
Liftings and Borcherds Products

Eric Hofmann

August 11, 2017

Introduction

The present course notes are based on three lectures held by the author during a prepara-
tory course for the conference ‘L-functions and automorphic forms’. Their purpose is
to give a brief introduction to theta-liftings, in which input functions (usually modular
forms) are ‘lifted’ by integrating them against a suitable theta-function. The main fo-
cus lies on the singular theta-lift of Borcherds [4], which leads up to the construction
of Borcherds products through a multiplicative lifting. This lifting yields meromorphic
modular forms for an indefinite orthogonal group of signature (2, n), n ≥ 2, which take
their zeros and poles along certain arithmetically defined divisors called Heegner divisors
and which posses absolutely convergent infinite product expansions (called ‘Borcherds
product expansions’).

Special cases of such infinite products were already obtained by Borcherds in an earlier
paper [3], however using completely different methods. This construction was originally
motivated by the theory of generalized Lie (super-)algebras (see e.g. [36] or [15]).

The singular theta-lift we will concentrate on takes weakly holomorphic modular forms
(see Definition 0.1 below) for the elliptic modular group SL2(Z) and lifts them to modular
forms for an indefinite orthogonal group.

It should be mentioned that the theoretical reason, why such a lifting using a theta-
function is possible, is that SL2(Z) and SO(2, n) form what is called a dual reductive
pair in the sense of Howe [see 26].

Overview:

In the first section, we give a few examples of liftings that can be realized as theta lifts.
This includes a special case of Borcherds’ original construction from [3].

In Section two, we go through the construction of symmetric domains for indefinite
orthogonal groups of signature (2, n), n ≥ 1. Further, we define orthogonal modular
groups related to lattices (Section 2.2) and introduce Heegner divisors (Section 2.3).
The section closes with a definition of orthogonal modular forms (see p. 17).

The main section, Section 3 (p. 18) covers the singular theta-lift:
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First, we study the metaplectic double cover of SL2(Z), a representation of which is used
to define vector valued modular forms (see p. 19), generalizing the usual definition of
scalar valued modular forms, see Definition 0.1.

Next, in Section 3.2, we introduce the Siegel theta-function which is employed in the
lifting, and formulate the theta-integral. We will indicate, why in this particular case it
is necessary to consider, on the one hand, weakly holomorphic forms as input functions,
and, on the other hand, to use a regularized integral.

The regularization procedure is described in detail in Section 3.3. We derive one of
the main properties of Borcherds’ singular lifting, namely the location and type of its
singularities (Theorem 3.2). Also we briefly outline some of the main steps used in the
actual evaluation of the theta-lift, without going into further detail (see p. 27).

Finally, in Section 3.4 the singular theta-lift is used to define the multiplicative lifting:

Borcherds products are explained as solutions of a multiplicative Cousin problem,
namely of finding a meromorphic functions with divisor supported on the singularities
of the singular theta-lift. We formulate a version of Borcherds’ theorem [4, Theorem
13.3], with a simplified form of the infinite product expansion.

0.1 Basic definitions and notation

Throughout these notes, as usual, the integers are denoted by Z, and the positive integers
by N. Also, Q is the field of rational numbers, R denotes the reals, and C the complex
numbers.

We recall some basic definitions from the theory of modular forms, details of which
can be found in many places, for example in [16], [27], [2], [12, part I] or [32].

As usual, the complex upper half-plane is denoted by H = {z ∈ C;=z > 0}. Through-
out, τ will be used to denote a point in H, with τ = u + iv, with u and v the real and
the imaginary part of τ , respectively. Also, we denote by H∗ the union of H with its
rational boundary points, i.e. H∗ = H ∪Q ∪ {i∞}.

The special linear group SL2(Z) = {( a bc d ); a, b, c, d ∈ Z, ad− bc = 1} operates on H by
fractional linear transformations,

Mτ =
aτ + b

cτ + c
if M =

(
a b
c d

)
.

A standard fundamental domain for this operation is given by

F :=
{
τ = u+ iv; |z| > 1,−1

2
< u < 1

2

}
.

Also, recall that SL2(Z) is generated by the two matrices T = ( 1 1
0 1 ) and S = ( 0 −1

1 0 ).

Beside SL2(Z), known as the full (elliptic) modular group, subgroups of finite index
are also called modular groups. These include the families of congruence subgroups, most
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importantly Γ0(N), Γ1(N) and Γ(N) for N a positive integer, their level :

Γ0(N) =

{(
a b
c d

)
; c ≡ 0 mod N

}
,

Γ1(N) =

{(
a b
c d

)
; c ≡ 0 mod N, a ≡ d ≡ 1 mod N

}
,

Γ(N) =

{(
a b
c d

)
; b ≡ c ≡ 0 mod N, a ≡ d ≡ 1 mod N

}
.

Note that SL2(Z) = Γ0(1) = Γ1(1) = Γ(1).
Let Γ be a modular group. The Γ-equivalence classes of Q∪{i∞} are called the cusps

of Γ. The equivalence class of {i∞} is usually referred to as the cusp at ∞. Note that
for the full modular group SL2(Z), this is the only cusp.

Now, we recall the definition of modular forms.

Definition 0.1. Let Γ be a modular group, k an integer and χ a group character of Γ.
A holomorphic function f : H → C is called a holomorphic modular form of weight k
for Γ, with character χ, denoted f ∈ Mk(Γ, χ) if

1. f(Mτ) = χ(M)(cτ + d)kf(τ) for all M = ( a bc d ) ∈ Γ,

2. f is holomorphic at all cusps.

If further f vanishes at all cusps, f is called a cusp form. The space of cusp forms (for
Γ, with weight k and character χ) is denoted Sk(Γ, χ).

Contrastingly, if instead of satisfying condition 2. f is only meromorphic at the cusps,
f is called a weakly holomorphic modular form. The space of weakly holomorphic modular
forms is denoted M!

k(Γ, χ).
Clearly, we have Sk(Γ, χ) ⊂ Mk(Γ, χ) ⊂ M!

k(Γ, χ). Similarly, the notations Sk(Γ),
Mk(Γ) and M!

k(Γ) are used, if the character is trivial.

More generally, we will also consider modular forms of half-integer weight. For this,
if k ∈ 1

2
Z, one has to replace condition 1. in the definition and require, in its place

f(Mτ) = χ(M)j(M, τ)2kf(τ) for all M =

(
a b
c d

)
∈ Γ,

with a suitable automorphy factor j(M, τ). In particular, if Γ = Γ0(4N) the automorphy
factor is given by j(M, τ) = θ0(Mτ)/θ0(τ), where θ0(τ) =

∑
n∈Z q

n2
is the usual Jacobi

theta function [see 27, Chapter IV].
Finally, modular forms have Fourier expansions since the matrix T = ( 1 1

0 1 ), one of the
two generators of SL2(Z), acts on H as τ 7→ τ + 1. As every modular group Γ, being of
finite index, contains some power of T , modular forms are periodic with positive integer
periods, and hence can be expanded as Fourier series around the cusp at infinity and
around all other cusps. Thus, for example if Γ is modular group with T ∈ Γ (e.g. one
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of the Γ0(N)’s), and k an integer, the Fourier expansion of f ∈ M!
k(Γ) around ∞ takes

the form
f(τ) =

∑
m�−∞

a(m)qm, q = e(τ) = e2πiτ .

There are only finite many non-zero terms with m < 0. Further, if f ∈ Mk(Γ), then
a(m) 6= 0 only for m ≥ 0. Finally, if f is a cusp form, a(m) 6= 0 implies m > 0.
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Table 1: Some frequently used notation:

H The complex upper half-plane (p. 2).
F A standard fundamental domain ⊆ H (p. 2).
Γ0(N), Γ1(N), Γ(N) Principal congruence subgroups of SL2(Z) (p. 3).
Sk(Γ), Mk(Γ), M!

k(Γ) Spaces of modular forms for a modular group Γ
Sk(Γ, χ),Mk(Γ, χ),M!

k(Γ, χ) (see Definition 0.1).

θ0 =
∑

n∈Z q
n2

The Jacobi theta-function.
M+
k (Γ) A Kohnen plus-space (see p. 7).

X0(N) A modular curve ' Γ0(N)\H,
X0(N)∗ its compactification.

V = V (Q), V (R) A quadratic space over Q, with V (R) = V ⊗Q R
and signature (2, n) (see p. 11)

q(·), (·, ·) The quadratic and the bilinear form of V ,
x2 = (x, x) = 2q(x) (see p. 11)
SO(V ), O(V ) The orthogonal and the special orthogonal group of V ,
O+(V ) the spinor kernel in SO(V ) (see p. 11).
V (C) = V (R)⊗R C The complexification of V (R).
D, K, H Models for the symmetric domain of SO(V )(R),

see Section 2.1.
`, `′ Isotropic lattice vectors in V with (`, `′) = 1.
V0(R) = V (R) ∩ ` ∩ `′ A Lorentzian subspace.
Z, z, Z`, w(z) See Section 2.1.2, p. 13
L, L′, L/L′ A lattice in V , its dual and the discriminant group,

(p. 15).
ΓL The discriminant kernel and
XΓ the modular variety ΓL\D. (p. 15).
Dλ A primitive Heegner divisor (Def. 2.2, p. 16),
Z(µ,m) a Heegner divisor of index (µ, m).

Mp2(R) The metaplectic double cover of SL2(R) (p. 18).

Mp2(Z) = S̃L2(Z), Γ̃0(N) The pre-images of SL2(Z) and Γ0(N) in Mp2(R).
ρL, ρ∗L The Weil representation and its dual.
C[L′/L] The group algebra of L′/L.
Sk,ρL , Mk,ρL , M!

k,ρL
Space of vector valued modular forms (p. 19.

Hk,ρL , H+
k,ρL

Spaces of harmonic Mass forms, see (p. 19)

〈·, ·〉 A hermitian pairing on C[L′/L]
ΘL(z, τ) The Siegel theta function for L (p. 21)
dµ = dudv

v2
The left-invariant measure on H.∫ reg

Regularized integral (Section 3.3).
Φ(z, f) The singular theta lift of f .
Ψ(z, f) The multiplicative lift of f (Section 3.4)
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1 Examples of liftings

In this section we will give some examples for liftings, all of which can, in fact, be
realized as theta-liftings, using the theory of Howe duality (which is beyond the scope of
the present course notes [see 26]). However, this is not the only way such liftings can be
formulated, and indeed, the examples in this section were originally constructed using
other methods.

1.1 Convolution of L-series

Our first two examples were discovered in the 1970s using convolution of L-series:

1. The Shimura lift, discovered by Goro Shimura [37] which takes certain half-integer
weight cusp form of level 4N (N ≥ 1) to integral weight modular forms of level
2N .

2. The Doi-Naganuma correspondence, between modular forms for the elliptic mod-
ular group SL2(Z) and modular forms for the Hilbert modular group, constructed
by Koji Doi and Hidehisa Naganuma [see 18].

1.1.1 Shimura’s lifting

Let us turn to the Shimura lift first, an overview of which can be found e.g. in [35,
Chapt. 3].

Suppose that N and κ are positive integers, with N square-free, and that χ is a
character modulo N . Further, assume that g is a cusp form of half-integer weight
contained in Sκ+ 1

2
(Γ0(4N), χ), with Fourier expansion given by

g(τ) =
∞∑
n=1

b(n)qn.

Let t be a positive square-free integer and define a Dirichlet character Ψt by setting

Ψt(n) := χ(n) ·
(
−1

n

)κ(
t

n

)
(n ∈ N).

Denote by L(s,Ψt) =
∑

n>0 Ψt(n)n−s the Dirichlet L-series attached to Ψt.
Further, let {at(n)}n=1,2,... be a sequence of complex numbers given by

∞∑
n=1

at(n)

ns
= L(s− κ+ 1,Ψt) ·

∞∑
n=1

b
(
tn2
)

ns
.

Then, the q-expansion with coefficients at(n) defines a modular form, called the Shimura
lift of g:

∞∑
n=1

at(n)qn =: St,κ(g)(τ),
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contained in M2κ(Γ0(2N), χ2). Further, if κ ≥ 2, the lift St,κ(g) is a cusp form, whereas
for κ = 1, St,κ(g) is cuspidal only for certain g. (More precisely, for g contained in the
orthogonal complement of the subspace spanned by unary theta series [see 35, p. 53].)

In 1975, Shinji Niwa [see 34] refined Shimura’s lifting and realized it as a theta-lift.

Kohnen’s theory We introduce the Kohnen plus space M+
κ+ 1

2

(Γ0(4N)). It consists of

modular forms with Fourier expansions of the form

g(z) =
∑

(−1)κn≡ 0,1 mod 4

b(n) qn, (1)

with coefficients b(n) 6= 0 only for n which satisfy (−1)κn ≡ 0, 1 (mod 4). The plus
space was introduced by Winfred Kohnen as he studied the properties of the Shimura
lift with respect to Hecke operations [see 28].

Furthermore, extending Shimura’s results in [29, 30], he showed that the two spaces
of newforms S+,new

κ+ 1
2

(Γ0(4N)) and Snew2λ (Γ0(N)) are isomorphic. The isomorphism is given

by a linear combination of Shimura lifts. Some authors refer to this Hecke-invariant
isomorphism as the ‘Shimura correspondence’.

1.1.2 The Doi-Naganuma correspondence

Our next example is due to Doi and Naganuma [18] and was discovered at around the
same time as Shimura’s lifting. See [13, Sections 1.7, 1.10] and [12, II. Section 3.1] for
details.

In order to formulate the correspondence, we briefly recall some facts about Hilbert
modular forms [see 12, II. Sections 1.3, 1.6]: Let d > 1 be a square-free integer and
denote by K the real quadratic field K = Q(

√
d). We shall assume that the narrow

class number of K is one.
Denote by OK the ringer of integers in K and by d−1 the inverse different ideal.

Further, for a ∈ K denote by a′ the Galois conjugate of a.
The special linear group SL2(K) is embedded into SL2(R)× SL2(R) through the two

real embeddings of K. It acts on H×H through fractional linear transformations. For
z = (z1, z2) ∈ H2, we have(

a b
c d

)
z :=

(
az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
if

(
a b
c d

)
∈ SL2(K).

The Hilbert modular group ΓK = SL2(OK) acts properly discontinuously.
Let k be an integer. A holomorphic Hilbert modular form F for ΓK of (parallel) weight

k is a holomorphic function F : H2 → C which transforms according to

F (γz) =
(
cz1 + d

)k(
c′z2 + d′

)k
F (z) for all γ ∈ ΓK , γ =

(
a b
c d

)
. (2)

We denote by MH,k (ΓK) the space of holomorphic Hilbert modular forms of weight k for
ΓK . Note that by the Koecher principle [see 12, II.Theorem 1.20] if a Hilbert modular
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form F is holomorphic on H2, it is automatically holomorphic at the cusp∞, and indeed
at all cusps. Here, as usual, by the cusps of H2, we mean the ΓK-equivalence classes of
elements in P1(K).

We will describe what it means for a Hilbert modular form F to holomorphic at
the cusp ∞ using the Fourier expansion. From this one can obtain the description
for the other cusps through conjugation, noting that for any κ ∈ P1(K), one can take
ρ ∈ SL2(K) with ρ∞ = κ.

Since the stabilizer of∞ in ΓK contains a finite index subgroup acting by translations
[see 12, p. 113], for F ∈ MH,k (ΓL), with the transformation behavior (2), this implies
the existence of a Fourier expansion of the following form:

F (z) = a(0) +
∑
ν∈d−1

ν�0

a(ν)e (tr(νz)) .

Here, the sum ranges over totally positive ν (denoted ν � 0), if, as implied by the
Koecher principle, F is holomorphic at∞. Then, one further sets F (∞) = a(0). Finally
F is called a cusp form, if in addition to F being holomorphic, one has F (∞) = 0.

Now, given F ∈ MH,k (ΓK) with Fourier coefficients a(ν), we introduce a Dirichlet
series denoted L(s, F ) as follows:

L(s, F ) :=
∑

ν∈d−1/U
ν�0

a(ν) N(νd)−s.

Here, U denotes the set of squares of totally positive units in OK , while for an ideal a
the norm is denoted N(a).

Now, we are ready to describe the Doi-Naganuma lifting: Suppose f(τ) =
∑

n≥0 a(n)qn

is a Hecke eigenform in Mk(Γ0(1)), with even weight k. Let L(s, f) be the attached
Dirichlet series and denote by L(s, f, χd) a twist by the quadratic character χd =

(
d
·

)
:

L(s, f) =
∑
n>0

a(n)n−s, L(s, f, χD) =
∑
n>0

χd(n)a(n)n−s.

Denote by LDN(s) the product of these two Dirichlet series,

LDN(s, f) := L(s, f) · L(s, f, χd).

Then, there is a Hilbert modular form DN(f) ∈ MH,k (ΓK), the Doi-Naganuma lift of
f , with precisely this Dirichlet series, so that L(s,DN(f)) = LDN(s, f).

Remark 1.1. Of course this is not exactly the way Doi and Naganuma originally stated
their result in [18]. In 1973, Naganuma obtained the following version [see 33]: Assume
that d = p is a prime and let K = Q(

√
p). Let f(τ) =

∑
n a(n)qn be a normalized Hecke

eigenform in Mk(Γ0(p), χp), with χp a character of order two, and let fρ(τ) =
∑

n a(n)qn.
Then, we have L(s,DN(f)) = L(s, f) · L(s, fρ) and DN(f) ∈ MH,k (ΓK).
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1.2 Borcherds products

In [3] Richard E. Borcherds introduced his famous multiplicative lifting. The meth-
ods he used are totally unrelated to either convolutions of L-series or, indeed, theta-
correspondences. In contrast to this, Borcherds’ later, much more general construction
in [4], which we will study in Section 3, is formulated as a theta-lift.

For now, though, we describe only a special case from [3]: Here, the input functions for
the multiplicative lifting are contained in M+,!

1
2

(Γ0(4)), i.e they are weakly holomorphic

modular forms of level 4, weight 1
2

and satisfy a plus-space condition like in (1). They
are lifted to meromorphic modular forms for the full modular group SL2(Z), which have
infinite product expansions, and, in their Fourier expansion (around the cusp at infinity),
integral Fourier coefficients and leading coefficient one. Further, they take their zeros
and poles along linear combinations of rational divisors, called Heegner divisors:

Heegner Divisors (Classical) Heegner divisors are subsets of H arising as the pre-
images under H → X0(N) (N ∈ N) of certain rational divisors on the modular curve
X0(N) ' Γ0(N)\H, for a precise definition [see 21, Section IV.1].

In the present setting, the level N is 1, and Heegner divisors are given as follows: Let
D be a negative integer, with D a square modulo 4. Let a, b, c with a > 0 be integers
satisfying b2 − 4ac = D. Thus, a, b, c are the coefficients of an integral binary quadratic
form, with D as its discriminant.

A point τ ∈ H satisfying aτ 2 + bτ + c = 0 is then called a CM-point of discriminant
D. Finally, the Heegner divisor of discriminant D consists of all CM-points of that
discriminant. Often, it is useful to consider divisors supported at cusps as Heegner
divisors, too.

We will encounter a generalization of this concept of Heegner divisors in Section 2 and
Section 3 below.

The multiplicative lifting Let H̃(τ) denote the following generating series

H̃(τ) :=
∑

n≡0,3 mod 4
n≥0

H(n)qn,

where H(n) are the usual Hurwitz class numbers. They are modified class numbers
given as follows [see 14, Section 5.3.2]: For n = 0 one sets H(0) = − 1

12
. Otherwise, for

n > 0, if h(−n) is the usual class number of primitive positive definite quadratic forms
with discriminant −n, then

H(n) =
∑
d2|n

w
( n
d2

)
· h
(
− n
d2

)
where w(n) =


1
3

n = 3,
1
2

n = 4,

1 n > 4.

In particular, if −n < −4 is a fundamental discriminant, H(n) = h(−n).

9



Now, let f(τ) be a weakly holomorphic modular form contained in M+,!
1
2

(Γ0(4)), and as-

sume that the Fourier expansion of f around the cusp at∞ is given by
∑

n>n0
a(n)qn with

integer coefficients a(n), with a(n) = 0 unless n ≡ 0, 1 (mod 4). Then, the Borcherds lift
Ψ(τ, f) of f is a meromorphic modular form of weight a(0) for the full modular group
SL2(Z) which has an absolutely converging infinite product expansion (a ‘Borcherds
product’) as follows [see 3, Theorem 14.1]:

Ψ(τ, f) = q−h
∞∏
n=1

(1− qn)a(n2) . (3)

Here, h denotes the constant coefficient of the product f(τ)H̃(τ).
Further Ψ(τ, f) has integer coefficients in its Fourier expansion around infinity, and

leading coefficient one. Also, its divisor is supported on a linear combination of Heegner
divisors or possibly the cusp. More precisely, if τ ∈ H is a CM-point of discriminant
D < 0, its multiplicity in div(Ψ(τ, f)) is given by

∑
n>0 a(Dn2).

We note two further important properties:

1. The map Ψ : f 7→ Ψ(τ, f) is multiplicative, with Ψ(f + g) = Ψ(f)Ψ(g).

2. Any meromorphic modular form for the modular group SL2(Z), the divisor of
which is a linear combination of Heegner divisors (possibly including the cusp),
can be realized as a Borcherds product Ψ(f) for some f ∈ M+,!

1
2

(Γ0(4)).

By these two properties, the map Ψ becomes an isomorphism between the additive group
M+,!

1
2

(Γ0(4)) and the multiplicative group of meromorphic modular forms satisfying the

conditions given above for Ψ(τ, f).

Examples We present some examples following [3, Section 14] and [35, Section 4.2]. A
basis for the space M+,!

1
2

(Γ0(4)) consists of functions {fd}d≡ 0,3(4) given by

f0(τ) = 1 +
∑
n>0

2qn
2

, fd(z) = q−d +
∑
D>0

a(D, d) qD, d = 3, 4, 7, . . . . (4)

Note that f0(τ) is simply the Jacobi theta-function θ0(τ). Given f0 and f3, further fd’s
can be obtained inductively by observing that fd−4(τ)j(4τ) has the leading term q−d.
(For an explicit formula defining f3(τ) = q−3 − 248q + . . . , see [35, (4.4), p. 70] or [3,
Example 2, p. 202]).

From (3) and (4), one has:

Ψ(τ, fd) = q−H(d)

∞∏
n=1

(1− qn)a(n2,d) .

with H(d) a Hurwitz class number as defined above. For applications of this formula
see [35, Chapter 4].

Now, for two examples:
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1. Let f(z) = 12f0(τ) = 12θ0(τ). Then, f(z) = 12 + 24q+ 24q4 + . . . and for Ψ(τ, f),
we have

Ψ(τ, f) = q
∏
n>0

(1− qn)24 = ∆(τ),

which is just the usual modular discriminant function, with divisor supported at
the cusp.

2. Consider g(τ) = 4f0(τ) + f3(τ). Then, one finds that Ψ(τ, g) = E4(τ), the Eisen-
stein series of weight 4, since this is the only holomorphic modular form of weight
4 with leading coefficient one. Modulo the action of SL2(Z), the divisor div(Ψ(g))
is, of course, given by ζ = 1

2
(1 +

√
−3).

2 Orthogonal groups

We give a brief introduction to the theory of symmetric domains for indefinite orthogonal
groups and of orthogonal modular forms. Further details on these topics can be found
in a number of places, for instance [6], [24] or [19].

In this section, let V = V (Q) be a quadratic space over Q of signature (2, n), n ≥ 1,
endowed with a non-degenerate indefinite bilinear form, denoted (·, ·). Let q(x) = 1

2
(x, x)

be the attached quadratic form. Further, we will often the notation x2 = (x, x). Denote
by V (R) = V ⊗QR, the real quadratic space obtained from V (Q) by extension of scalars,
with (·, ·) likewise extended to a real-valued form. For later use, we also introduce the
notation V (C) = V ⊗Q C for the complexified space with (·, ·) extended to a complex
bilinear form.

The orthogonal group of V is denoted O(V ). Considered as an algebraic group de-
fined over Q, its set of real points is given by O(V )(R), the orthogonal group of V (R).
Similarly, the special orthogonal groups of V (Q) and V (R) are denoted by SO(V ) and
SO(V )(R), respectively.

Now, there is an exact sequence with the spin group SpinV , wherein θ denotes the
spinor norm:

1 {±1} SpinV (Q) SO(V ) Q×/Q×2
.θ (5)

Looking at the sets of real points, the image of SpinV (R) (which, of course is the kernel
of θ) is the connected component of the identity in SO(V )(R). It is referred to as the
spinor kernel and denoted O+(V )(R).

2.1 Models for the symmetric domain of SO(V )

Let KSO be a maximal compact (path-connected) subgroup of SO(V )(R). A symmetric
domain for the operation of SO(V )(R) on V (R) is given by the quotient

SO(V )(R)/KSO.
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It is isomorphic to the Grassmannian of two-dimensional positive definite oriented sub-
spaces, called the Grassmannian model:

D := {v ⊂ V (R); dim v = 2, q |v≥ 0, v oriented}.
Note that D has two connected components, they correspond to the two choices of
orientation and are stabilized by the spinor-kernel O+(V )(R).

Also, each v ∈ D, through the decomposition V (R) = v ⊕ v⊥, fixes an isometry
between V (R) and the standard pseudo-euclidean space R2,n, with quadratic form q(x) =
1
2

(
x2

1 + x2
2 − x2

3 − · · · − x2
n+2

)
. Denoting the special orthogonal groups of R2,n, R2,0 and

R0,n by SO(2, n), SO(2) and SO(n), respectively, we obtain an isomorphism

SO(V )(R)/KSO ' SO(2, n)/ (SO(2)× SO(n)) .

Remark. For the orthogonal group O(V )(R) a symmetric domain is given by

O(V )(R)/KO ' O(2, n)/ (O(2)×O(n)) ,

with KO a maximal compact subgroup. In this case, the Grassmannian model consists
simply of the two-dimensional positive-definite subspaces of V (R) (without orientation),
and there is only one connected component.

2.1.1 The projective cone model

Let V (C) be the complexified space V (C) = V ⊗Q C, as above. Further, denote by
PV (C) the projective space

PV (C) = (V (C) \ {0}) /C×,
and by π : V (C) \ {0} −→ PV (C) the canonical projection.

The positive cone model K is defined as the following subset of PV (C):

K :=
{

[Z] ∈ PV (C); (Z,Z) = 0,
(
Z, Z̄

)
> 0
}
,

a complex projective manifold of dimension n with two connected components.
Given Z ∈ V (C) with π(Z) ∈ K, write Z in the form Z = X + iY with X, Y ∈ V (R).

From the definition of K, we have

(X, Y ) = 0 and X2 = Y 2 > 0.

In other words, if π(Z) ∈ K, the real and the imaginary part of Z constitute an orthog-
onal, normalized and oriented basis for a two-dimensional positive subspace of V (R).

Thus, immediately, we have an isomorphism between the models D and K given by a
real-analytic map:

K −→ D
[Z] 7−→ RX + RY.

We take note of the following properties of K:

1. The special orthogonal group acts on K, with g[Z] = [gZ] for g ∈ SO(V )(R).

2. There is an element of order two which interchanges the two connected components
of K, thus acting by complex conjugation. In contrast to this, the action of the
spinor kernel O+(V )(R) stabilizes the connected components.
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2.1.2 The tube domain model

Suppose there are two isotropic vectors `, `′ ∈ V (Q), with (`, `′) = 1. Later on, we
will further require there to be an integral lattice L ⊂ V with ` ∈ L and that `′ is in
contained in the dual lattice L′ (see Section 2.2).

Consider the subspace V0(R) = V (R) ∩ `⊥ ∩ `′⊥. This is a Lorentzian space, as the
restriction (·, ·) |V0 is a quadratic form with signature (1, n − 1). The complexification
V0(C) is a complex quadratic space with the extension of (·, ·) |V0 , as usual. Now, the
tube domain model is defined as the set

H := {z = x+ iy ∈ V0(C); q(y) > 0} . (6)

There is an isomorphism between H and K given by

H ∼−→ K : z 7−→
[
Z`(z) := z + `′ − q(z)`

]
.

Whence further,

H ∼−→ D : z 7−→ w(z) := R<Z`(z) + R=Z`(z).

A first non-trivial example for this construction is the following:

Example 2.1. Let n = 1. Then, V0(C) = C and we have

H =
{
z = x+ iy ∈ C; (=z)2 > 0

}
' H ∪H.

We remark at this point, that it may sometimes be useful to restrict to one connected
component, as the example shows.

The action of G = SO(V )(R) onH is described by the following diagram (with g ∈ G):

K K

H H

[Z] 7→ g[Z]

z 7→ [Z`(z)]

z 7→ gz

gz 7→ [Z`(gz)]

In order for this diagram to commute, we must have[
gZ`(z)

]
=
[
Z`(gz)

]
(∀g ∈ G,∀z ∈ H) .

Thus, an automorphy factor j(g, z) : G×H → C is defined by setting

gZ`(z) = j(g, z)Z`(gz) (g ∈ G, z ∈ H).

Note that if g is actually contained in g ∈ SO(V0)(R), this automorphy factor is trivial.

13



Example 2.2. Again, let n = 1. Further, let the level N be an integer, N ≥ 1. We
consider the space

V = {x ∈ Mat(2× 2,Q) ; tr(x) = 0} ,
with the quadratic form q(x) = −N det(x) and the bilinear form (x, y) = +N tr(xy).
Setting

` =

(
0 1/N
0 0

)
, `′ =

(
0 0
1 0

)
, we get V0 = Q

(
1 0
0 −1

)
.

Also, clearly, `2 = `′2 = 0 and (`, `′) = 1. The isomorphisms between the tube domain,
the projective cone and the Grassmannian model are given by

H = H ∪ H̄ K D

z = x+ iy

[(
z −z2

1 −z

)]
R<

(
z −z2
1 −z

)
+ R=

(
z −z2
1 −z

)
.

Now, consider the subgroup of GL2(R) consisting of matrices A with det(A) = ±1. One
can define an isometric action on V (R) by setting

(A,X) 7→ AXAadj,

where Aadj denotes the usual adjoint matrix of A, i.e. with AAadj = det(A)E2. Thus,
there is a homomorphism {A ∈ GL2(R); det(A) = ±1} −→ O(V )(R). Its kernel is
a subgroup of order two, as clearly A and −A have the same image. We note that
SL2(R)→ O+(V )(R).

On K, the action is given as follows: Let A = ( a bc d ) ∈ GL2(R) with detA = ±1.
Then,

A

[(
z −z2

1 −z

)]
=

[
A

(
z −z2

1 −z

)
Aadj

]
=

[(
(az + b)(cz + d) −(az + b)2

(cz + d)2 −(az + b)(cz + d)

)]
.

The automorphy factor thus is given by j(g, z) = (cz + d)2. Also, we see that the
action on H is compatible with the usual action of SL2(R) on H ∪ H̄ through Möbius
transformations z 7→ az+b

cz+d
.

Example 2.3. Let n = 2. A commonly used model for this case is the following

V = Mat
(
2× 2,Q

)
, q(X) = − det(X).

After setting

` =

(
1 0
0 0

)
, `′ =

(
0 0
0 −1

)
,

the subspace V0 is given by

V0 =

{(
0 x1

x2 0

)
; x1, x2 ∈ Q

}
.
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Now, a subset of K̃ of V (C) with π
(
K̃
)

= K is given by

K̃ =

{(
z1z2 z1

z2 1

)
; z1, z2 ∈ C

}
.

Hence, for the tube domain, we have

H =

{(
z1z2 z1

z2 1

)
∈ K̃ ; =z1 · =z2 > 0

}
'
(
H×H

)
∪
(
H×H

)
.

We can define an isometric action of SL2(R)× SL2(R) on V (R) by setting

(A,B)X = AXBadj (A,B ∈ SL2(R), X ∈ V (R)) ,

with Badj the adjoint matrix of B. From this we get a homomorphism SL2(R)×SL2(R)→
O(V )(R), which can be shown to be an isogeny. Its image is the connected component
O(V )(R)+ and the kernel is a subgroup of order 4 [see 19, p. 15]. The action on H is
compatible with the usual action of SL2(R)× SL2(R) on C× C:((

a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

))
: (z1, z2) 7−→

(
a1z1 + b1

c1z1 + d1

,
a2z2 + b2

c2z2 + d2

)
.

We remark that through SL2(K) ↪→ SL2(R)×SL2(R) (see p. 7), one has a homomorphism
from SL2(K) to O(V )(R)+. Hence, the symmetric domain of the Hilbert modular group
can be considered as a connected component of H.

2.2 Lattices and modular groups

In the following, let L be an even integral lattice in V , meaning that λ2 ∈ 2Z for all
λ ∈ L (i.e. q(λ) ∈ Z for all λ). Let L′ be the dual lattice of L, defined as

L′ = {v ∈ V (R); (λ, v) ∈ Z for all λ ∈ L} ⊇ L.

The quotient L′/L is called the discriminant group of L. Let SO(L) be the group of
isometries of L in SO(V ). By ΓL ⊂ SO(L), we denote the discriminant kernel of L,
the subgroup acting trivially on the discriminant group. By a modular group we shall
understand a subgroup Γ ⊂ SO(L) which is commensurable with the discriminant kernel.
In particular, a modular group has finite index in SO(L).

Let us introduce one further notation. As in section 2.1.2, let `, `′ be isotropic vectors
with (`, `′) = 1 and, further, assume that ` ∈ L and `′ ∈ L′. Then, we denote by L0 the
Lorentzian lattice given by L ∩ `⊥ ∩ `′⊥. Note that V0(Q) = L0 ⊗ Q, where V0 is the
Lorentzian space used in the construction of the tube domain.

Definition 2.1. Let Γ ⊆ ΓL be a modular group. The quotient XΓ = Γ\D is called the
(non-compact) modular variety associated to Γ. By the theory of Baily-Borel, there is
a compactification, which we denote by X∗Γ. See [19, Chapter II]. For a more general
background [see 5, Sections I.4, I.5].
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Remark 2.1. The compactified modular variety X∗Γ gives rise to a Shimura variety [see
7, Section 1.5] (of course, one has to take the non-archimedian places into account for
this, too).

Example 2.4. In the setup of Examples 2.1 and 2.2, and using the same notation, the
following set L is an even integral lattice and L′ its dual:

L =

{(
b −a/N
c −b

)
; a, b, c ∈ Z

}
, L′ =

{(
b/2N −a/N
c −b/2N

)
; a, b, c ∈ Z

}
.

The discriminant group L′/L is isomorphic to Z/2NZ. It is easily verified that Γ0(N)
acts trivially on the discriminant group and, in fact, Γ0(N) = ΓL ∩O+(L).

In classical language, the modular variety corresponding to the quotient Γ\H is given
by the modular curve X0(N). In particular, for N = 1, we have SL2(Z)\H∗ ' X0(1)∗,
[see 16, Section 2.4, Section 7]. Its points correspond to isogeny classes of elliptic curves
(more generally, the points of X0(N) describe cyclic N-isogenies of elliptic curves).

2.3 Special cycles

For the following, [cf. 24, Section 2.1.2] or [cf. 6, p. 119]. Let W ⊂ V (R) be a negative
definite one-dimensional subspace. Then, a codimension-one sub-Grassmannian is given
by

DW := {v ∈ D; v ⊥ W} ⊂ D.

It defines a codimension-one submanifold of the projective cone K, also denoted by DW

which, in turn, corresponds to a subset of the tube domain. In the following, if w is a
negative definite vector, we further simplify notation by setting Dw := DRw.

Example 2.5. Taking up the n = 1 examples 2.1, 2.2 and 2.4 set N = 2 and consider

w =

(
b/4 c/2
−a/2 −b/4

)
, with a, b, c ∈ Z and b2 − 4ac < 0.

Then,

Dw =

{
z ∈ H ∪ H̄; 2 tr

(
w ·
(
z −z2

1 −z

))
= 0

}
=
{
z ∈ H ∪ H̄; az2 + bz + c = 0

}
.

Then, Dw consists of CM-points in H∪ H̄. (By a common abuse of notation, Dw is also
used to denote the subset of the tube domain.)

The case where W is defined by a lattice vector is particularly important. As before,
let L be an even integral lattice, and L′ it dual. We define:

Definition 2.2.

1. Assume that λ is a lattice vector with λ ∈ L′ and with q(λ) = m, m ∈ Z<0. Then,
Dλ is called the primitive Heegner divisor attached to λ.
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2. Let γ ∈ L′/L be an element of the discriminant group and m a negative integer.
The Heegner divisor of index (γ,m) is defined as

Z(γ,m) :=
∑
λ∈γ+L
q(λ)=m

Dλ. (7)

The sum runs over a system of representatives for γ ∈ L′/L.

Note that the sum in (7) is ΓL-invariant. Thus, Z(γ,m) is, in fact, the pre-image under
the canonical projection of a divisor on the modular variety XΓL = ΓL\H. Usually, the
term Heegner divisor is used both for the divisor on XΓL and for its pre-image. Also by
abuse of notation, both are denoted Z(γ,m).

2.4 Modular Forms

We use the notation established before. Hence, let L be an even integral lattice, and
ΓL ⊂ SO(L) the discriminant kernel of L. Also assume that the isotropic vectors from
Section 2.1.2 are lattice vectors, with ` ∈ L, `′ ∈ L′. Then, the tube domain is contained
in V0(C) = L0 ⊗ C with L0 = L ∩ `⊥ ∩ `′⊥.

Definition 2.3. Let k be an integer and Γ an orthogonal modular group. A function
f : H → C is called a holomorphic modular form of weight k on Γ, if the following
conditions are satisfied:

1. f(γz) = j(γ, z)kf(z) for all γ ∈ Γ.

2. f is holomorphic on H.

3. f is holomorphic on the boundary of H.

Note that by the Koecher principle ([see 19, Theorem IV.3.6]), for holomorphic modular
forms, the third condition can be omitted if n > 2. More generally, the Koecher principle
is valid, if the Witt-rank of V = L⊗ZQ, i.e. the dimension of a maximal totally isotropic
subspace, is less than n. (For example, this is the case for Hilbert modular forms, cf. p.
7.)

Meromorphic (etc.) modular forms are defined similarly, with 2. and 3. replaced by
suitable conditions on H and on the boundary components. Also, the definition can
easily be extended to accommodate for half-integral weights and multiplier systems.

We will not say much about the properties of modular forms for orthogonal groups,
but let us at least mention that they admit Fourier expansions:

If f is a modular form for a modular group Γ, as in Definition 2.3, there is a lattice M
in V0 such that f(z + µ) = f(z) for all µ ∈ M . For example, if Γ = ΓL, then M = L0.
Thus, f has a Fourier expansion of the form

f(z) =
∑
µ∈M ′

a(µ)e ((µ, z)) .

Due to the Koecher principle or, if necessary, by condition 3., µ’s with a(µ) 6= 0 satisfy
a positivity condition [see 19, Section IV.3].
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3 The singular theta lift

For this section, recall our convention that τ = u + iv denote a point in the complex
upper half-plane H. In the following,

√
τ = τ 1/2 is the principal branch of the complex

square root, with arg(
√
τ) ∈

(
−π

2
, π

2

]
. Further, z shall denote a point in H and w(z) the

attached positive definite subspace in D.
We would like to mention some general references, which, among them, cover most of

this section: Beside the original works of Borcherds [4] and of Bruinier [6], these are [36]
and the lecture notes [7].

3.1 The Weil representation

Consider the metaplectic group Mp2(R), the double cover of SL2(R). It can be written
as the set of pairs (M,φ(τ)), with M ∈ SL2(R) and φ(τ) a holomorphic square root of
cτ + d. In particular, Mp2(Z) is generated by the elements

S =

((
0 −1
1 0

)
,
√
τ

)
, and T =

((
1 1
0 1

)
, 1

)
.

The center of Mp2(Z) is generated by

Z = S2 = (TS)3 =

((
−1 0
0 −1

)
, i

)
.

If Γ is an elliptic modular group, we denote the pre-image under Mp2(Z)→ SL2(Z) by

Γ̃, i.e. Γ̃1 = Mp2(Z), Γ̃0(N) etc.
Now, there is a representation ρL of Mp2(Z) on the group algebra C[L′/L], defined

through the action of the above generators on the basis elements eµ:

ρL(T )eµ = e (q(µ)) eµ,

ρL(S)eµ =

√
i
n−2√
|L′/L|

∑
ν∈L′/L

e (−(µ, ν)) eν .

Also, the action of Z is given by ρL(Z)eµ = in−2eµ.
Essentially, ρL is the Weil representation, for more details we refer to Shintani [see 38]

and, for a description using the language of adeles, to [7, Sections 3.1, A].

Remark 3.1. If n is even, the representation ρL of Mp2(Z) factors through a representa-
tion of SL2(Z). Also, the representation factors over the finite group Mp2(Z/NLZ), where
NL is the level L, defined as the the smallest positive integer N satisfying Nq(γ) ∈ Z
for all γ ∈ L′; if n is even, ρL factors over SL2(Z/NLZ).

We denote the standard hermitian scalar product on C[L′/L] by 〈·, ·〉, i.e.〈 ∑
µ∈L′/L

aµeµ,
∑

bµeµ
〉

=
∑

µ∈L′/L

aµbµ. (8)
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With this, for µ, ν ∈ L′/L and (M,φ) ∈ Mp2(Z), the matrix coefficient ρµν(M,φ) of the
representation ρL is given by

ρµν(M,φ) = 〈ρL(M,φ)eµ, eν〉.

Finally, the dual representation ρ∗L for (M,φ) ∈ Mp2(Z) given in terms of its matrix
coefficients is the complex conjugate of the matrix

(
ρµν(M,φ)

)
µ,ν∈L′/L.

We briefly recall the definitions of vector-valued modular forms for the representation
ρL, more details can be found in the course notes of Claudia Alfes-Neumann [1].

Definition 3.1. Let k ∈ 1
2
Z be a half-integer. A smooth function f : H → C[L′/L]

which transforms under ρL according to

(M,φ)f(τ) = φ(τ)2kρL(M,φ)f(Mτ), ((M,φ) ∈ Mp2(Z))

is called

1. a weakly holomorphic modular form, if f is holomorphic on H and meromorphic
at the cusp ∞,

2. a holomorphic modular form, if f is holomorphic on H and at the cusp, Further,
f is called a cusp form if f is holomorphic and vanishing at the cusp.

We denote the by Sk,ρL ⊂ Mk,ρL ⊂ M!
k,ρL

the spaces of cusp forms, holomorphic modular
forms and weakly holomorphic modular forms transforming under the Weil representa-
tion, respectively.

We remark that, similarly, vector valued modular forms can be defined for the dual
representation ρ∗L, i.e Sk,ρ∗L , Mk,ρ∗L

and M!
k,ρ∗L

.

Next, following [10, Section 3] we introduce harmonic Maass forms.

Definition 3.2.

Let k ∈ 1
2
Z A twice continuously differentiable function f : H→ C is called a harmonic

Maass form (or harmonic weak Maass form) with representation ρL for Mp2(Z) if

1. (M,φ)f(τ) = φ(τ)2kρL(M,φ)f(Mτ) for all (M,φ) ∈ Mp2(Z),

2. There is a C > 0 such that f(τ) = O
(
eCv
)

as v →∞ (uniformly in u),

3. f is annihilated by the weight-k Laplace operator, ∆kf(τ) = 0, with

∆k = −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ iku

(
∂

∂u
+ i

∂

∂v

)
.

We denote the space of harmonic Maass forms by Hk,ρL.
Further we denote by H+

k,ρL
the subspace of harmonic Maass forms f , which addition-

ally to 1.–3. satisfy the following condition: The image of f under the ξ-operator

ξk := 2ivk
∂

∂z̄

is a cusp form for the dual representation ρ∗L with ξk(f)(τ) ∈ S2−k,ρ∗L.
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Note that the component functions of an elliptic modular form f =
∑

µ fµeµ are
scalar valued elliptic modular forms of the appropriate type (i.e. weakly holomorphic,
holomorphic or cuspidal) and the same weight for (at least) the principal congruence
subgroup Γ(NL), where the level NL is determined as in Remark 3.1. The same applies
for harmonic Maass forms.

Due to invariance under T ∈ Mp2(Z), a weakly holomorphic modular form f with
representation ρL, admits a Fourier expansion around the cusp∞ of the following form:

f(τ) =
∑

µ∈L′/L

∑
m∈Z+q(µ)
m�−∞

c(µ,m)qmeµ, (9)

with only finitely many m < 0 for which c(µ,m) 6= 0. If f is a holomorphic modular
form, then c(µ,m) 6= 0 only for m ≥ 0, and for a cusp form, c(µ,m) 6= 0 only for m > 0.

The Fourier expansion of a harmonic Maass form f ∈ H+
k,ρL

(k 6= 1) consists of a
holomorphic part f+ similar to (9) and a non-holomorphic part f− involving certain
special functions, see for example [1, Section 3]. We will need the Fourier expansion
only in the case where k < 1, for which it takes the following form:

f(τ) = f+(τ) + f−(τ)

=
∑

µ∈L′/L

∑
m�−∞

c+(m,µ)qmeµ +
∑

µ∈L′/L

∑
m<0

c−(m,µ)Γ (1− k, 4π|m|v) qmeµ, (10)

with the incomplete Gamma function Γ(a, x) =
∫∞
x
e−rra−1dr [cf. 17, 8.2.2].

Remark 3.2. As Bruinier and Funke have shown [see 10] the condition ξ(f)(τ) ∈
S2−k,ρ∗L for f ∈ H+

k,ρL
has immediate consequences for the growth behavior of f : Denote

by P (f) the principal part of f , i.e. the Fourier polynomial given by

P (f)(τ) :=
∑

µ∈L′/L

∑
m∈Z+q(µ)
0>m�−∞

c(µ,m)qmeµ.

Then, for f ∈ H+
k,ρL

, f−P (f) decays exponentially as v →∞. For the Fourier expansion
given in (10) (for k 6= 1), this is can also be seen from the asymptotic behavior of the
incomplete Gamma function.

3.2 Siegel theta functions

In this section we want to introduce the Siegel theta-function attached to the lattice
L, integrating against which will yield the theta-lift. For a concise yet very readable
treatment in the language of representation theory see [31].

Definite theta functions To begin, we start with a simple example for a theta-function
attached to a lattice. For this, let M be a positive definite even lattice, of rank l ≥ 1
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and endowed with a quadratic form q(·). Then, generalizing the well known Jacobi
theta-function θ0(τ) =

∑
n∈Z q

n2
, one sets, if M is unimodular

ΘM(τ) =
∑
λ∈M

q
1
2
λ2 =

∑
λ∈M

e
(
q(λ) τ

)
.

Otherwise, if M ′/M is non-trivial, one sets

ΘM(τ) =
∑

µ∈M ′/M

∑
λ∈µ+M

e
(
q(λ) τ

)
eµ.

Clearly, in both cases the series converges absolutely and uniformly and hence defines
a holomorphic function on H. Using Poisson summation, it is fairly straight-forward to
show that ΘM(τ) transforms as a modular form of weight l/2,

If, contrastingly, the lattice is indefinite, to assure absolute convergence of the theta-
series, we have to replace q(λ) by a majorant.

The Siegel theta function Thus, let L be an indefinite even lattice, as in section 2,
with L ⊂ V and with V = L ⊗ Q an indefinite quadratic space of signature (2, n).
The quadratic form is again denoted q(·). We will now attach an absolutely convergent
theta-series to L and at the same time obtain a function on H× D.

Recall that D consists of maximal positive definite (oriented) subspaces. Given a
maximal positive definite subspace w ⊂ V (R), we decompose V = w ⊕ w⊥. Naturally,
w⊥ is negative definite. Writing a ∈ V (R) as aw + aw⊥ , the majorant qw(a) is given by
q(aw)− q(aw⊥).

Further, recall that to every z ∈ H, we can associate a positive definite subspace
w(z) ∈ D. To simplify notation, we write az and az⊥ for the projections aw(z) and aw(z)⊥ ,
respectively. Now, for τ = u+ iv ∈ H, we define

1

2
(x, x)z,τ := q(x)u+ qw(z)(x)v = q(xz) τ + q(xz⊥) τ̄ . (x ∈ V (R)) .

Then, for every z ∈ H, the following function, called the Gaussian, is rapidly decreasing,

φ(x, z, τ) := e
(

1
2
(x, x)z,τ

)
, (11)

in other words, φ is a Schwartz function on V (R).
This leads to the following definition of a theta-function attached to L:

Definition 3.3. The Siegel theta-function ΘL(τ, z) : H× D→ C[L′/L] is given by

ΘL(τ, z) =
∑

µ∈L′/L

θµ(τ, z)eµ, (12)

with component functions

θµ(τ, z) =
∑
λ∈µ+L

φ(λ, z, τ) =
∑
λ∈µ+L

e (τq(λz) + τ̄ q(λz⊥)) . (13)
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Due to the rapid decay of the Gaussian, the series defining ΘL(τ, z) is absolutely
convergent. Its transformation behavior is given by the following theorem, which can be
proved using Poisson summation [see 4, Theorem 4.1].

Theorem 3.1. For γ = (( a bc d ) , φ(τ)) ∈ Mp2(Z), we have

ΘL(γτ, z) = φ(τ)2φ(τ)nρL(γ)ΘL(τ, z).

Also, ΘL(τ, z) is invariant under SO(V )(R).

It is worth mentioning that the theorem in [4] is much more general. For example,
Borcherds allows for arbitrary signature (p, n) and also covers Siegel theta-functions with
a fairly general harmonic polynomial as an additional factor together with φ(x, z, τ).

The theta integral Now, let f ∈ Mk,ρL be a modular form transforming under the
Weil representation ρL, and consider the theta-integral given by∫

F
〈f(τ),ΘL(τ, z)〉v dµ (with dµ =

du dv

v2
). (14)

Here, F denotes a fundamental domain for the operation of Mp2(Z), while 〈·, ·〉 is the
hermitian scalar product on C[L′/L] from (8). Note that dµ is the left-invariant Haar
measure for the operation of Mp2(Z) on H.

By theorem 3.1, if f has weight k = 1 − n/2, the expression under the integral
is invariant under Mp2(Z). Thus, we may expect to evaluate the integral by using
unfolding.

However, there are two problems:

1. The space M1−n
2
,ρL is often trivial. Indeed, if n > 2, then M1−n

2
,ρL = {0}.

2. A possible solution is to extend to M!
1−n

2
,ρL

, allowing f to be weakly holomorphic.

However this entails a new difficulty: The integral in (14) no longer converges.
(Hence the name ‘singular’ theta-lift.)

Thus, if we admit weakly holomorphic modular form contained in M!
1−n

2
,ρL

as input

functions, which is desirable, we have to replace the theta-integral in (14) by a suitably
regularized integral. This is what we will do in the next section.

Remark 3.3. To avoid these difficulties, one can also use a more refined kernel function
instead of the Gaussian. Most commonly, one introduces a homogeneous polynomial as
a further factor, the degree of which then enters into the transformation behavior of the
theta-function.

An example for this is the following kernel function, ϕr (r ∈ N) defined as

ϕr(λ, z, τ) :=
(λ,w(z))

(y, y)r
φ(λ, z, τ) (z ∈ H).

With this kernel function, the theta-integral is Mp2(Z)-invariant for input functions of
weight k = 1 − n

2
+ r. Indeed, for suitable r > 1, the space Mk,ρL is non-trivial. Also,

in this case the theta-integral converges without need for any regularization. The kernel
function ϕr leads to the Shintani-Oda-Gritsenko lifting, see [38]
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3.3 The regularized theta lift

We set k = 1 − n
2
. Somewhat more generally, following Bruinier-Funke [10], we extend

M!
k,ρL

to H+
k,ρL

, the space of harmonic Maass forms introduced in section 3.1. Recall

from (10) the Fourier expansion for a harmonic Maass form f ∈ H+
k,ρL

(note that k < 1):

f(τ) =
∑

µ∈L′/L

(
f+
µ (τ) + f−µ (τ)

)
eµ

=
[ ∑
m�−∞

c+(m,µ)qm +
∑
m<0

c−(m,µ)Γ (1− k, 4π|m|v) qm
]
eµ,

(15)

where we denote by f+
µ and f−µ the components of the holomorphic part f+ and the

non-holomorphic part f− of f , respectively. Recall that each component function fµ =
f+
µ + f−µ is a scalar valued harmonic Maass form.
Note the asymptotic behavior of the non-holomorphic part for v → ∞: Since the

incomplete Γ-functions (or, more generally the M -Whittaker functions they are related
to) are of rapid decay [see 17, Sections 8.11, 8.12 and 13.21], f− decays rapidly, too.
(Also, see Remark 3.2.)

Thus, for the question of convergence or non-convergence of the theta-integral in (14),
only the f+ part plays a role. So, to formulate the necessary regularization recipe, we
look at the integral

∫
F〈f

+,ΘL〉v dµ.
The regularization we describe is due to Harvey, Moore [23] and Borcherds [4], [see

also 6, Section 2.2]. For t ∈ R>0, define the truncated fundamental domain Ft as follows

Ft := F ∩ {τ ∈ H;=τ ≤ t} =
{
τ = u+ iv; |τ | > 1,−1

2
< u < 1

2
, 0 < v ≤ t

}
.

Clearly Ft is compact. Hence, since ΘL and f+ are holomorphic as functions of τ on H,
the definite integral ∫

Ft

〈
f+,ΘL

〉
v dµ

is well-defined. One can take the limit t → ∞ and, providing it exists, define the
regularized integral accordingly.

Actually, the constant coefficient c+(0, 0) still poses a problem, as we will see presently.
But, excluding this coefficient, the following regularization can be used.

Definition 3.4 (Regularization 1). If the constant term c+(0, 0) in the Fourier expansion
of f vanishes, the regularized integral is defined as∫ reg

F
〈f,ΘL〉v dµ := lim

t→∞

∫
Ft
〈f,ΘL〉v dµ.

We note that since the integral is definite, we are allowed to interchange the order of
integration.

To see why it is necessary to require c+(0, 0) = 0, consider the Fourier expansions of
f+(τ) and of ΘL(τ). (Note that the expression under the integral is periodic with period
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length 1):

f+(τ) =
∑

µ∈L′/L

∑
m

c+(µ,m)e(mτ)eµ,

ΘL(τ) =
∑

µ∈L′/L

∑
λ∈µ+L

e−4πvq(λz) e(−q(λ) τ)eµ.

(16)

Due to absolute convergence, we many integrate term by term. Thus,∫ 1
2

− 1
2

〈
f+,ΘL

〉
(τ)du =

∑
µ∈L′/L

∑
m

c+(µ,m)
∑
λ∈µ+L

e−4πq(λz)v

∫ 1
2

− 1
2

e (u(m− q(λ))) du

=
∑

µ∈L′/L

∑
λ∈µ+L

e−4πq(λz)v c+(µ, q(λ)).

(17)

Hence, the contribution of the constant term to the integral over Ft is given by

c+(0, 0) lim
t→∞

∫
Ft
v
dvdu

v2
= c+(0, 0) lim

t→∞

∫ t

v=0

dv

v
= c+(0, 0)

[∫ 1

v=0

dv

v
+ lim

t→∞

∫ t

1

dv

v

]
.

Clearly, on the right hand side, the first integral is divergent, as is the limit of the second
integral.

Thus, a slightly more elaborate regularization recipe is needed here, which of course
also works if c+(0, 0) = 0:

Definition 3.5 (Regularization 2). If for s ∈ C with <(s)� 0 the limit

g(s) = lim
t→∞

∫
Ft
〈f,ΘL〉v1−sdµ

exists and has a meromorphic continuation on C, then the regularized integral is defined
as the constant term of the Laurent expansion of g(s) at 1 s = 0, denoted Cs=0[g(s)]:∫ reg

F
〈f,ΘL〉v dµ := Cs=0

[
lim
t→∞

∫
Ft
〈f,ΘL〉v1−s dµ

]
.

The regularized lift will give us a smooth function Φ(z, f) which still has some sin-
gularities. Beside determining their location, we also want to describe the behavior of
Φ(z, f) around these singularities. For the following it is somewhat more natural to
consider the regularized integral as a function on D, rather than on H.

We define the type of a singularity as follows:

Definition 3.6. Let U ⊂ D be an open subset and f, g functions on a dense open subset
of U . We say that f has a singularity of type g, if f − g can be continued to a real
analytic function on U . In this case, we write f 'U g.

1If 0 happens to be a pole, yet another, slight variation of this recipe is needed, see [6].
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Let f ∈ H+
k,ρL

be a harmonic Maass form with Fourier expansion as in (15). Further,
assume that c+(µ,m) ∈ Z for all m < 0. We define a Heegner divisor associated to f by
setting

Z(f) :=
∑

µ∈L′/L

∑
m<0

c+(µ,m)Z(µ,m), (18)

where the Z(µ,m) are the Heegner divisors of index (µ,m) from Definition 2.2.

Theorem 3.2 (Borcherds-Bruinier, cf. [4, Theorem 6.2], [6, Theorem 2.12]). The func-
tion Φ(z, f) given by the regularized integral

Φ(z, f) =

∫ reg

F
〈f,ΘL〉 v dµ, (19)

considered as a function on D, is real-analytic on D \ sup(−2Z(f)) and takes singu-
larities of logarithmic type along the divisor −2Z(f) (i.e. for every w ∈ D, there is a
neighborhood w ∈ U ⊂ D and a local equation div(g) = −2Z(f) |U with a meromorphic
function g, such that Φ 'U log|g|).

We give a brief sketch of the calculations involved in the proof, following [7]:

Proof. To determine the divisor of Φ(z, f), we need to work out the integral up to smooth
functions. First, split up the integral into two parts, one over z ∈ F with =z ≤ 1 and
one over z with =z > 1.

Φ(z, f) =

∫ reg

F1

〈f,ΘL〉v dµ+

∫ reg

F>1

〈f,ΘL〉v dµ.

Clearly, the first integral is smooth, and it suffices to consider the second integral.
Further, due to the rapid decay of the non holomorphic part, only the contribution of
f+ matters here. Thus, consider

lim
t→∞

∫ t

v=1

∫ 1
2

u=− 1
2

〈
f+,ΘL

〉
v1−sdµ. (20)

Since the expression under the integral is periodic in the indeterminate τ , we can insert
the Fourier expansion of f+ and ΘL and carry out integration over u, as above. With
(17) we get:

lim
t→∞

∫ t

v=1

∑
λ∈L′

e−4πq(λz)vc+(λ, q(λ))
dv

vs+1
.

We now split the sum into three parts: First, the sum over λ 6= 0 with q(λ) ≥ 0, second
the term for λ = 0 and third the sum over λ with q(λ) < 0. Also, since the integral is
definite, we can interchange the order of integration. Absolute convergence allows the
limit to be taken term-wise.

So, first consider ∫ t

v=1

∑
06=λ∈L′
q(λ)≥0

e−4πq(λz)vc+(λ, q(λ))
dv

vs+1
. (21)
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We will estimate the growth of the sum under the integral: Applying the Hecke estimate
[see e.g. 12, I. Proposition 8] to the Fourier coefficients c+(λ, q(λ)), we see that their

asymptotic behavior as q(λ) increases is O(ec
√
q(λ)) with some constant c > 0. We

rewrite the argument of the exponential as follows:

−4πq(λz) v = 2π [q(λz⊥)− q(λz)] v − 2πq(λ) v.

Note that the first term is a negative define quadratic form. It follows that the asymp-
totic behavior of c+(λ, q(λ))e−4πq(λz)v is given by O(e−q(λ)). Hence, the integral (21)
contributes only a smooth function.

Now, for the term with λ = 0: We get the integral expression

c+(0, 0)

∫ t

v=1

dv

vs
,

of which, after regularization, only a constant remains.
Finally, from the third sum, with q(λ) < 0, we get the following contribution to the

regularized integral ∑
λ∈L′
q(λ)≤0

c+(λ, q(λ)) Cs=0

[∫ ∞
v=1

e−4πq(λz)v dv

v1+s

]
.

We can express this in terms of the incomplete Γ-function, Γ(a, x) =
∫∞
x
e−rra−1dr [cf.

17, 8.2.2], with a = 0 and x = 4π|q(λz)|. Thus, after regularization and up to smooth
functions, Φ(z, f) is given by

Φ(z, f) '
∑
λ∈L′
q(λ)≤0

c+(λ, q(λ))Γ (0, 4π|q(λz)|) .

Now, we study the behavior of Φ(z, f) locally around a given point w(z0) ∈ D. From
the definition of Γ(a, x), by partial integration,

Γ(0, x) = −
[
e−r log(r)

]∞
x

+

∫ ∞
x

e−r log(r) dr.

one can see that near x = 0, the function Γ(0, x) behaves like − log(x) and is otherwise
smooth. Thus, we write the above sum as follows:∑

µ∈L′/L

∑
m<0

c+(µ,m)

[ ∑
λ∈µ+L
q(λ)=m
λ 6⊥z0

Γ
(
0, 4π|λ2

z|
)

+
∑
λ∈µ+L
q(λ)=m
λ⊥z0

Γ
(
0, 4π|λ2

z|
)]
.

The first, sum over all λ with λ 6⊥ w(z0) contributes a function which is smooth on a
small neighborhood of w(z0). This can be shown using reduction theory. The remaining
λ with λ ⊥ w(z0) generate a positive definite sublattice, and thus the second sum is
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finite. Hence, locally near w(z0) and up to smooth functions Φ(z, f) is given by the
finite sum

−
∑

µ∈L′/L

∑
m<0

c+(µ,m)
∑
λ∈µ+L
q(λ)=m
λ⊥z0

log|λ2
z|.

We conclude that the divisor of Φ(z, f) is given by a locally finite sum of the primitive
Heegner divisors Dλ, and get div(Φ) = −2Z(f). Also, clearly, the singularities are of
logarithmic type, as claimed. This completes the proof.

Remark 3.4. Beside its singularities, the function Φ(z, f) has a number of further
remarkable properties. Just to mention a few:

1. Bruinier showed that Φ(z, f) is an eigenfunction of the SO(V )(R)-invariant Lapla-
cian [6, Theorem 4.6, 4.7]. He further used this result to construct a lifting into
the cohomology [see 6, Chapter 5].

2. Also, Φ(z, f) can be used to define a smooth (1, 1)-form on the modular variety
XΓ, which satisfies a current equation. Naturally, this leads to various geometric
applications for example in Arakelov theory [see 9].

In particular, in the special case where f is a weakly holomorphic modular form,
this current equation implies that

∂2

∂zi∂z̄j

[
Φ(z, f) + c+(0, 0) log|y|2

]
= 0 (0 ≤ i, j ≤ n) .

This means that Φ(z, f) is pluriharmonic on H \ Z(f).

The evaluation of the integral. The calculations involved in the evaluation of the
regularized theta integral are quite involved and too extensive to reproduce here. But,
at least, we want to outline some of the main points. Let f be a weakly holomorphic
modular form with f ∈ M!

k,ρL
, k = 1− n/2.

Borcherds observed that the Siegel theta-function ΘL can be expressed through the
Siegel theta-function of the smaller, Lorentzian lattice L0 = L ∩ `⊥ ∩ `′⊥. Likewise,
using the Fourier expansion of the input function f one can define a vector valued
modular form fL0 : C → C[L′0/L0] transforming under the Weil representation of the
lattice L0 [see 4, Theorems 5.2 and 5.3]. Using partial Poisson summation, Borcherds
then decomposed the regularized theta-integral [4, Theorem 7.1], with one part given
by, essentially, the regularized theta-lift for signature (1, n− 1) of fL0 , with ΘL0 as the
theta-function, and further terms which are evaluated by unfolding.

The evaluation of the Lorentzian part (actually, in there, there is again a contribution
of a positive definite lattice contained in L0, which however evaluates to a constant)
gives piecewise polynomial functions. The singularities can be evaluated quite similarly
to the proof of Theorem 3.2, except that in the end their type is not logarithmic. They
also lie along Heegner divisors, which dissect the symmetric domain of the Lorentzian
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orthogonal group SO(1, n) into connected components. On each connected component,
many terms cancel, leaving only piecewise linear functions, which Borcherds gathers into
a term involving a Weyl vector [cf. 4, Section 10]. This is where the Weyl chambers –
connected components of H with wall-crossing occurring between them – and the Weyl
vector terms in Theorem 3.4 below originate from: in the contribution of the Lorentzian
part.

3.4 Borcherds products

Our main references for the following are [4, Section 13] and [6, Section 3.2]. In this
section, we assume the signature of V to be (2, n) with n ≥ 2. Further, let f denote a
weakly holomorphic modular form with f ∈ M!

k,ρL
, with k = 1− n

2
.

We define Ψ(z, f) as a meromorphic function on H with div(Ψ) = Z(f) by setting

Φ(z, f) + c+(0, 0) log|y|2 = −2 log|Ψ(z, f)|.

To see why this works, we note that the multiplicative Cousin problem is universally
solvable on H [see 20, Section V.2], since the components of H are convex. Hence there
exists a meromorphic function g with divisor Z(f); for this, one has to show that Φ(z, f)
is pluriharmonic i.e. all mixed second derivatives ∂i∂̄jΦ (1 ≤ i, j ≤ n − 1) vanish (see
Remark 3.4).

Then, Φ− log|g| extends to a pluriharmonic real analytic function on H. Further, this
implies that there is a holomorphic function h with <(h) = Ψ − log|g| [see 22, Section
IX.C], and one can set Ψ = ehg. (For a detailed version of this argument [see 6, p. 82ff]
or [cf. also 8, Lemma 6.6]).

Since Φ(z, f) is invariant, Ψ(z, f) transforms under ΓL according to

Ψ(γz, f) = σ(γ) · j(γ, z)c
+(0,0)/2Ψ(z, f),

with some multiplier system σ. It can be shown that σ has at most finite order, using a
result of Margulis (for n > 2). (For n = 2 an embedding trick has to be employed first.)
See [4, Lemma 13.1], [6, Section 3.4]. Thus, Ψ is a meromorphic modular form of weight
c+(0, 0)/2.

Now we are ready to formulate Borcherds’ celebrated result [4, Theorem 13.3]:

Theorem 3.3 (Borcherds). Let f ∈ M!
k,ρL

be a weakly holomorphic modular form with
Fourier expansion f =

∑
µ.m c

+(µ,m)qn, satisfying2 c+(µ,m) ∈ Z for all m ≤ 0. Then,
there is a meromorphic function Ψ(z, f) on H with the following properties:

i) Ψ(z, f) is a modular form of weight c+(0, 0)/2 with respect to ΓL with a multiplier
system of (at most) finite order.

2If we want to avoid a rational weight for Ψ(z, f), we must further assume that c+(0, 0) ∈ 2Z. In this
case, the multiplier system in i) is a character [see 6, Theorem 3.22 i)].
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ii) The divisor of Ψ(z, f) is given by

div(Ψ(z, f)) = Z(f),

where Z(f) =
∑

µ∈L′/L

∑
m<0

c+(µ.m)Z(µ.m)

is the Heegner divisor associated to f , see (18).

iii) For z ∈ H with |y|2 � 0 and z in the complement of the set of poles, Ψ(z, f) has
an absolutely convergent infinite product expansion.

To simplify notation, instead of the general product expansion for Ψ(z, f) from [4,
Theorem 13.3.5], we will give a simplified version. Consider the following setup:

Assume that L = L0 ⊕H, the direct sum of a lattice L0 of signature (1, n− 1) and a
hyperbolic plane H, i.e. a unimodular lattice of signature (1,1). We set V0(R) = L0⊗ZR
(so H is adapted to L0). Then, part iii) of Theorem 3.3 can be formulated as follows:

Theorem 3.4. For z ∈ H with |y|2 � 0 and z in the complement of the set of poles,
the absolutely convergent infinite product expansion of Ψ(z, f) takes the following form:

Ψ(z, f) = e
(
(ρW (f), z)

) ∏
λ∈L′0

(λ,W )>0

[
1− e ((λ, z))

]c+(λ,q(λ))

.

Here, W ⊂ V0(R) denotes a Weyl chamber for f and ρW (f) ∈ V0(R) is the Weyl vector
attached to W and f .

The Weyl chambers occurring in the theorem are connected components ofH; together
with the associated Weyl vectors, they can often be determined explicitly, using results
of Bruinier [see 6, p. 88]. It is worth noting, that while the Weyl vector parts and the
infinite product parts differ depending on the Weyl chamber, the product as a whole is
actually the same for all Weyl chambers.

Remark 3.5. Assume that the signature of V = L ⊗ Q is (2, n) with n ≥ 3. Then, by
the Koecher principle, if in the sum in ii) all coefficients c+(µ,m) are positive, it follows
that Ψ(z, f) is a holomorphic orthogonal modular form.

Contrastingly, if n = 2, as the Koecher principle fails in general, this line of reasoning
only works for those lattices L where the Witt rank is smaller than n, see Definition 2.3.

Finally, for the case n = 1, excluded above, Theorem 3.3 is mostly still correct, except
for one caveat: The multiplier system is not guaranteed to have finite order. Bruiner
and Ono give a precise criterion for this [see 11, Section 6], which in the present setting
can be stated as follows: The order is finite if for all m < 1 the Fourier coefficients
c+(µ,m) of the input function f are rational. As can further be shown, this is equivalent
to f being perpendicular to the subspace spanned by unary theta series.
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Example 3.1. Let L be the even unimodular lattice of signature (2, 2). Then, L is given
by the direct sum of two hyperbolic planes, and the Witt rank here is 2. The space of
input functions is given by M!

0(Γ(1)) = C[j], where j = j(τ) is the modular invariant.
For example, let J(τ) = j(τ)− 744. Then,

Ψ(z, J) = j(z1)− j(z2) = q−1
1

∏
m>0
n∈Z

(
1− qm1 qn2

)c(mn)
,

with q1 = e(z1) and q2 = e(z2). A complete treatment of this case is carried out in [25].

Example 3.2. We now turn to the case n = 1, see Remark 3.5. Consider the following
lattice of the form introduced in Example 2.4 (here, N = 1):

L =

{(
b a
c −b

)
; a, b, c ∈ Z

}
.

Then,

L′/L =

{(
0 0
0 0

)
,

(
−1/2 0

0 −1/2

)}
.

As the space of input functions M!
1
2
,ρL

is isomorphic to M!,+
1
2

(Γ0(4)), we recover the ex-

amples of Borcherds products from Section 1.2. (It can also be shown that the criterion
of Bruinier and Ono mentioned in Remark 3.5 is satisfied.)

We remark that as elliptic modular forms these products have double the weight that
they have as orthogonal modular forms. The reason for this is that SL2(R) is isomorphic
to SpinV (R) and the map from SpinV (R) to O+(V )(R) is two-to-one [cf. 11, Section 5]
or [cf. 4, Example 14.4].

Remark 3.6. In [11], Bruinier and Ono study a generalization of Borcherds’ construc-
tion for signature (2, 1), using a twisted Siegel theta function and with harmonic Maass
forms as input functions. One of their results [11, Theorem 6.1] is the existence of
generalized Borcherds products, which, however can have multiplier systems of infinite
order.
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