
HYPERBOLIC MANIFOLDS - EXERCISES

1. Exercises - November 20, 2020

Exercise 1.1 (Barycenters). We discuss different notions of barycenters in
Hn. Let F = {x1, · · · , xm} ⊂ Hn be a finite set of points.

(1) First notice that in Hn = In ⊂ Rn,1 we can take x := x1 + · · ·+ xm.
Observe that x is always time-like. Use this to prove that every finite
order isometry f ∈ Isom(Hn) is elliptic.

(2) Let P ⊂ H2 ∪ ∂∞H2 be a convex polygon with vertices p1, · · · , pm
(that is, a convex region of H2 bounded by the closed concatenation
of consecutive geodesic segments p1p2, p2p3, · · · , pm−1pm, pmp1).

We call P regular if there every cyclic permutation of its vertices
is realized by some isometry of H2. Show that the group of orien-
tation preserving isometries of a regular polygon P is generated by
an element which is a rotation of angle 2π/m around a point p ∈ P ,
the center of the polygon.

(3) Observe that the interior angles of a regular polygon are all equal
and show that for every 0 ≤ α ≤ m−1

m π there exists a unique (up to
isometries) regular polygon Pα with interior angles all equal to α.

When we have a metric space there is a more geometric way of defining a
notion of barycenter of a finite set of points: It is a point x in the space
that minimizes the sum of the distances from all the points in the finite set.
In general, barycenters do not have to exist or be unique. Luckily, in the
hyperbolic space Hn the situation is very satisfactory:

(4) Recall that a function g : R→ R is said to be convex if

g

(
x+ y

2

)
≤ g(x) + g(y)

2

for every x < y. It is strictly convex if the previous inequality is strict
for every x < y. Show that a strictly convex function g : R → R
that is also proper, that is |g(x)| → ∞ as |x| → ∞, has a unique
minimum.

(5) (Convexity of distances) We say that a function f : Hn → R is
(strictly) convex if for every geodesic γ : R → Hn the composition
f ◦ γ : R→ R is (strictly) convex.

Let x ∈ Hn be any point. Consider the distance function dx :
Hn → R given by dx(y) = d(x, y). Show that dx is strictly con-
vex (recall that cosh(d(x, y)) = −〈x, y〉(n,1)) and observe that it is
proper, that is dx(y)→∞ as y →∞.
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Deduce that for every x1, · · · , xm ∈ Hn the function f := dx1 +
· · ·+ dxm has a unique minimum in Hn.

(6) Let us now pick a basepoint x ∈ In and point at infinity [w] ∈
PC+ = ∂∞In. Observe that there exists a unique isotropic vector
w ∈ [w] with 〈x,w〉 = −1. Let dw : In → R denote the function
dw(y) := arccosh(−〈w, y〉(n,1)). Show that dw is strictly convex.

(7) Geometrically dw has the following interpretation: Consider v =
w − x. Observe that v ⊥ x and |v|(n,1) = 1. Let γ be the geodesic
starting at x with velocity v. Observe that γ is the unique ray from
x asymptotic to [w]. Show that dw is the uniform limit on compact
sets of In of the functions dγ(t)(•) − t. It is called the Busemann
function corresponding to the ponint at infinity [w] with basepoint
x (or, equivalently, corresponding to the ray γ).

(8) Consider a finite collection of pairwise distinct points at infinity
[w1], · · · , [wm] ∈ ∂∞In and a basepoint x ∈ In. Denote by dwj

the corresponding Busemann functions. Show that, if m ≥ 3, then
dw1 + · · ·+ dwm has a unique minimum in Hn. What happens when
m = 1, 2?

Exercise 1.2 (Geometry and dynamics of loxodromic motions). We study
the action of loxodromic motions on the boundary at infinity.

(1) (North-south dynamics) Let f ∈ Isom(Hn) be a loxodromic motion
with Fix(f) = {x, y}. Show that, for one of the endponts, say x,
f collapses ∂∞Hn − {y} to x, that is, the sequence fn converges
uniformly on compact subsets of ∂∞Hn − {y} to the constant map
x. The point x is called the attracting fixed point of f . The other
fixed point is called the repelling fixed point of f . Show that it is
the attracting fixed point of f−1.

(2) (Ping-Pong 1) Let f, g ∈ Isom(Hn) be loxodromic motions with dis-
joint fixed point sets Fix(f) = {u+, u−} and Fix(g) = {v+, v−}.
Here u+, v+ are the attracting fixed points and u−, v− are the re-
pelling ones. Consider four disjoint closed disks U+, U−, V +, V − sur-
rounding respectively u+, u−, v+, v−. Show that there exists N ∈ N
such that for every n ≥ N we have fn(∂∞H − U−) ⊂ U+ and
f−n(∂∞H − U+) ⊂ U− and similary gn(∂∞H − V −) ⊂ V + and
g−n(∂∞H− V +) ⊂ V −.

(3) (Ping-Pong 2) Consider the group generated by fn, gn, which we
denote by G := 〈fn, gn〉. For simplicity, now assume that n = 1 is
enough to guarantee the separation properties of the previous point.
Show that if w is any non-trivial finite product of the form w =
f r1gs1f r2gs2 · · · gsk−1f rk with rj , sj 6= 0 for every j ≤ k − 1 then
w 6= 1. Deduce that G is isomorphic to a free group F2 on two
generators.

(4) Recall now the following fact from topology:
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Theorem 1.3 (Brouwer Fixed Point Theorem). Any continuous
map from a disk to itself has a fixed point.

Use this to prove that every isometry in G is loxodromic.
(5) Show that there are loxodromic motions f, g ∈ Isom+(H2) with dis-

joint fixed point sets such that the group they generate G = 〈f, g〉
contains ellliptic or parabolic motions.

Exercise 1.4 (PSL2Z). Recall that Isom+(H2) = PSL2R. In this exercise
we investigate the subgroup PSL2Z.

(1) (Fundamental domain) We work in the upper half space model H2 =
U . Show that every point x ∈ U can be moved by a fractional linear
transformation in PSL2Z to a unique in the region

R := {z = x+ iy |x ∈ [−1/2, 1/2], |z| ≥ 1}.
Compute also the area of R. Which points in R are identified by
acting with transformations in PSL2Z?

(2) (Congruence subgroups) For every n ∈ N we have a homomorphism
φn : PSL2Z→ PSL2(Z/nZ) sending a matrix A to A (mod n). Show
that φn is surjective. We denote by Γ(n) < PSL2Z the kernel of φn.

(3) Consider a set of representatives {A1Γ(n), · · · , AmΓ(n)} for the lat-
eral classes of Γ(n) in PSL2Z. Show that every point x ∈ U can be
moved with a transformation in Γ(n) to the region Rn = A1R∪· · ·∪
AmR. Compute the area of Rn.

(4) Show that, if n ≥ 4, then Γ(n) has no elliptic elements.
(5) Recall that the translation distance d(f) of a loxodromic motion

f ∈ Isom(Hn) is the amount of translation it induces on its axis.
Show that d(f ∈ PSL2R) = 2arccosh(tr(f)/2).

(6) Denote by dn the infimum of the translation distances of loxodromic
motions in Γ(n) < PSL2Z. Observe that it is realized by some
fn ∈ Γ(n). Show that dn diverges as n→∞.
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