Universität Heidelberg

Mathematisches Institut Prof. Dr. Winfried Kohnen Dr. Eric Hofmann

18. Januar 2019

Analysis 1 – Übungsblatt 12

Wintersemester 2018

Aufgabe 1 (4 Punkte)

Beweisen Sie das Majorantenkriterium von Weierstraß.

Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge von Funktionen $f_n: M \to \mathbb{R}$ auf einer nichtleeren Teilmenge M von \mathbb{R} , und sei $(a_n)_{n\in\mathbb{N}}$ eine Folge nichtnegativer reeller Zahlen mit

$$|f_n(x)| \le a_n$$
 für alle $n \in N$ und alle $x \in M$.

Konvergiert die Reihe $\sum_{n=1}^{\infty}a_n$, dann konvergiert die Funktionenfolge $\sum_{n=1}^{\infty}f_n$ gleichmäßig absolut auf M.

Aufgabe 2 (1+2+1 Punkte)

Entscheiden Sie, welche der angegebenen punktweise konvergenten Folgen von Funktionen auf $\{x \in \mathbb{R} \mid x \ge 0\}$ gleichmäßig konvergieren. Begründen Sie Ihre Antwort.

(a)
$$f_n(x) = \sqrt[n]{x}$$
,

(b)
$$f_n(x) = \frac{1}{1 + nx}$$

(b)
$$f_n(x) = \frac{1}{1 + nx}$$
,
(c) $f_n(x) = \frac{x}{1 + nx}$.

Aufgabe 3 (4 Punkte)

Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge von Funktionen $f_n:[0,1]\to\mathbb{R}$ definiert durch

$$f_n(x) := \begin{cases} nx & \text{für } x \in [0, \frac{1}{n}), \\ 2 - nx & \text{für } x \in [\frac{1}{n}, \frac{2}{n}), \\ 0 & \text{für } x \in [\frac{2}{n}, 1]. \end{cases}$$

- (a) Zeichnen Sie die Graphen von $f_1, f_2, ..., f_5$ in ein gemeinsames Koordinatensystem.
- (b) Zeigen Sie, dass alle f_n stetig sind, und die Folge f_n punktweise gegen eine stetige Funktion *f* konvergiert.
- (c) Entscheiden Sie, ob die Folge (f_n) gleichmäßig gegen f konvergiert. Begründen Sie Ihre Antwort.