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Zusammenfassung

Das Ziel der vorliegenden Dissertation ist es, die Konstruktion von Borcherdsprodukten fiir
unitdre Gruppen der Signatur (1, q) liber imaginédr-quadratischen Zahlkoérpern durchzufiihren.

Die Grundlage hierfiir bildet die Arbeit [5] von Borcherds. In dieser wird die singulare
Theta-Korrespondenz dazu verwendet, eine multiplikative Liftung von schwach holomorphen
vektorwertigen Modulformen fiir die elliptische Modulgruppe SL,(Z) zu meromorphen auto-
morphen Formen fiir orthogonale Gruppen der Signatur (2, b) zu realisieren. Die so erhaltenen
Funktionen verfiigen iiber eine Darstellung als unendliche Produkte, wodurch sie als Verall-
gemeinerung klassischer Eta-Produkte angesehen werden konnen. Sie werden nach ihrem
Entdecker als Borcherdsprodukte bezeichnet. Diese Liftung war von Borcherds bereits in einer
vorherigen Arbeit [4] konstruiert worden, die hierbei verwendete Methode war jedoch deutlich
weniger konzeptuell. Tatsdchlich ist die Konstruktion in [5] weit allgemeiner; sie liefert auch
eine additive Liftung, welche eine Reihe vorher bekannter Liftungen als Spezialfédlle umfasst,
welche sich durch Theta-Korrespondenzen realisieren lassen.

Von einer singuldren Theta-Korrespondenz spricht man im vorliegenden Fall, da das Theta-
Integral

J (f(),0(r,2)) y2 XL
2 y

stark divergiert und erst durch ein aus der theoretischen Physik stammendes Verfahren
regularisiert werden muss, welches von Harvey und Moore [34] auf Integrale mit Theta-
Kernen iibertragen wurde, siehe auch [38].

Neben der unendlichen Produktentwicklung sei an dieser Stelle auch auf eine weitere cha-
rakteristische Eigenschaft der von Borcherds konstruierten automorphen Formen hingewiesen:
Ihre Pol- und Nullstellengebilde werden durch die Hauptteile der Fourierentwicklung der als
Eingabewerte fiir die Liftung dienenden Funktionen vorgegeben. Diese Eigenschaft erlaubt
somit die Konstruktion von Funktionen mit vorgegeben Divisoren auf den jeweiligen orthogo-
nalen Modulvarietiten, was als einer der Griinde fiir die vielseitigen Anwendungen, welche
aus Borcherds’ Konstruktion hervorgegangen sind, angesehen werden kann. Nach Borcherds
spricht man in diesem Zusammenhang von ,,Heegner-Divisoren®, eine Begriffsbildung, wel-
che auf die, einen Spezialfall darstellenden, Heegner-Punkte auf elliptischen Modulkurven
hinweist.

In der vorliegenden Dissertation wird nun das fiir die Borcherdsprodukte zentrale Resultat,
Theorem 13.3 aus [5], auf unitdre Gruppen der Signatur (1, q) iibertragen. Die dazu gewéhlte
Methode ist die des Riickzugs unter einer Einbettung zwischen den hermitesch symmetrischen
Gebieten der Gruppen SU(1,q) und SO(2,2q).

Sei hierzu F = Q(v/d) mit d einer negativen ganzen Zahl und V, (-,-) ein hermitescher
Raum {iiber F. Dann besitzt V die Struktur eines quadratischen Raums {iber () mit der qua-
dratischen Form, welche zu der symmetrischen Bilinearform (:,-) := Try /Q (-,-) assoziiert ist,
woraus man eine Inklusion der Isometriegruppen erhélt, ndmlich von SU(V)(R) in SO(V)(R).
Diese Beobachtung erméglicht es, eine Einbettung zwischen den zugehoérigen symmetrischen
Gebieten zu konstruieren.




Diese erfolgt im dritten Kapitel der vorliegenden Arbeit. In den vorausgehenden beiden
Kapiteln werden einige Grundlagen hierzu bereitgestellt.

Im ersten Kapitel wird die Theorie der symmetrischen Gebiete und der automorphen Formen
zundchst fiir unitdre und danach fiir orthogonale Gruppen entwickelt. In dem Abschnitt iiber
unitdre Gruppen werden auch einige Elemente der Theorie hermitescher Gitter bereitgestellt.
Aul’erdem wird im Anschluss an die Konstruktion des symmetrischen Gebiets auch die Kom-
paktifizierung der unitdren Modulvarietédt nach Baily-Borel beschrieben. Unitdre Modulformen
und ihre Fourier-Jacobi Entwicklungen schlieen diesen Abschnitt. In dem Abschnitt {iber
orthogonale Gruppen wird besonderer Wert auf die Konstruktion verschiedener Realisierungen
des symmetrischen Gebiets gelegt, da diese fiir die spatere Einbettung von groRer Bedeutung
sind. Ebenfalls ausfiihrlich behandelt wird die geometrische Struktur seiner Randkomponenten.
Die Definition der Modulformen wird durch eine Beschreibung ihrer Fourier-Entwicklung und
die Behandlung ihres Verhaltens auf Randkomponenten des symmetrischen Gebiets erganzt.

Im zweiten Kapitel wird die Konstruktion von Borcherds referiert. Vorher werden dafiir
notwendige Begriffe wie die Weil-Darstellung und die Definition von Weyl-Kammern eingefiihrt,
wozu auch die Theorie von quadratischen Gittern vertieft wird. Besonders relevant ist hier der
Begriff der Heegner-Divisoren, dessen Definition ausfiihrlich behandelt wird.

Das vierte Kapitel beinhaltet die wichtigsten Ergebnisse der Arbeit. Zundchst werden
Heegner-Divisoren und Weyl-Kammern auf dem symmetrischen Gebiet der unitaren Gruppe
eingefiihrt, woraufhin dann das Hauptresultat dieser Dissertation, ein Analogon zu Borcherds’
Satz 13.3 aus [5], formuliert und bewiesen werden kann. Ein Korollar gibt eine einfachere
Version fiir den wichtigen Spezialfall unimodularer Gitter an, und allgemeiner fiir Gitter, die
sich in einen unimodularen isotropen Teil und einen definiten Teil zerlegen lassen.

Das Kapitel schlief3t mit einer Untersuchung der Werte, welche die vorher konstruierten
Borcherdsprodukte auf den Randpunkten der Baily-Borel Kompaktifizierung annehmen.

Im abschlieenden fiinften Kapitel wird als Anwendung des Hauptsatzes sowie einer auf
Bruinier zuriickgehenden Verallgemeinerung des Borcherds-Lifts die Situation diskutiert, in
welcher das zugrunde liegende Gitter eine hermitesche hyperbolische Ebene ist und somit
der hermitesche Raum V die Signatur (1,1) hat. Hier lasst sich das symmetrische Gebiet
der SU(1, 1) mit der klassischen oberen Halbebene H = {z € C; 3z > 0} der Gaulsschen
Zahlenebene identifizieren. Die Borcherds-Liftung stellt in diesem speziellen Fall eine Korre-
spondenz zwischen skalarwertigen meromorphen Modulformen zur elliptischen Modulgruppe
SL,(Z) dar. Geliftet werden dabei schwach holomorphe Modulformen vom Gewicht 0, also
Modulfunktionen. Das Bild der Liftung besteht wiederum aus meromorphen Modulformen, die
durch eine unendliche Produktentwicklung gegeben sind. Wir konstruieren hier eine Familie
von Beispielen, wobei neben der Ausgangsfunktion auch der Zahlkorper als Parameter in die
Liftung eingeht. Ebenfalls untersucht werden die CM-Ordnungen von Heegner-Divisoren in
diesem Fall.

Mein Dank gilt in erster Linie meinem Betreuer Herrn Prof. Dr. Bruinier, der es mir ermog-
licht hat, in diesem faszinierenden Themengebiet zu forschen, und ohne dessen Rat und
Anregungen diese Dissertation nicht hitte zustande kommen konnen. Weiter danke ich Herrn
Prof. Dr. Funke, der sich bereit erklért hat, als deren Zweitgutachter zu fungieren. Ferner danke
ich Herrn Ehlen fiir das Korrekturlesen des Skriptums. Der DFG bin ich fiir finanzielle Unter-
stiitzung dankbar, sowohl im Rahmen des Graduiertenkollegs 1269 , Globale Strukturen“ an
der Universitit zu Koln als auch im Rahmen des Forschungsprojekts ,,Schwache Maal3formen“
am Fachbereich Mathematik der TU Darmstadt.
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0 Introduction

In two seminal papers, [3] and [5], Borcherds constructed a lifting from weakly holomorphic
modular forms on the elliptic modular group SL,(Z) to meromorphic automorphic forms on
orthogonal groups of signature (2, b), which have infinite product expansions. The aim of the
present thesis is to generalize these results to unitary groups.

Let V be a vector space over QQ, equipped with a non-degenerate symmetric bilinear form
(+,-) of signature (2, b) and the attached quadratic form q(-) = %(-, *). Denote by Vg =V ®g R
the corresponding real quadratic space.

Let L C V be an even lattice. To simplify the following discussion, assume that L is
unimodular.

By a weakly holomorphic modular form f for SL,(Z) we mean a holomorphic function on
the complex upper half-plane H = {t € C; 37 > 0}, with the usual transformation behavior
of a modular form and a Fourier expansion

()= g, )
n>—oo
where g = e2™7, as usual. Thus, f is allowed to have a pole at the cusp co. The principal part

of f is the Fourier polynomial

Z c(n)q".

—ookn<0

The functions serving as inputs for the Borcherds lift are weakly holomorphic modular forms
of weight 1 — b/2, having integer coefficients in their principal part.

Let f be such a modular form. The lifting constructed by Borcherds associates to f a
meromorphic function ¥(f; Z) on the symmetric domain of the orthogonal group O(2, b) ~
O(V)(R). We briefly recall the construction of the hermitian symmetric domain. Let V. =
V ®¢ C be the complex quadratic space obtained from V' by extension of scalars, with (-, )
extended to a symmetric C-bilinear form. Then, the symmetric domain for the operation of
O(V)(R) on Vi can be described as one of the connected components of the following subset
of the complex projective space P(V):

Ho={[W]; W,w)=0,(W,W) >0}.

We choose one connected component as a projective model for the symmetric domain and
denote it by #". The boundary components of ¢, are given by rational isotropic subspaces.
In particular, rational isotropic vectors correspond to zero-dimensional boundary components
in the sense of Baily-Borel. Let e € L be primitive and isotropic and let e’ € L be isotropic with
(e,e’) = 1. Denote by K the lattice LNnetne™ . Then, K is an even lattice of signature (1, b—1).
The symmetric domain can be realized as a subset of the Lorentzian space K ®, C as follows.
For a line [W] in 2%, there is a unique representative Z; of the form Z; = ¢’ —q(Z)e + Z,
where Z =X +iY € K ®, C with imaginary part Y € K ®, R satisfying q(Y) > 0. Denote by
#, the set of such Z. The assignment Z — [(1,—q(Z), Z)] is a biholomorphic map from %,
to .

1



The set 7, C K ®, C is called the tube domain model for the symmetric domain. Indeed
H is a tube domain as it can be written in the form K ® R + i ¢ with ¥ an open connected
subset, more precisely a cone, in K ®, R. The connected component of the identity in O(V)(R),
denoted O*(V)(R), acts on %, through fractional linear transformations.

The orthogonal group O(L) of the lattice L, is an arithmetic subgroup of O(V). Its subgroup
I'? = O(L) N 0" (V) acts on #,. Denote by X the quotient I'’\#,. By the theory of
Baily-Borel, it carries the structure of a quasi-projective algebraic variety.

The image of the Borcherds lift, ¥(f, Z), transforms as an automorphic form for T‘E’. Its
weight is given by ¢(0)/2 with ¢(0) the constant term in the Fourier expansion of the input f.

The zeros and poles of ¥(f, Z) lie along special divisors, so called Heegner divisors. These
can be described as follows: Given a vector A € L with q(A) < 0, the orthogonal complement
At is a quadratic subspace of codimension one and signature (2,b —1).

For a negative integer n, the locally finite sum

H(n) = Z At
A€l
q(A)=n
defines a I'-invariant divisor on 7, called the Heegner divisor of index m. It is the inverse
image of an arithmetic divisor on X|.
The divisor of ¥(f, Z) is given by a finite linear combination of such divisors H(n):

div(¥) = Z c(n)H(n).
n<0
c(n)#0
The lift ¥(f, Z) can be expanded as an infinite product, a so called Borcherds product. The
product expansion is absolutely convergent around the cusps and takes the form

w(r,2)=ce((o;w).2)) T] (1-e(zm)™”
AEK

(A,W)>0

here, as usual e(z) := exp(2miz), C is a constant of absolute value 1, p; denotes a so-called
Weyl vector and (A, W) > 0 is a positivity condition.

Finally, the lifting is multiplicative in the sense that ¥(f + g,Z) =¥(f,Z) - ¥(g,Z).

In [3], Borcherds gives a first construction of such infinite products. He proves that they
transform correctly under suitable generators of F? and shows meromorphic continuation
with the correct sets of zeros and poles using Hardy-Ramanujan-Rademacher asymptotics. The
construction in [5] is both more general and more conceptual, with the lifting realized as a
singular theta lift between the two groups SL,(R) and O(2, b), which form a dual reductive
pair in the sense of Howe. The roots of Borcherds’ original construction in [3] lie grounded in
the representation theory of generalized Kac-Moody algebras, where infinite products appear
as denominator identities, compare [4]. The relationship between Borcherds products and
both generalized Kac-Moody and Super Lie Algebras, see [55] for an introduction, is still a very
active field of research. For examples related to the theory of Bosonic strings, see Scheithauer,
[56] and [57].

Besides having expansions as infinite products, the property of taking their zeros and poles
along prescribed divisors is most characteristic for Borcherds products and is crucial for many
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applications they have found. Indeed, there is a duality theory giving precisely the obstructions
to realizing a given divisor through a Borcherds product, see [6] and [9], it comes by way of
a pairing between the spaces of weakly holomorphic modular forms of weight 1 — b/2 and
non-zero holomorphic cusp forms of weight 1+ b/2.

The theory of geometric moduli spaces is an area of research, where this feature has proven
particularly fruitful, since moduli spaces can often be realized as quotient varieties of a
similar type as X;. For example, for the moduli space of complex polarized K3-surfaces,
in [33], Gritsenko, Hulek and Sankaran use such a realization combined with Borcherds’
construction to show that the moduli space is of general type in many instances where this
was not previously established. Another example is provided by Allcock and Freitag, [1]. They
exhibit the moduli space of marked cubic surfaces as an intersection of cubic hypersurfaces in
nine-dimensional complex projective space. Automorphic forms with prescribed divisors are a
key ingredient for this geometric construction.

The close link between the geometry of arithmetic cycles on modular surfaces and the
Borcherds correspondence has prompted numerous developments in the arithmetic geometry
of these surfaces. A generalization of Borcherds’ construction towards a lifting into the
cohomology was carried out by Bruinier in [9]. The lifting he constructs takes weak Maass
forms as inputs to square-integrable harmonic 1, 1-forms which represent Chern classes in the
second cohomology of X.

Later, Bruinier and Funke showed, see [14], that this map is in a sense adjoint to a lifting
from the cohomology with compact support of locally symmetric spaces to modular forms
originally constructed by Kudla and Millson, see [42], [43], [44], and extended by Funke
[30].

Further, such generalized Borcherds lifts can be linked to Green currents in the sense of an
extended Arakelov theory due to Burgos, Kramer and Kiihn, [21], a relationship examined by
Bruinier, Burgos and Kiihn in [10].

Through the moduli space properties of the quotients X the Heegner divisors can often be
interpreted as special cycles in the sense of [41], see also [39]. Through this interpretation,
they can often be linked to integral models. The close relationship between the (generalized)
Borcherds lift, intersection theory, CM-theory and L-functions has been a focus of very active
research, for example by Bruinier and Yang, see [17], [18] and, as joint work with Kudla,
[19].

The aim of the present dissertation is to make Borcherds products available in the context of
unitary groups of signature (1, q). We describe briefly the set-up and the construction of the
symmetric domain.

Let d be a negative square-free integer and F the imaginary quadratic number field Q(v/d).
Denote by @y the ring of integers in F and by Dy, the discriminant of F and set 6 = \/D_F, taking
the principal branch of the square root. If d = 2,3 mod 4, we have Dy = 4d and & is given by
Z.+ v/ d7Z, whereas if d = 1 mod 4 the discriminant Dy, is equal to d and G = Z + %(1 +Vd)Z.

Denote by 2! the inverse different ideal.

Let V, (-,-) an indefinite non-degenerate hermitian space over F with (-, -) a hermitian form
of signature (1,q). Assume that (-,-) is linear in the first and conjugate-linear in the second
argument. Further, let L be an even hermitian lattice, that is, an Op-module with L ® 5 F =V
and (-,-) |, the hermitian form on L, which, since L is even, takes values in Z.

13



As before, in the context of quadratic spaces, we assume for the purpose of this discussion
that L is unimodular, thus for any v € V with (v,L) € 9 1 we have v € L. Then, L is also
unimodular as a Z-module with respect to the bilinear form given by (-, -) := Try/q (-, ).

Recall how the hermitian symmetric space for the unitary group SU(1,q) of the hermitian
space V, (-,-) can be realized as an unbounded domain. Let £ be a primitive isotropic vector in
L and ¢’ € L a second vector with (£,¢’) # 0.

The symmetric domain of SU(1, q) is isomorphic to the projective cone of positive definite
one-dimensional subspaces

Ay ={[v] €eP(WR); (v,v) >0}

The isotropic line [£] is a boundary component of 2#{;. To each subspace in 2#; we can attach
a unique representative z of the form z = ¢’ — 1 (¢/,{) §{ + o, with 7 € C and o € C1~! with
o negative definite. The positivity condition (z,2z) > 0 then allows us to consider the following
Siegel domain as an affine model of the symmetric domain

6y = {(T,O‘) eCxCat; 23T|<£,£/>|2 > = (O';O-)}-

In this model, ¢ corresponds to the cusp co.

Denote by SU(L) the unitary group of L. It is an arithmetic subgroup of SU(V'), operating
on #4;. Let ' be a subgroup of finite index in SU(L). The modular variety for the unitary
group I' is given by the quotient

Xr - F\%U'

The geometry of such quotients has been the object of intensive study, in particular when
V has signature (1,2) and X is a Picard modular surface, see for example Cogdell [22] or
Holzapfel [36].

Let k be an integer. A unitary automorphic form f of weight k for a subgroup of finite index
in SU(L) is a holomorphic function f on 54; which transforms according to

flr(z,0)) =j(r;7,0)f(v,0) forevery yeSU(L),

where j: ' X #4; — C* is the factor of automorphy induced by the action of SU(L).

The arithmetic of unitary modular forms is particularly rich. We mention only a few
examples for work in this field. Shimura has made many contributions, starting with the
seminal [62], which develops the theory for unitary groups U(p, q) of general signature, and
their relationship to Siegel modular forms. The theory of arithmetic theta functions and of
L-values is pursued in [63]. For Picard modular surfaces, an overview of the arithmetic of
L-series is given by [46]. Recent work by Murase and Sugano ([50] and [52]) combines a
theory of arithmetic theta functions due to Shintani, see [51], with a lifting developed by
Kudla in [40].

We now proceed to describe the main results of this thesis. We need a suitable definition of
Heegner divisors in the unitary context. Given a lattice vector A € L with (A, A) = n a negative
integer, the complement with respect to (-, ) is a codimension one hermitian subspace of Vj
and defines a codimension one subset of the projective cone .#;;, which we denote by H;. This
defines a subset of #4; supporting a primitive divisor on #4;, which we also denote by H,.

14 0. Introduction



For a negative integer n, we define the Heegner divisor H(n) of index n as the locally finite

sum
H(n) := Z H,.
A€L
(A, A)=n

This is a SU(L)-invariant divisor on 4.

Without loss of generality, set (¢,£’) = —5~'. Write & in the form Z + {Z, with { = v/d or
(= %(1 + +/d) depending on the whether the discriminant is odd or even.

Then, for L a unimodular lattice containing an isotropic vector £, our main result can be
stated as follows:

Theorem. Given a weakly holomorphic modular form f for SL,(Z) of weight 1 — q, with Fourier
expansion of the form (*) Assume that f has integer coefficients in its principle part and a
constant coefficient c(0) € 2Z. Then, there is a meromorphic function Z;(7,0) on &, with the
following properties

1. B¢(7,0) is an automorphic form of weight c(0)/2 for SU(L).

2. The zeros and poles of E¢ lie on Heegner divisors. We have

div(g;) = > c(n)H(n),
n<0

c(n)#£0
with the Heegner divisors H(n) as introduced above.

3. Near the cusp corresponding to £, the function Z;(t, 0") has an absolutely converging infinite
product expansion of the form

E¢(t,0)=Ce (6(z,pf(W))) l_[ (1 —e (5(2,%))),

AeK
(A,W)>0

here, as above z = {’+ 1{ + o, while K denotes a Z-submodule of L given by the complement
of £ and {' in L with respect to the bilinear form Tryq (-, ). Further, p (W) is a Weyl vector
and (A, W) > 0 denotes a positivity condition analogous to that in Borcherds’ theorem.

4. The lifting is multiplicative. We have Z¢,,(7,0) = E/(7,0) - E,(7,0).

This simplified version of the product expansion can be found in corollary 4.2.4, the main
theorem 4.2.1 is phrased in a form suitable for non-unimodular lattices and arbitrary non-zero
value of (€,£").

Our approach to proving this result can be summarized as follows:

We identify the hermitian space V, (-,:) over F with the underlying quadratic space over
Q, where the bilinear form is given by (-,-) := Try/q (-,-). This rational quadratic space of
signature (2,2q) we denote by V’. Then, the (special) unitary group can be identified with
a subgroup of the (special) orthogonal group. The inclusion SU(V) — SO(V) induces an
embedding of the attached symmetric domains. A suitable realization of this embedding makes
it possible to transfer most of the results leading up to theorem 13.3 in [5] to the setting of
unitary groups.
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As sketched above, we introduce Heegner divisors on s4; and show that these can be consid-
ered as the pull back of the Heegner divisors H(n) as occur in Borcherds’ theorem. With this
and an appropriate definition of Weyl chambers and the positivity condition, we can complete
the proof of our main theorem, along the lines of Borcherds’ proof from [5].

It should be noted that Freitag, in [28], uses an embedding of a somewhat similar type to
construct modular forms a particular unitary group of signature (1,4), related to the moduli
space of marked cubics occuring in [1], both by Borcherds’ additive and multiplicative lifts.

The content of the chapters

We give a brief synopsis of each individual chapter.

The first chapter covers the basic theory of unitary and orthogonal modular forms. In the
first section, we first recall some facts on imaginary quadratic number fields and introduce
hermitian lattices. A main focus is the construction of the Siegel domain model and an exami-
nation of the parabolic subgroups of SU(L). We then describe the Baily-Borel compactification
of the modular variety. After the definition of unitary modular forms, the section closes with
a description of Fourier-Jacobi expansions and a proof of the Koecher principle in this case.
The second section of this chapter covers the theory for orthogonal groups of signature (2, b).
We assume as known the theory of lattices and quadratic modules over Z and focus mainly
on the construction of the different models of the symmetric domain leading up the tube
domain model 5%,. Under the assumption that the lattice L splits two hyperbolic planes over
Z, we give a refined system of coordinates for s, which will be used in the construction of
the embedding later on, in chapter 3. Further, we describe the boundary components of %,
and the parabolic subgroups of O(V'). Then, we introduce orthogonal automorphic forms and
describe some properties of their Fourier expansions.

Chapter two describes the theory of Borcherds and some necessary prerequisites. For one
thing, these are the weakly holomorphic modular forms. In general, if the lattice is not
unimodular, vector valued modular forms transforming under the Weil representation p; of
SL,(Z) take the place of the modular forms described above. The next main prerequisite are
the Heegner divisors, already mentioned above. Weyl chambers are another subject treated in
this section. They can be seen as connected components of the symmetric domain separated by
hyperplanes corresponding to Heegner divisors. Finally, we briefly describe how the Borcherds
lift as given in [5] is implemented as a singular theta lift, and how the wildly divergent theta
integral

(I)L(Z:f):f (f(T),@(T,Z)Hb/sz;Cziy

F

can be regularized, using a recipe due to Harvey and More [34]. We then reproduce Borcherds’
theorem 13.3 in sufficient generality for our purposes.

In chapter three we construct the embedding between the symmetric domains 54; and 7,
mentioned above. The chapter has two main parts. In the first part, we describe the embedding
in terms of SU(V) and SO(V), and of their arithmetic and their parabolic subgroups. We
then deal with the issue of choosing rational isotropic lattice vectors corresponding to the
cusps and extend these to a basis for the hyperbolic part of V', (-,-) compatible with the
choice of £ and £’ € V, (-,-). In the second part, we examine the requirements the embedding
has to meet: It has to be compatible, on the one hand, with the natural complex structure
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of the hermitian space Vg, (:,-) and, on the other hand, with the complex structure of the
complexified space V- obtained from the real quadratic space Vg, (-,). Further, the image of
(7,0) under the embedding has to be contained in the tube domain #%,, so it has to conform
with the normalization and positivity condition for the attached representative Z; in #.

With the basis for the hyperbolic part of Vj, (+,) determined in section 3.1.2 we then given
an explicit description of the embedding in the coordinates of the Siegel domain 5%; and
the tube domain #4,. As a final point we show that the embedding is well behaved on the
boundary of the Baily-Borel compactification, through an explicit description for the basis of
the topology around a boundary component of %, corresponding to a cusp of 4.

Chapter four contains the main results of the present thesis. In this chapter, as sketched
above, we introduce Heegner divisors for #4;, showing that they can be interpreted as the
restriction of Heegner divisors on 4, to the image of ; under the embedding. We also
demonstrate how the concept of Weyl chambers can be transferred to the unitary setting. The
main part of the chapter is, of course, the formulation and proof of the main theorem 4.2.1
and a corollary thereof, corollary 4.2.4, which can be used for example, when the lattice L
is unimodular to give the version of the theorem presented above. Additionally, in the final
section of the chapter, we derive a result on the behaviour of Borcherds products on the
boundary of the symmetric domain, theorem 4.3.3. For a unimodular lattice, it reads:

_ _ c(0)

lim =p(r,0)=e(-pf) [] (1-e(-10) ",
k=A]CA€€K,
MEZ

where P?ﬁ is a component of the Weyl vector. This expression can be interpreted as a CM-value
of an eta-product.

The last chapter is devoted to the construction of examples for Borcherds products on
SU(1,1). Here, the unimodular lattice L is given by the hyperbolic plane 0; ® 2 ! and the
hermitian space V by L ®, F.

In this case, 4, can be identified with the classical complex upper half-plane H =
{z € C; 3z > 0}. The inputs in this case are modular functions, which can be described
as polynomials with integer coefficients in the modular invariant j(7). The image also consists
of meromorphic modular forms for the elliptic modular group SL,(7Z), with infinite product
expansions similar to that of the eta-function. In fact, the eta-function is found to be the lift of
a constant function.

To recover the Weyl vectors in explicit form, we use results of Bruinier from [9] and [16] in
combination with corollary 4.2.4 of the main theorem from chapter 4.

As an example for the infinite products constructed this way, let n be a square-free integer
with n > 0. Then, there is a unique modular function f, in Z[j] of the form f, =q " + O(q).
A Borcherds product expansion for the lift of f, is given by

__\c(kD)
Er (1) =e(~o(n)7) l_[ (1—6(1{7—1{)) ,
k,leZ
(LK), W)>0

n
151"
a Weyl chamber, which in this particular example can be described as the half-plane 37 > n in

C.

converging absolutely for T with 37 > Here, o(n) denotes the divisor sum 4> and W
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Outlook

It would be interesting to study further example cases for the unitary Borcherds lift. For
instance in signature (1, 2) the modular varieties are Picard modular surfaces, and the Heegner
divisors have applications to their CM-theory, see for example Kudla and Rapoport [39]. To
furnish suitable input functions, which in this case would be vector-valued, constructions such
as in [13] or [58] can be used.

It appears that the method used to derive the main theorem of this dissertation is also suitable
to extend Bruinier’s generalization, from [9], of the Borcherds lift to unitary groups. It will be
interesting to work on this and to see how the approach can be modified to recover as much
as possible of the geometric information encoded in the Bruinier-Borcherds lift.

A unitary version of the Bruinier-Borcherds lift is expected to give Green objects in the sense
of Arakelov theory for unitary modular varieties. In particular, examples of this for Picard
modular surfaces should contribute further to their already rich arithmetic theory.

I am greatly indebted to my advisor, Prof. Jan H. Bruinier for introducing me to this
fascinating area of research. Without his advice and the inspiring example he gives through
his work, this thesis project would never have been completed.

Also, I would like to express my thanks to Prof. Jens P Funke of the University of Durham,
who agreed to coreferee the present thesis.

Further I thank the DFG (Deutsche Forschungsgesellschaft) for financial support during a
large part of my PhD project. First as a fellow of the DFG-Graduiertenkolleg 1269, ‘Global
structures in analysis and geometry’. Second, as a member of the DFG research project ‘Weak
Maal3 forms’.

I am also thankful to my colleague Stephan Ehlen for a careful reading of a large part of the
present thesis, and many fruitful discussions we have had during the past years.
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1 Lattices, groups and symmetric domains

The present chapter provides the basic concepts and notation used throughout the remainder
of the thesis. It covers the basic theory of unitary groups of signature (1, q) and of orthogonal
groups of signature (2, b) as isometries of hermitian and quadratic spaces, respectively. It
deals with the construction of models for symmetric domains of these groups and describes
the basic theory of automorphic forms. Since much of the material covered can be considered
as well known, proofs are often omitted or only sketched. This applies particularly to section
1.2, dealing with the theory for orthogonal groups, at the beginning of which, on p. 34, we
have listed some references.

1.1 Unitary groups

Automorphic forms for unitary groups of signature (q, q) were first studied by Hel Braun in the
30s. However, Shimura was the first to consider the case of general signature (p,q) in [62].

In this section, we cover the basic theory of modular forms for unitary groups of signature
(1,q). We start with the basic setup of a hermitian space V, (-,-) over an imaginary quadratic
number field F = Q(+/d), with d < 0. At first we assume only that (-,-) has signature (p,q)
with ¢ > p. We treat hermitian lattices in V as @p-modules, where 0, denotes the ring of
integers in F, and introduce unitary and special unitary groups U(p,q) and SU(p,q) and
unitary modular groups related to a lattice L. We give a model Gry; of the hermitian symmetric
domain of SU(p, q) as a Grassmannian. From this point on, we specialize to signature (1, q)
and describe the construction of a further model, the Siegel domain #4;. For a unitary modular
group I', we then study the stabilizer of the cusps of 7, and carry out the compactification of
the modular variety X = I'\24;. Finally, we define automorphic forms on 4; and study their
Fourier-Jacobi expansion. A proof of the Koecher principle and a discussion of the value taken
by modular forms at the cusp oo closes the section.

1.1.1 The subjacent space

The starting point for all our considerations is a vector space over an imaginary quadratic
number field, equipped with non-degenerate indefinite hermitian form.

Imaginary quadratic number fields

Denote by d a square-free negative integer. Consider the imaginary quadratic number field
F = Q(vd). Denote by Dy the discriminant of I, by & the square root! of Dy, and by & the
ring of integers of F. We have

_|d ifd=1 mod4,
F7l4d ifd=2,3 mod4,

1 By the square root of a complex number we always mean the principle branch of the square root, unless

stated otherwise.
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and 0p = Z + {Z, where
6/2 if Dy is even,

1
5(1 +6) if Dy is odd.

The inverse different ideal 2 ! (also called complementary ideal) is the Z-dual of @ with
respect to the trace Try/q.

The inverse of 9; ', is the -ideal generated by §, 2 = 60;. And thus, as a fractional
ideal,

a1
We fix an embedding of F into C and thus view F as a subfield of C. Then, for an element
a=a+ bvd in F, the Galois conjugate is the same as the complex conjugate @ = a — bv/d.
The trace Trg/q and the norm N/, are given by

Trp/g(a) = a+ a = 2a = 2Ra,
Nppla) =aa= a’+1d|b? = (Ra)* + (3a)>.

The hermitian space V

Let V be a vector space of dimension p+q over IF, equipped with a non-degenerate hermitian
form (-, ), indefinite of signature (p,q), with ¢ > p, p # 0. We define (-, -) to be linear in the
first and conjugate-linear in the second argument,

(ax,By)=aB (x,y), forall a,B €F.

By extension of scalars, we extend (-,-) to the complex space Vz = V ® C. As a hermitian
space, V; is isometric to the standard hermitian the pseudo-euclidean space C?*¢, with form
X1y + '-'+Xp5’p _xp+1.)_/p~|—1 - _xp—i-q.)_/p—i-q'

Note that V also carries a structure as a quadratic space over QQ, since the trace of (,-)
defines a non-degenerate rational bilinear form

()= Trg)q ()y=2%(,").

This extends to Vi as a real bilinear form, of signature (2p,2q). As a quadratic space, Vj is
isometric to R?-24, The attached quadratic form is denoted by q(-).

Since (x,x) = q(x), for x € Vi we will sometimes use q(-) as a shorthand for the norm with
respect to (-,-). Note that g(ax) = |a|2q(x).

Finally, we write x2 for (x, x), the norm with respect to (-, -).

Remark. Note that (-,-) and (-, -) determine each other uniquely, as can be seen from

(53) =3 (3,5 +13 (5,3 = 2 (o) + 1 (i),
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Example 1.1.1. The most basic example for an indefinite hermitian space occurs when p and q
are both 1. Let V ~ F2, be such a space with the hermitian form (-,-) given by

(w, v) = ((uy,up), (vy, v9)) = uy Uy +uy ;.

Alternatively, after a change of basis, (-,-) takes the form

(u,v) = ((xl,xz), (J’b)’2)> =X1Y1 — X2Yo-

and the complex hermitian space Vg, (-,-) is identified with the pseudo-euclidean space C%?,
mentioned above.
The Gram matrices for these two bases are given by

(o) e (o)

The first basis gives Vi a geometry as a hyperbolic, the second as a pseudo-euclidean complex
space.

Remark 1.1.2. If V is a hermitian space over F, we call a decomposition of the form V =H &V’
with H an isotropic F-subspace of signature (1,1) a Witt decomposition. For p +q > 3, such a
decomposition always exists. This follows from a theorem of Hasse-Minkowski applied to V as a
quadratic space over QQ with the quadratic form q(x) = % (x, x).

In contrast, of course, the complex hermitian space Vg, (:,-) can always be decomposed into a
hyperbolic part, consisting of p copies of a signature (1,1)-space and a definite part of dimension
q-—rp.

1.1.2 Lattices and unitary groups

In this subsection, we introduce hermitian lattices in V, generalizing the usual definition
of lattices as Z-modules in quadratic spaces. We describe the concepts of integrality and
evenness for lattices in this context and give the basic example for unimodular lattice, the
hyperbolic plane of @. Also, we consider unitary groups with respect to (-,-) and define
modular subgroups.

Hermitian lattices

Definition 1.1.3. An Op-lattice in V is a finitely generated Og-submodule L such that LQ, F =V.
An Op-lattice L is integral, if

(A u)e o forall AuelL.
Further, L is called even, if
(A,A)€Z forany A€lL.

Remark 1.1.4. For a lattice to be even implies that it is also integral.
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Proof. Assume L to be even. Consider the following identity, which holds for any A, u € L,

Tre/g (A, u) = (A+u,A+u) — (A4, 4) — (U, u) .

By assumption, the right hand side is integral, thus the trace of (A, u) is an integer, too. Now,
as L is an Op-module, clearly xA € L for any x € 0. But then, Try/ x (A, 1) € Z for any x.
In other words, (A, ,u) €Dy ! by the definition of the inverse different. This, in turn means L
is integral. O

Note that an Op-lattice in V is not only a hermitian lattice with the restriction of the form
(-,+), but also carries the structure of a Z-lattice — a finitely generated Z-module — with the
(Z-)bilinear form induced by the trace,

(A1) = Trgjq (A, 1) -

Remark 1.1.5. Recall the usual definition of integrality and evenness for lattices over Z, by which
L is integral, if (A, u) € Z forall A, w € L, and L is even if (A, A) € 27 for any A € L.

The hermitian lattice L with the form (-,-) is integral (even), precisely if L with the bilinear
form (-,-) is integral (even) as a Z-lattice.

Proof. For L integral: If (A,u) € 2", then by definition Trg)q (A, u) € Z. Conversely, if
Tre/q (A, 1) € Z for any A, u, (A, u) must be in 2.7, since L is an G-lattice, as observed in
the proof of the previous remark.

For L even: Since (-,-) is hermitian, (A, A) is real for any A, thus (A, A) = %(A, A). From this
the equivalence of the two definitions is immediate. O

Definition 1.1.6. For an Op-lattice L C V, the Op-dual is defined as the set

L' = {er; (x,A)€2;", forall AEL}.
The dual L’ of an G-lattice L is also an O-lattice.

Remark 1.1.7. The dual lattice L’ is also the Z-dual of L with respect to (-, -),
L'={xeV; (x,\)€Z, forall AelL}.

Remark 1.1.8. The lattice L is integral if and only if L € L’. For an integral lattice L, the bi-dual
(L") is equal to L.

Definition 1.1.9. Let L be an integral Og-lattice. The quotient a L'/L is a finite 0p module,
called the discriminant group of L.
If L = L', we say that L is unimodular.

Remark 1.1.10. Somewhat more generally the term hermitian lattice can be defined by consid-
ering the ring of multipliers of L, which is given by
0, ={xeF; xLCL}.

Clearly, 7Z C 0}. If the inclusion is proper, it can be shown that 0; is an order in F — and thus of
finite index in O, see [45]. One then calls L hermitian and says that L has complex multiplication
with 0.
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Example 1.1.11. Consider the Op-module H = Oy ® 9, 1 generated by 1 and 671. After
tensoring with F we have H ® 5 IF = F2, so H is a lattice in V = F2. With the indefinite hermitian
form (-,-) given by

(Ce, ), (", ¥) =x¥7 + y¥/,
the lattice H has signature (1,1), is even and unimodular. A lattice isomorphic to H (as an
Oz-module) is called a hyperbolic plane over 6.

Unitary groups

The unitary group of V is the subgroup of GL(V) preserving the hermitian form,
U(V)={g €GL(V); (gx,8y) =(x,y) forall x,yeV},
the special unitary group SU(V) is the intersection
SU(V) = U(V) N SL(V).

We consider both as algebraic groups defined over Q. The real points of these, U(V)(R) and
SU(V)(R), are the unitary and special unitary group of Vg, respectively.

Let L be a hermitian lattice in V. The isometries of L define arithmetic subgroups, the
integer points of U(V) and SU(V),

U(L)={geU(V); g(L)=L} and SU(L)=U(L)NSU(V).

Groups commensurable with U(L) are arithmetic subgroups of U(V), in the sense defined in
[49]. We shall consider the subgroups of finite index in SU(L) as unitary modular groups

We will be particularly interested in modular groups of the following form:

Consider the action of U(L) and SU(L) on the discriminant group L’/L. The subgroup of
SU(L) which acts trivially is called the discriminant kernel and is denoted by I'}. It has finite
index in SU(L).

1.1.3 Models for the symmetric domain

The Grassmannian

As a hermitian space of signature (p,q), we can decompose V into a sum of maximal definite
subspaces, V = P @ Q with P positive definite and Q negative definite, of dimension p and q,
respectively.

The direct product of the unitary groups attached to Py and Qy,

¢ =UP)R)xUQ)R) — UV)R),

is a maximal compact subgroup of U(V)(R) stabilizing Py and Q. The intersection with
SU(V)(R), ¥ N SU(V)(R), is maximal compact in SU(V)(R). A symmetric domain for the
operation of SU(V)(R) on Vj is given by the quotient

SU(V)(R)/ (€ nSU(V)(R)),

which is isomorphic to the Grassmannian manifold consisting of the positive definite p-
dimensional subspaces of Vi, denoted by Gry. This so called Grassmannian model is our
starting point for the construction of further models of the symmetric domain.

Note that Gry can also serve as a model of the symmetric domain for the operation of
U(V)(R), since Gry ~ U(V)(R)/%.
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A positive cone

From now on, let us concentrate on the case where p is equal to 1. Thus V has signature
(1,q) and the points of Gry correspond to the one-dimensional positive subspaces of V. From
this, we have an interpretation of Gry; as the following cone in projective space

Ay ={[z] €P(W); (2,2) >0},

where z denotes some representative vector for the positive line [z]. We have Gry ~ #; as a
complex manifold and as an algebraic variety.

We will define an affine model for the symmetric domain presently, subject to a special
choice of basis for a signature (1, 1)-subspace of V.

Assumption 1.1.12. We assume in the following that the hermitian F-vector space V, {,-) of
signature (1, q) contains an isotropic vector. Further we assume that we are given an Og-lattice L
in V, hermitian with the restriction of the form (,-), such that V.= L ®,_T.

This assumption is non-trivial only if V has signature (1,1) or (1,2), recall remark 1.1.2.

A basis for the hyperbolic part

Given the hermitian space V of signature (1,q) and an even hermitian @y-lattice in L in V,
we choose a primitive isotropic lattice vector £ € L and an element ¢’ € L’ with ({,¢') #0. A
lattice vector A in L is called primitive if A = uA’, for u € @ implies y € 0.

Definition 1.1.13. We call two lattice vectors £ and £’ a hyperbolic pair, if £ € L is primitive
isotropic and £’ € L’ with (£,0’) # 0.

Consider the isotropic subspace of signature (1,1) spanned by £ and £’ over IF, we can view
this as the hyperbolic part of V. Denote by D the set of lattice vectors of L which lie in the
complement (with respect to (-, -)) of this space

D={reL; (2,0)=(1¢)=0}. (1.1.1)

Clearly, D ®, I is a definite hermitian subspace of signature (0,q — 1) as V splits into a direct
sum

V= (M oF')®(D8;F)=(H®,F)® (D®,F),

with the signature (1,1) subspace spanned by ¢ and ¢’ isomorphic to the hyperbolic plane
H ®g, F over F.

Example 1.1.14. Consider the hyperbolic plane H = 0 ® 9" as in example 1.1.11. And V
the hermitian space, of signature (1,1), given by V.= H ®, T. Then, a hyperbolic pair can be
obtained by setting { =1 € O, clearly, a primitive element, and choosing some element in 9y,
for example —5 . Thus, we set £’ = —5~! — in which case £ and ¢’ are also a basis of H as an
Op-module. Thus, H = Ozl & Oxt’. Written as vectors in V, { = (1,0), £’ = (0,—6"1). By the
definition of the hermitian form (-,-) in the example, we have

0,0y =572, (€, 0) = (¢/,¢') =0.
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Remark. In the previous example, both members of the hyperbolic pair £, £’ are actually isotropic
vectors — in general though, given a lattice of signature (1,q) satisfying assumption 1.1.12, we
can not expect this to be the case-

Lemma 1.1.15. Let L be an even unimodular lattice containing a primitive isotropic vector {.
Then, L can be written in the form L = (0z ® 9 1Y@ D = H® D as the direct sum of a hyperbolic
plane and a definite part, with (H,D) = 0.

Proof. Since { is primitive, by the next lemma 1.1.16, L = L’ contains a vector £’, such that £,
¢’ are a hyperbolic pair and (£,£') =57,

Let D be the complement in L (with respect to (-,-)) of Ol & OpL’. Then, we can write any
A € L in the form

A=al+bl'+Ap, with a,beF,A, €D®F.

We show a, b € 0y and A, € D, whence the claim follows.

We have (A,¢) = b (¢,£) = —b& . Since L is integral and £, A € L, we have (A,¢) € 2. .
The, clearly b € 69, ' = G. Similarly. (A,£") =a&~'+ b ({',{’), is contained in 2 ' as L is
integral. Since b € 0y and (£,{’) € Z, as L is even, it follows that a € Gy, as well.

Finally, since a,b € 0O, the vectors al and b{’ are contained in L, too. It follows that
Ap =A —al — b{’ is contained in D C L. So every A € L can be written in the above form, as
claimed. H

Lemma 1.1.16. Let L be an even lattice and L’ its dual. Let be v a primitive vector contained in
L. Then (v,L") = 9.

Proof. Clearly, 0 # (v,L’) C 9,7, since (-,-) is non-degenerate and L’ ®g, F =V. We assume
that the inclusion is proper. So, (v,L’) is a fractional ideal a & 2.

Then, there exists a prime ideal p C & with Zza C p. Now, take an element A € p~1 \ G
(the existence is clear). Now,

-1 -1
(Av,L'yCcAacplac o',
since a C p%, '. Thus, Av is contained in the bi-dual (L")’ of L. Since L is integral, (L) = L.

So, Av € L. But since A~ € p, we get A~1(Av) = v in contradiction to the primitiveness of
v. [

The Siegel domain model

Consider the following set of representatives in Vg for 7,

JZ’S:: {zeVg; (2,2) >0 and (3,£)=({,()}. (1.1.2)
Under the canonical projection 7 : Vi — P(V) this set bijects onto #3;. The condition on
(z,£) forall z € J?S fixes the £’-component to 1.

We shall write each representative z in the following form:

g=0—-1(l',{)6L+0, with 0€D®, Cand 7TeC. (1.1.3)
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The positivity condition (z,z) > 0 now reads
21{6, 0?1557 > — (o, 0) = (£/,0').

Since one component is fixed, we can identify J?I} with a subset of C%, parameterized by the
coordinates 7 and o.

Definition 1.1.17. Given a hermitian lattice L. and a fixed choice of a hyperbolic pair { € L,
¢’ € L’ spanning the hyperbolic part of V over F, the Siegel domain model for Gry; is defined as

Hyi={(1,0)€Cx (D®4C); 2[(6,0)5]37 > —(0,0)—(¢,¢)}.  (1.1.4)

Note that if ¢ = 1 the Siegel domain % is isomorphic to the usual upper halfplane H in C.
This is also the only case, in which 4; is a tube-domain, i.e. a subset of C", here n = 1, of the
form R" 4 iD with D an open subset of R".

Remark 1.1.18. Clearly, the construction of the Siegel domain depends on the choice of the
hyperbolic pair £ and {’. Another point of view is to say that the choice of £ and {’ fixes an
embedding of the set 56; C C x CI7! defined by (1.1.4) into Ay through the assignment of
(t,0)— 2.

Now, let u be another primitive isotropic lattice vector. By a theorem of Witt, there is g € SU(V),
with u = gf. Then u and g’ are a hyperbolic pair according to the above definition. The action
of the unitary modular group T on the Siegel domain, defined with respect to u and g{’ is the
same as that of the conjugate group g'g ™! on the Siegel domain defined with respect to { and {’.

Remark. An other standard affine model for the symmetric domain of SU(V) is the g-ball,
B, = {x eC%; —(x,x) <1} = {(x1,...,x) €CY; Zilxil2 <1}.

It is constructed by fixing an isometry from Vi to CH4 with a pseudo-euclidean basis ey, .. ., €q+1s

so that {z,z) = |z;|* — |z, — -+ — |zq+1|2 and normalizing the one positive coordinate z; for a
representative of #y; as 1. Thus, z = e, + x and the positivity condition gives 1+ (x, x) > 0.

Remark. More generally, for unitary groups of the type U(p,q), Shimura gives a realization of
the symmetric domain as an unbounded domain in the q X p-matrices with complex entries, with
p X p and (q — p) X p matrices playing the roles of T and o in the above definition, see [62].

The unitary modular variety
Definition 1.1.19. Let T be a subgroup of finite index in SU(L). The unitary modular variety
Xy is the quotient of the symmetric domain under the operation of T,

Xp & [\Gry ~ [\SU(V)(R)/ (6 N SU(V)(R)).

The modular variety is a complex space of dimension q; it is regular if T is torsion free.
The modular variety Xr- is also called a ball-quotient, a term referring to the model %,.

Remark 1.1.20. The existence of torsion free arithmetic subgroups of SU(L) is always assured.
Indeed, by a theorem of Borel, [8], there exist ideals 2 in O for which the subgroup of T’} acting
trivially on L /1L, called the congruence subgroup of level 2, is torison free.
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1.1.4 Cusps and parabolic subgroups

The boundary points of the symmetric domain correspond to non-zero isotropic vectors in V.
F-rational boundary components are given by primitive isotropic lattice vectors from L. If T is
a unitary modular group, a cusp is a I'-equivalence class of F-rational boundary components.

The choice of a hyperbolic pair as above and in particular of a primitive isotropic lattice
vector £ € L defines a cusp, as the projective line [£] € P(V}) is an F-rational boundary point
of the symmetric domain. For the following, choose once and for all a hyperbolic pair £ and £’.

We will now consider which elements in SU(V') which stabilize the cusp. More details on
the parabolic subgroups of U(p, q) in general may be found in [60] and in [64]. For the case
of U(1,2) a treatment closer to the one presented here can be found in [22] and in [50], [51],
[52]. Also, the structure of the stabilizers of a points in 74 is treated in [37].

The stabilizer of a cusp
Denote by P({) the stabilizer in SU(V) of the cusp attached to ¢,

P(£):={geSu(V); [gt]=1[¢]}.

We want to describe the structure of P(£). To this aim, we consider three types of transforma-
tions on V:

I. Translations: For h € Q define the linear map
[h,0]: v — v —{(v,L)Oht. (1.1.5)
In the coordinates (7, o) of 74, this acts as

[h,0]: (t,0) — (T +h,0).

II. Eichler transformations: For t € D ®_ F, define

[0,t]: v — v—l—(v,ﬁ)t—(v,t)f—%(v,é}(t,t)ﬁ. (1.1.6)

The transformation [0, t] is called an Eichler transformation or an Eichler element in
SU(V). Its action on #4; is given by

(o,t)  1(t,¢t) ,
[0,¢]: (7,0) — (r+62,’£)+5 . ,a+<e,e>t).

ITI. Embedded SU(D ®, IF): The special unitary group of D ®, IF is embedded into SU(V),
acting trivially on the hyperbolic part of V spaned by £ and ¢’. On %, an element g of
this subgroup acts as

g: (1,0) — (7,80).
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It is easily checked that all three types of transformations belong to SU(V') and stabilize C¥.
The set of real points P(£)(R) of the algebraic group P({) can be obtained by considering
[h,0] with h € R, [0, t] with t € D ®,, C and g € SU(D ®,, C) < SU(V)(R).
Observe that the translations [h,0], h € Q commute and form an Abelian algebraic group,
isomorphic to the additive group (Q, +). The intersection with SU(L) is isomorphic to (Z, +).
Among the Eichler transformations [0, t], one has the following commutation relation:

3 (t1,t5)

[O, tl]o[oﬂ t2:| = |: 2|5|

,0] 0 [0, +t,].

Also, translations commute with Eichler transformations. We set [h, t] := [h,0] o [0, t].

Definition 1.1.21. The Heisenberg group H({) is the algebraic group defined on the set of pairs
[h,t] € Q x (D ®,, F) by the group law

(2]

(£, t)

2|6

[h,t]o[H,t']=[h+HK + e+t

The center of the Heisenberg group consists of all translations [h,0].

To sum up, we have exact sequences:

— R — H({)R) — D®,;C — 0, and
- Q - H{) — D®,F — 0.
h — [hO]
[h,t] — t

Finally, the full stabilizer of the cusp attached to £ is obtained by taking the semidirect product
of H({) with the embedded unitary group of the definite subspace D ®,, T,

P(0)=H(¢)x SU(D ®,, F).

The center of P(£) is the subgroup generated by all translations [h, 0], for h € Q.
Given a modular group I', we denote by I'(£) the stabilizer of the cusp in T,

r()=TnP().

For such a group, the following proposition holds, of which we sketch the proof.
Proposition 1.1.22. Let ' be a subgroup of finite index in SU(L). There exists a positive integer
N and a lattice D of finite index in D such that

[h,t] € T(X), forall heNZ, t€D.
Also,

3(t.t)

2|5

€NZ foral t,t'eD.
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Proof. Assume that L is an even O-lattice.

For the first part of the statement consider (1.1.5), with v € L. Then (v,{) € 9 1 since
L is an integral lattice, while oh is in 9y for any integer h. Thus, since gy{ C L, the shifted
vector [h,0]v remains in L and [h,0] € SU(L). By assumption I is of finite index, thus,
[h,0]N = [Nh,0] €T for some positive integer N.

For the second part of the statement, a similar consideration of (1.1.6) shows that [0, t]v
with t € D translates a lattice vector v € L by some element of 2 'L = L’. The observation
that [0, t]* = [0, kt] (easily verified by calculation) and the fact that L’/L is finite show the
existence of a lattice D of finite index in D for ' = SU(L). Finally, if I is of finite index in
SU(L), as for the first part of the statement, a repeated application of the finite index argument
completes the proof for this case, as well. O

1.1.5 Compactification

Let T' be a modular group and denote by I'(£) the stabilizer in T" of the cusp corresponding to
¢, as in the previous subsection.

In order to compactify the modular variety X = I'\ 24, we introduce suitable neighborhoods
of infinity in the affine model:

Definition 1.1.23. For a real number C > 0, define the sets
#5 ={(z,0); 218|[{t’,0)*3(v) + (0, 0) + (',£') > C} < C x (D ®,C)
and % = %”UC U {oo}.

Note that sets of the form %’UC are invariant under the action of T'({).

We define the following topology on ;U {oo}: A subset U C J4; U {oo} is called open, if

* U N 44, is open in the usual sense and

* if oo € U, then U contains ¢ for some C > 0.

From this definition, it is clear that the action of I'(£), continuous on %;, extends continuously
to #4; U {oo}. Further, clearly, with the quotient topology, the quotient space

T(O\ (74 U {oo}) = (T(E)\o4,) U {ool,
is locally compact. A family of compact neighborhoods of infinity is given by the sets
T(\#C, for CeR,C>0.

To see that (54, U {oo}) is a complex space, proceed as follows.

Denote by X[\ = I"(£)\ (#4;,U{o0}). We define the complex structure on X - as follows. For an
open set V C X7, let U C ;U {00} be the inverse image of V under the canonical projection
pr : Ay U{oo} — X[ Further we let U’ be the inverse image of U in J#;. We have the diagram

Ay — #; U {oo} X
Y

U’ U
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Now, define @(V') to be the ring of continuous functions f : V — C, such that the pull back
pr*(f) is holomorphic on U’. By the usual methods of algebraic geometry, this defines a sheaf
of rings € on X7, and the pair (X}, 0) is a locally ringed space. By the theory of Baily Borel
[2], the following statement holds:

Proposition 1.1.24. The space (X}, @) is a normal complex space.

However, X/ still has singularities at the cusps and at elliptic fixed points of T".

Resolution of the singularity at a cusp:

The singularities at the cusps can be resolved, cf. [35] and [36]. It suffices to resolve the
cusp at infinity.

Consider the quotient of #; with NZ, where N is the positive number defined in proposition
1.1.22; in other words, we quotient out the action of the translations in I'(£).

Using the holomorphic map
T
— — 1.1.
(w.0) = (¢(5).0). (1.1.7)

we identify the quotient with a subset of C9,

—n({o,0) + (f’:w))}.

NZ\#; = {(q,o); 0 <|q| <exp (
’ N|51(e, €) 2

which can be considered as a bundle of punctured discs over C4~!. Then, NZ\.#; can be
viewed as the total space of a complex analytic bundle of punctured discs over the Abelian
variety D\CY.

Adding the midpoint to each disc gives the bundle

o.0)+ ()|

26N [(€’,0)]?

NZ\#; = {(q,cf); lql <e (

Now, the action of the Eichler elements in I'({), i.e. of I'(¢{)/NZ ~ D, on NZ\ .5, given by

1 > > /
(g,0) — (q-e (ﬁ (g?el’t;) + <t25t>)),0+<€ ,E)t)

is well defined at ¢ = 0. This action is free and hence NZ\ 74, is an analytic manifold for
which there is a holomorphic and proper map

D\(NZ\#;) — T\ U {oo} =X

1.1.6 Modular forms

Definition and automorphy factor
Consider the preimage of .#; under the canonical projection 7 : Vi — P(Vy),

= {v € Ve \ {0}; (1,v) > 0}.

,7?1; is a principal C* bundle over .#;;, which can be viewed as a restriction of the tautological
bundle of P(Vg).
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Definition 1.1.25. Let T" be a subgroup of finite index in SU(L), k a rational integer and
x : T'— St a unitary character. A holomorphic (meromorphic) automorphic form with respect
to T of weight k and character ¥ is a function f : #y — C (or C if meromorphic) with the
following properties

* f is holomorphic (meromorphic) on J%,

* flyz)=x(r)f(z) forally €T,
o f(tz)=t*f(2) forall t €C*.

Such functions uniquely correspond to the I'-invariant holomorphic sections of J(U®k.

For a fixed choice of the cusp ¢, the subset .%75 of Ay is defined through the normalization
(z,£) = (£’,£) in (1.1.2). This uniquely defines a holomorphic and nowhere vanishing section
s, of Ay,

5e’e/ . %U — %\U‘l,

and a projection &' from % to J?[;l, given by s’ = s, s o 7.
The action of SU(V)(RR) gives rise to a holomorphic automorphy factor

71 X
.:{SU(V)XJKU C (1.1.8)

(r,2) = j(r,2)

given by j(y,2) = (yz,£) / (¢, L).
Now, s; .- induces an isomorphism f ~— f os’ between holomorphic automorphic forms for

' and holomorphic functions F : %’;1 — C, which transform according to

F(s'(y2)) =x(M)Jj(y,2) “F(z), forallyeT. (1.1.9)

The relationship between f and F, the section s, ,» and the projections s, 7 is illustrated by
the following diagram:

Hy

7'[
Ay : A}
N
C
The corresponding section of J?I_J@k then takes the form

[2] — F(s¢[2]) - 50,0 ([2]D%F.

~ L

Using the unique association of the function F on J?S to the automorphic form f we can give
another definition of automorphic form, alternative to definition 1.1.25, as follows.

Definition 1.1.26. Use the same notation as in definition 1.1.25. A holomorphic automorphic
form of weight k and character y on the group I' is a holomorphic function F : J?{Il — C which
exhibits the transformation behavior as in (1.1.9). Meromorphic automorphic forms are defined
similarly.
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Now, consider holomorphic automorphic forms with trivial character. Since I'-invariance
is required, such functions pull back to the modular variety X = I'\4; on which they
correspond to sections of the bundle £®*, where

ffr:l"\j{; — Xr

denotes the holomorphic line bundle induced by the action of " on .%#,. A similar consideration,
for a cover of X applies to automorphic forms with character.

Now, a priori not all sections of jfli@k can be continued to holomorphic sections on the full
modular variety obtained by compactifying X.. For this reason, a condition of ‘regularity at
the cusp’ will be required for modular forms, see definition 1.1.29 below. However, it will turn
out that in almost all cases this condition is automatically met for holomorphic automorphic
forms by the Koecher principle, see theorem 1.1.30 below.

We postpone these considerations until we have introduced the Fourier-Jacobi expansion of
an automorphic form around a cusp.

Fourier-Jacobi expansion and Koecher principle

In the following, let f denote a holomorphic automorphic form of weight k for a modular
group I'. We consider f as a function in the variables T and o, defined on ;. To make this
clear, we denote

fe(r,0) = f(2),
where z=1{ -5l {)Tl+0 €X.

It is easily checked that the automorphy factor j(y,z) is identically 1 for all y € P(c0). Hence,
except for a possible character, f, is invariant under I'(co). As a consequence, f, can be
expanded in a Fourier-Jacobi series around (0, o).

Proposition 1.1.27. A holomorphic automorphic form f with character y has a Fourier-Jacobi
expansion of the form

fir,0)= Y aode (%T) , (1.1.10)

nezZ+r

where N is the positive rational number defined in proposition 1.1.22 and r is a constant rational
number, with r > 0. If y is trivial for all [h,0], h € NZ, then r = 0. The Fourier-Jacobi
coefficients a, (o) are holomorphic functions with the following transformation behavior

n ( (o,t) (t,t)

a,([0,t]o) = x([0,t])-a,(o)e (_N 5.0) + 25 )) forall tebD, (1.1.11)

a,(yo)=x(y)-a,(c) foral yeSU(D®,C)NT, (1.1.12)

where D is the lattice from proposition 1.1.22.

As an immediate consequence of (1.1.11), if r =0 mod 1, the coefficient ay(o’) is constant,
hence denoted q,.
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Proof. The existence of a (partial) Fourier expansion is immediate from the invariance of
f, under all [h,0] € I'(c0), since h is then from NZ, so the expansion must be of the form
(1.1.10), at least if f has trivial character. Otherwise, [h,0]f,(T,0) must be equal both to
fi(t+h,0) and to y([h,0])f,(7,o), by automorphy. Write y([h,0]) in the form e(hr/N) for
some positive rational number r. Here too, we recover the Fourier expansion given above.
From £, ([0, t](t,0)) = x ([0, t]) fi(7,0), for [0, t] € I'(c0), we get (1.1.11) and (1.1.12)
by expanding both sides via (1.1.10) and comparing terms. O]

Remark 1.1.28. The Fourier-Jacobi coefficients a,, exhibit the transformation behavior of theta
functions. Note however that, in contrast to the coefficients occuring in the Fourier-Jacobi
expansion of an orthogonal modular form, see proposition 1.2.29, the a,(o) are not Jacobi-forms,
see remark 1.2.30.

Definition 1.1.29. A holomorphic automorphic form f is called a modular form if only terms
with n > 0 occur in its Fourier-Jacobi expansion, so

fi(z,0)= Z a,(o)e (%T) )

nez+r
n>0

We then say that f is regular at the cusp (corresponding to {).
The meaning of ‘regularity at the cusps’ is clarified by the following consideration. Assume

for simplicity b = 0. Under the map 7 — q = e(7/N) in (1.1.7) for g to approach the cusp £
means

(qg,0) —(0,0) in 4;/NZ,

corresponding to the limit 37 — oco. The Fourier series expansion is replaced by a Laurent
series expansion around q = 0. If negative powers q", n < 0 occur, then f has a pole at the
cusp, whereas if only non-negative n occur, the g-series is a power series and f has a well
defined value at ¢ = 0. So f is regular at the cusp, if the Fourier expansion around (0, o)
contains no terms a,, with n < 0.

Theorem 1.1.30 (Koecher principle). Let f be a holomorphic automorphic form on I' of weight
k and character y. Then, under the condition that V has signature (1,q) with ¢ > 1, the
Fourier-Jacobi expansion of f takes the form

file, )= 7 ay(ode(=),
nezZ+r
n=0
i.e. a,(0) =0 for n <O0. In other words, f is actually a modular form.
Proof. Assume n < 0. Taking norms on both sides of (1.1.11) —recall that |y| =1 — we get
(10, £10)| = lay(0) e |3 9.0 1, 560
a,([0,t]o)| = |a,(o)| - exp | mi )5 5.0 335
+2 nn[ [ (o,t) } (t,t)})
151 ¢¢",€) | 28]
O' t (t t)
|6|N N/ ’
i [< ewat) e wa))
|6|N re) e (€,6)" (¢, ¢) '
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= la,(0)]-exp

b

(¢,
20

= la,(o)] - exp

(
= lan(o)-exp (75
(




If we define a real analytic function of o by

o(0) 1= nn (o,0) ),

a,(o)|-ex
()] e (|5IN (6,60

it follows that g([0,t]o) = g(o) for all t € D, in other words, g(o) is periodic with period
lattice D. Hence, there is a constant M > 0 with

nn{o,o)

g(oc)<M andthus |a,(0)|<M - exp (_—
NI5]I¢e, €)1

), forall oce€D®, C.

Since by assumption n < 0 and (-, -) is negative definite on D ®, C, the norm |a,(c’)| tends
to zero for increasing |o|. Since a,(o) is a holomorphic function of o on all of D ®, C, it
follows that a, (o) is the constant function O. ]

Let us now take the limit T — ioo, for fixed o. Doing this term by term using the Koecher
principle we get

{O ifrZ0 mod]1,

n
li , = i n AT =
Sq:linoo fE(T O-) Sflinoo Z a (O-)e(NT) ap lf r=0 ITlOd 1.

nezZ+r
R bounded n>0

Remark 1.1.31. The value of the limit depends only on the I'-equivalence class of £. However; it
does depend on the particular choice of £ as a representative of the cusp [{], insofar as replacing
€ by Ct, C # 0, replaces ay by C*a,, when k is the weight of f.

It should now be clear that the following definition makes sense.

Definition 1.1.32. A cusp form f is a modular form which vanishes at the cusps, for any choice
of I'-equivalence class of cusps. Equivalently, for each cusp, there is no constant term a, in the
Fourier expansion of f around this cusp.

1.2 Orthogonal Groups

In this section, we explore the analogous terms and objects to those considered in the previous
section, however in the context of orthogonal groups acting on rational quadratic spaces of
signature (2,b), with b > 2. The rational space underlying the hermitian space V of the
previous section is just such a space, with the bilinear form induced by the trace. So, later on,
in chapter 3 we will fix b = 2q.

References for the material in this section include [9] ch. 3, also ch. 1 of [20] which covers
much of the basic theory, [29], which is a study of modular varieties but also gives a thorow
overview of much the theory of orthogonal modular forms, and, finally the unpublished set of
course notes [26].
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1.2.1 Quadratic spaces and orthogonal groups

Let V be a vector space over Q, equipped with a non-degenerate symmetric bilinear form
(+,-) of signature (2, b) and the attached quadratic form q(-), where g(x) = % (x, x). Denote
by Vg = V ®g R the corresponding real quadratic space. By extension of scalars, (:,-) is
extended to a real bilinear form on V. We denote the orthogonal group of V by O(V)
and the special orthogonal group by SO(V). The real points of these algebraic groups are
O(V)(R) and SO(V)(R). Further, we denote by O*(V)(R) the spinor kernel, the image of the
homomorphism from the spin group Spin(V)(R) of Vi to SO(V)(R) and the kernel of the map
0 sending an element of SO(V)(R) to its spinor norm in the following exact sequence (see
[15], p. 135)

1— {£1} — Spin(V)(R) —= SO(V)(R) —> R* /(R*)2.

The spinor kernel is the connected component of the identity in SO(V)(R), consisting of the
orientation preserving transformations.

Lattices and the discriminant kernel

Alattice L in V is a Z-module with L ®, Q = V. As before, we assume all lattices to be even,
i.e. (u,u) is an even number for all u in L. We denote by O(L), SO(L) and O*(L) the integral
orthogonal groups

O(L)={ge0(V); gLcL},
SO(L) =0(L)NSO(V), OT(L)=0(L)NnOH(V).

As usual, the dual lattice of L is denoted by L’. The quotient L’/L is the discriminant group of
L. The action of the integral orthogonal groups on L’ induces an action L’/L. The subgroup
acting trivially is called the discriminant kernel. We denote by SO,4(L) the discriminant kernel
in SO(L) and by F? the discriminant kernel in O"(L). Both are subgroups of finite index in
SO(L) and thus arithmetic subgroups, as in [49], of SO(V).

Besides F?, we consider subgroups of finite index in SO(L) as orthogonal modular groups.

The Grassmannian model
The symmetric domain attached to SO(V) is given by the quotient

SO(V)(R)/ %,

where % is a maximal path-connected, compact subgroup of SO(V)(R). Under an isometry of
Vi to the standard pseudo-euclidean real quadratic space R*?, with the quadratic form

1
_ 2, .2 _ .2 2
q(x)—5(x1+x2—x3—...—x2+b),

the subgroup % is isomorphic to SO(2) x SO(b). The symmetric domain can most easily be
described through its isomorphism to the Grassmannian manifold Grg, whose points correspond
to oriented two-dimensional positive definite subspaces of Vi;. We treat Grg as the standard
model for the symmetric domain, from which further models will be derived.
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Each subspace v € Grj fixes an isometry between V;; and the pseudo-euclidean quadratic
space R>" mentioned above. This isometry introduces an isomorphism between the stabilizer
of v in SO(V)(R), which is isomorphic to ¥, and SO(2) x SO(b) € SO(2, b).

A priori, from the definition, it is not clear that Gr, carries a complex structure. It can
however be fitted with one, as we will describe below.

Remark 1.2.1. A symmetric domain for the orthogonal group O(V)(R) can be obtained quite
similarly as the group quotient

O(V)(R)/ €’ ~0(2,b)/(0(2) x O(b)),

with a maximal compact subgroup ¢’ € O(V)(R), isomorphic to O(2) x O(b) under an isometry
between Vi and R>°.

Here too, there is a Grassmannian model, which we denote Gr,,, the points of which correspond
to positive two-dimensional subspaces which, in this case however, are not oriented.

Remark 1.2.2. The Grassmannian model Gr, is not connected, since its points consist of subspaces
of both opposing orientations. In contrast, the Grassmannian Gry, introduced in remark 1.2.1 is
connected.

1.2.2 Coordinates for the Grassmannian

Next, we fix basis vectors for an isotropic subspace of V = L ®, Q, corresponding to a
decomposition of the lattice L. These will play a pivotal role in the construction of further
models for the symmetric domain in section 1.2.3 below. Also, more directly, they can be used
to introduce coordinates on the points of the Grassmannian itsself.

Witt decomposition and basis for the hyperbolic part

If the quadratic space V of signature (2, b) contains an isotropic vector with rational coordi-
nates, it is possible to carry out a Witt decomposition of V into a sum of a hyperbolic plane and
a Lorentzian space W of signature (1, b),

V=H,0oW. (1.2.1)

If W also contains a rational isotropic vector, we can further decompose W into a hyperbolic
plane and a definite subspace V;,. Then V can be written in the form

V=H,®&H,®YV,. (1.2.2)

Remark 1.2.3. In general, by a theorem of Hasse-Minkowski, an indefinite quadratic space over
Q always contains an isotropic vector, if it has dimension > 5. So the assumption that V splits
two hyperbolic planes is trivial for b > 5.

If V= L ®, Q contains an isotropic vector, we can assume the existence of a primitive
isotropic lattice vector in L. Thus, we make the following definition.
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Definition 1.2.4. Let e be a primitive isotropic vector in L and e’ a lattice vector from L’ with
(e,e’) = 1. We call two such vectors e, e’ a hyperbolic pair.
By the notation e and e’ we will always mean a hyperbolic pair.

Given a hyperbolic pair e, e/, we can decompose V as in (1.2.1) with the rational isotropic
subspace H; spanned by e and e’. Then, the Lorentzian space W is given by (L ®,Q)Netne’t.
We denote by K the lattice

K=Lneltne?t (1.2.3)

of signature (1, b — 1). Clearly, W =K ®, Q.
Since V Net = W @ Qe, and e is isotropic, the projection

V., — W
Pk { K R (1.2.4)

X L— XK

is an isometry for all x € Vz Ne*.

Assuming that a Witt decomposition of the form (1.2.2) exists, a particular choice for such
a decomposition may be described by giving a basis e, e,, e5,e4 € V for the hyperbolic part,
with e;, e, spanning the first hyperbolic plane H; and e3, e, spanning the second hyperbolic
plane H,.

Definition 1.2.5. We fix the following notation: By e,...,e4 denote a basis of the hyperbolic
part H; @ H, of V as a rational space, satisfying

(e1,e0) =1, (e3,e4) =1 and (ee;) =0 for i<j, (i,j)&{(1,2),(3,4)}.

Further, it will be assumed that eq, e, corresponds to a hyperbolic pair e, ¢’ as in definition 1.2.4
above — with the additional property that e, is isotropic. In particular, we assume e; and e, to be
lattice vectors with e; € L and e, € L.

With e = e; and e’ = e,, the lattice K introduced above is given by K = L N elL N ezL. We
denote by D the definite lattice K N e?f N ej. Then, V; =D ®, Q.

Assumption 1.2.6. Often, we will use the notation e, ...,e4 and additionally require e; and e,
to be lattice vectors, with e; € K C L and e, € K'.

Doing this requires the assumption that L contains two independent, perpendicular isotropic
vectors, so that V = L ®, Q has a decomposition of the form (1.2.2).

Further; if the hyperbolic part of L is unimodular, we can choose all the e; from L.

Remark. From chapter 3 onward, we consider only rational quadratic spaces which can be
identified with the underlying space of a hermitian space over a number field T, as in section
1.1. Given such a hermitian F-space V, (-,-) of signature (1,q) and assuming, as in assumption
1.1.12, that V contains an isotropic vector {, the F-span of { contains two linearly independent
rational isotropic vectors. Thus, as a rational quadratic space, V, Tryq (-, ) splits two hyperbolic
planes as in (1.2.2).
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Grassmannian coordinates

In the following, let e and e’ be a hyperbolic pair of lattice vectors.
Now, given a subspace v € Gr,, we decompose V, = v @ v'. We denote by subscripts , and
g |% o} P R y pts ,
,L the orthogonal projections onto v and vt. Thus, e, is the projection of e to v. We have

v=w®Re,, and UJ':WJ'@R(EVJ_,

with w a one-dimensional, positive definite subspace perpendicular to e and w its complement
in Vy Net. Further,

Ve=(w@Re,) ® (w-®Re,.).

For projections onto w and w' we use the same notation as for v and v+.
Consider the vector

, e, e,l , € e
u=—e + 2 + P = —€ +—2——2, (125)
Zev 2evL e ZeU

the last equality resulting from 0 = e? = eﬁ + ei .- Now u,, given by

e

/ v
2)
2e;

MU:_ey—'_

is not contained in w, thus v = w 4+ Ru,,. Similarly, v+ = wt + Ru, 1. Note however that u, is

not perpendicular to w. Also, since u L e, we have u2 = u?.

We will use y and w as coordinates on the Grassmannian manifold.

1.2.3 The tube domain model

We now proceed to introduce a complex structure on the Grassmannian Grp. This leads to a
model of the symmetric domain of SO(V) as a tube domain, i.e. a subset of a complex space
C" of the form R" 4 iC with an open connected subset C C R". In the present case, nis b — 1.

Complexification

Let Vi = Vi ®5 C be the complexification of V. Extend the bilinear form (+,-) to a symmetric,
C-bilinear form on V.. Denote by P(V-) the associated projective space and by

T ZL —_ [ZL]J

the canonical projection, where Z; € V.. The subscript ; is due to Vz = L ®, C.
In P(V,), consider the zero-quadric, A given by

N ={[Z,1€eP(Ve); (Z,,Z,) =0}, (1.2.6)
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and its open subset, the positive cone

Ho=1{1Z,1eN; (Z,,Z;) >0}. (1.2.7)

Note that both A4 and ¢ are well defined, as either of the conditions (Z,,Z;) = 0 and
(Z.,Z;) > 0 holds for every element of the projective line C*Z; iff it holds for one element.
As a complex projective manifold %, consists of two connected components, which are
preserved under the operation of O (V)(R). We choose one of these and denote it by %fg .
Also, we denote by 4, #g and J?g’ the preimages under the canonical projection 7.
Consider a vector Z; € V., written in the form Z;, = X; +iY; with X;, Y; € V. Then, [Z,]
is an element of %, exactly if

X, 1Y, and X;=Y?>0. (1.2.8)

Note that [Z; ] lies in 2%, too. However, since Y; # O for any Z; in #,, we see that [Z;] and
[Z,] lie in different connected components.

From (1.2.8) it is clear that X;, Y; span a two-dimensional positive subspace of Vj. If we
consider X; and Y; as an oriented basis, this defines a point in the Grassmannian Gry. The
same subspace, but with inverse orientation is defined by X;, —Y;, corresponding to the
conjugate Z; .

On the other hand, for an oriented subspace v corresponding to a point of Gry we can
always choose a basis X, Y; satisfying (1.2.8). Thus, we have a bijection between Gr and
Ay, and this induces a complex structure on Grg,.

The operation of complex conjugation corresponds to switching connected components of
X and to passing from one element in Gr, to the unique element defining the same subspace
but with the inverse orientation.

Remark 1.2.7. Consider Gry, the Grassmannian consisting of non-oriented two dimensional
positive subspaces — which we have introduced as a model for the symmetric domain of O(V'), see
remark 1.2.1. Either component of #q bijects to Gry and the choice of one of these components
corresponds to choosing a ‘spin-orientation’ on Gry, that is, a continuously varying choice of
orientation for each v € Gry,.

Next, we will realize J(J as a tube domain model, denoted 5%,. We will consider this as a
model for the symmetric domain of SO(V).

The tube domain

Assume we have fixed a hyperbolic pair e and e’ as in the previous subsection. Recall the
decomposition Vi = Wy & Re’ @ Re, where Wy =K Q R.

Given Z; € Vi, we may write Z;, = Z + ae’ + be, with Z € K® C, a, b € C. For brevity, we
denote this as Z; = (b, a, Z).

Now, [Z;] € A, has a unique representative Z;, = (b, 1, Z) with a = 1. With this normaliza-
tion, the conditions in (1.2.6) imply b = —q(Z) —q(e’). Thus

Z,=(—q(2)—q(e),1,2). (1.2.9)

Now, Z suffices to uniquely determine a (normalized) Z;.
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Writing Z =X +1iY with X, Y € K ®,; R = Wy, we have X = px(X;) and Y = pg(Y;), with
the orthogonal projection py introduced in 1.2.4. Then, Y; | e and thus YL2 =Y?2

On the other hand, to Z € K ®, C with 3Z € K ®, R of positive norm, associate Z; through
(1.2.9); this lies in #;,. Denote by s the set of such Z,

#Hy={Z=X+iY €eK®C; Y>> 0}.

Thus, we have a bijection
%Oi — %O

1.2.10
Z'—> |:ZL:|, ( )

with Z; given by (1.2.9). Note that, like 7, the set %”SE has two connected components,
Ay =(K®,R+i6")U(K®,R+i%"),

where 6% is either of the two components of the cone {Y e K ®,R; Y2 > 0}.

Definition 1.2.8. The tube domain model #, of Gry is the component of %g: which is sent to
K under this mapping.

We denote by f{gr C V¢ the preimage of s under the canonical projection and by J?Sf | the
subset consisting of representatives Z; of the form (1.2.9) for Z € #,,

Ky =12, =(=q(2),1,2); Z € #}.

How do Z € 5, and the corresponding vectors Z; € Vi, X; and Y; in Vg, relate to the
previously defined coordinates y and w?
We have
Z,=(—q(2)—q(e),1,2),
X, = (@) —qXx) - q(),1,X),
v, =(-(X,Y),0,Y).

With X; and Y; as a basis for v € Gr,

1 1
e =73 [(e, X)X+ (e,Y) Y] = 2L
From this, by an easy calculation, we get

/
u=(—qX)—q(e'),0,X) and w=RY, (1.2.11)
thus ug =X, wg =RY.
Remark 1.2.9. The real analytic maps between Grg, X and #, permit us to consider functions
defined on any one of these models for the symmetric domain as functions on the other models.
Real analytic functions on one model correspond to real analytic functions on any other model.
Further. while the isomorphism between Gry and X, is real analytic, clearly, that between J{OJ“
and #, is holomorphic. With the induced complex structure on Gry we can also consider a holo-
morphic (or meromorphic) function on F¢, as (pulling back to) a holomorphic (or meromorphic)
function on Gr,.
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Refined coordinates

Given a basis ey, e,, es, e, for the hyperbolic part of L ®, Q, with e, e, a hyperbolic pair
and alle;, i =1,...,4 isotropic, we can introduce somewhat refined coordinates on the tube
domain. These can be used to described the components of %SE more explicitly.

Writing out Z as z,e3 + 2,e4 + 3, with 3 € D ® C, we have

ZL = (_q(Z): 1521122’3) .

Write x;, y; for i = 1,2 and , y for the real and imaginary parts of z; and 3, respectively. In
this setting — recall all e; are assumed to be isotropic — the condition q(Y) > 0 reads

Y1Y2 +q(y) > 0.

Since D ®; R is negative definite, this implies that either y, and y, are both positive or both
negative. Thus, the hyperplane y; = 0 separates the set of vectors Y € K ®, R with positive
norm into the two cones 61 and 4~ introduced above. We denote by €™ the positive cone
consisting of Y with y;, y, > 0. We may assume that s, is given by K Q R+i6 ™.

Note that the orientation reversing transformations in SO(V)(R) \ O*(R) switch the two
cones, sending 5%, to its conjugate .#,, which thus may be considered as a generalized lower
half-plane’.

By construction the disjoint union %”SE = £, U #, bijects to ¢, under the map (1.2.10),
associating [Z;] to Z.

So the symmetric domain for SO(V)(R) introduced on page 1.2.1 above corresponds more
precisely to the union of #4; and its conjugate. However, we lose nothing in restricting to one
connected component, corresponding to ¢ and 7.

The modular variety

Let I' be an orthogonal modular group. The orthogonal modular variety X is the quotient of
the symmetric domain under the action of I'. We define this as

Xr:=T\x4].

Due to the isomorphism between % and 5%,, we can also write this as X = I'\ . By the
theory of Baily-Borel [2], X is a quasi-projective algebraic variety, see below. There is some
abuse of language in this definition, since we originally considered the symmetric domain of
SO(V) as Grg, while here, we form the quotient of only one connected component. In fact, we
have X ~ I'\Gry, with the Grassmannian Gr, of non-oriented two-dimensional spaces Gr,.

1.2.4 Cusps and boundary components

By a cusp of #, we mean an equivalence class of non-zero rational isotropic subspaces of
V under the operation of F?. Thus, the choice of a hyperbolic pair e, e’ with e a primitive
isotropic lattice vector serves to define a cusp of #%,.

If & is an isotropic lattice vector in V, which is O*(L)-inequivalent to e, by a theorem of Witt,
there is a g € O (V) with & = ge. Then (ge’,é) = (¢’,e) and we can define the tube domain
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(or more precisely its identification with a subset of K ®, C) with respect to & and ge’. The
operation of y € O (L) on the tube domain thus defined is the same as that of gyg~! on the
tube domain with respect to e and e’.

Since, as we will see, isotropic subspaces define boundary components of %, and thus of
Hp we also use the term ‘cusp’ to mean a rational boundary component.

We will examine isotropic subspaces and boundary components on the following pages, and
also study parabolic elements in the orthogonal group O*(V).

Boundary components

As in the unitary case, the boundary components of the symmetric domain for the orthogonal
group correspond to non-zero isotropic subspaces of V. However, since the signature of Vj is
(2, b), both one- and two-dimensional isotropic subspaces can occur. For the following, see
[11], section 2, as well as [26] and [29].

The boundary of the symmetric domain is most easily described in terms of V and the
projective model ¢ € P(Vp).

* Let F C Vi be an isotropic line. Then, F represents a boundary point of ;. Such
a boundary point is called special. A zero-dimensional boundary component is a set
consisting of one such point.

* Let F C V be a two-dimensional totally isotropic subspace. Boundary points which are
described by elements of F = F ® C and are not special are called generic. The set of all
generic boundary points attached to F is called a one-dimensional boundary component
of X in A.

Lemma 1.2.10. There is a bijective correspondence between (zero- and one-dimensional) bound-
ary components of K in A and non-zero isotropic subspaces F C Vi (of dimension one and two,
respectively). The boundary of S consists of the disjoint union of all boundary components.

A boundary component attached to a two-dimensional isotropic subspace F can be described
as follows: In Vg, there is a second (totally) isotropic subspace F’ such that F + F’ is the
hyperbolic part of Vi and the sum of two hyperbolic planes (over the reals). Fix a basis of
F +F’ of the form fi, f3 € F, f,, f4 € F' with (f1, f,) = (f3, f4) = 1 and (f;, f;) = 0 in all other
cases where i < j.

Write (21, 25,23,24) for 2, f; + - +24f4. Then F consists of elements of the form (z,,0, 25, 0).
We consider the boundary point of J(OJ“ attached to such a vector in F. We may assume that is
not a multiple of a real point, in particular that z; and 2, are both non-zero. We normalize
z; = 1 and write the boundary point in the form (1,0, 7,0), with 7 € C\ {0}. This is a
boundary point of #;, in 4. We may assume that the point (1,1,i,1) is contained in .
Otherwise, we need only replace f; and f, by —f3, —f4.

Then, the following defines an embedding of two copies of the usual complex upper
half-planes H into #:

HxH — Ay
(71»72) — (=T175,1,71,T2).
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Now, sending 7, to ico corresponds to heading towards the boundary of #,. By taking the
limit in the projective space P(V), we get

1 T
tlirglo [—itTy,1,it,T5] = tllrglo [—Tz, o 1, l—f} =[-7,,0,1,0].

Thus, the point (—7,0, 1,0) is a boundary point of ¢ exactly if T has positive imaginary part.
The one-dimensional boundary component of ¢ attached to F can therefore be considered
as a copy of an upper half-plane H.

Besides these generic boundary points, there are also special boundary points represented
by F¢. It can be shown that the set of all boundary points represented by F can be identified
with HUR U {oo}.

Rational boundary components
A boundary component is called rational if the corresponding isotropic subspace F is defined
over Q.

Remark. Clearly, a choice of basis e, ..., e, for the hyperbolic part of V fixes two complementary
totally isotropic subspaces and thus defines a rational boundary component. In particular, this is
true if the basis consists of lattice vectors, with e;, e, a hyperbolic pair and e5 in K and e, in K’,
though of course, the definition of a rational boundary component does not immediately depend
on the lattice L but on the Q-formV =L ®, Q.

The union of " with all rational boundary components is denoted by J{J ,

The rational orthogonal group O1 (V) acts on ;. Consider a subgroup T" of finite index in
O*(L). Whereas the quotient X = I'\ 5%, is not compact, by the theory of Baily-Borel [2], the
quotient

XL =T\,

carries the structure of a quasi-projective algebraic variety.
Locally, for any point s € 5£>, the stabilizer of s in I" defines an open embedding

Stabp(s)\ £ —> X

of a neighborhood of the image of s.
As detailed in [11], the stabilizer of a point s in a boundary component of 57 /T is contained
in the normalizer of this boundary component.

The normalizer of a boundary component

For an non-zero isotropic two-dimensional subspace F of V denote by N the normalizer of F
in O*(V) and by C. its centralizer in O*(V),

Ny ={ge€0*(V); g(F)=F}, Cp={geO"(V); gl=1d}.

Arithmetic subgroups denoted Cy(I") and N(I") are given by the intersection of Cr and Np,
respectively, with an arithmetic group I' c O (L).

We will consider four types of transformations in Ny, three of which arise from Eichler
elements of O (V).
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Definition 1.2.11. An Eichler transformation or Eichler element (of O (V)(R)) is defined for
an isotropic vector u € Vy and a v € Vi, with u L v as a map of the following form

VR — VR

a — a—(aq,w)v+(a,v)u—q(v)(a,u)u. (1.2.12)

E(u,v): {

Then we have E(u, v) € OT(V)(R).

We note some useful properties of Eichler elements, which can easily be verified by calcula-
tion:
* For fixed u, Eichler transformations form an additive group, isomorphic to the comple-
ment ut of u in V, since

E(u,v;)oE(u,vy) = E(u,v; + v5) for any vy, vy L u.

* If both u and v are from an even lattice L then E(u, v) acts trivially on the discriminant
group, thus, E(u,v) € T'Y.

* Let u, u’ be isotropic vectors perpendicular to each other and v, v’ perpendicular to both
u and u’. Then, the following identities hold

E(u,v)oEW,v)=EW,v'+ (v,v")u) o E(u,v) and

1.2.13
E(u,u)=EQW/ ,u)™ % ( )
Since by assumption V contains at least two independent rational isotopic vectors, there is a
decomposition of V into subspaces of the form (1.2.2). Thus,

V=H1@H2@VO,

with H;, i = 1,2 hyperbolic planes and V|, a definite subspace. Considering how u and v can
be chosen from these subspaces results in three different types of Eichler transformations, see
below. Further elements of N are given by the embedded O" (V).

As usual, we denote by L an even lattice with V = L ®, Q. We assume that the hyperbolic
part has been equipped with a basis ey, ..., e, of the form introduced in 1.2.2, with e; primitive
isotropic from L, e, € L’. Further assume that e; € K C L, with K =L N ef' N ezl, and e, € K'.

We assume F to be the two-dimensional isotropic subspace of V defined by e; and e.

For a vector X € Vi, we abbreviate

X =x1e1+ X969+ X365+ x4e4+1r as X = (xq,Xq,X3,X4,1),

while on the tube domain for Z = z,e5 + 2,e, + 3 we write (2;,2,,3), as usual.
We list four types of transformations. Note that all of them actually lie in the centralizer of
F, cf. [11].

I. Eichler transformation of the type E(es, te;) with t € Q:
X = (xq + txy, X9, X3 — t X9, X4, L)
In (refined) tube-domain coordinates, we have

Z— (21— t,%5,3).
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II. Transformations of the form E(e;,A) with A € D @ Q:
X — (xl - (A, ;) - Q(A) X9, X9, X3,X4,¥ + XZA)'
On the tube domain, these act as translations of the definite part,

Z — (21,29,3+ A).
III. Eichler elements of the form E(e5, u) with u € D ® Q:

X = (1, %9, %3 — (U,1) — q (1) X4, X4, &+ X410).

On the tube domain we have
Z— (zl - (,U/,j) - q(nu) 29,%9,3 +221u’)'

IV. The orthogonal group O*(V,)) embedded into O"(V), and thus into SO(V), acts as usual
on V. On the tube domain, we simply have

Z— (21122) Y(é))) fOI' Y € O+(VO)

Obviously, transformations of this type can not be represented by Eichler elements of the
types given in I through III and vice versa, unless they are the identity.

Transformations of the types I, II and III form additive groups, isomorphic to Q for type I,
and Vj, for types II and III. Further, types I and II commute and thus form a group isomorphic
to Q x V,. Denote by

[2,0,t] = E(ey, tes) 0 E(ey,A)  and
[0: u, 0] = E(eS) ‘u)

Then, from (1.2.13), we obtain the following commutation relation
[0,u,0] 0 [A,0,t] =[A,0,t+ (A,u)] o [0,u,0].

From this, it is clear that transformations of types I, II and III above form a group, as a
semidirect product. The direct factor is the additive group of [0, u,0], u € V,,, formed by the
transformations of type III.

Definition 1.2.12. The set of triples [A,u,t] with A, u € Vy and t € Q is a group, the rational
Heisenberg group of V|, denoted H(V,) . The group law is given by
A, u,t]o A, t'T=[A+ A, u+pu, e+t + (u,A)]

The Heisenberg group is an algebraic group. Its real points are given by triples with A,u € D ® R
and t € R. For elements of the integral Heisenberg group H(D), in turn, A, u are lattice vectors
from D and t is an integer.
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Clearly, the Heisenberg group can be embedded into O*(V) by the map
[Aa u, t] —_ E(ela teB + A‘) o E(eg, ‘U,),

under which H(D) is sent to a subgroup of the discriminant kernel F?. (For this, it is necessary
that both e; € L and e; € L, as assumed.)

Remark 1.2.13. The elements of the type [0, 0, t] form a normal subgroup of H(V,). In conjunc-
tion with the projection [A, u, 0] — (A, u) this gives rise to an exact sequence

O — Q — H(Vo) — V0XV0 _>0
t — [0,0,t]
[A,u,0] — (A, u).

The centralizer C of F in O*(V) is given by the semidirect product H(V;) x O"(V,). Finally,
the normalizer Ny of F can be described through the following exact sequence

1 Cr Ng GLY(F) — 1,

where GL*(F) is the image of the natural homomorphism Ny — GL(F) ~ GL(2,Q), bearing in
mind that N is a subset of O"(V).

Remark. Since u, v € L implies E(u,v) € F? for an even lattice L, in particular, for a subgroup
" of finite index in T'(L) there is a lattice in K ®, Q such that E(e;,x) € T for any k in the
lattice. A similar statement holds for Eichler elements of the form E(es,v), so that in fact there is
some lattice in D ®, Q and an integer M such [k,v,m] €T for all k, v from this lattice and all
m e MZ.

The action of SL,(R) on 4, and the Jacobi group

The following may be found in greater detail in [20], Chapter 3 and also in [26]. We
have seen how the centralizer of the rational boundary component attached to the isotropic
subspace spanned by e; and e acts on the tube domain ,. We want to get a more explicit
description of the normalizer, as well. All coordinates are given with respect to the basis
e;,...,e4 for the hyperbolic part of V consisting of lattice vectors. To simplify the following
discussion, we assume that the hyperbolic part of L is unimodular and that all e; are contained
in L.

First, we consider a homomorphism from SL,(R) X SL,(R) to O*(V)(R), defined as follows:
For a vector X in Vi write

X X
X = (x1:X2:x39x47x) as X = ((_;1 xi) :Z:)

On the hyperbolic part of V%, the quadratic form is now given by the determinant. Thus,
— X4 X3
G0 =dec 2] a0,
Next, assign to (A, B) € SL,(R) X SL,(R) the linear map

s Xq4 X2\ pt
X (A(_x1 XB)B,;). (1.2.14)
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Note that the matrix B is transposed. Since the quadratic form (as well as the orientation)
is preserved, this defines a homomorphism to O*(V), which, conveniently, restricts to a
homomorphism into I'(L) for SL,(Z) x SL,(Z), since the hyperbolic part of L is unimodular.
The e,—e;—plane is preserved by the operation of the subgroup {E,} x SL,(Q), where E,
denotes the identity matrix. Consider SL,(Q) as embedded into O"(V) via the composition of
the inclusion into {E5} x SL,(Q) and the above homomorphism (1.2.14).
Note that the embedded SL,(Q) acts on H(V,)) by conjugation.

Definition 1.2.14. The (rational) Jacobi group J(V,)) is defined as the semidirect product of
the embedded SL,(Q) with H(V,), J(V,) = SL,(Q) X H(V;). An integral Jacobi-group J(D) is
obtained as the product SL,(Z) X H(D).

The elements of J(V,) are denoted as [M ][ A, u, t] with M € SL,(Q), A, u € DQ®,Qand t € Q.

Of course, this embedding also extends to the real groups SL,(R) and O1(V)(R) giving the
real points J(V,))(R) of the algebraic group.

Now, the action of J(V,;)(R) on the tube domain can be given in explicit terms, see (1.2.17),
below. However, in contrast to the Heisenberg group, the action of the Jacobi-group gives rise
to a non-trivial automorphy factor, which we shall determine in example 1.2.17 below.

We shall first explore this concept in a somewhat more general setting.

1.2.5 Automorphy factor

Denote by e, e’ lattice vectors spanning a hyperbolic plane in L ®, QQ, with e primitive isotropic
and (e,e’) = 1. By J’(\g’ denote the preimage in Vi of 2 under the canonical projection
7 Ve — P(Vp).

Recall how, the association in (1.2.9) of a unique Z; € % + C X, 7+ toZ € #, combined
with the canonical projection was used to introduce the b1Ject10n between 5, and %, see
(1.2.10),

Z — 27, =(2,1,—q(Z2)—q()) —[Z,.].

As y € OT(V)(R) acts on %, and on %5’ , the following diagram is commutative

+ [21)-[rz,)]

H ———> A (1.2.15)
ZH[ZL]T T}’ZH[(YZ)L]
A L

Indeed, given Z; € 7, it is clear that yZ; lies in the zero-quadric 4 and further in %,

0,1’
with q(yZ;) = 0 and (yZ L,E) > 0, because y € O1(V)(R). However, we can not expect
the e’-component of yZ; to be equal to 1, so vZ; & ,%?g“ in general. Now, (yZ), denotes
the (normalized) element of %J , associated to yZ € 5,. By commutativity of the diagram
(1.2.15), we have [yZ;] = [(yZ),] as an equality in P(V). The factor of proportionality
between yZ; and (yZ), is given by the e¢’-component of yZ; . Since (e,e’) =1, we have

(rz), = ) YZr.

(YZL’e
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Thus, the action of O"(V)(RR) on 4%, induces a non-trivial factor of automorphy,

I {o+(V) X Ay, —  CF
(Y:ZL) — J(Y:ZL)a
given by

J(Y: ZL) = (YZL76) .
(Compare this to (1.1.8) in the unitary case.)

Remark 1.2.15. From the definition of Eichler transformations (1.2.12), it is easily seen that
the e’ component of Z; is left unchanged by the Eichler transformation of the form E(e,x) with
K € K®y;R. See p. 44, where the Eichler elements listed under II are of this type, with k € K ®, Q.
Thus

J(E(e,x),Z;) =1, identically, forall k €K Q®;R.

The process by which Z; is assigned to Z can be described from a slightly different point of
view, too:

Consider the restriction of the tautological bundle of P(V;.) to ¢ which we denote by £ Ao
Note that this is isomorphic to the preimage J?Sr under the canonical projection of V- to P(V.),
interpreted as a C*-bundle over J{OJ’ . From the action of O"(V)(R) on %y, there is a bundle

Lo =0"(V)R\Ly, — OT(VIR)\Hp. (1.2.16)

The assignment Z — [Z; ] defines a holomorphic, nowhere vanishing section of ¥,,.
We close these considerations by giving some examples for the calculation of the automorphy
factor.

Example 1.2.16. Remark 1.2.15 can be generalized: Consider the Heisenberg group H(V,)(R)
attached to a one-dimensional boundary component, defined on p. 45. With a matching basis for
the hyperbolic part of Vi, e1,..., e, the group H(V,)(R), can be embedded into O*(V)(R) using
Eichler elements of the forms E(es, te;), E(e;,x) and E(e;,n) with t € R*, k,n €K ®, R.
Inspecting the description on p. 44 for the action Eichler elements in H(V,)) of these types it
is clear that H(V;) acts trivially on the e,-component of any vector in V. It follows that for
y € H(V,)(R), the automorphy factor J(y,Z) =1, on all of 7. Also, clearly, transformations
from SO(V,) as embedded into SO(V') have trivial automorphy factor. Thus, for any y in the
centralizer of the boundary component attached to e, and es, J(y,Z;) = 1, identically.

Now, to give the automorphy factor for the real Jacobi-group J(V,)(R) it suffices to consider
the action of elements [M] with M € SL,(R). We use the same notation as we did for the
definition of J(V;,)(R), on 49f, in particular e, ..., e, denotes a basis for the hyperbolic part of
Vi consisting of lattice vectors.

Example 1.2.17. Consider the action of SL,(R) as embedded into the Jacobi group J(V,))(R). Let
M = (‘C‘ 3) € SLy(R). Write Z;, = (Z,,Z4,Z5,Z4,3), where Z5 and Z, correspond to the (refined)
tube domain coordinates z, and z,, respectively. By (1.2.14), we have

Az, Z,)\(a b\ | (az,+bZ, cZ,+dz,
[M]ZL_((—Zl 23) (c d) 8) =\ Zaz, + bz, —czy+dz, )3
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The e,—component of [M]Z; is given by cZ, + dZ,. Since Z, =1 for Z; € j{?v the automorphy
factor J([M],Z) equals cZ, + d = cz, + d, with the tube domain coordinate z,. The action of
the embedded SL,(RR) on the tube domain now comes out as

a b cq(3) az,+b 3
M = : — . 1.2.1
(C d) (21,22,3) (zl+ czo+d’ czy+d czy+d ( 7)

1.2.6 Automorphic forms

With the definition of the automorphy factor, we have all that is needed to introduce automor-
phic forms on arithmetic subgroups of O*(L).

Two definitions

Definition 1.2.18. Let I be a subgroup of finite index in O*(L), k an integer and y a unitary
character on I'. A holomorphic automorphic form on I" of weight k and with character y is a
holomorphic function F : 5, — C, satisfying

F(yZ)=x(y)J(y,Z2)F(Z) forall ye€T.

Meromorphic automorphic forms are defined similarly.

A holomorphic automorphic form is called a modular form if it is regular on the boundary of
Hy.

However, as it turns out, by the Koecher principle 1.2.24 this is always the case if the signature
is (2,b) with b > 2.

Such modular forms correspond uniquely to sections of ggk, where ¥, is the bundle
defined in (1.2.16) .

From this, we can also draw an alternative definition which resembles more closely definition
1.1.25 in the unitary case. This also sheds some light on the requirement of regularity.

Definition 1.2.19. For a subgroup T of finite index in O"(L), an integer k and a unitary
character y, a holomorphic automorphic form of weight k, with character y, is a function
f : A5 — C with the following properties:

1. f is holomorphic on J?Sr,

2. f is homogeneous of degree —k, i.e. f(ta) =t *f(a), forall t € C\ {0},
3. f is T-invariant, i.e. f(ya) = y(y)f(a), forall y €T.

(Meromorphic automorphic forms are defined similarly.) Further, f is called a modular form if it
can be continued to a holomorphic function on the boundary of J{J .

To an automorphic form according to this definition we can uniquely assign an automorphic
form according to the earlier definition 1.2.18, and vice versa: Denote by j, the map Z — Z;
with Z; € J?Sf 1~ Given an automorphic form f : J?S“ — C of weight k for the modular group
', with character y, put

f(Z) = £ ((2)).

1.2. Orthogonal Groups 49




It is easily verified that f, thus defined is an automorphic form by definition 1.2.18:

L.Z)=f00zZ)N=f(y,2) " vZ))
=2J(r, Z2) f(rz) = x (N Iy, 2)*F(Z})
=x(N I, 2)f.(2).

Given an automorphic form F : #, — C of weight k for the modular group I, write each
a € # in the form a =sZ; with Z; € %7, and s € C*. Put

f(a):=s"FF (3;'z) = sTKF(2).

If F is holomorphic, so is f, thus, we only need to verify properties 2 and 3 from definition
1.2.19. That f (a) satisfies 2 is immediate from the definition:

flta)=(st)"F(5;'2,) = t7*f (.

Now, we show that f (a) satisfies property 3 as well:

flra)=f(y(sz) = £ (sJ(v,2)1(r2))
=25, 2 FOr2)) =57V, 2) T F(v2)
=5 x(NJI(r,2) M (y,2)F(Z)
= x(Ns*F(2) = x(1)f (@).
The notation f, used in (1.2.6) is to make clear that the assignment of an automorphic form

on 4, to an automorphic form f on J?g depends on the choice of the cusp e and of e’. Recall
that a similar notation was introduced in the unitary case.

Remark 1.2.20. The following diagram may serve to illustrate the relationship between % t it
affine preimages X, 7 and A, +1 and the tube-domain. And also that between an automorphic form

f according to deﬁmtlon 1.2.19 and the corresponding f,, automorphic according to definition
1.2.18.

Ho
| X
T
— —1
Hy —— %+ <T> Ay

Here, Tt is the canonical projection, j, the association Z — Z;, o, the unique section of m with
0,:[Z,]— Z; and s, the projection of a = sZ; € X to Z; € X ,. With the exception of m all
these maps depend on the choice of e and ¢’

Remark 1.2.21. The action of O*(L) on A, induces an action on functions ffg“ — C. Clearly,
the first and second property in definition 1.2.19 are invariant under this action, while a T-
invariant function f, satisfying f (ya) = f (a), satisfies f (y'ga) = f(ga) for y’ € gT'g™? for fixed
g € O%(L). Thus, f o g is an automorphic form for a group conjugate to I'. The corresponding
automorphic form on #, is given by J(g,Z) *f.(gZ). (A similar consideration applies if f has
a non-trivial character, bearing in mind that T" has finite index in O"(L).)
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Fourier expansion and Koecher principle

Fourier series

We want to expand orthogonal modular forms as Fourier series. This can be achieved with
Eichler transformations of the form considered above, E(e,«) with k € K ®, Q. As noted
earlier, such transformations leave the e’~component of Z; untouched and thus act on %,
with trivial automorphy factor.

Let f be an automorphic form on some orthogonal modular group I' and with character
x - Assume for a moment that I' is the full discriminant kernel T‘(L) and y is trivial on Eichler
elements of the form E(e, k). We then have

fe(E(e,—x)Z) = f.(Z + ) = f.(Z)

for all k € K, since E(e,x) € T'(L). Thus, f, is periodic with period lattice K and can be
expanded as a Fourier series

f(2)=" a(Me((2,2)).

AeK’!

More generally, for ¥ any non-trivial unitary character, there is vector p € K ®, QQ, unique
modulo K’, such that

flZ+x)=e((0o,x)) - f(2) (1.2.18)

holds. From this relation, one gets a Fourier expansion of the form

(D)= Y ae((1,2).

A€p+K’

Of course, if T' is an arbitrary arithmetic subgroup of O*(L), we must replace K with some
period lattice in K ®, Q. We summarize the most important considerations in the following
proposition

Proposition 1.2.22. Let f be an automorphic form on a subgroup T" of finite index in F(L), of
weight k and with character y. Then, on #,, f can be expanded as a Fourier series of the form

f(2)=D ae((Z,2),

A€H +p

where H' is a sublattice of K’ and p is the vector from K ®, Q defined by the relation (1.2.18). If
x is trivial, then o = 0 (modulo K’). Further, if T contains H(D), we have H' = K'. In particular,
this is the case if I’ = F(L).

Of course, the Fourier coefficients can be calculated by the integrals

a(A) =

fe(2)e(=(2,2)) dZ.

|H//H| H'/H
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Remark 1.2.23. The Fourier coefficients of f satisfy the relationship

a(yAM) = x(r)a(d), for yeT'nO"(K®,Q),

as an immediate consequence of the transformation behavior of f,.

It is worth noting that an automorphic form can also be expanded as a Fourier series in
terms of the real part X of Z. We can employ this to write the Fourier expansion of f in terms
of the Grassmannian coordinates y and w. Assume for the following that I" = F? and y is
trivial — this is merely to simplify notation, the general result is similar.

Since K C V, a translation by x € K only acts on the real part of Z. Thus, if we consider f,
as a function f,(X,Y) of the real and imaginary parts of Z, we have f,(X +«,Y) = f,(X,Y)
and consequently a Fourier expansion of the form

£, Y)= ) d (A, 1)e((X,1)).

AEK’

Comparing terms, we see that the coefficient a’(1) in this expansion is related to the coefficient
a(A) in Proposition 1.2.22 by

ad'(A,Y)=a(A)e((iY, 1)) = a(A) exp(—27 (Y, 1)).

Since by (1.2.11), X = ug and Y is a representative of the subspace wy, we can also consider
this as a Fourier series in the Grassmannian coordinates uy and wy.

The more customary Fourier series in the complex variable Z can also be reformulated in
terms of the Grassmannian coordinates. Since wy = RY, the projection A,, of A onto w, equals
(A,Y)Y/Y2. Taking norms, we have

Y2 A,
(A, V) =12, and —F=—,
N YT eyl

whence

(Z,2) =X, ) +i(Y,A) = (U A) +iom (Alyewr) 12|

The Fourier expansion now takes the form

A
£.(Z2) = f.(u,w) = Z a(A)e ((,u, A) +1isgn(A,wg) - M) . (1.2.19)

)LGK/ |el}|

Koecher principle
Let ey, ...,e, be a basis for the hyperbolic part of V as in 1.2.2, with e; € L corresponding to
the cusp of #,. Denote by 4, the positive cone in K ® R given by

X =(x1,x,0) EK®R with x; >0, x;x5+q(x) >0, (1.2.20)

and by €, its closure, on which q(X) > 0 and x;, x5 > 0.
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Proposition 1.2.24 (Koecher principle). If V has signature (2,b) with b > 3, the following
holds: A holomorphic function f, : 5, — C satisfying

fZ+k)=f(2) for keK,
frz)=f£,2) for yeIl(L)NO"(K),

has a Fourier series expansion of the form

f(2)= )" a(We((Z,2)),

A€k’
Ae‘&r

where only A € K’ occur in the sum, which satisfy the semi-positivity condition A € 6.

For a proof, see [26]. The proof is of a quite similar vain as that in the case of Siegel modular
forms, see [27].

Remark 1.2.25. Using the theory of Siegel domains it can be shown that this implies the
regularity of f, on the boundary of the Satake compactification of '\ 7, see [26].

Cusp forms
Definition 1.2.26. A modular form f is called a cusp form if its Fourier expansion is supported
only on the (open) positive cone,

f(2)=)" aWe((Z,1)).

AeK
rc6t

Fourier-Jacobi expansion and induced Jacobi forms

A Jacobi form is a function on H X V; ¢ defined through its transformation behavior under the
Jacobi-group introduced in 1.2.14.

For the following, we use [20] as a reference. For simplicity, we assume that L is the
orthogonal sum of a definite part and two hyperbolic planes spanned by e, e, and es, e4. In
particular, e; € L for all i.

Note that by the definition of the positive cone €7, for the e,-component z, of Z € 5, we
have 3z, > 0, so z, can be identified with an element of the upper half plane H in the complex
numbers.

Definition 1.2.27. Let G be an arithmetic subgroup of J(D), k an integer, y a unitary character
of order e, and m € 1/eZ. A Jacobi form on G of character y, weight k and index m is a
holomorphic function ¢ : H X V, « — C, with the following transformation behavior:

¢ (7,5 +A+1u) = x([A,u,t]) exp (2nim((3,u) +q(u) T +1t)) ®(7,3), (1.2.21)

(M7, [M13) = 1 (IM]) (c7 + ) exp (—mm;qgf’)d) $(%,3), (12.22)

for all [A,u,t] € H(D) and M € SL,(Z) C J(D), where the action on H and V, is explained
through the action on the tube domain, see p. 44 for H(D) and (1.2.17) on p. 48 for SL,(Z).
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Remark. This definition generalizes the original definition by Eichler and Zagier in [24], which
is the classical reference on Jacobi forms for the elliptic modular group. A reference on the more
general concept of ‘mixed automorphic forms’is [47].

Without proof, we quote the following from [20], Lemma 3.1.11.

Lemma 1.2.28. A holomorphic function ¢ on H X V¢ is a Jacobi form on an arithmetic
subgroup G C J(D) of weight k, character y and index m exactly if the function on #, given by

F(ZDZZJZ)) = ¢(2275) : e(mzl)

transforms like an orthogonal modular form for G with the same weight k and the same character.

Proposition 1.2.29 (Fourier-Jacobi expansion). Let I" be a subgroup of finite index in I'(L)
containing H(D). Let f be a modular form on T of weight k and with character y of order e.
Then, for every non-negative m € 1/eZ there exists a Jacobi-form ¢,, of weight k and index m on
' NJ(D) with character y, such that

fGLEns) = Y, bulans)e(msy).

mel/eZ
m=0

We refer to the Jacobi forms ¢, occurring as coefficients in this expansion as being induced
from the orthogonal modular form f.

Remark 1.2.30. That the coefficients in the Fourier-Jacobi expansion of an orthogonal modular
form are Jacobi-forms, stands out in contrast to the unitary modular forms in section 1.1. The
reason for this is, of course, that the boundary components of the symmetric domain 78, for the
unitary group are only zero-dimensional. Thus, there is no copy of H contained in the boundary
of #4; and no subgroup isomorphic to SLy(Z) in the normalizer of a boundary component. The
transformation behavior in (1.1.11) of the Fourier-Jacobi coefficients a, (o) under the unitary
Heisenberg group is, however, analogous to that of the Jacobi-forms in (1.2.21).

The Siegel operator

We wish to clarify somewhat the relationship between the Fourier expansion of a modular
form and its behavior on the boundary of #,.

Assume that we have a basis e, ..., e, for the hyperbolic part of V consisting of isotropic
lattice vectors. This fixes the cusp as the zero-dimensional rational boundary component
attached to e;, which, in turn, is contained in the one-dimensional boundary component
attached to the rational isotropic space spanned by e; and e;.

Given Z; in ffgs ,» the intersection in projective space of [Z;] with the boundary of ¢,
corresponds to the limit

z
lim [—itzy,1,it,20,3] :tlim [—zz, —,1,2 2
—00

— =1|-2,,0,1,0].
it—ioo iz ’it’it] [—22,0,1,0]

Recall that z, € H parameterizes the points in the boundary component.
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Next, we consider the value of a modular form f, on the boundary component. For this, we
write A € K" as A = (A4, A,, Ap). Using the Koecher principle, we have

tli_{glofel(itazz:é) = lim Z a(Me (itdy +2221 + (3,4p))
AeK’
A1,22>0
q(2)=0
= lim Z a(A)e (22241 + (3,Ap))

t—00
reK’
A1>0, A9=0
q(A)=0

since all terms with A, > 0 vanish in the limit. But then, in the remaining terms, we must
have A, = 0, as well, because q(1) = q(Ap) = 0 and A, is from the negative definite lattice
D’. Thus, the value of f on the boundary is given by

lim £, (it,75,3) = DT a(n,0,0)e (21,). (1.2.23)
(11,0,0)eK’
A1=0

Since 2, is in H, this can be seen as a Fourier expansion in one variable on the upper half-plane.

Remark. Since the Fourier expansion in (1.2.23) is regular, we can say that the Koecher principle
implies regularity on the boundary. More generally, it can be shown that the semi-positivity
condition A € 6, is equivalent to regularity on the boundary.

Remark 1.2.31. If f is a cusp form, then lim,_,, f, = 0. This is implied by (1.2.23) and the
(strict) positivity condition A € €7 in definition 1.2.26. In other words, cusp forms vanish at the
cusp.

The Siegel operator is an operator taking modular forms on 7, to functions on H, defined as
(f 12)(7):= D a(A,,0,0)e*™ 1",

A120

The resulting function is in fact an elliptic modular form for some congruence subgroup of
SL,(Z).

Remark. The value of a modular form on a zero-dimensional boundary component, corresponding
to a one-dimensional isotropic space Qe, can be calculated as follows. For Z; € J{J > the
intersection of [Z; ] with the boundary of A is given by

lim[Z;] = lim [-t%q(2),1,tZ] =[1,0,1].
t—00 t—00
The value of a modular form f on the boundary is simply

lim £,(2) = lim » " a()e((tZ, 1)) = a(0).

AeK’

Cusp forms, in this context, can be characterized as having a Fourier expansion in which only A
with q(A) > 0 occur
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2 Theta lifts and Borcherds theory for O(2, b)

This chapter describes the lifting constructed by Borcherds, and some of the concepts needed
to formulate it.

In the form given in [5], this lifting is an example for a, in this case, singular theta
correspondence. It generalizes early known theta correspondences or theta lifts, such as those
constructed by Shimura, Doi-Naganuma, Maass, Gritsenko and others, see in this order, [61],
[23], [48], [32].

Many of these liftings, notably the Shimura and the Doi-Naganuma lift, were first constructed
through correspondences between L-series attached to automorphic forms. A more general
approach is based on the concept of a dual reductive pair due to Howe. Two reductive
algebraic groups are dual in this sense if, as subgroups of a larger group, they are commutants
of each other. In such a situation, intertwining operators between the representations of these
groups exist, which may be used to ‘lift’ automorphic forms from one group to automorphic
forms on the other group. In particular, for a dual pair of subgroups in a metaplectic group (a
double cover of the symplectic group), this lifting takes the form of an integral transformation,
with a theta function as integration kernel.

A first example of such a lifting was constructed by Shintani, see [65]. Using his setup as a
model, in [67], Zagier reimplemented the Doi-Naganuma lift, which takes elliptic modular
forms to modular forms for a Hilbert modular group, as a theta lift, while Niwa similarly
reformulated the Shimura lift, see [53]. A theta lift which generalizes the liftings of Maass and
Gritsenko was constructed by Oda in [54], for the dual reductive pair SL,(R) and O(2, b — 2).

The original construction of automorphic products by Borcherds in [3] was not based on a
theta lift. However, the physicists Harvey and More discovered in [34] that Borcherds’ result
could be obtained from a ‘singular theta correspondence’, in which the input functions for
the lift are allowed to have poles at the cusps. The term ‘singular’ is due to the fact the theta
integral, in this case, is widely divergent. However, Harvey and More also showed how a
regularization recipe from theoretical physics could be applied to this integral.

Borcherds then used this singular theta correspondence to implement his lifting in [5],
generalizing many of the previous examples. His general construction is an additive lifting,
from which a multiplicative lifting is then derived. We will describe this construction in more
detail in section 2.2 below.

Before we explore some of the concepts needed to formulate the Borcherds lift, we would
like to mention one more example for a theta lift, which is not included as a special case
in Borcherds’ construction. This is a lifting due to Kudla, who in [40] implemented a setup
analogous to that of Sintani for the dual reductive pair SL,(R) and U(1, q), providing a lifting
to modular forms for unitary groups.

2.1 Prerequisites for Borcherds theory

In this section we discuss some of the basics needed to formulate Borcherds’ result. First
we recall the definition of modular forms for the elliptic modular group SL,(Z); the usual
definition must be extended to accomodate weakly holomorphic modular forms, which are
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allowed to have a pole at the cusp ico and, in general, for vector valued weakly holomorphic
forms of rational weight.

Also, the image of the lift consists of meromorphic functions having their zeros and poles
along so called Heegner-divisors, which we discuss, too. Finally, to formulate the infinite
product expansions we need to somewhat reexamine the theory of quadratic lattices and
also to introduce the concept of Weyl chambers as subsets of the Grassmannian ¥4(K) of the
Lorentzian space W = K ®, Q.

2.1.1 The Weil representation and vector valued modular forms

The functions serving as inputs for the Borcherds lift are vector valued elliptic modular
forms, that is holomorphic functions on the complex upper half-plane H = {z € C; 3z > 0}
transforming under a representation of the elliptic modular group SL,(Z) on the group
algebra C[L/L’], the so called Weil representation. Such vector valued modular forms are a
generalization of classical - i.e. scalar valued — elliptic modular forms on the upper half plane
H. Further, the modular forms we consider need only be weakly holomorphic and are thus
allowed to have poles at the cusp ico.

Scalar valued modular forms

Recall that GL,(R)" acts on the upper half plane H = {1t € C; 57 > 0} of C, through M&bius
transformations,
at+b

ct+d’

GLy(R)"'> (28) : 7~
For an integer k, the Petersson slash operator on functions f : H — C is defined as
M | f = det(M)*(ct +d)*f(M7), for M=(24)eGLI(R).

Now consider the elliptic modular group SL,(Z). Denote by I'(N ) the principal congruence
subgroup of SL,(Z),

r(v)={(¢%)=(49) modN}. (2.1.1)
And by I'y(N) and I';(N) the congruence subgroups

To(N) = {(g};), c zOmodN}, (2.1.2)
Fl(N):{(‘gZ),czOmodN,a,dElmodN}. (2.1.3)

More generally, a congruence subgroup of I'(1) = SL,(Z) is a subgroup of finite index containing
the principal congruence subgroup I'(N) for some N > 1.

Definition 2.1.1. Let I be a congruence subgroup of SLy(Z), ¥ a character of T and k an integer.
A (scalar valued) weakly holomorphic (elliptic) modular form on I" of weight k with character y
is a holomorphic function f : H — C which is
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1. invariant under the weight k slash operator, M |, f = f, forany M €T,
2. at most meromorphic at the cusps.

If f is holomorphic at the cusps, it is called a holomorphic modular form (or simply a modular
form), a modular form vanishing at the cusps is called a cusp form. The space of weight k weakly
holomorphic modular forms on T" with character y is denoted by //t,i(l“, %), the subspace of
holomorphic modular forms by (T, x) and that of cusp forms by (T, x).

Example 2.1.2. The Eisenstein series G; with k an integer, k > 3,

G(t) = Z ;k,

abez (at + b)
(a,b)#(0,0)

is a holomorphic modular form of weight k for the full elliptic modular group T'(1) = SL,(Z).
Note that Gy vanishes identically for odd k. For even k, its q-expansion is given by

200+ 22 S o g with oy = Y

n>1 din

1)'

Example 2.1.3. The usual elliptic j-function, can be defined as
(1) =1728 ZOG‘?

T)= —_—.

! 20G; — 49G?

The j-function is holomorphic on H and invariant under the Petersson slash operator of weight O
for the full elliptic modular group, thus, j(7) is contained in //lé(l"(l)).

Necessarily, the j-function has a pole at the cusp ioo, which is also apparent from the g-
expansion

j(t) =q ' + 744+ 196884 q + 21493760 q* + 86429970 q> + - - -

In fact, the space of weight 0 weakly holomorphic forms #,(I'(1)) is isomorphic to C[j(t)].

The Weil representation

For z € C denote by 4/z the principal branch of the square root, which has arg+/z €
(—m/2,/2]. For any integer k set z*/? = ﬁk.

Denote by Mp,(R) the metaplectic group, the double cover of SL,(R). The metaplectic
group can be realized by the two choices of holomorphic square roots for T — ¢t + d, where
(fcl 3) € SL,(R). The elements of Mp,(RR) can be written as

(M,¢(t)), where M= (‘Cl 3) € SL,(R)
and ¢ is a holomorphic function

¢ :H—C, with ¢(1)>=ct+d.
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The product of two elements (M, ¢;) and (M,, ¢,) in Mp,(R) is given by
(M3, $1(7)) (M3, (7)) = (M1 My, p1 (My7) (7)),

at+b

ed Clearly, there is an embedding of

where M € SL,(R) acts on H as usual, via M1 =
SL,(R) < Mp,(R). This is a local isomorphism.
The group Mp,(Z) is the inverse image of SL,(Z) under the covering map Mp,(R) - SL,(R).

This group is generated by the elements

(5 D) (D))

A standard generator for the center of Mp,(Z) is

-1 0\ .
z:szz(TsP:(( 0 _1),1).

In the following let L be an even lattice over Z with a symmetric, non-degenerate Z-bilinear
form (-,-) of signature (2, b), as considered in section 1.2. The Z-dual in L ®, Q with respect
to (+,-) is the dual lattice L’. Then, the discriminant group L’/L is a finite Abelian group and
the discriminant form is the modulo 1 reduction of (-,-) on L’. Denote by ¢(-) the quadratic
form associated to (-, -) as well as its modulo 1 reduction, which is a Q/Z valued quadratic
formon L’/L.

The Weil representation p; is a unitary representation of Mp,(Z) on the group algebra
C[L’/L]. We denote by e, for y € L’/L the standard basis elements of C[L’/L]. Then, p; can
be defined through the action of the generators T and S introduced above, which is given by

pr(T)e, = e(—q(Y))ey,

e(=(r,6))es.
\/IL’/L 5;/L !

For details, see [5]. Further, the action of Z is given by
pL(Z)e, =i""%c_,. (2.1.5)

Proposition 2.1.4. If b is even, the representation p; of Mp,(Z) factors through a representation
of SLy(Z). Further, in this case, p; factors though the finite group SL,(Z/NZ). where N is the
level of L, the smallest integer with Nq(y) € Z for all y € L'. If b is odd, p; only factors through
a double cover of SLy(Z/NZ).

Remark. More generally, for a lattice of signature (b™,b™) the conditions on b mod 2 in the
proposition and on the following pages are replaced by conditions on b™ + b~ mod 2. In the
present case, b¥ + b~ =2+ b = b mod 2, of course.

2.1.4
pi(S)e, = @14

If b is even, the negative identity matrix —E, € SLy(Z) acts as p; (—E,)e, = (—1)b=2)/2,
The standard hermitian scalar product on the group algebra C[L’/L] is defined as

<Z ape Y’Zbrer> Z YBY Cy-

The matrix coefficients p, 5 (M, qb), for (M ,p)e MpZ(Z) and v, 6 € L'/ L, of the representa-
tion p; are defined as

Prs (M, ¢) = (pL(M,$)es, e, ),

see [9]. There is also dual representation for p;, denoted p;. Its matrix coefficients can be
obtained by conjugating those of p; .

60 2. Theta lifts and Borcherds theory for O(2, b)



Vector valued modular forms

Letk € %Z and f be a C[L’/L] valued function on H. For (M, ¢) we define the Petersson
slash operator as

(f le (M, 9)) (7) = (1) p,(M, )" f (M),

where Mt = %, as usual. Similarly, for the dual representation p;, the slash operator

(FI2(M,9))(0)=¢(r) > p;(M,¢) ' f (M)

defines a ‘dual’ operation on the C[L’/L] valued function on H.

Proposition 2.1.5. Let f be a holomorphic function f : H — C[L’/L]. Write f in the form
f= ZYGL/ /L fye, with holomorphic component functions f,. If for some k € %Z, f is invariant
under the |, operation of T € Mp,(Z), f has a Fourier expansion of the form

flr)= Z Z c(n,y)e(nt)e,.

yeL’/L neZ+q(y)

If on the other hand, f is invariant under the dual operation, |'. for some half-integer x, then f
has a Fourier expansion of the form

F= > > clmyle(nte,.

yeL’/L n€Z—q(y)

Proof. From the definition of the slash operator, using (2.1.4), for f under |, T it is clear that
each y € L'/L, the function f,(7)e(q(y)7) is periodic with period 1 and thus can be expanded
into a Fourier series, as claimed.

Similarly, f |\, T = f implies that f,(7)e(—q(y)7) is periodic for each y. O

Definition 2.1.6. Let k € %Z, A function f : H — C[L’/L] is a weakly holomorphic vector
valued modular form of weight k with respect to the Weil representation p; on Mp,(Z) (or on
SL,(Z), when b is even), if f satisfies

L f e (M,¢) = f for all (M, $) € Mp,(Z),

2. f is holomorphic on H,
3. f is meromorphic at the cusp ioo.

The space of weakly holomorphic vector valued modular forms with respect to p; is denoted by
//l,i(p 1), the subspace of holomorphic modular forms, those which are holomorphic at the cusp,
is denoted by #,.(p). The space of cusp forms, vanishing at the cusp, by &.(p;).

For the dual representation p;, vector valued modular forms are defined similarly and denoted
by M (p}), M (p}) and F.(p}), respectively.
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From the definition, it follows that a weakly holomorphic vector valued modular form f is
invariant under the |, operation of T € Mp,(Z), and for even b + 2, under the operation of
the matrix T = (§ 1) € SL,(Z). By the preceding proposition 2.1.5, f has a Fourier expansion
of the form

F@=D, > cmylente,,

yeL’/L neZ+q(y)
n=>—oo

in which only finitely many coefficients c(n,y) with n < 0 occur, since f has at most a pole at
the cusp ioo. If f is holomorphic, n runs over non-negative values only.

Remark 2.1.7. Assume b to be even. Let f be a vector valued modular form in //l,i(p 1) with
component functions f.,, y € L’/ L. The transformation behavior under the negative identity matrix
—E, € SLy(Z) implies that f, = f_, ifk=1+b/2mod 2 and f, = —f_, ifk Z1+ b/2 mod 2.

Borcherds inputs
In Borcherds theory, weakly holomorphic modular forms from //tl!_ b /2(p 1) play an important
role, as they serve as inputs for the multiplicative Borcherds lift, which we discuss below.

Remark 2.1.8. If f € /ﬂl’_b/z(pL) as a consequence of (2.1.5) and |,_/, invariance, the
following relation holds between Fourier coefficients of f:

C(Tl, Y) = C(n: _}/)

As the orthogonal group O" (L) operates on the dual lattice L’ there is an induced operation
of O"(L) on the group algebra C[L’/L] given by

g Z Crey — Z CyCe(n)-

yeL’/L yeL'/L

Definition 2.1.9. Let f be a weakly holomorphic modular form contained in //11!_ b /2(p 1) with
component functions f,, y € L'/L. We define the automorphism group of f in O*(L) as

O}F(L) = {g €0"(L); f, = fo¢y) forevery ye L’/L}.

The automorphism group O}F(L) is a subgroup of finite index in O% (L), which contains the
discriminant kernel F? as a subgroup.

2.1.2 Heegner divisors and Weyl chambers

Besides elliptic modular forms and the Weil representation, which can be considered as
prerequisites for most theta lifts, several further concepts still need to be described, which are
more specific to the theory surrounding Borcherds’ work. In this, we largely follow Bruinier,

[9].

62 2. Theta lifts and Borcherds theory for O(2, b)



Lattices revisited

To describe the theory of Borcherds in a sufficiently general setting, we need some facts on
lattice as quadratic modules, which have not yet been covered in section 1.2. For the following,
see [9], further details can be found in [5] and [29], for example.

Let L be an even lattice of signature (2, b) and e, ¢’ a hyperbolic pair as per definition 1.2.4,
with e € L primitive and isotropic, ¢’ € L’ with (e,e’) = 1. As usual, we denote by K the
sublattice L Net Ne’t.

Consider the orthogonal projection py from L ®, Q to K ®, Q introduced in (1.2.4). Denote
by a subscript -x the image of py. For A € L', A := pg(A) is contained in K’, the dual lattice
of K in K ®, Q. However, A € L does not imply A € K. In fact, K’ is not necessarily contained
inL’.

We now introduce a projection p with the property that p(L) = K. Clearly, there is a unique
positive integer N such that (e, L) = NZ, called the level of the cusp e. Let f € L be a lattice
vector with (f,e) =N.

Proposition 2.1.10. ([9], prop. 2.2) L can be written as a direct sum K ® Ze ® Zf .

Proof. Let A € L. The vector 7:& — (L e/N)f = (A,¢') e+ (A,e/N)(f,e') e is contained in
L. Now, as is easily verified, A 1. e and A L e’. Therefore A is contained in K. Hence,
A €K+ 7Zf + Ze. The directness of the sum is obvious. O

As a consequence, there is an isometric embedding K’ — L’ defined by
(r.F)5
— Y — —
r=r=WJ7y
and an induced map K’ — L’/L. The Kkernel of this map is given by the set
{rek; (y,f) eNzZ}.
Consider the following sublattice of L’

Li={Ael’; (Le)=0 modN}. (2.1.6)

By the definition of N, L is contained in L;,. The quotient L)/L is a subgroup of the
discriminant group L’/L, given by

Ly/L={A€L’/L; (A,e)=0 mod N}.
Proposition 2.1.11. The projection p : Ly — K’ defined by

(A,e)

p(A) = Ag — N

fx (2.1.7)
has the property p(L) = K. It induces a surjective map from L/L — K'/K.
Proof. For an arbitrary A € L write A = y + af + be, with y € K. Then, the map from

L) — L'ne', A — (A,e) /N, combined with the orthogonal projection pg from L' net — K,
sends A to . O
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Heegner divisors

The functions constructed in [5] by means of the Borcherds lift have their poles and zeros
along certain F?—invariant divisors, called Heegner divisors, generalizing classical Heegner
points on modular curves and Hirzebruch-Zagier divisors on Hilbert modular varieties. We
recall some basic facts on divisors first.

Divisors
For the following, compare [9] and [31]. Let X be a normal complex space, with every point
in X locally irreducible. A divisor is a formal linear combination

D= Z nyY, with ny €7Z,

of irreducible closed analytic subsets Y of codimension 1, such that the support,
supp(D) = UnY 4o Y is a closed analytic subset of everywhere pure codimension 1.

Let I" be group of biholomorphic transformations acting properly discontinuously on X.
Consider a divisor D on the quotient X /T. The pullback ©*(D) of D under the canonical
projection 7 : X — X /T, is a I'-invariant divisor on X. For every irreducible component Y of
the inverse image of supp(D), the multiplicity of Y in *(D) equals the multiplicity of 7(Y) in
D.

The divisors occurring in connection with Borcherds’ singular theta lift are defined through
the complement of negative definite rational subspaces as follows.

Heegner divisors

Given a vector of negative norm A € L', the orthogonal complement A* in V; is a quadratic
space of signature (2, b — 1). All positive definite two-dimensional subspaces contained in A+
form a subset of the Grassmannian Grg, which is also denoted by AL

Alz{veGrO;(a,k)zQ forall aev}.

Each point v in the Grassmannian is an oriented subspace of V. For each v € Gr, there is a
subspace v’ € Gr,, with inverse orientation. Clearly, v is contained in the sub-Grassmannian A+
exactly if v’ € A+, too. Thus A+ has two connected components, one for each connected com-
ponent of Gry. It suffices to consider one of these connected component, which corresponds
to the component #; of the positive projective cone ¥,

Then, A+ defines a closed analytic subset of the cone J{J in the complex projective space
P(V¢), consisting of all positive, norm-zero lines [Z;] € #J with (Z;,1) =0.

Through the normalized representatives of Z; € 5{3 |» the subset of ¢ given by AL defines
a closed, analytic subset of the tube domain, which we also denote by A*.

Definition 2.1.12. Let A € L’ be a vector of negative norm and write A in the form A =
Ag +ae’ + be, with Ay €K', a € Z, b € Q. We denote by A" the subset

A ={zexy; aq(Z)-(Z,A¢) +aq(e’) —b=0}.

Then, A defines a prime divisor on .
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Now, given 8 € L’/L and m € Z with m < 0, we consider the following subset of Gry:

U At (2.1.8)

A€f+L
q(A)=m

Since for any subset U C Gr, with compact closure, the set
S(m,B,U)={A=B+L; qA)=m,IvelU with v 1A}

is finite, cf. [9], p. 48. The union over Atin (2.1.8)isa locally finite union of codimension
one sub-Grassmannians, which naturally remains finite when restricted to either connected
component. It may thus be interpreted as the support of a divisor on the symmetric domain.
From this observation, it should also be clear that the following is well-defined.

Definition 2.1.13. Given f € L’/L and m € Z, m < 0. We define a F?—invariant divisor on #,,
called a Heegner divisor of discriminant (m, 3) and denoted H(m, 8), as follows

H(m,B) := Z AL, (2.1.9)
A€EB+L
q(A)=m

The support of H(m, 3) is given by the (locally finite) union

L At

AEB+L
q(A)=m

The F? invariance of H(m, 3) follows directly from the definition as the sum is carried over
a system of representatives of L’/L. Through this, in turn, we can consider H(m, 3) as the
inverse image of a divisor on X = I'\.7,.

Definition 2.1.14. Since H(m, f3) is I"(L) invariant, it is the inverse image under the canonical
projection #, — X of a divisor on the modular variety X = I'\#,, which is also referred to as
a Heegner divisor of discriminant (m, 3) and, for simplicity, also denoted by H(m, [3).

Weyl chambers

In Borcherds theory, Weyl chambers occur as disjoint subsets of the symmetric domain. The
multiplicative Borcherds lift is holomorphic on these subsets and has an infinite product
expansion on each of them.

For the following, we need to assume that the Lorentzian lattice K = L Ne® Ne’t contains an
isotropic vector. Consider the Lorentzian space Wi = K ®, R and the attached Grassmannian
of one-dimensional positive definite subspaces, denoted %(K). This Grassmannian is a model
for the symmetric space of O(W)(R). For y € K’ with q(y) = n < 0, a divisor H(m, y) on 4(K)
can be defined similarly as in definition 2.1.13. In particular, its support, a subset of ¥(K)
can be defined as in 2.1.8, replacing L by K. Then, supp H(m, y) is a union of codimension 1
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sub-Grassmannians. Hence, the set ¢(K) — H(m, y) is disjoint. Its components are called Weyl
chambers of index (m, ).

The Grassmannian can be realized as a upper half-space in a hyperbolic space of dimension
b—-1,

Y(K)~ A = {(xo,xl,...,xb_z) e RMT, Xo > O},

with R?~! = R x (D ®, R), where D is a negative definite lattice of rank b — 2 contained in K.
The half-space # is the called the upper half-space model of 4(K).

Another realization of ¢4(K) can be obtained as follows: Let gz € K be primitive and isotropic.
Then, the set

<€K={UEK®ZR; v2=1,(v,z)>0}

is called the hyperboloid model of %(K). The identification between 6} and ¥(K) is carried
outvia v — Ruv.

Recall that the tube domain %, can be written as K ®, R+ i6¢ " with € a positive cone,
see p. 40. For Z = X +1Y € 5%, the imaginary part Y is contained in € C K ® R and satisfies
Y2 > 0. Then, the line RY defines an element of the Grassmannian ¥(K) and we may can
identify Y /|Y| with a point in the hyperboloid model.

Definition 2.1.15. Let m be a negative integer, 8 € L’ be a vector with q(8) = m. Denote by N
the level of the cusp e, as on p. 63, and denote by p(8) € K the image of 3 under the projection
(2.1.7).

A Weyl chamber W of index (m, ) is a subset of 5, defined as follows:

If (B,e) =0 mod N, put

Y

where U is a Weyl chamber of index (m, p(f8)) in 4(K).
If, otherwise, (f,e) 0 mod N, define W to be the whole of 5,

Since this definition associates Weyl chambers in 5%, to Weyl chambers in ¢(K), given a
Weyl chamber W in ¢(K), we will usually denote the corresponding Weyl chamber in 7, by
W, too.

For a Weyl chamber W of ¢4(K) and an element k € K’, we write (W, k) > 0 if (v,x) > 0 for
every v in the interior of W — for this, consider W as a subset of the hyperboloid model.

Lemma 2.1.16 (cf. [9], lemma 3.2). Let W C ¥(K) be a Weyl chamber of index (m,y) and
assume that k € K’ with q(x) > 0 or q(x) = m, x + L = %y. Suppose that (vy,x) > 0 for a
vy € W. Then (W, k) > 0.

Proof. Obviously, k # 0. Assume the existence of a v; € W with (k,v;) < 0. Since W is
connected and (k, v) is continuous, there exists a v, € W with (k,v,) = 0. Since v, € €7,
clearly sz C K ® R is a negative definite subspace, thus g(x) < 0. We may assume q(k) =m
but then, v, € A+ implies v, € H(m, x) so v, can not be contained in W. Contradiction. [
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Weyl chambers associated with modular forms

The Weyl chambers and Heegner divisors which arise in the context of the Borcherds lift
and its generalizations, are related to the Fourier expansions of the vector valued modular
forms serving as inputs for the lift.

Just as for f € //tl!_b /2(p 1) we have defined an automorphism group Oj{(L), we define Weyl
chambers with respect to f.
Definition 2.1.17. Let f : H — C[L’/L] be a weakly holomorphic modular form for Mp,(Z) of
weight 1 — b/2 with principal part

Z Z c(n, Ble(nt)e,.

BeL’/L neZ+q(B)
n<0

Then, the components of

9x)- |J U HmpB) (2.1.10)
BeLy/L neZ+q(p)
n<0
c(n,B)70

are called Weyl chambers of ¥(K) with respect to f.

Remark 2.1.18. We extend the notation (W, k) > 0 to Weyl chambers of this form, as well. By
repeated application of lemma 2.1.16 to all indices (n,y) with v = p(f) for B with c(n, B) # 0,
we see that (W, k) > 0 holds precisely if (vy,«) > 0 for one vy € W.

2.2 The Borcherds lift

Given a weakly holomorphic modular form f : H — C[L’/L] on Mp,(Z), the theta lift
constructed by Borcherds is given by the regularized theta integral

reg

b/zdxdy )

®,(Z,f)= (f(1),0.(7,2)) y ——, witht €H, Z € 7,

Yy
z

Here, & ~ SL,(Z)\H denotes a fundamental domain for the operation of the elliptic modular
group SL,(Z) and (,) the usual Petersson scalar product.
The Siegel theta function ©; attached to the lattice L is defined as follows.

0,(r,2)= Y, 0,(r,Z), TEH, ZE A, (2.2.1)
yeL'/L
with component functions

0,(r,.2)= > e(tq(Az) +7q(2z1)). (2.2.2)

Aey+L

The notation A, means projection onto the two-dimensional positive subspace v = RX; + RY;
of Vi associated to Z, while A, is the projection to the complement, vt. Note that with
Z, =X, +1iY, =(—q(Z)—q(e’),1,Z) we have

1 1
Az = 72 (AX) X, + 2 (A, 1) Y;.
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The divergent integral is regularized as follows, using a recipe due to Harvey and Moore [34].
For u € R,y U {oo} denote by %, the region

gu:{’r; IT| > 1, |%R7| S%,0<375u} C H,
and by Z_, the usual fundamental domain & . Now, for s € C consider the limit

. _dxdy
lim J (F(),0,(7,2)) y? P22
7,

u

Assuming the limit exists for R(s) sufficiently large, and can be continued to a meromorphic
function defined for all s € C, the regularized integral is defined as the constant term of its
Laurent expansion around s = 0,

reg
f <f(T),@(T,Z)> yb/zd);czly =%, |:uh_)n;oJ <f(T), @L(T,Z)> yb/Z—sdJ;ij
Fu

F

If there is a pole at s = 0, a slightly different definition is needed, see [5], p. 22f. Yet another
variation of this, based on a different regularization procedure, is introduced in [9], p. 47.

Remark 2.2.1. Actually, the theta functions Borcherds introduces in [5] are of a somewhat more
general type then (2.2.1), which makes it possible to admit a much larger space of input functions
for the theta lift. For the multiplicative lift under consideration here, however, a theta function of
the above type suffices.

The regularized theta integral defines an additive lifting for input functions f € //l]i(p L)
with k a half-integer > 1 — b/2. In the special case where f € /”1!—1) /2(p 1), the additive lift
®,(Z, f) can be used to define a multiplicative lifting, ¥;(Z, f ), the properties of which are
given in theorem 2.2.3 below. To summarize, ¥; is a meromorphic function in 5%, having as
divisor a special cycle attached to f, see (2.2.3) below, and defined through the property that

—210g||\IJL(Z,f)||123et =®,(Z,f) (up to some constants, see remark 2.2.6).

Remark 2.2.2. For the following, cf. [12], lemma 6.6. Denote by D the divisor given in theorem
2.2.3. The additive lift ®;(Z, f ) has logarithmic singularities along D, see [5], §6. Furthermore,
it can be shown that ®; is pluriharmonic, i.e. all mixed second derivatives 30 ®; vanish. From
this, the existence of the meromorphic function ¥; satisfying ®; = log|¥;| and having divisor D
follows. W, is then uniquely determined up to a constant of modulus 1.

The multiplicative Cousin problem, see [31], is universally solvable for F#,, since #, is convex.
Hence, there exists a meromorphic function g with divisor D. Then, ®; — log|g| extends to a
pluritharmonic real analytic function on #,. Since further #, is simply connected, there exists
a holomorphic function h such that ®h = ®; — log|g|. Then, ®; =log |eh . g| and we may put
v, = el. g.

Besides having its poles and zeros on Heegner divisors the function W; also has the distinctive
property of having an infinite product expansion as a Borcherds product.
The term ‘multiplicative lift’ results from the fact that ¥, (Z,f + g) =¥, (Z,f) - ¥, (Z, g).
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Theorem 2.2.3 (Borcherds, [5], th. 13.3). Let L be an even lattice of signature (2,b), e € L
primitive isotropic, and e’ € L’ with (e,e’) = 1. Assume that K = L Net Ne’* also contains an
isotropic vector. Let f € //tll_ b /Z(p 1) be a weakly holomorphic modular form, with principal part
having integral Fourier coefficients, i.e. c(n,y) € Z for n < 0. Assume further that the constant
coefficient c(0,0) is twice an integer.

Then there is a meromorphic function ¥, (Z, f) on 7, with the following properties:

) V;(Z,f) is an automorphic form of weight c(0,0)/2 on the orthogonal group O}F(L) with
a unitary character y of finite order.

ii) The divisor of W, (Z, f) on 54, is given by

1
div(¥,) = - Z Z c(n, B)H(n, B). (2.2.3)
Bel’/L neZi%(/a’)

The multiplicities of the H(n,3) are 2, if 23 = 0 in L’/L, and 1 otherwise. Note that
c(n,B)=c(n,—pB)and H(n,B) = H(n,—B). (Recall (2.1.9) for the definition of H(n, f3).)

iii) Under the assumptions of the Koecher principle, W(Z, f) is a holomorphic modular form on
O}F(L) if the orders c(n, 3) in the above divisor are all positive.

iv) The functions ®; and ¥; are related by

2,(Z.f) _c(0,0)

logl¥,(Z, )] = ——= 2

(log Y, |+ %F’(l) +log \/ﬂ) . (2.2.4)

v) Let W be a Weyl chamber with respect to f. Let my = min{n € Q; c(n,y) # 0}. On the set
of Z € #,, for which Y? > 2|m,| and which belong to the complement of the set of poles of
W, (Z, f), the function ¥;(Z, f) has a normally convergent infinite product expansion

vz, f)=ce((o;m),2) [T [1 (1-e¢(.e)+02)

A€k’ GeL/L
(AW)>0 p(5)=2+K

)C(q(l)ﬁ)

where C is a constant of absolute value 1.

Remark 2.2.4. The vector p(W) € K ®; R is the Weyl vector attached to f and W. Sometimes,
it can be computed explicitly by means of the results in [5], section 10. Also, a more direct way to
determine p is often afforded by a result of Bruinier, ¢f. [9], theorem 3.4.

We employ this later on, in chapter 5 when calculating Borcherds products for weakly holomor-
phic scalar valued modular forms of weight O.

Remark 2.2.5. The theorem remains true, without the additional assumption c(0,0) € 2Z. In
this case however, we must allow for W;(Z, f) to have fractional weight. Automorphic forms
of weight r, with r € Q, and with a suitable multiplier system of this weight can be defined
somewhat similarly to definition 1.2.18. For details see [9] p. 86 or [20], p. 31f.

Thus, in particular, for c(0,0) & 27Z, the multiplier system y from the theorem is, in general no
longer a character. Its order however remains finite. If b > 3, where (2, b) is the signature of V,
this follows by a result of Margullis, see [9] p. 87. Whereas, for b =1, 2, it can be shown using
the embedding trick, see [7].
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Remark 2.2.6. From (2.2.4) we have —4log|¥| = & + c(0,0)log|Y|* + A, with some constant

A. Hence,
& +A=—2log(|¥*|Y|?) = —210g|| |13, 002

with the weight c(0,0)/2 Petersson norm of .
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3 Embedding from the unitary to the orthogonal world

In this chapter, we bring together the objects studied in sections 1.1 and 1.2. We consider
a hermitian space V over an imaginary quadratic number field F = Q(+/d) as in section
1.1, with an indefinite non-degenerate hermitian form (-, -) of signature (1,q). The ringer of
integers of F is denoted by &, the discriminant Dy and the generator of the different ideal
by 6. Considered as a vector space over (Q, the vector space V comes equipped with the
bilinear form (-, -) given by the trace Try/q (-, ). Thus, Vg =V @ R is both a complex hermitian
space as in section 1.1 and a real quadratic space of signature (2,2q), as in section 1.2. To
avoid confusion, we introduce the following notation. By V’ we denote the Q-vector space!
underlying V and by V; = V' ®q R the real space underlying V.

Let L be an even O-lattice (of maximal rank) in the hermitian space V. We have L Qg F=V
as an identity of @y-modules but also L ®, Q = V' as an identity of the underlying Z-modules.
As a quadratic Z-module with the bilinear form (-, -) and the attached quadratic form q(-), L is
even in the usual sense, see remark 1.1.5.

The identification of the hermitian space V, (-,-) with the quadratic space V’, (,-) gives
rise to an inclusion of groups, sending U(1, q) into O(2,2q), since, forcibly, an endomorphism
fixing (-,-) also fixes its trace, (,-). We can identify U(1,q) with a subgroup of O(2,2q).
This embedding of groups, in turn, gives rise to an embedding of symmetric domains. We
first describe this at the level of the Grassmannian models Gry and Gry. Further, we derive
embeddings of the positive cone #}; into the positive cone ¢, and of the Siegel domain
model #4; into the tube domain %,.

At this point, however, the issue of complex structures comes into play: On the one hand,
Ay and #4; come naturally with the complex structure of the hermitian space Vi, or more
precisely of the attached projective space P(V;) in case of J#;. On the other hand, £ and
the tube domain 5%, are equipped with the complex structure of the space V-, which is the
complexification of the underlying real space Vy; this complex structure is derived from the
choice of orientation on the points of the Grassmannian Gr,, recall section 1.2.3. We have to
take care so as to realize the embedding in a manner compatible with both complex structures.

A further important question is the choice of the cusp for either s4; or for the tube domain
. This corresponds to choosing an F-rational isotropic subspace of V for a cusp of #4; and
of a rational isotropic subspace for a cusp of #,, compare for this the construction in 1.1 and
1.2. In either case, the isotropic subspace corresponding to the cusp at infinity is fixed by
choosing a primitive isotropic lattice vector from L, denoted either ¢ or e, respectively.

We will fix a choice of £, primitive in L as a 0y-module and isotropic with respect to (-, -). We
then set e = £. Clearly /£ is also primitive in L as a Z-module and isotropic for (:,-). This, way,
the point at infinity of 54;, corresponding to £, will come to lie on the boundary of 7, under
the embedding. Since g{ C L is a rank two Z-submodule of L, clearly, it contains a second
isotropic vector, linearly independent over Q. Since L contains two rational isotropic vectors,
V' =L ®, Q splits two hyperbolic planes. With the notation introduced in 1.2.5, { = e;, and
the second isotropic vector is denoted e;. Then, two further vectors e, and e,, with e;, e, and

1 Confusion with the notation for the dual used in the context of lattices is unlikely.
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es, e4 each spanning a hyperbolic plane over (Q, are needed to describe the hyperbolic part of
V'’ and to introduce coordinates on %, see p. 41.

Similarly, over F, the hyperbolic part of V is spanned by £ and a second vector £’, with £’ € L’
and (¢,) # 0. These two vectors, a hyperbolic pair as in definition 1.1.13, are both needed
for the construction of the Siegel domain 5%;. The F-span of £ and ¢’ viewed as a quadratic
space over Q is, of course, the hyperbolic part of V' and isometric to the two hyperbolic planes
over Q spanned by e, ..., e,.

Thus, after setting e; = ¢ and choosing e; from @{, we can determine suitable vectors e,
and e, from the F-span of £ and ¢’. Using these vectors, we can then completely describe the
embedding of 74, into 5%,, with the Siegel domain coordinates T and o used for the former
and the (refined) tube domain coordinates Z;, Z, and 3 used for the latter.

With the additional assumption that £’ is isotropic, we can take e, and e, from F{’. Without
this assumption we can still choose e, and e, from F{¢’, if the discriminant Dy is even, see
remark 3.2.10 below, but not if Dy is odd. (The main point here is that the hyperbolic planes
Ze, + Ze, and Zes + Ze, have to be perpendicular.)

Since not making this assumption offers only a slight gain in generality, offset by a consider-
able complication of notation and a lengthening of all further calculations, we require here
that ¢’ be isotropic. We will be actively using this assumption from section 3.1.2 onward.

3.1 The Embedding of SU(1, q) into SO(2,2q)

In this section, we first consider how the identification of the real space V; underlying the
hermitian space Vg, (-, -) with the quadratic space Vg, (-,-) = 2% (-, -), induces an embedding
of the attached isometry groups and how these carry through to their arithmetic and their
parabolic subgroups.

Further, in section 3.1.2 we deal with the issue of determining rational basis vectors for the
hyperbolic part of the quadratic space Vg, (-,-), as mentioned above in the introduction to this
chapter. We determine these vectors e, ..., e, from a hyperbolic pair £ and £’ in the hermitian
space V,(-,). The results is given in (3.1.1) below.

3.1.1 Setup and general considerations

Consider the hermitian space V, (-,-) as a vector space over the number field F and the
complex space V =V ®; C. Also consider the underlying spaces V' and V;; as vector spaces
over Q and R, respectively, equipped with the bilinear form (:,-) and the attached quadratic
form q(-).

As algebraic groups, U(V), the isometry group of the hermitian space V, (-,-), and O(V),
the isometry group of the quadratic space? V', (-,-) are defined over Q as subgroups of the
algebraic group GL(V). The corresponding sets of real points are U(V)(R), O(V)(R) and
GL(V)(R).

Clearly, U(V)(R) is a subgroup of O(V)(R), since for y € GL(V)(R)

(yv,yv) =(v,v) implies (yv,yv)=(v,v).

2 We will not denote O(V) or any of its subgroups by O(V’), as the mention of the respective group should

suffice to make clear that we are working over a quadratic space.
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Also, SU(V)(R) is a subgroup of SO(V)(R). In fact, as SU(V)(R) is connected, we have
SU(V)(R) c OF(V)(R) as an inclusion of groups.

Remark 3.1.1. Given a maximal compact subgroup € of U(V)(R), under the inclusion
U(V)(R) — O(V)(R), as a subgroup of O(V)(R), € remains compact, and thus a compact
subgroup of O(V)(R). Similarly for maximal compact subgroups of SU(V)(R).

Let L be an even hermitian lattice in V, with V = L ®,_ [, equipped with the hermitian
form (-,-). Interpreted as a Z-module, L is a Z-submodule of the rational space V', with
L ®,Q =V’, and comes equipped with the quadratic form q(-). The definitions of integral and
of even O-lattices given in section 1.1.2, are equivalent to the usual definitions of integral
and of even lattices, when these lattices are interpreted as Z-modules with the bilinear form
given by the trace, (-,-) = Try/q (*, ), see remark 1.1.5. Similarly, L’, the O-dual of L is also
the Z-dual, see remark 1.1.7.

Now, consider the isometry groups of L for the hermitian form (-,-) and for the bilinear
form (-,-); these are the arithmetic subgroups SU(L) < SU(V) and SO(L) < SO(V). Under
the embedding SU(V) < O*(V), SU(L) is isomorphic to a subgroup of O*(L). What is more,
the discriminant kernel Fg C SU(L) is isomorphic to a subgroup of the discriminant kernel
F? C O™(L), as both by definition consist of the isometries which act trivially on L’/L.

In the following, we will usually identify SU(L) with its embedded image in SO(L) and
make no notational distinction between the two.

Lemma 3.1.2. Let T be a subgroup of finite index in O (L). Then, the intersection ' N SU(L)
has finite index in SU(L). Also if T is an orthogonal modular group, i.e. of finite index in the
discriminant kernel F(L), the intersection with the discriminant kernel FILJ is a unitary modular
group.

Proof. Apply the group theoretic lemma 3.1.3 below to H = O (L), G, =T and G, = SU(L)
for the first part. Similarly, for the second part of statement, set H = F?, G, =T} and let G,
be a modular group, i.e. a subgroup of finite index in F(L). O

Lemma 3.1.3. Let H be a group and G, and G, subgroups of H, with G, of finite index. Then,
G, N G, is of finite index in G;.

Proof. Consider the following diagram of groups, in which all arrows are inclusion and G, is
of finite index in H.

N
Nl

We want to show that the coset decomposition of G; as the disjoint union W(G; N G,)g with
g € (G; N Gy)\@G, is finite. For this, consider cosets of the form G,g C H, with g € G;. If
two such cosets coincide, i.e. Gog1 = G, g, for g1, g, € Gy, then g, g, 1 € G, and thus also in
G, N G;. Thus, (G; N G,)g; = (G; N G,)g, and it follows that the map given by

{ (G1NGyI\G; — G,\H
(G1NGy)g — Gog
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is injective. However, since G,\H is a finite set, this implies that (G; N G,)\G; also is finite,
which completes the proof. O

Complex scalars as endomorphisms of Vﬂg

When comparing the complex hermitian space Vg, (-,-) and the real quadratic space Vg, (-,-),
besides the operation of the isometry groups U(V)(R) and O(V)(RR), we must also consider
the operation of C*, as scalars of the former space act on the latter space. This is essential
when, explicitly given a vector in the complex space Vi, we want to rewrite it as a vector in
the real space Vj, in terms of some basis of V.

The group C* operates on Vg, (-,-) by multiplication, and scalar factors behave in the usual
manner with respect to the hermitian product.

Naturally, complex scalars also operate as endomorphisms on the underlying real space Vy
and on the quadratic space Vg, (-,-). For u € C, the identity (uv,w) = u(v,w) holds only if
u € R. The following identity, however, holds for any u € C:

2
(v, uw) =28 (uv, uw) = |ul*(v,w), for veVy, weV.

Purely imaginary numbers act on the quadratic space V; as endomorphism sending vectors
in an/a to their orthogonal complement with respect (-, -): Given u € iR, with u # 0, and v € Vﬂé,
we have

(wv,v) =28 (u(v,v)) =28 (i3u - (v,v)) =0,

hence pv € v'. In particular, i is an element of O(V)(R), since |i| = 1, sending v to

+iv € v*. Thus, given a complex line Cv C Vg, the corresponding two dimensional real
subspace of V; has v and iv as an orthogonal basis.

To clarify whether a complex number is acting as a scalar of V or a (non-scalar) endomor-
phism of V; we define the following notation, which we will be using where confusion seems
likely, in particular, when dealing with two different complex structures later on.

Definition 3.1.4. For an element w € C\ R, we denote by w, the endomorphism of the real space
Vi, induced by the action of w as a scalar of the complex space V.

For typographic reasons, the endomorphism given by the operation of i on Vy is denoted 1. Note
that 1 can be identified with an element in SO(V)(R).

Proof. We show that 7 € SO(V)(R). Since |i| = 1, we have i € O(V)(R). Consider a basis

e1,..-,eq1 of Vg, (-,-). Then ey, Tey, ..., e,yq, Teg,q form basis of Vg, (-,-), with (e;,7e;) =0,
for j = 1,...,q + 1. In this basis, the matrix representing the endomorphism 7 has block
diagonal form with g + 1 blocks of the form (§ ') each of which has determinant 1. O

Parabolic subgroups

Next, we want to find out how parabolic subgroups behave under the embedding SU(V)(R) —
SO(V)(R). Somewhat more generally than in section 1.1.4, where on p. 27 we introduced
the unitary Heisenberg group H(¢) for a fixed choice of cusp £, we consider transformations
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T (e,h) and &(e, t) € SU(V)(R). These will be interpreted in terms of parabolic elements in
SO(V)(R).

Let u be a vector in Vi with (u,u) = 0 and x be a real number. Then, it is easily seen that
the transformation

TJu,k):v—v—x(v,u)iu

is contained in SU(V)(R). Note that the translation [k, 0] in the unitary Heisenberg group
H(Z) is just such a transformation, for u = £ and x = h|5]|.
Now, recall definition 1.2.11 for the orthogonal Eichler elements in O (V)(R).

Proposition 3.1.5. Given an isotropic vector e € Vi and a real number k € R, the transfor-
mation 7 (u,h) € SU(V)(R) is mapped to the Eichler element E(u, giu) € O (V)(R) under the
embedding SU(V)(R) < O"(V)(R).

Proof. Since u 1 iu, E(u, %iu) is an Eichler element as per definition 1.2.11. Because iu is
isotropic, we have

he 1 R 1 R
E (u, Elu)(v) =v- Eh(v,u) u+ 3 (v,hiv)u—0
=v —hR(v,u)iu+h3(v,u)u=v —h{v,u)iu=F(u,h)(v).
[

Given a vector t € Vi with (t,u) = 0, denote by &(u, t) the element of SU(V)(R) given by

Eu,t) : v —v+(v,u)t— (v,t)u—%(v,u)(t,t)u.

Note that the unitary Eichler element [0, t] in H({) can be written as &(¢, t), with £ as usual a
primitive isotropic lattice vector corresponding to a cusp of 7; and t € D ®,, T, see p. 27.

Proposition 3.1.6. Given a norm zero vector u € V and t € Vi with (u, t) = 0, the transforma-
tion &(u,t) € SU(V)(R) is mapped to E(u, %t) o E(iu, %it) e 0T (V)(R).

Proof. We need only show &(u, t)(v) = E(u, 2t) o E(iu, ~it)(v) for any v € V. We have
1
Eu,v=v+(v,u)t— (v,t)u—g(v,u)(t,t)u
1
=v+ (R(v,w)i3(v,u))t — (R(v,t) +i3 (v, t))u— E(é}t (v,u) +i3(v,u)) (t, t)u.
Now consider v as a vector in V;; and interpret i as 1 operating on Vg, (-,-). Then,
81,00 = v+ = (0,0) ¢ + 3 (v, Wit — (v, O — = (1,70}
wyy=v+o(vu 2V,lul 5 (v u 21/,1 iu

— %(v,u) (t,t)u— %(U,iu) (it,it)1u,
since i3 (vy,v5) =R (vy,1iv,) and both (¢, t) and (it,it) are equal to % (t,t). Thus,
Eu,)(w)=v+ (E(u, 2t)(v) — v) + (E(iu, 1t)(v) — v)
= (E(u,20) 0 E(iu, 10)) (v) = (Eu, 2t) 0 E(u, 20)) (v).

Note that the Eichler elements occurring here commute, since t, u and it, iu span mutually
perpendicular subspaces of Vy, recall (1.2.13) on p. 44. O
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3.1.2 Choice of cusp and basis for the hyperbolic part

The construction of the symmetric domains 54; and %, is made relative to a fixed choice of
cusp. As sketched in the introduction to this chapter on p. 71, in order to explicitly describe
an embedding between the two symmetric domains we must fix a choice of cusp for each.
This is done by choosing primitive isotropic lattice vectors: ¢, primitive and isotropic in L as
an Og-lattice, for #4; and e = e, isotropic and primitive as an element of L as a quadratic
Z-module, for F4,.

As in section 1.1.3 we now choose £, once and for all, and then, after having chosen £, we set
e;=1{.

Let us recall the relationship between isotropic lattice vectors and boundary components.
Since { is primitive in the Op-lattice L, it is not a multiple of any other vector in L by a non-unit
in Op. Then, [{] € P(V}) represents a boundary component of Gry ~ #;; defined over F, in
other words, a cusp for SU(L).

But ¢ also defines a cusp of Gry: The fact that £ is primitive in L as an 0 lattice it is, in
particular, also primitive in L as a Z-module, since Z C @ (and Z N ;° = {£1}). Since { is
isotropic, it thus defines a (rational) boundary point of the symmetric domain Gry.

In fact, £ defines a entire one-dimensional boundary component of Gry, in which this
boundary point is contained: As the isotropic subspace F{ of V is a two-dimensional and
thus maximal totally isotropic Q-subspace of V', (-, -). It contains &z{, which is a rank two Z-
submodule of L as a Z-module. This defines a rational one-dimensional boundary component.
We will examine the structure of this boundary component in more detail in section 3.3 below.

Recall from section 1.1 how the construction of the Siegel domain depends on ¢ and a further
lattice vector ¢’ with (E,E’ ) # 0, also, recall from section 1.2 how the construction of the
tube domain 5%, besides e also requires a second vector e’ with satisfying (e, e’) = 1. Finally,
how, for a lattice containing two isotropic vectors e = e; and es, refined coordinates can be
introduced for 54,, with further vectors e’ = e, and e, spanning a subspace complementary to
e; and es.

As indicated in the introduction to this chapter, below, we will choose e; € F{ and then
determine e, and e, from F{’, in order to get a Q-basis e, ..., e, for the hyperbolic part of
V' as in definition 1.2.5, which is needed to give an explicit description of the embedding
T — Hp.

Stabilizer of the cusp

Having fixed the cusp, we can specialize the above propositions 3.1.5 and 3.1.6 to this
particular choice and describe the image in O (V) of the parabolic elements from the unitary
Heisenberg group H(¥).

Proposition 3.1.7. Under the embedding SU(V )(R) < SO(V)(R), the elements [h,0] and [0, t]
of the Heisenberg group H({) C SU(V)(R) are mapped to transformations in O (V)(R), which
can be expressed through Eichler elements in the following manner:

[h,0] — E (¢,%10),
[0,t]— E (13, 2t)oE (iﬁ, %it) .
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Basis for the span of £ and ¢’

For the following, as indicated in the introduction to this chapter, we assume £’ to be isotropic. The
Og-span of £ and £’ is a Z-module of rank 4 and signature (2, 2), which, since ¢’ is isotropic, can
be split into two perpendicular hyperbolic planes over Z. We want to equip the corresponding
subspace of V' with a basis e; = ¢, e,, e3, e4, as in definition 1.2.5, where e;, e5 and e,, e,
span complementary maximal isotropic subspaces and further satisfy (e;,e,) = (e, e4) =1
and (e;,e,) =0 for j < k and (j,k) & {(1,2),(3,4)}.

The two vectors e; and e5 define the one-dimensional boundary component of the (refined)
tube domain, into which we want to embed ;. We set e; = { and fix e; € Gy, then both
e; and e5 are contained in L. Next, we determine e, and e, from F¢’. Whether these two are
contained in L’ or not depends, of course, on L and on the choice of £ and ¢’.

Remark 3.1.8. The basis for the hyperbolic part of V we thus determine consists of complex
multiples of the basis vectors £ and £’ for the hyperbolic part of Vi. This facilitates considerably
rewriting z € Vi as a vector with only real coordinates.

The reason why we fix { = e; and e5 and then determine the other vectors accordingly lies in
the fact the Siegel domain coordinate 7T is the {-component of z, while the £’ component is fixed
through the normalization (z,£) = (¢’,£), recall (1.1.2).

Since we are considering the gp-module L as a module over Z, it becomes necessary to
differentiate whether the number field F has even or odd discriminant. We can avoid some
of the resulting inconveniences through the following notational convention: Write & in the
form Z + {7, where if F has even discriminant, { is given by vd = %5, whereas if F has
odd discriminant, we have { = %(1 + 6). Note that 3¢ = %|5| holds, either way, irrespective
of whether Dy is odd or even. The line Z{{ is isotropic and perpendicular to Z¢. Thus,
with e; = £ we set e; = —C{; together, these two vectors span a maximal totally isotropic
Q-subspace of V', as required. See remark 3.2.6 below, concerning the choice of sign.

Now, to determine e, and e,, as F-multiples of ¢/, put e, = ¢’ and e, = £{’. The factors y
and & can be recovered from the conditions (e;,e,) = (es,e,) =1 and (eq,e4) = (e3,e5) =0.
Thus, for y, we have

1=(6,7¢) =23 ({6 0) 1),
0

0= (=46, 1t') = =20 ({£,0') £7) = —RL - 29 ((6,€) ) +15]- 5({,€') 7).

Hence,
1 % 1 if D=0 d2
y(ﬁ',ﬁ)z——i—gzgz 14 2t LRz oo
2 28] & s(1+67") if D=1 mod2.
Thus,
_ 4
"= 5w,y

Similarly, £ is determined from the conditions

0=R((¢,¢) 5) and 1= %éﬁ{ R ((L,€") 5) +16]-3((€,¢') 5),
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L 1o
which gives & = (¢/,£) " 671

We can now write out ey, ...,e, and summarize our considerations in the following proposi-
tion.

Proposition 3.1.9. Let eq,...,e, €V be the vectors given by

4 1

/ = — = ’ 3.1.1
sy T b a= syt (3.11)

6126, 62:

Then, the following statements hold:

1. The vectors eq,...,e, form a basis of a signature (2,2) quadratic subspace of the rational
quadratic space V', (+,-). The orthogonal complement of this space in V' is the definite
subspace D®,Q, with D the definite lattice introduced in (1.1.1) on p. 24, in the complement
of £ and {’ with respect to (-, -).

2. eq and ey are contained in L, while e, and e, are contained in L'.

3. The pairs of vectors e;, e, and es, e, span perpendicular hyperbolic planes.

Thus, (eq,e;) = (e3,eq) =1, qle)) =0fori=1,...,4and (ej,e,) =0for 1 <j<k <4,
with (j, k) # (1,2),(3,4).

(Without the assumption that {’ is isotropic, q(e;) and q(e,) may be non-zero and also, we
may have (e,, e,) # 0, compare remark 3.2.10 below.)

Proof. That e;, i = 1,...,4 form a basis for the hyperbolic part of V' is clear. The second
property follows by construction, also clearly e; = £ and e; = —{{ are contained in L. Further,
e, and e, € L', since we have

¢ A —Ee@_l and 1 00 —le@_l
sw,ey >/ s °F s,y ) s TFC

Finally, as ¢’ is isotropic and in the complement of the definite sublattice D, i.e. (¢/,D) =0, it
follows that (e,, L) € 9;" and (e4,L) € 2, 1. Thus, e, and e, are contained in L’ by definition
1.1.6. =

Example 3.1.10. Consider a lattice of the form L = Oy & 95 L& D with a definite Oy-lattice
D of rank q — 1. Let (-,-), when restricted to the hyperbolic plane Op ® 9, 1 be given by
(x,¥) = x1¥5 + Xp¥1, as usual. Choose { and {’ with {£,0') = 6~'. For the basis vectors
€1, -.,e4 We get

eg=L0,e,=—Cl',e5=—CL, and e,=—{’,

with { = %6 or{ = %(1 + 0) depending on whether T has even or odd discriminant. All these
vectors are isotropic and, since L is unimodular, contained in L.
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3.2 Complex structures and symmetric domains

The embedding SU(V)(R) — SO(V)(RR) naturally induces an embedding of the respective
symmetric domains, given by

SU(V)(R)/6sy . SO(V)(R)/6s0
~ SU(1,q)/S(U(1) x U(q)) ~ S0(2,2q)/(SO(2) x SO(2q)),

where %5y denotes a maximal compact subgroup of SU(V)(R) and %5, a maximal path-
connected compact subgroup of SO(V)(R). Clearly, 65y is a compact subgroup of 65, recall
remark 3.1.1.

The embedding of the symmetric domains induces an embedding of the Grassmannian
models, Gry — Grg. This embedding can be described as follows: A point in Gry is a one-
dimensional positive subspace of the complex hermitian space V5, which, as a real subspace v
of V; is two-dimensional and also positive with respect to the bilinear form (-,-). Write the
positive one-dimensional subspace of Vi as Cz, with z € Vi, (z,2) > 0. Then, the underlying
real subspace v € V; is spanned by z and iz, for example. Since q(z) = q(iz) = (z,2) > 0, it
is clear that v is positive. So, indeed v can be associated with a point in Grg, denoted a(v).
However, in the Grassmannian Gr, of oriented positive two-dimensional subspace, a(v) is not
uniquely determined, since the two dimensional real space underlying v € Gry does not come
with prescribed orientation.

Thus, we can embed two copies of #{; into the oriented Grassmannian Gr, by the two
different possible choices of spin-orientation on the set of two-dimensional positive subspaces
of V.

Recall how this ambiguity also occurs in the construction of the positive cone % and the
tube domain #, and is resolved by choosing one connected component J{OJ“ of the positive
cone. The two choices for a(v) correspond to two complex conjugate lines in £,.

For an embedding between the ‘generalized upper half-plane’ models 54; and 4, this
freedom of choice means that we can construct the embedding to be either holomorphic or
antiholomorphic, see below.

The embedding between the Grassmannians induces an embedding of the positive cones
Ay and A, also between their affine models and further on between #4; and #,, running
through all isomorphisms involved in the construction of the respective models. To summarize,
we have induced maps at every level of the following diagram

Gr© — Grg3v (3.2.1)
(2] € Ay S Ao > [Z,]
(Fl'-ao-)eji’oUC cQfOBZ'

To avoid further complicating notation, we will not introduces separate designations for all of
these maps; rather we will always, either, by abuse of notation, denote them a, or call them
induced from a. It will always be clear from the context, which map is meant.

Our aim is to construct the embeddings induced by a explicitly. In doing so, the following
points require our attention:
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Complex structure: The map from Gry to Grg is only real analytic, as is the isomorphism
between Grg and . The complex structure on %, is induced from the choice of orientation
on Gry. In contrast, Gry; and J#; carry a complex structure coming naturally from the complex
structure of the complex hermitian space Vg, (,).

Our aim in constructing the embedding, is that a be holomorphic and thus compatible with
both complex structures, rather than being merely real-analytic.

Normalizations: In order for the above diagram to commute, we must also make sure to
conform to all the normalizations involved in the constructions of #y,, ¥, and 7, carried
out with respect to a fixed choice of cusp e; = ¢ and of e,.

The starting point most conductive to our considerations is the affine set f{;l of representatives
for ;. We will consider R-linear maps from this set to Grg and to the isomorphic complex
cone .

Remark 3.2.1. As the R-bilinear form (-,-) is extended to a C-bilinear form on V, it should
be clear that it does not become bilinear for scalars of Vg, (-,-). Neither, when (:,-) is rewritten
as 2R (-,-), does the sesquilinearity of (:,-) apply to scalars of V.. We will use the notation
introduced in definition 3.1.4 to distinguish between complex numbers acting as scalars on Vi and
as endomorphisms of V, and Vg, particularly, in situations, where both occur in one expression.

We give some examples showing how to deal with such cases. Let a,b,c € R, v;, v;, vy vectors
in Vg and u, &, p complex numbers from C*:

(€einEe;) = IE1P(eirey),
(agei, bpe; —I—ipek) = (agei,b,ue-) i (aiel,pek)
=2abR (g,u v, UJ>) +i2a (&P (e ex)) s
((a—i—lb)el, J) = 2aR{e;, e;) — 2a3{e;, ;).

3.2.1 Constructing the embedding

Recall from section 1.2.3, how in the definition of the tube domain, each two-dimensional
positive subspace v corresponding to a point of Gry, is fitted with a basis X;, Y; satisfying
X; 1Y, X?=Y?, and normalized so as to have (X;,e) =1 and (Y;,e) = 0. Then, the point
v =RX; + RY} in Gry corresponds to the line in V. spanned by Z; = X; +1iY; € ,%74

Now, consider z = ¢’ — & (¢/,€) T{ + o € H#;}. We want to map z to an element ZL € Ay,

or equivalently, to two vectors X; and Y; in V,, with X} +iY; € f(\gf 1

If we consider the line Cz = [2] C V} as a point in the Grassmannian Gry;, we can associate
to [z] a positive two-dimensional subspace v of the quadratic space V., the two possible
orientations of which give two points in the Grassmannian. For this real subspace v under-
lying Cz, we determine two basis vectors, denoted X, and Y;, conforming to the necessary
normalizations, so that either X; +iY; or X; —iY} lies in ,%,’C;L 1» giving Z; (). Since X} and Y}
are multiples of z by complex scalars of Vg, (:,-), we consider z as a vector in Vi, with only
real coordinates, and set

X; = 1/32, Y, = £z, with Y, Ee€C”, considered as endomorphisms of Vﬂé.
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These complex factors, ¢ and &, can be determined from the conditions which X; and Y; have
to meet. First of all X; and Y; have to be perpendicular and of equal (positive) norm. Now,

X;=Y? implies [|¢* =g, (3.2.2)
X, LY, implies yE& €iR. (3.2.3)

The second implication follows from (X;,Y;) = 2(z,2) R (&), since the norm of z is real and
positive.

This condition assures that [Z; ], as the image of [z] € %, is contained in the positive cone
Ho, defined by (Z;,Z,) > 0, in the zero quadric .4 given by (Z;,Z,) =0.

Further, see p. 39, X; and Y} are normalized with respect to the cusp e so as to satisfy

(X;,e)=1, (v,,e)=0. (3.2.4)

For Z; contained in the connected component £, these condition assure that Z; lies in the
set 4, of normalized representatives from ", uniquely corresponding to points in the

tube domain #,. Then, Z; is contained in %G \ %, and lies over the generalized lower
half-plane’ 52,
From (3.2.4), we get

ia

0=(&z,0)=2R(E(L',L))  so, §=2(£/ 0’ with a € R,
1= (yz,0) = 28 (4 (,€)) 5o, ¢=21<7é’), with b € R.

Since Y& = (—ia + ab)(4|(€’,£>|2)_1 by (3.2.3) it follows that b = 0. With (3.2.2), |a]* =1
and one obtains

X, = ! ) d Y, = —ii ) (3.2.5)
= (505) = ™ %=(50g) = 2,

The image of z is now determined up to the sign of Y;, the choice of which determines the
orientation for the subspace RX; + RY; in Gr, or equivalently whether we map z to a point
Z, € A or to its conjugate Z;.

Complex structure

Of the two possible maps z — (X;,£Y; ) we want to choose that which is compatible with both
the complex structure of the hermitian space V4, (-,) and that of the complexified quadratic
space Vg, (-, ).

This can be assured if the complex unit with respect to either complex structure commutes
with the embedding in the sense that the image of iz equals i times the image of z, in
other words a(iz) = ia(z). Then, by R-linearity the same follows for any complex scalar,
a(fz) = pa(z) for any u € C.
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This condition can be expressed through the commutativity of the following diagram

B 7 = X, +iY, (3.2.6)
il’ li
izi—a>iZL - _YL + iXL,

where on the left side i acts as a complex scalar on the hermitian space V; while on the right
side i is the complex unit of the complexified quadratic space V.

The diagram commutes if Y; (iz) = X;(2) and X;(iz) = —Y;(z). Thus, if X; = ¢z and
Y; = £z, we must have

i = —&.

With (3.2.5) above, we conclude that & = —i (2 (£/,£)) " and get
X = ! ) d Y;=(-1) ! ) (3.2.7)
= opp) 2 @™ =gy ) = 2.

The image of z in f{g , is then given by the following expression

: 1\ -\
ZL_XL+1YL_(2(€’,£))Z—H(Z(ﬁ’,@)) Z, (3.2.8)

in which the complex factors in parenthesis must be interpreted as elements of Endy(Vy), as
denoted by the use of ~, while the complex unit i preceding Y; is a scalar of the complexified
quadratic space V.

Proposition 3.2.2. The map & from C'*9 to C2*24 given by z — Z;, with Z; given by (3.2.8) is

holomorphic. In particular, the embedding o : J?S - J{J , is holomorphic.

Proof. We will show that the coordinates of C**24 ~ V. depend holomorphically on those
of C1*4, isomorphic to the complex space Vg, (-,-). We can write & as the composition of
multiplication with the complex scalar 2 (¢, £’ >_1 on C!* and a map B sending z € C'*9 to
z —i(iz) € C?T2", It suffices to consider the latter map.

Equip C'*? with a basis e;, ..., e;,, and the underlying real space R**? with the basis

bl - 61, ey bq_|_1 - 61+q, bq+2 - iel, ceey b2+2q - iel+q.
We write z € C1*4 in the form z = 3. Yze; = S (u; + iv,)e;, with u;, v; € R for i =
- i=1*°i% — i=1\"i i/% i» Yi -
1,...,g+1.
The image of f3 is a vector Z € C?>*24 with real and imaginary part X and Y € R**24, given

by

2+2q 1+q 2q+2
X:ZX]b]:Zu]b]+ Z vj—q—lbj’
j=1 j=1 Jj=q+2
24+2q 1+q 2q9+2
Y= Z Y]b]:ZUJb]+ Z (—u]-_q_l)b]-.
j=1 j=1 j=q+2
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We now verify that the X; and Y}, j =1,...,2 + 2g, fulfill the Cauchy-Riemann equations in
their functional dependence on the u; and v;, i =1,...,1 4+ g. We have

@&: 6;,; if j<q+1 gﬁ: 0 if j<q+1
aui 0 lf ]>q+1,’ al/i 6i,j—q—1 lf _]>q+1,
%_ 0 if j<q+1 %_ 6;; if j<q+1
du; ;g1 if j>q+1,° o, 0 if j>q+1,

where 6, ; is the usual Kroencker-delta, defined as 6, ; = 1 if k = and 0 otherwise. Thus,

aY; 9X; 4 aY; 0X; i
A T A an A T T A )
%) V; aui aul’ %) V; b
as claimed. This completes the proof. O

From this proposition we immediately get the following.

Proposition 3.2.3. The pullback a*F of a holomorphic function F : Vi — C is holomorphic on
the complex space Vi, (:,*).

Proof. The claim is a direct consequence of the previous proposition 3.2.2, as the pullback is
just the composite of a with F restricted to the image of a. O

Some further properties of functions, besides that of being holomorphic are preserved, when
pulling back under a, as well.

Remark 3.2.4. Let F : V. — C be homogeneous of degree d, such that F(AZ) = A%F(Z) for any
A € C*. Then, the pullback a*F is also homogeneous of the same degree. Similarly, a C-linear
function has C-linear pull-back under a.

Proof. Both statements follow from proposition 3.2.2 combined with the R-linearity of a. They
can also be verified directly using R-linearity and the commutativity of diagram 3.2.6. O

Remark 3.2.5. By choosing il = —&, we have made a into a C-linear embedding of complex
spaces from Vi — V.. Reversing the sign, by setting inp = +& sends iz to (X;,—Y;) = Z; giving a
conjugate linear (and antiholomorphic) embedding.

Embedding of symmetric domains and choice of cone

Recall the definition of the tube domain in section 1.2.3 and in particular the refined co-
ordinates introduced depending on a basis as in definition 1.2.5 for the hyperbolic part of

L®,0.
A (Zl,Zz,a) = 2163 +Z2€4+5,

with 3 is from the negative definite space D ®, C. One can write 3 as ¢ + it), where ¢ and vy are
the projections of X; and Y; to D ®, R. By equation (3.2.8), we have

1 - ‘ —1 -
5:(2“/’@) G+l(2<£/’£)) o. (3.2.9)
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Of course, if o is given explicitly with respect to some basis of D ®,, C, then 3 can easily be
calculated in explicit form, as well, assuming a suitable choice of basis for D ® ; R, see example
3.2.7 below.

We proceed by calculating the image of the hyperbolic part of z, that is, the hyperbolic part
of X; and Y; in V; and of Z; in V.

For this, we use the basis vectors ey, ..., e, for the hyperbolic part from the F-span of £ and
¢’ given in (3.1.1). As before, we write the ring of integers gy of F in the form Z + {Z, in
order to deal with both the case when Dy is odd and when Dy, is even.

In the following calculation, all complex scalars come from the complex structure of Vg,
(-,-). Since there is no possibility of confusion, no special notation is used for this. We use
the basis elements given by (3.1.1). Bear in mind that 3¢ = %|5 |, while R is either O or %
depending on the discriminant Dy. For X;, we have

1 B T5£+ 1
200.0° " "2 T2

Writing this as a vector in Vi, we get, if Dy is odd

X;(z)= ' + (o).

! (1+6 -1 -2 (5+1 (+R 1£+“ |5|£+( )
200,0) ) (gl Regl+ 3l +x(o)

Similarly, if Dy is even, we write

, 5 G
2(6’,£)£ +0—91T(§+0)€+0+JT7€+§(O').

Either way, we get

d - !
5L, L) §5(IZ’,€)
=e,— Re, +Rreg+ (RE- Rt +3¢-37)eq +1(0). (3.2.10)

X, (2)=

U+ R(=30) + (R - Rt + %sf|5|)e +1(0)

While for Y; we have

Y, (2)= ! z= 0] 6’—%T@£—ST§€+U(0)
t 2(0,0)" 7 25 (€', 0) 2 2
=@ 1 6’—§)W@€—ST(§+81§)€+ST-§RC£+U(0)
2 6(,0) 2 2
15 1 151
= ea— 3T [55 + R0 — (RE-37 — m’r?)@ + (o)
=3le,+3tes — (RE-37— 3 - R1)e; + (o). (3.2.11)

In the end results for X; and Y;, only real coordinates occur, since all complex scalars acting
as endomorphisms of the underlying real space have absorbed into the basis vectors e, ..., e,4
given by (3.1.1). The image of z in J’?Sf , can now be calculated easily, too. Note that here, all
complex coordinates occurring can be considered as scalars of V:

Z;(2)=Cte; +ey+ Tes — Ley +3(0). (3.2.12)
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The corresponding element Z in the tube domain is given by

Te3+%5e4+5(0') if D=0 mod 2

- ) (3.2.13)
Tes — ey +3(0) if Dg=1 mod 2,

Z=Te3—5e4+3(o):{

where w denotes %(1 +0).

Remark 3.2.6. The reason for the particular choice of sign for the basis vectors e; and e, made
above, is clarified by (3.2.13), as otherwise the tube domain coordinate Z; is given by —7. Not
only would this appear somewhat unintuitive for a generalized ‘upper’ half-plane, but it would
also make it necessary to adjust signs when comparing expressions like Fourier series between the
orthogonal and the unitary side. Setting e; = —C{ avoids this inconvenience. Besides, having
Z, = 47 matches our choice of connected component of the positive cone #y made in section
1.2.4, see p. 42. There, the component X was fixed by assuming that it contain the point
(1,1,i,1,0). Clearly, the image of #; as determined by (3.2.12) lies in this component.

Example 3.2.7. Let L be the lattice Oz @ 9;,' @ Oy, of signature (1,2), with the hermitian form
(A, ) = Aqfig + Aofiy — Azfls. As a basis of L®4 F =V, we take { = (1,0,0), {’ = (0,—5",0)
and f =(0,0,1). Then, ((,£’) =6 and (f,f) =1

The hyperbolic part of L is the hyperbolic plane Oy ® 9 1 for which e, ...,es have been
calculated in example 3.1.10. For the definite part, i.e. the rational space underlying the F-span
of f, we can take f and any multiple af, with u € F \ Q.

Thus, if the discriminant of IF is even, with

o , 5 ) 5
elzei 62256,63:—56, e4:_eaf1:f7f2:§f:

we only need to calculate the coordinates for the definite part of Z;, 3(c). Using (3.2.9), we have
(o) =Rof, + 26|30 f, and y(o) = o f, — 2|6| ' RKo f,. We get

o o 2
ZL(Z) = _Tael + €5 + Teés + 564 + O-fl + go'fz

If the discriminant of F is odd, with ey, ...,e4 from example 3.1.10, we may set f; = f and
fo=206f, for example, and get

Z(2)=@Te; +e,+Tes— e, +0f, + 610 f,,

MMw=%ﬂ+&.

Remark 3.2.8. The equation for the image of o in the subspace D ®, C of Vi, (3.2.9) has
a noteworthy consequence: As on the one hand q(x(o)) = q(y(o)), while on the other hand
t(o) L y(o), we have

30 =r(0) —n(0)* =0, whereas (3(0),35(0)) =r(0)*+y(0)*<0.
Since the e; component of Z; is given by —q(Z) — q(e,), see (1.2.9), and q(Z) = Z,Z, + q(3),

this also explains how T, which is mapped to the tube domain coordinate Z,, reappears as a
factor in the e,-component of Z ().
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Remark 3.2.9. The embedding can also be described using the Grassmannian coordinates u and
w, which corresponds to the (dotted) diagonal in diagram (3.2.1). Either directly through the
definition of u in (1.2.5) or from X; by way of (1.2.11), it can be calculated that

_ q(o) . .
RTe, HOVE e if Dy is even,

u(z) =

1 1 qlo) . .
—5es+ Rre; — [Eéﬁ’r—l—“'(ﬁ’e,)'z] e if Dy is odd.

The subspace w is given by Rw, = RY;, with Y; as given by (3.2.11) above.

Remark 3.2.10 (Concerning £’). If the discriminant of F is even, for the choice of e, ...,e4
given in (3.1.1) and the resulting realization of the embedding 76, — #, given in (3.2.12), the
condition £”> = 0 can be omitted.

Proof. Assume that £’ is not isotropic. Then, neither e, nor e, are isotropic. Note however that
both e; and e, lie in K ®; R, the complement of e; and e,. For e5 this is true by construction
and for e, it follows from (3.1.1), as e, = 6 e,

Since e, is not isotropic, in order to satisfy Z; € .4, the e;-component of Z; must equal
—q(Z) — q(e,). A brief calculation shows that Z; as given by (3.2.12), with { = %5 is indeed
correctly normalized.

5 52
—q(Z)—q(ey) = —Ty - 761(64) —q(3(0)) —q(e,)
5 d (00 (L) 5
= —T— — — =—7T—,
2 8PN 4l 2

as q(3(0))=0and d|5| > =d(—4d)"' = —%. This all we needed to verify. O

Unfortunately, for number fields with odd discriminant, Z; as given in (3.2.12) does not lie
in A, as q(Z;) is non-vanishing. Also, in this case, the vectors e, and e, as in (3.1.1) are no
longer perpendicular, which requires further adjustments.

3.3 Behavior on the boundary

Up to now, our results on embeddings of groups and the pull-back of functions living on 7, to
4, allow us to formulate the following proposition. Recall the definitions 1.1.25 and 1.2.19
for automorphic forms on unitary and orthogonal groups.

Proposition 3.3.1. Let f be a meromorphic function on #,, f : 7, — C, which transforms
like an automorphic form of weight k under the action of a subgroup I of finite index in O*(L).
Then, the pullback o*f is holomorphic on 5, and exhibits the transformation behavior of an
automorphic form of weight k for a subgroup of finite index I" = I' N SU(L), where SU(L) is
considered as a subgroup of O (L).

Proof. Lemma 3.1.2 shows that I" = I' 1 SU(L) has finite index in SU(L) (and similarly, if
Fery, wegetl” el).
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Denote by F the homogeneous I'-invariant holomorphic function on %73 , wWhich is associated

to f. The pullback a*F is holomorphic on %761 and homogeneous of the same degree, —k, as F,
by propositions 3.2.3. As F is invariant under all of ', in particular, the restriction of F to the
image a(,)?[;l) is invariant under I'” as it operates on f{}, so the pullback a*F is I''-invariant.
Clearly, also a character y of I restricts to a character of I'” as a subgroup.

So a*F : 567[;1 — (C transforms like an automorphic form according to definition 1.1.25. As a
function (a*F), living on 4 it is the pullback of f. O

Besides being holomorphic on the symmetric domain and displaying the appropriate trans-
formation behavior, the definition of holomorphic modular forms includes the requirement of
regularity at the cusps. When V, (-,-) has signature (1,q) with g > 2, the Koecher principle
can be used to show that a holomorphic automorphic form obtained by pulling back a modular
form is regular at the cusp.

More generally, we want to see in how far regularity at the cusp is preserved under pull-
backs, we first consider how the boundary d 54, of #4; is mapped into a component of the
boundary 0 74, of #:

In the setup for the tube domain used in this section, with refined coordinates and the
basis vectors ey, ..., e4, the boundary of 7, is defined through a rational maximal isotropic
subspace F = Qe; ® Qe of V. By construction of the embedding, we have e; = £ and e; = (¢,
with { € F linearly independent to 1 over Q. Thus, as a rational vector space F ~ F{. Whereas
Fr=FQR~C!.

The complexified isotropic space F = F ®¢ C corresponds to a one dimensional boundary
component of # € P(V;), while the projective line C{ defines a boundary point of J#j;. It is
embedded diagonally into F via

CU>REBRY - RED IR - RESRUDI(REBRIL) ~F ®iF =F.

Thus, we have

Proposition 3.3.2. Boundary points of #; are mapped to one-dimensional boundary components
of 7. The boundary point attached to a primitive isotropic lattice vector { is mapped to the
boundary component attached to the rational isotropic subspace F = Q¢ & QL of V'.

In particular, since the boundary da(4;) is contained in the boundary 954, if f is a
function on s, the behavior of the pullback a*f on the boundary of J#; is dictated by that
of f on the boundary of #,. We now consider how the neighborhood of a cusp behaves under
the embedding a. As usual, it suffices to consider the cusp oo of 4.

Lemma 3.3.3. Consider the cusp at infinity of #;. Then the inverse image of every open
neighborhood of the boundary point a(00) in the closure of ¢, contains an open neighborhood
of infinity in #4; U {oo}.

Proof. A neighborhood in the zero quadric 4" of a point x in a one-dimensional boundary
component of %, consists of a subset of the boundary component open with respect to the
subspace topology and an open subset in %, a neighborhood of infinity there. More precisely,
see [11], a fundamental system of neighborhoods for x is given by

Ve(x) = {2, €H; |2, — x| <€},
Ue(x) = {(21,22,3) € Hos5 1y2+4q(n) > 6_1},
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where the definition of V, employs the usual identification of the one-dimensional boundary
component with a classical upper half plane, recall p. 42 from section 1.2.4.

The boundary of 7, consists only of one boundary point, co. Let x be the image of this point
in a one-dimensional boundary component of #; and consider a neighborhood of infinity
U.(x) C Ay. Now, if Z € U.(x) Na(#4;), its imaginary part Y is given by

~

N —
Y:JT€3+7€4+ (2<€/,£>) o)

And, since Z € U.(x), the following inequality holds

1 51+ (o,0) - 1
—37]6|+ ——— > —.
2 4,0 €

In other words, (7, 0) is contained in one the neighborhoods of infinity %UC , as introduced in
definition 1.1.23,

A5 ={(r,0) € Ay; 237[5|(¢,€)* + (0, 0) > C}.

Here, C = 4|(€',£)|*/e.
L]

It thus follows that for a function f which is regular in a neighborhood in A" of a(oo) or
more generally of the image of some cusp of 54, the pullback a*f is regular around that cusp.

Proposition 3.3.4. A holomorphic function f which is regular at the cusps of 5 has a pullback
a*f which is regular at the cusps of 5€,. In particular, if f is a modular form, i.e. a holomorphic
automorphic form which is regular at the cusps, of weight k for an orthogonal modular group
T, then, the pullback o f is a modular form of weight k for the unitary modular group T =
rno*(L).

The value of a*f at the cusp at infinity is given by

lim a*f =a’(®]f),
T—i00

where ® is the Siegel operator introduced in section 1.2.6 on page 54.

Proof. The first part, concerning the regularity of the pullback of holomorphic functions follows
from the preceding lemma. Together with proposition 3.3.1 the statement on the pullback
of holomorphic functions follows as well. Finally, ® | f is the function on the boundary
component obtained from f by taking the limit. By regularity, its pullback, in other words its
value at a(00), is the same as limit of a*(f). N
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4 Borcherds products for SU(1,q)

This chapter presents the main result of the present dissertation, theorem 4.2.1. Here, the
results of chapter 3 are applied to the Borcherds lift, as introduced in chapter 2, through the
pull-back under the embedding of the symmetric domain for the unitary into the symmetric
domain for the orthogonal group. In this manner, the theory of Borcherds products can be
made available for unitary groups. The lifting we construct takes weakly holomorphic vector
valued modular forms for the Weil representation of the elliptic modular group SL,(Z) to
meromorphic automorphic forms on the unitary modular group F[LJ, which have their zeros
and poles along prescribed divisors and can be expanded as Borcherds products.

In section 2.1, we have discussed most of the prerequisites for Borcherds’ result, theorem
13.3 in [5], prior to reproducing it as theorem 2.2.3. The concepts introduced there, need to
be reconsidered in the new context of unitary groups and hermitian spaces.

4.1 Some prerequisites

As in chapters 1 and 3 let L be an even Oy-lattice, hermitian of signature (1,q), containing
a primitive isotropic vector £. Let ¢’ be a vector in the dual lattice L', with (£,£’) # 0. In
the present chapter we assume that {’ is also isotropic, an assumption we have used while
constructing the embedding in section 3.1.2 from p. 77 onward. Compare remark 3.2.10 on
when this assumption may be omitted. Denote by D the definite sublattice of gy-rank q — 1
given by the complement, taken with respect to (-,-), in L of £ and ¢’.

As a Z-module with the bilinear form (-,-) = Trg/q (-,*), L has signature (2, 2q) and rank
2 4+ 2q. Then, the Weil representation p; factors through a representation of the elliptic
modular group SL,(Z) on the group algebra C[L’/L], recall proposition 2.1.4. The inputs for
the Borcherds lift are contained in the space /%1!_ q (p1) of weakly holomorphic vector valued
modular form of weight 1 — g transforming under the representation p;. By remark 2.1.7
their components satisfy f, = f, for y € L'/L.

We denote by N, the level of the cusp associated to £, the unique positive integer defined by

Trg/q (L, £) = Ny Z,

compare the definition in chapter 2 on p. 63. Using Ny, as in (2.1.6), a Z-submodule L; of
the dual lattice L’ is defined through

Lo:={A€L’; Trayg(A,£) =0 mod N} ={Ael’; (A0) €67 (Z2+LNzZ)}. (4.1.1)

Note that in general L] is not an Op-lattice. It is however a hermitian lattice in the sense of
remark 1.1.10 as the ring of multipliers of L is an order ¢; in F with g 2 &; 2 N, .

Recall from section 1.2 the Lorentzian Z-lattice K given by L l"lell ﬂezL, where the complement
is taken with respect to (+,-). Here, e; = £ and e, is as in (3.1.1),

e, = g 0.
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The lattice K contains an isotropic vector, e; = —{{. The dual, with respect to (-, -), is denoted
K'. The order of the discriminant group K’'/K is given by L’/L = N} - fK’/K. We have
D=Kn e3L N ej and K ®, Q = (Qe; ® Qe,) ® D ®, Q with the vector e, from (3.1.1). Note
that e, is contained in K’ and isotropic (since £’ is assumed to be isotropic).

Finally, recall the projection p(+) : L, — K’ introduced in proposition 2.1.11, cf. (2.1.7),

(4,¢e)

p(A) = Ax — N

fKJ

where Ay and fi denote the images of A and f under the orthogonal projection p; from V to
K ®;Q, see (1.2.4). We have p(L) = K. Further p(-) induces a surjective map from L,/L onto
K'/K, see proposition 2.1.11. Denote by f a lattice vector with (f,£) = N,. Then, for A € K’,
a set of representatives for § € L(/L with p(8) = A +K is given by p — (B, f) £/N; + be; /Ny,
where b runs modulo N, see [9], p. 45.

4.1.1 Heegner divisors and Weyl chambers

The definition of Heegner divisors from section 2.1.2 can be cleanly reformulated in the
context of hermitian lattices and symmetric domains for unitary groups. The definition of
Weyl chambers can also be restated in terms of the Siegel domain coordinates T and o.

Heegner divisors

Denote by A € L’ a lattice vector of negative norm. Consider the complement of A with respect
to (': ) in Vg,

{ueVg; (A,u)=0}.

This is a subspace of codimension one in V. The complement of A in P(V) consists of all one
dimensional subspaces v of V; with (A, v) = 0. Considering only those subspaces, on which
(-,-) is positive definite, we get the complement of A in the positive cone #; ~ Gry. To A we
can thus associate a sub-Grassmannian,

H, :={v €Gry; (z,A) =0, forallzev}. (4.1.2)

Now, H, C Gry is a closed analytic subset of codimension one. It defines a prime divisor on
Gry. Considering those representatives z for lines [z] in the positive cone .#(; which lie in J?Uj,
we obtain a closed analytic subset of the Siegel domain model, which we also denote by H,,

H, :={(r,0) € #4;; (2(7,0),A) =0}

- - 4.1.3
={(r,0) € #y; —v5 (U',€) Ay + A+ (0, Ap) =0}, (4.1.3)
where we have written A in the form A,{ +2A,¢'+Ap, and, as usual, z(t,0) =0’ —7 (¢, £) 5L+
o. Clearly, H, defines a prime divisor on 4.

With a view towards Borcherds theory, we now define Heegner divisors as follows.
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Definition 4.1.1. Let m be a negative integer and 3 € L’ /L. We denote by H(m, f3) the following
divisor on F8;

H(m, ) = Z H;, with support U H;.
Aef+L AEBH+L
(A,4)=m (A A)=m
The divisor H(m, ) is T} invariant.
It is the inverse image under the canonical projection 76; — X = I'\J4; of an algebraic divisor,
called Heegner divisor of discriminant (m, 3) on X, which we also denote by H(m, [3). We also
refer to the divisor H(m, ) on 54; as a Heegner divisor.

Note that the sum over irreducible components H; in the definition of H(m, 3) is locally
finite. The multiplicities of the connected components of H(m, ) are 1if f #0 € L’/L and 2
iff=0el’/L.

The definition of H, is analogous to that of the prime divisor A" in the context of quadratic
spaces, recall definition 2.1.12, which was also introduced as a sub-Grassmannian and as the
corresponding subset of the tube-domain.

Lemma 4.1.2. Let A be a lattice vector A with q(A) < 0, the image of H, under the embedding
a is given by the intersection of the support of A+ on #, with the image of 7,

H, “= Al na(s4). (4.1.4)

Proof. With the bijection between the Grassmannian models and the projective cone models,

we consider A+ and H, as subsets of the projective cones J{J and £;;. A set of representatives
for lines in H, is given by the vectors z € J?S with (z, A) = 0, while a set of representatives
for At is given all Z; in J?gtl, with (Z,,1) =0.

Let z be the preimage of Z; € Ji?g: ,Na(#}). Then, Z is given by (3.2.8) and we have

Z ) —1iz
@R =0 0= (zgg2) + (5w
(5,0) (3,)
o) )

= 0=(z,A).

= 0=

]

Thus, every point in the intersection of supp(At) C 5, with a(4;) lies in the image
of supp(H,) and vice versa, every z € supp(H,) is sent to a point in supp(A*) under the
embedding a. Thus, we may write

a*(AL) = Hl'
Further, the locally finite sum
H(m,f3)= Z AL, pulls back to Z H, =H(m, f3).

A€B+L AEB+L
q(A)=m (A, A)=m

Thus, we have the following corollary.

Corollary 4.1.3. The divisor A"+ on 5, pulls back to the divisor H,.
The pullback of the Heegner divisor H(m, ) on %, is the Heegner divisor H(m, 3) on 74;.
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4.1.2 Weyl chambers

Recall definition 2.1.15 for a Weyl chamber of #,. Given Z = X +1iY € 4,, the imaginary part
Y defines a positive line contained in the Grassmannian ¥(K ), associated with the Lorentzian
lattice K. Then, Z is contained in a Weyl chamber of 7, if Y/|Y| is contained in a Weyl
chamber of ¢(K). Our definition of Weyl chambers in the symmetric domain 4; is based on
this definition and on the embedding a.

Definition 4.1.4. Given a Weyl chamber W in 4(K), we say that (t,0) € #4; is contained in
W, if the image Z = a(t,0) is contained in W.

The preimage of WNa(74;) is then also called a Weyl chamber of 54;. Equivalently, (t,0) € W,
if the imaginary part Y of Z = a(t, o) defines a positive line contained in W as a subset of 4(K).

Since the points of #4; correspond 1 : 1 to vectors in f{;l C Ay, we also consider Weyl chambers
in 5, as Weyl chambers in J?S and say that z € f(;l is contained in W if the corresponding
element (7,0) € #4; is contained in W.

A Weyl chamber of index (n,y) is a subset W of 74, the image under a of which defines a Weyl
chamber of 7.

We want to be able to describe the Weyl chambers of 5#; more explicitly in terms of T and o.
For this we first need a more explicit description of Weyl chambers in the orthogonal setting.

Inequalities determining Weyl chambers

The Weyl chambers in 7, were defined through the complement of Heegner divisors in
Y(K).

Thus, Z = X +1iY € 4, is not contained in any Weyl chamber of index (n, y) if for some
A€ p(y)+K, with g(A) =n,

Y _ LY
R— € H(n,p(y)), in other words, if — € A~.
Y] Y]
On the other hand, there is a Weyl chamber W of index (n,y) containing Z, precisely if
(A,Y)#0 for all A € p(y) + K, with g(1) = n. In this case, Y satisfies a set of at most {K’/K
inequalities of the form

Y, A
(|Y|) 20, for all A € p(y)+K,

which determine the Weyl chamber W in question. Now, |Y| > 0 and, also, A is contained in
K’ and is thus perpendicular to £ = e; and e,. So we can rewrite each of these inequalities in
the form (Y;, 1) 2 0.

Similarly, the Weyl chambers of 5%, attached to a vector valued modular form are determined
by inequalities of the form (Y;,A) 2 0, for As obtained by first iterating over all pairs (1, y)
with y € L6 /LandneZ+q(y), n <0, for which c(n,y) # 0 and finally over representatives
for p(y) € K’/K with norm n.

Now, let W be a Weyl chamber and assume that Z =X 4+ 1Y € W is the image under a of
the point (7,0) € #4;. Then, the vector Y, € V, associated with the imaginary part of Z is
given by

L i\
YL=§((£/,IL’>) z, with, asusual, z=1{0"-76(l',{)¢+o0.
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The inequalities determining W satisfied by Y; take the form

~

1 —i
(YL,A) = E ((W) Z,A) 2 0

for an appropriate set of A € K’ and can thus be reformulated directly in terms of z € f{;l
These considerations are summarized in the following remark.

Remark 4.1.5. If a Weyl chamber W of index (n,p(y)) is explicitly defined through a set of
inequalities satisfied by the representative v, in the hyperboloid model of v € 4(K), of the form

sp- (vg,A) >0, with s, e€{-1,1},
indexed over representatives A € p(y) + K with q(A) = n, then, z(7,0) is contained in W iff

(z,1)
(¢, €)

The Weyl chambers defined with respect to (the principal part of) the Fourier expansion of a
weakly holomorphic vector valued modular form can be treated similarly.

5,5 >0 holds for all A.

Positivity with respect to Weyl chambers
In Borcherds’ theorem 2.2.3 lattice vectors satisfying a positivity condition with respect to a
given Weyl chamber W occur. In our main theorem 4.2.1 below, a similar condition is needed.

Definition 4.1.6. We introduce the following notation: Given a Weyl chamber W, and a vector
A €K', we denote (A, W) > 0 iff

(z,A)

(', 2)
Note that this condition holds for every z in W if it holds for one z, € W. So to verify whether
(A, W) > 0, it suffices to check against an arbitrary fixed z, € W. This follows from the analogous

statement for Weyl chambers in the hyperboloid model of 4(K), see lemma 2.1.16 and remark
2.1.18.

R >0 forallzin W.

4.2 The main theorem

For the statement of the main theorem, we briefly recall the definitions and notation from the
beginning of this chapter. Let L be an even -lattice of signature (1,q) containing a primitive
isotropic vector £. Let ¢’ € L’ with (¢,£) # 0 and, further, ¢’ isotropic. Denote by D C L the
definite lattice with (D, £), (D,¢’) = 0.

Denote by N, the level of the cusp associated to £, i.e. the unique positive integer with
(L,£) = N,Z, where as usual (-,-) = Try/q (-, -); and let L{ be the Z-lattice associated by (4.1.1)
to N, and L’. We have the inclusion L) C L’ and, if N, = 1, the identity L) = L’.

Denote by K the Z-lattice LN ¢+ N ezL, with the complement taken with respect to (:,-), and
e, given by {571 (E’,£>_1 ¢’. Then, K contains the isotropic vector e; = —{¢ and K ®, Q is
the direct sum of the hyperbolic plane (Qe; ® Qe4) and the negative definite space D ®; Q,
with e, as given in (3.1.1). Further, p : L) — K is the projection defined in (2.1.7). As usual,

write z for the pointz =¢' — & (¢/,{) € + o € #}! attached to (1,0) € #,.
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Theorem 4.2.1. Let L be an even hermitian lattice of signature (1,q), withq>1,and{ € L a
primitive isotropic vector. Let £’ € L" with (£,£") # 0. Further assume that ¢’ is isotropic, as well.
Given a weakly holomorphic modular form f € //ll!_q(p 1) with Fourier coefficients c(m, )

satisfying c(m,y) € Z for m < 0 and ¢(0, 0) € 27, there is a meromorphic function Z; : #; — C
with the following properties:

1) E¢ is an automorphic form of weight c(0,0)/2 for l“f, with a character y of finite order.

ii) The zeros and poles of Z; lie on Heegner divisors. The divisor of Z; on 74 is given by

1
div(E;) =5 Z Z c(m, B)H(m, fB).

BeL’/L meZ+q(P)
m<0

The multiplicities of the H(m, 3) are 2, if 23 = 0 in L’/L, and 1 otherwise. Note that
c(m, ) = c(m, —f) and H(m, ) = H(m, — ).

iii) For the cusp corresponding to £ and for each Weyl chamber W, Z¢(z) has an infinite product
expansion of the form

- . (z,0,(W)) (z,A) _(B, ") c(q(M).p)
Ef(z) =Ce (—(6’,@ ) : Q 1 |:1—e ((é’,ﬂ) + 28t [g T D} ,

BeLl/L
G0 ()t

g 1 if Dp=0 mod 2,
where &=—-=1{2 N
o 5(1-1—5 ) if D=1 mod 2,

with a constant C of absolute value 1 and a factor depending on the Weyl vector p;(W) €
K ®, R. The product converges normally for any z lying in the complement of the set of
poles of E, and satisfying (z,z) > 4|({’,€)|*|m|, where mq = min{n € Z; c(n,y) # 0}.

iv) The lift is multiplicative: E(z; f + g) =EZ(z; f) - E(2; ).

Remark 4.2.2. The Borcherds lift is equivariant under the automorphism group O}F(L) attached
to f, recall definition 2.1.9. Thus, E is actually automorphic under O}F(L) N SU(L). This group
contains I'} as a subgroup, since I'; C T'Y and T'Y € O;(L).

Remark 4.2.3. The theorem can be phrased without the assumption c(0,0) € 2Z. However, in
this case, the lift gives rise to automorphic forms of non integral weight, and the character y is
replaced by a multiplier system of finite order, compare remark 2.2.5.

Further, the assumption that {’ be isotropic can also be relaxed, if the number field F has even
discriminant, see remark 3.2.10.

Corollary 4.2.4. We use the notation of the theorem. Suppose L is the direct sum of a hyperbolic
plane H ~ G; ® 2;' and a definite part D, with (D,H) = 0. Then, for a cusp corresponding to
{ € H and every Weyl chamber W, the lift Z;(z) has a Borcherds product expansion of the form

- _ (2,0, (W)) (z, A) ]€@MA)
._,f(Z)—Ce (W) JE_K[/ |:1—€ (W)] . (4.2.1)
A,w)>0
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In particular, if (6,6’) = —5671, the Borcherds product of Ef (2) can be written as

(@)
) , (4.2.2)

Ef(z)ZCe(é <z,pf(W)>) l_[ (1—e(6(z,7&))

AezltoZt’ ®D’
(AW)>0

where, as usual, { = %5 if Dpiseven and { = %(1 +0), if Dy is odd.

Remark 4.2.5. If the lattice L is unimodular, it can be written in the form required by the
corollary, L = H ® D, because of lemma 1.1.15. Also, for a lattice of this type, it always possible
to choose ¢’ € H with ({,{’) = =571, recall lemma 1.1.16.

Proof. By assumption, the hyperbolic apart of L is unimodular, so £’ € L. Further, by proposi-
tion 3.1.9, e, = mﬂ’ is contained in L’ and since e, € H ®, F, clearly e, is contained in H,
and in particular e, € L.

Now, (v,£) =0 for any v € L ®, Q with v & Qe,, thus, with e, € L, (e,,£) =1 the evenness
of L implies (L,{) = Z. So, the level of the cusp, N, is equal to one. Then, the lattice L,
can then be identified with L’ and thus L(/L = L’/L. Moreover, N, = 1 also implies that the
discriminant groups K'/K and L’/L are isomorphic. In fact, we can consider A € K’/K as
an element of L’/L. This follows from the description of the set of representatives 8 € L'/ L
with p(8) € A+ K given on p. 90 [9], p. 45, namely 8 = A — (A,e,) £/N; + bl/N,, where
b runs modulo N,, compare also [9], p. 45 (Note however the difference in notation, as in
[9] A € Lj/L, taking the role of 8 here.). Since N, =1 and e, L K, we can set § = A (i.e.
B =A+0L, with b =0).

If (¢,£") = =571, the hyperbolic plane H can be written in the form Gz{ @ Gzl’. By (3.1.1),
we have e, = —{', e3 = —{{ and e, = —¢'. Hence, HN{+ Ne; = Z{L ® ZL'. O

The proof of theorem 4.2.1 is based on theorem 2.2.3 and its proof given in [5]. We will
use the pull back under the embedding a constructed in chapter 3 to rewrite the unfolded
regularized integral giving the singular theta lift ®;(Z, f) as an expression in 7 and o (or in
the attached representative z € J?S). Recall briefly, how the embedding a induces embeddings
between the different models for the symmetric domains of SU(1,q) and SO(1,q), and can in
turn be described by any of these, as illustrated by the following diagram:

Gry© Gro2Rudw
(1,0) € H4,C HoDZ =X+1iY

Here the canonical projections are denoted 7 for Vi — P(V) and 7 for Vi — P(V). Using
the notation developed in chapter 3, the horizontal map marked with « in the diagram can be

written in the form
1 - -1\~
A (2<ef,z>)z+l(z<e',e>)z’
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as in (3.2.8). A description in terms of an explicit basis can be read off from (3.2.12). For the
map between 54; to 5, see (3.2.13). The map from Gry; to Grg can be described explicitly
using remark 3.2.9.

For later reference, we give the pullback for some expressions occurring in [5], which will
be needed in the course of the proof. To facilitate notation, in what follows, denote e; =e.

(e, X.) (e,Y;) X, (6¢)z , 1 200

= X Y =—=——— = —"=—— 2.
Tz T Ty TR a0 YTYET T (g (4.2.32)
(Y, 1) (z,A) —i(l, )z (z,m‘ V2|{€', 1)
Ay = ¥ =52 A= 52 (4.2.3b)
T T w0 M EREn| (e
Pl v, ) = 3<Z’M‘ (4.2.30)
] ik <

Proof of theorem 4.2.1. The proof is mostly based on the proof of Borcherds’ theorem 13.3 from
[5]. We reproduce the main steps of the proof in our setting. Pulling back Borcherds’ ¥; to our
= is carried out by rewriting all expressions involving u, w and the tube domain coordinate Z
in terms of T and o or of the attached vector z € %}, given by z = — (¢/,£) 57{ + 0. We
will do this gradually, to make the structure of the proof more transparent.
iii) The largest part of the proof goes into showing that an infinite product expansion of the
claimed form can be obtained from the Fourier expansion of the theta lift.

By theorem 7.1 in [5], the lift ®; (v, f) is given by the constant term at s = 0 of (the analytic
continuation of) the following expression:

1
o (w, fx) + Z Z ((nA, 1)) Z e(n(B,e))
\/Ele,,l | vl Aek’ n>0 [J’ELO/L
p(B)=A

2

mn 2| . 1-s-3
X c(q(1), B)exp ~3 5 —2nyA, |y 7 2dy.
ye
y>0 v

Now, for A € K’, we have (A,u) = (%')zt)) Further, by (4.2.3a),
le,|? 2|(< )| Also, recall that (z,z) > 0. Thus,
Viz2) \/
o Px (Y, f) + ZZ Z e(n(pB,ez))
e, 0l N ,3) -
A K’ n>0 BeLy/L
p(B)=2A

mn® (z,2)

s .5
X c (q(A),pB) exp (—— - —27':)/7@) yl=2dy.
L>0 2y 2[{’, 1)

We fix the Weyl chamber W under consideration. We assume Y € W, or equivalently, z € W.
The theta lift for the smaller lattice ®x can be expressed in terms of the Weyl vector p (W)
associated to W

V (2,2)
(€7, 0)]
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by the definition of the Weyl vector in section 10 of [5].

Now we consider the sums involving the integral. The condition Y € W assures that (A, v )
takes the same sign as (A,Y) for all v; € W. Since w, = RY, it follows that A, = 0 exactly
if A = 0. So we rewrite the sum over A as a term involving A = 0 and a sum over A # O for
which A, # 0, which can further be split up into sums involving all A with (A, W) > 0 and
(A, W) <O.

We will treat the term with A = O first. This is given by

2

(2,2) nn®  (z,2) 153
|(£/,€)| Z Z e(n(ﬁ:ez))Jy>OC(0:/5£/N)eXP (_TW).V d_}/.

n>0 Be€Z/NZ

After applying Borcherds’ lemma 7.3, which evaluates the integral, and cancelling factors, the
result is

a1 (e,e) P N
2 Z e(n(p,e))c(0,BL/N)T (s+1) {%} Z%
perinz ? n>0

The constant term at s = 0 of this expression can now be determined by lemma 13.1 of [5]
which gives

2.¢(0,0) - (—log2||<<i/’—’j>>||2 + %F’(l) —log \/%)
+2 Z c(O,[%/N)[—log (1 —e (%)”

BEZINTZ.
B#0

The remaining sum over A # 0 can be evaluated using lemma 7.2 of [5], which directly gives
the expression for the limit at s = 0. We get

e Z e(nnp) T eipe)

K’ n>0 BeL’/L
o p(B)=A

-1
\/ A
x clalh), ’”( |<<Z Z>>|) P (_2“”||ew||)

)

C A Z;A’ ZDA
Z Z Z (q()b’) el n m</ )+i3(, ) L Be) ),
(¢, ) , )
A€K’ BeLy/L >0
#0 p(g)=A
where for the last equality we have made use of ||;}W|| |5 ((;/)Zl from (4.2.3¢).

Since for A # 0, (A, W) is either > 0 or < 0, we may as well take the sum over vectors with
fixed sign and their negatives:

C(Q(/U B) (z,4) . (z,4)
2 Z Z Z |:e (Tl (m<£/’£> <£/ e) ([5 62)))

A€k’ BeLg/Ln>0
2 &)
e (” (_g"éze) e (ﬁ’ez)))]’

(A W)>Op(/5) 2
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Recall that c¢(m, 8) = c(m,—f3), since the Borcherds input has weight 1 —b/2 =1 —q, see
remark 2.1.8. The sum over n takes the form

1 (2) (zA)
;H [e (“' (mw,e) BT (’5’62)))

N
”("'(mw,eﬁ <£’ + (6 ez))ﬂ

which is just a sum over two logarithmic series. Summing these gives

2 > > —c(an).p) 108[(1‘6(%”[5’”))

A€k’ /a’eL /L
,A
< (1o o))

(LW)>0 ()=
= —4 Z Z c(q(1), B)log|1 e(&, + (B, ez))‘

AeK’ BeL /L
Finally, e, is given by % (0,0 >_1 ¢’ if the discriminant Dy of the number field F is even and by

;125 (¢, €>_1 ¢’, if the number field has odd discriminant. Thus, we can rewrite (f,e,) as

2RE << e’w) , with & as defined above. After gathering all contributions the regularized theta lift
is given by

* B (z,2)]
(@"@(f))(=) = 87 (p; (W), p(¥(2))) +¢(0,0)- (logw

-2 Z c(O,b’é/N)-log(l—e(%))

-T'(1) - log(27r))

BEL/NZ
B#0
(z,2) = (B, L")
-4 c({A,A),B)-log 1—6( - +2m{§ })‘
2 A N

(W)>0 (g

Since E = a*¥;, by the definition of ¥; in part iv) of Borcherds’ theorem, see (2.2.4) in
theorem 2.2.3, it is equal to

o()

—~4log|E(z; f) | - 4 (loglp(YL)|+ F(1)+1og~/_)

From this, we get exactly the claimed form of the product expansion for each Weyl chamber
W, recalling that

(z,2)
20(¢,0) 1P|

Y] = Ip(Y)| = ‘
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Thus, Z(z) is given by the exponential of (one quarter of) the Weyl chamber term times that
of the sum over A. A constant factor is further contributed by the exponential of the finite sum
over 3 € Z/NZ (or more precisely, its square root, due to the factor of 4 in the definition). For
z in the Weyl chamber attached to p (W), (A, W) > 0 is equivalent to 3 (6’,€>_1 (z,1) > 0.

A precise criterion for the normal convergence of the Borcherds product is given [9], see
theorem 3.22 on p. 88f: The product converges normally on the complement of the set of poles
if g(Y) > |m|, with m = min{n € Z; c(n, y) # 0}. On 4;, we thus have normal convergence if
(—iz,—iz) = (2, 2) is greater than 4|m||(€’,€>|2. This is the case if the point (7, 0) € #4; lies
in a neighborhood of infinity £ as introduced in definition 1.1.23, with C = 4|m||{¢’, ) .
i) Finally, lemma 13.1 of [5] assures that ¥; is in fact automorphic of weight ¢(0,0)/2 and
holomorphic on #%,, from which automorphy and holomorphicity of E on #4; follow through
the properties of the pull-back.

That the multiplier system y is of finite order, and, in particular, that under the assumption
c(0,0) € 2Z, y is a character of finite order, also follows from theorem 2.2.3 by pull-back.

ii) Our treatment of Heegner divisors follows more closely Bruinier in [9] than Borcherds in
[5]. In theorem 3.22 of [9], the divisor of ¥; is already given in the form reproduced in part
ii) of our statement of theorem 2.2.3,

1
div(w,) =7 >, c(m p)H(m,E),

meZ+q(f)
m<0

with the H(m, ) Heegner divisors of discriminant (m, ) on 5, as introduced in definition
2.1.13. As formulated in corollary 4.1.3, we can pull this back to a Heegner divisor on 4, as
for each discriminant (m, 8), the divisor H(m, ) on 5%, induces the Heegner divisor H(m, f3)
as defined in 4.1.1 on 4;. By (4.1.4) each point of H(m, 3) is contained in the intersection of
H(m, ) with the image a(4;) in 5#4,. The restriction to a(>4;) is needed only, because the
definitions of Heegner divisors on %, and on #, are derived from the sub-Grassmannians A+
of Gry and H,, of Gry; the image a(H,) as such is, of course, only a subset of A+, and not a
full sub-Grassmannian of codimension one.

iv) This follows directly from the multiplicativity of Borcherds’ lift ¥, (Z, f ). O

4.3 Values of Borcherds products at the cusps

In the present section, we study the behavior of Borcherds products as in theorem 4.2.1 on the
boundary of 74;. Rather than working with the infinite product expansion of = (z) directly,
we first consider the behavior of the orthogonal automorphic Borcherds lift ¥;(Z, f) on the
one-dimensional boundary component of s, associated with the two-dimensional totally
isotropic space over Q given by the F-span of £. We then pull this back under the embedding
a constructed in chapter 3 in the usual manner.

We will assume regularity on the boundary. Under the assumptions of the Koecher principle,
this means no restriction, of course. However, the Koecher principle does not apply to the case
where Vg, (:,-) has signature (1, 1).
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4.3.1 The Borcherds lift ¥, (Z, f) on a one-dimensional boundary component

We want to evaluate ¥;(Z, f) on a fixed one-dimensional boundary component. Let W
be a fixed Weyl chamber containing a neighborhood of the boundary component under
consideration.

Off the poles, ¥, (Z, f) is a holomorphic automorphic form and can be expanded as a Fourier
series, summed over lattice vectors fulfilling the following condition of semi-positivity:

u €K’ issemi-positive iff u; >0, u, > 0andq(u) > 0. (4.3.1)
Equivalently, if u is semi-positive we can also say that u lies in the closure %, of the positive

cone 6., asin (1.2.20).
Thus, at least for Y sufficiently large, we have

wz = ((orm.2)) T] (1-e2))""" LY atwe((w.2)). @32
o 155,

Denote by & the Siegel operator introduced in section 1.2.6. Assuming the regularity of
W(Z, f) on the boundary component under consideration, we will show the following lemma.

Lemma 4.3.1. Consider a one-dimensional boundary component of #,. Let W be a Weyl
chamber which ‘runs into’ this boundary component. Assume regularity of W(Z,f) on the
boundary. Then, (@ | ¥, (Z,f))(Z) either vanishes identically or has an infinite product
expansion of the form

(@192, 1)) 2 =e(prz) [ ] (1 _ e(xzzl))c(o’k). (4.3.3)

Azﬂ,zeg EK/
12>0

Note that 3z, > 0 since Z is contained in the positive cone of #,.

To prepare the proof of this lemma, we first consider the properties of the Weyl vector
pr(W).

Lemma 4.3.2. Under the assumptions of lemma 4.3.1, assume further that ® | ¥;(Z, f) is not
identically 0. Then, the Weyl vector p (W) is semi-positive and consists only of the e,-component,
thus ps(W) = (0, p,,0), with p, > 0.

Proof. By the definition of the Siegel operator ® and under the assumptions made, for the
Fourier expansion of ¥; around the cusp corresponding to e;, we have

(@192, )@= lim > awe((s2))

MGK/
us.p.

= lim Z a(u)e (z1up + 2201 + (Up,3) ) -

29—100 ,
w=(u1,u2,up)EK
us.p.
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Only terms with u; = 0 contribute to the limit, as in view of (4.3.1), we have u; > 0, but
lim, _,; e((u,Z)) = 0if uy >0, so only terms with y; = 0 remain.

Now, one way to expand the Borcherds product as a sum is by multiplying all factors in
the infinite product part and expanding — each factor may first be expressed as a sum using
binomial series. We carry this out more precisely in the proof of lemma 4.3.1 below. For now,
we are only interested in the leading term:

((0:2) 1 (1-e(@2)) P =e((o 2 [1+...].

reK’
(A,W)>0

By comparing with the Fourier expansion of ¥, (Z, f), it follows that e ((p,Z)) occurs as a
term in the Fourier expansion, with coefficient a(p) = 1. Thus, necessarily by the assumption
of regularity, it follows that p is semi-positive, too.
If p; # 0. the limit of e (2,0, + 2,01 + (Pp,3)) vanishes. Then however, ® | ¥, (Z,f)=0
If on the other hand, p; = 0, the semi-positivity condition takes the form q(p) = q(pp) >0,
forcing pp, = 0. O

Now for the proof of lemma 4.3.1.
Proof of lemma 4.3.1. Assume ® | ¥, (Z, ) does not vanish identically. We write the Borcherds

product as an infinite series, using the binomial series (or the binomial theorem if c(q(1), )
is an integer):

C (XD),A
(‘I> | ‘I’L(Z,f))(zbzz,ﬁ) = e(Pzzl) l_[ (1 —€ (217‘2 + (AD’Zﬁ))) G )
(x?vevg;o
21=0
Ap),A
=elo) [T 0 (e, + o),
™
1=0

After multiplying all factors in the remaining product we get

e(pa2z1) +e(paz1) Z Z b(z niki)e ((Z nA;, Z)) ,

k>0 2y.ipek’ =1 i=1
(A, W)>0, 7Ll 1=0
N ,eees nkEZ n~>0

where we have set b(Zn QU) : l_[( 1y ( (CIUHD) Ai ))

i=

Now, on the one hand, since k =1 and n; =1 are permissible every A € K’ with (A, W) >0
occurs in the sum. On the other hand, set A = Zl 1 iA;. Clearly, A €K, A =0and
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(A, W) > 0 by linearity, since the n; are positive. Also, if A occurs several times in the sum, say
m times, we can replace A by mA. We thus have

(®19.(Z,f)) (21,22,3) = e(p221) + Z b(A)e ((14‘92@3, Z))
rek’
(A,W)>0

= > alwe((u.2)).

W S.p.

This implies that 5L+p2 e, is semi-positive, as well, which is the case exactly if Ais semi-positive,
since p, > 0 and A; = 0. Then, g(A,) > 0 implies A, = 0.

Finally, as we assumed ® | ¥;(Z, f) # 0, we must have A, > 0 for every A.

Since this is valid for all A in the sum, by the definition of A above, it follows that A, = 0
and (since the n; are non-negative) A, > 0 for all A occurring in the product. O

4.3.2 The behavior of Z¢(z) on the boundary of 4,

The way we choose to calculate lim,_,;,, 2(7,07; f), is to pull back (4.3.3) as given in lemma
4.3.1. With the embedding a constructed in chapter 3, with the basis vector e; from (3.1.1)
and with the image Z(7, o) given by (3.2.13), we immediately get the following proposition.

Theorem 4.3.3. Assume that lim._,;, E¢(7,0) exists, i.e. E¢(7,0) is regular at the cusp of 74;.
Then, either lim._,;, E¢(7, o) vanishes at the cusp or

) _ _ .\ c(O,1)

lim 2(r,0)=e(~Zp) [ (1-e(-20)
A=A Llek’

A1€Q50

Where, as usual, { denotes a generator of Oy, while P}A,/1 denotes the e;-component of the Weyl
vector ps(W) (the only component by lemma 4.3.2).

Remark. Of course, a proof of this proposition could also be obtained by working directly with
the product expansions of 2y, proceeding as in the proof of lemma 4.3.1.

Remark 4.3.4. The expression in (4.3.3) can be interpreted as a CM-value of a generalized
eta-quotient. The infinite product in (4.3.3) can be identified with an (in general meromorphic)
elliptic modular form on the half-plane H contained in the boundary of #,, which generalizes
classical eta-quotients, see [59] for an introduction to these. The evaluation at the cusp oo of F4;
comes down to evaluating this product at an F-rational point —{ € Oy, fixed by the construction
of the embedding.
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5 Lifting forms from _# - Borcherds products for SU(1,1)

In this chapter, as an application of the main theorem 4.2.1, we carry out the lift in the special
case where Vg, (:,-) has signature (1,1). In this case, the input space of the multiplicative
lift consists of weakly holomorphic forms with weight 0, while the target functions are
automorphic products on an arithmetic subgroup in SU(1,1).

We take the lattice L to be the hyperbolic plane 0y & 2 ! over the imaginary quadratic
number field F. Since L is unimodular, the discriminant group L’/L is trivial and the Weil
representation p; restricts to the usual multiplier system of SL,(Z) on C. Thus, //t(!)(p 1) is the
space of scalar valued weight 0 weakly holomorphic modular forms, ., = #,(T'(1)).

In the following section 5.1, we first consider the Borcherds lift for the orthogonal group,
using an extended version of Borcherds theory due to Bruinier, see [9]. This permits us to
recover the Weyl vector p;(W) from theorem 4.2.1 in explicit form. For this, it suffices to
calculate the lift ®; on the signature (1, 1) subspace K ®; R of the quadratic Vg, (-,-), where
K is the Lorentzian lattice L N e’ Ne’t. While our primary aim is thus served, we also give the
Fourier expansion of the singular theta lift for SO(2,2) and determine some examples of the
resulting Borcherds products.

Subsequently, in section 5.2, we calculate Borcherds products on the unitary group SU(L),
for every number field F, using corollary 4.2.4 of the main theorem of chapter 4 and inserting
the Weyl vectors from section 5.1. We also give the pull-back to 4; of the Fourier expansion
of the singular theta lift under the embedding from chapter 3.

In the present case of signature (1, 1) the symmetric domain 4; can be identified with the
classical upper half-plane H. Peculiar to this situation, the shape of the Weyl chambers can
be easily described: Determined by inequalities only in the imaginary part of the complex
variable 7, they are ‘stacked’, with the ‘topmost’ Weyl chamber a neighborhood of the cusp ico
and the ‘lower’ Weyl chambers as stripe-shaped regions in H.

The Heegner-divisors, given by points in H, are a further object of our consideration. These
are CM-points and their CM-orders are contained in 0. As it turns out, see p. 116, the
conductor of such a CM-order depends on the index of the Heegner divisor. Thus, in a sense,
the CM-orders can be prescribed, through the choice of F, on the one hand, and the input
function, on the other.

5.1 The Borcherds lift for SO(1,1) and SO(2,2)

We consider a lattice L given by the orthogonal sum of two hyperbolic planes over Z, thus
L ~ 7Z* with the quadratic form q((k,l,m,n)) = kl + mn. Then, the Lorentzian lattice K is
simply a hyperbolic plane, K ~ 7Z? with the quadratic form q restricted to K, qg((m, n)) = mn.
The modular group I'? is an arithmetic subgroup of SO(2, 2).

The inputs for the Borcherds lift are weakly holomorphic modular forms of weight 0 for
the elliptic modular group SL,(Z). The space //té of such forms is isomorphic to C[j], where
j is the usual modular invariant, and is spanned by the functions J,(7) = ¢~° + 0(q), for
b=1,2,..., together with the constant function.

We use the theorem 2.2.3 of Borcherds, from [5], to calculate the main part of the product
expansion. However, for the evaluation of the factor associated to the Weyl vector, we use
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results of Bruinier, from [9]. This gives us more precise information concerning the Weyl
chambers and Heegner divisors. As an additional benefit, we can also give the Fourier
expansion of the lifted functions in more explicit terms than usual.

However, the method of [9] is based on non-holomorphic Poincaré series F,,(7,s). The
special values F,,(1,1) differ from by J,(7) by the constant term b, (0, 1), see [16]. For this
reason, the product expansions obtained this way differ from the Borcherds lift by an eta-factor,
the lift of the constant term. In our setting, it is the contribution of this to the Weyl vector
term that we must divide out to recover the actual multiplicative Borcherds lift of J, (7).

5.1.1 Prelude: Lifting constants

In view of the considerations just made, we start by considering the Borcherds lift of (integer)
constants. Since the lift is multiplicative, it suffices to determine the lift of the constant
function 1 = q° € C[j].

There is no principal part to this function and the only Weyl chamber is the positive cone. By
Borcherds’ theorem the lift is a modular form of weight 1/2, possibly with multiplier system
for a modular group in 07 (2,2).

The only non-zero Fourier coefficient, 1, occurs for g(A) = 0, so the Borcherds product takes

the form
n@n=e((er2) [[a-etm)[[0-etm)), o,

meZ nez
m>0 n>0

since for A = (m, n) € Z2, the equation q(A) = mn = 0 implies that either m or n is zero, and
further (m,n) # (0,0), since (A,Y) > 0 holds for every Y in the positive cone. (Assuming the
positive cone has been chosen so that y;, y, > 0.)

Under the action of SL,(Z) x SL,(Z) induced by the standard identification H x H — &,

(T]_)TZ) — (TZTl q;_l) )

T2
¥, (Z,1) becomes a form of parallel weight (%, %) in the variables 7, = 2; and 7, = 2,.
We now proceed to show the following:

Lemma 5.1.1. As a function on H X H, the multiplicative Borcherds lift of the constant 1 is equal
to the product of two eta functions:

W ((11,72),1) =n(71) - n(Ty). (5.1.2)

Proof. Clearly, by (5.1.1), the infinite product expansion of ¥, (Z, 1) matches that of the eta
product, except possibly for the factor involving p¢. Thus, we have

: (if ) b (iT ) LT D) ey
24 1 24 ) e(T1p3+ T2p01) ! 2
As the right hand side transforms with weight 1/2 and the usual eta multiplier system

in both variables, while ¥;(Z,1) also transforms with parallel weight 1/2 it follows that
p1=p2=1/24. =
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By comparing (5.1.2) with (5.1.1) we see that the Weyl vector p, for the constant function
f =1is given by

1

We now define the non-holomorphic Poincaré series F,,(7,s) of weight 0 and index m
already mentioned above. For the following see [16] and [9] for further details.

Definition 5.1.2. Let m be a negative integer and denote by I,(z) be the usual modified Bessel
function as in [66], §10. For s € C and y € R\ {0} write

7|y

SAES 715—1/20}’0-

Then, the non-holomorphic Poincaré series F,,(T,s) of index m is defined as

F.(7,s)= Z £ (2nim|3(yT))e (=Im|R(y7T)),

Y€l \I'

where we have written T for SL,(Z) and T, for the subset {(1); n € Z}.
It is well known that F,(7,s) is holomorphic at s = 1 and that

F.(7,1) =J}(7) + b,,(0,1), with the constant term  b,,(0,1) =24 0,,(1),

where the divisor sum o(s) is defined more generally as o ,(s) = nt!=5/2 de d’.

The contribution of the constant term b,,(0, 1) to the Weyl vector p r,, for the Borcherds lift
of F,,(0,1) is given by

1
me=bm(0,1)-p1=240|m|-£(1,1) = (O-|m|’o-|m|)9 with O-|m|: Zd (513)
dlm|

Thus, upon determining the lifting of a weight zero modular form expressed as a linear
combination of J,(7) for different bs, we must, for the additive lift, subtract a correction term
consisting of (suitable multiples of) (5.1.3), with m = —b, for each b.

5.1.2 The Weyl vector term for J,(7)

We can now direct our attention to the normalized weight 0 modular forms

Jp(1)=q""+0(q).

First, we need to calculate the Weyl vector terms for these forms. Since we are working on the
smaller lattice K ~ 72, we are in the setting of signature (1, 1) which is not completely covered
by the approach in [9], so our starting point is the integral expression for the regularized lift.
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The integral

Denote by <I>In<1, with m < —1 the regularized theta lift of the non-holomorphic Poincaré series
F,,. We start with (2.31) on p. 56 of [9], wherein MV’M( y) denotes the M-Whittaker function
as in [66], p. 190:

X _ 2(4m|m])~H2
& (v,s)= —F(Zs)

o0
Z f M /o5 1/2 (4nimly)y? /0" 42 exp(~4myq(A,) +27m) dy.
reB+L YO

dA)=m

The negative integer m is the index of a non-zero Fourier coefficient in the principal part of
the function to lift. For the J,(7), m equals —b.
The numbers [, k and s, used in [9] depend on the signature of K. In the present case of
signature (1, 1), they are given by.
l=2,k=1-1/2=0,5g=1—-k/2=1.

Now, the integral simplifies considerably:
(0.¢]
f M0,1/2(47T|m|J’)y_g/ze_‘myqu”)_zny'm'dJ’
0

o0
— J (1 — e—4ﬁlm|y) e—4nyq(/ly)y—3/2dy
0

=4n (Va,)+Iml - Va(a,)) . G.1.4)

Here, from the second to the third line, we have made use of the identity
1
My 1/2(2) = (1—e7)e?",

which follows from a relation between Kummer’s function M(a, b, z), as in [66], p. 189, and
the M-Whittaker function,

M, ,(z) = e_%zz%J’“_KM(l/Z +u—x,14+2u,2), see[66],p.190,

1
and the special case M(1,2,z) =—(e* —1), see [66], p. 194.
Z

while the last line of 5.1.4 is obtained by applying the following lemma.

Lemma 5.1.3. For a, b positive real numbers the following identity holds

J (1—e)e by 32qy :2ﬁ(\/a+b— \/3) :
0
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Proof. Expand the integrand as follows:

(0.¢]
J (1—eV)ey32dy = —
0

yk=1/2=1,-by g,

0 k=1
The sum converges absolutely, so we can switch the sum with the integral and get

(- a)k yk=1/2)-15-b &\ (—Dkak T (k—1/2)
Z . e _}’dy = —Z o bk_1/2 ,

k=1

with Euler’s integral. The values of the Gamma-function at the half-integral places are given
by
1-3-5---(2k — 3)

r(k—1/2) = =

r(1/2), with I'(1/2)=

see [66], p. 76. Now, comparing this series with the power series expansion around the origin
of the function v'1 + x,

(-1)11.3.5...(2k —3) xk
\/1+X—1+22 —

k-1 1’
e 2 k!

for x = a/b, we recover the claimed identity:

J (1—e ) e ™y 32dy :2-1“(1/2)\/3(\/1+a/b— 1).
0

Note that the above series can also be interpreted as a special elementary case of a hypergeo-
metric function of the type F(a, 8; 8;2) = (1—2)"%, cf. [66] p. 213, witha = —1/2,2 = —a/b
and suitable f3. O

Remark 5.1.4. In [9] the integral expression for <I>In<1(v,s) is evaluated using a formula for the
Laplace transform of the Whittaker function from [25], p. 215, according to which

1
fO) ="M, (at), with RK(u+v)> -5

has the following Laplace transform fooo f(t)e Ptdt:

—u—v—1/2 1 1
F(,u+v—|—§,u—1<+ ;20 +1;

a2 (u+ v +1/2) (p—l—z) 5’ (p +611/2a))

Unfortunately, this formula does not give the correct result in the present case.

Indeed, inserting k = —k/2, u=s—1/2, a=4n|m|and v =b"/4+ b~ /4—1 =0, where
in general (b, b™) is the signature of V', and setting p = 4nq(A,) + 27t|m| leads to the special
case F(1/2,1;2;2) of the hypergeometric function. However, we have (e.g. by equation 15.1.13
of [66])

2
1+vV1-%

which is not correct. (Compare this to (5.1.4) for z =m/q(1,).)

F(1/2,1;2;2)=
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Negative norm vectors and calculation of d)fl(v)

Next, let us rewrite the previous result (5.1.4) somewhat, expressing v through Y and writing
everything in hyperbolic coordinates. We have

(VY

1
s VA = —=—

V2)Y

We need to consider vectors A with g(A) = m, with m a negative integer (equal to —b for the
lift of J;(7)). For these,

Ay (A, Y)l.

q(2) +q(A,L) =m=q(A).

Further, since K ®, R is 2-dimensional, there is only one direction perpendicular to Y, so we
may choose a vector Y’ with |Y’| =1Y|, (Y,Y’) = 0 and calculate A1 by projecting onto this
vector.

We set for Y’ = (y;, —y,), where Y is given by (y;, y,), in hyperbolic coordinates. With this
convention,

4v/2m
0N = 7= D (Fhya+ Aoyl = 1aya+ 2onil).
A€B+L
q(A)=m

Since K =~ 7?2 is simply a hyperbolic plane over the integers, we have q(1) = A;,, so
{rez?; q)=m} = {£(k,~1), k1€Z;k-l=—m}.

Introducing a factor of 2 to take into consideration the two signs for each pair k, [, we get

2 4421
‘I’ﬁ (Y)= Y] Z (|_kJ’2_lJ’1|_|k3’2_lJ’1|
k,l€Z>0
kl=—m
+ lky, + Ly | = |=kyy +1y1])
8v2m
== 2 (Fka=nl=lky—1n).
k,l€Z>0
kl=—m

Note that we can also write this in the form

8v2m m m
72 _ _ = —
k€Z>0
k|lm
Example 5.1.5 (m = —1). If m = —1, the only pair of positive integers with product 1 is
k =1 = 1. So there is only one pair of vectors, A = (1,—1) and —A = (—1,1). Thus,
2 8427
@%1(1/) = W(bﬁ +yol — 1 —)’2|)-
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Example 5.1.6 (m = —p). Let m be the negative of a prime number p. There are only two
positive integers with product p, which leads to two pairs of vectors:

+A, =%£(1,—p) and *+2A,==x(p,—1).
Now, @%Z(Y) is easy to calculate, too:

821

2
®” (V)= iy (pyat ol =lpya =l +lya+ eyl =lys = pxl).

Heegner divisors and Weyl chambers

The orthogonal complements of A and —A are the same, so each of the pairs k, [ considered
above defines exactly one direction (we have only two dimensions!) perpendicular to both
negative norm vectors associated with k, [. Thus, we get one prime divisor, by considering the
sub-Grassmannian of ¥(K) given by

2= (=) =k, ~D" = R(k,D),

Note that the pairs £(k, —1) and the pairs £(I, —k) define two divisors which, viewed as lines
in K ® R, are symmetric to each other under reflection through the diagonal. Of course, if
k =1, in other words if —m is a square or m = —1, the diagonal also corresponds to a divisor
of this form.

Denote by M the number of distinct pairs (k, —[). It is clear that M is finite. For example, if
—m is square-free, M is just the number of divisors of —m, see 5.2.4 below. Then, the Weyl
chambers are defined by M conditions of the form either

(k,-),W)>0 or ((k,—-1),Ww)<O.

Equivalently, either ky, > ly; or ky, < ly; for every Y = (y;,y,) in W. As W is a subset of
the positive cone, we have y;y, > 0 and may thus assume y,;, y, > 0. Since M is finite, we
see that there are only finitely many (at most 2" + 1) Weyl chambers.

On each Weyl chamber, d)%lz(Y ; W) is given by

2 8v2m
L (VW) = Do kya+1y) = (ky, —1yy)
g
k,l€Z>0
kl=—m
((k,—D,Ww)>0
Y Gyl + k=)
k,l€Z>0
kl=—m
((k,—D),Ww)<0
8v2m
- ( klZ 20y, + Y 2ky2). (5.1.6)
NISV/AN k,l€Z>O
kl=—m kl=—m
((k,—D),w)>0 ((k,—1),Ww)<0
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The Weyl vector of index m, is defined through
ok (v;w)=8v2r (Y, p(W)).

It can be read off from (5.1.6); we get

pm(W)zz( o o+ Y] kvl), where v, =(1,0), v, = (0,1), (5.1.7)

k,l€Z~0 k,1€Z0

kl=—m kl=—m

kys>lyq kya<ly:
V(¥1,y2)EW V(¥1,y2)EW

are the standard hyperbolic basis vectors, and where the conditions ky, > [y; and ky, < ly;
must be satisfied for every Y = (y;,y,) € W. (It suffices, however, to check them for one
arbitrary Y, € W, recall lemma 2.1.16.)

Example 5.1.7 (m = —1). In the simplest case, m = —1, the diagonal, spanned by (1,1) =
(1,—1)%, is the only Heegner divisor. It dissects the positive cone into two Weyl chambers of equal
shape, defined by the conditions y, 2 y,. For these chambers, denoted W, and W_, we have

8v2m

(b%zl(Y; W,)= WZJ’l, and  p_1(W.) =2,
8v2m

(I)%Zl(Y; W)= WZ)/Z, and p_;(W.)=2v,.

Example 5.1.8 (m = —p). Let m be the negative of a prime. In this case the two pairs of lattice
vectors A, , bring forth two Heegner divisors, the corresponding lines are spanned by (1, p) and

(p, D).
The positive cone is split into three Weyl chambers W, ,W_, and W__, determined by whether

Ya>DY1, PY1> Y2 > 5 Y107 ¥ < o )1

83 (2p+2)y; onW,y,
X132y +2y, onW_,,

(2p+2)y, onW__.

For the Weyl vectors, we have

p—,(We)=2(p+Duvy, p_p(W_i)=20;+20;,
p—p(W——) = 2(p + 1)V1'

5.1.3 Intermezzo: The Borcherds lift for SO(2,2)

Our primary aim, determining the Weyl vector contribution for each Weyl chamber of the
Grassmannian ¥(K), has been fulfilled by (5.1.7). As a supplement to this, on the following
pages, we give the Fourier expansion of the singular theta lift ®;, as a special case of the
additive Borcherds lift for SO(2, 2). Further, we determine some Borcherds products on the
orthogonal group.
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Fourier expansions of Borcherds lift

Given a function f € //l(!,, the Fourier expansion of its additive Borcherds lift with respect
to a given Weyl chamber W, denoted <I>EV(Z ,f), consists of two main contributions — one,
<I>I‘Q/ (Z,f), coming from the principal part of f, involving negative norm vectors in the smaller
lattice K ~ Z?2, and consisting of logarithms of Euler factors for positive terms in the Fourier
expansion of the input function.

Up to now, we have calculated the Fourier expansion of ®X which the contribution cor-
responding to the principal part in the lift of the non-holomorphic Poincaré series F,,(7,1).

Assume that f has a Fourier expansion of the form

f= ), ctmyq™
m>=>—o0
The principal part of f can be written as a linear combination of the principal parts of the
J4(7), so the Fourier expansion of )/ (Z, f) is given by

1
o(2.F)= Y, cm)- (58K(ZW) -0 ((L1),Y)),
m<0
c(m)#0
where we have taken into account the correction due to the constant Fourier coefficient
b,,(0,1) of F,,(7,1).

Note that the factor 1/2 is needed when passing from the Weyl vectors of the chambers of a
given index containing the smaller chamber W to the Weyl vector of W. This factor may not
be applied to the correction term.

In the end, we have

@?(ZJﬁ::SRVE[ E: dnﬂ( 2: Lyy + E: kyz—-aﬂdyy+yﬂ)

Y| =
kicz kicZ.
e(m)#0 P Ke
((ko—D).W)>0 ((ki—D).W)<0
+ C(O)( N )]
204 Y1iTY2)]|-

The Fourier expansion of the Borcherds lift @KV(Z ,f) is now given by

c(0)
sr( Dy em( Y it D k- ontys) o 0+ )
m<0 k,leZ~ k,l€Z+
c(m)#0 kl=—m kl=—m
((k,—1),W)>0 ((k,—1),W)<0

+ ¢(0)(—1og(Y*) — (1) — log(27))
+ 4 Z c(mn)10g|1 —e(mz, + nzl)|.

A=(m,n)ez>
(A,W)>0

(5.1.8)

The second line does not contribute to the Borcherds product, whereas the remaining lines
give the logarithm of (the absolute value of) the multiplicative lift.
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Remark 5.1.9. The convergence of (5.1.8) can be assured for Y2 > 2|m,|, where my is the lowest
exponent in the principal part, my = min{m € Z; c(m) # 0}. This follows from some estimates
on the growth of Fourier coefficients, see [9], p. 84.

For J,(7) as input function

We write out the Fourier expansion for the lift of J,(7). Since here the principal part is just
q~" and there is no constant term, the above expression simplifies somewhat.

@{V(Z,Jb)=8n( D n+ ), kyz—ab(y1+yz))

k,leZ~g k,l€Z+q
ki=b ki=b
((k,~1),W)>0 ((k,~1),W)<0 (5.1.9)
+4 Z c(mn)log{l —e(mz, + nzl){.
A=(m,n)ez2
A,W)>0

We specialize this to two examples, J;(7) and J,(7), with p a prime number.

Example 5.1.10. We begin with the additive Borcherds lift of
J1(1)=j(t)—744=q 1 +196884q +....

Here, m = —1, so this takes up the examples 5.1.5 and 5.1.7. Since o, = 1, we must subtract the
correction term —87(y, + y,) from @%ZI(Y; W) to get <I>§1(W).
For the Weyl chamber W, the Fourier expansion is given by

<1>zv>(Z,J1) =-8ny,+4 Z c(mn)log|1 —e(mz, + nz;)

J

m,n€Z
m>0,n>—1

while for W_, we get

@ZV<(Z,J1)=—87'cy1+4 Z c(mn)log|1—e(mzz+nzl)).

m,n€z
n>0,m>-1

Example 5.1.11. Next, we consider the lift of J,(t) = q"? + O(q), with a prime p. This takes
up examples 5.1.6 and 5.1.8. The divisor sum o, is 1+ p, so we subtract —87(1+ p)(y; + ¥2)
from the result in 5.1.8 to get the contribution of @} (Z,J,).

All together; we get

—(p+1y, onW,.,
®(Z,J,)= 8n{ —py,—py, onW,_
—-(p+1)y; onW__

+ 4 Z c(mn)log‘l —e(mz, + nzl)‘.

m,n€Z-oU{—p}
(W, (m,n))>0

Depending on whether W =W, ,, W=W,_orW =W__.
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Borcherds products for J, (1)

The Borcherds product consists of an infinite product part, and a factor depending on the
Weyl vector, which is determined by the principal part of the input function. Write the Fourier
expansion of J,(7) in the form q~° + Do c(m)g™.

We first put together all contributions to the Weyl vector. Denote the Weyl vector calculated
using [9], p. 88, as p(J,; W)'. Since the principal part of J,(7) is given by ¢~? we need only
to consider the Weyl chambers of index m = —b. Then,

1
Py W) = Ep—b(w),

where p_, (W) is the Weyl vector from (5.1.7).

To recover the Weyl vector for the actual Borcherds lift of J,(7), we need to correct for the
constant term b,,(0, 1) in the Fourier expansion of the Poincaré series F,,(7,1). This is done
by subtracting the term given in (5.1.3). So, we get

p5,(W)=p(Up; W) —0o,-(1,1). (5.1.10)
For the multiplicative lift, by theorem 2.2.3, Borcherds’ theorem 13.3 in [5], we have
vz, g)=e((p,w).2)) T] @-e(@2))™

A€K
(A,W)>0

=e(p122 + p2z1) l_[ (1—-e(mzy+nz,))
m,n€z
((m,n),Ww)>0

(5.1.11)

c(mn)

Here, p; and z;, for i = 1,2 denote the components of p Jb(W) and Z. The product converges
for q(Y) = 3(21) - 3(25) > b.
We take up the examples considered above.

Example 5.1.12. We begin with the Borcherds lift of
J1(t)=j(t)—744=q ' +196884q +....

Since d = 1, as in example 5.1.10, we make use of the results from examples 5.1.5 and 5.1.7.
Since o, = 1, the Weyl vector is given by

1
p(J; W) = §P1(W) -(1,1).

For the Weyl chamber W., defined by y, > y,, the Weyl vector equals (—1,0). Thus, the Borcherds
product takes the form

\IJ‘I:V> ((21,22),J1) = e(—zz) l_[ (]_ — e(mzz + nzl))c(mn) .

m,nez
m>0

The condition m > 0 is obtained thus: Since c(mn) # 0 only for mn > 0 or mn = —1, we must

consider whether (1,—1) or (—1, 1) has positive inner product with any Y € W.,.
Similarly, for W_, which is defined by y, > y,, the product is given by

‘I’% ((z1,25),J1) = e(—21) l_[ (1—-e(mz, + nzl))c(mn) .
m,n€z
n>0
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Example 5.1.13. Next, we lift J,(t) = q"? + O(q), with p a rational prime. This takes up the
examples 5.1.6 and 5.1.8, while the Fourier expansion has already been considered in example
5.1.11.

The divisor sum o, is 1+ p. So the Weyl vectors are given by

1
PU W)= p_,(W)=(1+p)(1,1),

where p_,(W) can be read off from example 5.1.8.
The Borcherds product in this case is given by

e(—(p + 1zy)

vy ((21,22),J,) = | e(=pz1)e(—pz2) p - l_[ (1—e(mz, + nzl))c(mn),
e(—(p+1)z) el
((m,n),W)>0

depending on whether W =W, , W =W__ or W=W__.

5.2 The lift to SU(1,1)

In this section we will calculate the lift of the weight zero modular forms J; to Borcherds
products Z;, on SU(1,1). We use our main theorem 4.2.1 from chapter 4. The results on the
Borcherds lift to SO(1,1) and SO(2,2) from the previous section will help us to recover the
Weyl vector term and to give a geometric description of the Weyl chambers. For this, we use
the embedding a constructed in chapter 3.

In the present setting, the Siegel domain 4, is isomorphic to the classical complex upper
half plane H = {z € C; 3z > 0}. The automorphic products we obtain can be identified
with meromorphic functions on H. Since the functions J;, have no constant term in their
Fourier expansion, the automorphic products Z;, have weight 0, so they are classical modular
functions. An explicit description of the embedding a will also help us to write our results in a
form making the identification between 5%; and H apparent.

5.2.1 The lattice and the upper half-planes

For an imaginary quadratic number field F = Q(+v/d), denote by L the hermitian hyperbolic
plane over Oy,

L=0;09;",
equipped with the usual hermitian form
(MY =A% + A0, where Ay, AL € G, Ay, AL € 977

Then, L is an even unimodular Op-lattice and L ®,, F =V is a two-dimensional vector space
over F. After F-sesquilinear extension of the hermitian form, V carries the structure of a
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hermitian space V, (-, ). After further extending scalars, Vz =V ®p R is a complex hermitian
space of signature (1, 1).

Write &y in the form Z 4 Z{ and denote by 06 the square root, with the principal branch of
the complex square root, of the discriminant Dy of F. Then, as a Z-module, L can be written
in the form

L=(z+20)® (3z+%z).

With the bilinear form (-, ) = Trpg (-, ), L is a quadratic Z-module of signature (2,2), which
is isomorphic to the orthogonal sum of two hyperbolic planes over Z.

As an F-basis of V, we choose two lattice vectors, { € 0, and ¢’ € 2, ! both isotropic with
(£,€") # 0. Further, without loss of generality, we require ¢ and £’ to be generators of L as an
Og-module, so L can be written as L = Oz @ Oxl’.

For example, we can put { =1 and ' = —-6~' € 2., as in example 1.1.14.

The positive projective cone #; C P(V) is a model for the symmetric domain of SU(1, 1).
Denote by % the preimage under the canonical projection 7. There is a unique set of
representatives f(;l C Ay of the form

ALl ={z=0—15(l,L)(}.
The Siegel domain 4 is then given by the upper half-plane
Ay ={reC; 31 >0}.

The identification ; ~ H and the group action.

Since the Siegel domain #4; is defined as the set of T € C with §7 > 0, clearly as sets,
4, and the classical upper half plane H are the same. Since 54; and H can also defined as
symmetric domains, for the operation of SL,(R) and SU(1, 1)(R), respectively, we will briefly
describe the isomorphism between SL,(R) and SU(1,1).

The special unitary group SU(1, 1) operates on 4 by fractional linear transformations as
follows. Let y in SU(1,1), and (2 B) be the matrix representing y as an element of SU(V)(R)
in the basis ¢ and ¢’. Abbreviate e = —6 (¢’,£). Then,

A B) AT — Be™!

cp)* Cet+D
This can be verified easily by considering the operation of y on the projective line [z] =
[(eT,1)] € P(Vg).

Proposition 5.2.1. An isomorphism between SL,(R) and SU(1,1) is given by

SL,(R) > (‘Cl Z) —

where € = =6 ({',(). In particular, for (£,£’) = &7, the mapping between SL,(R) and
SU(V)(R) is the identity. The parabolic subgroup T, of SLy(Z), consisting of matrices (1),
with n € Z, is sent to the set of translations [n] = ({ '), with n € Z, see (1.1.5) (these are all
the integral points in the parabolic subgroup P({) as there are no Eichler elements).

(Cf_l Ze) e SU(V)(R),
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Heegner divisors and Weyl chambers

Heegner divisors

For the following recall section 4.1.1. Let A be a lattice vector of negative norm, A € L with
qgIA)=m<0,meZ.

Through definition in (4.1.2), we have associated to A the subset H; of #}; ~ Gry,

H, = {[z] € #y; (z,A) =0}, (5.2.1)

a codimension one sub-Grassmannian of Gry;, which can be identified with a subset of the
Siegel domain #4;, described by (4.1.3).

When .%;; is embedded into %, on the image, H, agrees with the intersection of a(4;)
with the analogously defined subset A+ of Ay, attached to A, recall lemma 4.1.2,

a(H,) = At na(#y), with At ={[z;] € H#; (Z,A) =0}.
Finally, for a negative integer m the Heegner divisor of discriminant m is defined as the sum

H(m) = Z H,, supported on the set U H, C 4.

AEL AEL
q(A)=m qg(A)=m

We say that a point 7 in H lies on the Heegner divisor H(m) if, assuming the identification of
#4; with H, the line [2(7)] € 4, is contained in H(m).

Weyl chambers

Weyl chambers in %, are subsets defined by inequalities involving only the imaginary part
of elements Z € #,, recall defintion 2.1.15. Given a Weyl chamber W in 54,, by definition
4.1.4 the corresponding Weyl chamber J; is the set of T for which the image in #, lies in W.

In the present setting, a Weyl chamber of 74, can easily be described through inequalities
satisfied by the imaginary part of T. We recover these from the inequalities defining W in
#,, depending on the coordinates used. For this reason, we use the same notation for a Weyl
chamber in 7, and the corresponding Weyl chamber in 4, at least when the context is clear.

CM-orders of Heegner divisors

Next, we want to describe explicitly the points 7 in the upper half plane model 54; ~ H which
constitute Heegner divisors and then determine their CM-orders.

The description depends on the choice of the basis vectors £ and £’ and the realization of
the half-plane model 54, as a subset of the cone ;. Weput{ =1€ gz and ' = -5 € 9, .
Then, the lattice L is given by Opf & Oz’ and the representative z(7) € J?S associated to
T € 44, takes the form z = £’ + 7£.

Consider a lattice vector of negative norm, that is A € L, with g(A) = (A, A) = m, withm a
negative integer. We write A as

A=al’+bl, with a,b€ 0.
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Then, m = (A, A) = —|5|™"23(ab).
The condition for the point T € 54; to be an element of the primitive divisor H, associated
to A can be phrased as

0= (z(7),A) = ({'+1L,al’+bL),

whence, since 61 = ((,£') = — ({',£), we get

T =

Qi o

(5.2.2)

The Heegner divisor of index m on 4, is given by a formal linear combination of points
(with multiplicities)
H(m) = Z H, = Z (7, =b/a).

A€L A=al’+be
(A,A)=m qg(\)=m

CM-orders

Given a Heegner point 7 in the upper half-plane H ~ J;, we consider the lattice Z4+7Z = A,.
Since T € F, the elliptic curve E; = C/A, has complex multiplication by an order &, in &.
Equivalently, @, is the multiplier system of the hermitian lattice A_..

The minimal quadratic equation defining 7 as an element of F is given by

0=1%2-Tr(t)T +N(7)

) (b B) (b)

=1"—|—-—4+—=-|7T+N| -
a a a
_Tr(aB) N(b)

2
N@ & N(a)

=7

Now, once we multiply with N(a), we get an equation with integral coefficients:
0=N(a)t*>—Tr(ab)7 + N(b). (5.2.3)

If the equation is reduced, its discriminant is the discriminant of the CM-point 7, see for
example [45]. In general, however, we can not assume the coefficients to be coprime — even if
A is primitive. Thus, let ¢ = ged(N(a), N(b), Tr(ab)).

We rewrite N(b) as N(ab) - N(a)~!. Since we have

3(ab) = —@m
2 )

this results in the following equation, which has integral coefficients (and is reduced exactly if
q=1)
0=N(a)t*—2%(ab)T +N(a)™ (m(af))z + %Iélzmz) : (5.2.4)

The discriminant of this equations calculates to

D = 4% (ab)® — 4N(a)N(a)™! (Qﬁ(af))z + §|5|2m2) = —|6*m2 = m?62 = m2D.
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Now, if ¢ # 1, we have q | N(a) and q | N(b), thus, g | N(ab) and since q | Tr(ab), clearly
q? | 82m?. Thus, the reduced equation

0= % (N(a)rz ~Tr(ab)7 +N(B)) (5.2.5)

has discriminant D’ = D/q? = 6%(m/q)? = Dp(m/q)?.
Since f2— f =0 mod 2 for f € Z, the Z-module @, can be written in the form

D'+ VD’ m| D +\/
O, =0+—>—L=0+ l Dot Vb, _ Z+—0IF
q

Thus the conductor of the CM-order @, cf. [45] chapter 8 §1 theorems 1 and 3, is given by
|m|/q, with ¢ = gcd(N(a),N(b), Tr(ab)), as above.

Remark 5.2.2. Note that the discriminant of a C M-points remain invariant under the operation
of SU(L). Indeed with the isomorphism between SL,(Z) and SU(L) given in proposition 5.2.1 it
is easily verified that for T as given by (5.2.2) we have

A B)__Vb 0 () (A B)(a
cp|* =7 wi v =lc plly)

Also, q' =ged (N(a"),N(b"),Tr(a’d")) = ged (N(a),N(b), Tr(ab)) =

Embedding and choice of basis

We now recall the embedding from chapter 3 as a preparation for the calculations in the rest
of this chapter. Generally, the embedding of symmetric domains takes the form,

Z +_( —iz ) e
Z —> —. —. = ,
2 ey \ @) T

with z = £/ — § (¢/,£) ©¢ € % and where Z; € %, is the standard representative in Vg
associated to the tube domain coordinate Z. In terms of T and Z, the embedding 5, — 5,
is given by

{Te3 + §e4 if 95 is even,

T—> 7 = 2

Tes — e, if Py is odd,

with w = %(1 + 6) and e3, e, basis vectors as determined in (3.1.1) for the signature (1,1)
quadratic subspace K ®; C C Vg, (+,+) = Trg g (-, *)-

We briefly recall some of the construction in the present setting: The FF-vector space
V =L ®, F, when considered as a rational quadratic space over @, can be decomposed into
two hyperbolic planes over Q. In order to get a decomposition of L into two perpendicular
hyperbolic planes over Z, we decompose the quadratic space V', (-,+) into (complementary)
maximal isotropic subspaces.
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As a basis for the first of these, put e; = £ and e; = —C{. For the second maximal isotropic
subspace, basis elements e, and e,, with e,, e, € L are determined as in (3.1.1). Then, since
es L e, e;, and e, L eg, e, the lattice is the direct sum of two perpendicular hyperbolic planes
spanned by e;, e, and es, e,4, respectively.

We denote the latter hyperbolic plane by K, as usual, since K = LN elL ﬂezl. Further, the basis
is normalized to ensure that (e;,e,) = (e3,e4) = 1, so e; and e, take the role of Borcherds’ z
and z’, while K ~ 7Z2.

While it is possible to treat number fields of both odd and even discriminant consistently, as
in chapter 3, we will treat them separately:

* In section 5.2.2, the number field F has even discriminant Dy equal to 4d, with d =
2,3 mod 4. Then, § = 2v/d, the ring of integers & is given by Z + 5 /2.

* On the other hand, in section 5.2.3, F has odd discriminant. In this case, Dy is equal to
d, with d = 1 mod 4, § is given by v/d, and Oy = 7+ wZ, where w denotes %(1 +9).

5.2.2 Number fields with even discriminant

Let d be a negative squarefree integer, d = 2,3 mod 4. In this case,
L=0:06"0=(2+32)® (67'2+32), with §=2Vd.

As usual, we choose elements ¢ and ¢’ from L with ¢ primitive isotropic and (¢,£’) # 0 and take
these as basis vectors for V = L ®,, F. Without loss of generality, we assume L = Op( & Gl’.

Now, a maximal isotropic subspace of V, (-, -) is spanned by e; = ¢ and e; = —%56 =-Cl. A
basis e,, e, for the complementary maximal isotropic subspace as considered in 3.1.2 is given
by

1 - / 1 B /
ey = (m) 0, ey = (m) {. (5.2.6)

For the embedding from chapter 3, we have the following description. The image in Grg of
[z] € #y, represented by z = ¢’ — (¢/,£) T6( € 4}, is spanned by vectors X, (z) and Y, (2)
given by

~

1 —i
X = Y = .
2 ((M)) s n) (w,e)) #
Independent of the value of (¢,¢’), the image Z;(z) =X +1Y; € V. is given by

Z(z)=ey+ 264 - 52—761 + Teg, while Z(7)=r71es+ ge4 (5.2.7)
is the corresponding point in #,. Its imaginary part Y is given by %|5 le, + FTes and its real
part X by Rres.

In order to use the results from 5.1 previously calculated, we must choose an ordering of
the basis for K ®, R. Thus, put v; = e4 and v, = es.

Now, the stage is set to actually lift modular forms from //té to automorphic forms for a
subgroup of SU(L).

To begin with, we pull back the Fourier expansions of the additive lifts ®;(Z, f ) determined
in previous section from %, to 4, the Borcherds products Z;, (7) will be determined on p.
121ff.

—~
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Fourier expansions

The pullback of the Fourier expansion (5.1.8) of &,(f) for f € .4, is given by

(a*®,(f))(7r)=8mn Z c(m)( Z l@—i— Z kST—(%|5|+S’E)O’_m)

m<0 k,l€Z>0 2 k,l€Z>o
c(m)#0 ki=—m ki=—m
k3to—1|6|/2>0 k3to—1|6]/2>0

+¢(0)(—1log(|6|37) — I'"(1) — log(2m))
+4 Z c(mn)10g|1 —e(mt + n2n) }

A=(m,n)ez>
(A,W)>0

The condition (A, W) > 0 for A = me, + ne; € K is equivalent to (Y, A) > 0 for every Y = 37
in the Weyl chamber, which in turn is satisfied if (Yy, 1) > O for one Y, in the Weyl chamber.
Since Y = §7Te; + %|5|e4, we can replace ((m,n), W) > 0 with the condition

1 1
Sfrm+§|5|n>0, for all T € W, and further with STOm—I—5|5|n>O, fortoe W,

since it suffices to verify the Weyl chamber condition for one arbitrary 7, € W. As usual, we
consider T € #4; as contained in W, if the image Z of 7 in the tube domain has imaginary
part Y with Y € W. If W is defined by a set of conditions of the form ay, + by; > 0, then
such are satisfied by T with 2a3t + b|§| > 0.

Remark. We can also write the Weyl chamber condition using z € ,%7[;1, as in chapter 4. The
condition (A, W) > 0 can be reformulated

(20, 1)
(0, 0)”

o
0< 3rom+ n = (¥,2) = (Y., 2) = 3

where the first and third equalities hold by the construction of the embedding, see (3.2.11) and
(3.2.7), while the second holds since A € K ®; R is perpendicular to e, and e,.

Similarly, the inequalities defining a Weyl chamber can be reformulated in terms of z, see
remark 4.1.5 on p. 93.

Now, for f = J,, there is no constant term c(0) and the principal part consists only of q~°.
For the pullback a*®, (J,), we get the following

@o,o@=sx( Y e 3 k3o (Ysl-37) )

k,l€Z>0 k,l€Z>0
kl=b ki=b
2k370—1|5]>0 2k37o—1]5]<0
+ 4 Z c(kl)log}l—e(kr—i—rc%l”.
K l€ZoU{-b}
A=keg+les

30,07 z(70),2) )>0
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Remark 5.2.3. By remark 5.1.9, the Fourier expansion of ®;(f) converges for q(Y) > 2|my.
Thus, for a*®,(f) convergence is assured when %3’:5 > |m|. In particular, when §16 > 2b for
f =Jyp. As this condition depends on 0, for a fixed input, we get different domains of convergence,
as we vary the number field FF.

Example 5.2.4 (J;(7)). Consider the Fourier expansion of J;(), given in example 5.1.10. The
Fourier expansion of the pullback a*®;(J;) takes the following form.

5t forW,
Sl8l forw
+4 Z c(mn)log|1—e(m7+%n5)|.

m,n€Z~oU{—-1}
m>0 on W~
n>0 on W

(a*®,(J1))(T; W)= —8~n {

The Weyl chambers W., and W_ are obtained by pulling back the ones introduced in example
5.1.7. They are given by the conditions 237 > |&| and 237 < |5|, respectively.

Example 5.2.5 (J,(7)). With the Fourier expansion of <I>§p from example 5.1.11, the Fourier
expansion of the pullback can be given immediately:

—(p+1)37 on W,
(a*®;(J,))(t; W)= 8m{ —p3T—pl6|/2 onW,_
—(p+1)6]/2 onW__

+4 Z c(mn)log|1—e(m¢+n%5)|.
m,n€Z~oU{—p}
A=meg+nes

3(¢¢/,0)" 1 (z0,1) )>0

The Weyl chambers are defined as in example 5.1.8, with y, = 37 and y; = %|5 | inserted into to
defining conditions.

Borcherds products

For the multiplicative lift Z;(7) of a weight 0 weakly holomorphic modular form f € //l(;, the
Borcherds product expansion on 4; is given by the general formula in our main theorem
4.2.1 of chapter 4 specialized to the case of a unimodular lattices of signature (1, 1), in which
corollary 4.2.4 simplifies further:

= [z pp(W)) (z, )\ ) )
._.f(T)—C(W) ]_[ (1—e(w,£>)) , (5.2.8)

A€K
(W,A)>0
(z,4)
where (W,A)>0 means Sw 0 >0,

with z = z(7), for every T € W — the notation for the Weyl chamber condition introduced in
definition 4.1.6. Recall that it suffices to check this condition for one arbitrary 7, € W, see
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We then determine the Weyl vector using the results previously calculated in section 5.1. If
W is a Weyl chamber with respect to f, the Weyl vector p;(W) can be obtained from Weyl
vectors of the form (5.1.7) as follows, cf. [9], p. 88. If for m < 0 the coefficient c(m) in the
principal part of the Fourier expansion of f is non-zero, there is a Weyl chamber of index m
containing W, say W,,. The Weyl vector of this chamber p,,(W,,) is multiplied with a factor
of 1/2, when passing to the smaller chamber W, further, we must add the correction term
O - (1,1) to take into account for the constant term of the Poincaré series F,(7,1), recall
p. 103. Contributions for all m < 0 with c¢(m) # 0 are summed, weighted by the Fourier
coefficients c¢(m), thus,

0
prw)= 3 @(pm(wm)—mmy(l,l)ﬂg. (52.9)
m<0

c(m)#0

Remark. Since we have already calculated some of the relevant Borcherds products in the previous
section 5.1, rather then using theorem 4.2.1, we could alternatively determine Borcherds products
on SU(1,1) through the pull back under the embedding a from (5.2.7). It should be clear that
the pullback (a*W¥;)(7) would give the same expression for Z;(7) as (5.2.8).

This can also be verified through a calculation, by showing that (Z,,v) (£,£") = (z,v) for
every v € Vg and (z,x) = ((,{") (Z,x) for all k €K @, R.

Example 5.2.6 (Constant functions). To determine the lift Z,(7) of the constant function 1, we
can mimic the considerations used in 5.1.1 to determine V;(Z,1) and find that E, is given by
an eta function times some constant. However, in this particular case, it is more straightforward
to determine Z,(7) from the earlier result for W;(Z,1) by pulling back under the embedding
(5.2.7). This gives

Ei(t)=e (%4(’5 + %6)) l_[ (1 — e(%5n)) l_[ (1—e(mt))
=n(3) (7).

The expression for Borcherds products in (5.2.8) can be brought into a simpler form, showing
no dependence on how 4 is constructed as a subset of J¢;. This way, the interpretation of
Z¢(7) as a function on the upper half plane H =~ J¢; is more apparent:

5 5 c(mn)
Ef(t)=e (p2T+P1§) l_[ (1_6 (T’”Lim)) ’ (5.2.10)

m,n€z
2n3t+|6|m>0
Vtew

with the Weyl vector (o5, p2) = pf(W) given by (5.2.9).
It suffices to verify

(2,A) = (€',£) (TAp+364;), for A=(A;,A,) €K ~Z* and
(z,07) = (L) (PzT +P1%5) :

Replacing 7 by 7, and taking the imaginary part, it also follows that the Weyl chamber
condition (W, 1) > 0 can be written in the form 21,37 + |6|A; > 0.
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In fact, since both A and p are contained in the real subspace K ®; R of the real space V
underlying V4, it suffices to consider an arbitrary vector k € K ® , R. Write k as k = (K1, k5) =
Kie3 + Kqey, with e3 = —%512 and e, given by (5.2.6). Then,

1
(z,K) = 551('1 (U, 0) — 16 (£, 0) Ky (L, e4)

= (0,0) (25w — e (-5T0,0) " {0,0))
= (0,0) (L6, +7x,),

as claimed.

Borcherds products with inputs J,(7)

For the Borcherds products of Z;,, b =1,2,..., since J, = q~+0(q), we need only consider
Weyl chambers of index m = —b. Further, the coefficient c(—b) = 1 and there is no constant
term. Thus, (5.2.9) simplifies and the Weyl vector p;, (W) is given by

1
P, (W)= 5pn(W) = 01y (1, 1). (5.2.11)

We consider two examples for b = 1 and for b = p with p a prime number. Further
somewhat more involved examples are given in section 5.2.4.

Example 5.2.7. We begin by considering the Borcherds lift of
J1(1)=j(7)— 744 = q~ 1 + 196884 q + 21493760q> + - - -

Here, we are in the case where m = —1. The Weyl chambers and corresponding Weyl vectors have
been determined in example 5.1.7. There are two Weyl chambers in 4(K), W., and W_ defined
through y, > y, and y, < y;. As Weyl chambers in 54;, they are defined by 25t > |6| and
237 < |8]. (Keep in mind that we have fixed the isomorphism Z* ~ K by putting v, = e, and
vy = e3.)

For the Weyl chamber W, the Weyl vector is given by

1
PJl(W>) = Ep_l(w>) —(1,1)=e3—e3—e4=(0,—1).

Thus, the Borcherds product for Z;, takes the form

2, (T)(W-) = e(—17) | | (1 —e(nt+ %6m))6(mn).
m,n€z
n>0

The condition n > 0 is obtained as follows; We have c(mn) = 0 for mn & Z.,U {—1}. Of
the two vectors A = (m,n) with q(A) = —1, only (—1, 1) satisfies the Weyl chamber condition
Stn+m|6|/2> 0 for T € W..

For the Weyl chamber W_, we have p,; (W.) = % -2e, —(1,1) = (—1,0). The attached
Borcherds product is given by

2y, (D)W) =e(—36) l_[ (1 —e(mt+ n%é))c(mn).

m,n€z
n>0

The condition for absolute convergence of either product is %ST|5 | > 1. So, for example W., is
contained in the domain of convergence, which, if d # —1, also includes part of W_.
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Example 5.2.8. We now consider the case where m is the negative of a prime integer, that is
the lift of J,(7) = q"F + O(p). Recall from example 5.1.8 that there are three Weyl chambers

of 9(K), W,,, W_, and W__, which are defined by the inequalities y, > pYy,, pY1 > Yo > 117 Y1
and y, < }l) Y1, respectively.

The three resulting Weyl chambers of #4; are then described as follows. Every T contained in
W, , satisfies the condition 237 > |8|p, while T € W___satisfies |6|p > 231 > |6]/p and, finally,
TeW__if|6|/p > 257.

The divisor sum o, is equal to p + 1, thus, from (5.2.11), the Weyl vectors for W =
W, ,W_,,W__ are given by

Py, (W)= Ep_p(W) —(p+1)-(1,1) =4 —pes —pey if W=W_,,
_(p + 1)63 lf W= W——J

with the Weyl vectors p_,(W) from example 5.1.8 with v, replaced by e, and v, by es.
The Borcherds product expansion of = Jp is given by

5,0 =[] (1-e(mr+1ins7))"™
ZerZ’-I—IFﬁZ[n>O
VTew
e(-(p+1)7)
X e(—1ps —pr)
e(—5(p+1)5),

depending on whether W =W, ,, W=W__ or W=W__.

The condition for absolute convergence is given by St > 2

51"
that this condition is, for example, always satisfied on W, ., and that if |d| > p?, the domain of
convergence encompasses all of W_, and part of W__. Thus, the Borcherds product attached to

W__ converges on W, but may fail to converge on W__ itself, namely if |d| < p®.

As we vary the input J,,, we see

5.2.3 Number fields with odd discriminant

Now let d be a negative squarefree integer, with d = 1 mod 4. Then, F = Q(+/d) has
discriminant Dy = d and & = v/d. In this case, the lattice L is given by

1 w 1
L=0:®6 0, =(Z+wZ)® (gZ—I- EZ) , Where w= 5(1 + ).
As before, we select elements £ € 0, and {’ € Dz 1 which we take as a basis of L Qg F. We
require £ and ¢’ to be generators of L as an gz-module.

In the rational quadratic space V, (:, ), a maximal isotropic subspace is spanned by e; = /¢
and e; = —{. As determined in section 3.1.2, a basis e,, e, for a second maximal isotropic
subspace, where e;, e, and e3, e, span two orthogonal hyperbolic planes, consists of

1467 1 1

= f = —0 = ’ 5.2.12
Tyt T wns  “Tswn ( )
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Under the embedding a : #; — 5, as examined in chapter 3, the image Z(1) in 5, of
T € #; and the corresponding representative in ¢, are given by

Z(t)=(—d)es + Tes,
Zi(t)=ey+(—w)es+ Tes + dTey,

as in (3.2.12) and (3.2.13), with o omitted in the current setting, of course.

Weyl chambers

In the present case, conditions of the form ay, + by; > 0 defining a Weyl chamber W can
be reformulated as 2a37 + b|6| > 0, since Y = J7e; + %|5 le4. (Recall that we identify e; with
v, and e, with v;.) For example, the Weyl chamber W, from example 5.1.7 defined through
Y, > y; corresponds to a Weyl chamber 237 > |5].

A condition of the form (Y, A) > 0, for all Y in W, in turn is satisfied by A = me, 4+ ne; € K
with

2m37 +n|o| > 0,

for all T € W, implied by 2m3t, + n|6| > 0 for one arbitrary, fixed 7, € W.
Finally, the domain of convergence for the lift is described by an inequality of the form

1
q(Y)=37-3(-®) = 515|137 > |mo|.

The Borcherds lift

Pulled back Fourier expansion

As in the case of number fields with even discriminant, we apply the pull-back under a to
the Fourier expansion of the Borcherds lift. We limit this to two examples.

The Fourier expansion of a*®;(J,) for a general J,, with b =1,2,3,... is given by

(a*ch(Jb))(T)ZSTC( Z @—i— Z k3T — (%|5|—37)0d)

k,l€Z¢ k,l€Zx0
ki=—b Kl=—b
2k370—115]>0 2k370—115]>0
+ 4 Z c(kl)log|1—e(k’r—a')l){.
kl€Z-u1b}

2k37o+1|5]>0
For the simplest example, the lift of J;, we have

) _ [-87n3Tt onW.
(a"®,(J)) (1) = {—277:|5| on W_

+4 Z c(mn)log‘l —e(—ma +nt) | :
m,n€z
m>0 for W,
n>0 for W.
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Borcherds products

For the constant function 1, the Borcherds product takes the form of an eta-product. It is
most easily calculated by pulling back ¥, (Z, 1), as calculated in section 5.1.1. We get, quite
simply

Z(t)=e (T _ a_)) l_[(l —e(—nw)) l_[(l —e(m7)) =n(—w)n(7).

24 n>0 m>0

As in (5.2.10), for a Weyl chamber W, we can write the Borcherds product expansion of =;,
in the form

B, =e(psr—p®) [] (1-e(ck—1a))"", (5.2.13)
k,1€Z
2k37+1|5]>0
Vtew

with p;, (W) = pqe5 + pyey given by

1
Py, (W)= Ep—b(w) —op(1,1),

as in (5.2.11). The product expansion (5.2.13) follows from theorem 4.2.1 and its simplified
version (5.2.8) through a similar calculation as for (5.2.10): For k = e3k; + e4k5 € K ®; R,
we have

(z,k) ==Ky (£',0) — 16 (L', 0) x5 (L, e4)

(€,€) (—ar, = 6K, (=5(6,0)) 7 (4,0))
(U',0) (—oK, + TKy) .

/
>

It follows that
(z,0r(W)) _ (z,1) i
szpz—copl, W:’Clz—wkl.
The Weyl chamber condition 5 ( (2o, A) (ﬁ’,€>_1) >0 for A =2Ae5+Aeq, with A, €Z,1=1,2,
can be rephrased as 31yA, + %I6|Al > 0, as the imaginary part of —c is given by %|6|.
The condition for absolute convergence of the product in (5.2.13) can be formulated as
33718] > b.
Finally, we consider the standard examples b =1 and b = p, with p a prime, as before.
Example 5.2.9. We consider the lift of J;(7), as above in 5.2.7, but now for number fields with

odd discriminant. The Weyl chambers W, and W_ are given by 237 > |6| and 237 < |5|. The
Borcherds product for W_ is given by

25, (D(W.) =e(+d) l_[ (1-e(mr - ncb))c(mn).
m,n€”z
n>0

whereas for W, we get

2y, (T)W.) =e(—1) l_[ (1—e(mr —na))™.

m,n€z
m>0

126 5. Lifting forms from ., - Borcherds products for SU(1, 1)



Example 5.2.10. As for number fields of even discriminant, see example 5.2.8, we consider the
lift of J, (), for a prime p. There are three Weyl chambers W,.,, W_, and W__. Of these, W,
is defined by the condition 231 > |6|p, while elements of W__ must satisfy |&|p > 237t > |5]|/p.
For W__ the requirement is |6|/p > 237.

The product expansion of = g, 1S then given by

=z, =[] (-e(mr—na))™
m,n€z
2mSt+n|6|>0
Vrew
e(—(p+1)t) onw,,
X e(po—pt) onW_,.
e(+(p+1)w) onW__

The product expansion converges for T with 3t > 2p|vd|™". The domain of convergence varies
in extent depending both on J, and on F. For example, if |d| > 4 it encompasses all of W, , and
also part of W_,.. (Asd =1 mod 4 this implies |d| > 7.) Convergence on (part of) W__ requires
|d| > 4p2.

5.2.4 Further examples: Lift of J,(7) with squarefree b

We work out one further, slightly more involved example case for the lifting, which encom-
passes our previous standard example of J,, with p a prime.

In the following, let m be a squarefree negative integer, m # —1. Denote by P the set of
divisors of |m| = —m, including 1 and |m]|,

P={d€Zsy;d|—m}.

Heegner divisors and Weyl chambers
For any t € P, we have lattice vectors A (t) in Z? with norm m,

A () = ('—T' —t) , and A_(t)= (t, —@) .
Note that A, (t) = A4,,,(Im|/t). The two lattice vectors attached to t define Heegner ‘divisors,
the lines

2 (O =R ('—T' t) ,and A_()f=R (t, 'm') )

Tt
which are reflections of each other along the diagonal. Such lines, for t € P, mark the

boundary of the Weyl chambers of index m. For each t, to A_(t) we attach the condition
(A,(t),Y) > 0. This can be written as an inequality of the form

Im\ ™" t?
Yo=> | —/— ty1 = 1—Y1-
t |m|

Now, let ¢, t’ be elements of P. Clearly, t > t’ implies t2/|m| > t’?/|m|. Thus, if Y satisfies the
condition attached to t, it satisfies the condition attached to A, (t") for any t’ less than t.

5.2. The lift to SU(1,1) 127



Similarly, for A_(¢t) the condition (A_(t),Y) < 0, defines the inequality

Im|
Y2 < 7)’1-

The set of Y € R? satisfying this condition is the reflection through the diagonal of the set of
Y satisfying (A,(t),Y) > 0. If Y satisfies the condition attached to A_(t) it will also satisfy
the corresponding conditions for all t’ smaller than t.

We can parametrize the set lines 7L+(t)l and A_(t)* by a subset Q of P defined as
Im|
Q={deP;d> 7 .

That the association of t to the pair A_(t), A_(t) is unique for t € Q.
To each t € Q, we associate two mirror-image subsets of the Y-plane, denoted W;r and W7,

we = {Y =(¥1,¥2) €R?; yp > f—,;yl and f%yl >y, V' €Q,t'> t},

W = {Y =(y,y2) ER?; y, < %yl and y,> %yl,Vt’ €eqQ,t' > t}.

It follows from the above considerations that W;" and W~ are Weyl chambers. Besides the
Wti for t € Q, there is one further Weyl chamber, which contains the diagonal. We denote this
by W, it can be described as the set

. 4 |m|
W, = Y=(y1,yz)€R;my1>y2>q—2y1 ,

with g the smallest element of Q. While this is the ‘middle’ Weyl chamber, the two ‘outermost’
Weyl chambers are W|:;| and W, ForteQ with t # |m| the Weyl chamber W;" is bounded
by the lines

1 _ |m]| 1
Ai=R (t: T) AZ it

1 Im/\ _ 4L
Aiu=R (’3 T) = A2 i

where u is the smallest element of Q larger than t, thus u = min{d € Q;d > t}.

Remark 5.2.11. If we define W and W, for all t € P\ Q, as well, then each Weyl chamber

W # W;' has two descriptions: Either as Wt+ for some t or as W for r = % where u is
next-largest to t in P. In particular, W; = W, = W|;| I The two Weyl chambers Wt+ and W~

_ Il

with s s

share a boundary.
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.. K
Determining ¢, .

Next, we calculate <I>rZh2(Y ; W) for each Weyl chamber. Since the vectors in Z? with norm m
are given by the set {1, (t); t € Q}, the expression for <I>In<1 from (5.1.6) takes the form

8v2m |m|
L (Y W) = -2( dy, + —
n (VW) == g »n ;2 N
(2+(d),Y9)>0 (2=(d),Y5)>0
Im|
+ g FECH Z dJ’2),
S

deqQ
(2+(d),Y)<0 (2-(d),Y)<0

with Y, an arbitrary element in W. We now work out what this is for one of the Weyl chambers
wr,

so let t be an element of Q. For Y € W;" and d € Q, the condition (A,(d),Y) > 0 holds
iff d < t, while (A_(d),Y) > 0 for all d. So,

@ff(Y;Wj)— IYI (ZdlerZ 1+ZMJ’2)

deqQ deQ deqQ
d<t d>t
8\/_7'C
= (Zdwz_”)
dep dep

d<t d>t

In contrast, for Y € W, we have (A_(d),Y) < 0 precisely if d < t, while (1,(d),Y) <0 for
all d € Q. Thus

2 _ 8v2m |m|
LY, W) = -2(
deqQ

Y] PRL dZ 2+Zd3’2)
eQ deqQ
d>t d<t
8V2m |m|
= |17| . (;E:-:;iy14‘jzjcty2).
€P deP

d>t d<t
The Weyl vectors attached to W," and W, are given by

(5.2.14)
depP depP deP depP
d<t d<t

d<t d<t
2
In particular, for 2" on the two ‘outer-most’ Weyl chambers W|i|, we have

pm(W+)—22—vl+ZZdv2, and p,,(W~ )-22dv1+22—v2

2 SVEZN 2 vﬁzﬂ
o7 (Y-W+|) — T 2(0my1) and @Z(Y; W)= T - 2(0mpy2)-
Finally, for the ‘middle’ Weyl chamber W, for all d, (A,(d),Y) <0 and (A_(d),Y) > 0, thus
8v2m |m|
Y| 22_(3’1 + ¥2)

deqQ
The attached Weyl vector p,,(W;) takes the form

Pm(Wy) = (2 Z d) (1 + 1)

(5.2.15)
deP\Q

2
OT(Y; W) =
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Borcherds products EJ‘ml

We are now ready to deal with the lift to SU(1,1). In contrast to the previous sections of
this chapter, we will treat both number fields of even and of odd discriminant at same time, as
in chapter 3.

Write &y in the form Z + {7Z with { = %5 if Dpisevenand { = w = %(1 + 6) if Dy is odd —
keeping in mind that § = 2+/d in the former and § = v/d in the latter case. The embedding

o : Ay — Hp is then given by T — Z; = —e, + Te,, with the basis vectors ey, ..., e, from
(3.1.1).
The conditions defining the Weyl chambers now take the form of inequalities on 37, namely
3T > il for A, (t) and 37 < Im|19] for A_(t).
2|m| - 2t2 B

2
So, for example W|;| is the half-plane defined by 237 > |m||5|, W; is the strip ﬁm|5| > 257 >
|q%||5| and W, is given by % > 25371 > 0.
The corrected Weyl vectors p J‘ml(W) can be recovered from (5.2.14) by way of (5.2.11)
with the identification v; = e,, v, = e3. Thus,

Py W=D () =0y (1,1) =D (=) s+ D, (=5)-es,

seP seP seP

s<t s>t s>|m|/t

Py W=D (L) —op(1,1) = Do (=) -5+ ) (—5) e,
sepP sepP sepP
s<t s>|m|/t s>t

For the Weyl chamber W;, with (5.2.15) we get

Py (W1) = Z (5,8) — O - (1,1) = Z(—s, —s).

seP\Q seQ

The Borcherds product expansion of = T TIOW takes the fom

Ejlml(f) = l_[ (1 —e(kt — zZ))C(m")

k,leZ
((Lk),W)>0
e(-l— D sep s¢ - D sep 57) ifw = W;L fort €Q. (5.2.16)
s>t s>|m|/t
X 3 e —ZSGQS(—C-I—T)) iftw=w,,
e+ sep s{— ZsePST) ifW=WwW forteQ.
s>|m|/t s>t

For the special cases W = W@ of the topmost and bottom-most Weyl chambers, we have the
following Borcherds products:

_ _ [e(=omT) =\ c(kD)
= {lomp) - [T ety
((L}),W)>0
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The condition for absolute convergence of the product expansions is 37 > 2|5|~|m|. Certainly,
this is fulfilled on a part of the topmost Weyl chamber W;P so at least there, the Borcherds
product converges.

Generally, whether the product expansion converges on a given Weyl chamber W depends
on 6, in other words, on the number field F. To find out if W is contained in the domain
of convergence, we can examine the convergence condition case by case, for W = Wt+,
W =W, with t € Q, and for W = W;. In the first case, for example, assume W = Wt+. Then,
2|m|37t > t2|5|. For t # |m| denote by u the next largest element in Q. Then, we also have
2|m|37 < u?|8|. Thus, we have convergence on all of W if t2|5|* > 4m? and at least on part
of W if either W = W|;| or otherwise, for t # |m|, if u?|6|* = u?|Dy| > 4m>.

By varying F, we find that the domain of absolute convergence encompasses only part of

the Weyl chamber leﬂ for Q(v/—1) and Q(+/—3), but all of W|:1| for Q(+/—2) and all number
fields Q(+/d) with |d| > 3. In contrast, convergence on even part of W|;| requires |Dy| > 4m?.

Taking m = —2, for example, the Borcherds product Z,,(t; W,) for J, converges on part of
‘its’ Weyl chamber W, for Q(+/—6), and also on W; and on W* for every t € Q.

Remark. If as in remark 5.2.11 we define WtJr for all t € P, we can describe all Weyl chambers
as W, for some t, except for W The defining inequalities can then all be written in the same

form, except in the case of Wi which is given by 0 < 237 < |§||m|™". A similar remark applies
if all Weyl chambers, except for W|;|, are described as W,~ for some t € P.
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