√

2π|β′||(x0,−, x0,−)|
1
2

)−1
)
,

with ν ′ = |ν| − 1
2
. Similarly for the Bessel function in the expansion of Vp+q,1−ν of the

non-holomorphic terms, but with ν ′ = |ν + r| − 1
2

and 2(x0, x0) shifted by 4|n|.
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4.3. The lift at the base point

Example 4.11. The lift for signature (p, 1) presents an interesting example. Recall that
in this signature the Schwartz form is given by

ψ̂p,1(
√

2(η, x0), τ) = 2i exp

(
−2π

v

[
|β′ + τ̄β|2 + 2v=

(
β′β̄
)])

e2πiτ(x0,x0) ⊗ 1,

so the polynomials and the differential form are trivial. It is thus not surprising that,
that the expressions from Theorem 4.9 simplify considerably.

For the non-singular terms, the contribution to the lift of of f ∈ H+
1−p,L− due to the

holomorphic part f+ is given by (for fixed η and n)

φ2(n, η)+(z0) =
√

2

(
Aη

Bη

)+ 1
4

K− 1
2

(
2π

|β|2
(AηBη)

1
2

)
e−2πiCη((x0,x0)+n)

=

√
2

2
|β|Bη

− 1
2 exp

(
− 2π

|β|2
|Aη|

(
1
2
Bη

) 1
2

)
e−2πiCη((x0,x0)+n),

using (B.1.4). Note that here Aη = 1
2
A2
η. The contribution of the non-holomorphic part

f− (for fixed η and m) is given by

φ2(n, η)−(z0) =

√
2

2
Vκ+2, 3

2

(
πAη

|β|2
− 2πn,

πBη

|β|2
, 4|n|π

)
e−2πiCη((x0,x0)+n).

Since the index ν = 1
2

is a half-integer, after expressing Vκ+2,3/2 as a sum, we can use
Bessel polynomials to write φ2(n, η)− in the form

φ2(n, η)−(z0) =
√

2(p− 1)!

p−1∑
r=0

(4π|n|)r

r!

(
Aη + 2|β|2 (2|n| − n)

)− r
2 B

r−1
2

η

· hmax(0,r−1)

([
2π

|β|2
((
Aη + 2|β|2 (2|n| − n)

)
Bη

) 1
2

]−1
)

· exp

(
− 2π

|β|2
((
Aη + 2|β|2 (2|n| − n)

)
Bη

) 1
2

)
e−2πiCη((x0,x0)+n).

The rank 1 terms φ1(n, η)+ are easily calculated directly. For a ‘one-line’ version of the
calculations in Section 4.5.2, note that the domain of integration is given by 0 ≤ u ≤ 1
and 0 ≤ v <∞. Thus, the integral over u just picks out the constant term of the Fourier
expansion and terms are non-zero only if (x0, x0) = −n (note that x0 is positive definite).
Then, recalling that η = [0, (a, b)t], the integral over v is given by

φ1(n, η)+(z0) = CT
s=0

[∫ ∞
0

exp

(
−2π

v
|β′|2

)
v−s−2dv

]
=
(

2π|β′|2
)−s−1

Γ(s+ 1)

∣∣∣∣
s=0

=
1

2π

1

a2 + b2
Γ(1).
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4. The Fourier-Jacobi expansion of the singular theta lift

For the contribution of the non-holomorphic part, one has (for n 6= 0) :

φ1(n, η)−(z0) = (p− 1)!

(p−1)∑
r=0

πr

r!
(4|n|)

r
2
− 1

4 |β′|r−
1
2hr

(
1

4π|β′||n|
1
2

)
e−4π|β′||n|

1
2 .

For n = 0, one has φ1(0, η)−(z0) = (2π(a2 + b2))−(p+1)Γ(p + 1), from (B.1.1) with
1− k = κ+ 1 = p.

Example 4.12. Another important example is the case of signature (1, q). As we have

seen in Proposition 4.1 the Schwartz form ψ̂1,q takes a fairly simple form, as there is only
one pair of multi-indices, given by γ = δ = (1, . . . , 1). Thus nδ = nγ = q − 1 and there
are no polynomials Pγ̃,δ̃(x0,+). Hence,

Φ(z, f, ψ) =
2i(−1)q−1

22(q−1)

( 2∑
i=1

∑
η=[β,β′]/∼
rank(η)=i

∑
γ∈Γη\Γ

∑
n�−∞

â±(n)φi(n, η)±
)
⊗ Ωq−1

(
1, 1
)
.

We note that index from Theorem 4.9 is half-integer and Remark 4.10 applies. Thus, the
non-singular terms – excluding the case n = 0 for the non-holomorphic part – are given
by

φ2(n, η)±(z0) = (−π)q−1

√
2

2

2(q−1)∑
M=0

Rq−1,q−1(η;M)

bM
2
c∑

j=0

1

πj
|β|−2(M−j)

·
M−2j∑
h=0

ih

2h+3j
Ah
η(−Cη)

M−2j−h|β|2h−2j+1

(
M − 2j

h

)
M !

j!(M − 2j)!

· exp

(
− 2π

|β|2
(AηBη)

1
2

)
e (−Cη ((x0, x0) + n))

·


A−

ν
2
− 1

4
η B

ν
2
− 1

4
η hν′

(
|β|2

2π (AηBη)
1
2

)
for φ+,

(q − 1)!

q−1∑
r=0

(4π|n|)r

r!
A−

ν+r
2
− 1

4
η B

ν+r
2
− 1

4
η hν′′

(
|β|2

2π (AηBη)
1
2

)
for φ−,

wherein

Rq−1,q−1(η;M) =
∑

0≤µ1,µ2≤q−1
µ1+µ2=M

|β|M |β′|q−1
Re
(
β′−µ1 β̄′−µ2

)(q − 1

µ1

)(
q − 1

µ2

)
,

whilst the indices ν, ν ′ and ν ′′ are given by

ν = h+ j − q − 1

2
, ν ′ = |ν| − 1

2
, ν ′′ = |ν + r| − 1

2
.

So, for example ν ′′ =

{
q − r − h− j − 1 if q > h+ j + r,

r + h+ j − q otherwise.
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4.4. Determining the Fourier-Jacobi expansion

As before, for n = 0, the terms for the non-holomorphic part (both rank 1 and rank 2)
can be obtained from the respective holomorphic term after an index shift by −k + 1.

For the rank 1 terms one has for n 6= 0, by part 2. of Theorem 4.9, the holomorphic
term

φ1(n, η)+(z0) = (−π)q−1|β′|q−2
(2|n|)

q
2 Kq

(
2
√

2π|β′||n|
1
2

)
.

Note that the index ν = −q and that (x0,−, x0,−) = −n. For n 6= 0 the non-holomorphic
term is given by

φ1(n, η)−(z0) =2(−π)q−1|β′|q−2
(q − 1)!

q−1∑
r=0

2
q−r

2 |β′|r (4π|n|)r

r!

· (Q (x0,−) + 2|n|)
q−1

2 Kq−r

(
2π|β′|

√
2
√
Q (x0,−) + 2|n|

)
,

while for n = 0, one has

φ1(0, η)+(z0) = (−π)q−1|β′|q−2
(2|Q (x0,−)|)

q
2 Kq

(
2
√

2π|β′||Q (x0,−)|
1
2

)
and φ1(0, η)−(z0) = (−π)q−1|β′|2(q−1)

K0

(
2
√

2π|β′||Q (x0,−)|
1
2

)
.

4.4. Determining the Fourier-Jacobi expansion

In this section, we determine the Fourier-Jacobi expansion of the lift Φ(z0, f, ψ) for
f ∈ H+

k,L− by applying the action of the parabolic subgroup to the lift at the base-point
from Section 4.3.

4.4.1. Operation of the parabolic subgroup in Γ

To begin, we study the operation of P` on Φ(z0; f) through the intertwining operators
from Lemma A.2. For this, keep in mind that the theta function Θ(τ, z) is formed using
a factor of

√
2 in η and x0, see Sections 1.2.1 and 3.5, which has to be taken into account

in all exponential factors from Lemma A.2.

On rank 2 terms: Let us first consider the action on the non-singular terms. Recall
the definitions of Bη, Cη adn Aη from Notation 4.8 above.

Clearly, Bη and Cη are invariant under the operation of n(w, r) ∈ N and µ ∈M , as
they do not depend on x0. Further, under the operation of a(t) ∈ A, the expression Cη

is invariant, while a(t)Bη = Btη = t4Bη. The quotient B
1
2
η |β|−2 is again invariant. Quite

contrastingly, we have

n(w, 0)Aη(m,x0) = Aη(n, x0 − βw) (n(w, 0) ∈ N),

a(t)Aη(n, x0) = Atη(m,x0) (a(t) ∈ A), µAη(n, x0) = Aη(n, µ
−1x0) (µ ∈M),
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4. The Fourier-Jacobi expansion of the singular theta lift

and similarly for Aη(n, x0) and Aη(n, x0). Also recall that by part 3. of Lemma A.2 the
entire expression has to multiplied with t2.

The operation of the translations n(0, r) ∈ N is most easily described: The terms

φ
γ,δ

2 (n, η)± are just multiplied with a factor (see Lemma A.2) of

exp
(
(2πir=

(
2β′β̄

))
= exp (−4πiraα) .

The operation of n(0, w) is more complicated. It affects the polynomials Pγ̃,δ̃,`(x0,+). and
all factors containing either Aη and Aη. From the last factor in (4.5.2) and (4.5.3), one
has

e (−Cη (n+ (x0 − βw, x0 − βw))) =

e (−Cη (n+ (x0, x0))) · e
(
−Cη

[
|β|2(w,w)− 2 Re (β(x0, w))

])
.

Further, again by Lemma A.2, the term φ
γ,δ

2 (n, η)± gets a factor of

e
(
Re
(
2β′β̄

)
1
2
(w,w)− 2 Re (β′(x0, w))

)
.

Multiplying the two factors, we have

e
([
−Cη|β|2 + Re

(
β′β̄
)]

(w,w)− 2Cη Re (β(x0, w))− 2 Re (β′(x0, w))
)

= e
(
Re
[(

2 Re
(
β′β̄
)
|β|−1 − 2β′

)
(x0, w)

])
= e

(
Re(x0, w)

(
2ab
a
− 2b

)
+ 2α=(x0, w)

)
= e (2α=(x0, w)) .

(4.4.1)

since β = a > 0 and β′ = b+ iα.

Remark 4.13. For the case of signature (p, 1), studied in Example 4.11 on p. 117, we
get a somewhat simpler expression for the operation of the elements n(w, 0) ∈ N . Recall
that in this signature Aη = 1

2
A2
η. Thus, in the exponential, from (4.4.1) we have (with

β = a, β′ = b+ iα)

exp

(
− 2π

|β|2
|Aη(x0 − βw)|

(
1
2
Bη

) 1
2

)
e (−Cη ((x0, x0) + n) + 2α=(x0, w)) .

Considering the first term, since Bη = 2α2a2 and a > 0 one has

exp

(
∓ 2π

|β|2
(

1
2
Bη

) 1
2
∣∣Aη(x0)− 2 Re (β(x0, w)) + |β|2(w,w)

∣∣) =

exp

(
− 2π

|β|2
|Aη(x0)|

(
1
2
Bη

) 1
2

)
· exp

(
−2πε′

α

a

[
a2(w,w)− 2aRe(x0, w)

])
, (4.4.2)

where we have set ε′ := sign(αAη(x0 − aw)) (recall that α 6= 0). Collecting the second
factor in (4.4.2) and the factor e(−Cη(n+ (x0, x0)) + 2α=(x0, w)) we get

e
(
iε′α (a(w,w)− 2 Re(x0, w)) + 2α=(x0, w)− b

a
(n+ (x0, x0))

)
=

{
e
(
− b
a

(n+ (x0, x0)) + iα (a(w,w)− 2(x0, w))
)

(αAη(x0 − aw) > 0),

e
(
− b
a

(n+ (x0, x0)) + iα (−a(w,w) + 2(w, x0))
)

(αAη(x0 − aw) < 0).
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On rank 1 terms: Now, for the operation on the rank 1 terms. Now, η = [0, β′] with
β′ = a + ib. The elements a(t) ∈ A and µ ∈ M operate as usual, so a(t)β′ = tβ′ and
µ : x0 7→ µ−1x0. The operation of the Heisenberg group is much simpler in this case:
n(0, r) operates trivially, while n(w, 0) only operates through the multiplicative factor
from Lemma A.2, given by

e
(
−Re

(√
2(a+ ib)

(√
2x0, w

)))
= e
(
−2 Re (β′(x0, w))

)
.

4.4.2. The Fourier-Jacobi expansion

Now, we want to determine the Fourier-Jacobi expansion of Φ(z, f, ψ), i.e. an expansion
of the form

Φ(z, f, ψ) =
∑
κ∈Q

aκ(σ)e2πiκRe τ` ,

where τ` is coordinate attached to the `-component. Let us assume that for the base
point Re τ` = 0. This can easily be realized through a suitable choice of coordinate in
D. For example, in the Siegel domain model of the symmetric domain (see (2.1.1)) in
signature (p, 1), we have τ` = τ , and the base point is given by i.

Consider z = gz0 with g = n(w, 0)n(0, r)a(t)µ ∈ G, and write Φ(z, f, ψ) in the form

Φ(gz0, f, ψ) = c0(t, w, µ) +
∑
κ∈Q×

cκ(w, t, r, µ)e2πiκr.

Now, only the non-singular part of the lift, Φ2(z, f, ψ) transforms under the action of
the center of N , while the rank 0 and rank 1 contributions are invariant. Hence, the
constant term of the Fourier-Jacobi expansion is given by

c0(t, w, µ) = Φ0(z, f, ψ) + Φ1(z, f, ψ),

and all other terms, for κ > 0, come from Φ2(z, f, ψ). In this case, κ 6= 0 is given by
(possibly a constant multiple of) aα. Hence,

cκ(t, w, r, µ) =∑
γ,δ

∑
b

∑
n

∑
λ

e
(
−λ̄2β

′) [a+(λ, n)F(ĝ) ◦ φγ,δ2 (n, η)+ + a−(λ, n)F(ĝ) ◦ φγ,δ2 (n, η)−
]

(4.4.3)
These terms, as well as the rank 1 contribution to c0(t, w, µ), can be obtained by applying
the group operation to the results from Theorem 4.9.

Theorem 4.14. For z ∈ D, denote by gz ∈ G an element with gzz0 = z, and let t, w, r, µ
be the parameters of its NAM decomposition, i.e. gz = n(w, 0)n(0, r)a(t)µ. Then, the
Fourier-Jacobi expansion of the singular theta lift Φ(z, f, ψ) for a weak harmonic Maass
form f ∈ H+

k,L− is given by

22(q−1)

2i(−1)q−1
Φ(z, f, ψ) =

22(q−1)

2i(−1)q−1
Φ(gzz0, f, ψ) = c0(t, w, µ) +

∑
κ∈Q×

cκ(t, w, µ)e2πiκr,
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4. The Fourier-Jacobi expansion of the singular theta lift

where for κ 6= 0 the Fourier-Jacobi coefficients can be written in the form

cκ(t, w, µ) =
∑
a,α
aα=κ

∑
γ,δ

(∑
b

∑
n

∑
λ

A
γ,δ
κ (n, λ, ( a b

0 α )) (t, w, µ)e(−λ̄2β
′)
)
⊗ Ωq−1(γ, δ),

(4.4.4)
while the constant coefficient c0(t, w, µ) consists of a contribution of rank 1 terms, which
can be written in the form∑

γ,δ

(∑
a,b

∑
n

∑
λ

Bγ,δ (n, λ, ( ab )) (t, w, µ)e(−λ̄2β
′)
)
⊗ Ωq−1(γ, δ) (4.4.5)

and, if p > 1, a contribution of the 0-orbit, which we omit. (However, see Corollary 4.15
for the case of signature (p, 1).)

The coefficients in (4.4.5) and (4.4.4) are given as follows2: For the rank 1 contributions
to the constant term one has (as usual β′ = ( ab ))

Bγ,δ(n, λ, β′)(t, w, µ) =(
−i
√
π
)nγ+nδ tnγ+nδ+2β′nγβ̄′nδ

2q−2−nγ−nδ∑
`=0

2
`
2

+1Pγ̃,δ̃,`(x0,+)e (−Re (β′(x0, w))) .

·
[
a+(λ, n)B+

n (β′; t) + a−(λ, n)B−n (β′; t)
]
,

(4.4.6)
wher B+

n (β′; t) and B−n (β′, t) denote contributions of the holomorphic and the non-
holomorphic terms, respectively. Setting ν = 1

2
(`− nγ + nδ), they are given by

B+
n (β′; t) = tν |β′|ν (2|(x0,−, x0,−)|)−

ν
2 Kν

(
2
√

2πt|β′||(x0,−, x0,−)|
1
2

)
,

B−n (β′; t) = 1
2
a(λ, n)−Vp+q,1−ν

(
2π(x0,−, x0,−), πt2|β′|2, 4π|n|

)
(n 6= 0),

B−0 (β′; t) = tν−k+1|β′|ν−k+1
(2|(x0,−, x0,−)|)

k−ν−1
2 ·Kν−k+1

(
2
√

2πt|β′||(x0,−, x0,−)|
1
2

)
.

The coefficients for κ ∈ Q×, coming from the contributions of the rank 2 terms are given
as follows (with η = ( a b

0 α )):

A
γ,δ
κ (n, λ, η) =

(
−i
√
π
)nγ+nδ tnγ+nδ+2

2q−2−nγ−nδ∑
`=0

2
`+1

2 Pγ̃,δ̃,`(x0,+ − βw)

nγ+nδ∑
M=0

Rnδ,nγ (η,M)

bM2 c∑
j=0

1

πj

·
M−2j∑
h=0

ih

2h+3j
Ah
tη(x0 − βw) (−Cη)

M−2j−h t−2h−2j|β|−2h−2j

(
M − 2j

h

)
M !

j!(M − 2j)!

· e
(
−Cη ((x0, x0) + n) + 2α=(x0, w)

)
·
[
a+(λ, n)A+

n (η; t, w) + a−(λ, n)A−n (η; t, w)
]
,

(4.4.7)

2Since the notation is already quite heavy, we have suppressed the µ-dependence here, writing x0
instead of µ′−1x0.
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4.4. Determining the Fourier-Jacobi expansion

wherein A+
n (η; t, w) and A−n (η; t, w) denote contribution, which come from the holomorphic

and non-holomorphic terms, and are given by

A+
n (η; t, w) = t2ν

(
Atη(x0 − βw)

Bη

)− ν
2

Kν

(
2π

|β|2
(Atη(x0 − βw)Bη)

1
2

)
,

A+
n (η; t, w) = 1

2
Vp+q,1−ν

(
π

(
Atη(x0 − βw)

t2|β|2
− 2n

)
,

π

t2|β|2
Btη, 4|n|π

)
(n 6= 0),

A+
0 (η; t, w) = t2(ν−k+1)

(
Atη(x0 − βw)

Bη

)− ν−k+1
2

Kν−k+1

(
2π

|β|2
(Atη(x0 − βw)Bη)

1
2

)
.

Proof. After setting

A
γ,δ

k (n, λ, η)(t, w, r, µ) := a+(λ, n)F(ĝ) ◦ φγ,δ2 (n, η)+ + a−(λ, n)F(ĝ) ◦ φγ,δ2 (n, η)−,

Bγ,δ(n, λ, η)(t, w, µ) := a+(λ, n)F(ĝ) ◦ φγ,δ1 (n, η)+ + a−(λ, n)F(ĝ) ◦ φγ,δ1 (n, η)−,

the results follow directly from Theorem 4.9 and the consideration concerning the group
operation on the terms φi(n, η)± from the beginning of this Section (see pp. 119), including
the factor of t2 from the intertwining operation of a(t) from Lemma A.2.3.

Corollary 4.15. In signature (p, 1) the Fourier-Jacobi expansion of 1
2i

Φ(z, f, ψ) takes
the form

c0(t, w) +
∑
κ∈Q×

cκ(t, w)e2πiκRe τ` ,

where the constant term c0(t, w) is given by

c0(t, w) = 4πI0 + t2
∑

β′=(a,b)

∑
λ

[
a−(λ, 0)

1

(2πt2|β′|)p+1 Γ(p+ 1) +

∑
n6=0

(
a+(λ, n)

1

2πt2|β′|2
+ a−(λ, n)(p− 1)!

p−1∑
r=0

πr

r!
(4|n|)

r
2
− 1

4 tr−
1
2 |β′|r−

1
2

· hr

(
1

4πt|β′||n|
1
2

)
e−4πt|β′||n|

1
2

)]
· e
(
−λ2β

′ − Re (β′(x0, w))
)
,

with a rational3 constant I0, which can be evaluated using the methods of [2], see [40].
The coefficients cκ(t, w) (κ > 0) take the form

cκ(t, w) =
∑
a,b

∑
m

∑
λ

Aκ(n, λ, [β, β
′])(t, w)e−2πiλ2β′ .

wherein

Aκ(n, λ, [β, β
′])(t, w) =

(
a+(λ, n)

√
2

2

t|β|

B
1
2
η

+ a−(λ, n)A−n (η; t, w)

)

· exp

(
−2

π

|β|2
|Atη(x0 − βw)|

(
1
2
Bη

) 1
2 − 2πi

[
Cη ((x0, x0) + n) + 2α=(x0, w)

])
,

3In fact, I0 is an integer for f ∈ M!
k,L− .

123



4. The Fourier-Jacobi expansion of the singular theta lift

with a non-holomorphic term A−n (η; t, w), given by

√
2(p− 1)!

p−1∑
r=0

(4|n|π)r

r!
t2r+1+2|β|B

r−1
2

η

(
1
2
A2
tη(x0 − βw)− 2t2|β|2 (2|n| − n)

)− r
2

· hmax{0,r−1}

(
|β|2

2π

((
1
2
Atη(x0 − βw) + 2t2|β|2(2|n| − n)

)
Bη

)− 1
2

)
.

Proof. Follows directly from Example 4.11 and Remark 4.13 after taking into account
the factors of t2 from the intertwining operation of a(t).

The case of signature (1, q). In this case where p = 1, there is no contribution to from

the 0 orbit, since ψ̂1,q((0, x0), τ) = 0. In other words, Φ0(z, f, ψ) ≡ 0. Hence, Theorem
4.14 gives the complete Fourier-Jacobi expansion in this case. Thus, with Example 4.12
we get the following.

Corollary 4.16. In signature (1, q), the singular theta lift of a weak harmonic Maass
form f ∈ Hk,L− with Fourier coefficients a+(λ,m) and a−(λ,m) has the following Fourier-
Jacobi expansion

22(q−1)

2i(−1)q−1
Φ(z, f, ψ) =

c0(t, w) +
∑
κ∈Q×

cκ(t, w)e2πiκr

⊗ Ωq−1,q−1(1, 1),

with

c0(t, w) =
∑
ab

∑
n

∑
λ

B1,1 (m,λ, ( ab )) (t, w)e (−λ2(a+ ib)) and

cκ(t, w) =
∑
a,α
aα=κ

∑
b

∑
m

∑
λ

A1,1
κ (m,λ, ( a b

α )) (t, w)e (−λ2(a+ ib)) (κ 6= 0).

Herein, the coefficients B1,1 are given by

B1,1(n, λ, ( ab ))(t, w, µ) = (−π)q−1
[
a(λ, n)+tq|β′|q−2

(2|n|)
q
2 Kq

(
2
√

2π|β′||n|
1
2

)
+ a(λ, n)−t2(q−1)|β|2(q−1)Vq+1,1−q

(
2πQ (x0,−) , πt2|β′|2, 4π|n|

)]
(−Re (β′(x0, w)))

for n 6= 0 and by

B1,1(0, λ, ( ab ))(t, w, µ) = (−π)q−12tq|β′|q−2
e (−Re (β′(x0, w)))[

a(λ, 0)+|Q (x0,−)|
q
2Kq

(
2

3
2π|β′||Q (x0,−)|

1
2

)
+ a(λ, 0)−tq|β|qK0

(
2

3
2π|β′||Q (x0,−)|

1
2

)]
for n = 0.
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4.5. Calculation of the unfolding integrals

The coefficients A1,1
κ are given as follows (with η = ( a b

α )):

A1,1
κ (n, λ, η) = (−π)q−1t2(q−1)

√
2

2

2(q−1)∑
M=0

Rq−1,q−1(η,M)

·
bM2 c∑
j=0

1

πj

M−2j∑
h=0

ih

2h+3j
Ah
tη(x0 − βw) (−Cη)

M−2j−h t2h−2j|β|−2h−2j

(
M − 2j

h

)
M !

j!(M − 2j)!

·
[
a+(λ, n)A+

n (η; t, w) + a−(λ, n)A−n (η; t, w)
]
· e
(
−Cη ((x0, x0) + n) + 2α=(x0, w)

)
,

where A+
n , the contribution from the holomorphic part, is given by

A+
n (η; t, w) = t2ν−1 (Atη(x0 − βw))−

ν
2
− 1

4 Bη

ν
2
− 1

4 exp

(
− 2π

|β|2
(Atη(x0 − βw)Bη)

1
2

)
· hν′

(
|β|2

2π (Atη(x0 − βw)Bη)
1
2

)

with the index ν given by h+ j + 1− q and ν ′ = |ν| − 1
2

= max(q − 1− h− j, h+ j − q).
The contribution of the non-holomorphic part A−n is given by

A−n (η; t, w) = (q − 1)!

q−1∑
r=0

(4π|n|)r

r!

(
Atη(x0 − βw) + 2t2|β|2 (2|n| − n)

)− ν
2
− r

2
− 1

4

·
(
t4Bη

) ν
2

+ r
2
− 1

4 exp

(
− 2π

|β|2
(
Atη(x0 − βw) + 2t2|β|2 (2|n| − n)

) 1
2 B

1
2
η

)
· hν′′

(
|β|2

2π

(
Atη(x0 − βw) + 2t2|β|2 (2|n| − n)

)− 1
2 B
− 1

2
η

)
,

with ν ′′ = |ν + r| − 1
2

for n 6= 0. For n = 0, we have

A−0 (η; t, w) =

t2ν−k+1 (Atη(x0 − βw))−
ν
2

+ k
2
− 1

4 Bη

ν
2
− k

2
− 1

4 · h|ν−k|− 1
2

(
|β|2

2π (Atη(x0 − βw)Bη)
1
2

)
.

Proof. Follows immediately from Theorem 4.14 and Example 4.12.

4.5. Calculation of the unfolding integrals

In this section, we will evaluate the unfolding integrals for the theta lift, providing all
the Lemmas used in the proof of Theorem 4.9 above. We use the notation introduced in
Section 4.3 (in particular, see Notation 4.8).
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4. The Fourier-Jacobi expansion of the singular theta lift

4.5.1. Non-singular terms

First, we calculate the contribution of the terms where the matrix η = [β, β′] is non-
singular. By Lemma 4.6 a set of representatives for these η under the operation of SL2(Z)
is given by the rational matrices(

a b
0 α

)
∈ M2(Q) with a > 0, α 6= 0 and b (mod aZ).

Since the stabilizer is trivial, for fixed η, the unfolding integrals take the form∑
n

(
â−(n)φ2(n, η)−(z0) + â+(n)φ2(n, η)+(z0)

)
=

=
∑
n

â+(n)

∫ reg

H
ψ̂p,q

(√
2(η, x0), τ, z0

)
e2πinue−2πnvv−s−2du dv

+
∑
n

â−(n)

∫ reg

H

∑
γ∈Γη\Γ

ψ̂p,q(
√

2(η, x0), τ, z0)e2πinuΓ(1− k, 4π|n|v)v−s−2du dv.

Now, the inner integral, over u ranging through R, is simply a Fourier-transform, which
we shall calculate first. For the outer integral over v, ranging over R>0, we will make use
of the integral representations of Bessel functions (cf. Appendix B.1).

Preliminary lemmas

Let us first gather some lemmas. The first three will help us to calculate the Fourier
transform.

Lemma 4.17. The Fourier transform∫ ∞
−∞

e−
2π
v (|β′|2+|τ |2|β|2+2uRe(β′β̄))+2πiu(x0,x0)+2πv((x0,−,x0,−)−(x0,+,x0,+))e2πinudu,

with n 6= 0 is given by

e+2πnv v
1
2

√
2|β|

exp

(
− vπ

|β|2
Aη −

π

v|β|2
Bη

)
e
(
−Cη ((x0, x0) + n)

)
,

with Aη = 1
2

(
n+ |β|2 + (x0, x0)

)2 − 4(x0,+, x0,+)|β|2, 1
2
Bη = |β′|2|β|2 − Re

(
β′β̄
)2

and

Cη = Re
(
β′β̄
)
|β|−2 from (4.3.2) and (4.3.3).

Proof. With (B.2.1) setting

A =
i|β|2

v
, B =

2i

v
Re(β′β̄) + (x0, x0) and

C = i
[ |β′|2
v

+ v|β|2 + v ((x0,+, x0,+)− (x0,−, x0,−))
]
,

(4.5.1)
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4.5. Calculation of the unfolding integrals

one obtains the Fourier transform
√
v√

2|β|
exp

(
2πi

(
− n

2

4A
− nB

2A
− B2

4A
+ C

))
=

√
v√

2|β|
exp

(
−πv

[
n2

2|β|2
+
n(x0, x0)

|β|2
+

(x0, x0)2

2|β|2
+ 2 ((x0,+, x0,+)− (x0,−, x0,−)) + 2|β|2

]

− π

v

[
2|β′|2 −

2 Re
(
β′β̄
)2

|β|2

]
− 2πi

Re(β′β)

|β|2
((x0, x0) + n)

)
.

After multiplying with e−2πnv, one has
√
v√

2|β|
exp

(
− vπ

|β|2

[
1

2

(
n+ 2|β|2 + (x0, x0)

)2 − 4(x0,−, x0,−)|β|2 − 2n|β|2
]
− πv2n

− 2π

v|β|2
[
|β′|2|β|2 − Re

(
β′β̄
)2
])
· e−2πi

Re(β′β̄)

|β|2
((x0,x0)+n)

=

√
v

|β|
e
− vπ

|β|2
Aη− π

v|β|2
Bη
e−2πiCη((x0,x0)+n),

as claimed.

Lemma 4.18. The Fourier transform∫ ∞
−∞

(β′ + τ̄β)k1(β̄′ + τ̄ β̄)k2e−
2π
v (|β′|2+|β|2|τ |2+2uRe(β′β̄))+2πi(τ(x0,+,x0,+)+τ̄(x0,−,x0,−))e2πinudu,

is given by

e+2πnv

√
v√

2|β|
p̃η(v, n) exp

(
− vπ

|β|2
Aη −

π

v|β|2
Bη

)
e−2πiCη((x0,x0)+n),

with a polynomial p̃η(v, n) of the following form

k1+k2∑
M=0

Rk1,k2(η,M)

bM2 c∑
j=0

M−2j∑
κ=0

iκvκ+jAη(n)κ

|β|2κ+2j

(−Cη)
M−2j−κ

2κ+3jπj
M !

j!(M − 2j)!

(
M − 2j

κ

)
.

wherein

Rk1,k2(η,M) :=
∑

0≤µ1<k1
0≤µ2≤k2
µ1+µ2=M

βµ1 β̄µ2β′k1−µ1 β̄′k2−µ2

(
k1

µ1

)(
k2

µ2

)
.

Note that if k1 = k2 = k, the coefficient Rk,k(η,M) is real and can be written in the form∑
0≤µ1,µ2<k
µ1+µ2=M

Re
(
βµ1 β̄µ2β′k−µ1 β̄′k−µ2

)( k
µ1

)(
k

µ2

)
.
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4. The Fourier-Jacobi expansion of the singular theta lift

Proof. We need only calculate the contribution of the polynomial, the rest follows from
Lemma 4.17. Rewrite the polynomial in the form

(β′ + τ̄β)
k1
(
β̄′ + τ̄ β̄

)k2 =

k1∑
µ1=0

k2∑
µ2=0

τ̄µ1+µ2βµ1 β̄µ2β′k−µ1 β̄′k−µ2

(
k1

µ1

)(
k2

µ2

)

=

k1+k2∑
M=0

τ̄MRk1,k2([β, β′],M),

with Rk1,k2([β, β
′],M) as above. Setting A, B and C as in (4.5.1) from the proof of

Lemma 4.17, by Lemma B.2 one has to apply exp
(

v
8π|β|2

d2

du2

)
and obtains

k1+k2∑
M=0

bM2 c∑
j=0

[
v

8π|β|2

]j
τ̄M−2j M !

j!(M − 2j)!
Rk1,k2([β, β′],M),

where, further τ̄ is to be replaced by

−n+B

2A
− iv =

iv

2|β|2
(
n− |β|2 + (x0, x0)

)
− Re(β′β̄)

|β|2
=

iv

2|β|2
Aη −Cη.

Thus, the polynomial part of the Fourier transform is given by

p̃η(v, n) =

k1+k2∑
M=0

Rk1,k2(η;M)

bM
2
c∑

j=0

1

πj
1

|β|2(M−j)

·
M−2j∑
κ=0

iκvκ+j

2κ+3j
Aκ
η

(
−Re

(
β′β̄
))M−2j−κ

(
M − 2j

κ

)
M !

j!(M − 2j)!
.

With the definition of Cη this gives the claimed form.

Lemma 4.19. The integral∫ ∞
−∞

(β′ + τ̄β)k1(β̄′ + τ̄ β̄)k2e
(
u(x0, x0)

)
· exp

(
−2π

v

(
|β′|2 + |τ |2|β|2 + 2uRe

(
β′β̄
))

+ 2πv ((x0,−, x0,−)− (x0,+, x0,+))

)
du,

is given by

v
1
2

√
2|β|

p̃η(v, 0) exp

(
−v π

|β|2
Aη(0)− 1

v

π

|β|2
Bη

)
e−2πiCη(x0,x0),

where p̃η is the polynomial from Lemma 4.18, and Aη(0) is given by

1

2

(
2|β|2 + (x0, x0)

)2 − 4(x0,+, x0,+)|β|2.
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4.5. Calculation of the unfolding integrals

Proof. The integral is a Fourier transform. Arguing similarly to the proof of Lemma
4.17, with

A =
i|β|2

v
, B =

2i

v
Re
(
β′β̄
)

we get the exponential factor

exp

(
−πv

[
(x0, x0)2

2|β|2
− |β|2 + ((x0,−, x0,−)− (x0,+, x0,+))

]
− π

v

[
Re
(
β′β̄
)2

|β|2
− |β′|2

])

· e
(
−(x0, x0)

|β|2
Re
(
β′β̄
))

.

The polynomial is calculated as in Lemma 4.18, up to the last step where, now, τ̄ is
replaced by

−(x0, x0)−B
2A

− iv =
iv

2|β′|
(
(x0, x0)− |β|2

)
− Re(β′β̄)

|β|2
=

iv

2|β|2
Aη(n = 0)−Cη.

Once the inner integrals are evaluated using the previous lemmas, the following two
lemmas allow us to evaluate the outer integrals.

Lemma 4.20. Let ` be an integer. We have the following identity

1

|β|

∫ ∞
0

v−s−
1
2
−` exp

(
− vπ

|β|2
Aη −

π

v|β|2
Bη

)
dv

=
2

|β|

(
Aη

Bη

) 1
2(s+`− 1

2)
K−s+ 1

2
−`

(
2π

|β|2
A

1
2
ηB

1
2
η

)
.

Now, for an integer k > 0 denote by h′k the Bessel polynomial of index k and set h′0 = 1.
Then, for s = 0, we have if ` ≤ 0:

A
`−1

2
η

B
`/2
η

h′−`

(
|β|2

2πA
1
2
ηB

1
2
η

)
exp

(
− 2π

|β|2
A

1
2
ηB

1
2
η

)
,

whereas, if ` > 0, we have

A
`−1

2
η

B
`/2
η

h′`−1

(
|β|2

2πA
1
2
ηB

1
2
η

)
exp

(
− 2π

|β|2
A

1
2
ηB

1
2
η

)
,

Proof. Recall that Aη and Bη are both positive (as β and β′ are both non-zero). Thus,
the first equality is immediate from (B.1.3), while the second, for s = 0 follows by (B.1.5).
For the third, use K−ν = Kν from (B.1.4) and argue similarly.
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4. The Fourier-Jacobi expansion of the singular theta lift

Lemma 4.21. Let ` be an integer. Then, the value at s = 0 of the integral

1

|β|

∫ ∞
0

v−s+`−
1
2 Γ (κ− 1, 4π|n|v) e+2πnv exp

(
− π

|β|2

{
vAη +

1

v
Bη

})
dv,

where κ = p+ q − 2, is given by

2

|β|
κ!

(
Aη − 2n|β|2 + 4n|β|2

Bη

) 1
2(`− 1

2) κ∑
r=0

(4π|n|)r

r!

·

(
Aη − 2n|β|2 + 4|n||β|2

Bη

)− r
2

K 1
2
−`+r

(
2π

|β|2
(
Aη − 2n|β|2 + 4|n||β|2

) 1
2 B

1
2
η

)
=

1

|β|
Vκ+2, 1

2
−`

(
π

(
Aη

|β|2
− 2n

)
,
πBη

|β|2
, 4π|n|

)

Proof. Follows from Lemma 4.20 with Aη shifted by −2n|β|2 and Lemma B.1, which in
turn is a consequence of the finite series expansion of the incomplete Gamma function in
(B.1.2).

The contribution of the holomorphic terms

Let us now calculate φ
γ,δ

2 (n, η)+, the contribution due to the lift of the holomorphic part
of the weak harmonic Maass form f , with Fourier expansion f+ =

∑
n�−∞ â

+(n)qn. We
have

φ
γ,δ

2 (m, η)+ =
(
−i
√
π
)nγ+nδ

rγ+rδ∑
`=0

2
`
2Pγ̃,δ̃,`(x0,+)

· CT
s=0

∫ ∞
0

v
`−nγ−nδ

2
−s−2e−2π(v(x0,+,x0,+)+(x0,−,x0,−))e2πmv

∫ ∞
−∞

(β′ + τ̄β)
nδ
(
β̄′ + τ̄ β̄

)nγ
· exp

(
−2π

v

(
|β′|2 + |τ̄ |2|β|2

)
− 2π=

(
β′β̄
)

+ 2πiu(x0, x0)

)
e2πinudu dv,

After using Lemmas 4.17 and 4.18 to evaluate the inner integral, the integrand of the
outer integral is given by

2−
1
2

|β|
v

1
2

(`−nγ−nδ)−s− 3
2 p̃η(v, n) exp

(
− vπ

|β|2
Aη −

π

v|β|2
Bη

)
e−2πiCη((x0,x0)+n),

with p̃η(v, n) the polynomial from Lemma 4.18, with k1 = nδ and k2 = nγ. Evaluating
with Lemma 4.20, and using (B.1.5), we get the following result:
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4.5. Calculation of the unfolding integrals

Lemma 4.22. For fixed n and η and at the base point z0, the rank two term φ
γ,δ

2 (n, η)+

is given by

φ
γ,δ

2 (n, η)+ =
(
−i
√
π
)nγ+nδ

2q−2−nγ−nδ∑
`=0

2
`+1

2 Pγ̃,δ̃,`(x0,+)

nγ+nδ∑
M=0

Rnδ,nγ (η,M)

·
bM2 c∑
j=0

1

πj

M−2j∑
h=0

ih

2h+3j
Ah
η (−Cη)

M−2j−h |β|−2h−2j

(
M − 2j

h

)
M !

j!(M − 2j)!

·
(
Aη

Bη

)− ν
2

Kν

(
2π

|β|2
(AηBη)

1
2

)
exp (−2πiCη ((x0, x0) + n)) ,

(4.5.2)

where ν = h + j + 1
2

(`− nγ − nδ) − 1
2
. Furthermore, if ν ≡ 1

2
(mod 1), the K-Bessel

functions in the last line can be replaced by

1

2
|β| (AηBη)

− 1
4 h|ν|− 1

2

((
2π (AηBη)

1
2

)−1
)

exp

(
− 2π

|β|2
(AηBη)

1
2

)
,

where hn denotes the nth Bessel polynomial.

The contribution of the non-holomorphic part

Now, we calculate φ
γ,δ

2 (n, η)−, the contribution due to the non-holomorphic part f− of a
weak harmonic Maass form, with a Fourier expansion of the form

f−(τ) = â−(0)v1−k +
∑
n∈Q
n6=0

â−(n)Γ (1− k, 4π|n|v) e2πinu.

Let us briefly examine the contribution due to the constant term. Using Lemma 4.19
to evaluate the inner integral over u, we get

2−
1
2

|β|
v−

1
2
−k+ 1

2
(`−nγ−nδ)−sp̃η(v, 0) exp

(
− π

|β2|

(
vAη(0)− 1

v
Bη

))
e−2πiCη(x0,x0)

as the integrand of the integral over v, which can be evaluated exactly like for the
holomorphic terms, with n = 0 throughout and index shifted by −(k − 1).

Terms with n 6= 0: The argumentation is similar, as previously for the holomorphic
part. The inner integral, over u, is evaluated exactly as before. The integrand for the
integral over v takes the form

2−
1
2

|β|
v

1
2

(`−nγ−nδ)−s− 3
2 p̃η(v, n)Γ (k + 1, 4π|n|v) e2πnve

− vπ

|β|2
Aη− π

v|β|2
Bη
e−2πiCη((x0,x0)+n),

with p̃η(v, n) from Lemma 4.18. The integral is now evaluated using Lemma 4.21, yielding
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4. The Fourier-Jacobi expansion of the singular theta lift

Lemma 4.23. Let κ = p + q − 2. For fixed n and η and at the base point z0, the
contribution of the rank two orbit to the lift of the non-holomorphic part f− of f is given
by

φ
γ,δ

2 (m, η)− =
(
−i
√
π
)nγ+nδ

2q−2−nγ−nδ∑
`=0

2
`+1

2 Pγ̃,δ̃,`(x0,+)

nγ+nδ∑
M=0

Rnδ,nγ (η,M)

·
bM2 c∑
j=0

1

πj

M−2j∑
h=0

ih

2h+3j
Ah
η (−Cη)

M−2j−h |β|−2h−2j

(
M − 2j

h

)
M !

j!(M − 2j)!

· Vκ+2, 3
2
−ν

(
π

(
Aη

|β|2
− 2n

)
,
πBη

|β|2
, 4π|n|

)
exp (−2πiCη ((x0, x0) + n)) .

(4.5.3)

where ν = h+ j + 1
2

(`− nγ − nδ)− 1
2
.

We recall that by the definition of the special function Vn,ν (A,B, c) we have

Vκ+2, 3
2
−ν

(
π

(
Aη

|β|2
− 2n

)
,
πBη

|β|2
, 4π|n|

)
= κ!

κ∑
r=0

(4π|n|)r

r!

·

(
Aη + 4|n||β|2 − 2n|β|2

Bη

)− ν
2
− r

2

Kr+ν

(
2π

|β|2
((
Aη + 4|n||β|2 − 2n|β|2

)
Bη

) 1
2

)
.

Further, in every term where ν + r is a half-integer, one can set ν ′ = |r + ν| − 1
2

and
replace Kr+ν with

1

2
|β|
((
Aη + 4|n||β|2 − 2n|β|2

)
Bη

)− 1
4 hν′

((
2π
((
Aη + 4|n||β|2 − 2n|β|2

)
Bη

) 1
2

)−1
)

· exp

(
− 2π

|β|2
((
Aη + 4|n||β|2 − 2n|β|2

)
Bη

) 1
2

)
.

4.5.2. Rank one terms

Now, let consider the case where η = [β, β′] is of rank 1. Recall from Lemma 4.6 that a
set of representatives for the orbit under SL2(Z) operation is given by

[0, β′] =

(
0 a
0 b

)
, with either α > 0 or a = 0 and b > 0.

Further, the stabilizer in this case is SL2(Z)∞. So the domain of integration is given by

Γ′∞\Γ′ = {u+ iv ; 0 < u < 1, 0 < v <∞} .

Again, we begin with the contribution of the holomorphic part.

132



4.5. Calculation of the unfolding integrals

Holomorphic part

For a fixed pair of multi-indices γ, δ, and fixed η = [0, β′], the rank one term φ
γ,δ

1 (n, η)+

is given by the integral

φ
γ,δ

1 (n, η)+ = (−i)nγ+nδπ
nγ+nδ

2 β′nδ β̄′nγ
2q−2−nδ−nγ∑

`=0

2
`
2Pγ̃,δ̃,`(x0,+)

· CT
s=0

∫
R>0

∫ 1

0

v
1
2

(`−nγ−nδ)−2−se−
2π
v
|β′|2e2πiu(x0,x0)−2πv(Q(x0,+)−Q(x0,−))e2πinτdu dv.

The integral over u just picks out the constant term. Hence, n = −(x0, x0) for all
non-vanishing contributions. Now, (x0,−, x0,−) − (x0,+, x0,+) − n = 2(x0,−, x0,−). Since
the norm of x0,− is negative, the integrals over v take the form

CT
s=0

∫ ∞
0

v
1
2

(`−nγ−nδ)−2−s exp

(
−4πv|(x0,−, x0,−)| − 2π

v
|β′|2

)
dv. (4.5.4)

If Q (x0,−) 6= 0, by the integral representation of the Bessel-functions (B.1.3), setting
ν = 1

2
(`− nγ − nδ)− 1 and evaluating at s = 0, one obtains

2|β′|ν (2|(x0,−, x0,−)|)−
ν
2 Kν

(
2π|β′|

∣∣∣∣√2(x0,−, x0,−)

∣∣∣∣) .
Further, if ν is a half-integer, by (B.1.5), this equals

|β′|ν−
1
2 (2|(x0,−, x0,−)|)−

ν
2
− 1

4 h|ν|− 1
2

((
2
√

2π|β′||(x0,−, x0,−)|
1
2

)−1
)
e−2
√

2π|β′||(x0,−,x0,−)|
1
2 ,

with the Bessel polynomial hν′ , ν
′ = |ν| − 1

2
. If Q (x0,−) = 0 the integral (4.5.4) can be

evaluated using the integral representation of Γ-functions, see Example 4.11.

Lemma 4.24. For fixed n and fixed η = [0, β′], at the base point z0, and assuming that
Q (x0,−) 6= 0, the rank one term is given by

φ
γ,δ

1 (n, η)+(z0) =
(
−i
√
π
)nγ+nδ β′nγβ̄′nδ

2q−2−nγ−nδ∑
`=0

2
`
2Pγ̃,δ̃,`(x0,+)|β′|ν2

ν
2 |(x0,−, x0,−)|

ν
2

·



2Kν

(
2
√

2π|β′||(x0,−, x0,−)|
1
2

)
,

if ν = 1
2

(`− nγ − nδ)− 1 ≡ 0 (mod 1)(
2(x0,−, x0,−)|β′|2

)− 1
4 hν′

(
1

2π|β′| |2(x0,−, x0,−)|−
1
2

)
exp

(
−2
√

2|β′|π|(x0,−, x0,−)|
1
2

)
with ν ′ = |ν| − 1

2
, if ν ≡ 1

2
(mod 1) .

Note that ν ranges from −nγ+nδ
2
− 1 to q − 2− nγ+nδ

2
.
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4. The Fourier-Jacobi expansion of the singular theta lift

Non-holomorphic part

As for the lift of the holomorphic part, when n 6= 0 the inner integral over u picks out
the constant term. The outer integral now is of the form

CT
s=0

∫ ∞
0

v
1
2

(`−nγ−nδ)−2−sΓ(κ+ 1, 4π|n|)e−
π
v
|β′|2e2πv((x0,−,x0,−)−(x0,+,x0,+))dv,

with κ = (p+ q)− 2. Hence, using Lemma 4.21, we get the following.

Lemma 4.25. For fixed n 6= 0 and fixed η = [0, β′], at the base point z0, the rank one
term is given by

φ
γ,δ

1 (n, η)−(z0) =
(
−i
√
π
)nγ+nδ β′nγβ̄′nδ

2q−2−nγ−nδ∑
`=0

2
`
2

+1Pγ̃,δ̃,`(x0,+)

· κ!
κ∑
r=0

(4π|n|)r

r!

(
2(x0,−, x0,−) + 4|n|

|β′|2

)− ν+r
2

Kν+r

(
2π|β′| (2(x0,−, x0,−) + 4|n|)

1
2

)

=
(
−iπ

1
2

)nγ+nδ
β′nγβ̄′nδ

2q−2
−nγ−nδ∑
`=0

2
`
2Pγ̃,δ̃,`(x0,+) · Vκ+2,1−ν

(
2π(x0,−, x0,−), π|β′|2, 4π|n|

)
.

where, as usual κ = p + q − 2 and ν = 1
2
(` − nγ − nδ) − 1. Note that if ν + r is a

half-integer, the Bessel functions in the second line can be replaced by

1

2
3
2 (|β′|)

1
2

(2(x0,−, x0,−) + 4|n|)−
1
4 hν′

([
2

3
2π|β′|

√
(x0,−, x0,−) + 2|n|

]−1
)

· exp

(
−2

3
2π|β|

√
(x0,−, x0,−) + 2|n|

)
wherein hν′ is the Bessel polynomial of index ν ′ = |ν + r| − 1

2
.

For n = 0 the contribution of the non-holomorphic part φ
γ,δ

1 (0, η)− is similar to the

holomorphic part φ
γ,δ

1 (0, η)+ (see Lemma 4.24), but with index shifted by −k + 1 due to
the power of v in the constant term of f−.
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Appendix A.

Tools from representation theory

In the present chapter, we will gather some results form representation theory used
later on. Recall the notation from Chapter 1. The Lie algebra of G = U(V ) is denoted
by g0, whilst g = g0 ⊗ C is its complexifcation, viewed as a right C vector space. We
have the Cartan decomposition of g0 = k0 ⊕ k0 and the Harish-Chandra decomposition
g = k⊕ p+ ⊕ p−.

A.1. Flensted-Jensen theory

In [21, Sec. 2] Flensted-Jensen derived an integral formula for connected, non-compact
semi-simple Lie groups. In the following, we establish the multiplicities that go into this
formula for the Lie group G = SU(p, q). Following [21] and [45, Sec. 4], we consider the
following sub-algebras of g0:

First, for the sub-algebra k0, associated to the maximal compact subgroup K ⊂ G. We
have the decomposition

g0 = k0 + p0

into ±1 eigenspaces of the Cartan-involution θ. Second, the sub-algebra h associated to
the stabilizer in G of the fist vector v1, H = stabG(v1). Note that H is the fixed point
set of the involution τ =

( −1
1m−1

)
in G. Note also that H is connected. Again, we get

a decomposition into ±1 eigenspaces of, in the case, τ :

g0 = h0 + q0.

Hence there is a decomposition of g0

g0 = k0 ∩ h0 + p0 ∩ q0 + p0 ∩ h0 + k0 ∩ q0.

Using the euclidean basis v1, v2, . . . of V , we will describe the subalgebras in this
decomposition through their matrices. For k0∩h ' s(u(1)×u(p−1)×u(q)), the matrices
have vanishing trace and block diagonal form (here and in the following all omitted
matrix entries are zero)a A

B

 with a ∈ iR, A = −Āt, B = −B̄t.
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Appendix A. Tools from representation theory

While for p0 ∩ h0 we have X
X̄ t

 , with X ∈ Mp−1,q(C), X̄ t = X.

Finally, the spaces p0 ∩ q0 and k0 ∩ q0 are given by matrices of the forms x̄t

x

 and

0 −ȳt
y

 with x ∈ Cq, y ∈ Cp−1.

By direct calculation, we see that the maximal abelian subspace b0 of p0 ∩ q0 is given by
the following set of matrices:

b0 =


 t̄

t

 ; t ∈ R ∪ iR

 .

We study the action of b0 on its complement in p0 ∩ q0. For this purpose, we set

H =

 1

1

 , H̃ =

 −i

i

 .

Clearly, b = RH + RH̃. Further, for a column vector x ∈ Cq−1 define

p(x) =


x̄t 0

x
0

 ∈ p0 ∩ q0, k(x) =

 −x
x̄t 0

 ∈ k0 ∩ h0.

We have

[H, p(x)] =


x̄t 0

−
 x

0

 = k(x),

[H, k(x)] =

 x̄t 0
−

−x
0

 = p(x).

Thus, β = 1 is a positive root of b0, the intersection of its root space with k0∩h0 +p0∩q0

is given by {p(x) + k(x); x ∈ Cq−1} and has (real) dimension pβ = 2q − 2. Also, since

[H, H̃] =

2i

−2i

 ,
[
H,
(
i

−i

)]
= 2H̃,

we conclude that β = 2 is a positive root of b0, too. The attached root space is
one-dimensional and contained in k0 ∩ h0 + p0 ∩ q0.
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A.2. Models for the Weil representation

Now, for the operation of b0 on k0 ∩ q0 + p0 ∩ h0. For a column vector x ∈ Cp−1, we set

p′(x) =


0
x

0 x̄t

 ∈ p0 ∩ h0, k′(x) =


0 x̄t

−x

 ∈ k0 ∩ q0.

Here, quite similarly to the above, we calculate the Lie-brackets

[H, p′(x)] =


0 x̄t

−x

 = k′(x), [H, k′(x)] =


0
x

0 x̄t

 = p′(x).

Thus, for the root β = 1 the intersection of its root space with k0 ∩ q0 + p0 ∩ h0, given by
{p′(x) + k′(x); x ∈ Cp−1}, has real dimension qβ = 2p− 2.

Now, the quantity δ(H) occurring in [21, p. 263] is given by

δ(H) =
∏
β∈∆+

|sinh(〈β,H〉)|pβ cosh(〈β,H〉)qβ

= 2 sgn(〈β,H〉) sinh(〈β,H〉)2q−1 cosh(〈β,H〉)2p−1.

(A.1.1)

A.2. Models for the Weil representation

Beside the Schrödinger model of the Weil representation, introduced in Section 1.2, we
will use two further models, the mixed model and the polynomial Fock model. In this
section, we describe their setup and give the intertwining operators.

First, we treat the mixed model, which is used in Chapter 4.

A.2.1. The mixed model

The passage to the mixed model of the Weil representation can be realized through a
partial Fourier-transform. We use hyperbolic coordinates (cf. Section 1.1.1) by setting

` :=
1√
2

(v1 + vm) , `′ :=
1√
2

(v1 − vm) ,

and write x in the form α` + x0 + β`′ = (α, x0, β), with x0 ∈ W := V ∩ `⊥ ∩ `′⊥. We
denote the real and imaginary parts of the coordinates by writing α = α1 + iα2 and
β = β1 + iβ2.

Now, passing to the mixed model amounts to calculating the partial Fourier transform
with respect to the hyperbolic coordinate α attached to ` . Since α is a complex variable,
one has to calculate the partial Fourier transform in the two real variables α1 and α2.
The new coordinate is denoted by β′ = β′1 + iβ′2. Hence, for a Schwartz form φ, we set

φ̂(β′, x0, β) :=

∫
R2

φ(α, x0, β)e2πi(α1β′1+α2β′2) dα1dα2.

Note that the integral converges since the integrand is a Schwartz function.
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Appendix A. Tools from representation theory

Intertwining for SL2(R) Now, we determine the intertwining operators for the operation
of SL2(R) ' SU(1, 1). To facilitate notation, set G′ = SU(1, 1). Following [40], we define

η := [β, β′] =
(
β1 β′1
β2 β′2

)
∈ M2(R).

Lemma A.1. Let φ be a Schwartz function, and r its weight under the operation of
K ′ = U(1). The intertwining operators for the action of G′ are given by

1.

F
(
ω
(√

v
√
v
−1

)
ϕ(·)

)
(β′, β) = v−

r
2

+ p−q
2

1

v
ϕ̂
(

1√
v
β′,
√
vβ
)
,

2.
F (ω( 1 u

1 )ϕ(·)) (β′, β) = ϕ̂ (β′ + uβ, β) .

Thus, gτ =

(√
v u√

v

0 1√
v

)
operates as follows:

F (ω(g′τ )ϕ(·)) (β′, β) = v−
r
2

+ p+q
2
−1ϕ̂

(
1√
v

(β′ + uβ) ,
√
vβ
)
.

Proof. Direct calculation.

Using the Lemma, one quickly obtains the (partial) Fourier transform of the Gaussian
ϕ0(x, τ) = ϕp,q0 (x, τ). It takes the form

ϕ̂p,q0 ((η, x0), τ)

= exp
(
−π
v

(
|β′|2 + |τ̄β|2 + 2uRe

(
β′β̄
))

+ 2πτ̄(x0,−, x0,−) + 2πτ(x0,+, x0,+)
)

= exp
(
−π
v

(
|β′ + τ̄β|2 + 2v=

(
β′β̄
))

+ 2πτ̄(x0,−, x0,−) + 2πτ(x0,+, x0,+)
)
.

(A.2.1)

Intertwining for the operation of the parabolic subgroup P` ⊂ G To determine the
intertwining operators for the action of G, we recall the Levi decomposition G = NAM
introduced in the context of signature (p, 1) in Section 2.1.1. In signature (p, q), we have
M ' SU(p− 1, q − 1) and A ' GL([`]) the elements of A and M are written as matrices
in the form

a(t) =

t 1m−1

t−1

 (
t ∈ R>0

)
, µ =

1
µ′

1

 (
µ′ ∈ SU(W )

)
,

while the elements of the Heisenberg group are given by matrices of the form

n(0, r) =

1 0 ir
1m−1

1

 (r ∈ R),

n(w, 0) =

1 −w̄t −1
2
(w,w)

1m−1 w
1

 (w ∈ W ),

and satisfy the group law n(w2, 0) ◦ n(w1, 0) = n (w1 + w2,−=(w2, w1)).
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A.2. Models for the Weil representation

Lemma A.2. Let ϕ be a Schwartz form. The intertwining operators for the operation
of the subgroups N , A and M are given as follows:

1. F
( ̂n(0, r)ϕ

)
:

ϕ̂ (([β, β′], x0), τ, z0) e
(
r=(β′β̄)

)
.

2. F
( ̂n(w, 0)ϕ

)
:

ϕ̂ (([β, β′], x0 − βw), τ, z0) e
(

1
2

Re(β′β̄)(w,w)− Re (β′(x0, w))
)
.

3. F
(
â(t)ϕ

)
:

t2ϕ̂ ((t[β, β′], x0), τ, z0) .

4. F
(
µ̂ϕ
)
:

ϕ̂
(
[β, β′], µ−1x0), τ, zo

)
.

(Note that if either p or q is 1, M is compact.)

Proof. Since
gϕ = ϕ(x, τ, gz0) = ϕ(g−1x, τ, z0),

the operation of N and the elements of the Levi-factor are given as follows:

n(0, r)ϕ = ϕ(x, τ, n(0, r)z0) = ϕ((α− irβ, x0, β), τ, z0),

n(w, 0)ϕ = ϕ((α, x0, β), τ, n(w, 0)z0) = ϕ(n(−w, 0)(α, x0, β), τ, z0)

= ϕ((α + (w, x0)− β 1
2
(w,w), x0 − wβ, β), τ, z0),

a(t)ϕ = ϕ ((α, x0, β), τ, a(t)z0) = ϕ
(
(t−1α, x0, tβ), τ, z0

)
,

mϕ = ϕ((α, x0, β), τ, µz0) = ϕ((α, µ−1x0, β), τ, z0).

The claim follows easily by calculating of the partial Fourier transform in α.

A.2.2. The polynomial Fock model

We briefly recall the setup of the polynomial Fock model of the Weil representation for
the dual pair U(p, q)×U(1, 1) used in the construction of ψ in Chapter 3, see Sections
3.3 and 3.3.1. For a review of the Fock model (for U(p, q) × U(r, s)) we refer to [25,
Appendix B]. For more on the background, see Kudla and Millson [46, 44], Adams [1]
and Funke and Millson [see 27].

Recall that the Schrödinger model is given by the space of Schwartz functions S(V )
on V . The K ′-finite vectors in S(V ) form the polynomial Fock space S(V ). It consists
of functions on V of the form p(z)ϕ0(z), where p(z) is a polynomial function on V and
ϕ0(z) is the standard Gaussian on V . We use the coordinates z1, . . . , zm in V , relative to
the basis {vα, vµ}.

From the action of U(1, 1)× U(p, q) on S(V ) one obtains an action of the Lie algebra
u(1, 1)(C) × u(p, q)(C) on P(C2m), denoted ω = ωλ (with a central character λ, here
λ = 2πi). We then have a intertwining operator ι : S(V )→ P(C2m) satisfying ι(ϕ0) = 1.
It is given by the following Lemma (see [25], Lemma B.3).
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Lemma A.3. The intertwining operator between the Schrödinger and the Fock model
satisfies

ι

(
z̄α −

1

π

∂

∂zα

)
ι−1 = −i 1√

2π
z′′α, ι

(
z̄α +

1

π

∂

∂zα

)
ι−1 = 2

√
2i

∂

∂z′α
,

ι

(
zα −

1

π

∂

∂z̄α

)
ι−1 = −i 1√

2π
z′α, ι

(
zα +

1

π

∂

∂z̄α

)
ι−1 = 2

√
2i

∂

∂z′′α
,

ι

(
z̄µ −

1

π

∂

∂zµ

)
ι−1 = i

1√
2π
z′′µ, ι

(
z̄µ +

1

π

∂

∂zµ

)
ι−1 = −2

√
2i

∂

∂z′µ
,

ι

(
zµ −

1

π

∂

∂z̄µ

)
ι−1 = i

1√
2π
z′µ, ι

(
zµ +

1

π

∂

∂z̄µ

)
ι−1 = −2

√
2i

∂

∂z′′µ
.

In the Fock model, the Weil representation acts as follows (see loc. cit. Lemma B.1)

Lemma A.4. For the action of g ' u(p, q)(C) on P(C2m), we have the following:

(i) The elements Z ′αβ, Z ′′αβ and Z ′µν, Z ′′µν in k act by

ωλ(Z ′αβ) = −ω(Z ′′βα) = −z′′α
∂

∂z′′β
+ z′β

∂

∂z′α
,

ω(Z ′µν) = −ω(Z ′′νµ) = −z′ν
∂

∂z′µ
+ z′′µ

∂

∂z′′ν
.

(ii) The elements Z ′αµ of p+ and Z ′′αµ of p− act by

ω(Z ′αµ) =
1

4π
z′′αz

′
µ − 4π

∂2

∂z′α∂z
′′
µ

,

ω(Z ′′αµ) = −4π
∂2

∂z′′α∂z
′
µ

+
1

4π
z′αz

′′
µ.

Let g′ ' u(1, 1)(C) and g′ = k′ ⊕ p′+ ⊕ p′′− be the standard decomposition. For the
following see [25, Lemma B.2.].

Lemma A.5. For the action of g′ ' u(1, 1)(C) on P(C2m), we have the following

(i) The generators of k′ act by

ω ( 0 1
−1 0 ) = i

[
p∑

α=1

z′′α
∂

∂z′′α
−

p+q∑
µ=p+1

z′µ
∂

∂z′µ

]
+ i(p− q),

ω ( i 0
0 i ) = i

[
p∑

α=1

z′α
∂

∂z′α
−

p+q∑
µ=p+1

z′′µ
∂

∂z′′µ

]
+ i(p− q).
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(ii) In p′±, consider the elements L and R, given by

L =
1

2

(
1 −i
−i −1

)
∈ p′−, R =

1

2

(
1 i
i −1

)
∈ p′+.

On the Fock model, they act by

ω(L) = −4π

p∑
α=1

∂2

∂z′′αa∂z
′
αu

+
1

4π

p+q∑
µ=p+1

z′µz
′′
µ,

ω(R) = − 1

4πλ

p∑
α=1

z′′αz
′
α + 4π

p+q∑
µ=p+1

∂2

∂z′µ∂z
′′
µ

.

Note that L and R which give rise to the classical Maass lowering and raising
operators of SL2.
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Appendix B.

Useful formulas

B.1. Special functions

In this section we recall the integral representations of some special functions and their
properties.

The incomplete Gamma function First, for the convenience of the reader, we recall
the integral representations of the Gamma function and the incomplete Gamma function.

Γ(s) =

∫ ∞
0

ts−1e−tdt, Γ(s, a) =

∫ ∞
a

ts−1e−tdt. (B.1.1)

For n ∈ N0, we note the following identity [cf. 5, p. 74]:

Γ(n+ 1, a) = n!e−aen(a) = n!e−a
n∑
r=0

ar

r!
. (B.1.2)

Relations for the K-Bessel functions The following integral representation for Bessel
functions is well-known to number theorists, see [20, 6.(17), p. 313]∫ ∞

0

vν−1 exp
(
−av − bv−1

)
dv = 2

(a
b

)− ν
2
Kν

(
2
√
ab
)

(Re a > 0,Re b > 0).

(B.1.3)
Beside this integral representation, we also make frequent use of the following relations
[cf. 17, 10.27.3, 10.33.2]:

K−ν(x) = Kν(x), K− 1
2
(2πr) = K 1

2
(2πr) =

1

2
r−

1
2 e−2πr, (B.1.4)

and Kn+ 1
2
(2πr) =

1

2
r−

1
2 e−2πrhn

(
1

2πr

)
(n ∈ Z, n ≥ 0). (B.1.5)

Here, hn is the n-th Bessel polynomial, explicitly given by

hn(x) =
n∑
k=0

(n+ k)!

(n− k)! k!

(x
2

)k
.

A further special function, which generalises [5, (3.25) on p.74] is usful for the Fourier-
Jacobi expansion of the singular theta lift Φ(z, f, ψ) (see Chapter 4).
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Lemma B.1. For n ∈ Z, n ≥ 2, Re(A+ c) > 0, ReB > 0, the special function defined
as

Vn,µ (A,B, c) :=

∫ ∞
0

Γ(n− 1, cv)v−µe−Av−B
1
v dv.

is given by

2(n− 2)!
n−2∑
r=0

cr

r!

(
A+ c

B

)µ−r−1
2

Kr+1−µ(2
√

(A+ c)B).

Further, if µ ≡ 1
2

(mod 1), we have

(n− 2)!π
1
2

n−2∑
r=0

cr

r!
(A+ c)

1
2

(µ−r)− 3
4 B

1
2

(r−µ)+ 1
4 e−2
√

(A+c)Bhr−µ+ 1
2

(
π

2
√

(A+ c)B

)
.

Proof. Since n − 2 is a non-negative integer, we can use the formula (B.1.2), and by
(B.1.3), obtain the following:∫ ∞

0

Γ(n− 1, cv)v−µe−Av−Bv
−1

dv =

(n− 2)!
n−2∑
r=0

cr

r!

∫ ∞
0

vr−µe−cv−Av−Bv
−1

dv =

(n− 2)!
n−2∑
r=0

cr

r!
· 2
(
A+ c

B

)− r+1−µ
2

Kr−µ+1(2
√

(A+ c)B).

The rest follows directly from (B.1.4) and (B.1.5).

B.2. Fourier transforms

Now, we gather some formulas for Fourier transforms, which come in useful for the
evaluation of theta integral and for switching between the Schrödinger model and the
mixed model of the Weil representation (cf. Section A.2).

For the following Lemma, see [2, Corollary 3.3].

Lemma B.2. Let x be a real indeterminate and p(x) ∈ C[x] a polynomial. Then, the
Fourier transform of the Schwartz function

p(x)e2πi(Ax2+Bx+C)

is given by

(−2iA)−
1
2 exp

(
i

8πA

d2

dt2

)
(p(t))

(
− ξ

2A
− B

2A

)
exp

(
2πi
[
− ξ2

4A
− ξ B

2A
− B2

4A
+ C

])
,

(B.2.1)
wherein ξ denotes the transformed variable.
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B.2. Fourier transforms

Now, consider a special case, the Fourier transform of p(x)e−πx
2
. It is given by

exp

(
1

4π

d2

dt2

)(
p(t)

)
(iξ)e−πξ

2
:= p̃(ξ)e−πx

2

. (B.2.2)

From this, one can immediately conclude the following statements

1. The Fourier transform of p(x+ c)e−πx
2

is given by p̃(ξ − ic)e−πξ2
.

2. The transform of p(−x)e−πx
2

is given by p̃(ξ)e−πx
2
.

Now, we turn to the Fourier transform of the special polynomials introduced in Chapter
3 above. Recall the definition of Hermite polynomials and Laguerre polynomials (cf.
Section 3.3). For k ≥ 0, the Hermite polynomial Hk is given by

Hk(t) = (−1)ket
2

(
d

dt

)k
e−t

2

= et
2/2

(
t− d

dt

)k
e−t

2/2.

Its Fourier transform is given by the following Lemma [see 28, Lemma 4.1]:

Lemma B.3. The Fourier transform of the k-th Hermite polynomial Hk(x) is given by∫ ∞
0

1
√

2π
k
Hk(−

√
πx)e−πx

2

e2πiξxdx =
(
−
√
πiξ
)k
e−πξ

2

. (B.2.3)

Now, for the Laguerre polynomials. Recall the definition of the k-th Laguerre polyno-
mial Lk (k ≥ 0),

Lk(t) =
et

k!

(
d

dt

)k (
e−ttk

)
.

Its Fourier transform can be derived from the formula for the Fourier transform of the
Hermite polynomials.

Lemma B.4. Let z = x+ iy be a complex variable. The Fourier transform in z of the
Laguerre polynomial

Lk
(
π|z|2

)
e−π|z|

2

is given by
π2k

2kk!
|w|2ke−π|w|

2

, (B.2.4)

with the transformed variable w.

Proof. Recall that by (3.3.1) (see p. 81), (DαDα)k ϕ0 = Lk(2π|zα|). Thus, the claim
follows directly from Lemma B.3 via Remark 3.6 (see (3.3.6) on p. 82). Indeed, since(
−1

π

)k
2kk!Lk

(
π|z|2

)
e−π|z|

2

=

(
1

2π

)k k∑
j=0

(
k

j

)
H2(k−j)

(√
πx
)
H2j

(√
πy
)
e−π(x

2+y2),

after applying (B.2.3) twice and writing w = ξ + iη, in the Fourier transform we get

(−1)kπk
k∑
j=0

(
k

j

)
ξ2(k−j)η2j = (−1)kπk|w|2k,

as claimed.
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