Universität Heidelberg

Mathematisches Institut Prof. Dr. Winfried Kohnen Dr. Eric Hofmann 2. November 2018

Analysis 1 – Übungsblatt 3

Wintersemester 2018

Aufgabe 1 (4 Punkte)

Beweisen Sie durch vollständige Induktion, dass es genau n! verschiedene bijektive Abbildungen $f: A_n \to A_n$ gibt.

Aufgabe 2 (2+2 Punkte)

- (a) Sei *X* eine beschränkte Teilmenge der reellen Zahlen. Sei *y* ein Element von *X*. Betrachten Sie die beiden Aussagen
 - (A) "Jedes Element $x \in X$, mit $x \neq y$, ist größer als y",
 - (B) "Es gibt kein Element $x \in X$, das kleiner als y ist".

Weisen Sie nach, dass die beiden Aussagen (A) und (B) äquivalent sind.

Gilt dies auch noch, wenn man auf das Anordnungsaxiom für \mathbb{R} verzichtet? Welche Implikationsrichtung bleibt erhalten?

(b) Zeigen Sie: Ist $(M_v)_{v \in \mathbb{N}}$ eine Folge abzählbarer Mengen, so ist auch die Menge $\bigcup_{v \in \mathbb{N}} M_v$ abzählbar.

Aufgabe 3 (4 Punkte)

Zeigen Sie: $\sqrt{2} + \sqrt{3}$ ist eine irrationale Zahl.

Bemerkung: Für $a \in \mathbb{R}$, a > 0 ist \sqrt{a} die eindeutig bestimmte positive Lösung der Gleichung

$$x^2 = a$$
.

Die Existenz und Eindeutigkeit von \sqrt{a} werden später in der Vorlesung gezeigt.