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ABSTRACT. We study maximal representations of surface groups p : 71 (X) —
SO0(2,n+1) via the introduction of p-invariant pleated surfaces inside the
pseudo-Riemannian space H?™ associated to maximal geodesic laminations of
.

We prove that p-invariant pleated surfaces are always embedded, acausal,
and possess an intrinsic pseudo-metric and a hyperbolic structure. We describe
the latter by constructing a shear cocycle from the cross ratio naturally asso-
ciated to p. The process developed to this purpose applies to a wide class of
cross ratios, including examples arising from Hitchin and ©-positive represen-
tations in SO(p, ¢). We also show that the length spectrum of p dominates the
ones of p-invariant pleated surfaces, with strict inequality exactly on curves
that intersect the bending locus.

We observe that the canonical decomposition of a p-invariant pleated sur-
face into leaves and plaques corresponds to a decomposition of the Guichard-
Wienhard domain of discontinuity of p into standard fibered blocks, namely
triangles and lines of photons. Conversely, we give a concrete construction of
photon manifolds fibering over hyperbolic surfaces by gluing together triangles
of photons.

The tools we develop allow to recover various results by Collier, Tholozan,
and Toulisse on the (pseudo-Riemannian) geometry of p and on the correspon-
dence between maximal representations and fibered photon manifolds through
a constructive and geometric approach, bypassing the use of Higgs bundles.
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1. INTRODUCTION

The notion of maximal representations of the fundamental group I" of a compact
hyperbolic surface into a semi-simple Lie group of Hermitian type G was introduced
by Burger, lozzi, and Wienhard in their groundbreaking work . It provides
a vast generalization of the notion of Fuchsian representations, namely discrete and
faithful homomorphisms of I" into PSL(2,R), which naturally arise as holonomies
of complete hyperbolic structures on surfaces. As already observed in ,
multiple dynamical and geometric properties of Fuchsian representations extend
to this wider context: FEvery maximal representation p : I' — G is faithful, its
image p(I') is a discrete subgroup of G acting freely and properly discontinuously
on the Riemannian symmetric space associated to G, and the set of conjugacy
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classes of maximal representations constitutes a union of connected components of
the character variety X(T", G).

In recent years, a great variety of results have further investigated and strength-
ened the relations between Fuchsian representations and geometric structures that
naturally arise from maximal representations, and this article is no exception. In
our exposition we will consider maximal representations of the fundamental group
I" of a closed orientable surface ¥ of genus g > 2 into the connected Lie group
G = S0(2,n+1). Moreover, rather than investigating the properties of the action
of T" on the Riemannian symmetric space of SOg(2,n+1), we will focus our atten-
tion on a class of pseudo-Riemannian and photon structures naturally associated
to p: T — SOp(2,n+1), as previously done by Collier, Tholozan, and Toulisse in
[CTT19).

The main aim of this paper is to provide a purely geometric approach to the
study of SO¢(2, n+1)-maximal representations, and establish a direct and explicit
link with hyperbolic surfaces and classical Teichmiiller theory. This gives a possible
answer to the question addressed in [CTT19, Remark 4.13], and a suitable frame-
work for generalizations to open surfaces. In particular, inspired by Thurston’s and
Mess’ works in the study of hyperbolic 3-manifolds (see e.g. [Thu79, Chapter 8], or
Canary, Epstein, and Green [CEG06, Chapter 1.5] for a detailed exposition), and
of constant curvature Lorentzian 3-manifolds (see [Mes07]), respectively, we will
pursue this goal by introducing a notion of p-equivariant pleated surfaces inside
H?", and we will investigate their topological, causal, and geometric properties.

We start by introducing the pseudo-Riemannian and photon spaces that we
will be interested in. First, we recall that the group SO¢(2,n+1) is the identity
component of the group of isometries of R>"*!, which denotes the vector space
R"*+3 endowed with the quadratic form

<.7 .>2,n+1 = JI% + .’II% - y% T 1%21+1-

There are multiple homogeneous spaces X naturally associated with the Lie
group G = SO¢(2,n+1), and each of them leads to a different class of (G, X)-
structures in the sense of Thurston (see [Thu79, Chapter 3]). Here we will consider:

e The pseudo-Riemannian symmetric space H>" of negative lines of RZ"+1,
e The Photon space Pho®™ of isotropic 2-planes of RZ"+1,

In both cases, every maximal representation p : ' — SO¢(2,n+1) has a natural
domain of discontinuity ,(X) < X, as a consequence of the work of Guichard
and Wienhard [GW12] when X = Pho®", and of Danciger, Guéritaud, and Kassel
[DGK17] when X = H?". Accordingly, any maximal representation p gives rise to:

e A pseudo-Riemannian manifold M, = Q,(H*")/p(T") of signature (2,n).
e A closed photon manifold E, = ©,(Pho®™)/p(T).

The geometries of these objects are strictly tied, as described by Collier, Tholozan,
and Toulisse [CTT19|. Our work parallels in many aspects the article [CTT19] with
a central difference: While in [CTT19] the geometric and topological information
is extracted by relating the theory of Higgs bundles to the immersion data of equi-
variant maximal surfaces in H?"™, our techniques rely on the study of specific 1-
and 2-dimensional subsets of the pseudo-Riemannian manifold M, namely geodesic
laminations and pleated surfaces, in analogy with the tools originally developed by
Thurston in his investigation of the structure of the ends of hyperbolic 3-manifolds
(see Chapters 8 and 9 of [Thu79]).
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A valuable feature of this approach, which is in many aspects explicit and con-
structive, is that it determines a concrete connection between maximal representa-
tions and hyperbolic structures on surfaces. Notice also that, if on the one hand the
notion of equivariant pleated surfaces is well suited for generalizations to finite-type
surfaces, the analytical techniques required for the study of Higgs bundles do not
easily extend outside of the realm of closed orientable surface groups.

For convenience of the reader, we now summarize the main results of the paper.
We will then provide a detailed description of each of them, together with the
techniques developed for their proof, in the remainder of the introduction:

(a) For any maximal representation p and for any maximal geodesic lamina-
tion A of X, there exists a p(I')-invariant, acausal, and properly embedded
Lipschitz disk, the pleated set of A,

§>\ U 5§>\ c H>™ U JH?™.

(see Theorem. It is naturally decomposed as a union of spacelike geodesics
and spacelike ideal triangles of H?>™ and is contained in the p-domain of
discontinuity in H?". In particular, Sy = §>\/p(1") is a properly embedded
subsurface of the pseudo-Riemannian manifold M,. The decomposition of
S » into lines and triangles corresponds to an analogue decomposition of the
p-domain of discontinuity in Pho®" into lines and triangles of photons and
there exists a natural fibration £, — S\ (see Proposition [E).

(b) The pleated set S has a natural intrinsic p(I')-invariant hyperbolic struc-
ture and a natural pseudo-metric induced by the pseudo-Riemannian metric
of H>". The developing map §>\ — H? is 1-Lipschitz with respect to the
pseudo-metric on S » and the hyperbolic metric on H? (see Theorem .
This implies that the length spectrum of the hyperbolic surface Sy is dom-
inated by the pseudo-Riemannian length spectrum of p, that is

Ly(e) = Lg, (o).
There is a simple characterization of those curves y € I' for which the strict
inequality holds: They are exactly the curves that intersect essentially the
bending locus of Sy.

(¢) The intrinsic hyperbolic structure on the pleated set S » is described by a
shear cocycle of through Bonahon’s shear parametrization of Teichmiiller
space (see [Bon96]). The definition of the cocycle of uniquely relies on the
data of the lamination A and of a I'-invariant cross ratio on the Gromov
boundary of I', naturally associated to the representation p. In fact, the con-
struction applies in great generality, and associates to any (strictly) positive
and locally bounded cross ratio § on ¢JI', and to any maximal lamination
A, an intrinsic hyperbolic structure X, whose length spectrum coincides
with the length spectrum of 8 on all measured laminations with support
contained in .

(d) The set of hyperbolic surfaces Sy arising as intrinsic hyperbolic structures
on pleated surfaces lie on the boundary of the dominated set of p, namely
the subset of Teichmiiller space defined by

Po:={ZeT|Lz(e) <Ly(o)}.

The set P, is convex for the Weil-Petersson metric and with respect to
shear paths. Its interior int(P,) corresponds to those hyperbolic surfaces
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Z that are strictly dominated by p, that is L,(e) > cLz(e) for some ¢ > 1.
Combining a geometric construction in H?" with the convexity of length
functions along Weil-Petersson geodesics, we observe that p is not Fuchsian
if and only if int(P,) is non-empty (Theorem @ This allows to recover
part of the results described in [CTT19).

(e) We describe an elementary process to construct fibered photon manifolds
(see |[CTT19, § 4.2]), namely photon manifolds E that fiber over a closed
hyperbolic surface S homeomorphic to ¥. Any such fibered photon manifold
E — S has maximal holonomy p : m1(E) — SO¢(2,n+1) and determines a
natural p-equivariant pleated acausal embedding S — H2" of the universal
cover S — S , with bending locus lying in some maximal geodesic lamination
A of S. The construction of a fibered photon manifold £ — S is completely
analogous to the process by which a closed hyperbolic surface is obtained
by first gluing together ideal hyperbolic triangles to form (incomplete) pair
of pants, and then pasting the completions of the pair of pants along their
boundaries. Here, instead of gluing ideal hyperbolic triangles, we will glue
together triangles of photons forming (incomplete) fibered pairs of pants
of photons, find suitable completions, and combine them to form closed
manifolds (Theorem [F| and Proposition .

We now describe more in detail each of the previous points.

1.1. Topology and acausality of pleated surfaces. Our discussion will heav-
ily rely on the existence of equivariant boundary maps naturally associated to
SO¢(2,n+1)-maximal representations, which is guaranteed by the following result
of Burger, lozzi, Labourie, and Wienhard: We recall that the boundary at infinity
OH?™ of the pseudo-Riemannian symmetric space H>" identifies with the space of
isotropic lines of R"+1,

Theorem (|BILWO05| § 6], see also [CTT19, Theorem 2.5]). If p: ' = SOq(2,n+1)
is a maximal representation, then there exists a unique p-equivariant, continuous,
and dynamics preserving embedding

£€:00 — OH>"

such that the image of & is an acausal curve, meaning that for every triple of
distinct points a,b,c € 0T, the subspace of R>"1 generated by the isotropic lines

&(a),&(b),&(c) has signature (2,1).

Theorem has a simple interpretation in terms of the geometry of H>™: Every
pair of distinct points a,b € 0T is sent by £ into the pair of endpoints of a unique
spacelike geodesic of H?™, and for every triple of distinct points a,b,c € 0T, the
images £(a),&(b),£(c) are the vertices of a unique ideal totally geodesic spacelike
triangle in H?". In light of this phenomenon, the boundary map & allows us to
naturally realize geodesic laminations on the surface X as p-invariant closed subsets
of H*", and consequently in the pseudo-Riemannian manifold M,.

To see this, we start by briefly recalling the notion of geodesic lamination, and
the related terminology that will be used throughout our exposition. We will think
of a geodesic £ in the universal cover 3 of ¥ as an element of the space

g = (aF x o' — A)/((ﬂ,y) ~ (yax)a
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simply by identifying ¢ with the unordered pair of its endpoints. We say that two
geodesics £ and ¢’ with endpoints a,b and a’, b, respectively, are crossing if a’ and
b’ lie in distinct connected components of 0T' — {a, b} (recall that T is a topological
circle). Two geodesics that are not crossing will be said to be disjoint. Within this
framework, a geodesic lamination of ¥ is a I'-invariant closed subset A < G made of
pairwise disjoint geodesics, and it is said to be mazimal if every geodesic £ outside
A crosses some £ in A. The elements of a lamination will be also called its leaves,
and the connected components P of ¥ — X will be called its plaques.

Let now p be a maximal representation, and let & : ' — 0H?™ be its associated
boundary map. For any leaf ¢ = [a, b] in A, we can find a unique spacelike geodesic
¢ in H?" with endpoints &(a),&(b), and similarly for any plaque P = A(a,b,c), we
have a unique spacelike ideal triangle P with endpoints & (a),&(b),&(c) € OHZ™. We
then define the geometric realization of A in H>"™ to be

A= U L,
0 leaf of A

and its associated pleated set as

§,\ = 5\ ) U P
P plaque of A\
Our first result establishes some structural properties about the topology and
the causal features of these sets:

Theorem A. Let p : T' — SOg(2,n+1) be a mazimal representation. For every
maximal lamination X\, the pleated set §,\ c H?" is an embedded Lipschitz disk
which is also acausal, that is, every pair of points x,y € :5’\)\ is joined by a spacelike
geodesic.

The basic idea behind Theorem |A|is the following: A pair of geodesics 0,0 with
endpoints on the limit curve A, = £(0I') form an acausal set ¢ U ¥ inside H2™ if
and only if the corresponding leaves ¢, ¢’ of A are disjoint.

This property immediately implies that the geometric realization A c H2m of
any lamination A is an acausal subset. In turn, working in the Poincaré model of
H2", we show that the acausality property is preserved once the complementary
triangles are added to A By general properties of acausal subsets of H?", we deduce
that Sy U A, c H*™ U JH?*" is a properly embedded Lipschitz disk.

The surface Sy = S »/p(I') © M, carries two natural geometries: It has an
intrinsic hyperbolic structure and a pseudo-metric induced by the ambient space
H2". We now focus our attention of the description of the former.

1.2. Cross ratio and shear cocycles. As in the case of pleated surfaces in hy-
perbolic 3-space H?, the hyperbolic structure on the pleated set S » can be recorded
by a shear cocycle |Bon96).

In order to define it, we again rely on the properties of the boundary map:
The acausality condition satisfied by £ and the pseudo-Riemannian structure of the
boundary ¢H?™ uniquely determine a I'-invariant cross ratio 5° on oI, satisfying
the following properties:

o It is (strictly) positive on positively ordered quadruples in ¢I". This follows
from the acausal properties of the boundary map & and implies, via general
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results of Martone and Zhang [MZ19], and Hamenstadt [Ham99], that §°
induces a length function L, on the space of geodesic currents C.

e It is locally bounded, meaning that there exists a hyperbolic structure X on
> such that, for every compact subset K in the space of distinct 4-tuples
in 0I', we can find constants C, « > 0 such that

llog |3(a,b,c,d)|| < Cllog |3 (a,b,c,d)||”

for every cyclically ordered 4-tuples (a,b,c,d) € K, where 3% is the cross
ratio on 0I" determined by the structure X € 7. This property is a conse-
quence of the explicit definition of 8” and of the Holder continuity of the
limit map &.

Notice that examples of (strictly) positive and locally bounded cross ratios natu-
rally arise also from other interesting contexts related to pseudo-Riemannian sym-
metric spaces HP'? such as Hitchin representations in SO(p,p+1) or ©-positive
representations in SO(p, q) where similar pleated surface construction might be
possible (see also Appendix |A)).

We also remark that positive cross ratios have been used by Martone and Zhang
in [MZ19], by Labourie [Lab0§|, and Burger, lozzi, Parreau, and Pozzetti [BIPP21]
to study common features of Higher Teichmiiller Theories.

Making use of the cross ratio 8, we then describe the intrinsic hyperbolic struc-
ture of a pleated set Sy through the data of a so-called Hélder cocycle of transverse
to the maximal lamination A, in the sense of [Bon96].

Tranverse Holder cocycles were introduced by Bonahon (see [Bon97b,Bon97al),
who deployed them for instance to provide a parametrization of Teichmiiller space
T of a closed orientable surface ¥ in [Bon96|, following ideas of Thurston [Thu98].
Heuristically speaking, if Az is the geometric realization of a maximal lamination
A on the hyperbolic surface Z, the shear cocycle Jf records how the ideal triangles
in Z — Az are glued together along the leaves of Az. The space H(\;R) of Holder
cocycles transverse to A has a natural structure of vector space of dimension 3|x ()],
and the map that associates to any hyperbolic structure Z € 7T its shear cocycle
Uf € H(A;R) embeds Teichmiiller space as an open convex cone with finitely many
faces inside H(A; R). The resulting set of coordinates is usually referred to as shear
coordinates with respect to the maximal lamination .

This point of view on Teichmiiller space has proved to be fruitful also in the set-
ting of Hitchin representations and, more generally, to analyze Anosov representa-
tions as witnessed by work of Bonahon and Dreyer [BD17], Alessandrini, Guichard,
Rogozinnikov, and Wienhard [AGRW22|, and Pfeil |Pfe21].

The underlying principle for the construction of a shear cocycle starting from
a cross ratio is very elementary: The classical shear between two adjacent ideal
triangles A and A’ in the hyperbolic plane is an explicit function of the RP*-cross
ratio of the four ideal vertices of A U A’, and shears between triangles separated
by finitely many leaves of A can be expressed as a finite sum of shears between
adjacent plaques. One can then define the p-shear between two adjacent plaques
P, Q of )\ simply by replacing the role of the RP'-cross ratio with 8°. In fact with
some additional (but elementary) work, this allows to introduce a natural notion of
p-shear cocycle ¥ for a large class of maximal laminations, namely laminations on
3 obtained by adding finitely many isolated leaves to a collection of disjoint simple
closed curves (see Section .
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The construction of the shear cocycle of that we describe relies only on the
properties of the cross ratio 5° that we mentioned above, namely that 87 is strictly
positive and locally bounded. Consequently, our techniques allow to deduce the
following general statement:

Theorem B. Let 3: 0I'* — R be a strictly positive locally bounded cross ratio. For
every mazximal lamination \ there exists a transverse Holder cocycle O’f € H(\:R)
with the following properties:

(i) The cocycle af is the shear cocycle of a unique hyperbolic metric X on X.
(i1) For every transverse measure v on A we have Lx, (1) = Lg(p).
(iii) The map X\ — X, is conlinuous with respect to the Hausdorff topology on
the space of maximal geodesic laminations.

The process to construct S-shear cocycles Jf for a generic maximal lamination is
technically quite involved, and our strategy will heavily rely on multiple tools devel-
oped by Bonahon [Bon96| in his construction of shear coordinates for Teichmiiller
space, such as the notion of divergence radius function associated to the choice of
a train track carrying A (see also Bonahon and Dreyer [BD17, § 8.2]). However, if
A is a finitely leaved lamination and 8 = ” is the cross ratio associated to some
maximal representation p, then the shear cocycle % has a simple interpretation in
terms of horocycle foliations on the plaques of the pleated set Sy, in direct analogy
with Bonahon’s original description of shear coordinates (see e.g. [Bon96, § 2]).

We call the cocycle of the intrinsic shear cocycle associated to A and p.

1.3. Geometry of pleated surfaces. The other intrinsic geometric structure car-
ried by the pleated set Sy is a p-invariant pseudo-metric: Since any two points
x,y € Sy are connected by a unique spacelike geodesic segment [z, y] (see Theorem

[A)), we can define
de'" (SC, y) = 6[177 y]
It is worth to mention that the function

dy2,n : S\)\ X S\)\ - [0,00)

is not a distance in the traditional sense as it does not satisfy the triangle inequality
nor its inverse (see also [GM21] and [CTT19]). However, it is continuous, it vanishes
exactly on the diagonal, and its metric balls B(z,r) = {y € Sy |dpg2.n (x,y) < 7} form
a fundamental system of neighborhoods.

Nevertheless, the pseudo-distance dyz,» naturally relates to the hyperbolic struc-
ture X associated to p and the maximal lamination . To see this, let us introduce
the following notion: We say that a function f : Sy = Sy/p(I') — X with values in
a hyperbolic surface X is K-Lipschitz with respect to the intrinsic pseudo-metric if
it lifts to a map f : §>\ — H? that satisfies

dye (f (), f(y)) < Kdggzn (2,y)
for any x,y € §)\. Then we have:

Theorem C. Let p: T' — SOg(2,n+1) be a mazimal representation, and A be a
mazimal lamination. If X, denotes the hyperbolic surface with intrinsic shear co-
cycle of, then the pleated surface Sx = M, admits a unique developing homeomor-
phism f: Sy — X\ which is 1-Lipschitz with respect to the intrinsic pseudo-metric
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on Sy. Furthermore, we have

Lx, ('Y) < Lp('Y)

for every v € T', where Lx,,L, : I' — (0,00) denote the length functions of the
hyperbolic surface Xy and the representation p, respectively, with strict inequality
if and only if v intersects the bending locus of S .

The heuristic idea of Theorem [C| is the following: The pleated set S » has an
intrinsic hyperbolic path metric (whose shear cocycle is exactly the intrinsic shear
cocycle o%). Using the fact that S » is an acausal subset that can be represented as
a graph in the Poincaré model of H?>", one can show that for every pair of points
T,y € S » there exists a path inside S’ » joining them whose length is bounded by
dy2.n (z,y). This immediately implies that the path metric on S \ is dominated by
the intrinsic pseudo-metric dyz.».

We show that this picture is accurate in the case of finite leaved maximal lam-
inations. The proof here is elementary and uses a cut-and-paste argument in the
spirit of [CEGO06, Theorem 1.5.3.6]. In order to deduce the statement of Theorem
[C] from the finite leaved case, we exploit continuity properties of pleated surfaces.

‘We conclude here our discussion on the existence of p-equivariant pleated surfaces
and the study of their topology and geometry. In what follows, we deploy the results
just described to extract information on the maximal representation p.

1.4. Length spectra of maximal representations. We now focus on the study
of the set of pleated surfaces { X}, associated to a given maximal representation p,
considered as a subset of Teichmiiller space 7. As it turns out, it can be described
as a subset of the boundary of a set that is convex with respect to multiple natural
structures on 7. More precisely, given a maximal representation p let us define the
dominated set of p as

P, ={ZeT|Lz(y) <L,(y) for every yeT'}.

We also define the companion P;imple consisting of those hyperbolic surfaces whose
simple length spectrum is dominated by the simple length spectrum of p.

By Theorem @ the set P, is always non-empty as it contains all the hyperbolic
structures of the pleated surfaces associated to p. Furthermore, it is convex with
respect to the Weil-Petersson metric, by work of Wolpert [Wol87], and with respect
to shear paths, by work of Bestvina, Bromberg, Fujiwara and Souto [BBFS13]
and Théret [Thél4] generalizing a result of Kerckhoff [Ker83| (see also [MV] for a
different approach).

We prove the following:

Theorem D. Let p : I' — SOg(2,n+1) be a mazimal representation. For every
Z €T define

o Lz(v)
) A T
We have:
(1) Z € int(P,) if and only if K(Z) < 1.
(2) If p is not Fuchsian, then int(P,) # .
(3) If X\ is the hyperbolic structure with shear cocycle o¥, then Xy € IP,.

Furthermore,
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(4) If Z ¢ int(P,), then there exists i € ML such that K(Z) = Lz(u)/Ly(1).
(5) Pp — rpzlmple.

As a consequence of properties (1) and (2), we obtain that if p is not Fuchsian,
then there exist hyperbolic structures Z € T whose length spectrum Ly (e) is strictly
dominated by the length spectrum of the maximal representation L,(e). Thus, we
recover the following:

Theorem (Collier, Tholozan, and Toulisse |[CTT19|). Let p: T' — SOg(2,n+1) be
a mazimal representation with n > 1. We have the following: FEither p is Fuchsian
or there exists a hyperbolic surface Z and a constant ¢ > 1 such that L,(e) >

CLz(O).

In particular, the inequality L,(e) > cLz(e) immediately implies that the en-
tropy of p, defined by

d, :=limsup log [{[] € [T]1L,(v) < R}|’

where [I'] denotes the set of conjugacy classes of elements in T', is bounded by
d,<1/c<1

and the equality 6, = 1 holds if and only if p is Fuchsian (compare with [CTT19,
Corollary 5]).

Let us briefly comment on properties (1), (2), and (3). Property (1) characterizes
interior points of P, as those points Z whose length spectrum L (e) is strictly
dominated by the length spectrum L,(e). The proof proceeds as follows. On the
one hand, being strictly dominated is an open condition: For Z € T and for every
K > 1 there is a neighborhood U of Z such that every surface Z’ € U is K-
biLipschitz to Z and in particular 1/K < Lz/Lz < K. Therefore, if k(Z) < 1
and K < 1/k(Z), then k(Z’) < 1. On the other hand, interior points are strictly
dominated due to the strict convexity of length functions along Weil-Petersson
geodesics.

The idea of (2) is the following: In order to prove that int(P,) is non empty, it is
enough to show that P, contains at least two distinct points X,Y. Indeed, by the
strict convexity of length functions with respect to the Weil-Petersson metric (see
Wolpert [Wol87] and [Wol06]), the midpoint Z € P, of the Weil-Petersson segment
[X,Y] is strictly dominated and, hence, by property (1), is an interior point.

If p is not Fuchsian, such pair of points X,Y € P, can be produced by taking two
pleated surfaces S, and Sg realizing simple closed curves o and § that intersect
(completed to maximal laminations A, Ag by adding finitely many leaves spiraling
around them). On the one hand, Theorem |C] tells us that Lg, (o) = L,(c) and
Ls,(B8) = Ly(B). On the other hand, as p is not Fuchsian, the bending locus of
Sa, 83 is not empty. Since the bending loci are sublaminations of the maximal
extensions A, Ag, they contain the curves «, 5 respectively. Since c, S intersect
essentially, the curve a intersects the bending locus of Sz and f intersects the
bending locus of Sy, therefore Lg, (8) < L,(8) and Lg,(a) < L,(a), again by
Theorem [C] In any case S, # Sp.

Property (3) follows from the fact that every measured lamination p whose
support does not intersect essentially the bending locus of Sy realizes Lg, (u) =
L,(p) which implies £(Sy) = 1 and, hence, by Property (1), S\ € 0P,.
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Lastly, let us also spend a couple of words on the simple length spectrum of p: It
follows from (5) that the simple length spectrum alone completely determines the
dominated set. This is an indication that there might be simple length spectrum
rigidity for SOg(2,n+1)-maximal representations.

The proof of (5) depends on (4): In fact, on the one hand, we always have
P, < Ps™Ple, by definition. On the other hand, properties (1) and (4) imply
together that 0P, 67)2““1’1‘3. As both sets are topological disks, by convexity with
respect to Weil-Petersson geometry or with respect to shear paths, we can conclude
that they are equal. The proof of (4) follows arguments of Thurston [Thu9g| on
the existence of a maximally stretched laminations.

1.5. Photon structures fibering over hyperbolic surfaces. We now describe
the picture from the perspective of photon structures.

By work of Guichard and Wienhard [GW12], maximal representations p : I’ —
SO¢(2,n+1) parametrize certain geometric structures, in the sense of Thurston,
on appropriate closed manifolds. More precisely, every representation p determines
a (SOO(Q,n-l—l),Phoz’”)-structure7 called a photon structure, on a closed manifold
E,. By the Ehresmann-Thurston principle (see |[Thu79, Chapter 3]), the topol-
ogy of E, does not change over each connected component of the character vari-
ety X(I',SO¢(2,n+1)). However, different components can correspond to different
topological types.

Using maximal surfaces in H?", Collier, Tholozan, and Toulisse showed in
[CTT19] that E, can always be seen as a fibered photon bundle over ¥ with geo-
metric fibers which are copies of Pho®*" ™! and, furthermore, its topology can be
computed from some characteristic classes of p.

A fibered photon bundle over a surface w : E — ¥ is an object that comes
together with a developing map ¢ : E — Pho®" and a natural associated map
LY H?", where ¥ — ¥ is the universal covering and E — ¥ is the pull-back
bundle on the universal covering, with the property that §(7~*(z)) = Pho(:(z)?1).
Here ¢(2)*+ < R?"*+1 is the orthogonal subspace of the negative line «(x) € H>™. In
particular, the fibered photon bundle F — ¥ has an associated underlying vector
bundle Vi — X where the fiber over = is the vector space ¢(x)*.

In a similar spirit, using pleated surfaces, we show that every maximal lamination
A ¥ induces a geometric decomposition of £, into standard fibered blocks called
triangles of photons which we briefly describe: Let A — H?" be an ideal spacelike
triangle with vertices a,b,c € 0H?>". The standard triangle of photons E(A) <
Pho®™ is the codimension 0 submanifold with boundary

E(A) := {V € Pho®" |V L x for some z € A}.

The boundary 0E(A) is a union of lines of photons OE(A) = E({e)VE(l)VE(L,)
where £, ¢, /. are the boundary spacelike geodesics of A opposite to the ideal
vertices a, b, c and

E(¢) := {V € Pho*" |V L x for some x € £}

if ¢ « H?*" is a spacelike geodesic.

The triangle of photons E(A) naturally fibers over the ideal hyperbolic triangle
A. We denote by 7 : E(A) — A the natural fibration. The fiber 7=1(x) over the
point z € A is given by Pho(z') ~ Pho®" ™!,

We have:



12 FILIPPO MAZZOLI AND GABRIELE VIAGGI

Proposition E. Let p: T' — SOg(2,n+1) be a maximal representation. Let 5)\ c
H2"™ be the pleated set associated to the mazimal lamination \. Then the Guichard-
Wienhard domain of discontinuity Q, Pho®" naturally decomposes as

Q= |EOu || E@)

<D\ AC§>\75\

and we have an equivariant bundle projection £, — §/\ induced by the standard
projections E(A) — A and E(£) — £.

Conversely, we are also able to describe a procedure to abstractly assemble tri-
angles of photons and explicitly build fibered photon structures on a fiber bundle
E — ¥ with maximal holonomy p : I' > SOg(2,n+1).

Our approach is completely analogous to the procedure that constructs a closed
hyperbolic surface by gluing ideal triangles. First we construct pair of pants of
photons E; — S; by gluing two copies of a standard triangle of photons E(A). As
it happens for hyperbolic surfaces, if the holonomy around the boundary curves of
S; is lozodromic (with respect to a suitable notion of loxodromic), then E; — S; is
the interior of a fibered photon structure with totally geodesic boundary E; — S}.

For us, loxodromic means bi-proximal, a property that is equivalent to a suitable
north-south dynamics on dH?™: The set £ = SOg(2,n+1) of loxodromic elements
is an open subset with two connected components £ = £t U £~ distinguished by
the sign of the leading eigenvalue.

We remark that the condition of being loxodromic as well as the topology of the
resulting bundles E; ) ; can be read off the gluing maps without difficulties. We
prove the following: Denote by PStab(¢), PStab(A) the stabilizers of the spacelike
geodesic £ and the ideal spacelike triangle A that fix the endpoints of ¢ and the
vertices of A in 0H?", respectively.

Theorem F. Let A = A(a,b,c) = H?" be an ideal spacelike triangle with 0A =
Ly U by U L. where £, is the side opposite to the vertex u € {a,b,c}. For every
equivalence class of triples

e d Yot e | [] PStab(¢;) | /PStab(A)?

jef{a,b,c}
there is a fibered photon structure
Ey = E(A)uE(A)/ ~y
fibering over a (possibly incomplete) hyperbolic pair of pants
Sw =Au A/ ~ap

such that the holonomy around the peripheral simple closed curve -, surrounding
the puncture of S corresponding to the vertex u € {a,b,c} is given by

2 —1
Pu :¢wva )

where vy, € SOg(2,n+1) denotes the unique unipotent isometry of R*"+1 that
restricts to the identity on Span{a,b,c}* and to the parabolic transformation of
Span{a, b, c} that fizes u and sends w into v, for any cyclic permutation (u,v,w)
of (a,b,c).

If for every u € {a,b, c} the holonomy p,, is loxodromic, then Sy, Ey, are respec-
tively the interior of a hyperbolic pair of pants S;p with totally geodesic boundary and
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the interior of a fibered photon structure E;a with totally geodesic boundary fibering
over Sy. The fibration Ey — S, extends Ey — Sy. For every n > 1, the topol-
ogy of Ey, is determined by the first Stiefel-Whitney class w1(Vy) € H(Sy,Z/27)
of the underlying vector bundle Vi, — Sy. The class wi(Vy) can be computed as
follows: Let vq,Vy,ve © Sy be the peripheral curves corresponding to the vertices
a, b, c respectively. Then

0 ifpucl™,
w@lnd = { § B e T

As a second step, we take several pair of pants of photons with totally geodesic
boundary E; — S’; and glue them together. Again, some compatibility conditions
must be fulfilled by the gluing maps in order to perform the gluing. As a result,
we get a photon structure on a manifold £ that naturally fibers over a hyperbolic
surface S with geometric fibers and we also obtain a maximal geodesic lamination
Aon S.

In analogy with [CTT19, Proposition 3.13], we have:

Proposition G. The holonomy p : m(E) — SOg(2,n+1) of the fibered photon
structure E — S descends to a mazximal representation p : T — SOq(2,n+1). The
hyperbolic surface S is the pleated surface that realizes \ in M,.

In combination with Theorems [A| and |C] this provides an analogue of [CTT19,
Corollary 4.12]. In fact, in order to prove Proposition we generalize results
of [CTT19] about smooth spacelike surfaces to purely topological versions. This
allows us to treat pleated surfaces.

1.6. The anti-de Sitter case. When n = 1 much of the above picture on pleated
surfaces can be made explicit and quantitative. Due to the fact that SOg(2,2) is a 2-
fold cover of PSL(2,R) x PSL(2,R), maximal representations in SOg(2, 2) naturally
correspond to pairs of maximal representations in PSL(2, R), which, by Goldman’s
work [Gol80], are precisely the holonomies of hyperbolic structures on X. As such,
this low dimensional case has a special connection with classical Teichmiiller the-
ory. This is highlighted by groundbreaking work of Mess [Mes07], who connected
the study of globally hyperbolic maximal Cauchy compact (GHMC) anti-de Sit-
ter 3-manifolds with maximal representations inside SOg(2,2), and gave a proof
of Thurston’s Earthquake Theorem based on the pseudo-Riemannian geometry of
the manifold M,. (Thurston’s original approach is outlined in work of Kerckhoff
[Ker83|.) Since Mess’ seminal paper, the study of GHMC anti-de Sitter 3-manifolds
has propagated in multiple directions and has produced further connections with Te-
ichmiiller theory, as for example described in [ABB*07,[BS10,/BS12,BB09,[BBZ07],
among other works. We refer to Bonsante and Seppi [BS20] for a detailed exposition
of the current state-of-art and for further references.

We will explore the geometry of pleated surfaces in anti-de Sitter 3-space in a
separate paper [MV| where we obtain, among other results, a ”Lorentzian proof”
of (strict) convexity of length functions in shear coordinates for Teichmiiller space
(recovering the work of Bestvina, Bromberg, Fujiwara, and Suoto |BBFS13|, and
Théret |Thél4]) and a shear-bend parametrization of globally hyperbolic maximal
Cauchy compact anti-de Sitter 3-manifolds.
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Outline. This article is structured as follows:

In Section[2] we cover the background material that we need. More precisely: The
geometry of the pseudo-hyperbolic space H?>" and its boundary dH?", acausality,
and the Poincaré model. The dynamical and geometric characterization of maximal
representations p : I' — SOg(2,n+1). Some classical Teichmiiller theory: Geodesic
laminations, geodesic currents, measured laminations, shear coordinates. Positive
cross ratios and their Liouville currents.

In Section 3| we first discuss the geometrlc realizations A of maximal laminations
A and the associated pleated sets S \ © H?™. Then, we relate the acausal properties
of the limit curve £(0I') = JH?™ to the topology and the causal structure of A and
S \ (see Propositionsand. The fact that the pleated set S \ is acausal implies
that it can be represented as a graph in the Poincaré model, and we show that the
graph depends continuously on the lamination (see Proposition E Lastly, we
analyze more in detall the locus where Sy is folded and define the bending locus
(see Proposition . The bending locus will control how the geometry of S \ 1s
distorted in H?". ThlS will play a role in Sections |§| and @

In Sections [4| and |5| we explain how to attach a natural Holder cocycle Jf €
H(X;R) to every positive and locally bounded cross ratio 8 and every maximal
lamination A (see Theorem . Section |4 mainly focuses on the study finite
leaved laminations, setting that can be treated with elementary techniques (see
Propositions and . In Section |5[ we extend the construction to the case
of a general maximal lamination. The procedure here is analytic: We define the
shear cocycle as a limit of elementary finite approximations. The process needed
to establish the convergence of finite approximations is quite delicate as it depends
on the geometry of A on a fine scale. In the end, we show that the shear cocycle crf
is contained in the closure of Teichmiiller space 7 (considered as an open subset of
H(A;R) via shear coordinates with respect to A), and it coincides with the shear
cocycle of a hyperbolic structure if § is strictly positive.

In Section [6] we formally define pleated surfaces and study their intrinsic geo-
metric properties. Our analysis here is based on a precise understanding of the
case of finite leaved maximal laminations and on continuity properties of pleated
surfaces. The pleated set S)\ has an intrinsic length space structure that makes it
locally isometric to H? and the local isometry f S \ — H? is 1-Lipschitz with re-
spect to the intrinsic pseudo-metric (see Proposition . We check that the shear
cocycle of the intrinsic path metric on S,\ coincides with o (Proposition . In
both cases, the proofs are elementary. The general case (Proposition [6.8] . follows
from the ﬁnlte leaved case by continuity arguments. As a consequence, we derive a
precise comparison between the length spectrum of S and the length spectrum of
p (Proposition [6.5)).

In Section [7] we link the geometry of the maximal representation p : I' —
SO0(2,n+1) to the geometry of the dominated set P, < 7 consisting of those
hyperbolic surfaces Z whose length spectrum L (e) is strictly dominated by L,(e).
Such a subset is non-empty, as it contains all pleated surfaces associated to p, and
is convex with respect to the Weil-Petersson metric. We describe the structure
of interior and boundary points (see Lemma and Proposition and show
that if the representation p is not Fuchsian then the interior of P, is never empty

(Proposition [7.5)).
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In Section [ we discuss the point of view of fibered photon structures. We
introduce triangles and lines of photons E(A) and E(¢). We show that given
a maximal lamination A the Guichard-Wienhard domain of discontinuity admits a
fibration 7 : 2, — Sy where 7=1(¢) = E(f) and 7= (A) = E(A) for every leaf £ < )
and plaque A S = A (see Proposition M' In the opposite direction, we construct
fibered photon structures by gluing together triangles of photons along lines of
photons. We provide a detailed description of pants of photons, obtained by gluing
two triangles of photons. Provided that the holonomy along the boundary curves is
loxodromic such pants of photons are the interior of fibered photon structures with
totally geodesic boundary (see Lemma . We completely classify those (see
Theorem . Finally, we obtain fibered photon structures over closed hyperbolic
surfaces £ — S by gluing pants of photons with totally geodesic boundary, and
prove that holonomy of the total space F is always maximal (see Lemma .
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2. PRELIMINARIES

In this section we review some basic facts that we will need in our exposition.

We start by discussing the geometry and causal structure of the pseudo-Riemannian
space H?" and its boundary 0H?". In particular, we discuss the Poincaré model
of H?™ (see Proposition [2.7) which is a useful device to examine the structure of
acausal sets (see Lemmas and .

Then, we introduce maximal representations p : I' — SOg(2,n+1) and describe
the acausal and dynamical properties of their associated limit curve & : o' — oH?™
(see Theorem . This is the starting point of our constructions in Section

Afterwards, we recall some background material from classical Teichmiiller the-
ory and introduce geodesic laminations, geodesic currents, and shear coordinates.
Geodesic laminations are the objects that provide us a direct link between maximal
representations and hyperbolic surfaces. We explain how to associate to a maximal
lamination A a pleated set S y» © H?"™ and investigate its topology and causal prop-
erties in Section [3] We then focus on the study of the geometry of the pleated sets
S, in Sections |5 and @

Geodesic currents and Teichmiiller geometry are the main tools that we will use
to analyze the length spectrum of maximal representations in Section [7]

We end the section by describing (positive) cross ratios on 0I' and their asso-
ciated Liouville currents (see Theorem . As we will see in Section {4 every
maximal representation p has a natural strictly positive cross ratio 8 induced by
the boundary map. As a consequence, its length spectrum can be represented by
a Liouville current .£,,. Our use of cross ratios will be twofold: In Sections [4] and
we use 3” to define the shear cocycle of a pleated surface. In Section [7} we use
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the Liouville current .Z), to study the structure of the set of p-equivariant pleated
surfaces inside Teichmiiller space.

2.1. The pseudo-Riemannian space H?". We first introduce the linear and
projective models of H>" and JH?*™: Let R>"*! denote the vector space R"*+3
endowed with the quadratic form

(&, Y)2m+1 i= T1Y1 + TaY2 — T3Y3 — ... — Tn43Ynt3

of signature (2,n + 1). Consider the hyperboloid
B2 = {2 € R*"| (z,2)2,n41 = —1}.
The restriction of the quadratic form (e, )2 ,, 11 to each tangent space
Tzﬂz’" =gt

has signature (2,n) and, therefore, endows H2" with a pseudo-Riemannian struc-
ture of the same signature. The group SOg(2,n+1) acts transitively and by orien-
tation preserving isometries on H2n, However, notice that this action is not proper,
since point stabilizers are non-compact.

Tangent vectors v € T_T]ITHZ” split into three types:

spacelike  if (v, V)3 41 > 0,
v is lightlike  if (v,v)2 pt1 =0,
timelike i (v, V) pt1 < 0.

Similarly, we call a curve a : [ — H2n spacelike, lightlike, or timelike if & is always
spacelike, lightlike, or timelike.

Geodesics in the linear model H2™ are easy to describe: Let z € H2™ be a point
and v € T,H2" a tangent vector. Let v : R — H2™ be the geodesic starting at z
with velocity v. Then

cosh(t)z + sinh(t)v  if (v,v)9 41 =1,
y({t) =4 x+tv if (v, VY241 =0,
cos(t)x + sin(t)v if (v, VY241 = —1.

The pseudo-Riemannian space H?™ is the quotient
H>" .= H>" /(2 ~ —2)

and can be realized as an open subset of the projective space RP"*2. The projection
R27+1 — {0} — RP"? induces the 2-to-1 covering projection H2" — H2". In the
projective model, the geodesic starting at = with velocity v is just the intersection
of the projective line corresponding to the 2-plane Span{x, v} with H?". Given two
points z,y € H?", they are always connected by a geodesic, namely, the projective
line corresponding to Span{z,y}. The type of the line can be determined using the
following simple criterion:

Lemma 2.1 (|[GM21, Proposition 3.2]). Two distinct points z,y € H>™ are joined
by:

o A spacelike geodesic if and only if |{z,y)a n+1| > 1.

o A lightlike geodesic if and only if |{x, y)2.nt1| = 1.

o A timelike geodesic if and only if |{x,y)an+1| < 1.

An analogous characterization holds also in the linear model f2n.
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Lemma 2.2. Two distinct points x,y € 2" are joined by:
o A spacelike geodesic in 2 if and only if (x,y)2.nt1 < —1.
o A lightlike geodesic in H2™ if and only if )21 = —1.
o A timelike geodesic in 2 if and only if Kz, y)ant1] <1 ory=—z.

Similarly to what happens for geodesics, the intersection of a linear space
P (V < R*"1) c RP"F?

with H?"™ also gives a totally geodesic subspace. In particular, every 3-dimensional
subspace V' on which the restriction of the quadratic form has signature (2,1)
provides a totally geodesic subspace of H*™ isometric to H?Z.

The space H?™ has a natural boundary at infinity which can be described in the
projective model as the projectivization of the cone of isotropic vectors JH?" =
P(C), where

={ze R2™ | {x,z)2n+1 =0}

In the linear model ﬁQ’”, the boundary at infinity oH2"™ is a two-fold covering of
OH?", which can be described as C/z ~ A\2x. We can endow H?" U dH*" with a
topology by simultaneously embedding them in the sphere of rays (R>"**—{0})/x ~
Az

Similarly to what we observed in Lemmas [2.1] and 2.2] we have:

Lemma 2.3. Two distinct points x € OH>",y € H>™ U 0H>" are joined by:

o A spacelike geodesic if and only if {x,y)2.n+1 # 0.
o A lightlike geodesic if and only if {x,y)2 nt1 = 0.

Similarly, two distinct points x € 6@2’", y € H2m U oH2™ are joined by:

o A spacelike geodesic inside H2n U of2n if and only if {x,y)2 n+1 < 0.
e A lightlike geodesic inside H*™ U dH*™ if and only if {x,y)2.n+1 = 0.

Centered at each point a € oH2"™ we have a family of horoballs
O={ze fzn | —¢ <{z,v)2n41 <0} C 2

where v € R>"*+1 is a representative of a and ¢ > 0 is a positive constant. The
boundary 00O c 27 is a horosphere centered at a. A horoball (resp. a horosphere)
of H?" is a subset of the form P(O), for some horoball O of H2m,

The terminology is justified by the fact that every spacelike 2-plane H =~ H?
of H?" whose boundary at infinity contains a € dH>*" intersects O and 00 in a
(usual) horoball or horocycle based at a € 0H.

For more material on the geometry of H?" and ]ﬁI2’", we also refer to [GM21} § 2]
and [CTT19, § 3].

2.2. Acausal sets and Poincaré model. Certain subsets of H?>" display some
features that make them similar to metric spaces and, in particular, their geometry
can be compared to the one of subsets of H?.

Definition 2.4 (Acausal Set). Let X be a subset of H>™ U dH?*". We say that X
is acausal if any pair of distinct points in X is Jomed by a spacehke geodesic inside
H2" U 0H?". Similarly, we say that a subset X of B2 U oH2" is acausal if any

A~

pair of distinct points in X is joined by a spacelike geodesic inside H2n U oH2n.
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A natural pseudo-metric. Acausal subsets are naturally endowed with a pseudo-
metric determined by the pseudo-Riemannian structure of H*" (or H*™):

Definition 2.5 (Pseudo-Metric). Let X be an acausal subset of H?". For any
z,y € X, we define the pseudo-distance dgz.~»(x,y) to be equal to the length of
the unique spacelike geodesic segment [z,y] joining them. We will refer to the
function dgz.» : X x X — [0,0) as the pseudo-metric of X. We similarly define

the pseudo-metric ds, ,, for acausal subsets of A2,

H

The pseudo-distance between two points z,y € H*™ joined by a spacelike geo-
desic satisfies the identity

COSh(de’” (:L'vy)) = |<xay>2,n+1|a

and similarly, the pseudo-distance between two points Z,y € H2n joined by a space-
like geodesic satisfies the identity

cosh(dﬁzyn (z, Q)) = —(&, P2.n+1,

Using this formula, it is simple to check that dgz.» : X x X — [0, 00) is continuous,
and vanishes precisely on the diagonal Ax < X x X. However, we emphasize that
the function dy2.» (or dg..,.) does not satisfy the triangle inequality nor its inverse.
Nevertheless, such pseudo-metric is compatible with the subset topology of any
closed acausal subset.

Lemma 2.6. Let X be a closed acausal subset of H*"™ U 0H?*". Then for any
ze X nH>" the family of open sets

B.(z) :={ye X nH>" | dygz.n(z,y) < 7},
for r < 1o, form a fundamental system of neighborhoods for the subset topology of

X A H2" < H2™. Up to replacing the role of H2™ with H2™, the same holds for
acausal subsets of H>"™ U JH?™.

Proof. We will consider the case of a acausal subset X of ﬁz’”, the same argument
applies to acausal subsets of H?™.

Since dg,, , is continuous with respect to the subset topology .7 of X n H2n
and vanishes on the diagonal A < (X n ]ﬁIQ’”)Q, every ball B,(z) contains a small
T -neighborhood of x. Hence, it is enough to show that every .7 -neighborhood of
2 contains a pseudo-ball B,.(z) for a sufficiently small value of .

Assume by contradiction that there exist a .7 -open set U containing x and a
sequence (), in (X N ]ﬁlQn) — U such that z,, € By, (z) for every m € N. Since
X is a closed subset of H2" U oH2" (and hence compact), up to subsequence the
sequence (2, )m converges to some y € X — U < H2" U oH2". The limit point y
cannot lie inside X n ﬁg’”, otherwise y # = would satisfy d]ﬁl“ (y,x) = 0, which
contradicts the properties of the pseudo-metric dg. ..

Ifye Xn 6@27", then there exists a sequence of positive real numbers (¢,,)m
converging to 0 and such that lim,, t,,z,, = v € R>"*! is an isotropic vector lying
in the positive projective class y € X n oH2™. Therefore we must have

@, v)2n41 = Hm (@, tn@mpanir = lim (=t cosh(dgs.. (x,2m))) = 0.

Lemmaimplies that the points z € X nH2" and y = [v] € X n dH2" are joined
by a lightlike geodesic, phenomenon that contradicts the acausality of X. [



SO¢(2,n+1)-MAXIMAL REPRESENTATIONS AND HYPERBOLIC SURFACES 19

A model for H2™. We now describe the Poincaré model of H2™, previously intro-
duced in a similar form by Bonsante and Schlenker [BS10| for anti-de Sitter space
(here n = 1), and by Collier, Tholozan, and Toulisse [CTT19| for any n > 1. The
Poincaré model will be particularly well suited for our study of acausal subsets (see
e.g. Lemma , and will be used extensively in our computations.

We start by selecting a spacelike 2-plane E < R2"*!. Notice that the bilinear
form (e, ®)5 .11 is negative definite on the orthogonal complement E+. We then
consider the Euclidean disk

D? :={ue E | {u,uypns1 < 1},
with closure D? = D? U dD? ¢ E, and the negative definite round sphere
S" = {ve B+ | (v,v)9 041 = —1}.
The Poincaré model of H?™ associated to E is described by the map
U=Ug: D2xS" —> H2"

2 14 |u)?
u, v — u+ V.
(u,v) I—ull? 1—[[ull?

We also introduce R
oU: oD?xS* — OJHZ"
(u,v) — u+v,
The main properties of ¥ and 0¥ are summarized in the following statement:
Proposition 2.7 (|[CTT19, Proposition 3.5]). For any spacelike 2-plane E <
R2"+L we have the following

(a) The map ¥ = Vg is a diffeomorphism.
(b) The pull-back pseudo-Riemannian metric can be written as

P* ( 2 )2|d |2 <1+u||2>2
Jpen = | T3 ul" — | ——5 | gsn.
1—lul L—lul

(¢) The map 0V is a diffeomorphism and extends continuously V.

The Poincaré model is especially useful when dealing with acausal subsets for
the following reasons: Firstly, acausal subsets X — H?" can always be written
as graphs of functions g : U < D? — S™ that are 1-Lipschitz with respect to the

hemispherical metric
2
2 2
gor = [ ——— | ldul
(1 + )

on D? and the spherical metric on S”. Secondly, the graph map v : U c D? — X <
H?2" is 1-Lipschitz with respect to the hyperbolic metric

2

2 2

gr2 = | ——— | |dul
(1 = [Juell )

on D? and the intrinsic pseudo-metric on X < 2", In both cases, for us, com-
pactness properties of 1-Lipschitz maps will translate in compactness properties of
acausal subsets.

We start with the following lemma:
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Lemma 2.8. Let E c R>"*! be q spacelike 2-plane, and let
T =00uov:D? x S" — H2™ U oH2"

denote the associated Poincaré model. For any x := W¥(u,v), 2z’ := ¥(u',v’), with
x # &', we have the following:

(1) z,x’ are joined by a spacelike segment if and only if
dgn (v,v") < dg2 (u,u'),

where dgz stands for the hemispherical distance of D?.
(2) x,2" are joined by a lightlike segment if and only if

dgn (v,v") = dg2 (u, ).
(8) If z, 2’ € H2" are joined by a spacelike geodesic, then
dz (u,u') = dg,, . (z,27),
where dy2 stands for the hyperbolic distance of D?.

Proof. The spherical distance between two points v, v’ € S is computed as follows

cos (dgn (v,0)) = (0,0 )sn = —(V, V)2 p41.
Similarly, the hemispherical distance between u,u’ € D? is given by
2 2 1—Jjuf® 1 — )
cos (dgz (u,u')) = Y S ]| [[w]

- 2 2 2°
Ll 1+ o] L fJull” T+ /]

We start by providing expressions for <x,w’>27n+1 = <@(u,v),@(g',v')>27n+1, de-
pending on whether z, 2’ belong to H>" or dH>™: If both z, 2’ € H>", then

2 2
2
L fu™ 1+ ]

1+ [luf® 1+ [|u/)?
(o0 s = LI L4 ] (

2 2
L= [lull” 1 =[]

5w )2 np1 + (v, U/>27n+1>

1 21 1112
= Ll L I o s, ) — cos (o (0,0)) — 1.
L= fJull® 1= [l

If v € 02" and 2’ € (9}1/-\]12’”, then

1+ |Jul? 2
(x, 2" )2 m+1 Jul ( 5<u, U)o nt1 +<U>U/>2,n+1>

1= Julf® \ 1+ [Jul|
2
= 1+HZ::Q (cos (ds2(u,u')) — cos (ds» (v,v))) -

Finally, if both z, 2" € /H2", then

<1’, x/>2,n+1 = <u7 u/>2,n+1 + <1}, U/>2,n+l

= cos (dsz2(u, u')) — cos (dgn (v,v")) .

Property (1). If both 2 and 2’ lie in H2>", then there exists a spacelike geodesic
segment joining them if and only if (x,2")2 41 < —1 by Lemma By the explicit
expression for {(z,2')2 ,41 that is provided above, we see that {z,2')2 11 < —1 if
and only if

cos (dgz (u,u')) < cos (dgn (v,0")) .
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If € H2" and 2/ € 0H2™, then z and 2’ are joined by a spacelike geodesic if
and only if (z,2")2 ,4+1 < 0, again by Lemma By the identity given above, this
holds if and only if cos (dgz(u, u’)) < cos (dgn(v,v")). The same equivalence holds
in the case of z, 2’ € oH2™.

Since dgz(u,u’),dsn(v,v") € [0,7], in each case we conclude that z and 2’ are
joined by a spacelike geodesic if and only if

dsn (v,v") < dg2 (u,u).

Property (2). If z,a’ € H2", then z,2' are joined by a lightlike geodesic if and
only if (z,2")2 nt1 = —1 by Lemma On the other hand, if x € JH?" and
2’ € H?2™ U JH?™, then x and 2’ are joined by a lightlike geodesic if and only if
(x,2"Y2,n+1 = 0. The conclusion then follows from a computation analogous to the
one of Property (1).

Property (3). If x,2' € 2" are joined by a spacelike geodesic, then (z, 2" )2 11 <
—1, and their pseudo-distance in H>™ is given by

cosh (d]ﬁ@m (I7 :17/)) = 7<I7 x/>2,n+1 .
On the other hand, the hyperbolic distance in D? can be expressed as follows:
2 2 1T+ Jlul® 1+ |2
cosh (dy (u,u')) = TR S [[ul [

- 2 2 2"
1= [lull” 1 — [l L= flu” 1 =[]
Since v, v’ € S”, we have |{v,v")| < 1. Therefore, we conclude that
cosh (dﬁ“(x,x')) = —(z,2" )2 n41
I L S 4

2 2
L= Jfuf™ 1T — ]

= cosh (dpz (u,u")) (1 + (v, v")2n41)

< cosh (dyz (u, u')),

with equality if and only if v = v’.

This concludes the proof of the statement. ([l

We will now show that acausal subsets can be described as graphs of 1-Lipschitz
functions. This is the content of the next lemma (appeared for the anti-de Sitter
3-space case in [BS20, Lemma 4.1.2], and in the case of smooth spacelike surfaces
inside H?™ in [CTT19, Proposition 3.8]):
Lemma 2.9. Let E < R>"™t! be a spacelike 2-plane, and let ¥ : D? x S* —
H2"™ U 0H?™ be the associated Poincaré model. If

m: {2 U o2 — D?

denotes the composition of T with the projection onto the first factor, then for
every acausal subset X < H>™ v 0H?>"™:

(1) The projection 7 : X — D? is injective. In particular, we can write X as
the graph of a function g : m(X) = D? — S™.
(2) The function g is strictly 1-Lipschitz with respect to the hemispherical met-

ric on D and the standard spherical metric on S™, that is,

dgn (g(u)a g(u/)) < dg2 (’LL, ’U,/)
for any distinct u,u’ € w(X).
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(3) Vice versa, the graph of any strictly 1-Lipschitz function g : U < D* — S®
defined on a connected subset U < D? is an acausal subset.

Proof. Any pair of distinct points x = ¥(u,v),2’ = ¥(u',v") € X is joined by a
spacelike geodesic. Hence, by Property (1) of Lemma we must have

ds2 (m(x), m(x")) > dgn(v,v") =0,

and so the restriction of 7 to X is injective. In particular, for any u € m(X) < D?,
there exists a unique g(u) € S such that ¥(u, g(u)) € X. Again by property (1) of
Lemma the function ¢ : D? — S™ is strictly 1-Lipschitz.

Vice versa, if g : D*> — S” is strictly 1-Lipschitz function, then the expressions
for (@, 2" )3 n+1 provided in the proof of Lemma combined with Lemma

show that the graph of g is an acausal subset of 2™ U oH2™. O

We now restrict our attention to some special acausal subsets, namely spacelike
geodesics and spacelike planes, and prove a couple of topological properties that
will be useful later on:

Lemma 2.10. Let E < R*"*! be o spacelike 2-plane with associated Poincaré
model U : D? x S* — ﬂ27”, and let 7 : H2™ — D? be the composition of U1 with
the projection onto the first factor. Then
(1) If H c 2" is a spacelike plane, then the restriction of 7 : H — D? is a
diffeomorphism and extends continuously to 0H — D2,
(2) Ift c 2" s q spacelike geodesic, then w(£) is a smooth properly embedded
curve. Either it is a diameter in D? or it intersects every diameter at most
once.

Proof. We prove the properties in order.

Property (1). Since H is a spacelike surface, it is transverse to the (negative definite)
fibers W({z} x S") of 7, and the restriction 7 : H — D? is a local diffeomorphism.
By Property (3) of Lemma we also have that 7 is distance non-decreasing when
we endow D? with the hyperbolic metric, since the pseudo-distance dgo.. Testricts
to the hyperbolic distance on H. In particular, 7 is proper and injective. Together,
the two facts imply that 7 : H — D? is a diffeomorphism.

Property (2). By the previous point, 7 : £ — D? is a smooth proper embedding.
We claim that the projection 7(¢) is either a diameter of D?, or it intersects every
diameter of D? at most once. In order to see this, parametrize £ as £(t) = eta+e~tb
for some a,b € JH?>", and write a = u, + v, and b = uy, + v with u,,u, € 6D? and
vq,vp € S™. The projection of £(t) to D? is a curve u = u(t) satisfying

2

—u(t).

1— Ju()]]

In particular, u(t) intersects a line pu' + qu? = 0 if and only if p(e'ul + e7tu?) +
q(e'ul + e7*u?) = 0. This equation has at most one solution unless 7(¢) = {pu' +
qu? = 0}, i.e. if w(¢) is a diameter.

etua + e_tub =

This concludes the proof of the statement. O

We conclude our analysis by studying extension and convergence properties of
families of continuous functions on acausal subsets of H?". We start with the
following definition:
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Definition 2.11 (Uniform Continuity on Acausal Sets). Let X be an acausal
subset of H*" and let (), dy) be a complete metric space. A function f: X — Y
is uniformly continuous if for every € > 0 there exists a 6 > 0 such that

dp o (2,y) <6 = dy(f(2), f(y)) <€

for every z,y € X.
A family of functions {f; : X — V}er is equicontinuous if for every € > 0 there
exists a § > 0 such that

dpon (7, y) < 6 = dy(fi(x), fily)) <€

for every z,y € X and i € I.
With this notion, we can formulate and prove the following statement:

Lemma 2.12. Let X be a closed acausal subset ofﬁQ’". Let Y be a complete metric
space.

(1) Let f: D c X — Y be a uniformly continuous function defined on a dense
subset D < X, then f extends continuously to X.

(2) Let f, : X — Y be a sequence of equicontinuous functions that converges at
some point x € X. Then, up to subsequences, f, convergesto f : X — Y
with the same modulus of continuity of (fn)n.

Proof. We work in a fixed Poincaré model of H2n, Represent X as the graph of
a 1-Lipschitz function g : U < D? — S™ defined over the projection U := 7(X).
Observe that m : X — U is a homeomorphism with inverse given by the graph
map v : U — X given by u(z) = (z,g(z)). Endow D? with the hyperbolic metric
and recall that, by property (3) of Lemma u is 1-Lipschitz with respect to the
hyperbolic metric on D? and the pseudo-metric on X.

Property (1). Counsider h := fu:7w(D)c U — Y. Since f is uniformly continuous
and w is 1-Lipschitz, we have that h is uniformly continuous with respect to the
hyperbolic metric of D? and the metric of Y. Therefore h extends continuously to
the closure of U inside D? and, hence, f = hm extends continuously to X.

Property (2). Consider h,, := f,u: U — ). Since the family f, is equicontinuous
and w is 1-Lipschitz, we have that the family h, is equicontinuous as well (with
respect to the hyperbolic metric), and therefore extends to an equicontinuous family
h,, defined on the closure U of U in D2. As (h,), converges on 7(x), by Ascoli-
Arzela the sequence h,, converges to h : U — Y uniformly on all compact subsets of
U, up to subsequences. Hence, f, = h,7 converges up to subsequences to f = hr.

This concludes the proof of the statement. O

2.3. Maximal representations. We now introduce maximal representations in
SO¢(2,n+1) and a couple of geometric objects that are naturally associated to
them.

The first geometric object which one can attach to every representation p : I' —
SO¢(2,n+1) is a flat vector bundle V, — X. The total space V, is defined as
follows:

Vo= 5 x R2" (2, 0) ~ (72, p(v)0).
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Here ¥ is the universal covering of 3 and ~ acts on it as a deck transformation.
The bundle projection V,, — ¥ is just the one induced by the the universal covering
projection DI 3}

The vector bundle V, — 3 has an associated cohomological invariant T'(p) € Z,
called the Toledo invariant (see [BIW10]). The number T'(p) always satisfies a
Milnor-Wood inequality |T'(p)| < 2[x(2)].

Definition 2.13 (Maximal Representation). A representation p is called mazimal
if it satisfies |T'(p)| = 2|x(2)].

By the work of Burger, lozzi, Labourie, and Wienhard [BILWO05|, we can equiv-
alently describe maximal representations in terms of equivariant limit maps. Here
we will mostly adopt this more geometric perspective.

Theorem 2.14 (Burger, Iozzi, Labourie, and Wienhard |[BILWO05|). A represen-
tation p : T' — SO0(2,n+1) is maximal if and only if there exists a p-equivariant
Holder continuous embedding

£: 00 — JH>"

such that A, := £(0T') is an acausal curve, meaning that for every triple of distinct
points u,v,w € o', the subspace of R>"*1 spanned by the lines &(u), £(v), E(w) has
signature (2,1).

The second geometric object that we associate to a maximal representation p
is a pseudo-Riemannian manifold M, locally modeled on H?": Even though the
group p(T") does not act properly discontinuously on the whole H?™, it admits a nice
domain of discontinuity. In fact, every maximal representation p in SOg(2,n+1) is
convex cocompact in the sense of [DGK1§| and [DGK17]: In the projective model
H?" < P(R*"*+1), the representation p preserves a properly convex open subset
Q, c H?", whose C'-boundary 09, contains the limit curve A, = 02, N OH>™,
and its action is cocompact on the convex hull CH(A,) n H*"™ < €, of the limit
curve.

As the representation acts by projective transformations on 2,, it preserves
the natural Hilbert metric on the convex domain and, hence, the action on €, is
properly discontinuous. Furthermore, since every p(v) acts by isometries on 2,
and has an attracting fixed point on A, < 09Q,, it follows that p(y) cannot have
fixed points in €2,, so the action is also free. In conclusion, since the action is free
and properly discontinuous, we can associate to p the pseudo-Riemannian manifold
M, :=Q,/p(T). The quotient

CC(M,) = (CH(A,) A H>™)/p(T) < M,

is the convex core of M,.

The convex set 2, is by no means unique. However, the convex hull CH(A,) N
H?" < 2, does not depend on the choice of 2,. Therefore, the geometry of the
convex core CC(M,) is also independent of the choice of the domain Q.

Remark 2.15. Let us observe that, since the set

Q, U A, c H>™ U oH>"

is simply connected, it admits a lift Q, U A, ¢ H2" U JH>". By Theorem
such topological A, « dH*™ is a p-invariant acausal subset as in Definition



SO¢(2,n+1)-MAXIMAL REPRESENTATIONS AND HYPERBOLIC SURFACES 25

2.4. Hyperbolic surfaces and Teichmiiller space. When n = 0, Goldman
[Gol80] has shown that maximal representations in SOg(2, 1) correspond exactly to
holonomies of hyperbolic structures on X.

We will denote by T the classical Teichmiiller space that parametrizes such
hyperbolic structures on ¥ up to isotopy. We recall that our goal is to relate the
geometry of maximal representations to the one of hyperbolic surfaces.

In this section we collect some facts from classical Teichmiiller theory that will
be needed later on starting from geodesic laminations which are one of our main
tools.

2.4.1. Geodesic laminations. We start with some familiar properties of the hyper-
bolic plane: Every geodesic on H? can be uniquely identified by its pair of endpoints
on JHZ.

Definition 2.16 (Space of Geodesics). The space of (unoriented) geodesics of H?
is

G := (OH? x OHP)/(2,y) ~ (y,2).

Given two geodesics £, € G we can also describe their relative position by
looking at the configuration of their endpoints at infinity. More precisely:

Definition 2.17 (Crossing and Disjoint). Let a,b,a’,b’ € S be four points on a
circle such that a # b and o’ # b. We say that the pairs (a,b) and (a’,b’) are
crossing if a’, b’ are contained in distinct components of S' — {a,b} and disjoint
otherwise.

We now fix once and for all a reference hyperbolic structure on ¥ and identify
0H? with the Gromov boundary or.

Definition 2.18 (Geodesic Lamination). A geodesic lamination of H? is a closed
subset A of G such that every pair of geodesics £, ¢ € X is disjoint, as in Definition
217 If ¥ is a closed orientable hyperbolic surface of genus > 1, then a geodesic
lamination of ¥ is a I-invariant geodesic lamination of H?, where I' = 71 (X).

The elements of a lamination A are called the leaves of A. We denote by Ay the
geometric realization of A\, namely the subset of H? obtained as the union of all
leaves of \. In addition, every connected component of H? — \g is called a plague
of \. We say that a geodesic lamination A is mazimal if every plaque of A is equal
to the interior of an ideal triangle in HZ2.

Remark 2.19. We recall that, while geodesic laminations of a closed surface are
uniquely determined by their geometric realizations (see e.g. [CEGO06, Chapter 1.4]),
the same does not hold in general for geodesic laminations of H?. For instance, there
exist distinct geodesic laminations whose geometric realizations coincides with the
entire hyperbolic plane H? (see e.g. [CEG06, Definition 11.2.4.1]).

We denote by GL the space of geodesic laminations on . As geodesic laminations
are closed subsets of G, the space GL is naturally endowed with the Chabauty (or
Hausdorff) topology. It is a standard fact (see [CEGO06, Proposition 1.4.1.7]) that
GL is compact with respect to this topology. For a more detailed exposition on
geodesic laminations in hyperbolic surfaces we refer to [CEGO06, Chapter 1.4].
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2.4.2. Geodesic currents and measured laminations. Geodesic currents were intro-
duced by Bonahon |[Bon88]. They are defined as follows:

Definition 2.20 (Geodesic Currents). A geodesic current is a I'-invariant locally
finite Borel measure p on G. We denote by C the space of geodesic currents.

The space C has the structure of a cone and it possesses a natural weak-* topol-
ogy. Furthermore, it is endowed with a natural continuous symmetric bilinear form

i(e,0):C x C — [0,00),

called the intersection form. We briefly recall its definition, as we will use it later
on: Let J < G x G be the space of pairs of crossing geodesics (¢,¢'). The group T'
acts properly discontinuously on 7. Any pair of geodesic currents «, 8 € C induces
a [-invariant measure o x 8 on J and, hence, a well defined measure a x 5 on
the quotient J/I" which it is possible to show to be always finite. The intersection
between « and (3 is defined as

i(a, B) = (a x B)(J/T).

Definition 2.21 (Measured Lamination). A measured lamination on ¥ is a geo-
desic current p € C such that i(p, ) = 0.

It is a standard fact, that, with this definition, the support of a measured lam-
ination is a geodesic lamination of ¥ (see Bonahon [Bon88| Proposition 17]). We
denote by ML the space of measured laminations on .

Bonahon shows that the following natural objects associated to 3 embed canon-
ically in C:

e The space S of free homotopy class of closed curves of X.

e The space T of isotopy classes of hyperbolic metrics on X.
We will make no distinction between a point in these spaces and its image in the
space of currents C. Bonahon also proves that, with respect to the intersection form
i(e, ®) we have the following relations:

o If o, 8 € S, then i(«, B) is the geometric intersection number between «, 3.

o If aeSand X € T, then i(X,a) = Lx(«) is the length of o on X.
In particular, the intersection form provides a continuous extension of the length
function Lx(e) : S — (0,00) to a continuous positive function on the space of
geodesic currents as i(X,e) : C — (0,00). For more details on such properties, we
refer to Bonahon [Bon8§|.

2.4.3. Shear coordinates. Let A be a maximal lamination of 3. Following Bonahon
[Bon96|, we have the following definition:

Definition 2.22 (Holder Cocycle). A Hélder cocycle transverse to A is a real-valued
function on the set of pairs of distinct plaques of \ that satisfies:
(1) Symmetry: For every pair of distinct plaques P, @, we have o(P,Q) =
o(Q, P).
(2) Additivity: For every pair of distinct plaques P, @, and for every plaque R
that separates P from @, we have o(P,Q) = o(P, R) + ¢(R, Q).
(3) Invariance: For every pair of distinct plaques P, @ and for every v € I', we
have o(P, Q) = o(vP,vQ).
We denote by H(A; R) the space of Holder cocycles transverse to A, which has a nat-
ural structure of real vector space of dimension 3|x(X)| by [Bon97b, Theorem 15].
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Holder cocycles are a useful device that allow to encode among other things the

following data:

e Every hyperbolic metric X € 7 has an associated shear cocycle Uf\( €

H(A;R) that describes the relative position of the plaques of X — A.

e Every measured lamination y € ML with support contained in A has an
associated transverse cocycle p € H(A;R) and a length functional L, :
H(\;R) — R whose evaluation on shear cocycles 03X coming from hyper-

bolic metrics X € T equals Lx (p).

We refer to Bonahon [Bon96| for the details of the construction.

The space of Holder cocycles transverse to A is naturally endowed with a sym-
plectic form wy (e, o), called the Thurston’s symplectic form, which essentially gen-
eralizes the notion of intersection between geodesic currents to transverse Holder
distributions, in the sense of [RS75|. The form wy can be also described concretely
in terms of the classical algebraic intersection between 1-chains on a surface, inter-
pretation that will be recalled in Section from the work of Bonahon |[Bon96|.

The Thurston symplectic form was deployed by Bonahon [Bon96] to relate the
notion of shear cocycle 0‘>)\( associated to a hyperbolic structure X € T with the
notion of hyperbolic length for measured laminations. Concretely, we have that for
every X € T and p € ML with support contained in A, the following relation holds:

w(oX',p) = Lx ()
(see in particular [Bon96, Theorem EJ]).

The Thurston symplectic form is particularly relevant in the study of shear
cocycles because it provides a complete characterization of the set of transverse
Holder cocycles that can be realized as shears of hyperbolic metrics. Inspired by
ideas of Thurston [Thu98|, Bonahon proved the following parametrization result:

Theorem 2.23 (Bonahon [Bon96, Theorems A, B]). For any mazimal geodesic
lamination A of 3, the map

T — H(NR)
X — 03)\(

s a real analytic diffeomorphism. The image of the map is the open convex cone
C:={oeHNR)|w(y, o) >0 for every p € ML with supp(u) = A}
where w(e, o) is the Thurston’s symplectic form on H(A; R).

The resulting set of coordinates for Teichmiiller space are called shear coordinates
relative to A.

Let us mention that, Bonahon and S6zen [SB01| proved that the pullback of the
Thurston’s symplectic form w via the above diffeomorphism is (a multiple of) the
Weil-Petersson symplectic form on Teichmiiller space. In Section [7] we will use the
Weil-Petersson geometry of Teichmiiller to study the length spectrum of maximal
representations p : I' — SO¢(2,n+1).

When dealing with different spaces of Holder cocycles H(A; R) relative to nearby
laminations A € GL, it is useful to identify all such spaces with the space of real
weights W(7;R) of a suitable train track 7 carrying all the laminations considered.
This is particularly convenient when studying continuity properties of maps A €
GL — o) € H(A;R) as we will need later on.

Thus, we now briefly introduce train tracks and systems of real weights.
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2.4.4. Train tracks. We recall the necessary terminology (see e.g. [PH92,[Bon97b,
Bon97a,BD17|]). We define a branch inside ¥ to be a homeomorphism ¢ : [0, 1] x
[0,1] — B (which we abusively identify with its image B). We refer to: (the images
of) the curves t — (¢, ) as the ties of the branch B, to 0,B := ¢({0,1} x [0,1])
and 0y B := ([0,1] x {0,1}) as its vertical and horizontal boundaries, respectively,
and to the images of the points in {0,1} x {0, 1} through the map ¢ as its vertices.

We then define a (trivalent) train track 7 as a closed subset of ¥ that can
be decomposed into the union of a finite number of branches (B;); satisfying the
following conditions:

i) every connected component of the intersection B; n B; between two distinct

branches coincides with a component of 0,B;, it is strictly contained in
a component of 0,B;, and it contains exactly one vertex of B; (up to
exchanging the roles of ¢ and j);

i1) for every i, each vertex of B; is contained in the vertical boundary of some
branch Bj;, with 7 # j;

i11) no complementary region of the interior of 7 is homeomorphic to a disc
that intersects 0, 1 or 2 distinct components of the vertical boundaries of
the branches (B;);.

Any tie of a branch B; of 7 that is not strictly contained inside a connected
component of the vertical of some (possibly different) branch B; will be simply
called a tie of the train track 7. The horizontal boundary 0nT of T is defined as
the union of the horizontal boundaries of its branches, and the closure of 0T — 07
is called the wvertical boundary 0,7 of 7. The ties of 7 that contain a component
of 0,7 are called switches. A switch coincides with a connected component of the
vertical boundary of some branch B; in 7, and strictly contains two components
of the vertical boundary of some branches Bj, By, of T (possibly two of the three
branches B;, B, By, coincide). Moreover, every switch contains exactly one con-
nected component ¢ of the vertical boundary of 7.

If 7 is the preimage of 7 in the universal cover of 3, then a branch of 7 is simply
the lift of some branch of 7. Similarly we define the ties, the switches, the vertical
and horizontal boundary of 7 and of its branches. We say that a train track 7
carries a lamination A if A\ is contained in the interior of 7 and every tie of 7 is
transverse to the leaves of \.

Train tracks come naturally together with a vector space of real weights as we
now describe.

2.4.5. Systems of real weights. Given 7 a trivalent train track of ¥, a system of real
weights n = (n;); of T is a real-valued function on the set of branches (B;); of T that
satisfies a natural linear constraint for every switch of 7 (compare with [Bon97a], or
[Bon96| § 3]): For any switch s, let B?, B3, By, be the branches of 7 adjacent to s,
and assume that s coincides with a connected component of the vertical boundary
of the branch Bj. If n}, n;, n; denote the weights associated by n with B}, B}, By,
respectively, then we require 7 to satisty n; = nj + 7, for any switch s of 7.

We denote by W(7;R) the space of systems of real weights of 7. Observe that
W(r; R) is naturally endowed with a real vector space structure, and its dimension
is completely determined by the topology of 7 (see [Bon97b, Theorem 15]). In
particular, if 7 carries a maximal lamination, which will be the only case we will
be interested in, then W(7;R) = R=3x(9),
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For any maximal lamination A’ carried by 7, there exists a natural isomorphism
H(N;R) = W(r;R), which can be described as follows: let a be a Holder cocycle
transverse to X', and let B; be a branch of 7. Select arbitrarily a lift El of B; to the
universal cover i, and select a tie k; of Ez disjoint from its vertical boundary. Since
T carries X', there exist two distinct plaques P/, Q; of A’ whose interior contain the
endpoints of k;. Then we define the real weight of « associated with B; to be «; :=
a(P!, Q%) € R. By the properties of Holder cocycles (see Definition , it is easy
to check that the weight «; does not depend on the choice of the lift of k;, and the
weights («;); satisfy the switch conditions described above. The corresponding map
H(A;R) > W(;R) is a linear isomorphism, as shown in [Bon97b, Theorem 11].

The space of real weights W(7;R) provides us a way to compare shear cocycles
associated with distinct maximal geodesic laminations that are close with respect
to the Hausdorff topology. Indeed, if (A,)n is a sequence of maximal geodesic
laminations that converges to A, and )\ is carried by a train track 7, then for m
sufficiently large 7 carries \,,. In particular, we have isomorphisms H(A,,;R) =
W(r;R) = H(\; R).

2.5. Cross ratios. Our use of cross ratios will be twofold: On the one hand, we will
use them to abstractly define the shear cocycles of our pleated surfaces (the basic
computation will be exploited in Remark . On the other hand, they will also
help us in the study of the length spectrum of a maximal representation p as they
provide a natural Liouville current %, such that i(.Z,, ) extends continuously the
length spectrum L, (e) from the space of closed geodesics S to the space of geodesic
currents C.

Let us remark that cross ratios are also objects of interests in their own and
have been widely used to study maximal and Hitchin representations [Lab08,MZ19|
BIPP21], and questions about length spectrum rigidity of negatively curved mani-
folds |Ota90,Led95,[Ham99, Ham97|.

We now introduce these objects formally. Observe that the Gromov boundary oT"
admits a natural Holder structure. To see this, recall that the choice of a Fuchsian
representation p : I' — PSL(2,R) determines a unique p-equivariant homeomor-
phism ¢ : ' — JH2. Different choices of Fuchsian representations p, 5’ provide
homeomorphisms ¢, ¢, that differ by post-composition with a quasi-symmetric
homeomorphism of JH? =~ RP'. Since quasi-symmetric homeomorphisms are bi-
Holder continuous with respect to any choice of a Riemannian distance on ¢H?, the
notion of Holder continuous functions f : 0I' — R is independent of the choice of
the Fuchsian representation p, and therefore intrinsic of the I'-space oI

Definition 2.24 (Cross Ratio). Let dT') denote the space of 4-tuples (u, v, w, z) €
(0T)* satisfying u # z and v # w. A cross ratio is a Holder continuous function
B: ™ — R that satisfies the following properties:

i) B is I-invariant with respect to the diagonal action of I' on oI'Y, i.e.
v (’LL, v, w, Z) = (’yu, YU, yw, 72) for any (U, v, w, Z) € ar(4)7
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1) For every u,v,w, z,x € 0" we have
Blu,v,w,2) =0 < u=worv=z,
Blu,u,w, z) = B(u,v,w,w) =1,
(1) Blu,v,w, z) = f(w, z,u,v),
Blu,v,w, z) = B(u,v,z,2)B(u, v, w, ),
18w, v, w, 2)| = |B(u, w, v, 2) B(u, 2, w, v)],
whenever the 4-tuples appearing above belong to oT'(*)

Remark 2.25. Observe that the second and fourth relations in imply that for
any 4-tuple of pairwise distinct points u, v, w, z € 0" we have

(2) B(u7v7 Z7w) = B(u7v7w? 2)71'
In turn, relation and the third symmetry in imply that
(3) ﬂ(u7v7w7 Z) = ﬂ(/U?u? Z7w)'

We alert the reader of the existence of multiple non-equivalent definitions of cross
ratios in the literature. For the reader’s convenience, we summarize the relations
between Definition and other notions in the literature in Appendix [A]

We now recall the notion of positive cross ratios from [Ham99) (see also [MZ19]):

Definition 2.26 (Positive Cross Ratio). A cross ratio 8 : 'Y — R is said to be
positive if for every 4-tuple of pairwise distinct cyclically ordered points x,y, w, z €
ol it satisfies S(z,y, z,w) = 1. We say that 8 is strictly positive if for every 4-tuple
x,y,w,z € T as above we have 3(z,y, z,w) > 1.

A positive cross ratio has a natural notion of length functions associated to any
non-trivial element v € I'. We briefly recall its definition:

Definition 2.27 (Period of a Cross Ratio). Let 8 : dT®) — R be a cross ratio.
For any v € T' — {e} we define the B-period of v to be

Lg(y) :=log|B(v*,7, z,vz)|,

for some x € OT' — {y*,7™}, where v© and v~ denote the attracting and repelling
fixed points of v in oT'.

It is simple to deduce from the symmetries of a cross ratio (see in particular ,
@), () that the quantity Lg(y) does not depend on the choice of z € oT'—{yT, 77},
and it satisfies Lg(y) = Lg(y™!) = Lg(6v0~!) for any v, € T, with v # e.

As observed by Hamenstddt [Ham97] (see also Martone-Zhang [MZ19]), any
positive cross ratio 8 uniquely determines a geodesic current compatible with its
period functions, as described by the following result:

Theorem 2.28 ([Ham97, Lemma 1.10], [MZ19, Appendix A]). Every positive cross
ratio B : T — R is represented by a geodesic current Zp € C, that is, for every
veTl —{e} we have

Lg(v) = i(Z5,7),
where Lg(7y) denotes the -period of ~y.



SO¢(2,n+1)-MAXIMAL REPRESENTATIONS AND HYPERBOLIC SURFACES 31

The geodesic current £ will be called the Liouville current of 8, in analogy
with the terminology introduced by Bonahon [Bon88| § 2] in the case of hyperbolic
structures on closed surfaces. By Theorem the non-negative function

Lg: C — R
¢ i(Lay0)

naturally extends the S-period functions to the entire space of geodesic currents.
Moreover we have:

Lemma 2.29. If 8 is a strictly positive cross ratio, then Lg(c) > 0 for any non-
trivial geodesic current c € C.

Proof. The first part of the assertion follows immediately from the definition of the
intersection form on geodesic currents (see Section . Consider now a non-
trivial geodesic current ¢ € C, and select a leaf ¢/ in the support of ¢, namely a
point inside G for which all neighborhoods have positive c-measure. We now choose
a geodesic £ € G that crosses /. We can find small intervals I,.J and I’,.J’ inside
oI" around the endpoints of ¢ and ¢, respectively, so that every pair of geodesics
helxJ:=(IxJ)/~andh € I'xJ := (I'xJ")/ ~ is crossing (here ~ denotes the
equivalence relation (z,y) ~ (y,z) on (I x oI')/ ~, compare with Section [2.4.1)).
Accordingly with the notation introduced in Section we have

i(Lp,c) = (Lp x c)(T/T),

where J denotes the set of pairs of crossing geodesics in G x G. Since I' acts freely
and properly discontinuously on J, up to choosing smaller intervals I, J, I', J’, we
can assume that the Borel-measurable set

K:=UIxJ)x (I'xJ)cJ
projects injectively inside J/I". In particular we have
(L x )(T/T) = (L x ¢)(K)
= (L) IxJ)-c(I'xJ").
By construction ¢(I’xJ’) > 0, so it is enough to show that #3(IxJ) > 0. This is

in fact a direct consequence of the definition of the Liouville current %3, and the
fact that § is strictly positive: indeed the measure .Z3 satisfies

Zs([a,b]x[c,d]) = log B(a,b,c,d)

for any pair of disjoint intervals [a, ], [¢,d] in OT', where a,b, ¢, d are cyclically or-
dered (compare with [Ham97, Lemma 1.10], [MZ19, Appendix A]). Therefore, being
B3 strictly positive, we immediately conclude that .Z3(Ix.J) > 0, and consequently
i(Z3,¢) > 0, as desired. O

3. LAMINATIONS AND PLEATED SETS

In order to understand the geometry of maximal representations and relate it
to Teichmiiller space T, we study certain 1- and 2-dimensional invariant objects
contained in the pseudo-Riemannian symmetric space H>™, namely geodesic lami-
nations and pleated sets.

Recall that, by Theorem the image of the limit map & : o' — JH?" of
every maximal representation p describes a p-invariant topological circle A, :=
£(0T') < OH?™ satisfying the following condition: Every triple of distinct points in
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A, generates a subspace of R*" 1 of signature (2,1). Since a consistent part of the
results on geodesic laminations and pleated sets in H?™ that we focus on in the
current section rely only on this specific property of the set A,, we introduce the
following notion:

Definition 3.1 (Acausal Curve). Let A be a topological circle embedded in dH?™.
We say that A is an acausal curve if every triple of distinct points of A generates a
subspace of R?>"*+! with signature (2, 1).

Notice that acausal curves provide specific examples of acausal sets inside om2m
in the sense of Definition 2.4l Indeed we have:

Lemma 3.2 ([DGK17]). Every acausal curve A is entirely contained in an affine
chart of H>™ < RP™*2. In particular, there exists an acausal subset A inside OH2™
such that the natural projection A>Aisa homeomorphism with respect to their
respective subset topologies.

Proof. This assertion is a corollary of [DGK17, Proposition 1.10]. Notice that the
notion of acausal subsets that we use and the notion of negative subsets of Danciger,
Guéritaud, and Kassel [DGK17| agree, as proved in [DGK17, Lemma 3.2]. O

In the same way that geodesic laminations in H? can be identified with suitable
sets of unoriented pairs of points in o' (see Section [2.4.1)), we define:

Definition 3.3 (A-Lamination). Let A be an acausal curve inside JH?>". A A-
lamination is a closed subset A € Gy = (A x A — A)/(z,y) ~ (y,z) such that every
pair of points (a,b), (a’,b") € A gives disjoint pairs on A.

A A-lamination A is mazimal if there is no geodesic £ € Gy — X\ which is disjoint
from all the leaves of A. We denote by G}* the space of maximal A-laminations.

As A is an acausal curve, every (a,b) € A x A — A represents a spacelike line
[a,b] = H?"™. We define the geometric realization of a A-lamination \ in H>" to
be A = U(a7b)e)\[a, b]

Notice that the geometric realization X of A is a closed subset of H2™ contained
in the convex hull CH(A) = H?*" of the acausal curve A < JH*" (which is well
defined as, by Lemma A is contained in a properly convex set).

The main class of geodesic laminations and pleated sets that we will focus on
in the rest of the exposition are those arising from maximal representations p and
their associated pseudo-Riemannian manifolds M ,:

Definition 3.4 (p-Lamination). Let p : T' — SO¢(2,n+1) be a maximal represen-
tation with associated acausal curve A, c JH*". A p-lamination is a p(T)-invariant
A ,-lamination.

Whenever a A-lamination A is maximal, it is possible to ”fill” the geometric
realization A of A with totally geodesic spacelike ideal triangles of H>", one for
each complementary triangle of )\ inside H2. Together, the geometric realizations
of A and of its complementary regions form the pleated set S ' of A.

Definition 3.5 (Pleated Set). Let A = dH*™ be an acausal curve and let A be a
maximal A-lamination. The pleated set associated to A is the set Sy obtained as
the union of A with all spacelike triangles A bounded by leaves of .

Let us now give a brief outline of the content of Section
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8§ We start by establishing the existence of geodesic laminations and discuss
their causal structure and topological features: As it turns out, geometric
realizations of A-laminations are always acausal subsets (see Proposition
3.7). To see this, it is in fact sufficient to investigate the causal structure of
a set of the form ¢ U ¢/, where £,¢' — H?>™ are two geodesics with distinct
endpoints on A ¢ JH?". In particular, we observe in Lemma that the
set £ U ¢ is acausal if and only if their endpoints 0¢, d¢' are not crossing, as
in Definition 217

8§ We prove the acausality of pleated sets in Proposition The proof relies
on the acausality of \ in combination with purely topologlcal arguments.
Let D2 x S™ be a Poincaré model of H2" and let 7 : H2" — D? denote its as-
sociated projection. By analyzing the complementary regions of 71'(5\) inside
D?, we show that the restriction of the induced projection 7 : 2" — D? to
the pleated set S \ is bijective, and in particular S \ is equal to the graph of
some function gy : D? — S~ This fact, in combination with the acausality
properties of )\ implies that S \ is acausal and, hence, that g is a strictly
1-Lipschitz function with respect to the spherical metrics. In particular, we
deduce that pleated sets are always nicely embedded Lipschitz subsurfaces
of H?™,

8§ We establish the continuous dependence of pleated sets with respect to the
choice of maximal laminations. More precisely, we show that the map

gy — Lip,(D*,8")
)\ —> g)\

is continuous with respect to the Chabauty topology on the source, and
the topology of uniform convergence over compact subsets of D? on the
target (see Proposition . This property will play an important role in
the study of the geometry of pleated sets, as described in Section [6]

§ [3.4 We conclude the first part of our analysis on pleated sets with the study of
their bending locus, namely the subset on which a pleated set S \ is folded.
The bending locus does not necessarily coincide with the entire maximal
lamination A, but it always describes a sublamination of it (see Proposition
. In the p-invariant setting, the notion of bending locus will allow us
to characterize the set of (homotopy classes of) curves inside a pleated set
S\ = S’\)\/p(l") C M, whose lengths are strictly dominated by the lengths
of their geodesic representatives inside M.

We emphasize that every statement appearing in Sections and [3.3| apply
to general A-laminations A, and in particular no p-invariance of A or A are required.
On the other hand, the content of Section applies to pleated sets that are
invariant by the action of some maximal representation.

3.1. Crossing geodesics and acausality. We start our analysis by showing that
the topological property of spacelike geodesics with endpoints in a acausal curve
A of being crossing or disjoint has an immediate interpretation in terms of their
acausal structure inside the pseudo-Riemannian space H>". More precisely, we
have:

Lemma 3.6. Let a,b,d’,b/ € A be four distinct points on an acausal curve A C
OH?"™ such that the geodesics [c,d] with c,d € {a,b,a’,b'} are all spacelike. Then:
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(i) The pairs (a,b) and (a’,b’) are disjoint if and only if the geodesics ¢ =
[a,b], ¢ = [a',V'] are disjoint and the subset { U {' = H>" is acausal.

(i) The pairs (a,b) and (a’,b") are crossing if and only if there is a timelike
geodesic which is orthogonal to both geodesics £ = [a,b] and ¢ = [d',V'].

Proof. By Lemma we can find a lift A of the acausal curve A in ]ﬁIQ’", so that
A is an acausal subset of H?", in the sense of Definition In particular, we
can find representatives of a,b,a’, b’ (which we continue to denote by a, b, a’, b’ with
abuse) inside the isotropic cone of (e, ), so that their pairwise scalar products are
all negative. We can then parametrize £ by £(t) = (eta + e~tb)/+/—2{a, b) and ¢
by ¢'(s) = (e*a’ + e~ %V')/4/—2{a’,b'). With these parametrizations we have:
—2+/<a, b)(a’, by - {U(t), ' (s)) =
= —(ela+e b efa +e %)
= —e'a,a’y — e a, by — e b’y — e 7D, V).
Since the four products {a, a’),{a,b’),{b,a’),{b,b") are all negative, the function

(t,s) — —L(t),'(s)) is proper. As a consequence, it has a global minimum m > 0.

A small computation shows that the function has a unique critical point (¢o, so),
which must coincide with the point of minimum, where it assumes the value

m = —({(to), ¥ (s0))
_ \/ Gty [t

{a,b)a', by {a,bya', by

Let eq, - - - e,43 be the canonical basis of R>"*+1, Up to isometries and rescaling,
it is enough to consider the following setting:

a=—es+es, a =e +es,
b=ey+ ez, b/=04€1+5€2+’}/63+u7
with v in the linear span of ey, - - - , €,, 42 and &®+3? = 1. Furthermore, by acausality

we must have v > o, and g + v > 0. We now identify H27 with D2 x S” via
the chart ¥y induced by the orthogonal decomposition RZ"+t! = E @ F where
E = Span{ej, ez} and F = Span{es, -+ ,en+3} (see Section 2.2). Under such
identification we have

mp2(a) = (0, —1), mp2(b) = (0,1), mp2(a’) = (0,1), 7p2 (V) = (a, B) € ID?,

and the above expression becomes

_ J@ano vy - favba) \/ =B, \/ B+

TN o vy T\ e vy T\ 2tv—a) T\ 2 =)

Notice that 7p2 induces a homeomorphism between A and oD? so that the cyclic
order of a,b,a’,b’ on A is the same as the cyclic order of their projections to dD?.
A little algebraic manipulation shows that m < 1 if and only if

VY= p% < —a.
Also notice that, as b’ is isotropic, we always have 0 = |V/|? = o2 + 32 — 4% — |u|?

with |u|? > 0 and, hence, 1/72 — 32 < |a.
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Thus, we have the following two cases: If o > 0, that is, if the pairs (a,b)
and (a’,V’) are disjoint, then the inequality 1/72 — 82 < —a is never satisfied and,
hence, m > 1. Therefore, £(t), ¢ (s) are always distinct and the geodesic segments
[¢(t), ¢ (s)] are always spacelike which implies that the subset £ U ¢’ is acausal.

If o < 0, that is, if the pairs (a,b) and (a’,b") are crossing, then the inequality
/72 — B2 < —« is always satisfied and, hence m < 1. In this case, the geodesic
segment [£(tg),#'(so)] is timelike and, as {£(ty), ¥ (so)) realizes the minimum of
{L(t), €' (s)), it is also orthogonal to £, ¢ at £(tg) and £'(sg). O

As a consequence of Lemma [3.6] we immediately get:

Proposition 3.7. Let A < JH>™ be an acausal curve and let \ be the geometric
realization of a A-lamination X\ € Gx. Then A is a proper acausal subset.

3.2. Pleated sets. We now study the topology and causal structure of a pleated
set associated to a maximal lamination. A priori, a pleated set can be a very
complicated topological subspace of H>". We now show that, instead, Proposition
forces a good topological behavior:

Proposition 3.8. Let A c JH?>™ be an acausal curve and let \ € G\ be a mazimal

A-lamination. Then its associated pleated set §>\ c H?™ is a topological Lipschitz
acausal subsurface.

Proof. We lift A to an acausal curve A < 0H2™. The proof strategy is as follows:
We show that in every Poincaré model D? x S™ of H2" the pleated set S \ is the
graph of a function g : D? — S™. We deduce that S, is achronal which implies that
the function ¢ is 1-Lipschitz with respect to the spherical metrics on D? and S™.
Therefore, being a graph of a Lipschitz function, the pleated set S » is a Lipschitz
subsurface. Acausality will follow from the fact that S, does not contain lightlike
segments.

Let

T :D? x S" —> H2" U oH2"
be the Poincaré model associated to a splitting R>"*! = E @ E with E spacelike
2-plane, and let 7 : H2" U oH2™ — D? denote the composition of ¥~ with the
projection onto the first factor. Recall that, as A is an acausal subset of 8@2*”, the
projection 7 restricts to a homeomorphism 7 : A — oD2.

Observe that the restriction of 7 to A is proper, being 7 a fibration with compact
fibers and \ a closed subset of ﬁQ’”, and injective, by Proposition and Lemma
Hence, the map =« : A—>D?isa homeomorphism onto its image 7r(5\), which
is a closed subset of D?. Notice also that Lemma [2.10] implies that the image of
any leaf ? of \ by  is a smooth proper arc in D? joining the projections of the
endpoints of /in A.

We now show that the connected components of D? — 71'(5\) correspond to the
triangles associated to A. This comes from the fact that both triangles and con-
nected components can be characterized in terms of cyclic order of the endpoints
of the leaves of A and 7(}) and 7 induces a homeomorphism between A and oD2.

First notice that 7 maps triangles to connected components: Let A = A(a, b, ¢)
be a triangle bounded by the leaves [a,b], [b, ], [¢,a] of A. Since A is contained in
a totally geodesic spacelike plane, by Lemma [2.10] the restriction of 7 to A is a
homeomorphism onto the image. The image m(int(A)) must be disjoint from the
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other leaves 7(¢) of m()), otherwise 7(¢) would intersect one of the sides w(0A) =
w[a,b] U w[b, ¢] U w[e,a]. Thus 7(int(A)) is a connected component of D — 7 ().
Then we show that every connected component of D? —7r(5\) arises as a projection
of a triangle.
Let U c D? — 7'('(;\) be a connected component. The set U is open inside D?, and

its boundary 0U is contained in 7(A). In fact, we can be more precise:
Claim 1. The boundary oU consists of a union of projections of leaves 7(¢).

Proof of the claim. Suppose that there exists a leaf £ of A such that 7)ol # .
Our aim is to show that the subset 7(¢) m 0U is both open and closed inside 7(¢)
which, by connectedness, implies that the projection 7 (¢) is entirely contained inside
ou.

It is clear that the set w(£) N AU is closed inside 7(¢), as 0U is a closed subset of
D2. Hence, it is enough to prove that m(¢) n 0U is an open subset of 7(¢). Notice
that 7(¢) divides D? in two half planes D? — (¢) = Au A’ and U, being connected,
must lie inside one of them. Up to relabeling we assume that U < A.

We now claim that there exists a small neighborhood B of € D? such that
B Ac D?— (). If this is the case, then the set B n 7(f) contains an open
subsegment of 7(¢) around z that lies entirely inside 0U, proving that U n 7 (¥) is
an open subset of 7(¢).

Suppose that there exist no neighborhood B satisfying such requirements. We
can then find a sequence of distinct leaves ¢, and points x,, € 7w(¢,,) converging to
x such that x,, € A for every n € N. The sequence of leaves £,, converges to £ in the
Hausdorff topology of H*"™ U dH?*" and, hence, their projections 7(¢,) converge
to m(¢) in the Hausdorff topology of D?. As a consequence, for any point y in U
there exists a sufficiently large n for which the curve 7 (¢,,) separates y from m(¢).
Being U a connected component of D? — 77(:\), it must lie inside the complementary
region of 7(¢,) that contains y, and hence that does not contain x. However, this
contradicts the fact that = lies in the boundary 0U, and hence proves the existence
of a neighborhood B satisfying the requirements. O

Using the fact that A is maximal, we now prove:

Claim 2. The boundary 0U consists of the projection of exactly three leaves of the
form 7[a, b, w[b, c], 7[c, a].

Proof of the claim. If £,¢ are distinct leaves of A that share no endpoint, then we
can find a leaf £* € X\ whose endpoints separate the endpoints of £ from the ones of
¢, by maximality of A. As a consequence, the curve 7(¢£*) must separate 7(¢) from
m(¢). This shows in particular that 7(¢), 7(¢') cannot be boundary components of
a single complementary region of D? —71'(5\). We deduce that every pair of boundary
components of U shares exactly one endpoint, and that 0U consists of the union of
at most three projected leaves.

On the other hand, again by the maximality of A\, every complementary region
of the union of two projected leaves w(¢), 7(¢') must contain at least another leaf
of (\). This tells us that U must consist of the union of at least three projected
leaves. Combining these observations, we deduce that the boundary oU of every

complementary region of 7r(5\) corresponds to a triangle bounded by leaves of A O
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We have now established a bijective correspondence between spacelike ideal tri-
angles bounded by leaves of A and complementary regions of 7 () inside D2. Com-
bining this with the fact that the restriction of 7 to every spacelike triangle (or to
the geometric relation 5\) is a homeomorphism onto its image, we deduce that the
restriction of the projection 7 to the pleated set S \ is injective and has image equal
to the entire disk D2.

We can now show that S \ is a topological achronal subsurface, namely:

Claim 3. Every pair of distinct points in S \ is joined by a spacelike or a lightlike
segment of H*". Consequently, Sy is equal to the graph of a 1-Lipschitz function
g:D? - S,

Proof of the claim. Suppose there there are two points on S » connected by a time-
like geodesic .. Consider suitable local coordinates W : D? xS™ — H?" adapted to a
timelike sphere T" containing o and an orthogonal spacelike plane H, i.e. satisfying

U(D? x {v}) = H, Y({0}xS") =T,

for some fixed v € S”. As the projection 7 : H2r - D2 collapses « to a point, its
restriction to S  cannot be injective, which contradicts the previous claim. As a
consequence S \ is achronal and the function g : D? — S™ describing it as a graph
is 1A—Lipschitz by Lemma In particular S \ is a topological Lipschitz subsurface
of H?™. O

The last property left to prove is the following:

Claim 4. The surface §>\ is an acausal subset of H2".

Proof of the claim. Again, we work in local coordinates adapted to a timelike sphere
T and an orthogonal spacelike plane H, so that we can write S » as the graph of a
1-Lipschitz function g : D> — S”. By Lemma the points p = (z,g(z)) and ¢ =
(y,g(y)) on Sy are connected by a lightlike geodesic if and only if dgn (9(x),9(y)) =
dsz(x,y). As g is 1-Lipschitz, this means that ds-(g(t), g(s)) = dp2(t, s) for every
t,s on the geodesic arc [z, y] (in the hemispherical metric). Therefore the lightlike
geodesic [p, q] is entirely contained in S - In particular, either [p, ¢] is contained in
a leaf of ;\, or [p, q] meets two different leaves, or it meets the interior of a comple-
mentary triangle. However a leaf, a pair of distinct leaves, and a complementary
region are all acausal subsets. Therefore, all these cases are not possible and we
conclude that S '\ must be acausal. O

This finishes the proof. O

In Sections andlél, we will prove that every pleated set Sy < H2" associated
to a maximal representation p : I' — SO¢(2,n+1) and a maximal p-lamination A
has a natural associated p(T')-invariant hyperbolic structure and admits a develop-
ing map f: S — H2 which is 1-Lipschitz with respect to the intrinsic pseudo-metric
on S » and the hyperbolic metric.

The data of the pleated set Sy = §>\/p(F) together with the intrinsic pseudo-
Riemannian metric, the intrinsic hyperbolic structure, and the 1-Lipschitz devel-
oping map f : §>\ — H? is what we will call a pleated surface (see in particular

Definition .
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3.3. Continuity of pleated sets. We now discuss continuity properties of pleated
sets associated to an acausal curve A ¢ 0H2"™ and maximal A-laminations \ € Gy.

First notice that, by Lemma [3.2] the acausal curve A is contained on the bound-
ary of a properly convex set 2y < H*" and has a well defined convex hull CH(A)
independent of the choice of 5. The closure of 24, being simply connected, admits
a lift to the 2-fold cover H2™. In particular, we can identify a pleated set in H?™,
which is always contained in CH(A) < €, with its lift in H2m,

We will deal with two topologies: On the one hand, as pleated sets S » are closed
subsets of H2" , they are endowed with a natural Chabauty topology. On the other
hand, if we fix a Poincaré model ¥ : D? x S* — H2 " each pleated set S A can be
written as a graph of a (strictly) 1-Lipschitz function gy : D?* — S™ (by Proposition
and Lemma [2.9). Therefore, the collection of pleated sets can be endowed
also with the topology of uniform convergence of the functions g,. Notice that
convergence with respect to this topology implies Chabauty convergence.

Proposition 3.9. Let A < 02" be an acausal curve. Then for every Poincaré
model U : D? x S* — H?", the map

gy — Lip,(D%8")

is continuous with respect to the Chabauty topology on GY' and the uniform conver-
gence on compact subsets on Lip, (D?,S").

Proof. Let A, be a sequence of maximal A-laminations converging to a maximal
lamination A in the Chabauty topology. We denote by §m, S the corresponding
pleated sets and by g, g : D? — S™ the associated 1-Lipschitz maps.

Our goal is to prove that g, — ¢ uniformly over all compact subsets of D?.
Notice that, being 1-Lipschitz, the maps g, converge uniformly on compact sets to
a 1-Lipschitz function ¢’ : D> — S™ up to subsequences. If we show that ¢’ = g,
then the convergence g,, — g would follow.

We now argue that:

Claim. Bach z € S is the limit of a sequence x,, € §m

Thls will be enough to conclude: In fact, suppose that this is the case. Pick any
z € S and select T € S as in the claim. We can express

Tm = (ymagm(ym))v €T = (yag(y))»

for some y,,,y € D?. By assumption the sequence (z,,),, converges to =, and hence
Ym — Y and g (ym) — g(y). On the other hand, since the sequence of functions
(gm)m is converging uniformly to g’ over all compact subsets of D?, we must have
that gm (ym) — ¢'(y). We conclude that ¢'(y) = ¢g(y) and, by letting = vary in S,
that the functions g and ¢’ coincide on D2.

Proof of the claim. In the proof of the claim we distinguish whether = belongs to
a leaf or to a plaque, but the arguments are very similar.

Consider a point = on a leaf {of \. As Am converges in the Chabauty topology
to A, the leaf £ < )\ is the limit of a sequence of leaves £,, < )\, and, hence,
also the geometric realization / is the Chabauty limit of the sequence of geometric
realizations ,, . Therefore, x € 7 is the limit of a sequence of points x,, € O
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Consider a point = on a plaque Aof S — A As Am converges in the Chabauty
topology to A, the plaque A is the limit of a sequence of plaques A,, of \,, and,
hence, also the the geometric realization A is the Chabauty limit of the sequence
of geometric realizations ﬁm. Therefore z € A is the limit of a sequence of points
Ty € Am. O

This concludes the proof of the proposition. ([l

3.4. Bending locus. As in the case of classical pleated surfaces in hyperbolic
geometry, pleated sets S \ associated to maximal p-laminations A are not necessarily
bent along all the leaves of A Trivially, any pleated set that is invariant by the
action of a Fuchsian representation in SOg(2,n+1) is in fact totally geodesic. In
analogy with [CEG06, Definition 1.5.1.3] (see also Thurston |Thu79, § 8.6]) we
introduce the following notion:

Definition 3.10 (Bending Locus). Let p : I' — SOg(2,n+1) be a maximal rep-
resentation. Consider A a maximal p-lamination with geometric realization 5\, and
denote by §,\ the corresponding pleated set. A point x € £ )\ is in the bending lo-
cus of S  if there is no (necessarily spacelike) geodesic segment k entirely contained
in S and such that int(k) n € =x.

We now prove the following:

Proposition 3.11. The bending locus is a sublamination of ;\, and its complemen-
tary inside Sy is a union of 2-dimensional totally geodesic spacelike regions.

Proof. We show that, if x € £ \ is not in the bending locus, then there exists
a neighborhood of ¢ inside S » that is entirely contained in a spacelike plane and,
therefore, its intersection with \ is not in the bending locus. This implies that the
bending locus is closed and consists of a disjoint union of the leaves of A

Before developing the proof, we recall a general structural result (see Theorem
1.4.2.8 in [CEGOG|) for p-laminations: Every p-lamination A decomposes as a dis-
joint union of:

e A finite number of minimal p-sublaminations A;, and
e A finite number of orbits p(T")¢ of isolated leaves that are asymptotic in
both directions to leaves of the minimal components A;.

Notice that the p(I')-orbit of every leaf of a minimal component A; is dense inside
Aj. In particular, for every £ € A; there exists a sequence of distinct elements v, € I'
such that ¢,, := p(v,) converges to ¢ in the Chabauty topology.

Suppose now that x € £ \ is not contained in the bending locus, and let k < §A
be a spacelike segment transverse to £ at « and entirely contained in S »+ According
to the above decomposition, we have that either £ is isolated or it is contained in a
minimal component of .

If 7 is isolated, then there exists two distinct components A, A’ of S » — A such
that £ = A n A’, and the geodesic segment k intersects both A and A’. In this
case, we immediately conclude that the two triangles A, A’ must be contained in
the same spacelike plane. In particular, the whole line ¢ is not contained in the
bending locus.

If  is contained in a minimal component A; of A, then p(I')¢ is dense in A;. In this
case, there exist infinitely many pairwise distinct segments k,, entirely contained
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in S, that intersect ¢ transversely. To see this, let ¢, := p(d,)¢ be a sequence
of pairwise distinct translates of ¢ such that ¢, — ¢. If the endpoints of ¢, are
sufficiently close to the endpoints of ¢, then ¢, must intersect k transversely, and
every transverse intersection k n £, can be translated back to k, n ¢ by applying
the isometry p(d,,1).

Consider now two distinct spacelike segments k, k' entirely contained in S \ that
intersect £ transversely. Every geodesic ¢/ < \ with endpoints sufficiently close to
those of £ must intersect both k¥ and k’. In particular, if A’ and A” are triangles
of Sy with edges ¢/, 0" sufficiently close to ¢, then k, k' intersect both int(A’) and
int(A”). This implies that A’; A” lie on the same spacelike plane. Hence, all
triangles that have an edge sufficiently close to ¢ lie inside a common spacelike
plane H. By density of triangles in §>\, we conclude that a neighborhood of ¢ in
S \ lies in H and, therefore, every point of the leaf ¢ does not lie in the bending
locus. ]

4. HYPERBOLIC STRUCTURES ON PLEATED SETS I

Let p: T — SO¢(2,n+1) be a maximal representation, and let A be a maximal
geodesic lamination with associated pleated set Sy < H2™. After investigating the
causal and topological properties of S '\, We now turn our attention on its geometric
structure. Being pleated sets obtained as unions of spacelike geodesics and ideal
triangles, a natural question that arises is whether the metrics on each totally
geodesic region ”patch nicely together”, determining an intrinsic hyperbolic metric
on .

Inspired by the work of Bonahon [Bon96] in the context of hyperbolic surfaces,
we now intend to answer to this question by recording the relative position of the hy-
perbolic triangles that make up the pleated set §>\ into a shear cocycle of € H(\;R)
transverse to the lamination A (see Section [2.4.3)). Making use of Bonahon’s charac-
terization of hyperbolic shear cocycles in terms of lengths of measured laminations
(see Theorem , this will determine, for every maximal representation p and for
any maximal lamination A, the intrinsic hyperbolic structure X{ € T of the pleated
set Sx. The construction of the shear cocycles 0§ and the investigation of their
properties are going to be the main subject of the current and next sections.

In fact, the process that we will outline applies in a wider generality than the one
specifically needed for the study of pleated sets in H?>". Indeed, the definition of the
cocycle of, will rely only on certain analytic properties of the cross ratio 4# naturally
associated to the representation p, namely on its positivity (see Definition and
local boundedness (which we discuss below, see Definition . Examples of cross
ratios satisfying these properties occur frequently in the literature about Higher
Teichmiiller Theories: This is for instance the case for Hitchin representations in
SO (p, p+1) or ©-positive representations in SOg(p, ¢) (see e.g. Beyrer and Pozzetti
[BP21] and Appendix [A]).

We can now describe our main result in this context:

Theorem 4.1. Let 3 : dT'™ — R be a positive and locally bounded cross ratio.
Then for every maximal lamination X\, the 5-shear cocycle Uf belongs to the closure
of the cone C(\) € H(\;R), that is

wa(0%, 1) =0



SO¢(2,n+1)-MAXIMAL REPRESENTATIONS AND HYPERBOLIC SURFACES 41

for every measured lamination p with supp u € A. Moreover, if the cross ratio

is strictly positive, then w,\(af, ) > 0 for every non-trivial measured lamination p

as above, and consequently there exists a unique hyperbolic structure Y = Yf eT
such that o, = o) € H(\;R).

We prove Theorem in the case of a finite leaved maximal lamination in this
section and in the case of a general lamination in the next section.

We now briefly discuss the notion of locally bounded cross ratio. To this purpose,
we need to introduce some notation. We select an identification of the universal
cover ¥ with H? through the choice of a hyperbolic structure X € 7. Moreover,
given ¢ an oriented geodesic of H?, we denote by ¢ and ¢~ the positive and negative
endpoints of ¢ in JH? =~ oI, respectively. If ¢ and h are two disjoint oriented
geodesics in H2, then we say that £ and h are coherently oriented if their endpoints
satisfy /T < ht < h™ < £~ < £* with respect to some cyclic order on JI'. With
this notation, we now define:

Definition 4.2 (Locally Bounded). A cross ratio § : dT*) — R is said to be locally
bounded if there exists a (and consequently for any) hyperbolic structure X € T
such that, for any constant D > 0 we can find C,a > 0 such that

llog B(h*, £+, 67 ,h7)| < C|log BX (AT, ¢, 6=, h7)|"

for any pair of coherently oriented geodesics ¢, h in Y~ H2 satisfying 0 < dyz (¢, h) <
D.

The term log 8% (h*,¢*,¢~,h™) appearing in the definition above has a pre-
cise geometrical interpretation in terms of 2-dimensional hyperbolic geometry, as
described by the following lemma:

Lemma 4.3. Let X € T. For any pair of coherently oriented disjoint geodesics £, h
in H2 = 3, the value BX (0, kT, h=,07) is strictly positive and satisfies
log 8% (h*, 07,07, h™) = 2log cosh M.

As mentioned above, local boundedness is an analytic property of a cross ratio
that will be crucially needed in the next section to guarantee convergence of the
approximation process defining the shear cocycle in the case of a general lamination.
In the proof of Theorem [£.] in the case of finite leaved lamination, instead, such
property is not used and the proofs are more elementary.

The cross ratios that we are mainly interested in are the natural cross ratios
B3P associated to maximal representations p : I' — SO¢(2,n+1). We start by
introducing them and investigating their properties.

4.1. Cross ratios of maximal representations. In what follows we describe a
cross ratio $° on ¢I' naturally associated to p : T' — SO¢(2,n+1) and its limit map
&. To this purpose, we start by defining a sign function on the set of 4-tuples of
points in JT" as follows. Given ¢ some fixed homeomorphism between o' and RP?,

we set

P(u) — p(w) ¢(v) — ¢(2) >

o(u) — ¢(2) ¢(v) — d(w) )’
for any (u,v,w, z) € '™, where sgn(t) = +1if t > 0, sgn(0) = 0, and sgn(t) = +1
if t < 0. It is simple to check that the function Sgn is independent of the choice of
the homeomorphism ¢, and that Sgn(u,v,w, z) = 0 if and only if u = w or v = z.

Sgn(u,v,w, z) := sgn (
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For any maximal representation p : ' — SO (2,n + 1) with associated acausal
limit map & : 0I' — JH?™ we then define

<aux5@w><avxaz»)1“
(@), () E(w), Ew)y)

for any (u,v,w, z) € OI'®, where (e, o) denotes the scalar product (e, )2 i1, and
we are implicitly selecting representatives in R"*! of the equivalence classes &(y),
for y € {u,v,w, z}. By Theorem the scalar products involved in the defini-
tion above are all non-zero. Moreover, the quantity appearing under the square
root does not depend on the chosen lightlike representatives of the equivalence
classes &(u),&(v),&(w),£(2), and it is always non-negative. Since p preserves the
scalar product (e, e) ,41 and the diagonal action of I' on oT™ preserves Sgn,
the function 8” is I'-invariant. Finally, the Holder continuity of 8” at any point
(u,v,w,z) € dT" is a direct consequence of the Holder continuity of the limit map &,
which is guaranteed by Theorem [2.14)). It is straightforward to check that maps 3°
associated to SOg(2, n+1)-maximal representations as in satisfy the symmetries
listed in .

We now prove positivity and local boundedness of the cross ratios 3°, properties
that will be crucial for the construction of shear cocycles developed in Section

(4) B (u,v,w, z) := Sgn(u,v,w, z) (

Lemma 4.4. For every maximal representation p : I' — SOq(2,n+1), the cross
ratio BP is strictly positive and satisfies relation .

Proof. Let (u,v,w, z) be a 4-tuple of distinct and cyclically ordered points in 0T'. Up
to the action of SOg(2,n+1), we can assume that {(u) = es + ez, £(v) = —e; + e3,
&(w) = —ey + e3. Moreover, since u,v,w,z are cyclically ordered, £(z) can be
expressed as £(z) = cos e + sint ez + x, where ¥ € (—7/2,7/2), and x is some
timelike vector of norm —1 orthogonal to the spacelike plane spanned by e; and es.
Being £(0T) a spacelike curve in H?", we see that ¥ and x must satisfy

(5) —1<{eg,x)y < —[sind|.

Observe that Sgn(u, v, w,z) = +1. Therefore, by definition of 3” and the normal-
ization selected, we have

1/2
N

From this identity, it is immediate to see that 8°(u,v,w,z) > 1 if and only if
{e3,vy —sind < 2cos¥. This inequality is always satisfied: The left-hand side is
negative by (5)), while the right-hand side is positive since ¥ € (—7/2,7/2). O
Lemma 4.5. For any mazimal representation p : T' — SOg(2,n+1), the positive
cross ratio BP is locally bounded. Furthermore, the constant o > 0 satisfying the
requirements of Definition [{.4 can be chosen to be a Hélder exponent of the limit
map & : T — OH>™ associated to p.

Proof. Fix D > 0, and let A = Ap be the subset of dI'® given by
{(hT,€%,07,h7) | £, h coherently oriented, 0 < dy=(¢,h) < D}.
If F: A — R denotes the function

Flu,v,w,2) 1= 08T 00 2)
T Tlog X (u, 0w, )|
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then the statement is equivalent to F being bounded (observe that F is well defined
on A by Lemma . Since F' is invariant with respect to the diagonal action of
T, it induces a continuous function on the quotient space A/T. We introduce a
convenient exhaustion by compact subsets of A/T. For any d € (0, D], let Ag be
the subset of A given by

{(h*,€%,07,h™) | £, h coherently oriented, d < dy=(¢,h) < D}.

Then it is immediate to see that the fundamental group I' acts cocompactly on Ay
for every d > 0. In particular F' admits an upper bound on A, for any d > 0.

Assume now that F' is not bounded over A. Then there exist sequences of
coherently oriented geodesics £,,, h,, in H? such that F'(h}, ¢, ¢ h;,) tends to +o0
as n goes to o, and dyz (€, h,) < D. Since Ay4/T" is compact for every d > 0, and
the 4-tuples (h,£F ¢ h.) are escaping every compact subset of A/T", we must
have that dyz(¢,, h,) tends to 0 as n goes to c0. Up to the action of I', we can
assume that the point of ,, that minimizes the distance from h,, is contained inside
a fixed fundamental domain. Hence, the geodesics ¢,, and h,, converge to the same
geodesic ¢, up to subsequences. Moreover, up to choosing a different identification
between 3. and H2, we can assume that the points ¢+ are different from oo € RPL.

By the properties of cross ratios and their continuity we observe that both terms
BP(hE, 6 0 b)), BX (R, 6 6 b)) converge to 1 as n — c0. The rest of the proof
will be dedicated to the study of the order of convergence to 0 of the logarithm of
these terms, which will lead to a contradiction with F' being unbounded.

We start from the term involving 8X: By the symmetries of the standard hy-
perbolic cross ratio, we observe

ﬂX(h;r’f;t,&:’h;) :1_5X(h;ta£;7£$ah;)

hy =65 4, —hy,

=1
hi — hy 6, — 0

Notice that the denominator (h, — h.)(¢,, — £}) converges to (¢~ — ¢*)2, which is
different from 0. On the other hand, since ¢, h,, — ¢, the factor (b}t —£3) (¢ —h;)
is infinitesimal. Therefore we deduce that

log BX (b, €+, 0, hir
(6) O LTl (e Yy | S S Y)
o0 (bt — 6l — )| (- — £F)2

Let now & : dT' — SOp(2,n+1) denote the limit map associated to the represen-
tation p. In order to study the behavior of the cross ratios 8°(h;!, 6 - k), it
will be convenient to introduce representatives of the projective classes £(¢), £(h),
by selecting some affine hyperplane V in R?™*+! intersecting the projective classes
£(¢*) and pick representatives belonging to V. We will continue to denote with

abuse these representatives by ¢(¢X), ¢(hE). Consider now

pirt b = 2 _ (), E(6)) <€), E(hy,))
N A RGNS
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Since £(¢%),¢(hE) — £(¢*), respectively, the above quantity converges to 1. A
simple algebraic manipulation shows that

S+

- ), 6l — 6l )XEWE) — (), ()
B, 5 s ) = &) € )WE(l )€l )y
() — &b, E(t) — E(hn)XE(hT). E(h))
Ce(h), €ha el ), €l

Let now L > 0 be a positive constant such that [(u, v)| < L||ul|,||v]|,, for some fixed
Euclidean norm ||e||, on R?"*1. We deduce that

Jr

S+

oGl ) |@M@(»@W N

Since £(¢F),&(hE) are converging to £(¢*), and £(£T) # £(£7), we can find a con-
stant M’ > 0 such that

|82 (hey €, £ hey)? = 1 < MUJIECET) — €(h)lollE ) — E(h) o

Moreover, being £ a Holder continuous function with exponent «, we conclude that
for n sufficiently large

IIOng h;zi_7£rt7£n7hn>‘ = %IOg(l + (Bp(h:7fz7£n,hn) ))

) ggﬁaqyfmmmmwn—amwo
< MY|(hf = 6567 = hi)|",

for some constant M” > 0 (here we are considering £ as a Holder function from a
neighborhood of /% in R ¢ RP! = 0H? to H>" c V with their Euclidean metrics).
Finally, combining this inequality with relation @, we obtain that

P ”
S L R IV )
now |log 8% (u,v,w, z)| M

which contradicts the fact that F(h;, ¢, ¢, h, ) diverges. We conclude that F

is bounded on A, and therefore that there exists a constant C' > 0 satisfying the
requirements. U

Remark 4.6. The argument provided in the proof of Lemma[£.5] heavily relies on the
Holder continuity of the limit map & : éI' — JH?"™ associated to the representation
p (see in particular relation ) In fact, we can give a more detailed description on
the dependence of the constants C, a > 0 satisfying the local boundedness condition
for BP. To this purpose, let us introduce the following technical notion:

Definition 4.7 (Uniform Family). Let {p; : dT' — SOq(2,n+1)};e; be a family of
maximal representations, with associated limit maps {&; : OT' — 0HZ*"};c;. Select
arbitrarily a hyperbolic structure on ¥, and choose an identification of 0" with
OH2. We say that the family {p;}icr is uniform if the limit maps {¢;}; are uniformly
Hélder continuous, namely there exist Riemannian distances dy,, d’,, on 0H?, 0H>",
respectively, and constants H,a > 0 such that

di (§i(2), &i(y)) < Hdeo (2, )"
for every i € I and x,y € o' = JH?2.
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Then, applying the same strategy described in the proof of Lemma [£.5 we can
in fact obtain:

Lemma 4.8. Let {p;}icr be a uniform family of mazimal representations. Then the
cross ratios B; = BPi are uniformly locally bounded, i.e. there exists a hyperbolic
structure X such that, for any choice of D > 0, we can find constants C,a > 0, (in
particular independent of i € I) satisfying

|log B; (A", €%, 67, h7)| < Cllog B~ (h*, ¢, 6=, h7)|"

for any pair of coherently oriented geodesics ¢, h in ¥ ~ H? satisfying 0 < dy2 (¢, h) <
D, and for any i € I. Furthermore, the constant o can be chosen to be a common
Holder exponent of the family of limit maps {&;}: of {pi}i-

We can therefore conclude that the cross ratios 5° associated to maximal repre-
sentations p : I' — SO¢(2,n + 1) satisfy the hypotheses of Theorem

4.2. Outline of the construction. We now move to the definition of shear cocy-
cles associated to positive locally bounded cross ratios and maximal laminations.
Throughout the rest of Section [4 B will always denote a cross ratio on JI', and A
a maximal geodesic lamination on 3.

Consider two distinct plaques P, @ of A. The shear of (P, Q) between P, Q) will
be defined following a careful approximation argument which depends on the fine
properties of maximal geodesic laminations in hyperbolic surfaces. In order to
describe the first steps of our construction, let us introduce some notation: We say
that a plaque R (or a leaf ¢) of A separates P from @ if P and @ are contained in
distinct connected components of 3 — R (or . £). We denote by Ppg the set of
plaques of A that separates P from Q).

In the remainder of the current section we will proceed as follows:

8§ We start by recalling a simple process — already described by Bonahon in
[Bon96] — that, starting from a finite subset of plaques P < Ppg, pro-
duces a finite lamination Ap of ) containing all the leaves of A\ that lie in
the boundary of some plaque in P. We introduce the elementary S-shear
between two adjacent complementary regions of Ap, which naturally gen-
eralizes the classical definition in hyperbolic geometry. We then define the
finite B-shear with respect to P, denoted by Ug (P,Q), as the sum of the
elementary shears between all adjacent complementary regions of Ap.

§ In this section we focus our attention on the notion of B-shears for finite
leaved maximal laminations. We observe how the relations satisfied by finite
[-shears (from Section allow to define [-shear cocycles associated to
finite leaved maximal lamination in a fairly elementary and natural way
(see in particular Proposition .

8§ Lastly, we investigate the connections between [S-shear cocycles associated
to a finite leaved lamination, and the S-periods of its closed leaves (see
Proposition [£.14). The bridge between these notions is provided by the
Thurston symplectic form, through which hyperbolic shear cocycles are fully
characterized (see Theorem .

4.3. Finite shears between plaques. We start by introducing the notion of finite
[B-shear between plaques of a maximal geodesic lamination.
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Let X be a hyperbolic structure on ¥. Given any finite subset P of Ppg, we
select an X-geodesic path k in (i,)?) joining two points in the interior of (the
)N(—geodesic realizations of) P and @, and we index the plaques Pi,..., P, in P
according to their order along k, moving from P to Q. It is immediate to check
that the ordering is independent of the choice of the arc k. We set also Py := P
and P, := Q. For every i, let /I and ZZQ be the boundary leaves of P; that face
P and @, respectively. If S; denotes the (possibly empty) region of 3 delimited by
E? and fﬁl, for every i € {0,...,n}, we define d; to be the geodesic that joins the
negative endpoints of the leaves E? and EiPH, as we orient them as boundary of the
strip .S; (if 8? and Zfll share one or two endpoints, then we take d; = QQ) For

every P < Ppq as above, let now Ap be the (finite) geodesic lamination of 3 given
by

pi= {09, do 07 02 dyy . 08 09,y 08,
where the leaves are listed as we move from P to (). The complementary set of
the lamination Ap in ¥ consists of two half-planes containing the plaques P and
@, and a finite number of spikes, i. e. regions bounded by two distinct asymptotic
geodesics, that separate P from Q.

Consider now two adjacent complementary regions R, R’ of Ap. We denote by
¢ the leaf of A\p shared by R and R’, and we select arbitrarily an orientation on /.
Let u; (u, resp.) be the ideal vertex in (R U R’) n 0T that lies on the left (right
resp.) of the geodesic £. If one of the regions R, R’ on the sides of £ coincides with a
half-plane containing P or ), then we select u; or u, to be the vertex of the plaque
P or Q different from ¢* and £~. Then we set

(8) o’ (R, R') :=log |B(T, 07 ur,u,)],
and we define the finite B-shear between P and @ relative to P to be
Z Rz, Rz+1
where Ry, Ry, ..., Ry11 are the complementary regions of Ap as we move from P

to Q. By the symmetry of the cross ratio §, each term o”(R;, R, 1) does not
depend on the choice of the orientation of the leaf separating R; and R;y;, and
0P (Ri, Riv1) = 0P(Ri41, R;) for every 4. Notice also that og(P, Q)= Ug(Q,P).

Remark 4.9. The definition of the cross ratio ° provided in Section [£.1]is designed
so that the shear o? (T, T") between two adjacent ideal triangles (or spikes) coincides
with the classical shear between their spacelike realizations T and 7" inside H2"
(i.e. if T has ideal vertices a,b,c € JI', then T is the spacelike triangle with ideal
vertices £(a),{(b),&(c) € OH> ”), measured with respect to the induced hyperbolic
path metric on 7" U 7".

In order to justify this assertion we need to introduce some notation. As we
did previously, we denote by £ the geodesic shared by R and R’ together with an
arbitrary choice of orientation, and by u; and w,. the ideal vertices in (R u R') n 0T
that lie on the left and on the right of ¢, respectively. Since £ : ¢T' — H?" is
a spacelike curve by Theorem there exist unique spacelike planes H; and
H, in H?>" whose boundary at infinity contain the triples £(¢%),&(¢7),&(w;) and
E(0F),€(07),&(uy), respectively. If R and R’ denote the regions of H; and H,
delimited by the spacelike geodesics corresponding to the boundary leaves of R and
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R/, respectively, then the set R U R’ possesses a natural hyperbolic metric with
geodesic boundary induced by the hyperbolic distances on H; and H,.

Let now g(ﬁi), g(ul), g(ur) be representatives of the projective classes &(¢F),
&(wp), &(uy), respectively, so that all their pairwise scalar products are negative
(this is possible again by Theorem . The vectors £(¢) and £(£~) generate a
2-plane V in R%"*1 of signature (1,1). Moreover, the orthogonal projection of a
vector w € R>"*! onto V can be expressed as

)y oo wé) -
gy T Eany, fy )

From here a simple computation shows that log|3”(¢*, ™, u;,u,)| coincides with

p(w

the signed distance between the projective classes of p(€(w;)) and p(€(u,)) along
the oriented spacelike geodesic [£(£7),£(£1)], which can be parametrized by

(') + e )
V2w, o))
On the other hand, the projection p(§(w;)) can be characterized in terms of
the hyperbolic metric of R U R’ as the unique point of the line £ = [€(¢7),£(¢1)]
that is joined to the ideal vertex £(u;) by a geodesic ray in H; orthogonal to ¢,
and similarly for p(£(u,)) and H,. Since the classical hyperbolic shear between
two ideal triangles (or spikes) that share a boundary geodesic h coincides with the
signed distance between the projection of their ideal vertices different from h*,
we deduce that log|B°(uy,u_,u;, u,)| coincides with the classical notion of shear

o) =

between the plaques R, R'.

We now highlight a few properties satisfied by finite S-shears. Since the proofs
of these relations are elementary and only rely on the symmetries of the cross ratio
B, we postpone them to Appendix [B] In what follows, we fix a maximal geodesic
lamination A, and we denote by A. the sublamination of A\ consisting of the lifts
of all simple closed geodesics contained in A. Notice that A\, is non-empty for any
finite leaved maximal lamination .

4.3.1. Shear between plaques sharing a verter. Let P and @) be two distinct plaques
of A\ that share an ideal vertex w € 0I'. We label the vertices of P and @ that are
different from w as up,vp and uqg, vg, respectively, so that the leaves [w,vp]| and
[w,vg] separate the interior of the plaque P from the interior of the plaque Q.
Then we have:

Lemma 4.10. For every finite subset P < Ppg

O—g(Pa Q) = IOg |B(w7 vp,up, ’UQ)B(w7 vQ,vp, UQ)‘
In particular the shear between P and @ is independent of the selected family of
plaques P < Ppq.

4.3.2. Shear between plaques asymptotic to a closed leaf. Consider now two plaques
P and @ of X that are separated by exactly one component £ of A.. Select arbitrarily
an orientation of ¢, and assume that the plaque P has a vertex equal to £ and
that lies on the left of ¢. Similarly, assume that @ lies on the right of ¢ and that
one of its vertices is equal to £~. We denote by zp,yp and z¢, yg the vertices of P
and @ different from ¢* and ¢~ respectively, so that [yp,¢"] and [y, ¢~| are the
boundary components of P and Q closest to £. Then we have:
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Lemma 4.11. For every finite subset P < Ppg

Ug(PaQ) = IOg |5(£+7yP»xPag_)5(€_7£+7vayP)5(£_7yQ7xQ»€+)‘~

In particular the shear between P and @ is independent of the selected family of
plagques P < Ppgq.

4.4. Shear cocycles: Finite case. We now focus on the construction of -shear
cocycles Uf associated to finite leaved maximal geodesic laminations, and the in-
vestigation of their properties. Thanks to the relations described in Lemmas
and it is possible to carry out the analysis of shear cocycles with respect to
finite leaved laminations in a fairly elementary way, without any subtle approxima-
tion argument.

Even though not generic, the convenience of examining the finite leaved case
separately is twofold. On the one hand, it serves as a guideline and motivation for
the analysis in the general case. On the other, the naturality of 5-shear cocycles for
finite leaved laminations, combined with the continuous dependence from Proposi-
tion shows that the approximation process described in Section produces
cocycles that are independent of their construction (see in particular Section
and Lemma .

Until the end of the current section, A will denote a finite leaved maximal lami-
nation of 3. Recall that every leaf of a lamination of this form projects in 3 either
onto a simple closed geodesic, or onto a simple bi-infinite geodesic, and in the latter
case each of its ends accumulates onto a (possibly common) simple closed geodesic.

We start by outlining the definition of the 8-shear cocycle relative to A. Consider
two plaques P and @) of A, and denote by ¢p and ¢ the boundary leaves of P and
Q, respectively, that separate the interior of P from the interior of . Notice that
the geodesics £p,{g, lying in the boundary of a plaque of A, project onto simple
bi-infinite geodesics in X.. We then choose arbitrarily an oriented geodesic segment
k starting at a point in the interior of P and reaching a point in the interior of Q).
By compactness, there exist only finitely many leaves of A that intersect k& and that
project onto simple closed geodesics of . We label them as ¢4, ...,¥¢,, following
the order in which we meet them moving along the segment k, and we orient each
£; from right to left with respect to k. For any i, we now select plaques P; and Q;
that lie on the left and on the right of ¢;, respectively, and that have Ej or {; as
one of their vertices (if P has a vertex equal to ¢; or ¢, then we choose P, = P,
and similarly for @, @, and ¢,,). Since @; and P;;1 are not separated by any lift
of simple closed leaves, the set of plaques Pg,p,,, is finite for any 1 = 1,...,n — 1.
For the same reason we see that the sets Ppp, and Pg, ¢ are finite. Finally, we set

P = Pppl (o PQ1P2 U v 'Panan U PQnQ7
and we define the B-shear between P and @) to be
o} (P.Q) = 0p(P.Q).

It is not difficult to show that the quantity Jf (P, Q) is independent of the collection
of plaques P selected following the aforementioned procedure. To see this, it is in
fact enough to check that ag(P, Q) = J%(P, Q) for any finite extension P’ > P
obtained as above. Notice that any such P’ < Ppq is of the form

P’ = PPP{ \ 'PQflpé U v PQ{V},*IP’V/L U 'PQIWQ,
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where P/ and @} are plaques that lie on the left and on the right of ¢;, respectively.
In fact, it is not restrictive to assume that P! # P, and @Q; # @}, in which case
both P/ and Q) separate P; from Q;. Observe also that both pairs P;, P/ and Q;, Q;
share one of the endpoints of ¢; as a vertex, and exactly one of the following hold:
Either the plaques P; and Q; (and consequently P! and @) have a common vertex,
equal to ¢ or £;, or P; and @; do not share any vertex. By Lemma in the
former case, and Lemma in the latter, we have
o’ (P, Qi) = o (P, P)) + 0° (P, Q}) + 07(Q}, Qi)

for every i = 1,...,n, which implies the equality between the finite S-shears com-
puted with respect to the set of plaques P and P’.

To prove that Uf is indeed a transverse Holder cocycle (see Definition , we
have to check symmetry, invariance, and additivity. The first two properties are
straightforward and follow directly from the definition. The last property requires
some care. The main observation is that the ordered family of leaves ¢, - ¢,
that meet a geodesic arc k joining P to () and project to simple closed geodesics
on ¥ does not depend on k but only on the cyclic order of the endpoints of the
leaves of the lamination. If R separates P from Q and ¢1,--- ,¢, and ¢}, --- £/,
are the lifts of the closed geodesics that separate P, R and R, @ respectively, then
by, e Uy, by, -+ 00 are the lifts of the closed geodesics that separate P from Q.
Using the definition Jf(R Q) = O'g (P, Q) and carefully selecting the finite family
of plaques P < Ppr U Prq shows that Uf(P, Q)= af(P, R) + Uf(R, Q).

We can summarize the above discussion in the following statement:

Proposition 4.12. Let 8 be a cross ratio. Then for every finite leaved mazximal
lamination A, the map (P,Q) — Uf(P, Q) defines a Holder cocycle Uf € H(AR)
naturally associated to B and \.

4.5. Shears and length functions: Finite case. We conclude our analysis of
[B-shear cocycles associated to finite leaved maximal laminations examining their
relations with the periods of the cross ratio 8 (see in particular Proposition .
As already observed in the work of Bonahon [Bon96|, length functions provide a
complete characterization of the set of transverse Holder cocycles in H(\;R) that
arise as shear cocycles of hyperbolic structures on a closed surface with respect
to the maximal lamination A (see in particular Theorem . The connection
between (-shears and [-periods rely on the properties of the Thurston symplectic
form on H(X\;R), a skew-symmetric non-degenerate bilinear form, whose definition
is recalled in Section 5.1l

The combination of the analysis in the finite leaved case (developed in this sec-
tion) together with the continuity results of S-shear cocycles (described in Section
below) will eventually allow us to relate 8-shear cocycles of strictly positive and
locally bounded cross ratios to hyperbolic structures on ¥, as described in Theorem

ATl

4.5.1. Thurston symplectic form. We start by briefly recalling the definition of the
Thurston symplectic form wy on the space of transverse Holder cocycles H(\;R)
to a maximal geodesic lamination A. As described by Bonahon in [Bon96, § 3], the
symplectic form w) can be intrinsically characterized in terms of the intersection
form on the space of geometric currents supported on A, in the sense of [RS75].
However, for our purposes it will be more convenient to have an elementary (but
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less intrinsic) description of the Thurston symplectic form, through the choice of
a train track 7 carrying A and its induced isomorphism H(A;R) =~ W(T;R) (see
Section .

In the following we briefly introduce the necessary notation. Given any switch
s of the train track 7, we denote by By the unique branch of 7 whose vertical
boundary contains s, and we select arbitrarily lifts ES and 5 ES of Bs and s
to the universal cover of 3. The switch § is then adjacent to two other distinct
branches Ef and éﬁ of 7, with éf and Ef lying on the left and on the right of s,
respectively, if seen from ]§s with respect to the orientation of 3. For any transverse
Holder cocycle a € H(A; R), we then denote by o and o the real weights associated
by « to the branches Els , E’ﬁ . Finally, the Thurston symplectic form w) applied to
a, B € H(A; R) can be expressed as

1

(9) wi(a, B) = 5 D (07 B} — of ),

S
where the sum is taken over all switches s of 7.

As recalled in Section [2.4.3] the Thurston symplectic form provides a characteri-
zation of the set of transverse Hoélder cocycles that can be obtained as shear cocycles
of hyperbolic structures on ¥ (see Theorem or [Bon96, Theorem 20]). In ad-
dition, it is worth to mention that the Thurston symplectic form is also intimately
related to the geometry of Teichmiiller space, and in particular to its Weil-Petersson
symplectic structure, as observed in [SBO1]. We refer to |[Bon96, § 3] (see also
[Pap86), [PH92, § 3.2], [SBO1]) for a more detailed description of the Thurston
symplectic form and its properties.

4.5.2. Lengths. The relation between (-shear cocycles with respect to finite leaved
laminations and S-periods relies on elementary arguments. The main ingredients
are the combinatorial description of the Thurston symplectic form from relation
@[), and the following statement:

Lemma 4.13. Let \ be a finite leaved maximal lamination, and let v be a non-
trivial element of I' whose axis v projects onto a closed leaf of . Consider a plaque
P of X that has one of the endpoints v* of 7 as a vertex, and assume that it lies
on the left of ¥ . Then

X (P,yP) = £Lg(7),

with positive sign if P has y* as one of its vertices, and with negative sign otherwise.

The proof of Lemma [{.13] relies only on the symmetries of the cross ratio 3, and
we postpone it to Appendix

We conclude the current section with the following result, which will play an
important role in the proof of Theorem described in Section

Proposition 4.14. Let B be a positive cross ratio. Then for every finite leaved

maximal lamination A and for weighted multicurve p with supp p S A, we have
LB(M) = WA(U§7M)7

where wy, denotes the Thurston symplectic form on the space of transverse Hélder

cocycles H(A; R).

Proof. 1t is sufficient to consider the case in which p consists of a single simple
closed curve with weight 1. Let v be an element of I" whose axis 4 projects onto a
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simple closed leaf of \. We orient v so that it points towards the attracting fixed
point 7 € dT" and moves away from the repelling fixed point v~. We will denote
by 471 the axis of v endowed with the opposite orientation, and by |y| € C the
associated geodesic current.

We now select a train track carrying A. Being A a finite leaved lamination, there
exist bi-infinite leaves of A that spiral around « both from its left and its right (with
respect to the orientation of v and of the surface ). It is not restrictive to assume
that A is carried by a train track 7 obtained from a tubular neighborhood of v by
adding two branches on its sides, and then properly extended away from . (Such a
train track can be obtained by taking a sufficiently small metric neighborhood of A
with respect to some hyperbolic structure X, and possibly by a small deformation
to guarantee the trivalence of every switch.)

In order to provide an explicit expression for the evaluation of the Thurston
symplectic form wx(af ,|7]) with respect to the train track 7, we need to introduce
some notation. Let k be a tie of the train track 7 that intersects v. We select
arbitrarily a lift k of k in 3 that crosses 7, and we denote by P and @ the plaques
of X that contain the endpoints of k, so that P lies on the left of 5 and Q on its
right. Both plaques have an ideal vertex equal to 4% or 4. We now introduce the
following sign convention: We say that the left sign of 7 with respect to 7, denoted
by sgn,(7,7), is equal to +1 if the plaque P lying on the left of 4 has vt as one
of its ideal vertices, and we set it equal to —1 otherwise. On the other hand, we
define the right sign of 7 with respect to 7 to be sgn,(7,7v) = +1 if the plaque Q
lying on the right of 4 has v~ as one of its vertices, and —1 otherwise. It is not
difficult to see that the sign functions sgn;(7,v) and sgn,.(,7) depend only on the
train track 7 and the choice of the orientation of the curve : For instance, we can
alternatively define sgn;(7,v) to be +1 if the branch of 7 that enters in the tubular
neighborhood of v from its left follows the orientation of v and —1 otherwise; a
similar description holds for sgn,.(7,~).

There are only finitely many possible configurations for the switches and branches
of 7 that intersected s. By applying relation @ to each possible configuration, we
obtain the expression:

wr(0.171) = 5 (sem(r. 1) 02(P.AP) — sgn,(,2) 72(Q.1@))

Notice that by definition sgn,.(7,7) = —sgn,(7,7~!). Moreover, for any plaque R
of A\ we have

o} (R.YR) = 03 (v 'R, R) = o} (R.y ' R),
since af is a transverse Holder cocycle. In particular, the term wA(af ,|7]) can be
equivalently expressed as

wr(03, 1) = 5 (s ) o3P, P) + sam(r ) 03(Q77'@Q))

Since P lies on the left of ¥ and @ lies on the left of 4=, we can now apply
Lemma [£.13] to both terms appearing above, obtaining

5 (L6 + Ls(r™) = L(),

which proves the desired identity. [

w(o?,|y)) =
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5. HYPERBOLIC STRUCTURES ON PLEATED SETS II

This section is dedicated to the definition and the study of shear cocycles asso-
ciated to positive and locally bounded cross ratios and general maximal geodesic
laminations. We generalize the phenomena observed in Section for finite leaved
maximal laminations, and we provide a proof of Theorem in full generality.

The construction of the 8-shear cocycle Uf € H(\;R) for a general maximal lam-
ination A\ will require several auxiliary choices and a fine analysis of the convergence
of finite J-shears. Nevertheless, we will observe that the resulting S-shear cocycles

satisfy a series of natural properties:

(a) For every finite leaved maximal lamination A, the transverse Holder cocycle
af € H(\;R), obtained through the general process described in Section
coincides with the g-shear cocycle introduced in Section (see in
particular Proposition .

(b) The map

GL3A—> Jf e W(T;R)
is continuous with respect to the Hausdorff topology on the space of max-
imal geodesic laminations. Here W(7;R) is the space of real weights of a
suitable train track 7 that carries .

Consequently, since maximal finite leaved laminations are dense in the entire set
of maximal geodesic laminations (see e.g. |[CEGO06, Theorem 1.4.2.19]) and since the

[B-shear cocycles Jf constructed in Section do not require any auxiliary choice,

we can conclude that the transverse Holder cocycle Uf only depends on A and g,

even in the case of a general maximal geodesic lamination.

Outline of the construction. The [(-shear af (P, Q) between the plaques P, Q will
be defined as a limit of certain finite S-shears ogn (P, Q) associated to a suitably
chosen exhaustion P,, of the set of plaques Ppg separating P from ). The choice of
P, depends on the geometry of A on a fine scale. More precisely, in order to select
it, we will use a divergence radius function associated to the choice of a hyperbolic
structure X, a train track 7 that carries A, and a geodesic arc k joining P to Q.

We emphasize however that, as previously observed, the continuity properties of
the construction (Proposition and the naturality in the case of finite leaved
laminations (see Section make the cocycle Uf(R Q) independent of all the
auxiliary choices required for its definition. The rest of the section is structured as
follows:

8§ We dedicate this section to the description of divergence radius functions,
which were originally introduced by Bonahon in [Bon96| to study the con-
vergence of the shearing maps between hyperbolic surfaces.

8§ In this section we give the general definition of the S-shear af (P,Q): We de-
ploy divergence radius functions to carefully select an exhausting sequence
of finite sets of plaques (P,), inside Ppg, whose associated finite shears
converges.

8§ In this section we prove that S-shear cocycles Uf satisfy a suitable notion of
continuity with respect to the maximal lamination A (endowing the space
of maximal geodesic laminations with the Chabauty topology).

8§ We then study the relations between [-shear cocycles and S-periods asso-
ciated to a positive and locally bounded cross ratio 3, generalizing what
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observed in Section for finite leaved laminations (see in particular Propo-
sition .

§ [5.5t We conclude our analysis with the proof of Theorem [4.1I] combining the
results from the previous sections with Bonahon’s shear parametrization
(see Theorem

5.1. Divergence radius functions. In order to define the S-shear between two
plaques P and @ in the case of a general maximal lamination, we will need to
determine an exhaustion (P, ), of the set of plaques separating P from ¢ whose
associated sequence of finite shears (Uf,n (P, Q))n converges (compare with Section
. This part of our analysis requires some care, because of the (not particularly
strong) control between finite S-shears associated to different collections of plaques
(see Lemma . In particular, we make use of the so-called divergence radius
function r : Ppg — N, associated to the choice of a trivalent train track carrying the
lamination A (see Section for the related terminology), a hyperbolic structure
X on X%, and a (X-)geodesic path joining P to @ (see Bonahon-Dreyer [BD17], and
Bonahon [Bon96| § 1]). Any such function depends on the choice of:

e A hyperbolic structure X on .

e A (trivalent) train track 7 inside 3.

e A maximal geodesic lamination A\ (which will be identified with its X-
geodesic realization in the universal cover of (X, X)) carried by .

Two distinct plaques P and @) of A.

A geodesic segment k that joins a point in the interior of P to a point in
the interior of Q.

Once we fix these data, the associated divergence radius function

r=TXr\k: ’PPQ — N

associates to every plaque R that separates P from @ a natural number r(R), which
roughly measures the length of the geodesic arc RNk in terms of the combinatorics
of the fixed train track 7 and the boundary leaves of R that intersect k.

In order to be more precise, we need to introduce some notation. For any plaque
R € Ppg, let £r,l; be the boundary leaves of R that intersect the arc k. If the
geodesic segment R N k is not entirely contained in the lift 7 of the train track 7
to the universal cover of ¥, then we set r(R) = 0. If this does not occur, then
the intersection points between k and the boundary leaves ¢g, £’ lie in a common
branch .é() of 7. We now orient /g, K/R so that they share their negative endpoint,
and we denote by o

..., Bs,B_1,By,B1,Bs,...

the branches of 7 that ¢r passes through, indexed in consecutive order according
to the orientation of . We then define r(R) := n + 1, where n is the largest
natural number such that ¢}, passes through the branches Em for every integer
me{—n,—n+1,...,n—1,n}. Then we have:

Lemma 5.1 (see [BD17, Lemma 5.3]). The divergence radius functionr : Ppg — N
satisfies the following properties:

(1) there exist constants A, M > 0 such that
Ale M r(R) Li(knR) < AeMr(®)

for every R € Ppg;
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(2) there exists N € N such that, for every n € N the preimage r—1(n) contains
at most N plaques.

Divergence radius functions were first introduced by Bonahon in [Bon96| § 1] to
study the convergence of shear maps with respect to maximal geodesic laminations
(see also Bonahon [Bon97blBon97a], and Bonahon and Dreyer [BD17]). In our
exposition, these functions will be useful to select exhaustions (P,), of Ppg by
finite nested subsets whose associated finite -shear ogn (P, Q) converge. However,
in certain steps of our analysis (see in particular Lemmd and Proposition ,
it will useful to have a better understanding of the dependence of the functions
r and of the corresponding constants A, M, N with respect to the choices of the
lamination A carried by 7, and the transverse path k. We summarize the necessary
refinements of Lemmal5.1]in the following statements. Fixed a hyperbolic structure
X on X, a train track 7, a maximal lamination A carried by 7, and two plaques P
and @Q of A, we have:

Lemma 5.2. For any geodesic arc k joining the interiors of P and @), there exist
constants A, M, N > 0 and a open neighborhood U of X in the space of maximal
laminations (endowed with the Chabauty topology) such that the following properties
hold:

e Every mazximal lamination X' € U is carried by T.

o The X-geodesic path k is transverse to (the X -geodesic realization of ) every
NeU.

o For every N € U there exist distinct plaques P', Q" of X' in X that contain
the endpoints of k.

o For any mazimal lamination X' € U and plaques P', Q' as above, the as-
sociated divergence radius function v’ = rx ;v @ Ppigr — N satisfies
properties (1) and (2) in Lemma[5.1) with constants A, M, N > 0 (which in
particular are uniform in X' e U).

Lemma 5.3. For any choice of X -geodesic paths k and k' with endpoints lying in
(the geodesic realizations of ) the plaques P, @, the associated divergence radius func-
tions r = ry, 7’ = ry : Ppg — N provided by Lemma are coarsely equivalent, i.
e. there exist constants H, K > 0 such that

H ' (R) -K<r(R)<H"(R)+K
for every plaque R € Ppg.
We postpone the proofs of Lemmas and [5.3] to Appendix [C]

5.2. Shear cocycles: General case. We now focus our attention on the con-
struction of -shear cocycles relative to a general maximal lamination A. For the
remainder of Section [5] we will assume the cross ratio 8 : dI'® — R to be lo-
cally bounded (see Definitions . Furthermore, we fix once and for all a
hyperbolic structure X, and a train track 7 carrying .

We start our analysis with two elementary Lemmas: The first (Lemma de-
scribes how the shear between two plaques changes under the operation of diagonal
exchange in the region separating P from ). The second (Lemma provides
a bound between finite (-shears computed with respect to two finite families of
plaques P, P’ < Ppq with P < P’. The bound described by Lemma will be

essential for the study of the approximation process needed to define 0’.
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5.2.1. Change of shear under diagonal exchange. Let P, be two plaques of A that
share no ideal vertex. We denote by ¢p (resp. {g) the boundary leaf of P (resp.
Q) that separates the interior of P from the interior of @, and by S the region of
3 bounded by ¢p and {g. Given a coherent orientation of /p and {g, we define d
and d’ to be the crossing geodesics [K;S,Eé] and [Z;,é‘é], respectively. Finally, let
R, T (resp. R',T") denote the complementary regions of d (resp. d’) inside S.

To simplify the notation, we set

o2(P,Q) := o?(P,R) + 0”(R,T) + o°(T,Q),
oh(P,Q) := o®(P,R) + o (R, T") + o°(T", Q).
Then we have:

Lemma 5.4. The following relation holds:
03 (P,Q) = 0} (P, Q)| = 2|tog B(LH, 65, 5. 7).

As for Lemmas and the proof of Lemma is an elementary conse-
quence of the symmetries satisfied by the cross ratio 3, and it will be described in

Appendix [B]

5.2.2. Enlarging the finite set of plaques. The next goal is to determine the behavior
of the finite shear a‘g as we enlarge the finite family of plaques P < Ppg. The
statement that follows will play an essential role in the approximation process
to determine af (P, Q). Recall that, since 8 is a locally bounded cross ratio (see
Deﬁnition, for D = L (k) > 0 (the length of k in (£, X)), we can find constants
C,a > 0 (depending on the fixed hyperbolic structure X, the cross ratio 8, and
L 3 (k)) such that

(10) llog B(h*, £+, 07 ,h7)| < Cllog BX (AT, €%, 6=, 1h7)|"

for every pair of coherently oriented geodesics £, h in (2, X) such that 0 < d <, h) <
L ¢ (k). We then have:

Lemma 5.5. For any pair of finite subsets P, P’ of Ppg satisfying P < P’, we
have

B(PQ) - op(PQ)| <20 P =P [ Y Le@)* ],
dck—JP
where [P’ — P| denotes the cardinality of the set P' —P, d varies among the (count-

able) set of connected components of k—|JP, and C,a are the constants associated
with X, B, L (k) as above.

Proof. We first consider the case in which P’ = P u {R}. If
P=PFy,P,...,P,Poi1=0Q

are the plaques of P, indexed as we encounter them along the arc k from P to @,
then the plaque R will lie inside one of the components of ¥ - (P that separate
P; from P, 1, for some i. We will denote by S such a region.

The laminations Ap and Aps differ by a sequence of elementary moves, each of
which either adds leaves to the lamination, or performs a diagonal exchange inside
S. By Lemmal[f.10] the shear between P and @ computed through the intermediate
laminations A and )\ does not change when )\ is obtained from A by introducing
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new leaves. Therefore, it is sufficient to compute the change of the shear cocycle
that occurs when a diagonal exchange is performed.

Let af and of, be the shears associated with the plaques P and @ through the
finite laminations A and )\, respectively, which differ by a diagonal exchange in the
region bounded by the leaves ¢ and h. We select orientations on ¢ and h so that
they are coherently oriented. By Lemma [5.4] we have

o2(P.Q) — 0% (P.Q)| = 2ftog (™, £, 47, n7)]
Combining this equality with relation and Lemma we deduce that
‘af(P,Q) — (P, Q)‘ <20 dg(6,h)* <20 Lg(kn S)°,

where the last inequality holds since k n S is a path that connects points lying on
the leaves £ and h. When P and P’ differ by a single plaque R, then by adding
leaves and performing exactly one flip, we can move from the lamination \p to
Apr. If P’ is obtained by adding to P ng plaques lying inside the same region
S, then it is simple to check that Ap and Ap/ differ by a suitable sequence of
moves, exactly ng of which are diagonal exchanges. The difference in the shears
op(P,Q) and o}, (P, Q) can then be bounded by 2C ng Lg(k n S), by the same
argument outlined above. The desired statement follows by applying this process
in any complementary region S of ¥ - (U P, and noticing that ng < |P’ — P| for
any S. O

Remark 5.6. Notice that the argument described above makes use of the local
boundedness of 8 only on pairs of leaves of the lamination A. In particular, the
machinery described in this section in fact applies to cross ratios 8 that are A-locally
bounded, i. e. that locally satisfy the control

‘logﬁ(hﬂﬁ,ﬁ_, h_)| < C‘logﬁx(h’L,éJr,é_, h_)‘a
for any pair of coherently oriented distinct leaves ¢, h of the lamination .

5.2.3. Constructing B-shear cocycles. We are now ready to describe the approxima-
tion process for the -shear cocycle Jf in the case of a general maximal lamination.
Throughout the current section, we denote by P and @ two distinct plaques of
some fixed maximal lamination A, and by X an auxiliary hyperbolic structure on
3.

We start our construction by selecting a well behaved exhaustion (P,,),, by nested
finite subsets of Ppg through the notion of divergence radius function. Concretely,
let k be a X-geodesic segment joining points in the interior of the plaques P and @,
and let r = rx - xx : Ppg — N be the corresponding divergence radius function,
defined as in Section Then, for every n € N we set

Pn:={Re€ Prq | r(R) < n}.

Notice that by Lemma [5.] the cardinality of P,41 — P, is bounded above by a
constant N > 0 independent of n, and the union | J,, P, is equal to Ppq.
We are now ready to prove the first technical step of our construction:

Lemma 5.7. The series

3 |op, (@) =}, ., (P.Q)
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converges, and in particular the limit
oX(P,Q) := lim o} (P.Q)

s finite. Moreover, the quantity of(P,Q) € R is independent of the choice of the
geodesic arc k selected to construct the divergence radius function r = rx ; x 1, and
the set of plaques (Py)n.

Proof. For simplicity, let 0, (P, Q) denote the quantity 07@” (P,Q). By Lemma
we have

00 41(P,Q) = 0n(P,Q)| < 2CPry1 =Pl | D) Lg(d)®
dck—JPn

< 20N > Lg(a)®
dck—J Pn
It is not restrictive to assume a < 1, in which case we have
D Lg(d) < > Lg(kn R)°.
dck—JPn RePpq:r(R)=zn+1

Combining this estimate with the properties of the divergence radius function r
described Lemma [5.1] we obtain

Z LX(d)a < Z AaefaMr(R)
dck—J Pn RePpq:r(R)=n+1
(11) SANN Y et
j>n

< AN efaM(nJrl)
T 1—eaM ’

where A, M, N > 0 are the constants provided by Lemma [5.1] Therefore we deduce

20 A“N?
2 lon1(P, Q) — on(P, Q)] < 10_67_QM e Mt < foo,

neN neN
which concludes the proof of the first part of the statement.
Let (P),). be the sequence of plaques associated with a different choice of ge-
odesic segment k', and hence divergence radius function 7’ as in Lemma [5.1} By
Lemma there exist two natural numbers [, m such that

Prn S Proems  Ph S Pingm
for every n € N. Moreover, by property (2) of Lemma there exists a constant
N > 0 such that the cardinality of the sets Pjin4m)+m — Pn is bounded above
by N(I12 — 1)n + Im + m) for every n € N. The same function of n in particular

provides an upper bound of the cardinality of the set P}, —P, < Pin+m)+m—"Pn-
Applying Lemma [5.5 and relation (L1)), we deduce

lop (P,Q) —cp  (P,Q)| <2CN(I* — 1)n + lm +m) > L)
frem dck— Pn
2A*C N2
<

< 1_@7_(1]\/[(12 —1)n + Im + m)e eMn+D),
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This proves in particular that the difference between 07@ (P, Q) and ag, (P,Q)
n In+m

tends to 0 as n — o0, and therefore we conclude
: B _ 7 B
lim o (P,Q) = lim op, (P,Q),
as desired. (]

Remark 5.8. Fix a locally bounded cross ratio 8, a hyperbolic structure X, a train
track 7 carrying A, and a geodesic arc k transverse to A. The estimates appearing
in the proof of Lemma show that, given two distinct plaques P and @ of A,
there exist constants ¢! = C'(C,a, A, M,N),M’ = M'(«a, M) > 0 such that for
every n € N

‘af(P, Q) - 07@” (P, Q)’ < C’eiM,",

where the constants A, M, N > 0, provided by Lemma [5.1} depend only the struc-
ture X, the train track 7 carrying A, and the path k and a, C > 0 are provided by
the local boundedness of § (see Definition , with the choice of D = L (k).

By Lemma we can then find a neighborhood U of X in the space of maximal
geodesic laminations such that, for every A € U, the finite [-shears 0753, (P, Q)
associated with the arc k and the corresponding divergence radius function ' =
rx, sk Pprgr — N converge to af,(P', Q') and satisfy

o5 (P.@) — o, (P.Q)] < Cre M,

with uniform constants C’; M’ > 0 with respect to A € U (compare with the
notation of Lemma [5.2]). For future reference (see in particular Proposition ,
we notice that the constants C’, M’ > 0 also satisfy

2 Cle—J\/I'n
(12) Le(d)* < =2
dck—JPn 20N

(Compare with relation (I)).)
We finally define the B-shear relative to A between the plaques P and @ to be
o (P.Q) = lim o (P.Q).

where (Pr), is the exhausting sequence of Ppg associated with the divergence
radius function » = rx % : Ppg — N, for some choice of a X-geodesic path k
joining P and ). By Lemma the value Uf (P, Q) is independent of the choice
of k. We are now ready to conclude the construction of S-shear cocycles:

Proposition 5.9. The map (P,Q) — c;’f(P7 Q), constructed following the process
described above, is a Hélder cocycle transverse to A.

Proof. All the properties are simple consequences of the definition of finite 3-shears
from Section and of the independence of the quantity Uf from the selected
geodesic path k and the associated divergence radius r : Ppg — N, as established

by Lemma
To prove property (1) from Definition m it suffices to select the same path k

(and hence same divergence radius function r) to approximate both Uf (P, Q) and
Uf(Q,P). Indeed, by the symmetries of the cross ratio 8 we have agn (P,Q) =
agn(Q, P) for every n € N.
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To see property (2), let k be a path connecting the plaques P and @, with
associated function r : Ppg — R, and let R € Ppg. We select a subarc &’ of k that
connects P to R, and we set k” = k — k’. Observe that the restriction of r = r; to
the set of plaques Ppg coincides with the divergence radius function 7’ associated to
k'. The same holds for the restriction of r to Prg and the path k”. Therefore, the
divergence radius functions r’ and r” associated to k' and k” determine sequences
of finite collections of plaques (P},), and (P)),, respectively, satisfying

LB _ B B _ B
nll_I)I;OO'P;/(P,R)—U)\(P7R), nh_I»roloapﬂ(R7Q) oy (R, Q).

Moreover, if (P,,), denotes the exhaustion of Ppg associated to k and r, then by
construction

P, =P, U{R} L P

for every n = r(R). Moreover the finite S-shears satisfy
op, (P,Q) = op, (P, R) + 05, (R, Q)

again for every n = r(R). By taking the limit as n — o0, we obtain the additivity
property described in property (2) of Definition m

Finally, to show property (3), let v € T' and select (k) as a path joining the
interiors of the plaques 7P to v@Q. The associated divergence radius function co-
incides with r o y~™' : P,p.,g — N, where r : Ppg — N is the divergence radius
function of k. If (P,), denotes the sequence of finite family of plaques associated
with & and r, then (k) and r o y~! have associated sequence (yP,,),. Moreover,
being § I'-invariant, we have

op (P,Q) = olp (YP,1Q)

for every n € N. The identity Uf(P7 Q) = Uf(’yP, ~vQ) then follows by taking the
limit as n — 0. ]

5.3. Continuity of shear cocycles. We now study the continuity properties of
the map
GL 3 X —> o e H(\R).
As recalled in Section the choice of a train track 7 that carries a maximal
lamination A determines natural identifications between its associated system of
real weights W(7;R) and the space of Holder cocycles H(N;R) transverse to any

lamination A carried by 7. In particular, there exists a sufficiently small neighbor-
hood U of X inside GL for which the map

Us\N+— U’f, e W(r;R)

is well defined. Within this framework, it makes sense to ask ourselves whether
the map \ — af, is continuous. The next statement answers affirmatively to this

question:

Proposition 5.10. Let (A,)m be a sequence of mazimal geodesic laminations con-
verging to A in the Chabauty topology. Given T a train track that carries \, we
identify H(A;R) and H(Am; R) with W(T;R), the space of real weights of T (for m
sufficiently large). Then

lim afm = o e W(T;R).

m— a0
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Proof. If k is a tie of the lift of the train track 7 in (X, X), then the endpoints
of k lie in the interior of two plaques P, @ of A\. Moreover, since \,, converges to
A in the Chabauty topology, there exists a mg € N such that for every m > my
the endpoints of k lie in the interior of two plaques P(™ Q(™) of \,,. Then the
statement is equivalent to show that, for any k£ as above
Jim, o7, (P.Q) = (P Q).

Let Py (resp. ’P,gm)) denote the set of plaques of A (resp. A,,) that separate P
from Q (resp. P from Q™). If k is the geodesic arc joining the endpoints of ,
then Lemma [5.1| provide us functions

riPp—N, 1P SN

satisfying properties (1), (2) with respect to constants A, M, N > 0 that are in-
dependent of m, and defined in terms of the same train track 7 and arc k (see in
particular Remark [5.8]). To simplify the notation, for every n € N and m > mg we
set

P :={Re Py | r(R) <n},
P :={Re P™ | r,n(R) < n},

and
o= O’f(P, Q), o™ = Ufm (P(m),Q(m)),
on = 0p (P,Q), o™ =0 o (P, Q™).

Let now N,C’, M’ > 0 be positive constants satisfying the requirements of
Lemma [5.1] and Remark We will prove the desired assertion by showing that
(13) limsup [0(™ — | < (24 n)C'e M

m—00

for every n € N. Since the left-hand side of the inequality is independent of n, and
the right-hand side converges to 0 as n — o0, the assertion will follow.

We will divide the proof of relation into smaller steps. In order to describe
them, we need to introduce some notation. For any R € P,,, we choose arbitrarily a
point x g in the interior of R. Since A,, — A, we can find a m; > 0 sufficiently such
that, for any m > m;, there exists a unique plaque R("™) e P,gm) whose interior
contains xr. Being P, finite, up to selecting a larger m; we can assume that this
holds for every plaque R € P,,. We then introduce the sets

QU™ .= (R™ ¢ PI™ | Re P,},
for m > my. Finally, we set

G 1= 0 (P, QUM),

Step 1. For every n € N there exists a mo = my such that Q%m) c Pr(Lm) for all
m > ms. Moreover

i — ol <2eNn | Y Lg(@° ),
dck—J Q™
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where C,a, N > 0 are the constants appearing in Lemmas and (see also
Remark .

Proof of Step 1. We will show that o™ < pi™ for every m sufficiently large. The
second part of the assertion will follow by applying Lemma [5.5] and noticing that

- ) <[] < v

by Lemma [5.1

Let R € P,,, and denote by ¢r, hg < A the boundary leaves of R that cross the
tie k. Similarly, let £0™ h7 < A, be the boundary leaves of R(™ e QY™ that
cross k. It is enough to prove that lim,, .4 rm(R(m)) = n for every R € P,.

Since the laminations \,, converge to A and the plaques R contain a fixed
point xr in the interior of the plaque R, the leaves Eg%m),hgl) converge in the
Hausdorff topology to g, hr as m — oo (up to relabeling). Recalling the definition
of the divergence radius functions r,r,, from Section the condition r(R) = n
is equivalent to say that the leaves £, hr cross n + 1 common branches of 7 in
both directions (as we count starting from the branch containing the tie k) before
taking different paths at some switch of 7. Since the boundary leaves of R("™) that
meet k converge to the boundary leaves £z and hr, we can find a sufficiently large
mo = my such that Z%m) passes through the same n + 1 branches of 7 as £ in both
directions, and similarly for hg%m), for all m > my. This implies in particular that
T (R™) = n. Since P, is finite, up to enlarging my we can assume that this holds
for every R € P,,, as desired. O

Step 2. For every n € N we have
] ClefM'n
N o _ N a ~
Jim > Li(d) D L) < SON
dek—J Q™ dck—UPn

Proof of Step 2. As observed in the proof of the previous step, the boundary leaves
of R("™) converge to the boundary leaves of R with respect to the Chabauty topology
for every R € P,,. In particular, each subarc k n R of k is equal to the limit of the
subarcs (k N R(m))m. Since P,, is a finite collection of plaques, the set

{d | d connected component of k — U Qimy

is finite, and the length of each of its components converges to the length of the
corresponding component of k — | JP,. This implies the equality appearing in
the statement. The upper bound of the limit follows from Remark and more

specifically relation (12). O
Step 3. For every n € N we have lim,,, .o a—ﬁ[”) =0o,.

Proof of Step 3. We denote as above by f¢r,hr (resp. é%"),hgn)) the leaves of
R e P, (resp. RM) ¢ lem)) that cross k, and we orient them from right to left as
we follow the geodesic arc k, moving from P to @ (resp. P™) and Q™). By what
observed above we have

lim (£t = ¢5, Tim (hYY)E = b e oT.

m—00 m—00
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By definition, the quantity o, = agn (P,Q) is a finite sum of elementary shears,
defined as in relation , where the points at infinity uy,u_, u;, v, belong to the set
{E,h% | R e Py}, and similarly for o™ and the set {(Egn))i, (hg;im))i | R € P}
From the construction it follows that the finite laminations A ), defined as in
Section converge to the lamination Ap, as m — co. By the continuity of the
cross ratio 3, it is now immediate to see that the finite sum of shears a,ﬁm) converge
to 0, as m — oo. (I

Step 4. For every n € N and m > my
lo = on| < C'e™™M™,

|O,(m) _ O_;m)| < Cr/efM'n'

Proof of Step 4. This is an immediate consequence of Remark[5-8land the definition
of 7,0, 0™ g™, O

We now have all the ingredients to conclude our argument. First we observe that
0™ — o] < Jo™ — af™| + o™ — 5] +165 = o] + | — ol.
By Steps 1 and 2 we have

’
limsup |o(™ — ™| <nCle™ M,
m—00

Relation now follows by combining the above inequalities with Steps 3 and 4:

limsup |o™ — o] <2C'e™™" + limsup |[c(™ — ™)
m—00 m—0

<(2+n)CeMn,
This concludes the proof of Proposition [5.10} O

As mentioned in the introduction of the section, the continuity of S-cocycles
that we just established, combined with the elementary description of the S-shear
cocycles associated to maximal finite leaved laminations (see Section implies
that O‘g only depends on the cross ratio § and the maximal lamination A and not
on any of the auxiliary choices made to define it.

To conclude the investigation of the continuous dependence of shear cocycles, we
notice that the analysis described in the proof of Proposition [5.10] allows to recover
the following result, originally due to Bonahon:

Corollary 5.11 (Bonahon). Let (X,,)m be a sequence of hyperbolic structures
converging to X € T, and let (Am)m be a sequence of mazimal geodesic laminations
converging to X € GL in the Chabauty topology. Select a train track T that carries
A, and denote by o € W(T;R) = H(Am;R) (resp. o) the system of real weights
associated to the shear coordinates of X, (resp. X ) with respect to A\, (resp. A).
Then

lim o, =0 e W(r;R).

m—00

In other words, the shear parametrizations ¢y, : T — H(Am;R) = W(r;R)
converge uniformly over all compact subsets of Teichmiiller space to ¢y : T —

H(NR) = W(r;R).
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Proof. This statement appeared already in a very similar form in the work of Bona-
hon, see in particular the proof of [Bon98, Lemma 13]. For completeness, we provide
an alternative proof, which fits well with the techniques developed throughout our
exposition.

By well-known facts, uniformly quasi-conformal (normalized, i.e. fixing 0,1, 0)
homeomorphisms of S* are uniformly Hélder continuous (see e.g. |Ahl06, Theo-
rem I11.2]). If (X,,),, © T is a precompact family of hyperbolic structures on
the fixed closed surface ¥, then the corresponding limit maps &, : o' — OH?
are uniformly quasi-conformal (see e.g. [Mos68]), since the surfaces X, are uni-
formly biLipschitz equivalent. Hence, by Lemma the family of cross ratios
{Bm = BP™}., is uniformly locally bounded (see Definition [4.7)).

We now notice that the constants C’, M’ > 0 involved in the convergence argu-
ment of Proposition (see in particular relation ) depend on the quantities
C,a > 0 appearing in the locally boundedness condition of 3, and several arbitrary
choices (an auxiliary hyperbolic structure X, a train track 7, and divergence radius
functions) that are independent of the cross ratio 8 (compare in particular with
Remark . This implies in particular that the convergence of the shear cocycles
is uniform on family of cross ratios that are uniformly locally bounded. Since this
is the case for a precompact family of hyperbolic structures (X, ), the desired
assertion follows. O

5.4. Shears and length functions: General case. Now that we have estab-
lished the continuous dependence of S-shear cocycles of in the maximal lamina-
tion A, we can easily generalize the relation between shear cocycles and [S-periods
observed in Section for finite leaved laminations to any maximal geodesic lam-

ination. More precisely:

Proposition 5.12. Let 8 be a positive and locally bounded cross ratio. Then for
every mazimal lamination X and for every measured lamination p with supp p S A,
we have

L (1) = wa(oy, ),

where wy denotes the Thurston symplectic form on the space of transverse Holder

cocycles H(A;R), and Lg is the length function introduced in Section .

Proof. When A is a finite leaved maximal lamination, then the statement is equiv-
alent to Proposition Consider now a general maximal lamination \ and a
measured lamination p with support contained in A. Without loss of generality we
can assume that p is minimal, so it can be approximated in ML by a sequence of
weighted simple closed curves (a,v,)n. Moreover, following the procedure described
by Canary, Epstein, and Green in [CEG06, Theorem 1.4.2.14], for every n we can
extend the curve v, to a finite leaved lamination A, so that, up to subsequence, A,
converges in the Chabauty topology to A.

Select now a train track 7 that carries A. Since the laminations A, are converging
to A in the Chabauty topology, the train track 7 carries A, for n sufficiently large.
In particular, we can identify the spaces of transverse Holder cocycles H(\; R) and
H(An;R) with the space of real weights W(7;R). Notice that the isomorphisms
H(An; R) = W(; R) =~ H(A; R) are linear symplectomorphisms with respect to the
associated Thurston symplectic forms and the algebraic intersection pairing w, on
W(7;R), in light of the description provided in Section m By Proposition m
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we have
(14) anLﬂ(’Yn) = UJT(Ufnaan’)’n)

for every n sufficiently large (we are identifying with abuse the cocycles Jfﬂ ,ApYn €
H(An; R) with their image inside W(7;R)). Now, by Theorem the left-hand
side anLg(yn) is continuous in a,7vy,, and hence converges to Lg(p), while the
right-hand side converges to w) (af ,it) by Proposition By taking the limit
as n — oo of relation we obtain the statement for the lamination A and the
minimal measured lamination p. O

5.5. The proof of Theorem We finally have all the elements to prove the
main result of the section:

Theorem Let B : oT™ — R be a positive and locally bounded cross ratio.
Then for every maximal lamination X\, the B-shear cocycle Uf belongs to the closure
of the cone C(\) < H(\;R), that is

wa(0%, 1) =0

for every measured lamination p with supppu S X. Moreover, if the cross ratio
is strictly positive, then wA(af, ) > 0 for every non-trivial measured lamination u
as above, and consequently there exists a unique hyperbolic structure Y = Yf eT
such that o = o) € H(\;R).

Proof. By Theorem every positive cross ratio has an associated Liouville cur-
rent %3, and the corresponding S-length Lg(e) = i(.Z3, ) is a non-negative func-
tion on the space of geodesic currents. Hence the first part of the assertion follows
directly from Proposition [5.12]

As observed in Lemma if the cross ratio 3 is strictly positive, then Lg(c) > 0
for any non-trivial geodesic current c. Therefore, combining Proposition [5.12 with
Theorem [2.23] we deduce that for every maximal geodesic lamination X there exists

a unique hyperbolic structure Y such that Uf = O'}\/, as desired. O

Remark 5.13. We point out to the reader that the work of Burger, lozzi, Parreau,
and Pozzetti on geodesic currents (see in particular [BIPP21, Theorems 1.3, 1.7,
Corollary 1.9]) can be deployed to investigate in detail the set of measured lami-
nations p with trivial S-length, by examining the geometric decomposition of the
Liouville current .#3. This in turn determines the set of maximal geodesic lamina-
tions A for which the associated -shear cocycle lies in the boundary 0C(X) of the
shear parametrization from Theorem [2.23

6. GEOMETRY OF PLEATED SURFACES

In this section we prove the main structural result about the geometry of pleated
surfaces, that is, Theorem [C]

We start with the definition of pleated surfaces in the context of maximal rep-
resentations in SOg(2,n+1):

Definition 6.1 (Pleated Surface). Let p : I' = SOg(2,n+1) be a maximal repre-
sentation. A pleated surface for p realizing the maximal lamination A € GL consists
of the following data:

(1) The pleated set Sy = S'\)\/p(I‘).
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(2) The hyperbolic surface X, € T whose shear cocycle with respect to A is
equal to the intrinsic shear cocycle constructed in Section [5] i.e.

o> = af e H(\R).

(3) A homeomorphism f : Sy — X, that is totally geodesic on every leaf of
A and every plaque of Sy — A, and that is 1-Lipschitz with respect to the
intrinsic pseudo-metric (see Section and the hyperbolic metric.

We call a homeomorphism f : Sy — X, satisfying the requirements in (3) a
1-Lipschitz developing map of the pleated set S).

The geometric structures of a pleated surface, namely,

e the hyperbolic metric of X,
e the pseudo metric of S}y,
e the natural length space structure of Sy (see Definition [6.3])

are all linked by the 1-Lipschitz developing map f : Sy — X,. In the first part of the
section we study more in detail the general properties of such maps. In particular,
we show that: The developing map f is totally geodesic outside of its bending locus
(Lemma , it contracts lengths of paths (Lemma 7 and the length spectrum
of the hyperbolic surface X is dominated by the length spectrum of p, with strict
inequality on every curve that intersects the bending locus (Proposition .

In the second part of the section, we establish the existence of developing maps
for pleated sets associated to maximal laminations A € GL£. To this purpose, we
first analyze explicitly the case of finite leaved maximal laminations and prove the
existence of 1-Lipschitz developing maps, as given in Theorem [C] in that setting.
The proofs here are completely elementary (see Propositions and . Then,
we exploit continuity properties of pleated surfaces to deduce the existence of a
1-Lipschitz developing map in the general case (see Proposition .

6.1. Developing maps and metric properties. By definition, a 1-Lipschitz de-
veloping map of a pleated set Sy sends every complementary region of the maximal
lamination A into a spacelike ideal triangle. In fact, we can be more precise:

Lemma 6.2. Let p: T' — SO¢(2,n+1) be a maximal representation, and let S
be the pleated set associated to a maximal p-lamination X\. Then every 1-Lipschitz
developing map f : Sy — X\ is totally geodesic on the complement of the bending
locus of S\.

Proof. Consider a component W of the complement of the bending locus of Sy. By
Proposition 3.1} the restriction of the pseudo-metric to W is a hyperbolic metric.
As the restriction of f: Sy — X, to f: W — f(W) is a 1-Lipschitz map between
hyperbolic surfaces of the same (finite) area, we conclude that f : W — f(W) is
an isometry (compare with Thurston [Thu98, Proposition 2.1]). |

In general, it is always possible to define on the pleated set S \ a natural length
space structure: Recall that a Lipschitz function is differentiable almost everywhere.

Definition 6.3 (Regular Path). A (weakly) regular path is a map v : I = [a,b] —
H?" such that:

e There exists a (and hence for any) Riemannian distance d : H>" xH?"™ — R
with respect to which ~ is Lipschitz.
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e The tangent vector 4(t) is spacelike (or lightlike) for almost every ¢t € I (at
which 4 is defined).

The length of a weakly regular path is

- L\/@(t), ON

where (o, 0) = (o @), 1. The Lipschitz property implies that the length L(v) is
always finite.

If A is a maximal p-lamination and S » © H%" is the associated pleated set, we
say that a path v : I — Sy is (weakly) regular if it is (weakly) regular as a path
in H?". Furthermore, a regular path v : [ — S, is said to be transverse to A if
7~1()) has Lebesgue measure zero.

It is not difficult to check that every pair of points x,y € §A can be joined by
a weakly regular path using the representation of S » as the graph of a (strictly)
1-Lipschitz function g : D — S™ in a Poincaré model D? x S™ of H2". In fact,
for any Lipschitz path « : I — D? joining the projections m(z),7(y), the graph
parametrization ¢ — («a(t), gx(a(t))) satisfies the requirements. When A is a finite
leaved maximal lamination, it is possible to join any two points z,y € S \ with a
regular path that intersects the lamination in countably many points (and, hence,
transversely).

We now have all the elements to study the behavior of 1-Lipschitz developing
maps with respect to the length of weakly regular paths:

Lemma 6.4. Let p : I' — SO¢(2,n+1) be a mazimal representation, and let S
be the pleated set associated to a maximal p-lamination . Then every 1-Lipschitz
developing map f : Sy — X, sends weakly regular paths v : I — Sy to Lipschitz
(hence rectifiable) paths fvy: I — X of smaller length L(vy) = L(f7).

Proof. By Lemma the map f admits a lift f : Sy < H>" — H2. We start by
proving the following:

Claim 1. The map f sends weakly regular paths to rectifiable paths.

Proof of the claim. Tt is convenient to work in a Poincaré model D? x S™ of H2n
and represent S  as a graph of a 1-Lipschitz function g : D? — S™. Let us denote by
u:D? — S, the graph map u(x) = (z,9(x)) and by h : D* — H? the composition
h = fu

By Lemma [2.8] the map u is 1- Llpschltz with respect to the hyperbolic metric
on D? and the pseudo-metric on Sy. As the developing map f is 1-Lipschitz with
respect to the intrinsic pseudo-metric on S » and the hyperbolic metric on H?, we
conclude that h : D? — H? is 1-Lipschitz with respect to the hyperbolic metric on
both the source and the target.

Let now v : I — S \ be a weakly regular path, and select a Riemannian distance
d on H2™. Since the projection 7 : H2n — D2 is locally Lipschitz with respect to d
and the hyperbohc distance on D?, we can write 7 as a composition v = ua, where
a : I — D? is the Lipschitz path obtained by composing v with the projection 7.
As f’y = ha, we deduce that ffy is a Lipschitz path. [
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We now prove that f contracts the length of v, namely L(v) = L(fv). Recall
that for every ¢, s € I the points (t),v(s) € H>" are joined by a spacelike segment

[v(s),7(t)], whose length satisfies cosh(L[v(s),~v(¢)]) = —{y(s),7(¢))-

Claim 2. Let t € I be a point of differentiability of y. Then we have

GOAWD) = lim 0+ 7))

e—0 €

Proof of the claim. We consider v : [ — H2" as a path with values in R>"+! so
that we can write
. . y(E+e)—A(t)
t) = lim ——————=.
7( ) GE)% €
Notice that

[r(t+€) =71 = (vt +€) = 7(1), 7t + ) =7 (t)
= [t + ) + [y — 2t + ), 7(1))
= —2 + 2cosh (dyz. (7(t + €),7(t))),
where ||o||® := (e, o). Since cosh(z) = 1 + %2 + o(z) and dyz. (y(t + €),v(t)) = 0
as € — 0 (see e.g. Lemma, we have that
2+ 2 cosh (digan ((t + ), (1)) ~ digzn (At + €), (1))

as € goes to 0. Therefore, we conclude that

— lim \/H'V(t +¢) — ()2 — lim dgg2.n (y(t + 6),’}/(15)).

e—0 € e—0 €

(@), (1))

O

Notice that the above claim applies also to the differentiability points of the
curve fry: I — H2, that is

diz (fy(t + €), fv(t))_

€

VA, ()0 = lim

Also observe that, by the first claim, the curve ffy is Lipschitz and, hence, differ-
entiable almost everywhere.
We are now ready to conclude: The length of ~ is given by

(%) =L G0 d.

Recall that v can be expressed as v = uq, where « : I — D? is a Lipschitz curve and
u : D? — Sy is the graph map, which is 1-Lipschitz with respect to the hyperbolic
metric on D? and the pseudo-metric on Sy. In particular, we have
dgzn (v(E £ €),7(1)) _ diz(a(t + €), (b))
€ €

and, consequently, the functions ¢ — dygz.» (y(t+€), v(t))/e are bounded uniformly in
€ almost everywhere. By applying Claim 2 and Lebesgue’s dominated convergence
theorem, we have

J G0, 7))y dt = lin%f diwn (/(E+ 9. 7(0) 4,
I e—=0 Jr €
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Being f a 1-Lipschitz map, we have dpz.n (v(t + €),v(t)) = du=(Fy(t + €), fy(1)).
Hence,

dt.

lim dz.r (Y + €), 7 (1)) dt > lim sup

e—0 Jr € e—0 €

f d2 (fy(t + €), f1(1))
I

Again, by Claim 2 and the dominated convergence theorem (recall that f7 is Lip-
schitz by the first claim, so the maps t — dyz(fv(t + €), fvy(t))/e are bounded
uniformly in €), we have

timsup [ LCEDRSD gy [y (Fayopa = L.

e—0

In conclusion, we showed L(v) = L(fv), as desired. O

Finally, we observe that the length spectrum of any p-equivariant pleated surface
is dominated by the length spectrum p:

Proposition 6.5. Let p : T' — SO (2,n+1) be a mazimal representation. Consider
a pleated surface Sy associated to p and a mazximal lamination X\, together with a
1-Lipschitz developing map f : Sx — Xx. Then, for every v € I’ — {1} we have

LX/\ (’Y) < LP(’V)v

where the strict inequality holds if and only if v intersects essentially the bending
locus of Sy.

Proof. We proceed as in [CTT19, Proposition 3.38].

If v does not intersect essentlally the bendlng locus then the invariant geodesm
£ of p(v) is contained in Sh. By Lemma the 1-Lipschitz developing map f :
S \ — H? is an isometry on the complement of the bending locus. Therefore, we
have L,(y) = Lx, (7).

Assume that v intersects essentially the bending locus of S.

Let ¢ be the axis of p(v). We first observe that ¢ is not contained in Sy If
this was the case, then, as y intersects the bending locus essentially, the geodesic ¢
must also intersect some bending line ¢/ < A However, this would contradict the
fact that ¢ is a bending line by the definition of bending locus. Therefore £ is not
contained in S X

As £ is not contained in S \, it can be connected to S » by a timelike geodesic and
we can take the timelike geodesic [z, p] of maximal length ¢[x, p] = T > 0 joining a
point z € £ to a point p € Sx. We parametrize £ as £(t) = cosh(t)z + sinh(t)w with
w a spacelike vector orthogonal to & and we write p := cos(T)z + sin(T)v with v
timelike and orthogonal to x,w (as [z, p] maximizes the timelike distance between
¢ and §,\) The isometry p(v) acts on ¢ by translating points by L = L,(v) and
acts on Span{z, v}t by an isometry A. Thus, we have p(y)p = cos(T')(cosh(L)z +
sinh(L)w) + sin(T) Av.

cosh (dggz2.n (p, p(7)"p)) = —<p, p(7)"P)
— cos(T)? cosh(nL) — sin(T)*(v, A™).

Since the developing map f . S \ — H? is 1-Lipschitz and equivariant, we get
diz (f(p), px, (1)"f (P)) < dgzn (p, p(7)")-
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Furthermore, for a hyperbolic isometry px, (7)™, we have that the minimal dis-
placement coincides with the translation length so that

nLx, (7) = Lx, (’771) < dpe2 (f(p)v PXx (7)7Lf(p>)'

Putting together the previous inequalities we get

cosh (nLx, (7)) < cos(T)? cosh(nL) — sin(T)*(v, A™).

Since the spectral radius of A is strictly smaller than e, we can choose n suffi-

ciently large so that |[(v, A"v)| < cosh(nL) (see for example |[CTT19, Corollary 2.6]
and [BPS19]). For this value of n we get

cosh (nLx, (7)) < cos(T)? cosh(nL) — sin(T)*(v, A"v)
< cos(T)? cosh(nL) + sin(T)? cosh(nL) = cosh(nL).
Which implies Lx, (v) < L. O

6.2. Finite leaved maximal laminations. We can now focus on the existence
of pleated surfaces, as announced in Theorem [C]| We start from the case of finite
leaved laminations:

Proposition 6.6. Let p:T' — SOg(2,n+1) be a mazimal representation and let A
be a finite leaved mazimal p-lamination of . If S>\ denotes pleated set associated
to A, then there exists a homeomorphism f SA — H? with the following properties:
(i) It is totally geodesic on every leaf and plaque.
(ii) It is is 1-Lipschitz, that is, dg, .. (z,y) = dy2 (f(2), f(v)) for every z,y € S.
(iii) There exists a holonomy representation px : I' — PSL(2,R) of some hy-
perbolic structure X € T such that f is (px, p)-equivariant, i.e.

Fo()(@) = px(0) f (@)
for everyyel', x e 3”)\.

Proof. Let A\ = v1 b -+- Uy, < A denote the collection of the closed leaves of .
Each leaf £ of A — A, is an isolated point of A € G and its geometric realization {in
2 is adjacent to two distinct spacelike ideal triangles A, A/, that is, £ = A n A’.
In particular, every component S; of S — A. has an intrinsic (possibly incomplete)
hyperbolic metric, with S = Sy. The abstract metric completion X; of S; is a (a
priori pOSblbly non-compact) hyperbohc surface with totally geodesm boundary

Let S denote the preimage of .S; in H2n ,and let U; — X; be the universal cover
of Xj, Where U; is a closed convex domaln of H? Wlth totally geodesic boundary.
The natural inclusion S; X lifts to an isometric embedding fj : §j — Uj;, which
is unique up to post-composition by a deck transformation of the covering U; — X;.
We start with the following assertion:

Claim 1. For every z,y € §j we have
o (2,9) = du, (f5(2), ;).

Proof of claim. Consider two distinct points x,y € §j. We select a spacelike plane
H containing x, y, and we denote by 7 the timelike sphere in H2" that is orthogonal
to H at z. The choice of H and T determines a Poincaré model ¥ : D? x S® — H2»
such that ¥(D? x {v}) = H and ¥(0,v) = x, for some fixed v € S™.
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By Lemma the projection of any leaf ¢ = A to D? intersects (transversely)
every diameter of D? at most once. As a consequence, if we represent §A as a graph
of a 1-Lipschitz function g : D?> — S", the geodesic segment [x,y] < D? (which,
by the choice of the Poincaré model, is a subsegment of a diameter in D?) lifts on
a curve 7 joining x,y € §j that stays inside §j, Indeed, if this was not the case,
we could find a leaf ¢ ¢ 83} < . whose projection onto D? crosses [x,y] at least
twice.

Using the explicit expression of the metric given by Proposition we can now
conclude that L(fj’y) < L(o) with equality if and only if [z,y] = S;. To see this,
we select a parametrization of the geodesic segment o : I — [x,y] = D?, and write
Y(t) = (a(t), g(a(t))). We also denote by | e|g. (resp. ||e||y= and ||e[/,) the norm
associated to the spherical metric of S™ (resp. hyperbolic and Euclidean metrics
on D?). Being f; an isometric embedding, we have L(f;jy) = L(y). On the other
hand, we observe

_ j VG0 dt

\/|0< )= — W\\(ga)'(t)\@n dt
< J HCY(t)HHQ dt = L]HI2 (OZ)
I
Therefore, we conclude that

du, (f5(), f;(v)) < L(fy7) = L(7) < Lez(@).

The desired statement now follows by observing that the length of o with respect
to the hyperbolic metric of D? is equal to the pseudo-distance dg.. . (z,y), by the
choice of the Poincaré model W. O

This proves in particular that the map f] § — U; is uniformly continuous,
in the sense of Definition m Hence, by Lemma - f] extends umquely to a
map (that we continue to denote with abuse by fj) from the closure of S inside
S = SA, obtained from S] by adding the leaves of A that are adjacent to S], into
U;. By construction and continuity, the map fj is (px,, pj)-equivariant, where p;
denotes the restriction of p to 71(S;), and px; is a holonomy representation of the
hyperbolic surface X; that preserves U; < H2.

Claim 2. The extension fj : §j v 6§j — Uj satisfies the following properties:
e It is a (px;, pj)-equivariant homeomorphism.
e It maps every leaf i c 8§j isometrically into a connected component of the
geodesic boundary of Uj.
e We have L(fjw) = L(v) for every regular path v : [ — §j V) §§j that
intersects \ in countably many points.

Proof of the claim. Let / be a boundary leaf of ('7’§j and let [z,y] < ? be a finite
subsegment. Since A is a finite leaved maximal lamination and 7 projects in S onto
a simple closed curve, there exists a sequence of leaves (fn)n c §j that converges
to /. Thus, we can approximate [z,y] with a sequence of segments [z, y,] < i,
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for which dU ( f (zn), fj (yn)) = dygz.n(Tn,yn). By continuity, we conclude that
de(f]( ), fj(y)) = dyzn(x,y). Thus, f; maps each boundary leaf / 8§j to a
boundary leaf of 0Uj in a totally geodesic way.

Ifry:1— S is a regular path that intersects A in countably many pomts then
L(y) = L(y — )\) As fj is totally geodesic on each component of S A, it follows
that fj'y is rectifiable and L(f]'y) L(v).

Notice that f] restricts to a mq (S;)-equivariant homeomorphlsm between S and
the interior of U; and sends every boundary component of Sj isometrically into a
boundary component of U;. Moreover, the surface S; U dS; is a compact orientable
surface with boundary of negative Euler characteristic. In particular, distinct con-
nected components of 05; are not freely homotopic to each other and, hence, the
map fj must send distinct leaves in (9§j into distinct geodesics in 0U;. This implies
that the map f; : S; U dS; — X is a bijective continuous function from a compact
space to a Hausdorff one, and hence a homeomorphism. O

Let v < Ac be a leaf adjacent to the components S;,S; (possibly equal), and
denote by «; < 0X;,a; < 0X; the boundary components corresponding to v in
the abstract closures. There is a unique way to glue the completions X;, X; along
o, orj so that the identifications with v agree. Thus, after gluing all the completions
X; along their boundary components as prescribed by the leaves of \., we get a
hyperbolic surface

X)\: |_| Xk/ai~aj

Sk component of S)—A.

and a homeomorphism f : S\ — X which is isometric on every leaf of A and plaque
of SA - A A
Lift f to a map f: Sy — HZ2.

Claim 8. The map f sends regular paths that intersect Ae in countably many points
to rectifiable paths of the same length and we have

dgpo (2, y) = dez (f(2), f(y))
for every z,y € §A.

Proof of the claim. The proof is similar to the one of the first claim.

By continuity and density, it is enough to restrict our attention to z,y € S—\
As in the first claim, let H be a spacelike hyperplane containing xz,y and let T" be a
timelike sphere orthogonal to H at x. This choice corresponds to a Poincaré model
U D? x S" — H2" such that U(D? x {v}) = H and ¥(0,v) = z, for some fixed
veS".

Let £ < X be a leaf. By Lemma the projection of ¢ to D? intersects
(transversely) every diameter of D? at most once. As a consequence, the geodesic
segment [z, y] — D? intersects the projections of the leaves of Ae in finitely many
points p1,--- ,pr € [z,y]. For simplicity, set also pg := = and pry1 = y. Let
o, « be the lifts of the subsegments [p;,pj+1], [z, y] inside Sy through the graph
parametrization on D2. By construction, the path f(a)  H2 is the concatenation
of the paths f(a;). By the above discussion, since a; is entirely contained in (the
closure of) a component S;, the path f(aj) is rectifiable and has length L(f(aj)) =
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L(a;). Therefore, f(a) is also a rectifiable path of length L(f(a)) = L(c) and joins
f(z) to f(y). Thus,

dz2(f(2), f(y)) < L(f()) = L(a) = dgo.n (2, y).
This concludes the proof of the claim. ([

This concludes the proof of the proposition. O

The only missing piece in the finite leaved setting is the equivalence of the in-
trinsic hyperbolic structure X, provided by Proposition and the one given by
the p-intrinsic shear cocycle o, associated to the p-invariant cross ratio 3” and the
maximal lamination A by Theorem [B]

Proposition 6.7. Let \ be a finite maximal lamination, and let Sy be the pleated
set of M associated to X\. Then the p-shear cocycle of coincides with the shear
coordinates of the hyperbolic metric X = X described in Proposition[6.6. In other
words, we have 0§ = o3 .

Proof. Recall that the shear coordinates O’})\( of a hyperbolic structure X € 7 with
respect to a maximal lamination A, as well as the p-shear cocycle associated by
Theorem [B] to the cross ratio p and A, are Holder cocycles transverse to A. In
particular, by additivity of 0%, 0% € H(A;R), it is enough to show that of (P, Q) =
o (P,Q) when P and Q are separated by at most one component 7 of A, the set
of leaves of A that project onto simple closed geodesics in 3.

If no component of \. separates P from @, then there exists a finite collection of
plaques P = Py, Py, ..., P, Po+1 = @ such that P; and P, are adjacent for every
i. Again by additivity, it is sufficient to check that o\ (P;, Piy1) = o5 (P, Piy1),
and this follows from what we observed in Remark [£.9l

Therefore it is enough to consider the case in which P and @) are separated by
exactly one component of A\.. By what we just proved, we can further reduce the
discussion to the case in which both plaques P and @) have exactly one ideal vertex
equal to one of the endpoints 5 of 4. Up to relabeling the plaques and change
orientation of 4, we can assume that P lies on the left of 4 and has one vertex
equal to 4. We denote by zp,yp the vertices of P different from 4%, so that the
leaf [yp, "] separates the interior of P from 7. If zo denotes the vertex of @ that
coincides with one of the endpoints of 7, then we label the other vertices of @ as
zQ,YQ, so that [yg, zo] is the boundary component of ) that separates the interior
of @ from 7.

As usual, we denote by Ppg the set of plaques of A that separate P from Q. By
Lemmas and for any finite collection P < Ppg we have

(P, Q) =1log |8 (¥, yp, 2P, y0)B* (71, yq, yp, 2q)|,

(15) . .
0—7)3((P7 Q) = IOg |5X(’)’+73JP’CUPayQ)ﬁx(’V+7ynyP»$Q)

if zg = 4", and
U’II;(P7 Q) = lOg lﬁp(’sﬂraypvxpfs/i)ﬁp(ﬁﬂra5/77ypayQ)/Bp(yQaﬁ/ivﬁﬂixQ)L
07)§(P7 Q) = IOg yﬂx(ﬁﬂL’yPaxpvﬁli)ﬂx(sﬂi’?i?ypvyQ)ﬁX(va;?iv;?jL,mQ)’v

if 29 = 4. In particular of(P,Q) = o%(P,Q) and o3 (P,Q) = 03 (P,Q) are
independent of the choice of P < Ppg.

(16)
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Select now an identification between the universal cover of ¥ and H? compatible
with the intrinsic hyperbolic structure X = X, € 7. Then the classical shear
o (P,Q) can be characterized as follows (see e. g. [Bon96)):

Fact. Let a = a(s) be a unit speed parametrization of the geodesic [y, 5] in H?
pointing towards 41, and denote by 9p, 0 € H? the projections of the ideal vertices
xzp,xo onto the spacelike geodesics [T, yp], [2q,yp], respectively. In addition we
set a(sp) (resp. «(sg)) to be the intersection point between [¥7,5%] and the
horocycle of H? based at 4+ (resp. zg) that passes through 9p (resp. 9g). Then

sg —sp =03 (P,Q).

On the other hand, we will prove that a similar description holds for the shear
p.
oh:

Claim. Let £ = {(t) be a unit speed parametrization of the spacelike geodesic
[£(7T),€(77)] pointing towards £(5), and denote by vp, vg € H?™ the projections

of the ideal vertices {(xp), £(xg) onto the spacelike geodesics [£(7),&(yp)], [£(20),&(yp)].
respectively. In addition we set £(tp) (resp. £(tg)) to be the intersection point be-
tween £ and the horosphere of H*" based at £(57) (resp. £(zq)) that passes through

vp (resp. vg). Then tg —tp = o} (P, Q).

Assuming that such characterization holds true, we can finally prove the state-
ment. By Lemma there exists an acausal lift & : 0T — A < dH2™ of the limit
map of p inside JH2". Notice that (£(z),&(y)) < 0 for any distinct z,y € 0T and
for any choice of representatives &(z), £(y) of £(z), £(y) € OH2". Let S denote the
lift of the pleated set S realizing A to H2n,

Recall from Sectionthat any horosphere O based at £(7) € oH2" (or ¢ (20))
intersects every plaque that has an ideal vertex equal to £(37) (or £(zq)) into a
horocycle. It follows that the curve 0O n Sisa horocycle based at 3T (or zg) with
respect to the intrinsic hyperbolic metric of S. On the other hand, the points vp
and vg are uniquely determined by the intrinsic hyperbolic structures of the plaques
P and @, so the horocycles 0O N S pass through the point of S corresponding to Up
(or ). This implies that sg — sp = tg — tp, and therefore o3 (P, Q) = o4 (P, Q),
which was what we were left to prove.

Proof of the claim. The projections vp,vg € H2n satisfy

| Cwr) €y (C@r)EGDg, , Elar) )

" ¢ 2€(xp), E(FT)XE(p),E(yp)) <<£<yp>,f<a+>>§<yp”<§(yp>,€(~+)>f<v >>,

vo = \/_ ERGHEYE <<§<IQ>,§<ZQ)>£@Q)+<§<IQ),§@Q)>£<ZQ)>
2(€(20), £(20)XE(wq), £(e)) \ €(Wa),E(2q)) (EWe), &(2q)) ’

where £(x) denotes a representative of the projective class £(z) € 0H>"  RP"*2
(compare with Remark[{.9). Consider now the parametrization of the leaf [£(5%), £(77)]
given by

1 -

(t) = ————('E(5") + e &7 )
V-2EGD)EGD
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The horosphere based at £(71) that passes through vp intersects the spacelike
geodesic [£(FT),£(77)] at £(tp), where

e [€6G).EG ). Ewr)
E@r),€G)}Ewp) EGT)

Similarly, the horosphere based at £(zq) that passes through vg intersects the
spacelike geodesic [£(71),£(77)] at £(tg), where

it _[€GH)EG)XE0). &y
(2, EGF)XE(va), E6

if zg = A%, respectively. In particular we have

tQ_tP_f g<€(wo) §(y@)XE(wr), E(3H)XEWP).£GT)
277 E(2q), EFM)E(Wa), EH)XE(xp). E(yp))
=log |B°(3*,yp.2p.yQ)B (7" yq, yr. ©Q)
= op(P,Q)

Q)
+))

if 2Q = ’3/+, and

o — tp — L 10g €00 E67)XE00). 667D €lrr) EG1)XE ) £
27 7€) € )XE(Q) Ey@)) (7). EG)XE(xp), E(yp))
=log |B°(¥ ", yp,zp, 77 )B’ (VA ur ¥Q) B (Y0 7, AT, )
=op(PQ)
if zg =77. O
This concludes the proof of Proposition O

The combination of Propositions and concludes the proof of the
existence part of Theorem [C|in the case of finite leaved maximal laminations. The
uniqueness is addressed in the case of a general maximal lamination in Proposition

below.

6.3. General maximal laminations. We now extend the result from finite leaved
laminations to the general case using the continuity of the construction.

Proposition 6.8. Let p: ' — SOq(2,n+1) be a maximal representation. Let A be
a mazimal lamination with associated pleated set Sy = Sx/p(I'). Let Xx € T be the
hyperbolic surface whose shear coordinates with respect to the lamination A agree
with the intrinsic shear cocycle of € H(X\;R). Then there exists a unique developing
map f : Sy — X, which is 1-Lipschitz with respect to the intrinsic pseudo-metric
on Sy and the hyperbolic metric on X).

Proof. Let A, be a sequence of finite leaved maximal laminations that converges to
A in the Hausdorff topology. By Propositions [3.8] [6.6] and [6.7] for every m we can
find a pleated set S, m/ p(T), a hyperbolic surface X,,, € 7 with shear cocycle
om = 05 € H(Am;R) and a developing map fo, : S, — X, which is 1-Lipschitz
with respect to the pseudo-metric and the hyperbolic metric.

Let S = S/p(T') be the pleated set associated to A. By Proposition the
cocycles o, = afm converge to the cocycle o = of naturally associated with the

lamination A. Moreover, the family of hyperbolic structures (X, ), is bounded in
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T, being their length spectra bounded by the length spectrum of p by Proposition
In particular, up to subsequences, there exists a hyperbolic structure Y € T
such that X,, — Y € 7. On the one hand, the shear coordinates o,, = 0'3)\(7;" must

converge to oY , in light of Corollary On the other hand, by Proposition m

the shears o, = af\’ converge to of = af Hence we conclude that X =Y and
b _ X
o\ = oy

In order to obtain convergence of developing maps, we will work in the Poincaré
model ¥ : D? x S — H2" associated to the choice of an orthogonal splitting
R2"+1 = E@F where E is a (2,0)-plane. We write S,,, S as graphs of 1-Lipschitz
functions g¢,,,g : D> — S?, that is, they are the images of the functions ,,,u
defined by

Um,u: D2 — §m7§C]ﬁI2’”
. — U(z,gm(2)), ¥(z, g(x)).

By Proposition [3.9] we have g, — g and u,, — u uniformly on compact subsets
of D?. Furthermore, by property (3) of Lemma the maps u,,, u are 1-Lipschitz
with respect to the hyperbolic distance of D? and the pseudo-distance dgz.», that
is, they satisfy

(17) dy2.n (U(I), u(y))7 dgz.n (um(z)v um(y)) < dpe (x7 y)

for every x y e D2

Let fm Sy — X denote the lifts of the developing maps f,, to the universal
covers. Fix 2o € D? so that u(mo) lies in the interior of a plaque of S. This implies
in particular that wu,,(zo) ¢ Am for m sufficiently large. Choose now identifications
X, ~ H2 so that the sequence (fmum(xo))m converges to some yo € H?2.

By Proposition and relation (17), the maps h,, = fintim : D2 — H? are
1-Lipschitz with respect to the hyperbolic metrics of both domain and codomain,
and h,,(z9) — yo as m goes to 0. By Ascoli-Arzela, up to subsequences, we have
that h,, converges uniformly on compact sets to a 1-Lipschitz map h : D? — H?
with h(z¢) = yo. Finally, we set f := hr : S — H2, where 7 : H>" — D2 is the
projection determined by the map W.

Notice that each f,, is (px,,,p)- equivariant where px,, is the holonomy asso-
ciated to the chosen identification X, ~ H2. The sequence of holonomies px,,
converges to px, a representative of the holonomy of the hyperbolic surface X:
As X,, — X in Teichmiiller space 7, we only have to check that the sequence is
precompact. This follows from the fact that

P (Nhin(@0) = px,, (V) rntin (@0) = hun7r(p(y)um(0)) = h(p()u(x0)).

As a consequence, we deduce that f is (px, p)-equivariant: Take x € S and select
Ty € Sy that converge to x. Then

Flo(y)z) = hr(p(~) lim )

m—00

Jim Ry (p(y)am)

mlbiinoo PX (V) e ()
= px(Mf (@),

where in the second equality we used the uniform convergence of the maps h,,
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We now show that f is the lift of a 1-Lipschitz developing map f: S — X. In
order to do so, we have to prove that:
° fis injective.
e f is totally geodesic on each leaf of A and plaque of S
This will be enough to conclude the proof of the existence of the developing map.

Let now P be a plaque of S , and consider a sequence of plaques P,, C §m that
converges to P. By hypothesis fm = h,,7 is an isometric embedding on FP,,, and
therefore the same holds for the restriction of f = hm on P. In the same way we
see that f () is a parametrized geodesic for every leaf £ of A

Since distinct plaques of S, are sent by fm into ideal triangles of H?2 with disjoint
interiors, the same property is verified by f and the plaques of S. In particular the
map h restricts to a homeomorphism between D?\7()) and H2\f(}). In addition,
if P,Q, R are plaques of S and R separates P from Q, then f(R) separates f(P)
from f (Q). From here it is simple to see that f is in fact globally injective.

For the uniqueness part of the statement, assume that f, f’ : S — X are two
1-Lipschitz developing maps of the same pleated set S = S). The composition
¢:= f'of~t: X — X is a continuous homeomorphism isotopic to the identity that
sends every leaf and every plaque of a fixed maximal lamination A into itself in a
totally geodesic way. It follows that there exists a lift ¢ : H2 — H2 of ¢ that extends
to the identity on dH?, and that sends plaques and leaves of A into plaques and
leaves of X\. This implies in particular that gZ) coincides with the identity on every
plaque of X. By continuity, we conclude that ¢ = idgz, and hence that f' = f. O

7. TEICHMULLER GEOMETRY AND LENGTH SPECTRA

In this section we relate the geometry of maximal representations to the geometry
of Teichmiiller space and use Teichmiiller geometry to study the length spectrum
of maximal representations. Our main goal is the proof of Theorem [D] from the
introduction.

7.1. Length distortion and dominated set. Let us briefly describe the picture.
By Theorem |C| and Proposition we know that the length spectrum L,(e)
of a maximal representation p : I' — SO¢(2,n+1) dominates the length spectrum
Lg, (o) of every p-equivariant pleated surface Sy. Furthermore, we have character-
ized those curves «y € T' for which the strict inequality Lg, (7) < L,(7) holds: They
are precisely the ones that do not intersect essentially the bending locus of S).
Thus, we can consider the dominated set of p which is the following space:

Definition 7.1 (Dominated Set). The dominated set of the maximal representation
p is the subset of Teichmiiller space 7 defined by

Pyi={ZeT|Lz(s) < L,(#)}

where Lz, L, are the length spectra of Z, p.
Similarly, the simply dominated set is

simple impl simple
Pl = {Z e T| Ly™(e) < L3P (o) }

where LSZimple < LE™Ple are the simple length spectra of Z, p. Clearly P, < P5™mple,
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Let us stress the fact that the set P, is non-empty as it contains the hyperbolic
structures X, of all pleated surfaces Sy associated to maximal laminations A, but
it always has more structure: By work of Bestvina, Bromberg, Fujiwara, and Souto
[BBFS13|, and Théret [Thé14] on convexity of length functions in shear coordinates
(see also [MV] for a different approach), the dominated set P, is convex with
respect to shear paths. By results of Wolpert [Wol87], [Wol06] on convexity of
length functions along Weil-Petersson geodesics, it is also convex with respect to
the Weil-Petersson metric.

We will analyze more carefully the structure of the dominated set. In order to
do so, let us introduce the following useful auxiliary function which is an analogue
of the Thurston’s distortion function [Thu98] for hyperbolic surfaces:

Definition 7.2 (Maximal Length Distortion). The mazimal length distortion & :
T — (0,00) is the function defined by

‘= su L)
w(Z) = ceC—IzO} Lz(c)

Similarly, we also define

HSimple(Z) = sup LP(N’) )
pemci—foy Lz (i)

As both L,, Lz are continuous homogeneous positive functions on the space of
geodesic currents C, their ratio x descends to a continuous positive function on the
projectivization PC. Since the the projectivization PC is compact, the supremum
k(Z) is a maximum k(Z) = L,(¢)/Lz(€), which is achieved at some current ¢ € C.

In the first part of the section, we use the maximal length distortion to charac-
terize interior points Z € int(P,) as those points for which x(Z) < 1 (see Lemma
. In other words, those are exactly the points that are strictly dominated by p.
Thus, Theorem [7.6]is equivalent to int(P,) # J in this setting.

Using strict convexity of length functions along Weil-Petersson geodesics, one
shows that int(P,) # J provided that P, contains at least two distinct points.
If p is not Fuchsian, such points can be produced by considering pleated surfaces
associated to maximal extensions of two intersecting simple closed curves a, 5. This
is the content of Proposition [7.5]

For convenience of the reader, we recall the definition of Fuchsian representation

Definition 7.3 (Fuchsian Representation). A maximal representation p : I' —
SO¢(2,n+1) is Fuchsian if it preserves a spacelike plane H < H?™.

In the second part of the section, we consider points on the boundary Z € 0P,
and exterior points Z € 7 — P,. An immediate observation is that the pleated
surfaces Sy all lie on 0P,. Indeed, since they satisfy Lg, (1) = L,(u) for every
measured lamination p € ML whose support is contained in A, we must have
k(Sx) = 1. We show that for every Z outside int(P,), the maximum x(Z) > 1
is realized by some measured lamination (see Proposition . The proof of this
fact follows arguments of Thurston |[Thu98] on the existence of maximally stretched
laminations between two hyperbolic surfaces.

As a consequence we deduce that P, coincides with the simply dominated set
’Pffmple (see Corollary . In fact, on the one hand, we have P, Pls)imple directly
from the definition. On the other hand, from the above discussion we get 0P, <
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6P§implc. As both subsets are topological disks, a topological argument shows that
equality holds.

7.2. Structure of the dominated set. We start our analysis of the dominated
set by characterizing interior points.

Lemma 7.4. A point Z € P, lies in the interior int(P,) if and only if we have
k(Z) < 1.

Proof. Suppose that k = k(Z) < 1. We can find a small neighborhood U of Z € T
such that every X € U is K-biLipschitz homeomorphic to Z, with K = 1/k. In
particular, we have Lx(e)/K < Lz(e) < KLx(e) for any X € U. We deduce that
for every surface in X € U we have Lx/L, < KLz/L, < Kk = 1, that is, X € P,.

Vice versa, if Z € int(P,), then Z is the midpoint of a WP geodesic [Z’, Z"]
entirely contained in int(P,). Let ¢ € C be a geodesic current such that x =

iz—((cc)). By strict convexity of length functions along Weil-Petersson geodesics (see
o

in particular Wolpert [Wol06, § 3]), we have Ly (c) < (Lz/(c) + Lz~ (c))/2 < L,(c).
Therefore x(Z) < 1. O

We remark that exactly the same argument also shows that a point Z € P;imple
lies in the interior int(P5™P') if and only if we have £*™Pl¢(Z) < 1.
We now show that int(7P,) is never empty when p is not Fuchsian.

Proposition 7.5. If p is not Fuchsian then int(P,) # .

Proof. We prove the statement in two steps: First we show that if P, contains two
distinct points then int(P,) # . Then we show that if p is not Fuchsian then P,
contains at least two points.

The first step only uses the Weil-Petersson geometry of Teichmiiller space: Let
X,Y € P, be distinct points. Let Z be their Weil-Petersson midpoint. We
show that Z is an interior point: By Lemma this is equivalent to k(Z) =
sup,er {Lz(7)/L,(7)} < 1. Let ¢ € C be a geodesic current that achieves x =
Lz(c)/Ly(c). By results of Wolpert [Wol06, § 3], the length of a geodesic cur-
rent is strictly convex along a Weil-Petersson geodesic. Hence Lz(c) < (Lx(c) +
Ly (c))/2 < L,(c). Therefore x(Z) < 1.

The second step, instead, relies on the pseudo-Riemannian geometry of H>".
Let a and (8 be intersecting essential simple closed curves. Extend «, 5 to two
finite leaved maximal laminations u, v of ¥ by adding finitely many leaves spiraling
around a, 8. Let S, S, < M be the pleated surfaces realizing u,v for p. Denote
by X, X, their intrinsic hyperbolic structures. Note that Lx (o) = L,(a) and
Lx, () = L,(9).

Since p is not Fuchsian, the bending loci of S, and S, are both non-empty and,
by Proposition they are sublaminations of p and v. By construction, any
non-trivial sublamination of wu,r contains « and (§ as every leaf of u — a,v — 8
spirals around «, 8. Therefore, the bending loci of S,,, S, contain o, 3, respectively.
As a, B are intersecting, we conclude, by Proposition that Lx,(8) < L,(8) and
Lx,(a) < L,(a). Hence X, X, are different hyperbolic surfaces. O

From Lemma [7.4] and Proposition [7.5 we deduce the following result of Collier,
Tholozan, and Toulisse [CTT19]
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Theorem 7.6. Let p be a mazimal representation of a surface group into SOg(2,n+1).
Then either p is Fuchsian or there exists k > 1 and a Fuchsian representation o
such that L, > kL,

7.3. Simple length spectrum. We now analyze x(Z) for points outside P,. Our
aim is to prove the second part of Theorem

Proposition 7.7. For every Z € T — int(P,), the mazimum r(Z) is achieved by
some measured lamination p € ML.

Proof. Let us first consider Z € T—P,. Following an argument of Thurston [Thu98|,
we show that

Claim. r(Z) = £5P(Z) = sup, guple Lz(7)/Lp(7)-

Once we know that x(Z) can be computed by restricting to simple closed curves,
it immediately follows that the maximum is achieved at a measured lamination

e ML.

Proof of the claim. In order to prove the claim, we show that if v is not simple and
we have Lz(7)/L,(y) > 1, then there is a shorter curve a (with respect to Z) such
that Ly (a)/Ly(a) > Lz(1)/L, (7).

As ~ is not simple, it describes an immersed figure 8 inside Z. Let P — Z
be the covering corresponding to the immersed figure 8. The convex core CC(P)
of the surface P is a pair of pants with geodesic boundary curves a;, ao, a3. The
idea is to consider the pleated surface S realizing the curves a; for the maximal
representation given by the restriction of p to the subgroup corresponding to m (P).

Since we treated in detail the construction of pleated surfaces only in the case
of a closed surface, we will not directly consider the restriction of p to 71 (P), but
rather we will reduce to the closed surface case by passing to a suitable finite index
subgroup of I'. We have the following: By a result of Scott [Sco78|/Sco85| there
is an intermediate covering P — Z' — Z such that Z' — Z is finite and the
projection P — Z’ induces an embedding on the convex core CC(P) into Z'. Let
I":=m(Z") < m1(Z) =T be the subgroup corresponding to the covering. Let S be
a pleated surface realizing a finite leaved maximal lamination of Z’ containing the
curves «; for the maximal representation given by the restriction of p to I' (the
restriction of a maximal representation to a finite index subgroup is maximal as
well). Let P’ — S be the covering corresponding to m1(P).

We have L,(a;) = Ls(aj) = Lpi(aj) for j < 3 by construction and L,(y) >
Lg(v) = Lp/(v) by the Lipschitz properties of pleated surfaces. As a consequence,
we get

Lz(M/Lp(v) = Lp(M)/Lp(7) < Lp(v)/Lp (7).
On the other hand, by [Thu98, Lemma 3.4] and the hypothesis Lp(y)/Lp/(v) =
Lz(v)/L,(7y) > 1, we have that

Lp(y)/Lp(7y) < glgg{LP(ij)/LP'(aj)}) = glgg{Lz(aj)/Lp(@j)})-

Furthermore, as P — Z is a hyperbolic pair of pants, we have

Lz(v) = Lp(y) > Lp(a;) = Lz(ay)

for every j < 3, which yields the conclusion. ([
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Lastly, we take care of boundary points Z € 0P,: Let Z,, be a sequence of points
outside P, converging to Z. By the previous steps, we can associate to each of
them a measured lamination p,, € ML such that Lz, (ttn)/Lp(pin) = k(Z,) > 1.
Up to subsequence and rescaling, we can assume that the sequence of measured
laminations pu,, converges to some u € ML. By continuity of length functions, we
have Lz, (pn)/Ly(ttn) — Lz(1)/Ly(1) = 1. As Z € P,, we also have the opposite
inequality so we conclude that equality holds and Lz (p)/L,(1) = 1 = k(Z). O

From Proposition [7.7, we deduce the following
Corollary 7.8. We have P, = P;imple.

Proof. Observe that, directly from the definitions, we always have P, Psi‘“ple.
Also notice that both sets are topological convex disks with non-empty interior.
If we knew that 0P, < dP5™P!, then the claim would follow from a topological
argument based on the following;:

Claim. Let D, D’ < R™ be topological n-disks such that D < D’ and 0D < oD’.
Then D = D'.

Proof of the claim. Consider the map j, : H,(D,0D) — H,(D',dD’) induced by
the proper inclusion j : (D,éD) — (D',0D’). We now show that j is degree one,
that is, jy is an isomorphism. By well-known consequences, we deduce that j is
surjective which implies the claim.

The computation of the degree can be done as follows: Let * € int(D) < int(D")
be any interior point. As D —x, D’ —* deformation retract to 0D, 0D’, we have that
the degree n relative homology groups are isomorphic to the local homology groups
H,(D,0D) = H,(D,D — %) and H,(D’,0D’) = H,(D', D’ — *). By the excision
theorem, if U < int(D) is a small ball around *, then H(D, D —*) = H,(U,U — *)
and H(D',D' — x) = H,(U,U — *). As j restricts to the identity U — U, we
conclude that j, is an isomorphism. (Il

Hence, it is sufficient to show that oP, (7Pf,imple. Consider Z € 0P,, by Lemma
we have k(Z) = 1. Furthermore, by Proposition the maximum is realized
by a measured lamination p € ML. Therefore x5™P¢(Z) = 1 since weighted simple
closed curves are dense in ML, and, hence, Z € 5P;imple, as interior points of
Psimple are the ones for which £5™Ple(Z) < 1. O

8. FIBERED PHOTON STRUCTURES

As shown by Guichard and Wienhard [GW12|, maximal representations p : ' —
SO¢(2,n+1) parametrize deformations of photon structures, a class of geometric
structures in the sense of Thurston (see [Thu79, Chapter 3]), on certain closed
manifolds F.

Definition 8.1 (Photon Structure). A photon of R*"*1 is an isotropic 2-plane.
We denote by Pho®™ the space of photons in R2"1. The group SOy(2,n+1) acts
transitively on the homogeneous space Pho®™ with non-compact stabilizer. We call
a (SOo(2,n+1), Pho®™)-structure on a manifold M a photon structure.
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The space of photons. Collier, Tholozan, and Toulisse proved in [CTT19, Lemma 4.8]
that the space of photons Pho®” is homeomorphic to the Stiefel manifold Sy (R™+1)
of (Euclidean) orthonormal 2-frames of R”*!. In fact, the homeomorphism Pho®" =~
S2(R™*1) has a very simple geometric interpretation: If E is a fixed positive def-
inite 2-plane of R®>™*!  then the orthogonal projection 7g : R>"*! — E restricts
to a linear isomorphism on every photon F of R>"*+!, In particular, every pho-
ton F < R*>"*1 = E@® E* coincides with the graph of a unique linear isometric
embedding
lp: (E7<'7 '>|E) - (El7 _<°, '>|Ei)7

which is uniquely determined by the image of a fixed orthonormal basis e;, es of E.
The homeomorphism Pho®" = Sy(R™*1) is then given by

Pho®" —  S(R™)
F o (tr(e1),tr(ez)).

Consequently, the space of photons Pho®™ is homeomorphic to S* LS if n = 1,
to RP? if n = 2, and it is simply connected for all n > 2. Notice in particular that
the manifold Pho®™ is orientable for every n > 1.

Guichard-Wienhard’s domains of discontinuity. The construction of Guichard and
Wienhard is the following: The maximal representation p has a natural domain
of discontinuity Q, < Pho®" obtained by removing from the space of photons the
closed subset

K, := {F € Pho®>" |¢ c F for some isotropic line £ € A, }.

The group p(I') acts properly discontinuously, freely, and cocompactly on €,
so that the quotient E, := Q,/p(I') is a closed manifold endowed with a photon
structure. By the Ehresmann-Thurston principle [Thu79|, the topology of E, does
not change as we vary p continuously.

Fibered photon structures. Collier, Tholozan, and Toulisse |[CTT19] have shown
that the manifold E, has a natural description as a Pho®" '-bundle E, — S in a
way compatible with the geometric structure, that is, in such a way that the fibers
are also geometric.

Definition 8.2 (Fibered Photon Structure, [CTT19]). Let 7 : E — X be a fiber
bundle over the surface ¥ with characteristic fiber Pho®" !, and let 7 : E >3
be the pull-back bundle through the universal covering map Y% We say that
a function E — Pho®" is fibered if it maps every fiber 77! (x) homeomorphically
onto Pho(s(z)*)  Pho®" for some «(x) € H>".

Given a representation p : I' = m(2) — SOg(2,n+1), a photon structure on
E with holonomy p o my : m(E) — SO¢(2,n+1) is fibered if its developing map
§ : E — Pho®" is fibered.

Remark 8.3 (|CTT19, Remark 4.10]). Even if the manifold E may be not simply
connected (for n = 1,2), its developing map factors through E, since its holonomy
is of the form p o m, for some p : I' > SO (2,n+1).

In this section we consider the point of view of fibered photon structures £ — X
associated to maximal representations. We use pleated surfaces to give a geometric
decomposition of £ — ¥, namely triangles and lines of photons which we now
introduce.
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Definition 8.4 (Triangles and Lines of Photons). For every ideal spacelike triangle
A < H?™ and spacelike geodesic £ = H*", we define a triangle of photons E(A) <
Pho*" and a line of photons E() c Pho®" as the subsets consisting of those
photons that are orthogonal to some point z € A and x € £, respectively. Triangles
and lines of photons E(A), E(¢) are naturally fiber bundles over A, ¢, where the
fiber over the point z € A is the space Pho(z') = Pho*" ',

Triangles of photons E(A) are codimension 0 submanifolds of Pho®" with bound-
ary. The boundary 0F(A) consists of three components which are smooth subman-
ifolds of Pho®". Each boundary component is a line of photons. Notice that lines
of photons carry an action of the subgroup

(SO(1,1) x SO(1,n)) N SOp(2,n+1),
which is compatible with the fibration E(¢) — £.

Definition 8.5 (Ideal Boundary). Both triangles and lines of photons have a nat-
ural notion of ideal boundary. Boundary components correspond to isotropic lines
and have the following form: For every isotropic line [a] € 0H*", we consider the
subspace

E(a) := Pho(at) = {F € Pho*" |a c F}.

If ¢ « H?™ is a spacelike geodesic with endpoints at infinity a,b € 0H?™, then the
ideal boundary of E(¢) is given by E(a) u E(b). The subset E(a) u E(¢) u E(b) is
the closure of E(f) in Pho®".

Similarly, if A < H?" is a spacelike ideal triangle with vertices a,b,c € JH?",
then the ideal boundary of E(A) is equal to E(a) u E(b) u E(c). The subset
E(A) U E(a) U E(b) U E(c) is the closure of F(A) in Pho®".

After having proved the geometric decomposition, we will explain, conversely,
how to explicitly construct photon structures that fiber over hyperbolic surfaces
by assembling together triangles of photons. The process is completely analogous
to the construction of hyperbolic surfaces by gluing ideal triangles. The holo-
nomy of such photon structures corresponds to maximal representations p : I' —
SO¢(2,n+1); the hyperbolic surface S, which is the base of the fibering, corre-
sponds to a pleated surface for p; the gluing parameters of the triangles of photons
correspond to the bending of the pleated surface.

The goal of the section is to develop this picture in detail.

8.1. A geometric decomposition. We have the following geometric decomposi-
tion of the Guichard-Wienhard domain of discontinuity €2, Pho*™:

Proposition 8.6. Let p : ' - SO¢(2,n+1) be a mazimal representation with
Guichard- Wienhard domain of discontinuity Q, < Pho*™. Denote by ¥ the uni-
versal covering of ¥, and consider a p-equivariant embedding ¢ : ¥ — H>™ with

acausal image 1(X). Then we have:
e The closure of u(3) inside H2™ U JH2™ is equal to 1(X) U A,, where A,
denotes the limit set of p.
e the domain Q, is foliated by the subsets {Pho(i(z)*) | z € X}, and the map

Q, - S, which associates to a point y € Q, the unique leaf Pho(c(x)*t) that
contains it, is an equivariant fibration.
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In [CTT19] these properties are proved for smooth equivariant spacelike em-
beddings (see Lemma 3.23, Lemma 4.11, and Theorem 5.3 of [CTT19|). Here we
slightly generalize their results in a purely topological setting, which is necessary
when dealing with pleated surfaces.

Proof. Let us first prove the first point.

We lift ¢ to an acausal embedding ¢ : ¥ — H2". We will work in different
Poincaré models of H2™, for now we fix an arbitrary one ¥ : D? x S* — 2" and
denote by 7 : 2" — D2 the associated projection.

As § = Z(i) is acausal, it can be represented as the graph of a 1-Lipschitz
function g : 7r(§) cD? - S” by Lemma Since the map 77 : Y D?is injective,
the set 7r(§ ) = D? is simply connected and open, by invariance of domain. Let D
denote the projection 7T(§) and let D be its closure inside D? = D? U dD?%. As g
is 1-Lipschitz, it continuously extends to a 1-Lipschitz function g : D < D? — S™.
We deduce that the closure S U 05 of § inside H2™ U 0H2"™ is the graph of g.

We start by showing:

Claim 1. We have D = D2,

Proof of the claim. As p(T') acts cocompactly on g, we can find a compact fun-
damental domain R < S. Let U < S be an open neighborhood of R in S with
compact closure. By compactness, there exists € > 0 such that dyz.»(z,y) = € for
every z € Rand y € dU. As p(T') preserves S and its pseudo metric, we deduce that
every point z € S has an open neighborhood U, < S such that dpz.n (2, 0U,) = €.

Recall that D? is endowed with a hyperbolic metric. As S is acausal, by Lemma
we have that dyz(7(x), 7(y)) = dygz.»(z,y) for every z,y € S. In particular, for
every r € S we have

dy= (7(2), 7(0U,)) = dyz.n (z,0U,) > e.

Since 7@ : & — D? is an injective map, by invariance of domain, it is also open.
Therefore, for every z € S the set m(U,) is an open neighborhood of 7 (). Further-
more, by the above discussion, m(U,) contains the hyperbolic metric ball of radius
e centered at m(z). We are now ready to conclude: The projection D = 7(S) is a
subset of D? with the property that its hyperbolic e-neighborhood is still contained
in D. This is possible only if D = D?. O

Using the dynamical properties of p we now show that 08 = Ap, where A,
denotes a lift of A, to OH2".

First, recall that for every v € I" the element p(y) preserves a spacelike geodesic
[a,b], on which it acts by translations by L > 0, and its orthogonal subspace
Span{a,b}*, on which it acts with (generalized) largest eigenvalue v with |v| < e
(see [BPS19] or [CTT19, Corollary 2.6]). Up to replacing v with y~!, we can assume
that

p(y)a=ea, p(y)b=e""D,
for some L, v satisfying L > max{1,log|v|}.

Fix now v € T' with invariant axis [a,b]. Every z € H2" can be written as
r = aa+ Bb+u, with a, € R and u € V = Span{a, b}*+.

Claim 2. There exists a point x € S that can be written as r = aa + Bb + u, with
either o # 0 or 3 # 0.
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Proof of the claim. Suppose that this is not the case, then ScV. Letece
Span{a, b} be a spacelike vector. As V has signature (1,n), there exists ¢/ € V

spacelike. Consider the Poincaré model ¥ : D? x S — H>" associated to the or-
thogonal splitting R>"*! = E @ E+ where E = Span{e, ¢’}. If a point 2 = ¥(u,v)
lies on V, then

0= {¥(u,v), €

2 1+ |ul?
= u+t g v, €)
1— Jul? = ful?

TR

Since 7(¥(u,v)) = u, we deduce that the projection of V' to D? lies on the line
(e,ey =0 of E. Being S a acausal subset of H2", the projection mg(S) is an open

subset of D? and, hence, there there exists a pomt z € § which is not contained in
V. O

Suppose that there is a point x = aa + 8b+ u € S with o # 0. Then we claim
that a lies in 3. To see this, first observe that, by p(I') invariance of S, we have
p(7)™x = ae™a + Be ™ b + p(y) u € S.

As the largest (generalized) eigenvalue of the restriction of p(7y) to V = Span{a, b}*
is smaller than el the sequence [ae™la + Be~™Lb + p(y)"u] converges to [a] in
the sphere of rays R2"+1 — {0} /y ~ A2y. Thus [a] € 65. Similarly we see that, if
there is a point x = aa + fb+ u € S with B # 0, then b lies in 8.

By p(I)-invariance, the orbit p(T')a is contained in A, N 08 (for some lift A, of
A,) and is dense inside Ap. Therefore we conclude that Ap c 08. As Ap and 05
are both graphs of functions dD? — S™, we conclude that Ap — 0S. This concludes
the proof of the first point.

For the second point we need to prove the following three properties:

(1) For every z € &, the space Pho(u(z)*) is contained in Q,.
(2) If p € Q,, then p € Pho(s(x)*) for some z € 5.
(3) If 2,y € 3 are distinct points, then Pho(x(z)1), Pho(.(y)*) are disjoint.

Together, the properties imply that €2, is foliated by Pho(:(x)1), as = varies in
E and is equipped with an equivariant map 2, — 3.

Property (1). The first property follows from the following fact:
Claim 3. P(u(x)t) n A, = & for every z € 5.

Proof of the claim. If a € P(t(x)*) n 0H?*", then the 2-plane Span{a, t(x)} is light-
like, that is, a,:(z) are joined by a lightlike geodesic. Let D? x S™ be a Poincaré
model where a, +(z) correspond respectively to (p, g(p)) and (o, g(0)) where p € OD?
and o € D? is the center. By Lemma since [a, ()] is lightlike, we have
dsn (g(0),g(p)) = ds2(0,p). As g is 1-Lipschitz we must have dgn(g(0),g(t)) =
ds2(0,t) for every t on the radial segment [0, p] = D? which is a minimal geodesic
for the hemispherical metric on D?. However, by Lemma this implies that
(0,9(0)) and (¢, g(t)) are connected by a lightlike geodesic. This contradicts the
fact that S , the graph of g, is acausal. O
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Recall that Q, c Pho®" is the complement of the set
K, := {F € Pho®>" |¢ c F for some isotropic line £ € A, }.

If Pho(1(z)*) n K # &, then there is a photon F orthogonal to ¢(x) containing an
isotropic line a € A,. In particular, a t(z)* which cannot happen by Claim 3.

Property (3). The last property follows from the fact that ¢(z),t(y) are joined
by a spacelike segment: Suppose that there is a photon F' that is simultaneously
orthogonal to «(x) and ¢(y). Then it is orthogonal to the 2-plane Span{:(x),t(y)}
which has signature (1,1) as ¢(x), ¢(y) are joined by a spacelike segment. However,
the orthogonal of such plane, having signature (1,n), cannot contain photons.

Property (2). The second property follows from the fact that every timelike sphere
intersects ¢(3) exactly once and A, = ).

Let F € Pho®" be a photon. The orthogonal F is non-positive definite and can
be approximated by negative definite (n + 1)-planes F,,. Each such plane intersects
4(2) exactly once in a point ¢(z,). Thus FL either intersects +(3) in some point
t(z) or it intersects A,. In the first case, F' < «(x)*, that is F' € Pho(:(x)1), and,
moreover, by Property (3), F* intersects +(X) in exactly the point ¢(z). In the
second case, a — F for some isotropic line a € A, which implies a © F' and, hence,
FekK,.

Note that, as a byproduct of the proof, we can describe explicitly the projection
Q— S=1u(X)as F — P(F!) nS. This shows in particular the continuity of the

corresponding map 2 — X. (I

Since every maximal representation admits equivariant pleated surfaces (and
hence equivariant acausal embeddings PN H?2"), Proposition and Theorem
imply that every maximal representation is the holonomy of some fibered photon
structure £ — X.

We now have all the elements to prove our first result on fibered photon struc-
tures, namely Proposition [E}

Proof of Proposition[E. Let Sy be the pleated set associated to some maximal lam-
ination A of X. Recall that, by Proposition its lift Sy = H2" is acausal and is
equivariantly homeomorphic to 3 via a homeomorphism ¢ : $ -3 \ © H?". Since
S '\ can be decomposed as the disjoint union of spacelike ideal triangles and spacelike
geodesics, by Proposition the acausal embedding ¢ determines a decomposition
of the Guichard-Wienhard’s domain of discontinuity of p into lines and triangles
of photons, associated to the leaves and the plaques of the maximal lamination A,
respectively. ([l

Remark 8.7 (Connected Components of Maximal Representations). Let F — X
be a fibered photon structure with maximal holonomy p associated to some p-
equivariant spacelike embedding ¢ : > — H2". We denote by V,,. — 3 the vector
bundle obtained through the following process: Let V, — 3 be the bundle with
total space
V, = {(z,v) € & x R¥"! |y e y(z)F < R2"H1}

and bundle map given by the projection onto the first component (z,v) — .
The representation p determines a natural action of I' on ‘N/L, given by v(z,v) =
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(v, p(y)v), for any v € T and (z,v) € V,. The bundle Vp,. — ¥ is then obtained by
considering V, , := ‘N/L /p(T), together with the projection induced by the universal
covering map DI 3}

Collier, Tholozan, and Toulisse observed in |[CTT19} § 2.5] that, by the work of
Ramanathan [Ram75] and Oliveira [Olil1};|Oli19], for every n > 2 the connected
component of the space of maximal representations Ryax containing p is deter-
mined by the first and second Stiefel-Whitney classes w;(V,,) € H (X;Z/2Z) of
its associated vector bundle V,, — ¥ and, vice versa, for every choice of classes
c; € H(X;Z)27), i = 1,2, the set RS2 of maximal representations p that verify
w;(V,,,) = ¢; constitute a connected component of Rpax-

The analysis of the connected components of the representation variety for
n = 2 is more subtle and requires a quite sophisticated analysis in work of Collier,
Tholozan, and Toulisse [CTT19|]. For this reason, we prefer to focus in the remain-
der of the section on the case n > 2, whenever the topology of the fibered photon
structures is discussed. However, we will emphasize in each statement whether the
hypothesis n > 2 is in fact required.

8.2. Gluing triangles of photons. We start with a simple computation: Let A
be an ideal spacelike triangle and let ¢ be a spacelike geodesic. Consider an isometry
¢ € SOg(2,n+1) such that ¢(E(A)) = E(A) or ¢(E(X)) = E(f). As ¢ induces an
orientation-preserving homeomorphism of Pho®", it extends to a homeomorphism
of the closures of E(A) and E({). In particular, ¢ must permute the ideal vertices
of E(A) or E(£).

We denote by PStabgo,(2,nm)(E(A)) and PStabgo2,ni)(£(£)) the elements
that stabilize E(A) and E(¢) without permuting their ideal vertices. Observe that
if $(E(a)) = E(a) for some isotropic line a € JH*", then ¢(a) = a in JH*™. As a
consequence, we have the following

Lemma 8.8. We have
o PStabso,(2,n41)(E(A)) = PStabgo,(2,n41) (A)-
o PStabgso,(2,n41)(E£(f)) = PStabgo,2,n1) (£)-
e Stabgo,(2,n41) (E(a)) = Stabgo, (2,n1)(a)-

Both stabilizers of a spacelike triangle A and of a spacelike geodesic ¢ have
two connected components. To see this, assume that A and ¢ lie in a common
spacelike 2-plane H of H*", and let W (resp. L < W) denote the subspace of
R27+1 of signature (2,1) (resp. (1,1)) that projects onto H (resp. £). Let also
rw € SOg(2,n+1) be an isometric involution that restricts to —id on W, and to an
orthogonal reflection on W+. Then:

o The stabilizer of A = H>" decomposes as
PStabsog2,ni1) (A) = ({idw} x SO(W)) L rw ({idw} x SO(WH)).
e The stabilizer of ¢ = H?>" decomposes as

PStabso, (2,n41)(¢) = (SO0(L) x SOo(L*)) b rw (SOo(L) x SOo(LY)).

8.2.1. Building pants of photons. We now describe a process to glue pairs of trian-
gles of photons along their boundary to form a so-called pants of photons. To this
purpose, we select arbitrarily an orientation on H, and consider two ideal triangles
A and A’ with cyclically ordered vertices a,b,c € 0H and ¢',b',a’ € 0H, respec-
tively, endowed with the orientation induced by the one of H. We denote by £,
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Ly, L. (resp. Lyr, Ly, L) the edges of A (resp. A’) opposite to the vertices a,b,c
(resp. ', V', ), respectively. We also orient the edges of A and A’ according to the
boundary orientations of A and 0A’.

Recall that, for any u € {a,b, c} (resp. v’ € {a’,V/,'}), the orthogonal projection

of the isotropic line u € JH?™ (resp. u’) onto the spacelike geodesic £, (resp. £./)
provides a basepoint x, € £, (resp. x, € {,) naturally associated to the ideal
triangle A (resp. A').
Let s2, 58, sB, € SOo(W) be the unique isometries that send the edges €o/, iy, £er
of A’ and their basepoints z,/, xy, T onto the edges {4, £y, . of A and their base-
points x4, Ty, ., respectively, so that the restriction sfu, : by — £, is an orientation
reversing isometry for any u € {a,b,c}. We then denote by sy, € SOg(2,n+1) the
isometry extending sZ, to RZ"*1 that restricts to the identity on W+, for any
u € {a,b,c}. By construction, the ideal triangles A and s,/ (A’) are adjacent along
by, = Syw (£y) and they have hyperbolic shear (A, sy, (A’)) equal to 0 (compare
with Remark .

In order to combine the triangles of photons E(A), E(A’) to construct pants of
photons, we now describe the admissible gluing maps between 0E(A) and 0E(A').
For every edge £, of A, we start by choosing an orientation preserving isometry
B 4, — £, and select ¢, € PStab(E(£,)) covering 2. We then set

¢5 = 55511/7 ¢u = djusuu’
for any u € {a, b, c}. Finally, we define
Si=(Au) /g7 vy ver,

where x € £, = A identifies to 2’ € £, = A’ if and only if z = ¢B ,(2'), and
similarly

E .= (E(A) U E(A/))/¢a U oy U e,
where F' € E({,) < E(A) identifies to F' € E({,,) < E(A’) if and only if F' =
¢uw (F'). Observe that the construction provides:

e A (possibly incomplete) hyperbolic structure on .S, inherited by the hyper-
bolic metric on A, A’ and the isometric gluing maps ¢2, ¢Z, ¢5.

e A photon structure on E, with respect to which a (SOg(2,n+1), Pho®")-
local chart around F' € E(¢,) < E(A) is obtained by juxtaposing F(A) and
Pu(E(A)).

e A natural fiber bundle projection E — S with characteristic fiber Pho®™ !,

It is simple to check that the construction determines a fibered photon structure
E — 8 as in Definition B2

Observe that, if we choose elements )a € PStab(E(A)), ¥a: € PStab(E(A"))
and we change the gluing maps ¢, with d)quSuwg,l for all u € {a,b,c}, then the
resulting fibered photon structure E/ — S is isomorphic to £ — S, namely there
exists a fiber-preserving (SOg(2, n+1), Pho®™)-isomorphism E — E’ covering the
identity map idg induced by YA U a:. Thus, the space of parameters for the gluing
maps is

PStabgo, (2,nt1) (fa) X PStabgo, 2,n41) () x PStabgo, 2,ns)(fe)
modulo the diagonal action by left and right multiplications of

PStab(A) x PStab(A”).
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8.2.2. Boundary completions. If the hyperbolic shears between the ideal triangles
in S satisfy

a(A, 03 (6)H(A)) = o(A, 67 (A) + a(di (A"), 677 (6)) (D)) # 0
for every pair of distinct vertices u,v € {a, b, ¢}, the hyperbolic surface is incomplete
and its metric completion S’ is a hyperbolic pair of pants with three totally geodesic

boundary components. In fact, the length of the boundary component -, adjacent
to the vertex u of A is given by

L(va) = [0(A, 65 (67) (D))
where u, v, w are cyclically ordered vertices of A (compare with Lemma . We
now wish to study the completion E’ of the photon manifold E. In particular, we
give conditions on the isometries 1, € PStab(¢,) under which the fibered photon
structure E admits a completion E’, which is a fibered photon structure with photon
boundary that naturally fibers over S’.

First, let us compute the holonomies pg,, pp, pc of the boundary components
Yas Vb, Ve adjacent to the vertices a,b,c of A < S and oriented as boundary of
S: A direct computation from the definition of the photon structure on E shows
that

_ -1 _ —1,,—1
Pu = ¢w¢v = 1/Jw8ww/8w/¢v
where the u, v, w are in cyclic order. It is not difficult to see that the composition
swwlsgvl, coincides with 2, € SOg(2,n+1), where 1, is the unique unipotent
isometry of R>"*! that restricts to the identity on W+, and that acts on 0H <
OH?™ by fixing v and sending w to v.

Definition 8.9 (Loxodromic Isometry). An isometry ¢ € SOg(2,n+1) is lozo-
dromic if: Tt admits an invariant spacelike line ¢ = [a,b], and the isotropic lines a
and b are equal to the generalized eigenspaces of the eigenvalues of ¢ with largest
and smallest absolute value, respectively. In such case, we say that a and b are the
attracting and repelling fixed points of ¢, respectively.

Any loxodromic element ¢ with attracting and repelling fixed points a,b has
north-south dynamics both on H*™ and Pho®™ in the following sense:

Lemma 8.10. Let ¢ € SO¢(2,n+1) be a loxodromic isometry. Then:
e ¢ — a uniformly on all compact subsets of H>™ — P(b*).
o ¢~ — b uniformly on all compact subsets of H>™ — P(a™).
o ¢™ — E(a) uniformly on all compact subsets of Pho®" — E(b).
o ¢~ — E(b) uniformly on all compact subsets of Pho>™ — E(a).

Proof. The first and second properties follow from the fact that ¢ is a bi-proximal
element of PGL(d,R) (see e.g. [Can21}, § 4.17]).

For the third assertion, let F' be a photon outside E(b). First, observe that
Pho®™ is a closed subset of the Grassmannian of 2-planes of R%"*! and hence
compact. In particular, for any divergent sequence (mg)r < N, we can find a
subsequence of (¢ (F)); that converges to some F’ € Pho®".

We divide the analysis in three cases, depending on whether (1) F < bt, (2)
dim F nbt =1, or (3) F nbt = {0}. In fact, the first case occurs only if F' € E(b),
and hence can be excluded. To see this, notice that the hyperplane b+ < R?"*! has
signature (i4,i—,49) = (1,n,1). Since no subspace of signature (1,n) can contain
a photon, the only possibility for F' to be contained in b+ is that b € F', and hence



SO¢(2,n+1)-MAXIMAL REPRESENTATIONS AND HYPERBOLIC SURFACES 89

F € E(b). On the other hand, if we are in case (2) or (3), then F’ € E(a), since we
can find a non-zero vector v of F' such that to ¢™([v]) — a, by the first assertion.
The uniform convergence of ¢ — E(a) can then be deduced from the control of
the eigenvalues of ¢. O

In particular, ¢ acts properly discontinuously and freely on Pho®" — (E(b) u
E(a)).

Definition 8.11 (Fibered Photon Structure with Geodesic Boundary). A half space
of Pho®" is a subset E(W) < Pho®" of the form

E(W) = {V € Pho®>" |V L z for some z € W},

where W < H is a half plane in a spacelike plane H < H?*". A photon structure
with totally geodesic boundary on a manifold with boundary E’ is a maximal atlas of
charts with values in a half space of Pho®™, whose change of charts are restrictions
of transformations in SOg(2,n+1).

Let now X’ be an orientable compact surface with boundary and let 7 : £/ — ¥
be a fiber bundle with characteristic fiber Pho®" !, We denote by 7 : E' — 3 the
pull-back bundle of 7 via the universal covering map ¥ YA photon structure
with totally geodesic boundary on E’ with holonomy pom, : m1(X') — SOp(2,n+1)
and developing map 4 : E’ — Pho®" is called fibered if for any x € 5 there exists
some ((x) € H?" such that §(7~1(z)) = Pho(c(z)1).

We have the following:

Lemma 8. 12 Let a,b,c be the vertices of A < S. Suppose that the holonomies
Pu i= buwdy T € Stab(u), for {u,v,w} = {a,b,c} andu,v,w cyclically ordered, are all
lozodromic, and denote their invariant lines by £(py). Then there is a completion
E < E' which is a fibered photon structure with totally geodesic boundary over
the metric completion S’, whose boundary component adjacent to v is equal to

E(l(pu))/pu-

Proof. Let £(p,) be the invariant spacelike line of p,. Notice that, as p, is loxo-
dromic and leaves invariant E(u), there exists a t € dH*" such that £(p,) = [u,].
Let E(¢(p,)) be the corresponding p,-invariant line of photons. Note that the
action p, —~ E({(py)) is properly discontinuous and free. We denote by

E(l(pu))/pu = Lpu)/pu

the corresponding quotient bundle. Our aim is to describe local charts for a fibered
photon structure with geodesic boundary on the space

E U (B(tp))/pa) = S U (€pa)/pu).

Let E — S be the pull-back bundle to the universal covering S-S , and choose
a lift of the vertex u (which we continue to denote with abuse by u). Let S, be the
fan of triangles with an ideal vertex in u, and let E, be the fan of all triangles of
photons of E with ideal vertex E(u).

Consider the restriction to §u of the map ¢ : S — H2"™ associated to the fibered
photon structure E — S. We have S, = = Ujez Aj, where (A4;); = (A(u, vj-1,v;));
is the collection of spacelike ideal triangles in H?"™ that share the ideal vertex u.
Notice that the cyclic order of the vertices of S, on 09 is

U< <Vj—1 <V <Vjyp1 << U
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We start with the following observation:
Claim 1. For every j € Z, the subset t(A; U Aj41) < H*™ is acausal.

Proof of the claim. Notice that, from the construction outlined in Section [8.2.1] it
is not restrictive to assume that Ag, A; = S, coincide with the spacelike triangles

A = Au,v,w), ¢B(A) = A(¢B(w'),v,u) c H,

w

respectively, and that ((Ag) ¢ H < H*". Moreover, if v, € m1(S) denotes the
deck transformation that preserves the ideal vertex u € 8§u (oriented according
to the boundary orientation of 05’), then the union A; U Aj4 is either equal to
Y (Ag U Ay) if j = 2h € Z, or yPFLH(A_; U Ay) if j = 2h + 1, so it is enough to
consider j = 0,—1. As the two cases are completely analogous to each other, we
explain in detail only the case j = 0.

Since the set Agu Ay gu is contractible, the restriction of ¢ to Agu A; admits
a lift i : Ag U A; — H2". We will show that i(Ag U A1) is an acausal subset of
H27, Let U, 0, € AH2™ be the vertices of i(Ap), and let @', 9’ %" be the vertices
of the lift of A’ ¢ H lying on the same spacelike plane as i(Ag) (recall from Section
that A and A’ lie in a common spacelike plane H of H?™).

The vertex £ € JH2" of i(Aq) different from 4, o is projectively equivalent to
bw ('), and it coincides with the unique lift of ¢, (w’) € JH?™ for which both
(Z,0y, (2,0) are negative. In order to express Z in terms of ¢,, and @', we need
to distinguish two cases, depending on the connected component of PStab({,,)
containing ¥,, = qﬁws;;,:

(1) If 4, belongs to the connected component of the identity in PStab(4,,),
then 2 = ¢, (@) € H>".

(2) If 1)y, does not belong to the connected component of the identity, then
Z=—¢u (UA/)

Within this setting, the set {(AguUA1) is acausal if and only if any subtriple of the
set of isotropic rays {@,d,1, 2} generates a subspace of R?"*+1 of signature (2, 1).
In fact, by the choices we made, it is enough to prove that (w, %) < 0 (compare
with Lemma . From here, the desired statement can be reduced to an explicit
computation in R>"+! which we briefly summarize.

Up to the action of SOg(2,n+1), we can assume to be in the following setting:

U = —e; + €3,
N ~t
W = ey + e3, Sww (W) = —eg + €3,

where (e;); is the standard basis of R*"*1. Since the isometry 1), preserves the
orthogonal decomposition L ® L+, with L = Span{@, 9} = Span{ey, e3}, we have

(18) <1f}, ¢w(wl)> = <62 + €3, ¢w(—€2 + 63)> = —<€2ﬂ/}w(€2)> + <@37¢w(€3)>

Now one sees that, if ¢, satisfies (1), then v, (e2) lies in the same connected
component of L+ n H2n (which is isometric to two copies of —H", i.e. the hy-
perbolic n-space with the metric —ggn) as ez, and ,,(e3) lies in the same con-
nected component of L N H2" as e3 (which is isometric to two copies of +H!, i.e.
the hyperbolic 1-space with its Riemannian metric). From here we deduce that
(e, (e2)) = 1 and (es, 1y (e3)) < —1 (see Lemma [2.2), which implies by relation
[1§] that (1, 2) = (b, ¢y, (@)Y < 0.
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On the other hand, if 1, satisfies (2), then 1, exchanges the components of
both L+ AH2" and L ~ H2" (see beginning of Section. By the same argument
as above, we deduce that {es, ¥, (€2)) < —1 and {(e3, ¥y (e3)) = 1. Since (w, %) =
—{W, ¢y (")), the assertion follows again from relation O

We now promote the claim to the following:
Claim 2. The map ¢ : gﬂ — H?" is an acausal embedding.

Proof of the claim. The proof is a simpler version of the one of Proposition
We lift ¢ : S — @2’” to the two fold (:Nover H?" — H?" and work in a Poincaré
model D? x S" of H*". Observe that 9, U;ezA where A; = A(v,uj_1,u;).

Notice that the cyclic order of the vertices of S on 09 is
V< < U < U < Ujgp <o <UL

Let 7 : H2" U 0H2"™ — D2 U dD? be the natural projection. Consider two con-
secutive triangles A; = A(v,uj_1,u;), Aj11 = A(v,u;,u;11) intersecting along the
geodesic [v,u;]. By the previous claim, ¢«(A; U Aj4q) is acausal so the projections
m(v), m(uj—1), m(u;), m(uj41) of the vertices v,u;_1,u;,u;41 to ID? appear in this
exact cyclic order on dD?. We deduce that the projections of the vertices (u;)
appear in the same order

m(v) < <m(ujo1) <7(uy) < m(ujpr) < --- < 7(v)

as they appear on 0S. As a consequence, the restriction of ¢ to the union A\, =
Ujez 0A; of the sides of the triangles A; is an acausal embedding: For every
£, < \, we have that the endpoints of ¢, ¢ are in disjoint position.

We immediately deduce that ¢(int(A; )) N (int(A;)) = & for all j # 4, which
says that ¢ is an embedding: We already know that this is the case when |z —jl=
1. Assume | — j| > 1. Note that m¢ is an embedding on both A;, A; and the
images coincide with the topological disks bounded by the closures in D? U dD? of
m(0A;), m(0A;). Those curves are disjoint and not nested. The conclusion follows.

The argument prov1ded above shows in fact that the restriction 7 : S’ — D? is
injective, and mu(S,) is an open subset of D2. At this point, checking that ¢(S,) is
acausal is simple. First observe that there is no timelike geodesic joining distinct
points of §U: If this was not the case, then we could find a Poincaré model of 2
with respect to which the projection 7t is not injective, contradicting what we just
observed. We deduce in particular that L(gﬂ) is an achronal subset of ﬂ2’”, and
hence it can be represented as the graph of some 1-Lipschitz function m(gv) — S™.

On the other hand, suppose that « is a lightlike geodesic connecting two points
of L(gv). The path a cannot join two points on the same leaf, since ), is an acausal
set. Since L(gv) is the graph of a 1-Lipschitz function on the open set m(gv),
Lemma 2.8 implies that there exists a subsegment of « that is entirely contained in
one of the triangles ¢(A;). This clearly contradicts the fact that ¢(A;) is a spacelike
triangle. [

A consequence of the claim is that the restriction of the developing map ¢ : E—
Pho®™ to E, is an embedding.

Notice that the images 6(E,) are p,-invariant and contained in Pho®" —E(£(p,)):
In fact, if E(¢(p,)) intersects the image of one of the triangles of photons E(A’) in
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E‘U under the developing map, then we must have
pud(E(A") nd(E(A)) # &,

since both §(E(A’)) and E(£(p,)) have a vertex in F(v). But p, moves every
triangle §(E(A")) off itself.

Furthermore, by the loxodromic assumption on p,,, the p,-orbit of every triangle
in §(F,) accumulates to E(£(p,)) either in the forward or backward direction and
to E(v) or E(t) in the opposite one. We deduce that the union 8(E,) U E(£(p,)) <
Pho*" is a po-invariant submanifold with boundary. This provides local charts for

E v (E(l(py))/pv) at points in E(¢(py))/po- O

8.2.3. Computing Stiefel- Whitney classes. We now provide a description of the first
Stiefel-Whitney class of the vector bundle V' = V// , — S’, associated to the comple-
tion B’ — S’ as described in Remark in terms of the holonomy of the boundary
08'. If 1 : S — H2" denotes the equivariant immersion associated to E’ — S, then
V' — & is obtained as the quotient by p(T') of the vector bundle V' — &’ whose
fiber over z € § is equal to ¢(z)* = RZ"!. Notice that, since the vector bundle
V' — S’ has dimension 2 + n, for every n > 1 its isomorphism classes is uniquely
determined by the Stiefel-Whitney class w1 (V') € H(S";Z/27Z).
Recall that the cohomology groups satisfy

HY(S';2/22Z) = Hom(H;(S';Z/27),7,/27).

In particular, in order to determine the class wq(V’) it is enough to describe its
evaluation on each [a] € H1(S";7Z/2Z). Let a: S* — S’ be a loop representing [a],
and consider the pull-back bundle a*V’ — St. Then wy(V’)[a] € Z/2Z is equal to
0 if a*V is orientable, and is equal to 1 otherwise.

Notice that, if v4,7,7. are the boundary curves of S’ corresponding to the
vertices a, b, ¢, then the homomorphism w; (V’) is uniquely determined by any two
of w1 (V) [Val, w1 (V) [], wi(V')[7.], since any pair of distinct classes among [7q],
[7]s [7e] freely generates Hy(S';Z/27Z).

Let p, = (bcqbb_l be the holonomy around ~,. Recall that by construction p,
is a loxodromic element. Loxodromic elements in SOgp(2,n+1) are divided into
two connected components £, L£7: If ¢ € SO¢(2,n+1) is a loxodromic isometry
with invariant spacelike line ¢ given by the projectivized of a subspace L < R>"+!
then ¢ can either preserve or exchange the connected components of L n f2n,
This feature distinguishes the two connected components of SO(L) and the two
connected components of loxodromic elements in SOy(2,n+1). In the first case,
when ¢ € SOg(L), the bundle V (£)/¢ is the trivial bundle over ¢/¢. In the second
case, when ¢ ¢ SOg(L), the bundle V(¢)/¢ — £/¢ is the unique non-orientable
bundle over £/¢ =~ S* of dimension n + 2. Equivalently, the connected component
that contains ¢ can be distinguished by the sign of its leading eigenvalue I (¢), i.e.
¢e LT ifl1(¢) > 0, and ¢ € L™ otherwise.

In light of this fact, let us compute wy(V')[v,]: We already know that one of
the eigenvectors of p, is equal to the isotropic ray a € 6]?]127”7 so we can read off the
connected component from p,(a). To conclude, we deduce that

0 if pa(a) = a € OH2™,

wl(V/)[’ya] = {1 if pa(a) — —ae€ a]I/_\]IZ,n'
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8.2.4. Classifying pants of photons. We can now summarize our analysis in a concise
statement.

Theorem Let A = A(a,b,c), A" = A(,b,a’) = H>" be two ideal spacelike
triangles lying on a common spacelike plane H = P(W) n H®" with 0A = £, U
by U Lo, 0N = Ly U Ly U Ly, where Ly, Ly are the sides opposite to the vertices u €
{a,b,c},u’ € {a', V', '}, respectively. For every u € {a,b,c}, let sy € SOp(2,n+1)
be the unique isometry of R>"*1 that restricts to the identity on W and to the
element of SOg(W) that maps £, to £, so that the shear between the adjacent
triangles A and sy’ is zero. For every equivalence class of triples

$€ 1 [ba b dcle | [] PStab(ty)suw | /PStab(A) x PStab(A’)

ue{a,b,c}
there is a fibered photon structure
E =E(A)ugs E(A)
fibering over a (possibly incomplete) hyperbolic pair of pants
S=AuyA

such that the holonomy around the peripheral simple closed curve -, surrounding
the puncture of S corresponding to the vertex u € {a,b,c} is given by

Pu = (bw(b;l'

If for every u € {a,b,c} the holonomy py is lozodromic, then S, E are respectively
the interior of a hyperbolic pair of pants S’ with totally geodesic boundary and the
interior of a fibered photon structure E' with totally geodesic boundary fibering over
S’. The fibration E' — S’ extends E — S. For every n = 1, the topology of E' is
determined by the first Stiefel-Whitney class w1 (Vg) € H*(S,Z/2Z) of the under-
lying vector bundle Vg — S. The class wi(Vg) can be computed as follows: Let
Yas Vb, Ve < S be the peripheral curves corresponding to the vertices a,b,c respec-
tively. Then

: +
wel ={ ] Gos i

where LT (resp. L) is the set of lozodromic elements of SOg(2,n+1) whose eigen-
value with largest absolute value is positive (resp. negative).

8.3. Gluing pants of photons. Let E; — S} be 2g — 2 oriented pants of pho-
tons with totally geodesic boundary. We label by ~4;,7,,7c, the boundary com-
ponents of S’ (with the orientation induced by S’} on its boundary 0S}) and by
E(Va;)s E(;), E(7e;) the corresponding boundary components of E7.

For every oriented pants of photons E; — S}, we fix a developing map d : E; —
Pho®™ and its corresponding holonomy. We denote by Pa;> Pb,, Pe; the holonomies of
the boundary curves va;,v;,Ve;, and by £(pa;), £(py, ), £(pc,) their invariant space-
like geodesics.

Let ¢ be an orientation reversing pairing of the boundary components of the
fibered pairs of pants £} — S}. In order to perform a geometric gluing of the
blocks £ — S that implements the pairing ¢, some compatibility conditions must
be fulfilled: Every time that we have an identification of a boundary component
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of S}, labeled by u;, with some boundary component of S%, labeled by v;, the
holonomies p,,, p,, must be conjugate in SOg(2,n+1).

If this happens, then we choose, for every pair of boundary components E(+y,,)
and E(v,,) that are paired by (, an arbitrary initial orientation reversing identi-
fication cy;u, : E(Vu,) — E(7,;) as bundles over 7,,,7,,;, which is induced by an
element c,,,; € SOq(2,n+1) such that p,, = cy;u, pucgjlu

All other admissible gluing maps will be of the form (y,u, := 7y, Co;u; M, Where
1, € PStab(€(py,)) and 7, € PStab(£(p,,)) are isometries that commute with p,,
and p,,, respectively. The restriction Cf; w,  L(pu;) = L(py,;) induces an orientation
reversing isometry between the boundary components vy, , v, -

Thus we can form: A hyperbolic structure over a closed surface

s= U s/ U ¢

k<292 (ui,0;)€

a photon structure over a closed manifold

E= U B/ U Gu:

k<2g—2 (ui,05)€C

where a (SOg(2,n+1), Pho®™)-local chart around a point x € E(v;) = E(,) is
obtained by juxtaposing d; (E’J) and Gy, (51(@1) As before, since gluing and fibering
are compatible, we also get a fiber bundle projection F — S with geometric fibers.

The following, which is analogous to |[CTT19) Proposition 3.13], shows that the
holonomy p : m1(S) — SOg(2,n+1) of E — S is maximal.

Lemma 8.13. Let p : T' — SO¢(2,n+1) be a representation. Suppose that there
ezists a p-equivariant locally acausal embedding ¢ : N H?", meaning that every
point x € Y has a neighborhood U such that t|y : U — H*" is an embedding with
acausal tmage. Then p is maximal.

Proof. We can lift ¢ to a locally acausal embedding i : S - H2n, By assumption,
every point x € ¥ has a neighborhood U such that i|y is an embedding with acausal
image. In particular, by Lemma we can represent {(U) in a Poincaré model
T : D2 x S* — H2" as the graph of a strictly 1-Lipschitz function g : wi(U) <
D? — S™, where 7 : H2" — D? denotes the projection associated to W.

As I acts cocompactly on Y and 7 is p-equivariant, we can choose the neigh-
borhoods U in a uniform way. In order to do so we proceed as follows: We endow
3 with a T-invariant hyperbolic metric obtained by pulling back an arbitrary hy-
perbolic metric on ¥. We cover ¥ with the projections of the neighborhoods U
and find a Lebesgue number r > 0 for the open covering which is smaller than
the injectivity radius of 3. With these choices, the restriction of i to B(z,r) is an
embedding with acausal image for every x € 3.

Observe that we can choose a continuous p(I')-invariant family of orthogonal
splittings P, @ N, of R?"*! where P, is an oriented (future oriented if n = 1)
spacelike 2-plane: Let Gr(y o) (R*™) be the Grassmannian of oriented spacelike 2-
planes in R>™. Topologically, we have an identification

Gr{3,0) (R®™) = SO0 (2,n)/S0(2) x SO(n),
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where the right hand side is the symmetric space of SOg(2,n). In particular, we
observe that the Grassmannian Gr{y o) (R*™) is contractible. Let G — H>™ be the

bundle with fiber Gr%,o)(xl) over the point z € H%" and let i*G — % be the
corresponding pull-back bundle. As the fiber is contractible, we can always find
a D-invariant global section. Such a section corresponds to the desired continuous
family of orthogonal splittings.

Consider now the corresponding p(I')-invariant plane bundle P — 3, whose fiber
over 7 €Y is given by the spacelike plane P,, and its associated unit circle bundle
Pl < P, whose fiber over z is equal to S! < P,.

We now define a I'-equivariant isomorphism between P! — ¥ and the unit
tangent bundle TS — % As a concrete model of Tli we exploit the I'-invariant
hyperbolic metric obtained by pulhng back a hyperbolic metric on ¥ and, using the
exponential map, we 1dent1fy TS — ¥ with

= {(2.y) € 3 x S d(a,y) = r} - 5,

where the bundle projection is the projection to the first factor, and the fiber over x
is the unit circle B. around z in 3. In what follows, we show that B! — ¥ is equiv-
ariantly isomorphic to P! — 3. Since the Toledo invariant of the representation p
coincides with the Euler class of the circle bundle P1/p(I') — ¥ (see in particular
Collier, Tholozan, and Toulisse [CTT19, § 2.1]), this will allow us to conclude that
the representation p is maximal, as desired.

For every y € Bl let &,.(y) be the endpoint at infinity of the spacelike geodesic
ray issuing from i(z) and passing through i(y). Explicitly, if t,(y) € T*H2" is the
direction of such ray, then

E(y) = [i(z) + to(y)] € OH2™.

Notice that &,(Bl) < OH2™ is a loop freely homotopic to the ideal boundary
of some fixed spacelike plane 0H < AH2™: This can be seen in the Poincaré disk
model H2" =~ D2 x S" associated to the splitting R2"*1 = P, @® N,, where the
circle i(B}) is the graph of a topological circle around the origin of D?, and &, (BL)
is obtained by projecting radially such circle to dD? and then mapping it to oH2n
via the graph map.

We now exhibit an explicit degree one map ¢, : BL — SL. If [a] € oH2Z"
is an isotropic ray, then we can represent it uniquely as wu.([a]) + v ([a]), with
ug([a]) € Py and v, ([a]) € N, vectors of norm 1 and —1, respectively. Explicitly,

ug([a]) := 7p, (a)/v/{mp,(a), 7p,( v2([a]) := 7w, (a)// (7, (a), 7N, (@),

where 7p_, 7wy, : R2"FT — PI,NI are the orthogonal projections and a is some
fixed representative of [a] in the isotropic cone. We denote by SL,S™ the unit

T

spheres of P,, N, and by u,,v; : oH2" — SL,S™ the two projections maps defined
above. Observe that u, satisfies

s (p()a]) = p(7)1tz ([a])

for every [a] € OH2" and v € T. In fact, p(y) maps isometrically P, ® N, to
P, ® N,;. We now have all the elements to define the map ¢, : B! — SL: For any
y € BL, we split &, (y) = [i(z) +t.(y)] as the sum uy (£,(y)) + vz (ﬁac( )), and we set
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To conclude, we define a map ® : B — P! by setting
®(z,y) == (i(x), ¢2(y))

for any (x,y) € B'. By construction, the function ® is a p-equivariant continuous
bundle map that covers the identity of 3, and that has degree one on every fiber.

Since the circle bundle B!/T' — ¥ has Euler number of absolute value 2|x ()],
the same holds for P!/p(I') — ¥, and hence the representation p is maximal. [

8.4. Topology of the gluing. We conclude with a brief discussion of the topology
of the gluing. To this purpose, we only have to compute the first and second Stiefel-
Whitney classes of the vector bundle V' — S naturally associated to E — S, which
distinguish the connected components of the space of maximal representations in
SO (2,n+1) for every n > 2 (compare with Remark [8.7).

Recall that S = [ J; S} where each S} is a hyperbolic pair of pants with totally
geodesic boundary and let G be the dual graph associated to the gluing ¢, having a
vertex per each pair of pants S}, and an edge between the vertices corresponding to
S} and S’ (with possibly i = j) whenever there is a boundary component of .S that
is glued to one of Si. We may consider G as embedded in S so that each vertex
lies in the interior of the corresponding pair of pants and each edge intersects the
corresponding curve exactly once.

The first Stiefel-Whitney class is a homomorphism wy (V) : Hy(S;Z/2Z) —
Z/27Z. The homology group H;(S;7Z/27) is generated by the classes of the boundary
curves of the pair of pants S ; and by the simple cycles of G so it is enough to compute
w1 (V) on them. We already explained in Theorem [F| how to compute the value of
w1 (V) on each of the classes coming from 05} in terms of the gluing data. The
computation for simple cycles is similar as it requires only to determine whether
the holonomy around the cycle, which is loxodromic since the representation is
maximal (see Proposition , belongs to LT or £L~. A precise formula requires a
careful bookkeeping of the gluing choices and we will not pursue it here.

The second Stiefel-Whitney class w2 (V') can be computed as follows: Choose for
every pair of identified boundary components E(7,,), E(7y,) a pair of (n+1)-frames
Ou;» 0y; of the underlying vector bundles V' — ~,,,V — 7, that are identified
under the gluing map (y;.,. The Stiefel-Whitney number wy(V)[S], that uniquely
determines wy(V'), can be computed as the sum of the relative Stiefel-Whitney
numbers wy(V;, 0;)[S;, 05;] that are the obstructions to extend the (n + 1)-frames
defined over 05; to (n + 1)-frames over S;.

APPENDIX A. OTHER CROSS RATIOS

There are multiple non-equivalent definitions of cross ratios in the literature.
For the reader’s convenience, we summarize the relations between Definition [2.24]
and the notions of cross ratios studied by Ledrappier [Led95], Hamenstédt [Ham97,
Ham99|, and Labourie [Lab0§|. If 5 = f(u, v, w, z) satisfies Deﬁnition then:
e The function (u,v,w,z) — log|B(u,v,w,z)| is a Ledrappier’s cross ratio
(compare with [Led95, Définition 1.f], [MZ19, Definition 2.4]).
e The function (u,v,w,z) — |B(u,v,w,z)| is a Hamenstddt’s cross ratio
(compare with [Ham97,[Ham99)|).
e If 3 further satisfies

(19) Blu,v,w,2) =1 u=vorw=z,
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then the function B(u,v,w,z2) := f(u,w,v,z) is a Labourie’s cross ratio
(see |[Lab08, Definition 3.2.1]).

For the sake of completeness, even if we do not investigate in detail the properties
of such cross ratios in this paper, we briefly discuss other examples of positive and
locally bounded cross ratios from the literature strictly related to representations
in SO(p, ¢) and pseudo-hyperbolic spaces HP'4. They come from respectively:

e Hitchin representations p: I' - SO(p,p + 1).
e More generally, ©-positive Anosov representations p : I' — SO(p, q).

In both cases (strict) positivity comes from transversality of the boundary maps
(as explained in [BP21]) and local boundedness comes from their Holder regularity
(following the same strategy of Lemma [4.5)).

As studied by Martone and Zhang in [MZ19] there are other natural classes of
positive cross ratios arising from the study of Anosov representations. The ones
that we mentioned above close to the setting of our interest and can have a more
direct link with similar pleated surface constructions in HP9.

APPENDIX B. SHEARS AND SYMMETRIES OF CROSS RATIOS

The current appendix is dedicated to the proofs of the relations satisfied by cross
ratios and their associated shears, which were deployed throughout Section [5] We
start by proving the following elementary relation:

Lemma B.1. Let 8 be a cross ratio. Then for every 6-tuple of pairwise distinct
points a, b, c,d,e,x € o' we have

|ﬁ(a” b) C7 d)/B(a7 d7 b7 e)| = |ﬁ(a” b) C7 x)/B(a7 x’ b7 d)ﬂ(a'7 d7 x? e)|
Proof. 1t is sufficient to apply the symmetries of the cross ratio 5 in as follows

|B(a,b,c,d)B(a,d,b,e)| =|5(a,b, e, x)B(a,b,z,d)S(a,d,b,e)
= |/8(a7 b’ C7 x)/B(a7 b7 x’ d)ﬂ(a’ d’ b’ z)/B(a7 d7:177 6)|
= |ﬁ(a7 b’ C, x)/B(a7 1.7 b? d)ﬂ(a7 d’ x’ e)‘7

where we used in the order twice the fourth relation and once the fifth relation from
. By applying log to both members we obtain relation . ([

Making use of the relation described in Lemma we can now provide a proof
of the properties satisfied by finite 3-shears and described by Lemmas and
AT

Proof of Lemma[f.10 Let S denote the (closure of the) connected component of
S\{P,Q} that separates P from Q. Observe that the right-hand side of the state-
ment can be expressed as o? (P, S) + 0?(S, Q). Consider now any geodesic g lying
in the interior of S with endpoints w and x, and denote by R and R’ the comple-
mentary regions of g inside S adjacent to P and @, respectively. We claim that the
following equality holds:

(20) o?(P,S) +0°(S,Q) = o’ (P,R) + ¢’ (R, R') + 0’ (R, Q).

This is in fact a simple consequence of Lemma To see this, observe that, by
definition of the finite shear o, the left-hand side coincides with

IOg |ﬂ(w,UP7uP>UQ)B(wa vQ,vp, U‘Q)|a
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while the right-hand side is equal to

log |B(w,vp,up, z)B(w, z,vp,vg)B(w, vg, x, ug)|.
Therefore relation follows from Lemma applied to the 6-tuple a = w,
b=wvp,c=up,d=vg, e=ug, and x = z.

The relation appearing in the statement can now be deduced simply by applying
relation enough times: at the k-th step we introduce inside the region S a
leaf ¢, lying in the boundary of some plaque in P, obtaining a finite lamination
Ak = Ae—1U{lr}. Relation then allows us to split the sum of the shears between
the complementary regions of Ax_1 as the sum of the shear of the complementary
regions of ;. In a finite number of steps we obtain that ag (P, Q) coincides with
B (P,8)+07(S,Q), as desired (observe that, in the notation of §4.3| the lamination
Ap does not contain any geodesic of type d;, since every spike has ideal vertex equal
to w under our assumptions). O

Proof of Lemma[{-11. Among all the elements of P that lie on the left (resp. on
the right) of g, we denote by P’ (resp. Q') the plaque that is closest to g. Let
T'p, Yp (resp. gy, yp) be the vertices of P’ (resp. Q') different from g* (resp. g7),
so that [y, g*] (resp. [y, g7]) is the boundary component of P’ (resp. Q') closest
to g.

By following the process outlined in we see that the shear op (P, Q) satisfies

op(P,Q) = 0} (P,Rp) + o°(Rp, Rg) + 0} (Rq, Q),

where Rp and Rq denote the plaques of Ap with vertices g*, g™, ypand gt g7, Yo
respectively. By Lemma the shear of(R Rp) is independent of the set of
plaques that separate P and Rp inside P, since P and Rp share the ideal vertex
gt. The exact same argument applies for Uf (Rg, Q). Furthermore we have
oN(P,Rp) =log |B(g",yp,xp, yp)Blg™" ¥ yp,97)|,
O—f(RQa Q) = log |ﬂ(gia Yo, TQ, y/Q)B(gia y,Qa YaQ, g+) | .

On the other hand, the plaques Rp and R share the boundary component [g*, g7 ]
and their shear satisfies

o”(Rp,Rg) =log |B(g", 97, ¥p, ¥e)|-
By applying Lemmato the 6-tuple a = g*, b=yp, c=xp,d=g , ¢ = y’Q,
and z = yp, we obtain
oy (P,Rp) + oy (Rp, Rg) = log|B(g*,yp,xp,97)B(g", 97 yr, yb)|.
Combining this identity with the expression for Uf (Rg, Q) we deduce
o (P, Rp) + 03 (Rp, Rq) + 05 (Rq. Q)

=log |B(g™ yr.xp,97)B9T 9 uP.¥0) B9 Y0, 20, Q)BT Y0 Yo 97|

=log|B(g",yp.xp.g7)B(g7, 97 ¥, yP) B9 Y@, 0, ¥0) B9, Y60 y0, 97|

= IOg‘ﬂ(9+7Z/P733P>9_)5(9_>9+ayQayP)ﬂ(9_7C‘/Q7$Q79+)‘

where in the second equality we applied relation , and in the last line we applied
again Lemmato the 6-tuple a = g*, b=yp,c=2p,d =g, e = y’Q7 and
x = y». This concludes the proof of the statement. O
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We now provide a proof of Lemma [5.4] which again follows easily from the
symmetries of cross ratios:

Proof of Lemmal[5.4} Let u denote the vertex of P that is not an endpoint of ¢p,
and by v the vertex of @) that is not an endpoint of £. Then the left-hand side of
the equation can be expressed as

. BUE, Upyu, £5)BUS, Lo, Up, £5) B(LS, Lo, Uh,v)
BUp, lpyu, 65) 805, €p, lp, £q) B4 €g Upsv)
Applying the third symmetry in , we obtain the identities

B(Eh, Lo, )| = | Bk, £, £5)B(EE €, 04, 0)

By replacing these terms in the expression above we obtain

Bl o L, L) Bl b (0
— [log |Beh €5, 5,65 B, 0, p 42|

where in the last equality we made use of and (3). The desired expres-

sion then follows by applying the fourth relation in (1) and (). (Notice that

B(gt,hT,h™,g7) > 1 for any pair of coherently oriented geodesics g, h that share
no endpoint.) O

o5 (P,Q) — 04 (P.Q)| = llog

We are now left with the proof of Lemma which directly relates 3-periods
and f-shears:

Proof of Lemma[{.13 Let z,y,v* € oI be the vertices of P in counterclockwise
order along JI'. By Lemma we have

oy (P,yP) = log|B(v*, 2,5, vy)B(v*, vy, 2, y2)].
The proof of the relation appearing in the statement now reduces to a careful
applications of the symmetries of the cross ratio 3 (see in particular (1), (2)). In
what follows, we express the chain of equalities that leads to the proof, reporting
on the right the relations that are applying (the symbol n) refers to the n-th
symmetry of 8 appearing in ):

1By, 2,9, 79)B(vE, vy, 2, 7))

@4 = By, 2, y2,vy)B(vE, 2,y v2) B(YE, vy, 2,92 |
(@>) = |B8(v%, vz, 2, 7y) B(VE 3y, yz) |

(T-inv.) = |B(vF 2y 2, y) B(VE 2y, )|

@4 = |B(vF, 2,7 2, y2)|

@4) = |B(yF, 7T v2) B(YE, v, v )|

(@5) = |B(yE AT, 2, va)|

() = 18(v*, 7 2, ya)|*
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Taking the logarithm of this relation we obtain the identity o”(P,yP) = +Lg(y),
as desired. ([

APPENDIX C. ON DIVERGENCE RADIUS FUNCTIONS

In our construction of B-shear cocycles, we made use of a series of technical
properties satisfied by divergence radius functions, described in Lemmas
and We remark that the statement of Lemma [5.1] already appeared in the work
of Bonahon and Dreyer [BD17]. The underlying strategy of proof is essentially the
same as the one described by Bonahon in |[Bon96, Lemmas 3, 5]. However, since
the work [Bon96| uses a definition of divergence radius function that is weaker
than the one we introduced in Section [56.1] we describe how to adapt the argument
accordingly. The strategy of proof is in fact particularly useful to understand the
dependence of the constants, as asserted in Lemma [5.2}

We start by fixing some hyperbolic metric on ¥ and a train track 7 that carries
a maximal lamination A. Furthermore, we introduce the following terminology: If
B is a branch of 7, we define the width of B (with respect to the chosen metric) to
be the distance between the components of the horizontal boundary of b, for some
lift B of B in X. Similarly, the length of B is defined as the distance between the
components of the vertical boundary of B, for some lift B of B.

Proof of Lemmal[5.1. We start by selecting suitable constants M, Ay, 8 > 0, which
depends exclusively on the train track 7 and the fixed hyperbolic structure X:

e We select M < 1 so that every branch of the train track 7 has length within
M and M1,

e We let Ay > 1 be such that every component of the vertical boundary of 7
(compare with the terminology introduced in Section has endpoints
at distance > Ay ! and such that every branch of 7 has width < Aj.

e We choose 0 € (0,7/2) a lower bound for the intersection angle between the
geodesic arc k and the leaves of the lamination A.

Consider now the following situation: Let ¢ and ¢ be two distinct asymptotic
geodesics in (f], X ), and let u be their common endpoint in JI'. Consider a geodesic
segment k' joining a point p € £ to a point of £/, and assume that the angles between
k' and £, ¢' satisfy
0 <|2(K,0)],|£(K, 0] <m—8.

Finally, select a parametrization by arc length of the geodesic £ = £(t) such that
(t) tends to u as t — —o0 and ¢(0) = p, and assume that there exists some positive
t > 0 for which £(t) satisfies

At <dg(0(t), 1) < Ag.

A simple computation in the upper half plane model of H? then shows that there
exists a constant A > 0, which depends only on Ag and 6, such that

(21) A7te ™t S Lg(K) < Ae”".

We now have all the technical ingredients for the proof the desired statement:
First recall the definition of the divergence radius function r : Ppg — N outlined
in Section @ select any plaque R € Ppg, and denote by s = sg the switch of the
lift of the train track 7 that separates the branches Er( Rr)—1 and Er( r) (see Section
for the necessary terminology). By definition of the divergence radius function
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r, the boundary leaves ¢ and ¢}; of R that separate P from () fellow travel along
the branches B, for all n < r(R), and then take different turns at the switch s.
Indeed, while the leaf {r crosses s to then enter in the branch ET( Rr), the leaf £
passes through the unique branch of 7 adjacent to s and different from BT( Rr)—1 and
ET‘(R)'

Now, if vg denotes the subsegment of /i that joins k n R to the switch s of the
train track 7, then by the choice of M we have

(22) Mr(R) < Lg(yr) < M~'r(R)

whenever r(R) > 1. Moreover, if we travel along the geodesic ¢p at distance
¢(vr) towards the positive direction of £g, the geodesics £ and ¢} are at distance
d(s n lr,s n ) € (Ay', Ap) by our initial choices. (Notice that the switch s
contains exactly one connected component of the vertical boundary of 7, whose
endpoints are at distance between Aj 1and Ay.) We then are in right setting to
apply relation tok' =kn R, {=1{p, ' =0y andt= Lg(yr): consequently
we conclude that

A7t xR < Lo(kn R) < AetxOm)

Combining this comparison with relation , we obtain the control appearing
in property (1) of Lemma for all (R) > 1. Now, up to enlarging the multi-
plicative constant A > 0 to obtain a bound from above of the diameter of every
complementary region of 7 in X, we can then make sure that (1) holds for every
Re PRQ'

The proof of the second bound appearing in (2) is a simple generalization of
[Bon96, Lemma 4]: in his work Bonahon showed that, if ky is a geodesic arc
transverse to A that projects onto an embedded arc in ¥, then the number of
plaques R € Ppg satisfying r,(R) = n is bounded above by an explicit func-
tion Ny = Ny(X) that depends only on the topology of 3. For a general geodesic
arc k, we can argue as follows: there exists a natural number m such that the arc
k can be subdivided into m subsegments (k;); with disjoint interiors and such that
every k; projects onto an embedded geodesic arc in ¥. Then the cardinality of
7' (n) is bounded above by N := mNo(X). Observe also that, if & is equal to the
injectivity radius of X, then m < £(k)/eo. O

From the proof provided above, and in particular from the definition of the
constants A, M, N > 0, Lemma [5.2] easily follows:

Proof of Lemma[5.3 We fix a hyperbolic structure X on X, and we select a train
track 7 that carries A\ and a X-geodesic ark k joining the interiors of the plaques
P and ). We denote by M, Ag, A,0 > 0 the constants introduced in the proof of
Lemma Up to selecting a smaller § > 0, we can find a small neighborhood U
of X\ inside GL satisfying the following conditions:

e Every M € U is carried by 7.

e For every N € U, the geodesic segment k is transverse to X' and 6 > 0 is a
uniform lower bound of the intersection angle between k and \'.

e the endpoints of k lie in the interior of two distinct plaques P’, @’ of X, for
every N e U.

The constants M, Ag > 0 depends only on the train track 7 (and the hyperbolic
structure X), and A is determined by Ag and 6. In particular, A and M satisfy
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relations (21)), for any divergence radius function 1’ = rx .y : Ppgr — N
associated to a lamination ' € U and the path k. Relations , in turn imply
property (1) for all such divergence radius functions /. Finally, it is immediate from
the explicit description of the constant N > 0 satisfying property (2) provided in
the proof of Lemma that we can assume N to be uniform in M € U. O

The only technical statement left to prove is Lemma [5.3] For its proof, we will
make use of an elementary lemma of planar hyperbolic geometry. In order to recall
its statement, we need to introduce some notation.

If X € T is a hyperbolic structure and (£, X) =~ H2 is a fixed identification
between the universal cover of ¥ and the hyperbolic plane determined by X, then
we select dy, a fixed Riemannian distance on oI’ = JH?. The choice of the metric
dy determines a distance (which we will continue to denote with abuse by d) on
the space of oriented geodesics of i, by setting

doo(gvh) = doo(g+ah+) + doo(g_vh_>

for any pair of oriented geodesics g and h. Then we have:

Lemma C.1. Let A be a maximal geodesic lamination on X, and let P and Q be
two distinct plaques of \. For any geodesic segment k joining two points in the
interior of P and @, respectively, we can find a constant C = C(k) > 0 such that,
for every plaque R € Ppg

C_l doo(fR7hR) < L)"((k' M R) < de(*gR, hR),
where (g, Uy denote the boundary leaves of R that separate P from Q.

We are now ready to prove Lemma [5.3

Proof of Lemmal[5.3 By property (1) of Lemma there exist positive constants
A A M, M > 0 such that

A~lemMr(R) o Li(knR)< Ae=Mr(E)
(A/)—le—(M')flr'(R) < L}”((k/ A R) < A/@—M’r'(R)
for every R € Ppg. On the other hand, by Lemma there exist constants
S,T > 0 such that for every R € Ppg we have
Wﬁldoo(gR, hr) < LX(]{J NR)<Wdy(lr, hr),
(W) 'dy(r,hr) < Lg(K' n R) < W dy(€R, hr).
By combining the inequalities above, we obtain
eMr(R) < A
LX(]C N R)
AW
< -
doo(Cry hR)
AWW'
S —
LX(,IC/ N R)
< AA/WW/€]M/T/(R),
which implies the upper bound appearing in the statement with suitable choices of

H, K > 0. By exchanging the roles of r and 7’ in the argument above we determine
the existence of the lower bound. (]
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