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Abstract. We study maximal representations of surface groups ρ : π1pΣq Ñ

SO0p2, n ` 1q via the introduction of ρ-invariant pleated surfaces inside the
pseudo-Riemannian space H2,n associated to maximal geodesic laminations of

Σ.

We prove that such pleated surfaces are always embedded, acausal, and
possess an intrinsic pseudo-metric. We describe the hyperbolic structure of a

pleated surface by constructing a shear cocycle from the cross ratio naturally

associated to ρ. The process developed to this purpose applies to a wide class
of cross ratios, including examples arising from Hitchin and Θ-positive repre-

sentations in SOpp, qq. We also show that the length spectrum of ρ dominates
the ones of ρ-invariant pleated surfaces, with strict inequality exactly on curves

that intersect the bending locus.

We observe that the canonical decomposition of a ρ-invariant pleated sur-
face into leaves and plaques corresponds to a decomposition of the Guichard-

Wienhard domain of discontinuity of ρ into standard fibered blocks, namely

triangles and lines of photons. Conversely, we give a concrete construction of
photon manifolds fibering over hyperbolic surfaces by gluing together triangles

of photons.

The tools we develop allow to recover various results by Collier, Tholozan,
and Toulisse on the (pseudo-Riemannian) geometry of ρ and on the correspon-

dence between maximal representations and fibered photon manifolds through

a constructive and geometric approach, bypassing the use of Higgs bundles.
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1. Introduction

The notion of maximal representations of the fundamental group Γ of a compact
hyperbolic surface into a semi-simple Lie group of Hermitian type G was introduced
by Burger, Iozzi, and Wienhard in their groundbreaking work [BIW10]. It provides
a vast generalization of the notion of Fuchsian representations, namely discrete and
faithful homomorphisms of Γ into PSL2pRq, which naturally arise as holonomies
of complete hyperbolic structures on surfaces. As already observed in [BIW10],
multiple dynamical and geometric properties of Fuchsian representations extend
to this wider context: Every maximal representation ρ : Γ Ñ G is faithful, its
image ρpΓq is a discrete subgroup of G acting freely and properly discontinuously
on the Riemannian symmetric space associated to G, and the set of conjugacy
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classes of maximal representations constitutes a union of connected components of
the character variety XpΓ, Gq.

In recent years, a great variety of results have further investigated and strength-
ened the relations between Fuchsian representations and geometric structures that
naturally arise from maximal representations, and this article is no exception. In
our exposition we will consider maximal representations of the fundamental group
Γ of a closed orientable surface Σ of genus g ě 2 into the connected Lie group
G “ SO0p2, n`1q. Moreover, rather than investigating the properties of the action
of Γ on the Riemannian symmetric space of SO0p2, n` 1q, we will focus our atten-
tion on a class of pseudo-Riemannian and photon structures naturally associated
to ρ : Γ Ñ SO0p2, n ` 1q, as previously done by Collier, Tholozan, and Toulisse in
[CTT19].

The main aim of this paper is to provide a purely geometric approach to the
study of SO0p2, n` 1q-maximal representations, and establish a direct and explicit
link with hyperbolic surfaces and classical Teichmüller theory. This gives a possible
answer to the question addressed in [CTT19, Remark 4.13], and a suitable frame-
work for generalizations to open surfaces. In particular, inspired by Thurston’s and
Mess’ works in the study of hyperbolic 3-manifolds (see e.g. [Thu79, Chapter 8], or
Canary, Epstein, and Green [CEG06, Chapter I.5] for a detailed exposition), and
of constant curvature Lorentzian 3-manifolds (see [Mes07]), respectively, we will
pursue this goal by introducing a notion of ρ-equivariant pleated surfaces inside
H2,n, and we will investigate their topological, causal, and geometric properties.

We start by introducing the pseudo-Riemannian and photon spaces that we
will be interested in. First, we recall that the group SO0p2, n ` 1q is the identity
component of the group of isometries of R2,n`1, which denotes the vector space
Rn`3 endowed with the quadratic form

x‚, ‚yp2,n`1q :“ x21 ` x22 ´ y21 ´ . . .´ y2n`1.

There are multiple homogeneous spacesX naturally associated withG “ SO0p2, n`

1q, and each of them leads to a different class of pG,Xq-structures in the sense of
Thurston (see [Thu79, Chapter 3]). Here we will consider:

‚ The pseudo-Riemannian symmetric space H2,n of negative lines of R2,n`1.
‚ The Photon space Pho2,n of isotropic 2-planes of R2,n`1.

In both cases, every maximal representation ρ : Γ Ñ SO0p2, n` 1q has a natural
domain of discontinuity ΩρpXq Ă X, as a consequence of the work of Guichard

and Wienhard [GW12] when X “ Pho2,n, and of Danciger, Guéritaud, and Kassel
[DGK17] when X “ H2,n. Accordingly, any maximal representation ρ gives rise to:

‚ A pseudo-Riemannian manifold Mρ “ ΩρpH2,nq{ρpΓq of signature p2, nq.

‚ A closed photon manifold Eρ “ ΩρpPho2,nq{ρpΓq.

The geometries of these objects are strictly tied, as described by Collier, Tholozan,
and Toulisse [CTT19]. Our work parallels in many aspects the article [CTT19] with
a central difference: While in [CTT19] the geometric and topological information
is extracted by relating the theory of Higgs bundles to the immersion data of equi-
variant maximal surfaces in H2,n, our techniques rely on the study of specific 1-
and 2-dimensional subsets of the pseudo-Riemannian manifoldMρ, namely geodesic
laminations and pleated surfaces, in analogy with the tools originally developed by
Thurston in his investigation of the structure of the ends of hyperbolic 3-manifolds
(see Chapters 8 and 9 of [Thu79]).
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A valuable feature of this approach, which is in many aspects explicit and con-
structive, is that it determines a concrete connection between maximal representa-
tions and hyperbolic structures on surfaces. Notice also that, if on the one hand the
notion of equivariant pleated surfaces is well suited for generalizations to finite-type
surfaces, the analytical techniques required for the study of Higgs bundles do not
easily extend outside of the realm of closed orientable surface groups.

For convenience of the reader, we now summarize the main results of the paper.
We will then provide a detailed description of each of them, together with the
techniques developed for their proof, in the remainder of the introduction:

(a) For any maximal representation ρ and for any maximal geodesic lamina-
tion λ of Σ, there exists a ρpΓq-invariant, acausal, and properly embedded
Lipschitz disk, the pleated set of λ,

Ŝλ Y BŜλ Ă H2,n Y BH2,n.

(see Theorem A). It is naturally decomposed as a union of spacelike geodesics
and spacelike ideal triangles of H2,n and is contained in the ρ-domain of
discontinuity in H2,n. In particular, Sλ “ Ŝλ{ρpΓq is a properly embedded
subsurface of the pseudo-Riemannian manifold Mρ. The decomposition of

Ŝλ into lines and triangles corresponds to an analogue decompostion of the
ρ-domain of discontinuity in Pho2,n into lines and triangles of photons and
we have a a natural fibration Eρ Ñ Sλ (see Proposition E).

(b) The pleated set Ŝλ has a natural intrinsic ρpΓq-invariant hyperbolic struc-
ture and a natural pseudo-metric induced by the pseudo-Riemannian metric
of H2,n. The developing map Ŝλ Ñ H2 is 1-Lipschitz with respect to the
pseudo-metric on Ŝλ and the hyperbolic metric on H2 (see Theorem C).
This implies that the length spectrum of the hyperbolic surface Sλ is dom-
inated by the pseudo-Riemannian length spectrum of ρ, that is

Lρp‚q ě LSλ
p‚q.

There is a simple characterization of those curves γ P Γ for which the strict
inequality holds: They are exactly the curves that intersect essentially the
bending locus of Sλ.

(c) The intrinsic hyperbolic structure on the pleated set Ŝλ is described by a
shear cocycle σρ

λ through Bonahon’s shear parametrization of Teichmüller
space (see [Bon96]). The definition of the cocycle σρ

λ uniquely relies on the
data of the lamination λ and of a Γ-invariant cross ratio on the Gromov
boundary of Γ, naturally associated to the representation ρ. In fact, the con-
struction applies in great generality, and associates to any (strictly) positive
and locally bounded cross ratio β on BΓ, and to any maximal lamination
λ, an intrinsic hyperbolic structure Xλ whose length spectrum coincides
with the length spectrum of β on all measured laminations with support
contained in λ.

(d) The set of hyperbolic surfaces Sλ arising as intrinsic hyperbolic structures
on pleated surfaces lie on the boundary of the dominated set of ρ which is
the subset of Teichmüller space defined by

Pρ :“ tZ P T |LZp‚q ď Lρp‚qu.

The set Pρ is convex for the Weil-Petersson metric and it is also convex
in shear coordinates. Its interior intpPρq corresponds to those hyperbolic
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surfaces Z that are strictly dominated by ρ, that is Lρp‚q ą cLZp‚q for some
c ą 1. Combining a geometric construction in H2,n with the convexity of
length functions along Weil-Petersson geodesics, we observe that if ρ is not
Fuchsian, then intpPρq is always non-empty (Theorem D). This allows to
recover part of the results described in [CTT19].

(e) We give an elementary construction of photon manifolds E that fiber over
a closed hyperbolic surface S homeomorphic to Σ. The holonomies of these
manifolds ρ : π1pEq Ñ SO0p2, n ` 1q are maximal and we have a natural

ρ-equivariant pleated acausal embedding Ŝ Ñ H2,n of the universal cover
Ŝ Ñ S. The image is a pleated surface for some suitable lamination λ of S.
The construction of E Ñ S is completely analogous to the construction of a
closed hyperbolic surface by first gluing together ideal hyperbolic triangles
to form (incomplete) pair of pants, and then glue together the completions
of the pair of pants. Here, instead of gluing ideal hyperbolic triangles, we
will glue together triangles of photons forming (incomplete) fibered pairs
of pants of photons, find suitable completions, and glue such completions
to form closed manifolds (Theorem F and Proposition G).

We now describe more in detail each of the previous points.

Topology and acausality of pleated surfaces. Our discussion will heavily rely
on the existence of equivariant boundary maps naturally associated to SO0p2, n`1q-
maximal representations, which is guaranteed by the following result of Burger,
Iozzi, Labourie, and Wienhard: We recall that the boundary at infinity BH2,n of
the pseudo-Riemannian symmetric space H2,n identifies with the space of isotropic
lines of R2,n`1.

Theorem ([BILW05, § 6], see also [CTT19, Theorem 2.5]). If ρ : Γ Ñ SO0p2, n`1q

is a maximal representation, then there exists a unique ρ-equivariant, continuous,
and dynamics preserving embedding

ξ : BΓ Ñ BH2,n

such that the image of ξ is an acausal curve, meaning that for every triple of
distinct points a, b, c P BΓ, the subspace of R2,n`1 generated by the isotropic lines
ξpaq, ξpbq, ξpcq has signature p2, 1q.

Theorem 1 has a simple interpretation in terms of the geometry of H2,n: Every
pair of distinct points a, b P BΓ is sent by ξ into the pair of endpoints of a unique
spacelike geodesic of H2,n, and for every triple of distinct points a, b, c P BΓ, the
images ξpaq, ξpbq, ξpcq are the vertices of a unique ideal totally geodesic spacelike
triangle in H2,n. In light of this phenomenon, the boundary map ξ allows us to
naturally realize geodesic laminations on the surface Σ as ρ-invariant closed subsets
of H2,n, and consequently in the pseudo-Riemannian manifold Mρ.

To see this, we start by briefly recalling the notion of geodesic lamination, and
the related terminology that will be used throughout our exposition. We will think

of a geodesic ℓ in the universal cover rΣ of Σ as an element of the space

G :“ pBΓ ˆ BΓ ´ ∆q{px, yq „ py, xq,

simply by identifying ℓ with the unordered pair of its endpoints. We say that two
geodesics ℓ and ℓ1 with endpoints a, b and a1, b1, respectively, are crossing if a1 and
b1 lie in distinct connected components of BΓ´ ta, bu (recall that BΓ is a topological
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circle). Two geodesics that are not crossing will be said to be disjoint. Within

this framework, a geodesic lamination of Σ is a Γ-invariant closed subset λ Ă GprΣq

made of pairwise disjoint geodesics, and it is said to be maximal if every geodesic ℓ
outside λ crosses some ℓ1 in λ. The elements of a lamination will be also called its
leaves, and the connected components P of rΣ ´ λ will be called its plaques.

Let now ρ be a maximal representation, and let ξ : BΓ Ñ BH2,n be its associated
boundary map. For any leaf ℓ “ ra, bs in λ, we can find a unique spacelike geodesic

ℓ̂ in H2,n with endpoints ξpaq, ξpbq, and similarly for any plaque P “ ∆pa, b, cq, we

have a unique spacelike ideal triangle P̂ with endpoints ξpaq, ξpbq, ξpcq P BH2,n. We
then define the geometric realization of λ in H2,n to be

λ̂ :“
ď

ℓ leaf of λ

ℓ̂,

and its associated pleated set as

Ŝλ :“ λ̂Y
ď

P plaque of λ

P̂ .

Our first result establishes some structural properties about the topology and
the causal features of these sets:

Theorem A. Let ρ : Γ Ñ SO0p2, n ` 1q be a maximal representation. For every

maximal lamination λ the pleated set Ŝλ Ă H2,n is an embedded Lipschitz disk
which is also acausal, that is, every pair of points x, y P Ŝλ is joined by a spacelike
geodesic.

The basic idea behind Theorem A is the following: A pair of geodesics ℓ̂, ℓ̂1 with

endpoints on the limit curve Λρ “ ξpBΓq form an acausal set ℓ̂ Y ℓ̂1 inside H2,n if
and only if the corresponding leaves ℓ, ℓ1 of λ are disjoint.

This property immediately implies that the geometric realization λ̂ Ă H2,n of
any lamination λ is an acausal subset. In turn, working in the Poincaré model of

H2,n and using the fact that λ̂ is acausal, we prove that adding the complementary
triangles preserves the acausal property. By general properties of acausal subsets
of H2,n, we deduce that Ŝλ Y Λρ Ă H2,n Y BH2,n is a properly embedded Lipschitz
disk.

The surface Sλ “ Ŝλ{ρpΓq Ă Mρ carries two natural geometries: It has an
intrinsic hyperbolic structure and a pseudo-metric induced by the ambient space
H2,n. We now focus our attention of the description of the former.

Cross ratio and shear cocycles. As in the case of pleated surfaces in hyperbolic
3-space H3, the hyperbolic structure on the pleated set Ŝλ can be recorded by a
shear cocycle [Bon96].

In order to define it, we again rely on the properties of the boundary map:
The acausality condition satisfied by ξ and the pseudo-Riemannian structure of the
boundary BH2,n uniquely determine a Γ-invariant cross ratio βρ on BΓ, satisfying
the following properties:

‚ It is (strictly) positive on positively ordered quadruples in BΓ. This follows
from the acausal properties of the boundary map ξ and implies, via general
results of Martone and Zhang [MZ19], and Hamenstädt [Ham99], that βρ

induces a length function Lρ on the space of geodesic currents C.
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‚ It is locally bounded, meaning that there exists a hyperbolic structure X on
Σ such that, for every compact subset K in the space of distinct 4-tuples
in BΓ, we can find constants C,α ą 0 such that

|log |βρpa, b, c, dq|| ď C
∣∣log ∣∣βXpa, b, c, dq

∣∣∣∣α
for every cyclically ordered 4-tuples pa, b, c, dq P K, where βX is the cross
ratio on BΓ determined by the structure X P T . This property is a conse-
quence of the explicit definition of βρ and of the Hölder continuity of the
limit map ξ.

Notice that examples of (strictly) positive and locally bounded cross ratios natu-
rally arise also from other interesting contexts related to pseudo-Riemannian sym-
metric spaces Hp,q such as Hitchin representations in SOpp, p ` 1q or Θ-positive
representations in SOpp, qq where similar pleated surface construction might be
possible (see also Appendix A).

We also remark that positive cross ratios have been used by Martone and Zhang
in [MZ19], by Labourie [Lab08], and Burger, Iozzi, Parreau, and Pozzetti [BIPP21]
to study common features of Higher Teichmüller Theories.

Making use of the cross ratio βρ, we then describe the intrinsic hyperbolic struc-
ture of a pleated set Sλ through the data of a so-called Hölder cocycle σρ

λ transverse
to the maximal lamination λ, in the sense of [Bon96].

The notion of Hölder transverse cocycle has been introduced by Bonahon (see
[Bon97b, Bon97a]), who for instance deployed them to provide a parametrization
of Teichmüller space T of a closed orientable surface Σ in [Bon96], following ideas
of Thurston [Thu98]. Heuristically speaking, if λZ is the geometric realization of λ
on the hyperbolic surface Z, the shear cocycle σZ

λ records how the ideal triangles
in Z ´ λZ are glued together along the leaves of λZ . The space Hpλ;Rq of Hölder
cocycles transverse to λ has a natural structure of vector space of dimension 3|χpΣq|,
and the map that associates to any hyperbolic structure Z P T its shear cocycle
σZ
λ P Hpλ;Rq embeds Teichmüller space as an open convex cone with finitely many

faces inside Hpλ;Rq. The resulting set of coordinates is usually referred to as shear
coordinates with respect to the maximal lamination λ.

This point of view on Teichmüller space has proved to be fruitful also in the set-
ting of Hitchin representations and, more generally, to analyze Anosov representa-
tions as witnessed by work of Bonahon and Dreyer [BD17], Alessandrini, Guichard,
Rogozinnikov, and Wienhard [AGRW22], and Pfeil [Pfe21].

The underlying principle for the construction of a shear cocycle starting from
a cross ratio is very elementary: The classical shear between two adjacent ideal
triangles ∆ and ∆1 in the hyperbolic plane is an explicit function of the RP1-cross
ratio of the four ideal vertices of ∆ Y ∆1, and shears between triangles separated
by finitely many leaves of λ can be expressed as a finite sum of shears between
adjacent plaques. One can then define the ρ-shear between two adjacent plaques
P,Q of λ simply by replacing the role of the RP1-cross ratio with βρ. In fact with
some additional (but elementary) work, this allows to introduce a natural notion
of ρ-shear cocycle σρ

λ for a large class of maximal laminations, namely laminations
on Σ obtained by adding finitely many isolated leaves to pants decompositions (see
Section 4.4).

The construction of the shear cocycle σρ
λ that we describe relies only on the

properties of the cross ratio βρ that we mentioned above, namely that βρ is strictly
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positive and locally bounded. Consequently, our techniques allow to deduce the
following general statement:

Theorem B. Let β : BΓ4 Ñ R be a strictly positive locally bounded cross ratio. For

every maximal lamination λ there exists a transverse Hölder cocycle σβ
λ P Hpλ;Rq

with the following properties:

(i) The cocycle σβ
λ is the shear cocycle of a unique hyperbolic metric Xλ on Σ.

(ii) For every transverse measure µ on λ we have LXλ
pµq “ Lβpµq.

(iii) The map λ ÞÑ Xλ is continuous with respect to the Hausdorff topology on
the space of maximal geodesic laminations.

The process to construct β-shear cocycles σβ
λ for a generic maximal lamination is

technically quite involved, and our strategy will heavily rely on multiple tools devel-
oped by Bonahon [Bon96] in his construction of shear coordinates for Teichmüller
space, such as the notion of divergence radius function associated to the choice of
a train track carrying λ (see also Bonahon and Dreyer [BD17, § 8.2]). However, if
λ is a finitely leaved lamination and β “ βρ is the cross ratio associated to some
maximal representation ρ, then the shear cocycle σρ

λ has a simple interpretation in
terms of horocycle foliations on the plaques of the pleated set Sλ, in direct analogy
with Bonahon’s original description of shear coordinates (see e.g. [Bon96, § 2]).

We call the cocycle σρ
λ the intrinsic shear cocycle associated to λ and ρ.

Geometry of pleated surfaces. The other intrinsic geometric structure carried
by the plated set Ŝλ is a ρ-invariant pseudo-metric: By Theorem A any two points
x, y P Ŝλ are connected by a unique spacelike geodesic segment rx, ys, we can define

dH2,npx, yq :“ ℓrx, ys.

It is worth to mention that the function

dH2,n : Ŝλ ˆ Ŝλ Ñ r0,8q

is not a distance in the traditional sense as it does not satisfy the triangle inequality
nor its inverse (see also [GM21] and [CTT19]). However, it is continuous, it vanishes

exactly on the diagonal, and its metric balls Bpx, rq “ ty P Ŝλ |dH2,npx, yq ď r u form
a fundamental system of neighborhoods.

Nevertheless, the pseudo-distance dH2,n naturally relates to the hyperbolic struc-
ture Xλ associated to ρ and the maximal lamination λ. To see this, let us introduce
the following notion: We say that a function f : Sλ “ Ŝλ{ρpΓq Ñ X with values in
a hyperbolic surface X is K-Lipschitz with respect to the intrinsic pseudo-metric if

it lifts to a map f̂ : Ŝλ Ñ H2 that satisfies

dH2pf̂pxq, f̂pyqq ď KdH2,npx, yq

for any x, y P Ŝλ. Then we have:

Theorem C. Let ρ : Γ Ñ SO0p2, n ` 1q be a maximal representation, and λ be a
maximal lamination. If Xλ denotes the hyperbolic surface with intrinsic shear co-
cycle σρ

λ, then the pleated surface Sλ Ă Mρ admits a unique developing homeomor-
phism f : Sλ Ñ Xλ which is 1-Lipschitz with respect to the intrinsic pseudo-metric
on Sλ. Furthermore, we have

LXλ
pγq ď Lρpγq
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for every γ P Γ, where LXλ
, Lρ : Γ Ñ p0,8q denote the length functions of the

hyperbolic surface Xλ and the representation ρ, respectively, with strict inequality
if and only if γ intersects the bending locus of Sλ.

The heuristic idea of Theorem C is the following: The pleated set Ŝλ has an
intrinsic hyperbolic path metric (whose shear cocycle is exactly the intrinsic shear

cocycle σρ
λ). Using the fact that Ŝλ is an acausal subset that can be represented as

a graph in the Poincaré model of H2,n, one can show that for every point x, y P Ŝλ

there exists a path α : I Ñ Ŝλ joining them and with length bounded by the length
of the spacelike geodesic rx, ys. This immediately implies that the path metric on

Ŝλ is dominated by the intrinsic pseudo-metric.
We show that this picture is accurate in the case of finite leaved maximal lam-

inations. The proof here is elementary and uses a cut-and-paste argument in the
spirit of [CEG06, Theorem I.5.3.6]. In order to deduce the statement of Theorem
C from the finite leaved case, we exploit continuity properties of pleated surfaces.

We conclude here our discussion on the existence of ρ-equivariant pleated surfaces
and the study of their topology and geometry. In what follows, we deploy the results
just described to extract information on the maximal representation ρ.

Length spectra of maximal representations. We now focus on the study of
the set of pleated surfaces tXλuλ associated to a given maximal representation ρ,
considered as a subset of Teichmüller space T . As it turns out, it can be described
as a subset of the boundary of a set that is convex with respect to multiple natural
structures on T . More precisely, given a maximal representation ρ let us define the
dominated set of ρ as

Pρ :“ tZ P T |LZpγq ď Lρpγq for every γ P Γu.

We also define the companion Psimple
ρ consisting of those hyperbolic surfaces whose

simple length spectrum is dominated by the simple length spectrum of ρ.
By Theorem C, the set Pρ is always non-empty as it contains all the hyperbolic

structures of the pleated surfaces associated to ρ. Furthermore, it is convex with
respect to the Weil-Petersson metric, by work of Wolpert [Wol87], and with respect
to shear paths, by work of Bestvina, Bromberg, Fujiwara and Souto [BBFS13]
and Théret [Thé14] generalizing a result of Kerckhoff [Ker83] (see also [MV] for a
different approach).

We prove the following:

Theorem D. Let ρ : Γ Ñ SO0p2, n ` 1q be a maximal representation. For every
Z P T define

κpZq :“ sup
γPΓ´t1u

LZpγq

Lρpγq
.

We have:

(1) Z P intpPρq if and only if κpZq ă 1.
(2) If ρ is not Fuchsian, then intpPρq ‰ H.
(3) If Xλ is the hyperbolic structure with shear cocycle σρ

λ, then Xλ P BPρ.

Furthermore,

(4) If Z R intpPρq, then there exists µ P ML such that κpZq “ LZpµq{Lρpµq.
(5) Pρ “ Psimple

ρ .
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As a consequence of properties (1) and (2), we obtain that if ρ is not Fuchsian,
then there exist hyperbolic structures Z P T whose length spectrum LZp‚q is strictly
dominated by the length spectrum of the maximal representation Lρp‚q. Thus, we
recover the following:

Theorem (Collier, Tholozan, and Toulisse [CTT19]). Let ρ : Γ Ñ SO0p2, n`1q be a
maximal representation with n ě 1. We have the following: Either ρ is Fuchsian or
there exists a hyperbolic surface Z and a constant c ą 1 such that Lρp‚q ą cLZp‚q.

In particular, the inequality Lρp‚q ą cLZp‚q immediately implies that the en-
tropy of ρ, defined by

δρ :“ lim sup
RÑ8

log |trγs P rΓs |Lρpγq ď Ru|

R
,

where rΓs denotes the set of conjugacy classes of elements in Γ, is bounded by

δρ ď 1{c ď 1

and the equality δρ “ 1 holds if and only if ρ is Fuchsian.
Let us briefly comment on properties (1), (2), and (3).
Property (1) characterizes interior points of Pρ as those points Z whose length

spectrum LZp‚q is strictly dominated by the length spectrum Lρp‚q. The proof
proceeds as follows. On the one hand, being strictly dominated is an open condi-
tion: For Z P T and for every K ą 1 there is a neighborhood U of Z such that
every surface Z 1 P U is K-bilipschitz to Z and in particular 1{K ď LZ{LZ1 ď K.
Therefore, if κpZq ă 1 and K ă 1{κpZq, then κpZ 1q ă 1. On the other hand,
interior points are strictly dominated due to the strict convexity of length functions
along Weil-Petersson geodesics.

The idea of (2) is the following: In order to prove that intpPρq is non empty, it is
enough to show that Pρ contains at least two distinct points X,Y . Indeed, by the
strict convexity of length functions with respect to the Weil-Petersson metric (see
Wolpert [Wol87] and [Wol06]), the midpoint Z P Pρ of the Weil-Petersson segment
rX,Y s is strictly dominated and, hence, by property (1), is an interior point.

If ρ is not Fuchsian, such pair of points X,Y P Pρ can be produced by taking two
pleated surfaces Sα and Sβ realizing simple closed curves α and β that intersect
(completed to maximal laminations λα, λβ by adding finitely many leaves spiraling
around them). On the one hand, Theorem C tells us that LSα

pαq “ Lρpαq and
LSβ

pβq “ Lρpβq. On the other hand, as ρ is not Fuchsian, the bending locus of
Sα, Sβ is not empty. Since the bending loci are sublaminations of the maximal
extensions λα, λβ , they contain the curves α, β respectively. Since α, β intersect
essentially, the curve α intersects the bending locus of Sβ and β intersects the
bending locus of Sα, therefore LSα

pβq ă Lρpβq and LSβ
pαq ă Lρpαq, again by

Theorem C. In any case Sα ‰ Sβ .
Property (3) follows from the fact that every measured lamination µ whose

support does not intersect essentially the bending locus of Sλ realizes LSλ
pµq “

Lρpµq which implies κpSλq “ 1 and, hence, by Property (1), Sλ P BPρ.
Lastly, let us also spend a couple of words on the simple length spectrum of ρ: It

follows from (5) that the simple length spectrum alone completely determines the
dominated set. This is an indication that there might be simple length spectrum
rigidity for SO0p2, n` 1q-maximal representations.
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The proof of (5) depends on (4): In fact, on the one hand, we always have
Pρ Ă Psimple

ρ , by definition. On the other hand, properties (1) and (4) imply

together that BPρ Ă BPsimple
ρ . As both sets are topological disks, by convexity with

respect to Weil-Petersson geometry or with respect to shear paths, we can conclude
that they are equal. The proof of (4) follows arguments of Thurston [Thu98] on
the existence of a maximally stretched laminations.

Photon structures fibering over hyperbolic surfaces. We now describe the
picture from the perspective of photon structures.

By work of Guichard and Wienhard [GW12], maximal representations ρ : Γ Ñ

SO0p2, n`1q parametrize certain geometric structures, in the sense of Thurston, on
appropriate closed manifolds. More precisely, every representation ρ determines a
pSO0p2, n`1q,Pho2,nq-structure, called a photon structure, on a closed manifold Eρ.
By the Ehresmann-Thurston principle (see [Thu79, Chapter 3]), the topology of Eρ

does not change over each connected component of XpΓ,SO0p2, n ` 1qq. However,
different components can correspond to different topological types.

Using maximal surfaces in H2,n, Collier, Tholozan, and Toulisse showed in
[CTT19] that Eρ can always be seen as a fibered photon bundle over Σ with geo-

metric fibers which are copies of Pho2,n´1 and, furthermore, its topology can be
computed from some characteristic classes of ρ.

A fibered photon bundle over a surface π : E Ñ S is an object that comes
together with a developing map δ : Ê Ñ Pho2,n and a natural associated map
f : Ŝ Ñ H2,n, where Ŝ Ñ S is the universal covering and Ê Ñ Ŝ is the pull-back
bundle on the universal covering, with the property that δpπ´1pxqq “ PhopfpxqKq.
Here fpxqK Ă R2,n`1 is the orthogonal subspace of the negative line fpxq P H2,n.
In particular, the fibered photon bundle E Ñ S has an associated underlying vector
bundle VE Ñ S where the fiber over x is the vector space fpxqK.

In a similar spirit, using pleated surfaces, we show that every maximal lamination
λ Ă Σ induces a geometric decomposition of Eρ into standard fibered blocks called
triangles of photons which we briefly describe: Let ∆ Ă H2,n be an ideal spacelike
triangle with vertices a, b, c P BH2,n. The standard triangle of photons Ep∆q Ă

Pho2,n is the codimension 0 submanifold with boundary

Ep∆q :“ tV P Pho2,n |V K x for some x P ∆u.

The boundary BEp∆q is a union of lines of photons BEp∆q “ EpℓaqYEpℓbqYEpℓcq

where ℓa, ℓb, ℓc are the boundary spacelike geodesics of ∆ opposite to the ideal
vertices a, b, c and

Epℓq :“ tV P Pho2,n |V K x for some x P ℓu

if ℓ Ă H2,n is a spacelike geodesic.
The triangle of photons Ep∆q naturally fibers over the ideal hyperbolic triangle

∆. We denote by π : Ep∆q Ñ ∆ the natural fibration. The fiber π´1pxq over the
point x P ∆ is given by PhopxKq » Pho2,n´1.

We have:

Proposition E. Let ρ : Γ Ñ SO0p2, n ` 1q be a maximal representation. Let

Ŝλ Ă H2,n be the pleated set associated to the maximal lamination λ. Then the
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Guichard-Wienhard domain of discontinuity Ωρ Ă Pho2,n naturally decomposes as

Ωρ “
ğ

ℓĂλ̂

Epℓq \
ğ

∆ĂŜλ´λ̂

Ep∆q

and we have an equivariant bundle projection Ωρ Ñ Ŝλ induced by the standard
projections Ep∆q Ñ ∆ and Epℓq Ñ ℓ.

Conversely, we are also able to describe a procedure to abstractly assemble tri-
angles of photons and explicitly build fibered photon structures on a fiber bundle
E Ñ S with maximal holonomy ρ : Γ Ñ SO0p2, n` 1q.

Our approach is completely analogous to the procedure that constructs a closed
hyperbolic surface by gluing ideal triangles. First we construct pair of pants of
photons Ej Ñ Sj by gluing two copies of a standard triangle of photons Ep∆q. As
it happens for hyperbolic surfaces, if the holonomy around the boundary curves of
Sj is loxodromic (with respect to a suitable notion of loxodromic), then Ej Ñ Sj is
the interior of a fibered photon structure with totally geodesic boundary Ēj Ñ S̄j .

For us, loxodromic means bi-proximal, a property that is equivalent to a suitable
north-south dynamics on BH2,n: The set L Ă SO0p2, n` 1q of loxodromic elements
is an open subset with two connected components L “ L` Y L´ distinguished by
the sign of the leading eigenvalue.

We remark that the condition of being loxodromic as well as the topology of the
resulting bundles Ēj Ñ S̄j can be read off the gluing maps without difficulties. We
prove:

Theorem F. The space of fibered photon structures with totally geodesc boundary
on a bundle E Ñ S over a pair of pants S admits a parametrization by

$

&

%

rϕa, ϕb, ϕcs P

¨

˝

ź

jPta,b,cu

PStabpℓjq

˛

‚

L

PStabp∆q2
ˇ

ˇρk “ ϕiϕ
´1
j P L

,

.

-

The topology of E is determined by the first Stiefel-Whitney class w1pVEq P

H1pS,Z{2Zq of the underlying vector bundle VE Ñ S. The class w1pVEq can be
computed as follows: Let γa, γb, γc Ă S be the peripheral curves corresponding to
the vertices a, b, c respectively. Then

w1pVEqrγks “

"

0 if ρk P L`,
1 if ρk P L´,

Here PStabpℓq,PStabp∆q are the stabilizers of the spacelike geodesic ℓ and the
ideal spacelike triangle ∆ that fix the endpoints of ℓ and the vertices of ∆ in
BH2,n, respectively. The space

ś

jPta,b,cu PStabpℓjq describes all possible gluing

maps Epℓjq Ñ Epℓjq, but in a redundant way. This is due to the fact a pair of
triples that differ by a pre- and post-composition by elements ψ,ψ1 P PStabp∆q

give rise to isomorphic fibered photon structures.
As a second step, we take several pair of pants of photons with totally geodesic

boundary Ēj Ñ S̄j and glue them together. Again, some compatibility conditions
must be fulfilled by the gluing maps in order to perform the gluing. As a result,
we get a photon structure on a manifold E that naturally fibers over a hyperbolic
surface S with geometric fibers and we also obtain a maximal geodesic lamination
λ on S.

In analogy with [CTT19, Proposition 3.13], we have:
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Proposition G. The holonomy ρ : π1pEq Ñ SO0p2, n ` 1q of the fibered photon
structure E Ñ S descends to a maximal representation ρ : Γ Ñ SO0p2, n` 1q. The
hyperbolic surface S is the pleated surface that realizes λ in Mρ.

In combination with Theorems A and C, this provides an analogue of [CTT19,
Corollary 4.12]. In fact, in order to prove Proposition G, we generalize results
of [CTT19] about smooth spacelike surfaces to purely topological versions. This
allows us to treat pleated surfaces.

The anti-de Sitter case. When n “ 1 much of the above picture on pleated
surfaces can be made explicit and quantitative. Due to the fact that SO0p2, 2q is a
2-fold cover of PSL2pRq ˆPSL2pRq, maximal representations in SO0p2, 2q naturally
correspond to pairs of maximal representations in PSL2pRq, which, by Goldman’s
work [Gol80], are precisely the holonomies of hyperbolic structures on Σ. As such,
this low dimensional case has a special connection with classical Teichmüller the-
ory. This is highlighted by groundbreaking work of Mess [Mes07], who connected
the study of globally hyperbolic maximal Cauchy compact (GHMC) anti-de Sit-
ter 3-manifolds with maximal representations inside SO0p2, 2q, and gave a proof
of Thurston’s Earthquake Theorem based on the pseudo-Riemannian geometry of
the manifold Mρ. (Thurston’s original approach is outlined in work of Kerckhoff
[Ker83].) Since Mess’ seminal paper, the study of GHMC anti-de Sitter 3-manifolds
has propagated in multiple directions and has produced further connections with
Teichmüller theory, as for example described in [ABB`07], [BS10], [BS12], [BB09],
[BBZ07], among other works. We refer to Bonsante and Seppi [BS20] for a detailed
exposition of the current state-of-art and for further references.

We will explore this connection in a separate paper [MV] where we use pleated
surfaces to obtain, among other results, an anti-de Sitter proof of (strict) convexity
of length functions in shear coordinates for Teichmüller space (recovering the work
of Bestvina, Bromberg, Fujiwara, and Suoto [BBFS13], and Théret [Thé14]) and a
shear-bend parametrization of globally hyperbolic maximal Cauchy compact anti-
de Sitter 3-manifolds.

Outline. This article is structured as follows:
In Section 2 we cover the background material that we need. More precisely: The

geometry of the pseudo-hyperbolic space H2,n and its boundary BH2,n, acausality,
and the Poincaré model. The dynamical and geometric characterization of maximal
representations ρ : Γ Ñ SO0p2, n`1q. Some classical Teichmüller theory: Geodesic
laminations, geodesic currents, measured laminations, shear coordinates. Positive
cross ratios and their Liouville currents.

In Section 3 we first discuss the geometric realizations λ̂ of maximal laminations
λ and the associated pleated sets Ŝλ Ă H2,n. Then, we relate the acausal properties

of the limit curve ξpBΓq Ă BH2,n to the topology and the causal structure of λ̂ and

Ŝλ (see Propositions 3.5 and 3.6). The fact that the pleated set Ŝλ is acausal implies
that it can be represented as a graph in the Poincaré model, and we show that the
graph depends continuously on the lamination (see Proposition 3.7). Lastly, we

analyze more in detail the locus where Ŝλ is folded and define the bending locus
(see Proposition 3.9). The bending locus will control how the geometry of Ŝλ is
distorted in H2,n. This will play a role in Sections 6 and 7.

In Sections 4 and 5 we explain how to attach a natural Hölder cocycle σβ
λ P

Hpλ;Rq to every positive and locally bounded cross ratio β and every maximal
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lamination λ (see Theorem 4.1). Section 4 mainly focuses on the study finite
leaved laminations, setting that can be treated with elementary techniques (see
Propositions 4.9 and 4.11). In Section 5 we extend the construction to the case
of a general maximal lamination. The procedure here is analytic: We define the
shear cocycle as a limit of elementary finite approximations. The process needed
to establish the convergence of finite approximations is quite delicate as it depends
on the geometry of λ on a fine scale. In the end, we show that the shear cocycle

σβ
λ is contained in the closure of Teichmüller space T Ă Hpλ;Rq and it is in T if β

is strictly positive.
In Section 6 we formally define pleated surfaces and study their intrinsic geo-

metric properties. Our analysis here is based on a precise understanding of the
case of finite leaved maximal laminations and on continuity properties of pleated
surfaces. The pleated set Ŝλ has an intrinsic length space structure that makes it

locally isometric to H2 and the local isometry f̂ : Ŝλ Ñ H2 is 1-Lipschitz with re-
spect to the intrinsic pseudo-metric (see Proposition 6.5). We check that the shear

cocycle of the intrinsic path metric on Ŝλ coincides with σρ
λ (Proposition 6.6). In

both cases, the proofs are elementary. The general case (Proposition 6.7) follows
from the finite leaved case by continuity arguments. As a consequence, we derive a
precise comparison between the length spectrum of Sλ and the length spectrum of
ρ (Proposition 6.8).

In Section 7 we link the geometry of the maximal representation ρ : Γ Ñ

SO0p2, n ` 1q to the geometry of the dominated set Pρ Ă T consisting of those
hyperbolic surfaces Z whose length spectrum LZp‚q is strictly dominated by Lρp‚q.
Such a subset is non-empty, as it contains all pleated surfaces associated to ρ, and
is convex with respect to the Weil-Petersson metric. We describe the structure of
interior points and of boundary points (see Lemma 7.4 and Proposition 7.7) and
show that if the representation ρ is not Fuchsian then the interior of Pρ is never
empty (Proposition 7.5).

In Section 8 we discuss the point of view of fibered photon structures. We
introduce triangles and lines of photons Ep∆q and Epℓq. We show that given a
maximal lamination λ the Guichard-Wienhard domain of discontinuity admits a
fibration π : Ωρ Ñ Ŝλ where π´1pℓq “ Epℓq and π´1p∆q “ Ep∆q for every leaf

ℓ Ă λ̂ and plaque ∆ Ă Ŝλ ´ λ̂ (see Proposition 8.5). In the opposite direction, we
construct fibered photon structures by gluing together triangles of photons along
lines of photons. We discuss in detail pants of photons which are basic gluings of
two triangles of photons. Provided that the holonomy along the boundary curves
is loxodromic such pants of photons are the interior of fibered photon structures
with totally geodesic boundary (see Lemma 8.9). We completely classify those (see
Theorem 8.10). Gluing pants of photons with totally geodesic boundary one obtains
fibered photon structures over closed hyperbolic surfaces E Ñ S. The holonomy
E Ñ S is always maximal (see Lemma 8.11).

Acknowledgements. We are very happy to thank Francesco Bonsante, Colin
Davalo, Sara Maloni, and Beatrice Pozzetti, with whom we had several useful dis-
cussions and received generous feedback during the realization of this project.

We are also grateful to Francesco Bonsante, Brian Collier, Ursula Hamenstädt,
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2. Preliminaries

In this section we review some basic facts that we will need in our exposition.
We start by discussing the geometry and causal structure of the pseudo-Riemannian

space H2,n and its boundary BH2,n. In particular, we discuss the Poincaré model
of H2,n (see Proposition 2.4) which is a useful device to examine the structure of
acausal sets (see Lemmas 2.5 and 2.6).

Then, we introduce maximal representations ρ : Γ Ñ SO0p2, n` 1q and describe
the acausal and dynamical properties of their associated limit curve ξ : BΓ Ñ BH2,n

(see Theorem 2.9). This is the starting point of our constructions in Section 3.
Afterwards, we recall some background material from classical Teichmüller the-

ory and introduce geodesic laminations, geodesic currents, and shear coordinates.
Geodesic laminations are the objects that provide us a direct link between maximal
representations and hyperbolic surfaces. We explain how to associate to a maximal
lamination λ a pleated set Ŝλ Ă H2,n in Sections 3. We investigate the topology
and causal properties of Ŝλ in Section 4 and we describe its geometries in Sections
5, and 6.

Geodesic currents and Teichmüller geometry are the main tools that we will use
to analyze the length spectrum of maximal representations in Section 7.

We end the section by describing (positive) cross ratios on BΓ and their asso-
ciated Liouville currents (see Theorem 2.21). As we will see in Section 4, every
maximal representation ρ has a natural strictly positive cross ratio βρ induced by
the boundary map. As a consequence, its length spectrum can be represented by
a Liouville current Lρ. Our use of cross ratios will be twofold: In Sections 4 and
5, we use βρ to encode the shear cocycle of a pleated surface. In Section 7, we use
the Liouville current Lρ to study the structure of the set of pleated surfaces.

2.1. The pseudo-Riemannian space H2,n. We first introduce the linear and
projective models of H2,n and BH2,n: Let R2,n`1 denote the vector space Rn`3

endowed with the quadratic form

xx, yyp2,n`1q :“ x1y1 ` x2y2 ´ x3y3 ´ . . .´ xn`3yn`3

of signature p2, n` 1q. Consider the hyperboloid

pH2,n :“ tx P R2,n
ˇ

ˇ xx, xyp2,n`1q “ ´1u.

The restriction of the quadratic form x‚, ‚yp2,n`1q to each tangent space

Tx pH2,n “ xK

has signature p2, nq and, therefore, endows pH2,n with a pseudo-Riemannian struc-
ture of the same signature. The group SO0p2, n ` 1q acts transitively and by ori-

entation preserving isometries on pH2,n. However, the action is not proper as point
stabilizers are not compact.

Tangent vectors v P Tx pH2,n split into three types:

v is

$

&

%

spacelike if xv, vy ą 0,
lightlike if xv, vy “ 0,
timelike if xv, vy ă 0.

.
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Similarly, we call a curve α : I Ñ pH2,n spacelike, lightlike, or timelike if 9α is always
spacelike, lightlike, or timelike.

Geodesics in the linear model pH2,n are easy to describe: Let x P pH2,n be a point

and v P Tx pH2,n a tangent vector. Let γ : R Ñ pH2,n be the geodesic starting at x
with velocity v. Then

γptq “

$

&

%

coshptqx` sinhptqv if xv, vy “ 1,
x` tv if xv, vy “ 0,
cosptqx` sinptqv if xv, vy “ ´1.

.

The pseudo-Riemannian space H2,n is the quotient

H2,n :“ pH2,n{px „ ´xq

and can be realized as an open subset of the projective space RPn`2. The projection

R2,n`1 ´ t0u Ñ RPn`2 induces the 2-to-1 covering projection pH2,n Ñ H2,n. In the
projective model, the geodesic starting at x with velocity v is just the intersection
of the projective line corresponding to the 2-plane Spantx, vu with H2,n. Given two
points x, y P H2,n, they are always connected by a geodesic, namely, the projective
line corresponding to Spantx, yu. The type of the line can be determined using the
following simple criterion:

Lemma 2.1 ([GM21, Proposition 3.2]). Two distict points x, y P H2,n are joined
by:

‚ A spacelike geodesic if and only if |xx, yyp2,n`1q| ą 1.
‚ A lightlike geodesic if and only if |xx, yyp2,n`1q| “ 1.
‚ A timelike geodesic if and only if |xx, yyp2,n`1q| ă 1.

Similar to what happens for geodesics, the intersection of a linear space

P
`

V Ă R2,n`1
˘

Ă RPn`2

with H2,n also gives a totally geodesic subspace. In particular, every 3-dimensional
subspace V on which the restriction of the quadratic form has signature p2, 1q

provides a totally geodesic subspace of H2,n isometric to H2.
The space H2,n has a natural boundary at infinity which can be described in the

projective model as the projectivization of the cone of isotropic vectors BH2,n “

PpCq, where

C :“ tx P R2,n
ˇ

ˇ xx, xyp2,n`1q “ 0u.

In the linear model pH2,n, the boundary at infinity is B pH2,n, a two-fold covering of
BH2,n, which can be described as C{x „ λ2x. We can topologize

pH2,n Y B pH2,n

by simultaneously embedding them in the sphere of rays R2,n`1 ´ t0u{x „ λ2x.
Similar to Lemma 2.1, we have

Lemma 2.2. Two distict points x, y P BH2,n are joined by:

‚ A spacelike geodesic if and only if xx, yyp2,n`1q ‰ 0.
‚ A lightlike geodesic if and only if xx, yyp2,n`1q “ 0.

Centered at each point a P BH2,n we have a family of horoballs

O “ Ptx P pH2,n | 0 ă |xx, vy2,n`1| ă cu Ă H2,n
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where v P R2,n is a representative of a and c ą 0 is a positive constant. The
boundary BO Ă H2,n is a horosphere centered at a.

The terminology is justified by the fact that every space-like 2-plane H of H2,n

whose boundary at infinity contains a P BH2,n intersects O and BO in a (usual)
horoball or horocycle based at a P BH.

For more material on the geometry of H2,n, we also refer to Section 2 of [GM21]
and Section 3 of [CTT19].

2.2. Acausal sets and Poincaré model. Certain subsets of pH2,n display some
features that make them similar to metric spaces and, in particular, their geometry
can be compared to the one of subsets of H2.

Definition 2.3 (Acausal). Let X be a subset of pH2,n Y B pH2,n. We say that X is
acausal if any pair of distinct points in X is joined by a spacelike geodesic.

Acausal subsets X Ă pH2,n are naturally endowed with a pseudo-distance, de-
noted by d

pH2,n : The distance between two points x, y P X is the length of the
unique spacelike segment rx, ys joining them and is computed by

cosh
`

d
pH2,npx, yq “ ℓrx, ys

˘

“ ´xx, yy.

Using this formula, it is simple to check that d
pH2,n : X ˆ X Ñ r0,8q satisfies the

following two properties:

‚ It is continuous.
‚ It vanishes precisely on the diagonal ∆X Ă X ˆX.

However, it does not satisfy the triangle inequality. The two properties together
imply that, for every x P X, the sets Brpxq :“ ty P X

ˇ

ˇd
pH2,npx, yq ă r

(

form a
fundamental system of neighbourhoods of x.

We now introduce a useful way of representing acausal subsets which we will
use extensively later on in our computations. This is the Poincaré model H2,n, as
described in [CTT19]: Let E Ă R2,n`1 be a spacelike 2-plane. Let EK its orthogonal
with respect to x‚, ‚y2,n`1. Consider the Euclidean disk

D2 :“ tu P E | xu, uy2,n`1 ă 1u

and the round sphere

Sn :“ tv P EK | xv, vy2,n`1 “ ´1u.

Define the maps

Ψ : D2 ˆ Sn ÝÑ pH2,n

pu, vq ÞÝÑ 2
1´∥u∥2u`

1`∥u∥2

1´∥u∥2 v.

and

BΨ : BD2 ˆ Sn Ñ B pH2,n

pu, vq ÞÝÑ u` v.

We have

Proposition 2.4 ([CTT19, Proposition 3.5]). For any spacelike 2-plane E Ă

R2,n`1, we have the following

(a) The map Ψ “ ΨE is a diffeomorphism.
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(b) The pull-back pseudo-Riemannian metric can be written as

Ψ˚g
pH2,n “

˜

2

1 ´ ∥u∥2

¸2

|du|2 ´

˜

1 ` ∥u∥2

1 ´ ∥u∥2

¸2

gSn .

(c) The map BΨ is a diffeomorphism and extends continuously Ψ.

The Poincaré model is especially useful when dealing with acausal subsets for

the following reasons: Firstly, acausal subsets X Ă pH2,n can always be written
as graphs of functions g : U Ă D2 Ñ Sn that are 1-Lipschitz with respect to the
hemispherical metric

gS2 :“

˜

2

1 ` ∥u∥2

¸2

|du|2

on D2 and the spherical metric on Sn. Secondly, the graph map u : U Ă D2 Ñ X Ă
pH2,n is 1-Lipschitz with respect to the hyperbolic metric

gH2 :“

˜

2

1 ´ ∥u∥2

¸2

|du|2

on D2 and the intrinsic pseudo-metric on X Ă pH2,n. In both cases, for us, com-
pactness properties of 1-Lipschitz maps will translate in compactness properties of
acausal subsets.

We start with the following lemma:

Lemma 2.5. Let E Ă R2,n`1 be a spacelike 2-plane. Let Ψ : D2ˆSn Ñ pH2,n be the
corresponding Poincaré model. Consider the points x :“ Ψpu, vq and x1 “ Ψpu1, v1q.
We have the following:

(1) x, x1 are joined by a spacelike segment if and only if they are contained in

the same connected component of pH2,n ´ xK and

dSnpv, v1q ă dS2pu, u1q

where we endow D2 with the hemispherical distance.
(2) x, x1 are joined by a lightlike segment if and only if

dSnpv, v1q “ dS2pu, u1q

where we endow D2 with the hemispherical distance.
(3) If x, x1 are joined by a spacelike geodesic, then

dH2pu, u1q ě d
pH2,npx, x1q,

where we endow D2 with the hyperbolic distance.

Proof. We prove each property separately.
Property (1). The spherical distance between two points v, v1 P Sn is computed
by

cos
`

dSnpv, v1q
˘

“ xv, v1ySn “ ´xv, v1y2,n`1.

Similarly, the hemispherical distance between u, u1 P D2 is given by

cos
`

dS2pu, u1q
˘

“
2

1 ` ∥u∥2
2

1 ` ∥u1∥2
xu, u1y2,n`1 `

1 ´ ∥u∥2

1 ` ∥u∥2
1 ´ ∥u1∥2

1 ` ∥u1∥2
.
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By Lemma 2.1, x, x1 are joined by a spacelike geodesic if and only

´ 1 ą xx, x1y “ xΨpu, vq,Ψpu1, v1qy

“
2

1 ´ ∥u∥2
2

1 ´ ∥u1∥2
xu, u1y2,n`1 `

1 ` ∥u∥2

1 ´ ∥u∥2
1 ` ∥u1∥2

1 ´ ∥u1∥2
xv, vy2,n`1

which can be rewritten as

1 ` ∥u∥2

1 ´ ∥u∥2
1 ` ∥u1∥2

1 ´ ∥u1∥2
`

cos
`

dS2pu, u1q
˘

´ cos
`

dSnpv, v1q
˘˘

ă 0.

The latter is equivalent to

dSnpv, v1q ă dS2pu, u1q,

as desired.
Property (2). By Lemma 2.1, x, x1 are joined by a lightlike geodesic if and only if
xx, x1y “ ´1. The coclusion follows from a computation which is exactly analogue
to the one of Property (1).
Property (3). If x, x1 are joined by a spacelike geodesic, then xx, x1y ă ´1, and

their distance in pH2,n is computed by

cosh
`

d
pH2,npx, x1q

˘

“ ´xΨpu, vq,Ψpu1, v1qy

“ ´
2

1 ´ ∥u∥2
2

1 ´ ∥u1∥2
xu, u1y `

1 ` ∥u∥2

1 ´ ∥u∥2
1 ` ∥u1∥2

1 ´ ∥u1∥2
xv, v1y.

The hyperbolic distance in D2 is computed by

cosh
`

dH2pu, u1q
˘

“ ´
2

1 ´ ∥u∥2
2

1 ´ ∥u1∥2
xu, u1y `

1 ` ∥u∥2

1 ´ ∥u∥2
1 ` ∥u1∥2

1 ´ ∥u1∥2
.

Since v, v1 P Sn, we have |xv, v1y| ď 1. Therefore, we have

cosh
`

d
pH2,npx, x1q

˘

ď cosh
`

dH2pu, u1q
˘

with equality if and only if v “ v1. □

We can now prove that acausal subsets can be described as graphs of 1-Lipschitz
functions. This is the content of the next lemma:

Lemma 2.6. Let E Ă R2,n`1 be a spacelike 2-plane. Let Ψ : D2 ˆ Sn Ñ pH2,n be

the corresponding Poincaré model and let π : pH2,n Ñ D2 be the projection to the

first factor. Let X Ă pH2,n be an acausal subset. Then

(1) The projection π : X Ñ D2 is injective. In particular, we can write X as
the graph of a function g : πpXq Ă D2 Ñ Sn.

(2) The function g is strictly 1-Lipschitz with respect to the hemispherical met-
ric on D2 and the standard spherical metric on Sn, that is,

dSnpgpuq, gpu1qq ă dS2pu, u1q

for any distinct u, u1 P πpXq.
(3) Viceversa, the graph of any strictly 1-Lipschitz function g : U Ă D2 Ñ Sn

defined on a connected subset U Ă D2 is an acausal subset.
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Proof. Property (1). By Property (3) of Lemma 2.5, the restriction of the pro-
jection π on X is injective. In particular, for any u P πpXq Ď D2, there exists a
unique gpuq P Sn such that Ψpu, gpuqq P X.
Property (2). As X is acausal, for every u, u1 P D2 the points Ψpu, gpuqq and
Ψpu1, gpu1qq are joined by a spacelike segment. The conclusion follows from Property
(1) of Lemma 2.5.
Property (3) follows from Property (1) of Lemma 2.5 once we observe the follow-
ing: Consider a point u P U . Let x :“ Ψpu, gpuqq. As g is strictly 1-Lipschitz, by
Property (2) of Lemma 2.5, its graph cannot intersect xK. Therefore, by connect-
edness of U , the graph is contained in the same component of x. □

We now restrict our attention to some special acausal subsets, namely spacelike
geodesics and spacelike planes and prove a couple of topological properties that will
be useful later on:

Lemma 2.7. Let E Ă R2,n`1 be a spacelike 2-plane. Let Ψ : D2 ˆ Sn Ñ pH2,n be

the corresponding Poincaré model and let π : pH2,n Ñ D2 be the projection to the
first factor. Then

(1) If H Ă pH2,n is a spacelike plane, then the restriction of π : H Ñ D2 is a
diffeomorphism and extends continuously to BH Ñ BD2.

(2) If ℓ Ă pH2,n is a pacelike geodesic, then πpℓq is a smooth properly embedded
curve. Either it is a diameter or it intersects every diameter at most once.

Proof. We prove the properties in order.
Property (1). Since H is transverse to the fibers Ψptxu ˆSnq of π, the restriction
π : H Ñ D2 is a local diffeomorphism. As the pseudo-distance d

pH2,n restricts to
the hyperbolic distance on H, by Property (3) of Lemma 2.5, we also have that π
is distance non-decreasing when we put on D2 the hyperbolic metric. In particular,
π is proper and injective. Thogether, the two facts imply that π : H Ñ D2 is a
diffeomorphism.
Property (2). By the previous point, π : ℓ Ñ D2 is a smooth proper embedding.
We claim that the projection πpℓq is either a diameter of D2, or it intersects every
diameter of D2 at most once. In order to see this, parametrize ℓ as ℓptq “ eta`e´tb
and write a “ ua ` va and b “ ub ` vb with ua, ub P BD2 and va, vb P Sn. The
projection of ℓptq to D2 is a curve uptq satisfying

etua ` e´tub “
2

1 ´ |u|2
u.

In particular, uptq intersects the line pu1 ` qu2 “ 0 if and only if ppetu1a ` e´tu2bq `

qpetu1a ` e´tu2bq “ 0 and this has at most one solution unless πpℓq “ tpu1 ` qu2 “

0u. □

2.3. Maximal representations. We now introduce maximal representations in
SO0p2, n ` 1q and a couple of geometric objects that are naturally associated to
them.

The first geometric object which one can attach to every representation ρ : Γ Ñ

SO0p2, n ` 1q is a flat vector bundle Vρ Ñ Σ. The total space Vρ is defined as
follows:

Vρ :“ Σ̂ ˆ R2,n`1{px, vq „ pγx, ρpγqvq.
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Here Σ̂ is the universal covering of Σ and γ acts on it as a deck transformation.
The bundle projection Vρ Ñ Σ is just the one induced by the the universal covering

projection Σ̂ Ñ Σ.
The vector bundle Vρ Ñ Σ has an associated cohomological invariant T pρq P Z,

called the Toledo invariant (see [BIW10]). The number T pρq always satisfies a
Milnor-Wood inequality |T pρq| ď 2|χpΣq|.

Definition 2.8 (Maximal Representaion). A representation ρ is called maximal if
it satisfies |T pρq| “ 2|χpΣq|.

Thank to the work of Burger, Iozzi, Labourie and Wienhard [BILW05], we can
equivalently describe maximal representations in terms of boundary maps. Here we
will mostly adopt this more geometric perspective.

Theorem 2.9 (Burger, Iozzi, Labourie and Wienhard [BILW05]). A representation
ρ : Γ Ñ SO0p2, n` 1q is maximal if and only if there exists a ρ-equivariant Hölder
continuous embedding

ξ : BΓ Ñ BH2,n

such that Λρ :“ ξpBΓq is an acausal curve, meaning that for every triple of distinct
points u, v, w P BΓ, the subspace of R2,n`1 spanned by the lines ξpuq, ξpvq, ξpwq has
signature p2, 1q.

The second geometric object that we associate to a maximal representation ρ
is a pseudo-Riemannian manifold Mρ locally modeled on H2,n: Even though the
group ρpΓq does not act properly discontinuously on the whole H2,n, it admits a
nice domain of discontinuity. In fact, maximal representations in SO0p2, n` 1q are
convex cocompact in the sense of [DGK18] and [DGK17]. This means that in the
projective model H2,n Ă PpR2,n`1q they preserve a properly convex open subset
Ωρ Ă H2,n with C1-boundary BΩρ containing the limit curve Λρ Ă BΩρ and that
the action is cocompact on the convex hull CHpΛρq X Ωρ of the limit curve.

As the representation acts by projective transformations on Ωρ, it preserves
the natural Hilbert metric on the convex domain and, hence, the action on Ωρ is
properly discontinuous. Furthermore, as every ρpγq acts by isometries on Ωρ and
has an attracting fixed point on Λρ Ă BΩρ, it follows that ρpγq cannot have fixed
points in Ωρ, so that the action is also free. In conclusion, since the action is free
and properly discontinuous, we can associate to ρ the pseudo-Riemannian manifold
Mρ :“ Ωρ{ρpΓq. The quotient

CCpMρq :“ pCHpΛρq X Ωρq{ρpΓq

is the convex core of M .
Notice that Ωρ is by no means unique, however, the subset CHpΛρq Ă Ωρ does

not depend on the choice of the domain. Therefore, the geometry of the convex
core CCpMρq is also independent of the choice of Ωρ.

Let us observe that, as

Ωρ Y BΩρ Ă H2,n Y BH2,n

is simply connected, we can lift it to pH2,n Y B pH2,n.
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2.4. Hyperbolic surfaces and Teichmüller space. When n “ 0, Goldman
[Gol80] has shown that maximal representations in SO0p2, 1q correspond exactly to
holonomies of hyperbolic structures on Σ.

We will denote by T the classical Teichmüller space that parametrizes such
hyperbolic structures on Σ up to isotopy. We recall that our goal is to relate the
geometry of maximal representations to the one of hyperbolic surfaces.

We end this section by collecting some facts from classical Teichmüller theory
that will be needed later on starting from geodesic laminations which are one of
our main tools.

2.4.1. Geodesic laminations. We start with some familiar properties of the hyper-
bolic plane: Every geodesic on H2 can be uniquely identified by its pair of endpoints
on BH2 “ S1.

Definition 2.10 (Space of Geodesics). The space of unoriented geodesics of H2 is

G :“ pBΓ ˆ BΓ ´ ∆q{px, yq „ py, xq.

Given two geodesics ℓ, ℓ1 Ă H2 we can also describe their relative position by
looking at the configuration of their endpoints at infinity. More precisely:

Definition 2.11 (Crossing and Disjoint). Let a, b, a1, b1 P S1 be four points on a
circle such that a ‰ b and a1 ‰ b1. We say that the pairs pa, bq and pa1, b1q are
crossing if a1, b1 are contained in distinct components of S1 ´ ta, bu and disjoint
otherwise.

We now fix once and for all a reference hyperbolic structure on Σ and identify
BH2 with BΓ.

Definition 2.12 (Geodesic Lamination). A geodesic lamination λ on Σ is a closed

Γ-invariant subset λ̂ Ă G such that every pair of geodesics ℓ, ℓ1 P λ, the leaves of
the geodesic lamination, is disjoint.

A lamination is maximal if H2 ´ λ̂ consists of ideal triangles. Each connected

component of H2 ´ λ̂ is called a plaque.

We denote by GL the space of geodesic laminations on Σ. As geodesic laminations
are subsets of the spaces of closed subsets of G, the space GL is naturally endowed
with Chabauty (or Hausdorff) topology. It is a standard fact (see Proposition I.4.1.7
in [CEG06]) that GL is compact with respect to this topology.

For more material on laminations on surfaces we refer to Chapter I.4 of [CEG06].

2.4.2. Geodesic currents and measured laminations. Geodesic currents were intro-
duced by Bonahon [Bon88]. They are defined as follows:

Definition 2.13 (Geodesic Currents). A geodesic current is a Γ-invariant locally
finite Borel measure µ on G. We denote by C the space of geodesic currents.

The space C has a natural structure of a cone and is endowed with a natural
weak-‹ topology. Furthermore, it is endowed with a natural continuous symmetric
bilinear form

ip‚, ‚q : C ˆ C Ñ r0,8q,

called the intersection form. We briefly recall its definition, as we will use it later
on: Let J Ă G ˆ G be the space of pair of geodesics pℓ, ℓ1q intersecting transversely
ℓ&ℓ1. The group Γ acts properly discontinuously on J . Given two geodesic currents
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α, β P C, they induce a Γ-invariant measure α ˆ β on J and, hence, a well defined
measure αˆβ on the quotient J {Γ which it is possible to show to be always finite.
The intersection between α, β is defined as

ipα, βq :“ pα ˆ βqpJ {Γq.

Definition 2.14 (Measured Lamination). A measured lamination on Σ is a geo-
desic current µ P C such that ipµ, µq “ 0.

It is a standard fact, that, with this definition, the support of a measured lami-
nation is a geodesic lamination of Σ (see Proposition 17 of Bonahon [Bon88]). We
denote by ML the space of measured laminations on Σ.

Bonahon shows that the following natural objects associated to Σ embed canon-
ically in C:

‚ The space S of free homotopy class of closed curves of Σ.
‚ The space T of isotopy classes of hyperbolic metrics on Σ.

We will make no distinction between a point in these spaces and its image in the
space of currents C. Bonahon also proves that, with respect to the intersection form
ip‚, ‚q we have the following relations:

‚ If α, β P S, then ipα, βq is the intersection number between α, β.
‚ If α P S and X P T , then ipX,αq “ ℓXpαq is the length of α on X.

In particular, the intersection form provides a continuous extension of the length
function ℓXp‚q : S Ñ p0,8q to a continuous positive function on the space of
geodesic currents as ipX, ‚q : C Ñ p0,8q. For more details on such properties, we
refer to Bonahon [Bon88].

2.4.3. Shear coordinates. Let λ be a maximal lamination of Σ. Following Bonahon
[Bon96], we have the following definition:

Definition 2.15 (Hölder Cocycle). A Hölder cocycle transverse to λ is a real-valued

function on the set of pairs of distinct plaques of λ̂ that satisfies:

(1) Symmetry: For every pair of distinct plaques P,Q, we have σpP,Qq “

σpQ,P q.
(2) Additivity: For every pair of distinct plaques P,Q, and for every plaque R

that separates P from Q, we have σpP,Qq “ σpP,Rq ` σpR,Qq.
(3) Invariance: For every pair of distinct plaques P,Q and for every γ P Γ, we

have σpP,Qq “ σpγP, γQq.

We denote by Hpλ;Rq the space of Hölder cocycles transverse to λ. It is a real
vector space of dimension 3|χpΣq|.

Hölder cocycles are a useful device that allow to encode among other things the
following data:

‚ Every hyperbolic metric X P T has an associated shear cocycle σX
λ P

Hpλ,Rq that describes the relative position of the plaques of X ´ λ.
‚ Every measured lamination µ P ML with support contained in λ has an
associated transverse cocycle µ P Hpλ,Rq and a length functional Lµ :
Hpλ;Rq Ñ R whose evaluation on shear cocycles σX

λ coming from hyper-
bolic metrics X P T equals LXpµq.

We refer to Bonahon [Bon96] for the details of the construction.
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The space of Hölder cocycles transverse to λ is naturally endowed with a sym-
plectic form ωλp‚, ‚q, called the Thurston’s symplectic form, which essentially gen-
eralizes the notion of intersection between geodesic currents to transverse Hölder
distributions, in the sense of [RS75]. The form ωλ can be also described concretely
in terms of the classical algebraic intersection between 1-chains on a surface, inter-
pretation that will be recalled in Section 4.5.1 from the work of Bonahon [Bon96].

The Thurston symplectic form was deployed by Bonahon [Bon96] to relate the
notion of shear cocycle σX

λ associated to a hyperbolic structure X P T with the
notion of hyperbolic length for measured laminations. Concretely, we have that for
every X P T and µ P ML with support contained in λ, the following relation holds:

ωpσX
λ , µq “ LXpµq

(see in particular [Bon96, Theorem E]).
The Thurston symplectic form is particularly relevant in the study of shear

cocycles because it provides a complete characterization of the set of transverse
Hölder cocycles that can be realized as shears of hyperbolic metrics. Inspired by
ideas of Thurston [Thu98], Bonahon proved the following parametrization result:

Theorem 2.16 (Bonahon [Bon96, Theorems A, B]). For any maximal geodesic
lamination λ of Σ the map T Ñ Hpλ,Rq sending

X P T Ñ σX
λ P Hpλ,Rq

is a real analytic diffeomorphism. The image of the map is the open convex cone

C :“ tσ P Hpλ,Rq | ωpµ, σq ą 0 for every µ P ML with supppµq Ă λu

where ωp‚, ‚q is the Thurston’s symplectic form on Hpλ,Rq.

The resulting set of coordinates for Teichmüller space are called shear coordinates
relative to λ.

Let us mention that, Bonahon and Sözen [SB01] proved that the pulll-back of
the Thurston’s symplectic form ω via the above diffeomorphism is (a multiple of)
the Weil-Petersson symplectic form on Teichmüller space. In Section 7, we will
use the Weil-Petersson geometry of Teichmüller to study the length spectrum of
maximal representations ρ : Γ Ñ SO0p2, n` 1q.

When dealing with different spaces of Hölder cocycles Hpλ;Rq relative to nearby
laminations λ P GL, it is useful to identify all such spaces with the space of real
weights Wpτ ;Rq of a suitable train track τ carrying all the laminations considered.
This is particularly convenient when studying continuity properties of maps λ P

GL Ñ σλ P Hpλ;Rq as we will need later on.
Thus, we now briefly introduce train tracks and systems of real weights.

2.4.4. Train tracks. We recall the necessary terminology (see e.g. [PH92,Bon97b,
Bon97a,BD17]). We define a branch inside Σ to be a homeomorphism φ : r0, 1s ˆ

r0, 1s Ñ B (which we abusively identify with its image B). We refer to: (the images
of) the curves t ÞÑ φpt, ¨q as the ties of the branch B, to BvB :“ φpt0, 1u ˆ r0, 1sq

and BhB :“ φpr0, 1s ˆ t0, 1uq as its vertical and horizontal boundaries, respectively,
and to the images of the points in t0, 1u ˆ t0, 1u through the map φ as its vertices.

We then define a (trivalent) train track τ as a closed subset of Σ that can
be decomposed into the union of a finite number of branches pBiqi satisfying the
following conditions:
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i) every connected component of the intersection Bi X Bj between two dis-
tinct branches coincides a connected component of BvBi, it is contained
in a component of BvBj , and it contains exactly one vertex of Bj (up to
exchanging the roles of i and j);

ii) for every i, each vertex of Bi is contained in the vertical boundary of some
branch Bj , with i ‰ j;

iii) no complementary region of the interior of τ is homeomorphic to a disc
that intersects 0, 1 or 2 distinct components of the vertical boundaries of
the branches pBiqi.

Any tie of a branch Bi of τ that is not strictly contained inside a connected
component of the vertical of some (possibly different) branch Bj will be simply
called a tie of the train track τ . The horizontal boundary Bhτ of τ is defined as
the union of the horizontal boundaries of its branches, and the closure of Bτ ´ Bhτ
is called the vertical boundary Bvτ of τ . The ties of τ that contain a component
of Bvτ are called switches. A switch coincides with a connected component of the
vertical boundary of some branch Bi in τ , and strictly contains two components
of the vertical boundary of some branches Bj , Bk of τ (possibly two of the three
branches Bi, Bj , Bk coincide). Moreover, every switch contains exactly one con-
nected component c of the vertical boundary of τ .

If τ̃ is the preimage of τ in the universal cover of Σ, then a branch of τ̃ is simply
the lift of some branch of τ . Similarly we define the ties, the switches, the vertical
and horizontal boundary of τ̃ and of its branches. We say that a train track τ
carries a lamination λ if λ is contained in the interior of τ and every tie of τ is
transverse to the leaves of λ.

Train tracks come naturally together with a vector space of real weights as we
now describe.

2.4.5. Systems of real weights. Given τ a trivalent train track of Σ, a system of
real weights η “ pηiqi of τ is a real-valued function on the set of branches pBiqi

of τ that satisfies a natural linear constraint for every switch of τ (compare with
[Bon97a], or [Bon96, Section 3]): for any switch s, let Bs

i , B
s
j , B

s
k be the branches

of τ adjacent to s, and assume that s coincides with a connected component of the
vertical boundary of the branch Bs

i . If ηsi , η
s
j , η

s
k denote the weights associated by

η with Bs
i , B

s
j , B

s
k, respectively, then we require η to satisfy ηsi “ ηsj ` ηsk, for any

switch s of τ .
We denote by Wpτ ;Rq the space of systems of real weights of τ . Observe that

Wpτ ;Rq is naturally endowed with a real vector space structure, and its dimension
is completely determined by the topology of τ (see e. g. [Bon97b, Theorem 15]).
In particular, if τ carries a maximal lamination, which will be the only case we will
be interested in, then Wpτ ;Rq – R´3χpSq. Moreover, for any maximal lamination
λ1 carried by τ , there exists a natural isomorphism Hpλ1;Rq – Wpτ ;Rq, which can
be described as follows: let α be a Hölder cocycle transverse to λ1, and let Bi be a

branch of τ . Select arbitrarily a lift rBi of Bi to the universal cover rΣ, and select a

tie ki of rBi disjoint from its vertical boundary. Since τ carries λ1, there exist two
distinct plaques P 1

i , Q
1
i of λ1 whose interior contain the endpoints of ki. Then we

define the real weight of α associated with Bi to be αi :“ αpP 1
i , Q

1
iq P R. By the

properties of Hölder cocycles (see Definition 2.15), it is easy to check that the weight
αi does not depend on the choice of the lift of ki, and the weights pαiqi satisfy the
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switch conditions described above. The corresponding map Hpλ;Rq Ñ Wpτ ;Rq is
a linear isomorphism, as shown in [Bon97b, Theorem 11].

The space of real weights Wpτ ;Rq provides us a way to compare shear cocycles
associated with distinct maximal geodesic laminations that are close with respect
to the Hausdorff topology. Indeed, if pλmqm is a sequence of maximal geodesic
laminations that converges to λ, and λ is carried by a train track τ , then for m
sufficiently large τ carries λm. In particular, we have isomorphisms

Hpλm;Rq – Wpτ ;Rq – Hpλ;Rq.

2.5. Cross ratios. The last tool that we need are cross-ratios.
Our use of cross ratios will be twofold: On the one hand, we will use them to

abstractly define the shear cocycles of our pleated surfaces (the basic computation
will be exploited in Remark 4.6). On the other hand, they will also help us in the
study of the length spectrum of a maximal representation ρ as they provide a natural
Liouville current Lρ such that ipLρ, ‚q extends continuously the length spectrum
Lρp‚q from the space of closed geodesics S to the space of geodesic currents C.

Let us remark that cross ratios are also objects of interests in their own and
have been widely used to study maximal and Hitchin representations [Lab08,MZ19,
BIPP21], and questions about length spectrum rigidity of negatively curved mani-
folds [Ota90,Led95,Ham99,Ham97].

We now introduce these objects formally. Observe that the Gromov boundary BΓ
admits a natural Hölder structure. To see this, recall that the choice of a Fuchsian
representation ρ̂ : Γ Ñ PSL2pRq determines a unique ρ̂-equivariant homeomor-
phism ϕρ̂ : BΓ Ñ BH2. Different choices of Fuchsian representations ρ̂, ρ̂1 provide
homeomorphisms ϕρ̂, ϕρ̂1 that differ by post-composition with a quasi-symmetric
homeomorphism of BH2 – RP1. Since quasi-symmetric homeomorphisms are bi-
Hölder continuous with respect to any choice of a Riemannian distance on BH2, the
notion of Hölder continuous functions f : BΓ Ñ R is independent of the choice of
the Fuchsian representation ρ̂, and therefore intrinsic of the Γ-space BΓ.

Definition 2.17 (Cross Ratio). Let BΓp4q denote the space of 4-tuples pu, v, w, zq P

pBΓq4 satisfying u ‰ z and v ‰ w. A cross ratio is a Hölder continuous function
β : BΓp4q Ñ R that satisfies the following properties:

i) β is Γ-invariant with respect to the diagonal action of Γ on BΓp4q, i.e.
γ ¨ pu, v, w, zq “ pγu, γv, γw, γzq;

ii) For every u, v, w, z, x P BΓ we have

βpu, v, w, zq “ 0 ô u “ w or v “ z,

βpu, u, w, zq “ βpu, v, w,wq “ 1,

βpu, v, w, zq “ βpw, z, u, vq,

βpu, v, w, zq “ βpu, v, x, zqβpu, v, w, xq,

|βpu, v, w, zq| “ |βpu,w, v, zqβpu, z, w, vq|,

(1)

whenever the 4-tuples appearing above belong to BΓp4q.

Remark 2.18. Observe that the second and fourth relations in (1) imply that for
any 4-tuple of pairwise distinct points u, v, w, z P BΓ we have

(2) βpu, v, z, wq “ βpu, v, w, zq´1.
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In turn, relation (2) and the third symmetry in (1) imply that

(3) βpu, v, w, zq “ βpv, u, z, wq.

We alert the reader of the existence of multiple non-equivalent definitions of cross
ratios in the literature. For the reader’s convenience, we summarize the relations
between Definition 2.17 and other notions in the literature in Appendix A.

We now recall the notion of positive cross ratios from [Ham99] (see also [MZ19]):

Definition 2.19 (Positive Cross Ratio). A cross ratio β : BΓp4q Ñ R is said to be
positive if for every 4-tuple of pairwise distinct cyclically ordered points x, y, w, z P

BΓ it satisfies βpx, y, z, wq ě 1. We say that β is strictly positive if for every 4-tuple
x, y, w, z P BΓ as above we have βpx, y, z, wq ą 1.

A positive cross ratio has a natural notion of length functions associated to any
non-trivial element γ P Γ. We briefly recall its definition:

Definition 2.20 (Period of a Cross Ratio). Let β : BΓp4q Ñ R be a cross ratio.
For any γ P Γ ´ teu we define the β-period of γ to be

Lβpγq :“ log
∣∣βpγ`, γ´, x, γxq

∣∣,
for some x P BΓ ´ tγ`, γ´u, where γ` and γ´ denote the attracting and repelling
fixed points of γ in BΓ.

It is simple to deduce from the symmetries of cross ratio (see (1), (2), (3)) that
the quantity Lβpγq does not depend on the choice of x P BΓ ´ tγ`, γ´u, and it
satisfies Lβpγq “ Lβpγ´1q “ Lβpδγδ´1q for any γ, δ P Γ, with γ ‰ e.

As observed by Hamenstädt [Ham97] (see also Martone-Zhang [MZ19]), any
positive cross ratio β uniquely determines a geodesic current compatible with its
period functions, as described by the following result:

Theorem 2.21 ([Ham97, Lemma 1.10], [MZ19, Appendix A]). Every positive cross
ratio β : BΓp4q Ñ R is represented by a geodesic current Lβ P C, that is, for every
γ P Γ ´ teu we have

Lβpγq “ ipLβ , γq,

where Lβpγq denotes the β-period of γ.

The geodesic current Lβ will be called the Liouville current of β, in analogy
with the terminology introduced by Bonahon [Bon88, § 2] in the case of hyperbolic
structures on closed surfaces. By Theorem 2.21, the non-negative function

Lβ : C ÝÑ R
c ÞÝÑ ipLβ , cq

naturally extends the β-period functions to the entire space of geodesic currents.
Moreover we have:

Lemma 2.22. If β is a strictly positive cross ratio, then Lβpcq ą 0 for any non-
trivial geodesic current c P C.

Proof. The first part of the assertion follows immediately from the definition of the
intersection form on geodesic currents (see Section 2.4.2). Consider now a non-
trivial geodesic current c P C, and select a leaf ℓ1 in the support of c, namely a

point inside G “ GprΣq for which all neighborhoods have positive c-measure. We
now choose a geodesic ℓ P G that crosses ℓ1. We can find small intervals I, J and
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I 1, J 1 inside BΓ around the endpoints of ℓ and ℓ1, respectively, so that every pair of
geodesics ℓ P I ˜̂J :“ pI ˆ Jq{ „ and ℓ1 P I 1 ˜̂J 1 :“ pI 1 ˆ J 1q{ „ is crossing (here
„ denotes the equivalence relation px, yq „ py, xq on pBΓ ˆ BΓq{ „, compare with
Section 2.4.1). Accordingly with the notation introduced in Section 2.4.2, we have

ipLβ , cq “ pLβ ˆ cqpJ {Γq,

where J denotes the set of pairs of crossing geodesics in G ˆ G. Since Γ acts freely
and properly discontinuously on J , up to choosing smaller intervals I, J, I 1, J 1, we
can assume that the Borel-measurable set

K :“ pI ˜̂Jq ˆ pI 1 ˜̂J 1q Ă J

projects injectively inside J {Γ. In particular we have

pLβ ˆ cqpJ {Γq ě pLβ ˆ cqpKq

“ pLβqpI ˜̂Jq ¨ cpI 1 ˜̂J 1q.

By construction cpI 1 ˜̂J 1q ą 0, so it is enough to show that LβpI ˜̂Jq ą 0. This is
in fact a direct consequence of the definition of the Liouville current Lβ , and the
fact that β is strictly positive: indeed the measure Lβ satisfies

Lβpra, bs ˜̂ rc, dsq “ log βpa, b, c, dq

for any pair of disjoint intervals ra, bs, rc, ds in BΓ, where a, b, c, d are cyclically or-
dered (compare with [Ham97, Lemma 1.10], [MZ19, Appendix A]). Therefore, being
β strictly positive, we immediately conclude that LβpI ˜̂Jq ą 0, and consequently
ipLβ , cq ą 0, as desired. □

3. Laminations and pleated sets

In order to understand the geometry of maximal representations ρ : Γ Ñ SO0p2, n`

1q and relate it to the geometry of Teichmüller space T , we study certain 1- and
2-dimensional ρpΓq-invariant objects contained in the pseudo-Riemannian symmet-
ric space H2,n, namely geodesic laminations and pleated sets. Recall that every
maximal representation ρ : Γ Ñ SO0p2, n ` 1q has an associated acausal circle
ξ : BΓ Ñ Λρ Ă BH2,n.

Definition 3.1 (Λ-Lamination). Let Λ Ă BH2,n be an acausal curve. A Λ-
lamination is a closed subset λ Ă pΛ ˆ Λ ´ ∆q{px, yq „ py, xq such that every
pair of points pa, bq, pa1, b1q P λ gives disjoint pairs on Λ.

As Λ is an acausal curve, every pa, bq P Λ ˆ Λ ´ ∆ represents a spacelike line
ra, bs Ă H2,n. We define the geometric realization of a Λ-lamination λ in H2,n to

be λ̂ “ Ypa,bqPλra, bs.

Notice that the geometric realization λ̂ of λ is a closed subset of H2,n contained
in the convex hull CHpΛq Ă H2,n of the acausal curve Λ Ă BH2,n.

Definition 3.2 (ρ-Lamination). Let ρ : Γ Ñ SO0p2, n` 1q be a maximal represen-
tation with associated acausal curve Λρ Ă BH2,n. A ρ-lamination is a ρpΓq-invariant
Λρ-lamination.

As a first step, we establish the existence of geodesic laminations and discuss
their causal structure and topological features: As it turns out, they are always
acausal subsets (see Proposition 3.5).
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The main idea for acausality of laminations is the following: Consider two
geodesics ℓ, ℓ1 Ă H2,n with distinct endpoints on an acausal curve Λ Ă BH2,n.
The property of being acausal for the subset ℓ Y ℓ1 is equivalent to the condition
that Bℓ, Bℓ1 are not crossing. This is the content of Lemma 3.4. Acausality of the

geometric realization λ̂ of any Λ-lamination λ follows immediately.

When the Λ-lamination λ is maximal, we can add to its geometric realization λ̂
the geometric realizations of the complementary triangles. Together, they form the
pleated set Ŝλ of λ.

Definition 3.3 (Pleated Set). Let Λ Ă BH2,n be an acausal curve. Let λ be a

maximal Λ-lamination. The pleated set associated to λ is the set consisting of λ̂

and all spacelike triangles ∆ bounded by leaves of λ̂.

As it happens for geodesic laminations, also pleated sets are acausal subsets of
H2,n (see Proposition 3.6). In particular, they are always nicely embedded Lipschitz
subsurfaces of H2,n. Later, in the next sections, we will study the intrinsic geometry
of such surfaces Ŝλ: They are always endowed with an intrinsic hyperbolic metric
and with an intrinsic pseudo-metric.

The proof of acausality of Ŝλ relies on the acausality of λ̂ and on purely topo-

logical arguments: We show that in every Poincaré model D2 ˆ Sn of pH2,n, the

restriction of the induced projection π : pH2,n Ñ D2 to the pleated set Ŝλ is bijec-

tive. We prove that by analyzing D2 ´ πpλ̂q. With little work this is quickly seen

to imply that Ŝλ is acausal and, hence, it is the graph of a function gλ : D2 Ñ Sn
which is 1-Lipschitz with respect to the spherical metrics.

This brings us to the second part of the section where we show that the map
λ P GL Ñ gλ P Lip1pD2,Snq is continuous with respect to the natural topologies of
the two spaces (see Proposition 3.7).

In the last part, we conclude by studying the locus where the pleated set Ŝλ

is folded. This is the bending locus of Ŝλ. It does not necessarily agree with λ̂,
but we show that it is always a sublamination of it (see Proposition 3.9). The
bending locus will be used to characterize those curves that are strictly shorter in
the intrinsic hyperbolic metric of Sλ “ Ŝλ{ρpΓq than in the manifold Mρ.

3.1. Crossing geodesics and acausality. The following is the main computation
of the section: It shows that the topological property of being crossing or disjoint
is equivalent to a geometric property in the pseudo-Riemannian space H2,n.

Lemma 3.4. Let a, b, a1, b1 P Λ be four distinct points on an acausal circle Λ Ă

BH2,n such that the geodesics rc, ds with c, d P ta, b, a1, b1u are all spacelike. Then:

(i) The pairs pa, bq and pa1, b1q are disjoint if and only if the geodesics ℓ “

ra, bs, ℓ1 “ ra1, b1s are disjoint and the subset ℓY ℓ1 Ă H2,n is acausal.
(ii) The pairs pa, bq and pa1, b1q are crossing if and only if there is a timelike

geodesic which is orthogonal to both geodesics ℓ “ ra, bs and ℓ1 “ ra1, b1s.

Proof. We work in the quadric model pH2,n: Lift a, b, a1, b1 to representatives in the
isotropic cone of x‚, ‚y. We can parametrize ℓ by ℓptq “ peta`e´tbq{

a

´2xa, by and
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ℓ1 by ℓ1psq “ pesa1 ` e´sb1q{
a

´2xa1, b1y. With these parametrizations we have:

´ 2
a

xa, byxa1, b1y ¨ xℓptq, ℓ1psqy

“ ´xeta` e´tb, esa1 ` e´sb1y

“ ´et`sxa, a1y ´ et´sxa, b1y ´ e´t`sxb, a1y ´ e´t´sxb, b1y.

As the geodesics ra, a1s, ra, b1s, rb, a1s, rb, b1s are all spacelike, we have that the four
products xa, a1y, xa, b1y, xb, a1y, xb, b1y are all negative and, therefore, the function
pt, sq Ñ ´xℓptq, ℓ1psqy is proper. As a consequence, it has a global minimum m ą 0.
A small computation shows that the function has a unique critical point pt0, s0q,
which must coincide with the point of minimum, where it assumes the value

m “ ´xℓpt0q, ℓ1ps0qy

“

d

xa, a1yxb, b1y

xa, byxa1, b1y
`

d

xa, b1yxb, a1y

xa, byxa1, b1y

Let e1, ¨ ¨ ¨ en`3 be the canonical basis of R2,n`1. Up to isometries and rescaling,
we can assume that a “ ´e2`e3, a

1 “ e1`e3, b “ e2`e3, b
1 “ αe1`βe2`γe3`u with

u in the linear span of e4, ¨ ¨ ¨ , en`2 and α2 ` β2 “ 1. Furthermore, by acausality,

we have γ ą α, β and β ` γ ą 0. We identify pH2,n with D2 ˆ Sn via the chart ΨE

induced by the orthogonal decomposition R2,n`1 “ E ‘ F where E “ Spante1, e2u

and F “ Spante3, ¨ ¨ ¨ , en`3u. Under such identification we have

πD2paq “ p0,´1q, πD2pbq “ p0, 1q, πD2pa1q “ p0, 1q, πD2pb1q “ pα, βq P BD2,

and the above expression becomes
d

xa, a1yxb, b1y

xa, byxa1, b1y
`

d

xa, b1yxb, a1y

xa, byxa1, b1y
“

d

γ ´ β

2pγ ´ αq
`

d

β ` γ

2pγ ´ αq
.

Notice that πD2 induces a homeomorphism between Λ and BD2 so that the cyclic
order of a, b, a1, b1 on Λ is the same as the cyclic order of their projections to BD2.

A little algebraic manipulation shows that this quantity is ď 1 if and only if
a

γ2 ´ β2 ď ´α.

Also notice that, as b1 is isotropic, we always have 0 “ |b1|2 “ α2 ` β2 ´ γ2 ´ |u|2

with |u|2 ą 0 and, hence,
a

γ2 ´ β2 ď |α|.
Thus, we have the following two cases: If α ą 0, that is, if the pairs pa, bq

and pa1, b1q are disjoint, then the inequality
a

γ2 ´ β2 ă ´α is never satisfied and,
hence, m ą 1. Therefore, ℓptq, ℓ1psq are always distinct and the geodesic segments
rℓptq, ℓ1psqs are always spacelike which implies that the subset ℓY ℓ1 is acausal.

If α ă 0, that is, if the pairs pa, bq and pa1, b1q are crossing, then the inequality
a

γ2 ´ β2 ď ´α is always satisfied and, hence m ď 1. In this case, the geodesic
segment rℓpt0q, ℓ1ps0qs is timelike and, as xℓpt0q, ℓ1ps0qy realizes the minimum of
xℓptq, ℓ1psqy, it is also orthogonal to ℓ, ℓ1 at ℓpt0q and ℓ1ps0q. □

As a consequence of Lemma 3.4, we immediately get:

Proposition 3.5. Let Λ Ă BH2,n be an acausal curve. Let λ̂ be the geometric

realization of a Λ-lamination λ. Then λ̂ is a proper acausal subset.
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3.2. Pleated sets. We now study the topology and causal structure of a pleated
set associated to a maximal lamination.

A priori, a pleated set can be a very complicated topological subspace of H2,n.
We now show that, instead, Proposition 3.5 forces a good topological behaviour:

Proposition 3.6. Let Λ Ă BH2,n be an acausal curve. Let λ be a maximal. Let
Ŝλ Ă H2,n be the associated pleated set. Then Ŝλ is a topological Lipschitz acausal
subsurface.

Proof. We lift Λ to an acausal curve Λ̂ Ă B pH2,n.
The proof strategy is as follows: We show that in every Poincaré model D2 ˆ Sn

of pH2,n the pleated set Ŝλ is the graph of a function g : D2 Ñ Sn. We deduce that
Ŝλ is achronal which implies that the function g is 1-Lipschitz with respect to the
spherical metrics on D2 and Sn. Therefore, being a graph of a Lipschitz function,
the pleates set Ŝλ is a Lipschitz subsurface. Acausality will follow from the fact
that Ŝλ does not contain lightlike segments.

Let

Ψ : pD2 Y BD2q ˆ Sn Ñ pH2,n Y B pH2,n

be the Poincaré model associated to a splitting R2,n`1 “ E ‘EK with E spacelike

2-plane. Let π : pH2,n Y B pH2,n Ñ D2 Y BD2 be the projection to the first factor.

Recall that, as Λ̂ Ă B pH2,n is an acausal circle, the projection π restricts to a
homeomorphism π : Λ̂ Ñ BD2.

Consider the restriction of π to λ̂. By Proposition 3.5 and Lemma 2.6, π : λ̂ Ñ D2

is injective. It is also proper as π is a fibration with compact fibers. Hence, it is a

homeomorphism onto the image πpλ̂q. Notice that, by Lemma 2.7, every πpℓq is a

smooth proper arc joining the projections of the endpoints of ℓ on Λ̂.

We now show that the connected components of D2 ´ πpλ̂q correspond to the

triangles associated to λ̂. This comes from the fact that both triangles and con-
nected components can be characterized in terms of cyclic order of the endpoints

of the leaves of λ̂ and πpλ̂q and π induces a homeomorphism between Λ̂ and BD2.
First notice that π maps triangles to connected components: Let ∆ “ ∆pa, b, cq

be a triangle bounded by the leaves ra, bs, rb, cs, rc, as of λ̂. Since ∆ is contained
in a totally geodesic spacelike plane, by Lemma 2.7, the restriction of π to ∆ is a
homeomorphism onto the image. The image πpintp∆qq must be disjoint from the

other leaves πpℓq of πpλ̂q, otherwise πpℓq would intersect one of the sides πpB∆q “

πra, bs Y πrb, cs Y πrc, as. Thus πpintp∆qq is a connected component of D2 ´ πpλ̂q.

Then we show that every connected component of D2´πpλ̂q arises as a projection
of a triangle.

Let U Ă D2 ´ πpλ̂q be a connected component. The boundary BU is contained

in πpλ̂q, but there is more structure. In fact:

Claim 1. The boundary BU consists of a union of projections of leaves πpℓq.

Proof of the claim. Suppose that for a leaf ℓ of λ̂ we have πpℓqXBU ‰ H. We show
that πpℓq X BU is open and closed in πpℓq and, hence, by connectedness, we have
πpℓq Ă BU . It is clear that πpℓq X BU is closed as BU is closed in D2. Let us show
that it is open. Notice that πpℓq divides D2 in two half spaces D2 ´ πpℓq “ A Y A1

and U is contained in one of them, say U Ă A. We claim that there exists a small

neighborhood B of x such that BXA Ă D2 ´πpλ̂q. If this is the case, then BXπpℓq
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contains an open segment around x entirely contained in BU proving that BUXπpℓq
is open in πpℓq.

Suppose that we cannot find such a neighborhood B. Then there exists a se-
quence of distinct leaves ℓn and points xn P πpℓnq such that xn P A and xn Ñ x.
The sequence of leaves ℓn converges to ℓ in the Hausdorff topology of H2,n Y BH2,n

and, hence, their projections πpℓnq converge to πpℓq in the Hausdorff topology of
D2 Y BD2. As a consequence, if y is any point in U , for n large enough, πpℓnq

separates it from πpℓq as it will be contained in a small neighborhood of the closure
of πpℓq. This contradicts the fact that x P BU . □

Using the fact that λ is maximal, we show that

Claim 2. The boundary BU consists of the projection of three leaves of the form
πra, bs, πrb, cs, πrc, as.

Proof of the claim. If ℓ, ℓ1 are leaves with disjoint endpoints of λ, then there is a
leaf ℓ˚ whose endpoints separate the endpoints of ℓ from the endpoints of ℓ1. As
a consequence, πpℓ˚q must separates πpℓq from πpℓ1q which means that πpℓq, πpℓ1q

cannot be the boundary of a single connected component of D2 ´ πpλ̂q. We deduce
that every pair of boundary leaves of U share exactly one endpoint. This is possible
only if BU has at most three leaves. On the other hand, given two leaves πpℓq, πpℓ1q,

in every connected component of D2 ´ pπpℓq Y πpℓ1qq there is another leaf of πpλ̂q.
Therefore, BU must have at least three leaves so that BU corresponds to a triangle

bounded by leaves of λ̂. □

In conclusion, we have that the projection π restricted to the pleated set Ŝλ is
injective and has image D2.

We can now show that Ŝλ is a topological achronal subsurface.

Claim 3. Ŝλ is a topological achronal subsurface.

Proof of the claim. Suppose there there are two points on Ŝλ connected by a time-

like geodesic τ . Consider suitable local coordinates Ψ : D2 ˆ Sn Ñ pH2,n adapted
to a timelike sphere T containing τ and an orthogonal spacelike plane H, that is

ΨpD2ˆtvuq “ H and Ψpt0uˆSnq “ T . As the projection π : pH2,n Ñ D2 collapses τ

to a point, its restriction to Ŝλ cannot be injective and this contradicts the previous
claim. As a consequence Ŝλ is achronal and the function g : D2 Ñ Sn describing it
as a graph is 1-Lipschitz by Lemma 2.6. In particular Ŝλ is a topological Lipschitz
subsurface of H2,n. □

Finally, we have to show that Ŝλ is acausal.

Claim 4. Ŝλ is acausal.

Proof of the claim. Again, we work in local coordinates adapted to a timelike sphere
T and an orthogonal spacelike plane H, so that we can write Ŝλ as the graph of a
1-Lipschtiz function g : D2 Ñ Sn. By Lemma 2.5, the points p “ px, gpxqq and q “

py, gpyqq on Ŝλ are connected by a lightlike geodesic if and only if dSnpgpxq, gpyqq “

dS2px, yq. As g is 1-Lipschitz, this means that dSnpgptq, gpsqq “ dD2pt, sq for every
t, s on the geodesic arc rx, ys (in the hemispherical metric). Therefore the lightlike

geodesic rp, qs is contained in Ŝλ. In particular, either rp, qs is contained in a leaf of

λ̂, or rp, qs meets two different leaves, or it meets the interior of a complementary
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triangle. However a leaf, a pair of distinct leaves, and a complementary region are
all acausal subsets. Therefore, all these cases are not possible and we conclude that
Ŝλ must be acausal. □

This finishes the proof. □

In Sections 4, 5, and 6, we will prove that every pleated set Ŝλ Ă H2,n associated
to a maximal representation ρ : Γ Ñ SO0p2, n ` 1q and a maximal ρ-lamination
λ has a natural associated ρpΓq-invariant hyperbolic structure H2 and admits a

developing map f : Ŝ Ñ H2 which is 1-Lipschitz with respect to the intrinsic
pseudo-metric on Ŝλ and the hyperbolic metric.

The data of the pleated set Sλ “ Ŝλ{ρpΓq together with the intrinsic pseudo-
Riemannian metric, the intrinsic hyperbolic structure, and the 1-Lipschitz develop-
ing map f : Ŝλ Ñ H2 is what we will call a pleated surface.

3.3. Continuity of pleated sets. We now discuss continuity properties of pleated
sets associated to a maximal representation ρ : Γ Ñ SO0p2, n ` 1q and maximal
laminations λ P GL.

First notice that if Ωρ Ă H2,n is a properly convex open ρpΓq-invariant subset,

then Ωρ admits a lift to the 2-fold cover pH2,n. In particular, we can identify a

pleated set in H2,n, which is always contained in CHpΛρq Ă Ωρ, with its lift in pH2,n.

We will deal with two topologies: On the one hand, as pleated sets Ŝλ are

closed subset of pH2,n, they are endowed with a natural Chabauty topology. On

the other hand, if we fix a Poincaré model Ψ : D2 ˆ Sn Ñ pH2,n each Ŝλ can be
written as a graph of a 1-Lipschitz function gλ : D2 Ñ Sn (by Proposition 3.6 and
Lemma 2.6) and, therefore, we can also endow pleated sets with the topology of
uniform convergence of the functions gλ. Notice that covergence with respect to
this topology implies Chabauty convergence.

Proposition 3.7. Let ρ : Γ Ñ SO0p2, n ` 1q be a maximal representation. For

every Poincaré model Ψ : D2 ˆ Sn Ñ pH2,n, the map

λ P GL Ñ gλ P Lip1pD2,Snq

is continuous with respect to the Chabauty topology on GL and the uniform conver-
gence on compact subsets on Lip1pD2,Snq.

Proof. Let λm be a sequence of maximal laminations converging to a maximal
lamination λ in the Chabauty topology.

Let Ŝm, Ŝ be the corresponding pleated sets and let gm, g : D2 Ñ Sn be the
corresponding 1-Lipschitz maps. We want to show that gm Ñ g. Notice that,
being 1-Lipschitz, the maps gn converge uniformly on compact sets to a 1-Lipschitz
function g1 : D2 Ñ Sn up to subsequences. If we show that g1 “ g, then the
convergence gn Ñ g would follow.

We now argue that

Claim. Each x P Ŝ is the limit of a sequence xm P Ŝm.

This will be enough to conclude: In fact, suppose that this is the case. Pick x P Ŝ
and find xm P Ŝm as in the claim. Represent xm as pym, gmpymqq and x as py, gpyqq.
By assumption xm Ñ x so that ym Ñ y and gmpymq Ñ gpyq. However, by uniform
convergence gm Ñ g1, we have gmpymq Ñ g1pyq and, hence, g1pyq “ gpyq.
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Proof of the claim. In the proof of the claim we distinguish whether x belongs to
a leaf or to a plaque, but the arguments are very similar.

Consider a point x on a leaf ℓ̂ of λ̂. As λm converges in the Chabauty topology
to λ, the leaf ℓ Ă λ is the limit of a sequence of leaves ℓm Ă λm and, hence, also

the the geometric realization ℓ̂ is the Chabauty limit of the sequence of geometric

realizations ℓ̂m. Therefore, x P ℓ̂ is the limit of a sequence of points xm P ℓ̂m.

Consider a point x on a plaque ∆̂ of Ŝ ´ λ̂. As λm converges in the Chabauty
topology to λ, the plaque ∆ is the limit of a sequence of plaques ∆m of λm and,
hence, also the the geometric realization ∆̂ is the Chabauty limit of the sequence
of geometric realizations ∆̂m. Therefore x P ∆̂ is the limit of a sequence of points
xm P ∆̂m. □

This finishes the proof of the proposition. □

3.4. Bending locus. A pleated set Ŝλ associated to a maximal ρ-lamination λ is

not necessarily bent along all the leaves of λ̂.

Definition 3.8 (Bending Locus). Let ρ : Γ Ñ SO0p2, n ` 1q be a maximal repre-

sentation. Let λ be a maximal ρ-lamination with geometric realization λ̂. Let Ŝλ

be the corresponding pleated set. A point x P ℓ Ă λ̂ is in the bending locus if there
is no geodesic (necessarily spacelike) segment τ entirely contained in Ŝλ and such
that intpτq X ℓ “ x.

We now prove the following:

Proposition 3.9. The bending locus is a sublamination of λ̂.

Proof. We show that if x P ℓ Ă λ̂ is not in the bending locus, then a neighborhood

of ℓ is contained in a spacelike plane and, therefore, its intersection with λ̂ is not
in the bending locus. This implies that the bending locus is closed and consists of

a disjoint union of the leaves of λ̂.
Before staritng the proof, we recall a general structural result (see Theorem

I.4.2.8 in [CEG06]) for ρ-laminations: Every ρ-lamination λ decomposes as a dis-
joint union of a finite number of ρ-sublaminations λj that are minimal and a finite
number of orbits ρpΓqℓ of isolated leaves that are asymptotic in both directions
to leaves of the minimal components λj . A minimal component has the property
that every leaf is dense, that is, for every ℓ Ă λj there exists a sequence of distinct
elements γn P Γ such that ℓn “ ρpγnqℓ Ñ ℓ.

Suppose that x P ℓ Ă λ̂ is not contained in the bending locus. Let τ Ă Ŝλ be
a spacelike segment transverse to ℓ at x and entirely contained in Ŝλ. According
to the above decompostion, we have that either ℓ is isolated or it is contained in a
minimal component of λ.

If ℓ is isolated, then ℓ “ ∆ X ∆1 for two different components of Ŝλ ´ λ̂ and τ
intersects both ∆,∆1. In this case, we immediately conclude that the two triangles
∆,∆1 must be contained in the same spacelike plane. In particular, the whole line
ℓ is not contained in the bending locus.

If ℓ is contained in a minimal component of λ, then ℓ is dense in such compo-
nent. In this case, there are infinitely many pairwise distinct segments τn entirely
contained in Ŝλ and intersecting transversely ℓ: In fact, we can find a sequence
of pairwise distinct translates ℓn of ℓ such that ℓn Ñ ℓ. If the endpoints of ℓn
are sufficiently close to the endpoints of ℓ, then ℓn must intersect τ transversely,
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and every transverse intersection τ X ℓn can be translated back to τn X ℓ using the
isometry that brings ℓn to ℓ.

Consider now two distinct spacelike segments τ, τ 1 entirely contained in Ŝλ and

intersecting transversely ℓ. Every geodesic ℓ1 Ă λ̂ with endpoints sufficiently close
to those of ℓ must intersect both τ and τ 1. In particular, if ∆1 and ∆2 are triangles
of Ŝλ, with edges ℓ1, ℓ2 sufficiently close to ℓ, then τ, τ 1 intersect both intp∆1q and
intp∆2q. This implies that ∆1,∆2 lie on the same spacelike plane. Hence, all
triangles which have an edge sufficiently close to ℓ lie on the same spacelike plane.
By density of triangles in Ŝλ, we conclude that a neighborhood of ℓ in Ŝλ lies on
a spacelike plane H and, therefore, every point x P ℓ does not lie in the bending
locus. □

4. Hyperbolic structures on pleated sets I

Let ρ : Γ Ñ SO0p2, n` 1q be a maximal representation, and let λ be a maximal

geodesic lamination with associated pleated set Ŝλ Ă H2,n. After investigating the
causal and topological properties of Ŝλ, we now turn our attention on its geometric
structure. Being pleated sets obtained as unions of spacelike geodesics and ideal
triangles, a natural question that arises is whether the metrics on each totally
geodesic region ”patch nicely together”, determining an intrinsic hyperbolic metric
on Σ.

Inspired by the work of Bonahon [Bon96] in the context of hyperbolic surfaces,
we now intend to answer to this question by recording the relative position of the hy-
perbolic triangles that make up the pleated set Ŝλ into a shear cocycle σρ

λ P Hpλ;Rq

transverse to the lamination λ (see Section 2.4.3). Making use of Bonahon’s charac-
terization of hyperbolic shear cocycles in terms of lengths of measured laminations
(see Theorem 2.16), this will determine, for every maximal representation ρ and for
any maximal lamination λ, the intrinsic hyperbolic structure Xρ

λ P T of the pleated
set Sλ. The construction of the shear cocycles σρ

λ and the investigation of their
properties are going to be the main subject of the current and next sections.

In fact, the process that we will outline applies in a wider generality than the one
specifically needed for the study of pleated sets in H2,n. Indeed, the definition of the
cocycle σρ

λ will rely only on certain analytic properties of the cross ratio βρ naturally
associated to the representation ρ, namely on its positivity (see Definition 2.19)
and local boundedness (see Definition 4.2). Examples of cross ratios satisfying these
properties occur frequently in the literature about Higher Teichmüller Theories:
This is for instance the case for Hitchin representations in SO0pp, p`1q or Θ-positive
representations in SO0pp, qq (see e.g. Beyrer and Pozzetti [BP21] and Appendix A).

We can now describe our main result in this context:

Theorem 4.1. Let β : BΓp4q Ñ R be a positive and locally bounded cross ratio.

Then for every maximal lamination λ, the β-shear cocycle σβ
λ belongs to the closure

of the cone Cpλq Ă Hpλ;Rq, that is

ωλpσβ
λ , µq ě 0

for every measured lamination µ with suppµ Ď λ. Moreover, if the cross ratio β

is strictly positive, then ωλpσβ
λ , µq ą 0 for every non-trivial measured lamination µ

as above, and consequently there exists a unique hyperbolic structure Y “ Y β
λ P T

such that σβ
λ “ σY

λ P Hpλ;Rq.
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The proof of Theorem 4.1 will be concluded in Section 5.5. The current and
next sections (namely Section 4 and 5) focus on the development of the required
ingredients.

We start by briefly introducing the cross ratios βρ associated to maximal repre-
sentations ρ and investigating their properties.

4.1. Cross ratios of maximal representations. In what follows we describe a
cross ratio βρ on BΓ naturally associated to ρ : BΓ Ñ SO0p2, n ` 1q and its limit
map ξ. To this purpose, we start by defining a sign function on the set of 4-tuples
of points in BΓ as follows. Given ϕ some fixed homeomorphism between BΓ and
RP1, we set

Sgnpu, v, w, zq :“ sgn

ˆ

ϕpuq ´ ϕpwq

ϕpuq ´ ϕpzq

ϕpvq ´ ϕpzq

ϕpvq ´ ϕpwq

˙

,

for any pu, v, w, zq P BΓp4q, where sgnptq “ `1 if t ą 0, sgnp0q “ 0, and sgnptq “ `1
if t ă 0. It is simple to check that the function Sgn is independent of the choice of
the homeomorphism ϕ, and that Sgnpu, v, w, zq “ 0 if and only if u “ w or v “ z.

For any maximal representation ρ : Γ Ñ SO0p2, n ` 1q with associated acausal
limit map ξ : BΓ Ñ BH2,n we then define

(4) βρpu, v, w, zq :“ Sgnpu, v, w, zq

ˆ

xξpuq, ξpwqy

xξpuq, ξpzqy

xξpvq, ξpzqy

xξpvq, ξpwqy

˙1{2

,

for any pu, v, w, zq P BΓp4q, where x¨, ¨y denotes the scalar product x¨, ¨yp2,n`1q, and

we are implicitly selecting representatives in R2,n`1 of the equivalence classes ξpyq,
for y P tu, v, w, zu. By Theorem 2.9, the scalar products involved in the definition
above are all non-zero. Moreover, the quantity appearing under the square root
does not depend on the chosen lightlike representatives of the equivalence classes
ξpuq, ξpvq, ξpwq, ξpzq, and it is always non-negative. Since ρ preserves the scalar
product x¨, ¨yp2,n`1q and the diagonal action of Γ on BΓp4q preserves Sgn, the function
βρ is Γ-invariant. Finally, the Hölder continuity of βρ at any point pu, v, w, zq P

BΓ is a direct consequence of the Hölder continuity of the limit map ξ, which is
guaranteed by Theorem 2.9). It is straightforward to check that maps βρ associated
to SO0p2, n` 1q-maximal representations as in (4) satisfy the symmetries listed in
(1).

We now turn our attention to the notion of locally bounded cross ratio. To this
purpose, we need to introduce some notation. We select an identification of the

universal cover rΣ with H2 through the choice of a hyperbolic structure X P T .
Moreover, given ℓ an oriented geodesic of H2, we denote by ℓ` and ℓ´ the positive
and negative endpoints of ℓ in BH2 – BΓ, respectively. If ℓ and h are two disjoint
oriented geodesics in H2, then we say that ℓ and h are coherently oriented if their
endpoints satisfy ℓ` ď h` ă h´ ď ℓ´ ă ℓ` with respect to some cyclic order on
BΓ. With this notation, we now define:

Definition 4.2 (Locally Bounded). A cross ratio β : BΓp4q Ñ R is said to be locally
bounded if there exists a (and consequently for any) hyperbolic structure X P T
such that, for any constant D ą 0 we can find C,α ą 0 such that∣∣log βph`, ℓ`, ℓ´, h´q

∣∣ ď C
∣∣log βXph`, ℓ`, ℓ´, h´q

∣∣α
for any pair of coherently oriented geodesics ℓ, h in rΣ – H2 satisfying 0 ă dH2pℓ, hq ď

D.



SO0p2, n ` 1q-MAXIMAL REPRESENTATIONS AND HYPERBOLIC SURFACES 37

The term log βXph`, ℓ`, ℓ´, h´q appearing in the definition above has a pre-
cise geometrical interpretation in terms of 2-dimensional hyperbolic geometry, as
described by the following lemma:

Lemma 4.3. Let X P T . For any pair of coherently oriented disjoint geodesics ℓ, h

in H2 – rΣ, the value βXpℓ`, h`, h´, ℓ´q is strictly positive and satisfies

log βXph`, ℓ`, ℓ´, h´q “ 2 log cosh
dH2pℓ, hq

2
.

We now prove positivity and local boundedness of the cross ratios βρ, properties
that will be crucial for the construction of shear cocycles developed in Section 5.

Lemma 4.4. For every maximal representation ρ : Γ Ñ SO0p2, n ` 1q, the cross
ratio βρ is strictly positive and satisfies relation (17).

Proof. Let pu, v, w, zq be a 4-tuple of distinct and cyclically ordered points in BΓ. Up
to the action of SO0p2, n` 1q, we can assume that ξpuq “ e2 ` e3, ξpvq “ ´e1 ` e3,
ξpwq “ ´e2 ` e3. Moreover, since u, v, w, z are cyclically ordered, ξpzq can be
expressed as ξpzq “ cosϑ e1 ` sinϑ e2 ` x, where ϑ P p´π{2, π{2q, and x is some
timelike vector of norm ´1 orthogonal to the spacelike plane spanned by e1 and e2.
Being ξpBΓq a spacelike curve in H2,n, we see that ϑ and x must satisfy

(5) ´ 1 ď xe3, xy ă ´|sinϑ|.
Observe that Sgnpu, v, w, zq “ `1. Therefore, by definition of βρ and the normal-
ization selected, we have

βρpu, v, w, zq “

ˆ

2pxe3, xy ´ cosϑq

xe3, xy ` sinϑ

˙1{2

.

From this identity, it is immediate to see that βρpu, v, w, zq ą 1 if and only if
xe3, vy ´ sinϑ ă 2 cosϑ. This inequality is always satisfied: The left-hand side is
negative by (5), while the right-hand side is positive since ϑ P p´π{2, π{2q. □

Lemma 4.5. For any maximal representation ρ : Γ Ñ SO0p2, n ` 1q, the positive
cross ratio βρ is locally bounded.

Proof. Fix D ą 0, and let A “ AD be the subset of BΓp4q given by

tph`, ℓ`, ℓ´, h´q | ℓ, h coherently oriented, 0 ă dH2pℓ, hq ď Du.

If F : A Ñ R denotes the function

F pu, v, w, zq :“
|log βρpu, v, w, zq|
|log βXpu, v, w, zq|α

,

then the statement is equivalent to F being bounded (observe that F is well defined
on A by Lemma 4.3). Since F is invariant with respect to the diagonal action of
Γ, it induces a continuous function on the quotient space A{Γ. We introduce a
convenient exhaustion by compact subsets of A{Γ. For any d P p0, Ds, let Ad be
the subset of A given by

tph`, ℓ`, ℓ´, h´q | ℓ, h coherently oriented, d ď dH2pℓ, hq ď Du.

Then it is immediate to see that the fundamental group Γ acts cocompactly on Ad

for every d ą 0. In particular F admits an upper bound on Ad for any d ą 0.
Assume now that F is not bounded over A. Then there exist sequences of

coherently oriented geodesics ℓn, hn in H2 such that F ph`
n , ℓ

`
n , ℓ

´
n , h

´
n q tends to `8
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as n goes to 8, and dH2pℓn, hnq ď D. Since Ad{Γ is compact for every d ą 0, and
the 4-tuples ph`

n , ℓ
`
n , ℓ

´
n , h

´
n q are escaping every compact subset of A{Γ, we must

have that dH2pℓn, hnq tends to 0 as n goes to 8. Up to the action of Γ, we can
assume that all the geodesics ℓn intersect a fixed fundamental domain for Σ in H2,
and therefore that pℓnqn converges to some geodesic ℓ, up to subsequence. Since
dH2pℓn, hnq tends to 0, the geodesics hn also converge up to subsequence to some h,
with dH2pℓ, hq “ 0. In particular, we have two possibilities: Either ℓ “ h, or ℓ and h
are asymptotic to each other. In both cases we have that ℓ˘ ‰ h¯ P RP1. Moveover,

up to choosing a different identification between rΣ and H2, we can assume that the
points ℓ˘ are h˘ are different from 8 P RP1.

By the properties of cross ratios and their continuity we observe that both terms
βρph`

n , ℓ
`
n , ℓ

´
n , h

´
n q, βXph`

n , ℓ
`
n , ℓ

´
n , h

´
n q converge to 1 as n Ñ 8. The rest of the proof

will be dedicated to the study of the order of convergence to 0 of the logarithm of
these terms, which will lead to a contradiction with F being unbounded.

We start from the term involving βX : By the symmetries of the standard hy-
perbolic cross ratio, we observe

βXph`
n , ℓ

`
n , ℓ

´
n , h

´
n q “ 1 ´ βXph`

n , ℓ
´
n , ℓ

`
n , h

´
n q

“ 1 ´
h`
n ´ ℓ`

n

h`
n ´ h´

n

ℓ´
n ´ h´

n

ℓ´
n ´ ℓ`

n

Notice that the denominator ph`
n ´ h´

n qpℓ´
n ´ ℓ`

n q converges to ph` ´ h´qpℓ´ ´ ℓ`q,
which is different from 0. On the other hand, since dH2pℓ, hq “ 0, the factor
ph`

n ´ ℓ`
n qpℓ´

n ´ h´
n q is infinitesimal. Therefore we deduce that

(6) lim
nÑ8

∣∣log βXph`
n , ℓ

`
n , ℓ

´
n , h

´
n q

∣∣∣∣ph`
n ´ ℓ`

n qpℓ´
n ´ h´

n q
∣∣ “

1

|ph` ´ h´qpℓ´ ´ ℓ`q|
“:M,

where M is strictly positive.
Let now ξ : BΓ Ñ SO0p2, n ` 1q denote the limit map associated to the repre-

sentation ρ. In order to study the behavior of the cross ratios βρph`
n , ℓ

`
n , ℓ

´
n , h

´
n q, it

will be convenient to introduce representatives of the projective classes ξpℓ˘
n q, ξph˘

n q,
by selecting some affine hyperplane V in R2,n`1 intersecting the projective classes
ξpℓ˘q, ξph˘q and pick representatives belonging to V . We will continue to denote
with abuse these representatives by ξpℓ˘

n q, ξph˘
n q. Consider now

βρph`
n , ℓ

`
n , ℓ

´
n , h

´
n q2 “

xξph`
n q, ξpℓ´

n qy

xξph`
n q, ξph´

n qy

xξpℓ`
n q, ξph´

n qy

xξpℓ`
n q, ξpℓ´

n qy
.

Since ξpℓ˘
n q, ξph˘

n q Ñ ξpℓ˘q, ξph˘q, respectively, the above quantity converges to 1.
A simple algebraic manipulation shows that

βρph`
n , ℓ

`
n , ℓ

´
n , h

´
n q2 ´ 1 “

xξph`
n q, ξpℓ´

n q ´ ξph´
n qyxξpℓ`

n q ´ ξph`
n q, ξph´

n qy

xξph`
n q, ξph´

n qyxξpℓ`
n q, ξpℓ´

n qy
`

´
xξpℓ`

n q ´ ξph`
n q, ξpℓ´

n q ´ ξph´
n qyxξph`

n q, ξph´
n qy

xξph`
n q, ξph´

n qyxξpℓ`
n q, ξpℓ´

n qy

Let now L ą 0 be a positive constant such that |xu, vy| ď L∥u∥0∥v∥0, for some fixed
Euclidean norm ∥¨∥0 on R2,n`1. We deduce that∣∣βρph`

n , ℓ
`
n , ℓ

´
n , h

´
n q2 ´ 1

∣∣ ď 2L∥ξph`
n q∥ 0∥ξph´

n q∥ 0

∥ξpℓ`
n q ´ ξph`

n q∥ 0∥ξpℓ´
n q ´ ξph´

n q∥ 0∣∣xξph`
n q, ξph´

n qyxξpℓ`
n q, ξpℓ´

n qy
∣∣ .
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Since ξpℓ˘
n q, ξph˘

n q are converging to ξpℓ˘q, ξph˘q, and ξpℓ˘q ‰ ξph¯q, we can find
a constant M 1 ą 0 such that∣∣βρph`

n , ℓ
`
n , ℓ

´
n , h

´
n q2 ´ 1

∣∣ ď M 1∥ξpℓ`
n q ´ ξph`

n q∥ 0∥ξpℓ´
n q ´ ξph´

n q∥ 0.

Moreover, being ξ a Hölder continuous function with exponent α, we conclude that
for n sufficiently large∣∣log βρph`

n , ℓ
`
n , ℓ

´
n , h

´
n q

∣∣ “
1

2
log

`

1 ` pβρph`
n , ℓ

`
n , ℓ

´
n , h

´
n q2 ´ 1q

˘

ď
M 1

2
∥ξpℓ`

n q ´ ξph`
n q∥ 0∥ξpℓ´

n q ´ ξph´
n q∥ 0

ď M2
∣∣ph`

n ´ ℓ`
n qpℓ´

n ´ h´
n q

∣∣α,
for some constant M2 ą 0 (here we are considering ξ as a Hölder function from
a neighborhood of ℓ˘, h˘ in R Ă RP1 “ BH2 to H2,n Ă V with their Euclidean
metrics). Finally, combining this inequality with relation (6), we obtain that

lim sup
nÑ8

|log βρpu, v, w, zq|
|log βXpu, v, w, zq|α

ď
M2

M
,

which contradicts the fact that F ph`
n , ℓ

`
n , ℓ

´
n , h

´
n q diverges. We conclude that F

is bounded on A, and therefore that there exists a constant C ą 0 satisfying the
requirements. □

We therefore conclude that the cross ratios βρ associated to maximal represen-
tations ρ : Γ Ñ SO0p2, n` 1q satisfy the hypotheses of Theorem 4.1.

4.2. Outline of the construction. We now move to the definition of shear cocy-
cles associated to positive locally bounded cross ratios and maximal laminations.
Throughout the rest of Section 4, β will always denote a cross ratio on BΓ, and λ
a maximal geodesic lamination on Σ.

Consider two distinct plaques P,Q of λ. The shear σβ
λpP,Qq between the dis-

tinct plaques P,Q of λ will be defined following a careful approximation argument
which depends on the fine properties of maximal geodesic laminations in hyperbolic
surfaces. In order to describe the first steps of our construction, let us introduce
some notation: We say that a plaque R (or a leaf ℓ) of λ separates P from Q if P

and Q are contained in distinct connected components of rΣ ´ R (or rΣ ´ ℓ). We
denote by PPQ the set of plaques of λ that separates P from Q.

In the remainder of the current section we will proceed as follows:

§ 4.3: We start by recalling a simple process – already described by Bonahon in
[Bon96] – that, starting from a finite subset of plaques P Ď PPQ, pro-

duces a finite lamination λP of rΣ containing all the leaves of λ that lie in
the boundary of some plaque in P. We introduce the elementary β-shear
between two adjacent complementary regions of λP , which naturally gen-
eralizes the classical definition in hyperbolic geometry. We then define the

finite β-shear with respect to P, denoted by σβ
PpP,Qq, as the sum of the

elementary shears between all adjacent complementary regions of λP .
§ 4.4: In this section we focus our attention on the notion of β-shears for finite

leaved maximal laminations. We observe how the relations satisfied by finite
β-shears (from Section 4.3) allow to define β-shear cocycles associated to
finite leaved maximal lamination in a fairly elementary and natural way
(see in particular Proposition 4.9).
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§ 4.5: Lastly, we investigate the connections between β-shear cocycles associated
to a finite leaved lamination, and the β-periods of its closed leaves (see
Proposition 4.11). The bridge between these notions is provided by the
Thurston symplectic form, through which hyperbolic shear cocycles are fully
characterized (see Theorem 2.16).

4.3. Finite shears between plaques. We start by introducing the notion of finite
β-shear between plaques of a maximal geodesic lamination.

Let X be a hyperbolic structure on Σ. Given any finite subset P of PPQ, we

select an X-geodesic path k in prΣ, rXq joining two points in the interior of (the
rX-geodesic realizations of) P and Q, and we index the plaques P1, . . . , Pn in P
according to their order along k, moving from P to Q. It is immediate to check
that the ordering is independent of the choice of the arc k. We set also P0 :“ P

and Pn`1 :“ Q. For every i, let ℓPi and ℓQi be the boundary leaves of Pi that face

P and Q, respectively. If Si denotes the (possibly empty) region of rΣ delimited by

ℓQi and ℓPi`1, for every i P t0, . . . , nu, we define di to be the geodesic that joins the

negative endpoints of the leaves ℓQi and ℓPi`1, as we orient them as boundary of the

strip Si (if ℓQi and ℓPi`1 share one or two endpoints, then we take di “ ℓQi ). For

every P Ă PPQ as above, let now λP be the (finite) geodesic lamination of rΣ given
by

λP :“ tℓQ0 , d0, ℓ
P
1 , ℓ

Q
1 , d1, . . . , ℓ

P
n , ℓ

Q
n , dn, ℓ

P
n`1u,

where the leaves are listed as we move from P to Q. The complementary set of

the lamination λP in rΣ consists of two half-planes containing the plaques P and
Q, and a finite number of spikes, i. e. regions bounded by two distinct asymptotic
geodesics, that separate P from Q.

Consider now two adjacent complementary regions R,R1 of λP . We denote by
ℓ the leaf of λP shared by R and R1, and we select arbitrarily an orientation on ℓ.
Let ul (ur resp.) be the ideal vertex in pR Y R1q X BΓ that lies on the left (right
resp.) of the geodesic ℓ. If one of the regions R,R1 on the sides of ℓ coincides with a
half-plane containing P or Q, then we select ul or ur to be the vertex of the plaque
P or Q different from ℓ` and ℓ´. Then we set

(7) σβpR,R1q :“ log
∣∣βpℓ`, ℓ´, ul, urq

∣∣,
and we define the finite β-shear between P and Q relative to P to be

σβ
PpP,Qq :“

m
ÿ

i“0

σβpRi, Ri`1q,

where R0, R1, . . . , Rm`1 are the complementary regions of λP as we move from P
to Q. By the symmetry (3) of the cross ratio β, each term σβpRi, Ri`1q does not
depend on the choice of the orientation of the leaf separating Ri and Ri`1, and

σβpRi, Ri`1q “ σβpRi`1, Riq for every i. Notice also that σβ
PpP,Qq “ σβ

PpQ,P q.

Remark 4.6. The definition of the cross ratio βρ provided in Section 4.1 is designed
so that the shear σρpT, T 1q between two adjacent ideal triangles (or spikes) coincides

with the classical shear between their spacelike realizations T̂ and T̂ 1 inside H2,n

(i.e. if T has ideal vertices a, b, c P BΓ, then T̂ is the spacelike triangle with ideal
vertices ξpaq, ξpbq, ξpcq P BH2,n), measured with respect to the induced hyperbolic

path metric on T̂ Y T̂ 1.
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In order to justify this assertion we need to introduce some notation. As we
did previously, we denote by ℓ the geodesic shared by R and R1 together with an
arbitrary choice of orientation, and by ul and ur the ideal vertices in pRYR1q X BΓ
that lie on the left and on the right of ℓ, respectively. Since ξ : BΓ Ñ H2,n

is a spacelike curve by Theorem 2.9, there exist unique spacelike planes Hl and
Hr in H2,n whose boundary at infinity contain the triples ξpℓ`q, ξpℓ´q, ξpulq and

ξpℓ`q, ξpℓ´q, ξpurq, respectively. If R̂ and R̂1 denote the regions of Hl and Hr

delimited by the spacelike geodesics corresponding to the boundary leaves of R and
R1, respectively, then the set R̂ Y R̂1 possesses a natural hyperbolic metric with
geodesic boundary induced by the hyperbolic distances on Hl and Hr.

Let now ξ̃pℓ˘q, ξ̃pulq, ξ̃purq be representatives of the projective classes ξpℓ˘q,
ξpulq, ξpurq, respectively, so that all their pairwise scalar products are negative

(this is possible again by Theorem 2.9). The vectors ξ̃pℓ`q and ℓ̃pℓ´q generate a
2-plane V in R2,n`1 of signature p1, 1q. Moreover, the orthogonal projection of a
vector w P R2,n`1 onto V can be expressed as

ppwq “
xw, ξ̃pu´qy

xξ̃pu`q, ξ̃pu´qy
ξ̃pu`q `

xw, ξ̃pu`qy

xξ̃pu`q, ξ̃pu´qy
ξ̃pu´q.

From here a simple computation shows that log |βρpℓ`, ℓ´, ul, urq| coincides with

the signed distance between the projective classes of ppξ̃pulqq and ppξ̃purqq along
the oriented spacelike geodesic rξpℓ´q, ξpℓ`qs, which can be parametrized by

ℓptq “
1

b

´2xξ̃pu`q, ξ̃pu´qy

petξ̃pu`q ` e´tξ̃pu´qq.

On the other hand, the projection ppξpulqq can be characterized in terms of

the hyperbolic metric of R̂ Y R̂1 as the unique point of the line ℓ “ rξpℓ´q, ξpℓ`qs

that is joined to the ideal vertex ξpulq by a geodesic ray in Hl orthogonal to ℓ,
and similarly for ppξpurqq and Hr. Since the classical hyperbolic shear between
two ideal triangles (or spikes) that share a boundary geodesic h coincides with the
signed distance between the projection of their ideal vertices different from h˘,
we deduce that log |βρpu`, u´, ul, urq| coincides with the classical notion of shear

between the plaques R̂, R̂1.

We now highlight a few properties satisfied by finite β-shears. Since the proofs
of these relations are elementary and only rely on the symmetries of the cross ratio
β, we postpone them to Appendix B. In what follows, we fix a maximal geodesic
lamination λ, and we denote by λc the sublamination of λ consisting of the lifts
of all simple closed geodesics contained in λ. Notice that λc is non-empty for any
finite leaved maximal lamination λ.

4.3.1. Shear between plaques sharing a vertex. Let P and Q be two distinct plaques
of λ that share an ideal vertex w P BΓ. We label the vertices of P and Q that are
different from w as uP , vP and uQ, vQ, respectively, so that the leaves rw, vP s and
rw, vQs separate the interior of the plaque P from the interior of the plaque Q.
Then we have:

Lemma 4.7. For every finite subset P Ă PPQ

σβ
PpP,Qq “ log |βpw, vP , uP , vQqβpw, vQ, vP , uQq|.
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In particular the shear between P and Q is independent of the selected family of
plaques P Ă PPQ.

4.3.2. Shear between plaques asymptotic to a closed leaf. Consider now two plaques
P and Q of λ that are separated by exactly one component ℓ of λc. Select arbitrarily
an orientation of ℓ, and assume that the plaque P has a vertex equal to ℓ` and
that lies on the left of ℓ. Similarly, assume that Q lies on the right of ℓ and that
one of its vertices is equal to ℓ´. We denote by xP , yP and xQ, yQ the vertices of P
and Q different from ℓ` and ℓ´, respectively, so that ryP , ℓ

`s and ryQ, ℓ
´s are the

boundary components of P and Q closest to ℓ. Then we have:

Lemma 4.8. For every finite subset P Ă PPQ

σβ
PpP,Qq “ log

∣∣βpℓ`, yP , xP , ℓ
´qβpℓ´, ℓ`, yQ, yP qβpℓ´, yQ, xQ, ℓ

`q
∣∣.

In particular the shear between P and Q is independent of the selected family of
plaques P Ă PPQ.

4.4. Shear cocycles: Finite case. We now focus on the construction of β-shear

cocycles σβ
λ associated to finite leaved maximal geodesic laminations, and the in-

vestigation of their properties. Thanks to the relations described in Lemmas 4.7
and 4.8, it is possible to carry out the analysis of shear cocycles with respect to finite
leaved laminations in a fairly elementary way, without any subtle approximation
argument.

Even though not generic, the convenience of examining the finite leaved case
separately is twofold. On the one hand, it serves as a guideline and motivation for
the analysis in the general case. On the other, the naturality of β-shear cocycles for
finite leaved laminations, combined with the continuous dependence from Proposi-
tion 5.10, shows that the approximation process described in Section 5.2 produces
cocycles that are independent of their construction (see in particular Section 5.1
and Lemma 5.7).

Until the end of the current section, λ will denote a finite leaved maximal lami-
nation of Σ. Recall that every leaf of a lamination of this form projects in Σ either
onto a simple closed geodesic, or onto a simple bi-infinite geodesic, and in the latter
case each of its ends accumulates onto a (possibly common) simple closed geodesic.

We start by outlining the definition of the β-shear cocycle relative to λ. Consider
two plaques P and Q of λ, and denote by ℓP and ℓQ the boundary leaves of P and
Q, respectively, that separate the interior of P from the interior of Q. Notice that
the geodesics ℓP , ℓQ, lying in the boundary of a plaque of λ, project onto simple
bi-infinite geodesics in Σ. We then choose arbitrarily an oriented geodesic segment
k starting at a point in the interior of P and reaching a point in the interior of Q.
By compactness, there exist only finitely many leaves of λ that intersect k and that
project onto simple closed geodesics of Σ. We label them as ℓ1, . . . , ℓn, following
the order in which we meet them moving along the segment k, and we orient each
ℓi from right to left with respect to k. For any i, we now select plaques Pi and Qi

that lie on the left and on the right of ℓi, respectively, and that have ℓ`
i or ℓ´

i as
one of their vertices (if P has a vertex equal to ℓ`

1 or ℓ´
1 , then we choose P1 “ P ,

and similarly for Q, Qn, and ℓn). Since Qi and Pi`1 are not separated by any lift
of simple closed leaves, the set of plaques PQiPi`1

is finite for any i “ 1, . . . , n´ 1.
For the same reason we see that the sets PPP1

and PQnQ are finite. Finally, we set

P :“ PPP1
Y PQ1P2

Y ¨ ¨ ¨ Y PQn´1Pn
Y PQnQ,
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and we define the β-shear between P and Q to be

σβ
λpP,Qq :“ σβ

PpP,Qq.

It is not difficult to show that the quantity σβ
λpP,Qq is independent of the collection

of plaques P selected following the aforementioned procedure. To see this, it is in

fact enough to check that σβ
PpP,Qq “ σβ

P 1 pP,Qq for any finite extension P 1 Ą P
obtained as above. Notice that any such P 1 Ă PPQ is of the form

P 1 “ PPP 1
1

Y PQ1
1P

1
2

Y ¨ ¨ ¨ Y PQ1
n´1P

1
n

Y PQ1
nQ
,

where P 1
i and Q

1
i are plaques that lie on the left and on the right of ℓi, respectively.

In fact, it is not restrictive to assume that P 1
i ‰ Pi and Qi ‰ Q1

i, in which case
both P 1

i and Q
1
i separate Pi from Qi. Observe also that both pairs Pi, P

1
i and Qi, Q

1
i

share one of the endpoints of ℓi as a vertex, and exactly one of the following hold:
Either the plaques Pi and Qi (and consequently P 1

i and Q
1
i) have a common vertex,

equal to ℓ`
i or ℓ´

i , or Pi and Qi do not share any vertex. By Lemma 4.7 in the
former case, and Lemma 4.8 in the latter, we have

σβpPi, Qiq “ σβpPi, P
1
i q ` σβpP 1

i , Q
1
iq ` σβpQ1

i, Qiq

for every i “ 1, . . . , n, which implies the equality between the finite β-shears com-
puted with respect to the set of plaques P and P 1.

To prove that σβ
λ is indeed a transverse Hölder cocycle (see Definition 2.15),

one can proceed with a process analogous to the one described in the proof of
Lemma 5.9, without the need of any convergence argument. Based on this, we omit
a proof of this assertion, and postpone it to the general case. We can summarize
the above discussion in the following statement:

Proposition 4.9. Let β be a cross ratio. Then for every finite leaved maximal

lamination λ, the map pP,Qq ÞÑ σβ
λpP,Qq defines a Hölder cocycle σβ

λ P Hpλ;Rq

naturally associated to β and λ.

4.5. Shears and length functions: Finite case. We conclude our analysis of
β-shear cocycles associated to finite leaved maximal laminations examining their
relations with the periods of the cross ratio β (see in particular Proposition 4.11).
As already observed in the work of Bonahon [Bon96], length functions provide a
complete characterization of the set of transverse Hölder cocycles in Hpλ;Rq that
arise as shear cocycles of hyperbolic structures on a closed surface with respect
to the maximal lamination λ (see in particular Theorem 2.16). The connection
between β-shears and β-periods rely on the properties of the Thurston symplectic
form on Hpλ;Rq, a skew-symmetric non-degenerate bilinear form, whose definition
is recalled in Section 4.5.1.

The combination of the analysis in the finite leaved case (developed in this sec-
tion) together with the continuity results of β-shear cocycles (described in Section
5.3 below) will eventually allow us to relate β-shear cocycles of strictly positive and
locally bounded cross ratios to hyperbolic structures on Σ, as described in Theorem
4.1.

4.5.1. Thurston symplectic form. We start by briefly recalling the definition of the
Thurston symplectic form ωλ on the space of transverse Hölder cocycles Hpλ;Rq

to a maximal geodesic lamination λ. As described by Bonahon in [Bon96, § 3], the
symplectic form ωλ can be intrinsically characterized in terms of the intersection
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form on the space of geometric currents supported on λ, in the sense of [RS75].
However, for our purposes it will be more convenient to have an elementary (but
less intrinsic) description of the Thurston symplectic form, through the choice of
a train track τ carrying λ and its induced isomorphism Hpλ;Rq – Wpτ ;Rq (see
Section 5.3).

In the following we briefly introduce the necessary notation. Given any switch
s of the train track τ , we denote by Bs the unique branch of τ whose vertical

boundary contains s, and we select arbitrarily lifts rBs and s̃ Ă rBs of Bs and s
to the universal cover of Σ. The switch s̃ is then adjacent to two other distinct

branches rBs
l and rBs

r of τ̃ , with rBs
l and rBs

r lying on the left and on the right of s̃,

respectively, if seen from rBs with respect to the orientation of rΣ. For any transverse
Hölder cocycle α P Hpλ;Rq, we then denote by αs

l and α
s
r the real weights associated

by α to the branches rBs
l ,

rBs
r . Finally, the Thurston symplectic form ωλ applied to

α, β P Hpλ;Rq can be expressed as

(8) ωλpα, βq “
1

2

ÿ

s

pαs
r β

s
l ´ αs

l β
s
rq,

where the sum is taken over all switches s of τ .
As recalled in Section 2.4.3, the Thurston symplectic form provides a characteri-

zation of the set of transverse Hölder cocycles that can be obtained as shear cocycles
of hyperbolic structures on Σ (see Theorem 2.16, or [Bon96, Theorem 20]). In ad-
dition, it is worth to mention that the Thurston symplectic form is also intimately
related to the geometry of Teichmüller space, and in particular to its Weil-Petersson
symplectic structure, as observed in [SB01]. We refer to [Bon96, § 3] (see also
[Pap86], [PH92, § 3.2], [SB01]) for a more detailed description of the Thurston
symplectic form and its properties.

4.5.2. Lengths. The relation between β-shear cocycles with respect to finite leaved
laminations and β-periods relies on elementary arguments. The main ingredients
are the combinatorial description of the Thurston symplectic form from relation
(8), and the following statement:

Lemma 4.10. Let λ be a finite leaved maximal lamination, and let γ be a non-
trivial element of Γ whose axis γ̃ projects onto a closed leaf of λ. Consider a plaque
P of λ that has one of the endpoints γ˘ of γ̃ as a vertex, and assume that it lies
on the left of γ̃ . Then

σβ
λpP, γP q “ ˘Lβpγq,

with positive sign if P has γ` as one of its vertices, and with negative sign otherwise.

The proof of Lemma 4.10 relies only on the symmetries of the cross ratio β, and
we postpone it to Appendix B.

We conclude the current section with the following result, which will play an
important role in the proof of Theorem 4.1, described in Section 5:

Proposition 4.11. Let β be a positive cross ratio. Then for every finite leaved
maximal lamination λ and for weighted multicurve µ with suppµ Ď λ, we have

Lβpµq “ ωλpσβ
λ , µq,

where ωλ denotes the Thurston symplectic form on the space of transverse Hölder
cocycles Hpλ;Rq.
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Proof. It is sufficient to consider the case in which µ consists of a single simple
closed curve with weight 1. Let γ be an element of Γ whose axis γ̃ projects onto a
simple closed leaf of λ. We orient γ̃ so that it points towards the attracting fixed
point γ` P BΓ and moves away from the repelling fixed point γ´. We will denote
by γ̃´1 the axis of γ endowed with the opposite orientation, and by |γ| P C the
associated geodesic current.

We now select a train track carrying λ. Being λ a finite leaved lamination, there
exist bi-infinite leaves of λ that spiral around γ both from its left and its right (with
respect to the orientation of γ and of the surface Σ). It is not restrictive to assume
that λ is carried by a train track τ obtained from a tubular neighborhood of γ by
adding two branches on its sides, and then properly extended away from γ. (Such a
train track can be obtained by taking a sufficiently small metric neighborhood of λ
with respect to some hyperbolic structure X, and possibly by a small deformation
to guarantee the trivalence of every switch.)

In order to provide an explicit expression for the evaluation of the Thurston

symplectic form ωλpσβ
λ , |γ|q with respect to the train track τ , we need to introduce

some notation. Let k be a tie of the train track τ that intersects γ. We select

arbitrarily a lift k̃ of k in rΣ that crosses γ̃, and we denote by P and Q the plaques
of λ that contain the endpoints of k̃, so that P lies on the left of γ̃ and Q on its
right. Both plaques have an ideal vertex equal to γ̃` or γ̃´. We now introduce the
following sign convention: We say that the left sign of τ with respect to γ, denoted
by sgnlpτ, γq, is equal to `1 if the plaque P lying on the left of γ̃ has γ` as one
of its ideal vertices, and we set it equal to ´1 otherwise. On the other hand, we
define the right sign of τ with respect to γ to be sgnrpτ, γq “ `1 if the plaque Q
lying on the right of γ̃ has γ´ as one of its vertices, and ´1 otherwise. It is not
difficult to see that the sign functions sgnlpτ, γq and sgnrpτ, γq depend only on the
train track τ and the choice of the orientation of the curve γ: For instance, we can
alternatively define sgnlpτ, γq to be `1 if the branch of τ that enters in the tubular
neighborhood of γ from its left follows the orientation of γ and ´1 otherwise; a
similar description holds for sgnrpτ, γq.

There are only finitely many possible configurations for the switches and branches
of τ that intersected s. By applying relation (8) to each possible configuration, we
obtain the expression:

ωλpσβ
λ , |γ|q “

1

2

´

sgnlpτ, γqσβ
λpP, γP q ´ sgnrpτ, γqσβ

λpQ, γQq

¯

.

Notice that by definition sgnrpτ, γq “ ´sgnlpτ, γ
´1q. Moreover, for any plaque R

of λ we have

σβ
λpR, γRq “ σβ

λpγ´1R,Rq “ σβ
λpR, γ´1Rq,

since σβ
λ is a transverse Hölder cocycle. In particular, the term ωλpσβ

λ , |γ|q can be
equivalently expressed as

ωλpσβ
λ , |γ|q “

1

2

´

sgnlpτ, γqσβ
λpP, γP q ` sgnlpτ, γ

´1qσβ
λpQ, γ´1Qq

¯

.

Since P lies on the left of γ̃ and Q lies on the left of γ̃´1, we can now apply
Lemma 4.10 to both terms appearing above, obtaining

ωpσβ
λ , |γ|q “

1

2

`

Lβpγq ` Lβpγ´1q
˘

“ Lβpγq,

which proves the desired identity. □
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5. Hyperbolic structures on pleated sets II

This section is dedicated to the definition and the study of shear cocycles asso-
ciated to positive and locally bounded cross ratios and general maximal geodesic
laminations. We generalize the phenomena observed in Section 4.5 for finite leaved
maximal laminations, and we provide a proof of Theorem 4.1 in full generality.

The construction of the β-shear cocycle σβ
λ P Hpλ;Rq for a general maximal lam-

ination λ will require several auxiliary choices and a fine analysis of the convergence
of finite β-shears. Nevertheless, we will observe that the resulting β-shear cocycles
satisfy a series of natural properties:

(a) For every finite leaved maximal lamination λ, the transverse Hölder cocycle

σβ
λ P Hpλ;Rq, obtained through the general process described in Section

5.2.3, coincides with the β-shear cocycle introduced in Section 4.4 (see in
particular Proposition 4.9).

(b) The map

GL Q λ ÞÝÑ σβ
λ P Wpτ ;Rq

is continuous with respect to the Hausdorff topology on the space of maxi-
mal geodesic laminations.

Consequently, since maximal finite leaved laminations are dense in the entire set
of maximal geodesic laminations (see e.g. [CEG06, Theorem I.4.2.19]) and since the

β-shear cocycles σβ
λ constructed in Section 4.4 do not require any auxiliary choice,

we can conclude that the transverse Hölder cocycle σβ
λ only depends on λ and β,

even in the case of a general maximal geodesic lamination.

Outline of the construction. The β-shear σβ
λpP,Qq between the plaques P,Q will

be defined as a limit of certain finite β-shears σβ
Pn

pP,Qq associated to a suitably
chosen exhaustion Pn of the set of plaques PPQ separating P from Q. The choice of
Pn depends on the geometry of λ on a fine scale. More precisely, in order to select
it, we will use a divergence radius function associated to the choice of a hyperbolic
structure X, a train track τ that carries λ, and a geodesic arc k joining P to Q.

We emphasize however that, as previously observed, the continuity properties of
the construction (Proposition 5.10) and the naturality in the case of finite leaved

laminations (see Section 4.4) make the cocycle σβ
λpP,Qq independent of all the

auxiliary choices required for its definition. The rest of the section is structured as
follows:

§ 5.1: We dedicate this section to the description of divergence radius functions,
which were originally introduced by Bonahon in [Bon96] to study the con-
vergence of the shearing maps between hyperbolic surfaces.

§ 5.2: In this section we give the general definition of the β-shear σβ
λpP,Qq: We de-

ploy divergence radius functions to carefully select an exhausting sequence
of finite sets of plaques pPnqn inside PPQ, whose associated finite shears
converges.

§ 5.3: In this section we prove that β-shear cocycles σβ
λ satisfy a suitable notion of

continuity with respect to the maximal lamination λ (endowing the space
of maximal geodesic laminations with the Chabauty topology).

§ 5.4: We then study the relations between β-shear cocycles and β-periods asso-
ciated to a positive and locally bounded cross ratio β, generalizing what
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observed in Section 4.5 for finite leaved laminations (see in particular Propo-
sition 5.11).

§ 5.5: We conclude our analysis with the proof of Theorem 4.1, combining the
results from the previous sections with Bonahon’s shear parametrization
(see Theorem 2.16)

5.1. Divergence radius functions. In order to define the β-shear between two
plaques P and Q in the case of a general maximal lamination, we will need to
determine an exhaustion pPnqn of the set of plaques separating P from Q whose

associated sequence of finite shears pσβ
Pn

pP,Qqqn converges (compare with Section
4.3). This part of our analysis requires some care, because of the (not particularly
strong) control between finite β-shears associated to different collections of plaques
(see Lemma 5.5). In particular, we make use of the so-called divergence radius
function r : PPQ Ñ N, associated to the choice of a trivalent train track carrying the
lamination λ (see Section 2.4.4 for the related terminology), a hyperbolic structure
X on Σ, and a (X-)geodesic path joining P to Q (see Bonahon-Dreyer [BD17], and
Bonahon [Bon96, § 1]). Any such function depends on the choice of:

‚ A hyperbolic structure X on Σ.
‚ A (trivalent) train track τ inside Σ.
‚ A maximal geodesic lamination λ (which will be identified with its X-
geodesic realization in the universal cover of pΣ, Xq) carried by τ .

‚ Two distinct plaques P and Q of λ.
‚ A geodesic segment k that joins a point in the interior of P to a point in
the interior of Q.

Once we fix these data, the associated divergence radius function

r “ rX,τ,λ,k : PPQ ÝÑ N
associates to every plaque R that separates P from Q a natural number rpRq, which
roughly measures the length of the geodesic arc RXk in terms of the combinatorics
of the fixed train track τ and the boundary leaves of R that intersect k.

In order to be more precise, we need to introduce some notation. For any plaque
R P PPQ, let ℓR, ℓ

1
R be the boundary leaves of R that intersect the arc k. If the

geodesic segment R X k is not entirely contained in the lift τ̃ of the train track τ
to the universal cover of Σ, then we set rpRq “ 0. If this does not occur, then
the intersection points between k and the boundary leaves ℓR, ℓ

1
R lie in a common

branch rB0 of τ̃ . We now orient ℓR, ℓ
1
R so that they share their negative endpoint,

and we denote by

. . . , rB2, rB´1, rB0, rB1, rB2, . . .

the branches of τ̃ that ℓR passes through, indexed in consecutive order according
to the orientation of ℓR. We then define rpRq :“ n ` 1, where n is the largest

natural number such that ℓ1
R passes through the branches rBm for every integer

m P t´n,´n` 1, . . . , n´ 1, nu. Then we have:

Lemma 5.1 (see [BD17, Lemma 5.3]). The divergence radius function r : PPQ Ñ N
satisfies the following properties:

(1) there exist constants A,M ą 0 such that

A´1 e´M´1 rpRq ď LX̃pk XRq ď Ae´M rpRq

for every R P PPQ;
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(2) there exists N P N such that, for every n P N the preimage r´1pnq contains
at most N plaques.

Divergence radius functions were first introduced by Bonahon in [Bon96, § 1] to
study the convergence of shear maps with respect to maximal geodesic laminations
(see also Bonahon [Bon97b, Bon97a], and Bonahon and Dreyer [BD17]). In our
exposition, these functions will be useful to select exhaustions pPnqn of PPQ by

finite nested subsets whose associated finite β-shear σβ
Pn

pP,Qq converge. However,
in certain steps of our analysis (see in particular Lemma 5.7 and Proposition 5.10),
it will useful to have a better understanding of the dependence of the functions
r and of the corresponding constants A,M,N with respect to the choices of the
lamination λ carried by τ , and the transverse path k. We summarize the necessary
refinements of Lemma 5.1 in the following statements. Fixed a hyperbolic structure
X on Σ, a train track τ , a maximal lamination λ carried by τ , and two plaques P
and Q of λ, we have:

Lemma 5.2. For any geodesic arc k joining the interiors of P and Q, there exist
constants A,M,N ą 0 and a open neighborhood U of λ in the space of maximal
laminations (endowed with the Chabauty topology) such that the following properties
hold:

‚ Every maximal lamination λ1 P U is carried by τ .
‚ The X-geodesic path k is transverse to (the X-geodesic realization of) every
λ1 P U .

‚ For every λ1 P U there exist distinct plaques P 1, Q1 of λ1 in X that contain
the endpoints of k.

‚ For any maximal lamination λ1 P U and plaques P 1, Q1 as above, the as-
sociated divergence radius function r1 “ rX,τ,λ1,k : PP 1Q1 Ñ N satisfies
properties (1) and (2) in Lemma 5.1 with constants A,M,N ą 0 (which in
particular are uniform in λ1 P U).

Lemma 5.3. For any choice of X-geodesic paths k and k1 with endpoints lying in
(the geodesic realizations of) the plaques P,Q, the associated divergence radius func-
tions r “ rk, r

1 “ rk1 : PPQ Ñ N provided by Lemma 5.1 are coarsely equivalent, i.
e. there exist constants H,K ą 0 such that

H´1 r1pRq ´K ď rpRq ď H r1pRq `K

for every plaque R P PPQ.

We postpone the proofs of Lemmas 5.1, 5.2, and 5.3 to Appendix C.

5.2. Shear cocycles: General case. We now focus our attention on the con-
struction of β-shear cocycles relative to a general maximal lamination λ. For the
remainder of Section 5, we will assume the cross ratio β : BΓp4q Ñ R to be lo-
cally bounded (see Definitions 2.17, 4.2). Furthermore, we fix once and for all a
hyperbolic structure X, and a train track τ carrying λ.

We start our analysis with two elementary Lemmas: The first (Lemma 5.4) de-
scribes how the shear between two plaques changes under the operation of diagonal
exchange in the region separating P from Q. The second (Lemma 5.5) provides
a bound between finite β-shears computed with respect to two finite families of
plaques P,P 1 Ă PPQ with P Ď P 1. The bound described by Lemma 5.5 will be

essential for the study of the approximation process needed to define σβ
λ .
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5.2.1. Change of shear under diagonal exchange. Let P,Q be two plaques of λ that
share no ideal vertex. We denote by ℓP (resp. ℓQ) the boundary leaf of P (resp.
Q) that separates the interior of P from the interior of Q, and by S the region of
rΣ bounded by ℓP and ℓQ. Given a coherent orientation of ℓP and ℓQ, we define d
and d1 to be the crossing geodesics rℓ`

P , ℓ
´
Qs and rℓ´

P , ℓ
`
Qs, respectively. Finally, let

R, T (resp. R1, T 1) denote the complementary regions of d (resp. d1) inside S.
To simplify the notation, we set

σβ
d pP,Qq :“ σβpP,Rq ` σβpR, T q ` σβpT,Qq,

σβ
d1 pP,Qq :“ σβpP,R1q ` σβpR1, T 1q ` σβpT 1, Qq.

Then we have:

Lemma 5.4. The following relation holds:∣∣∣σβ
d pP,Qq ´ σβ

d1 pP,Qq

∣∣∣ “ 2
∣∣∣log βpℓ`

P , ℓ
`
Q, ℓ

´
Q, ℓ

´
P q

∣∣∣.
As for Lemmas 4.7 and 4.8, the proof of Lemma 5.4 is an elementary consequence

of the symmetries satisfied by the cross ratio β, and it will be described in Appendix
B.

5.2.2. Enlarging the finite set of plaques. The next goal is to determine the behavior

of the finite shear σβ
P as we enlarge the finite family of plaques P Ă PPQ. The

statement that follows will play an essential role in the approximation process

to determine σβ
λpP,Qq. Recall that, since β is a locally bounded cross ratio (see

Definition 4.2), forD “ LX̃pkq ą 0 (the length of k in prΣ, rXq), we can find constants
C,α ą 0 (depending on the fixed hyperbolic structure X, the cross ratio β, and
LX̃pkq) such that

(9)
∣∣log βph`, ℓ`, ℓ´, h´q

∣∣ ď C
∣∣log βXph`, ℓ`, ℓ´, h´q

∣∣α
for every pair of coherently oriented geodesics ℓ, h in prΣ, rXq such that 0 ă dX̃pℓ, hq ď

LX̃pkq. We then have:

Lemma 5.5. For any pair of finite subsets P,P 1 of PPQ satisfying P Ď P 1, we
have ∣∣∣σβ

PpP,Qq ´ σβ
P 1 pP,Qq

∣∣∣ ď 2C
∣∣P 1 ´ P

∣∣¨

˝

ÿ

dĂk´
Ť

P
LX̃pdqα

˛

‚,

where |P 1 ´ P| denotes the cardinality of the set P 1 ´P, d varies among the (count-
able) set of connected components of k´

Ť

P, and C,α are the constants associated
with X, β, LX̃pkq as above.

Proof. We first consider the case in which P 1 “ P Y tRu. If

P “ P0, P1, . . . , Pn, Pn`1 “ Q

are the plaques of P, indexed as we encounter them along the arc k from P to Q,

then the plaque R will lie inside one of the components of rΣ ´
Ť

P that separate
Pi from Pi`1, for some i. We will denote by S such a region.

The laminations λP and λP 1 differ by a sequence of elementary moves, each of
which either adds leaves to the lamination, or performs a diagonal exchange inside
S. By Lemma 4.7, the shear between P and Q computed through the intermediate
laminations λ and λ1 does not change when λ1 is obtained from λ by introducing
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new leaves. Therefore, it is sufficient to compute the change of the shear cocycle
that occurs when a diagonal exchange is performed.

Let σβ
λ and σβ

λ1 be the shears associated with the plaques P and Q through the
finite laminations λ and λ1, respectively, which differ by a diagonal exchange in the
region bounded by the leaves ℓ and h. We select orientations on ℓ and h so that
they are coherently oriented. By Lemma 5.4 we have∣∣∣σβ

λpP,Qq ´ σβ
λ1 pP,Qq

∣∣∣ “ 2
∣∣log βph`, ℓ`, ℓ´, h´q

∣∣
Combining this equality with relation (9) and Lemma 4.3, we deduce that∣∣∣σβ

λpP,Qq ´ σβ
λ1 pP,Qq

∣∣∣ ď 2C dX̃pℓ, hqα ď 2C LX̃pk X Sqα,

where the last inequality holds since k X S is a path that connects points lying on
the leaves ℓ and h. When P and P 1 differ by a single plaque R, then by adding
leaves and performing exactly one flip, we can move from the lamination λP to
λP 1 . If P 1 is obtained by adding to P nS plaques lying inside the same region
S, then it is simple to check that λP and λP 1 differ by a suitable sequence of
moves, exactly nS of which are diagonal exchanges. The difference in the shears

σβ
PpP,Qq and σβ

P 1 pP,Qq can then be bounded by 2C nS LX̃pk X Sqα, by the same
argument outlined above. The desired statement follows by applying this process

in any complementary region S of rΣ ´
Ť

P, and noticing that nS ď |P 1 ´ P| for
any S. □

Remark 5.6. Notice that the argument described above makes use of the local
boundedness of β only on pairs of leaves of the lamination λ. In particular, the
machinery described in this section in fact applies to cross ratios β that are λ-locally
bounded, i. e. that locally satisfy the control∣∣log βph`, ℓ`, ℓ´, h´q

∣∣ ď C
∣∣log βXph`, ℓ`, ℓ´, h´q

∣∣α
for any pair of coherently oriented distinct leaves ℓ, h of the lamination λ.

5.2.3. Constructing β-shear cocycles. We are now ready to describe the approxima-

tion process for the β-shear cocycle σβ
λ in the case of a general maximal lamination.

Throughout the current section, we denote by P and Q two distinct plaques of
some fixed maximal lamination λ, and by X an auxiliary hyperbolic structure on
Σ.

We start our construction by selecting a well behaved exhaustion pPnqn by nested
finite subsets of PPQ through the notion of divergence radius function. Concretely,
let k be a X-geodesic segment joining points in the interior of the plaques P and Q,
and let r “ rX,τ,λ,k : PPQ Ñ N be the corresponding divergence radius function,
defined as in Section 5.1. Then, for every n P N we set

Pn :“ tR P PPQ | rpRq ď nu.

Notice that by Lemma 5.1 the cardinality of Pn`1 ´ Pn is bounded above by a
constant N ą 0 independent of n, and the union

Ť

n Pn is equal to PPQ.
We are now ready to prove the first technical step of our construction:

Lemma 5.7. The series
ÿ

n

∣∣∣σβ
Pn

pP,Qq ´ σβ
Pn`1

pP,Qq

∣∣∣
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converges, and in particular the limit

σβ
λpP,Qq :“ lim

nÑ8
σβ
Pn

pP,Qq

is finite. Moreover, the quantity σβ
λpP,Qq P R is independent of the choice of the

geodesic arc k selected to construct the divergence radius function r “ rX,τ,λ,k and
the set of plaques pPnqn.

Proof. For simplicity, let σnpP,Qq denote the quantity σβ
Pn

pP,Qq. By Lemma 5.5
we have

|σn`1pP,Qq ´ σnpP,Qq| ď 2C|Pn`1 ´ Pn|

¨

˝

ÿ

dĂk´
Ť

Pn

LX̃pdqα

˛

‚

ď 2CN

¨

˝

ÿ

dĂk´
Ť

Pn

LX̃pdqα

˛

‚.

It is not restrictive to assume α ă 1, in which case we have
ÿ

dĂk´
Ť

Pn

LX̃pdqα ď
ÿ

RPPPQ:rpRqěn`1

LX̃pk XRqα.

Combining this estimate with the properties of the divergence radius function r
described Lemma 5.1, we obtain

ÿ

dĂk´
Ť

Pn

LX̃pdqα ď
ÿ

RPPPQ:rpRqěn`1

Aαe´αMrpRq

ď AαN
ÿ

jąn

e´αMj

ď
AαN

1 ´ e´αM
e´αMpn`1q,

(10)

where A,M,N ą 0 are the constants provided by Lemma 5.1. Therefore we deduce

ÿ

nPN
|σn`1pP,Qq ´ σnpP,Qq| ď

2CAαN2

1 ´ e´αM

ÿ

nPN
e´αMpn`1q ă `8,

which concludes the proof of the first part of the statement.
Let pP 1

nqn be the sequence of plaques associated with a different choice of ge-
odesic segment k1, and hence divergence radius function r1 as in Lemma 5.1. By
Lemma 5.3, there exist two natural numbers l,m such that

Pn Ď P 1
ln`m, P 1

n Ď Pln`m

for every n P N. Moreover, by property (2) of Lemma 5.1, there exists a constant
N ą 0 such that the cardinality of the sets Plpln`mq`m ´ Pn is bounded above

by Npl2 ´ 1qn ` lm ` mq for every n P N. The same function of n in particular
provides an upper bound of the cardinality of the set P 1

ln`m´Pn Ď Plpln`mq`m´Pn.
Applying Lemma 5.5 and relation (10), we deduce

|σβ
Pn

pP,Qq ´ σβ
P 1

ln`m
pP,Qq| ď 2CNpl2 ´ 1qn` lm`mq

¨

˝

ÿ

dĂk´
Ť

Pn

LX̃pdqα

˛

‚

ď
2AαCN2

1 ´ e´αM
pl2 ´ 1qn` lm`mqe´αMpn`1q.
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This proves in particular that the difference between σβ
Pn

pP,Qq and σβ
P 1

ln`m
pP,Qq

tends to 0 as n Ñ 8, and therefore we conclude

lim
nÑ8

σβ
Pn

pP,Qq “ lim
nÑ8

σβ
P 1

n
pP,Qq,

as desired. □

Remark 5.8. Fix a locally bounded cross ratio β, a hyperbolic structure X, a train
track τ carrying λ, and a geodesic arc k transverse to λ. The estimates appearing
in the proof of Lemma 5.7 show that, given two distinct plaques P and Q of λ,
there exist constants C 1 “ C 1pC,α,A,M,Nq,M 1 “ M 1pα,Mq ą 0 such that for
every n P N ∣∣∣σβ

λpP,Qq ´ σβ
Pn

pP,Qq

∣∣∣ ď C 1e´M 1n,

where the constants A,M,N ą 0, provided by Lemma 5.1, depend only the struc-
ture X, the train track τ carrying λ, and the path k and α,C ą 0 are provided by
the local boundedness of β (see Definition 4.2), with the choice of D “ LX̃pkq.

By Lemma 5.2 we can then find a neighborhood U of λ in the space of maximal

geodesic laminations such that, for every λ1 P U , the finite β-shears σβ
P 1

n
pP 1, Q1q

associated with the arc k and the corresponding divergence radius function r1 “

rX,τ,λ1,k : PP 1Q1 Ñ N converge to σβ
λ1 pP 1, Q1q and satisfy∣∣∣σβ

λ1 pP
1, Q1q ´ σβ

P 1
n

pP 1, Q1q

∣∣∣ ď C 1e´M 1n,

with uniform constants C 1,M 1 ą 0 with respect to λ1 P U (compare with the
notation of Lemma 5.2). For future reference (see in particular Proposition 5.10),
we notice that the constants C 1,M 1 ą 0 also satisfy

(11)
ÿ

dĂk´
Ť

Pn

LX̃pdqα ď
C 1e´M 1n

2CN
.

(Compare with relation (10).)

We finally define the β-shear relative to λ between the plaques P and Q to be

σβ
λpP,Qq :“ lim

nÑ8
σβ
Pn

pP,Qq,

where pPnqn is the exhausting sequence of PPQ associated with the divergence
radius function r “ rX,τ,λ,k : PPQ Ñ N, for some choice of a X-geodesic path k

joining P and Q. By Lemma 5.7, the value σβ
λpP,Qq is independent of the choice

of k. We are now ready to conclude the construction of β-shear cocycles:

Proposition 5.9. The map pP,Qq ÞÑ σβ
λpP,Qq, constructed following the process

described above, is a Hölder cocycle trasverse to λ.

Proof. All the properties are simple consequences of the definition of finite β-shears

from Section 4.3, and of the independence of the quantity σβ
λ from the selected

geodesic path k and the associated divergence radius r : PPQ Ñ N, as established
by Lemma 5.7.

To prove property (1) from Definition 2.15, it suffices to select the same path k

(and hence same divergence radius function r) to approximate both σβ
λpP,Qq and

σβ
λpQ,P q. Indeed, by the symmetries of the cross ratio β we have σβ

Pn
pP,Qq “

σβ
Pn

pQ,P q for every n P N.
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To see property (2), let k be a path connecting the plaques P and Q, with
associated function r : PPQ Ñ R, and let R P PPQ. We select a subarc k1 of k that

connects P to R, and we set k2 “ k ´ k1. Observe that the restriction of r “ rk to
the set of plaques PPR coincides with the divergence radius function r1 associated to
k1. The same holds for the restriction of r to PRQ and the path k2. Therefore, the
divergence radius functions r1 and r2 associated to k1 and k2 determine sequences
of finite collections of plaques pP 1

nqn and pP2
nqn, respectively, satisfying

lim
nÑ8

σβ
P 1

n
pP,Rq “ σβ

λpP,Rq, lim
nÑ8

σβ
P2

n
pR,Qq “ σβ

λpR,Qq.

Moreover, if pPnqn denotes the exhaustion of PPQ associated to k and r, then by
construction

Pn “ P 1
n Y tRu Y P2

n

for every n ě rpRq. Moreover the finite β-shears satisfy

σβ
Pn

pP,Qq “ σβ
P 1

n
pP,Rq ` σβ

P2
n

pR,Qq

again for every n ě rpRq. By taking the limit as n Ñ 8, we obtain the additivity
property described in property (2) of Definition 2.15.

Finally, to show property (3), let γ P Γ and select γpkq as a path joining the
interiors of the plaques γP to γQ. The associated divergence radius function co-
incides with r ˝ γ´1 : PγP γQ Ñ N, where r : PPQ Ñ N is the divergence radius
function of k. If pPnqn denotes the sequence of finite family of plaques associated
with k and r, then γpkq and r ˝ γ´1 have associated sequence pγPnqn. Moreover,
being β Γ-invariant, we have

σβ
Pn

pP,Qq “ σβ
γPn

pγP, γQq

for every n P N. The identity σβ
λpP,Qq “ σβ

λpγP, γQq then follows by taking the
limit as n Ñ 8. □

5.3. Continuity of shear cocycles. We now study the continuity properties of
the map

GL Q λ ÞÝÑ σβ
λ P Hpλ;Rq.

As recalled in Section 2.4.5, the choice of a train track τ that carries a maximal
lamination λ determines natural identifications between its associated system of
real weights Wpτ ;Rq and the space of Hölder cocycles Hpλ1;Rq transverse to any
lamination λ1 carried by τ . In particular, there exists a sufficiently small neighbor-
hood U of λ inside GL for which the map

U Q λ1 ÞÝÑ σβ
λ1 P Wpτ ;Rq

is well defined. Within this framework, it makes sense to ask ourselves whether

the map λ1 ÞÑ σβ
λ1 is continuous. The next statement answers affirmatively to this

question:

Proposition 5.10. Let pλmqm be a sequence of maximal geodesic laminations con-
verging to λ in the Chabauty topology. Given τ a train track that carries λ, we
identify Hpλ;Rq and Hpλm;Rq with Wpτ ;Rq, the space of real weights of τ (for m
sufficiently large). Then

lim
mÑ8

σβ
λm

“ σβ
λ P Wpτ ;Rq.
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Proof. If k is a tie of the lift of the train track τ in prΣ, rXq, then the endpoints
of k lie in the interior of two plaques P,Q of λ. Moreover, since λm converges to
λ in the Chabauty topology, there exists a m0 P N such that for every m ą m0

the endpoints of k lie in the interior of two plaques P pmq, Qpmq of λm. Then the
statement is equivalent to show that, for any k as above

lim
mÑ8

σβ
λm

pP pmq, Qpmqq “ σβ
λpP,Qq.

Let Pk (resp. Ppmq

k ) denote the set of plaques of λ (resp. λm) that separate P

from Q (resp. P pmq from Qpmq). If k is the geodesic arc joining the endpoints of k,
then Lemma 5.1 provide us functions

r : Pk Ñ N, rm : Ppmq

k Ñ N

satisfying properties (1), (2) with respect to constants A,M,N ą 0 that are in-
dependent of m, and defined in terms of the same train track τ and arc k (see in
particular Remark 5.8). To simplify the notation, for every n P N and m ą m0 we
set

Pn :“tR P Pk | rpRq ď nu,

Ppmq
n :“tR P Ppmq

k | rmpRq ď nu,

and

σ :“ σβ
λpP,Qq, σpmq :“ σβ

λm
pP pmq, Qpmqq,

σn :“ σβ
Pn

pP,Qq, σpmq
n :“ σβ

Ppmq
n

pP pmq, Qpmqq.

Let now N,C 1,M 1 ą 0 be positive constants satisfying the requirements of
Lemma 5.1 and Remark 5.8. We will prove the desired assertion by showing that

(12) lim sup
mÑ8

|σpmq ´ σ| ď p2 ` nqC 1e´M 1n

for every n P N. Since the left-hand side of the inequality is independent of n, and
the right-hand side converges to 0 as n Ñ 8, the assertion will follow.

We will divide the proof of relation (12) into smaller steps. In order to describe
them, we need to introduce some notation. For any R P Pn, we choose arbitrarily a
point xR in the interior of R. Since λm Ñ λ, we can find a m1 ą 0 sufficiently such

that, for any m ą m1, there exists a unique plaque Rpmq P Ppmq

k whose interior
contains xR. Being Pn finite, up to selecting a larger m1 we can assume that this
holds for every plaque R P Pn. We then introduce the sets

Qpmq
n :“ tRpmq P Ppmq

k | R P Pnu,

for m ą m1. Finally, we set

σ̂pmq
n :“ σβ

Qpmq
n

pP pmq, Qpmqq.

Step 1. For every n P N there exists a m2 ě m1 such that Qpmq
n Ď Ppmq

n for all
m ą m2. Moreover∣∣∣σ̂pmq

n ´ σpmq
n

∣∣∣ ď 2CNn

¨

˝

ÿ

dĂk´
Ť

Qpmq
n

LX̃pdqα

˛

‚,



SO0p2, n ` 1q-MAXIMAL REPRESENTATIONS AND HYPERBOLIC SURFACES 55

where C,α,N ą 0 are the constants appearing in Lemmas 5.1 and 5.5 (see also
Remark 5.8).

Proof of Step 1. We will show that Qpmq
n Ď Ppmq

n for every m sufficiently large. The
second part of the assertion will follow by applying Lemma 5.5 and noticing that∣∣∣Ppmq

n ´ Qpmq
n

∣∣∣ ď

∣∣∣Ppmq
n

∣∣∣ ď Nn

by Lemma 5.1.
Let R P Pn, and denote by ℓR, hR Ă λ the boundary leaves of R that cross the

tie k. Similarly, let ℓ
pmq

R , h
pmq

R Ă λm be the boundary leaves of Rpmq P Qpmq
n that

cross k. It is enough to prove that limmÑ8 rmpRpmqq “ n for every R P Pn.
Since the laminations λm converge to λ and the plaques Rpmq contain a fixed

point xR in the interior of the plaque R, the leaves ℓ
pmq

R , h
pmq

R converge in the
Hausdorff topology to ℓR, hR as m Ñ 8 (up to relabeling). Recalling the definition
of the divergence radius functions r, rm from Section 5.1, the condition rpRq “ n
is equivalent to say that the leaves ℓR, hR cross n ` 1 common branches of τ̃ in
both directions (as we count starting from the branch containing the tie k) before
taking different paths at some switch of τ̃ . Since the boundary leaves of Rpmq that
meet k converge to the boundary leaves ℓR and hR, we can find a sufficiently large

m2 ě m1 such that ℓ
pmq

R passes through the same n` 1 branches of τ̃ as ℓR in both

directions, and similarly for h
pmq

R , for all m ě m2. This implies in particular that

rmpRpmqq “ n. Since Pn is finite, up to enlarging m2 we can assume that this holds
for every R P Pn, as desired. □

Step 2. For every n P N we have

lim
mÑ8

ÿ

dĂk´
Ť

Qpmq
n

LX̃pdqα “
ÿ

dĂk´
Ť

Pn

LX̃pdqα ď
C 1e´M 1n

2CN
.

Proof of Step 2. As observed in the proof of the previous step, the boundary leaves
of Rpmq converge to the boundary leaves of R with respect to the Chabauty topology
for every R P Pn. In particular, each subarc k XR of k is equal to the limit of the
subarcs pk XRpmqqm. Since Pn is a finite collection of plaques, the set

td | d connected component of k ´
ď

Qpmq
n u

is finite, and the length of each of its components converges to the length of the
corresponding component of k ´

Ť

Pn. This implies the equality appearing in
the statement. The upper bound of the limit follows from Remark 5.8, and more
specifically relation (11). □

Step 3. For every n P N we have limmÑ8 σ̂
pmq
n “ σn.

Proof of Step 3. We denote as above by ℓR, hR (resp. ℓ
pmq

R , h
pmq

R ) the leaves of

R P Pn (resp. Rpmq P Qpmq
n ) that cross k, and we orient them from right to left as

we follow the geodesic arc k, moving from P to Q (resp. P pmq and Qpmq). By what
observed above we have

lim
mÑ8

pℓ
pmq

R q˘ “ ℓ˘
R, lim

mÑ8
ph

pmq

R q˘ “ h˘
R P BΓ.
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By definition, the quantity σn “ σβ
Pn

pP,Qq is a finite sum of elementary shears,
defined as in relation (7), where the points at infinity u`, u´, ul, ur belong to the set

tℓ˘
R, h

˘
R | R P Pnu, and similarly for σ

pmq
n and the set tpℓ

pmq

R q˘, ph
pmq

R q˘ | R P Pnu.
From the construction it follows that the finite laminations λQpmq

n
, defined as in

Section 4.3, converge to the lamination λPn as m Ñ 8. By the continuity of the

cross ratio β, it is now immediate to see that the finite sum of shears σ
pmq
n converge

to σn as m Ñ 8. □

Step 4. For every n P N and m ą m0

|σ ´ σn| ď C 1e´M 1n,

|σpmq ´ σpmq
n | ď C 1e´M 1n.

Proof of Step 4. This is an immediate consequence of Remark 5.8 and the definition

of σ, σn, σ
pmq, σ

pmq
n . □

We now have all the ingredients to conclude our argument. First we observe that

|σpmq ´ σ| ď |σpmq ´ σpmq
n | ` |σpmq

n ´ σ̂pmq
n | ` |σ̂pmq

n ´ σn| ` |σn ´ σ|.
By Steps 1 and 2 we have

lim sup
mÑ8

|σpmq
n ´ σ̂pmq

n | ď nC 1e´M 1n.

Relation (12) now follows by combining the above inequalities with Steps 3 and 4:

lim sup
mÑ8

|σpmq ´ σ| ď 2C 1e´M 1n ` lim sup
mÑ8

|σpmq
n ´ σ̂pmq

n |

ď p2 ` nqC 1e´M 1n.

This concludes the proof of Proposition 5.10. □

As mentioned in the introduction of the section, continuity and the fact that

σβ
λ coincides with the one defined in the previous section for maximal finite leaved

laminations implies that σλ
β only depends on β, λ and not on all the auxiliary choices

made to define it.

5.4. Shears and length functions: General case. Now that we have estab-

lished the continuous dependence of β-shear cocycles σβ
λ in the maximal lamina-

tion λ, we can easily generalize the relation between shear cocycles and β-periods
observed in Section 4.5 for finite leaved laminations to any maximal geodesic lam-
ination. More precisely:

Proposition 5.11. Let β be a positive and locally bounded cross ratio. Then for
every maximal lamination λ and for every measured lamination µ with suppµ Ď λ,
we have

Lβpµq “ ωλpσβ
λ , µq,

where ωλ denotes the Thurston symplectic form on the space of transverse Hölder
cocycles Hpλ;Rq, and Lβ is the length function introduced in Section 2.5.

Proof. When λ is a finite leaved maximal lamination, then the statement is equiv-
alent to Proposition 4.11. Consider now a general maximal lamination λ and a
measured lamination µ with support contained in λ. Without loss of generality we
can assume that µ is minimal, so it can be approximated in ML by a sequence of
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weighted simple closed curves panγnqn. Moreover, following the procedure described
by Canary, Epstein, and Green in [CEG06, Theorem I.4.2.14], for every n we can
extend the curve γn to a finite leaved lamination λn so that, up to subsequence, λn
converges in the Chabauty topology to λ.

Select now a train track τ that carries λ. Since the laminations λn are converging
to λ in the Chabauty topology, the train track τ carries λn for n sufficiently large.
In particular, we can identify the spaces of transverse Hölder cocycles Hpλ;Rq and
Hpλn;Rq with the space of real weights Wpτ ;Rq. Notice that the isomorphisms
Hpλn;Rq – Wpτ ;Rq – Hpλ;Rq are linear symplectomorphisms with respect to the
associated Thurston symplectic forms and the algebraic intersection pairing ωτ on
Wpτ ;Rq, in light of the description provided in Section 4.5.1. By Lemma 4.11 we
have

(13) anLβpγnq “ ωτ pσβ
λn
, anγnq

for every n sufficiently large (we are identifying with abuse the cocycles σβ
λn
, anγn P

Hpλn;Rq with their image inside Wpτ ;Rq). Now, by Theorem 2.21 the left-hand
side anLβpγnq is continuous in anγn, and hence converges to Lβpµq, while the

right-hand side converges to ωλpσβ
λ , µq by Proposition 5.10. By taking the limit

as n Ñ 8 of relation (13) we obtain the statement for the lamination λ and the
minimal measured lamination µ. □

5.5. The proof of Theorem 4.1. We finally have all the elements to prove the
main result of the section:

Theorem 4.1. Let β : BΓp4q Ñ R be a positive and locally bounded cross ratio.

Then for every maximal lamination λ, the β-shear cocycle σβ
λ belongs to the closure

of the cone Cpλq Ă Hpλ;Rq, that is

ωλpσβ
λ , µq ě 0

for every measured lamination µ with suppµ Ď λ. Moreover, if the cross ratio β is

strictly positive, then ωλpσβ
λ , µq ą 0 for every non-trivial measured lamination µ as

above, and consequently there exists a unique hyperbolic structure Y “ Y β
λ P T pΣq

such that σβ
λ “ σY

λ P Hpλ;Rq.

Proof. By Theorem 2.21, every positive cross ratio has an associated Liouville cur-
rent Lβ , and the corresponding β-length Lβ “ ipLβ , ‚q is a non-negative function
on the space of geodesic currents. Hence the first part of the assertion follows
directly from Proposition 5.11.

As observed in Lemma 2.22, if the cross ratio β is strictly positive, then Lβpcq ą 0
for any non-trivial geodesic current c. Therefore, combining Proposition 5.11 with
Theorem 2.16, we deduce that for every maximal geodesic lamination λ there exists

a unique hyperbolic structure Y such that σβ
λ “ σY

λ , as desired. □

Remark 5.12. We point out to the reader that the work of Burger, Iozzi, Parreau,
and Pozzetti on geodesic currents (see in particular [BIPP21, Theorems 1.3, 1.7,
Corollary 1.9]) can be deployed to investigate in detail the set of measured lami-
nations µ with trivial β-length, by examining the geometric decomposition of the
Liouville current Lβ . This in turn determines the set of maximal geodesic lamina-
tions λ for which the associated β-shear cocycle lies in the boundary BCpλq of the
shear parametrization from Theorem 2.16.
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6. Geometry of pleated surfaces

In this section we prove the main structural result about the geometry of pleated
surfaces, that is, Theorem C.

Our strategy is as follows: We first analyze explicitly the case of finite leaved
maximal laminations and prove the existence of a 1-Lipschitz developing map, as
given in Theorem C, in that setting. The proofs here are completely elementary
(see Propositions 6.5 and 6.6). Then, we exploit continuity properties of pleated
surfaces to deduce the existence of a 1-Lipschitz developing map in the general case
(see Proposition 6.7). The comparison of the length spectra (see Proposition 6.8)
will be a consequence of the existence of 1-Lipschitz developing map together with
some properties the bending locus.

Let us remark that for the proof of the strict domination theorem (Theorem 7.6)
the elementary case of finite leaved maximal laminations is sufficient.

In general, it is always possible to define on the pleated set Ŝλ a natural length
space structure: Recall that a Lipschitz function is differentiable almost everywhere.

Definition 6.1 (Regular Path). A (weakly) regular path is a Lipschitz map γ : I “

ra, bs Ñ H2,n such that 9γ is spacelike (or lightlike) almost everywhere. The length
of a weakly regular path is

ℓpγq :“

ż

I

a

x 9γptq, 9γptqydt.

The Lipschitz property implies that the length ℓpγq is always finite.

If λ is a maximal lamination and Ŝλ Ă H2,n is the associated pleated set we say
that a path γ : I Ñ Ŝλ is (weakly) regular if it is (weakly) regular as a path in
H2,n.

A regular path γ : I Ñ Ŝλ is transverse to λ̂ if γ´1λ̂ has Lebesgue measure zero.
It is not difficult to check, using the representation of Ŝλ as the graph of a

(strictly) 1-Lipschitz function gλ : D2 Ñ Sn in a Poincaré model D2 ˆ Sn of pH2,n

that every pair of points x, y P Ŝλ can be joined by a weakly regular path. In fact,
the graph of any Lipschitz path α : I Ñ D2 joining the projections πpxq, πpyq would
work. When λ is a finite leaved maximal lamination, it is possible to join any two
points x, y P Ŝλ with a regular path that intersects the the lamination in countably
many points (hence, transversely).

Definition 6.2 (Pleated Surface). Let ρ : Γ Ñ SO0p2, n ` 1q be a maximal rep-
resentation. A pleated surface for ρ realizing the maximal lamination λ consists of
the following data:

(1) The pleated set Sλ “ Ŝλ{ρpΓq.
(2) The hyperbolic surface Xλ P T with shear cocycle equal to the intrinsic

shear cocycle σXλ

λ “ σρ
λ P Hpλ;Rq.

(3) A homeomorphism f : Sλ Ñ Xλ that is totally geodesic on every leaf of λ
and each plaque of Sλ ´ λ and is 1-Lipschitz with respect to the intrinsic
pseudo-metric (see Section 2.2) and the hyperbolic metric.

We call a homeomorphism f : Sλ Ñ Xλ with the the properties of (3) a 1-
Lipschitz developing map.

In a more precise way, 1-Lipschitz developing maps of pleated surfaces are totally
geodesic on the leaves of the bending locus and on each of the complementary
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components as we prove in the next lemma. Later on, we will see that developing
maps are strictly contracting (in a suitable sense) in directions transverse to the
bending locus.

Lemma 6.3. Let ρ : Γ Ñ SO0p2, n ` 1q be a maximal representation. Let Sλ

be a pleated surface realizing a maximal lamination λ and let f : Sλ Ñ Xλ be a
1-Lipschitz developing map. Then f is totally geodesic on the complement of the
bending locus.

Proof. Consider a component W of the complement of the bending locus of Sλ.
In this case, the restriction of the pseudo-metric to W is a hyperbolic metric. As
the restriction of f : Sλ Ñ Xλ to f : W Ñ fpW q is a 1-Lipschitz map between
hyperbolic surfaces of the same area, we conclude that f :W Ñ fpW q is an isometry
(see e.g. Thurston [Thu98]). □

Lemma 6.4. Let ρ : Γ Ñ SO0p2, n ` 1q be a maximal representation. Let Sλ

be a pleated surface realizing a maximal lamination λ and let f : Sλ Ñ Xλ be a
1-Lipschitz developing map. Then f sends regular paths γ : I Ñ Sλ to a Lipschitz
(hence rectifiable) paths fγ : I Ñ Xλ.

Proof. Lift f to the universal covering f̂ : Ŝλ Ă pH2,n Ñ H2. We show that f̂ maps
regular paths to rectifiable paths. In order to do so, it is convenient to work in a

Poincaré model D2ˆSn of pH2,n and represent Ŝλ as a graph of a 1-Lipschitz function
g : D2 Ñ Sn. Let us denote by u : D2 Ñ Ŝλ the graph map upxq “ px, gpxqq and
by h : D2 Ñ H2 the composition h “ fu. By Lemma 2.5 the map u is 1-Lipschitz
with respect to the hyperbolic metric on H2 and the pseudo-metric on Ŝλ. As the

developing map f̂ is 1-Lipschitz with respect to the intrinsic path metric on Ŝλ and
the hyperbolic metric on H2, we conclude that h is 1-Lipschitz with respect to the
hyperbolic metric on both source and target. Let γ : I Ñ Ŝλ be a regular path.
We can write it as γ “ uα where α : I Ñ D2 is the Lipschitz path obtained by

composing γ with the Lipschitz projection pH2,n Ñ D2. As fγ “ hα, we deduce
that fγ is a Lipschitz path. □

6.1. Finite leaved maximal laminations. We prove the main results for finite
leaved laminations:

Proposition 6.5. Let ρ : Γ Ñ SO0p2, n`1q be a maximal representation. Let λ be

a finite leaved maximal lamination of Σ. Let Ŝλ be the associated pleated set. Then
there is an equivariant homeomorphism f : Ŝλ Ñ H2 with the following properties:

(i) It is totally geodesic on every leaf and plaque.

(ii) It is 1-Lipschitz, that is, dH2,npx, yq ě dH2pfpxq, fpyqq for every x, y P Ŝλ.

Proof. Let µ “ γ1 \ ¨ ¨ ¨ \ γk Ă λ denote the collection of the closed leaves of λ.
Each leaf ℓ of λ ´ µ is an isolated leaf and is adjacent to two distinct triangular
components P, P 1, that is, ℓ “ P XP 1. In particular, each component of Sj Ă S´µ
has an intrinsic incomplete hyperbolic metric. The abstract completion of Sj is a
hyperbolic surface with totally geodesic boundary S̄j .

We lift Sj and S̄j to their universal covering Ŝj Ă Ŝλ Ă pH2,n and Ūj Ă H2.
Claim. We have

dH2,npx, yq ě dŪj
px, yq

for every x, y P Ŝj .
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Proof of claim. Consider points x, y P Ŝj . Let H be a spacelike hyperplane
containing x, y and let τ be a timelike sphere orthogonal to H at x. The choice of

H, τ provides a global chart Ψ : D2 ˆ Sn Ñ pH2,n such that ΨpD2 ˆ tvuq “ H and

Ψp0, vq “ x. Let ℓ Ă λ̂ be a leaf.
By Lemma 2.7, the projection of ℓ to D2 intersects (transversely) every diameter

of D2 at most once. As a consequence, if we represent Ŝλ as a graph of a 1-Lipschitz
function g : D2 Ñ Sn, the geodesic segment rx, ys Ă D2 lifts on a curve γ joining

x, y P Ŝj that stays on Ŝj , otherwise, rx, ys would cross the projection of a some

leaf ℓ Ă BŜj Ă µ̂ at least twice.
Using the explicit expression of the metric given by Proposition 2.4, we conclude

that ℓpγq ď ℓpαq with equality if and only if rx, ys Ă Ŝj . In fact, let us parametrize
rx, ys Ă D2 as α : I Ñ D2 and write γptq “ pαptq, gpαptqqq. We have

ℓpγq “

ż

I

a

x 9γ, 9γydt

“

ż

I

d

| 9α|2H2 ´
4

p1 ´ |α|2q2
| 9gα|2dt

ď

ż

I

| 9α|H2dt “ ℓH2pαq.

The conclusion follows from dŪj
px, yq ď ℓpγq and ℓH2pαq “ dH2,npx, yq. □

Thus, the inclusion Ŝj Ă Ūj is uniformly continuous, in the sense that

dŪj
pfpxq, fpyqq ď dH2,npx, yq.

Being uniformly continuous, it extends to a map f̂j from the closure of Ŝj in Ŝ,

obtained from Ŝj by adding the lifts of the leaves of µ adjacent to Sj , to the

completion Ūj . By construction and continuity, the map f̂ is π1pSjq-equivariant.

Claim. The extension f̂j of the inclusion Ŝj Ă Ūj satisfies the following prop-
erties:

‚ It is a homeomorphism.
‚ It maps each of the leaves ℓ Ă BŜj to the geodesic boundary of Ūj in a
totally geodesic way.

‚ We have ℓpf̂jpγqq “ ℓpγq for every regular path γ : I Ñ Ŝj Y BŜj that

intersects λ̂ in countably many points.

Proof of claim. Let ℓ be a boundary leaf of BŜj and let rx, ys Ă ℓ be a finite

subsegment. Notice that there exists a sequence of leaves ℓn Ă Ŝj that converges
to ℓ. Thus, we can approximate rx, ys with a sequence of segments rxn, yns Ă ℓn
for which dŪj

pf̂jpxnq, f̂jpynqq “ dH2,npxn, ynq. By continuity, we conclude that

dŪj
pf̂jpxq, f̂jpyqq “ dH2,npx, yq. Thus, f̂j maps each boundary leaf ℓ Ă BŜj to a

boundary leaf of BŪj in a totally geodesic way.

If γ : I Ñ Ŝj is a regular path that intersects λ̂ in countably many points then

ℓpγq “ ℓpγ ´ λ̂q. As f̂j is totally geodesic on each component of Ŝj ´ λ̂, it follows

that f̂jγ is rectifiable and ℓpf̂jγq “ ℓpγq. □
Let γ Ă µ be a leaf adjacent to the components Si, Sj (possibly the same com-

ponent), denote by αi Ă BS̄i, αj Ă BS̄j the boundary components corresponding to
γ. There is a unique way to glue the completions S̄i, S̄j along αi, αj so that the
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identifications with γ agree. Thus, after gluing all the completions S̄j along their
boundary components as prescribed by the leaves of µ, we get a hyperbolic surface

Xλ “
ğ

Sk component of Sλ´µ

S̄k {αi „ αj

and a homeomorphism f : Sλ Ñ Xλ which is isometric on each of the leaves of λ
and plaques of Sλ ´ λ.

Lift f to a map f̂ : Ŝλ Ñ H2.

Claim. The map f̂ sends regular paths that intersect µ̂ in countably many
points to rectifiable paths of the same length and we have

dH2,npx, yq ě dH2pf̂pxq, f̂pyqq

for every x, y P Ŝλ.
Proof of the claim. The proof is similar to the one of the first claim.

By continuity and density, it is enough to restrict our attention to x, y P Ŝ ´ λ̂.
As in the first claim, let H be a spacelike hyperplane containing x, y and let τ be
a timelike sphere orthogonal to H at x. This choice corresponds to a global chart
Ψ : D2 ˆ Sn Ñ H2,n such that ΨpD2 ˆ tvuq “ H and Ψp0, vq “ x.

Let ℓ Ă λ̂ be a leaf. By Lemma 2.7, the projection of ℓ to D2 intersects (trans-
versely) every diameter of D2 at most once. As a consequence, the geodesic seg-
ment rx, ys Ă D2 intersects the projections of the leaves of µ̂ in finitely many points
p1, ¨ ¨ ¨ , pk P rx, ys. For simplicity, set also p0 :“ x and pk`1 :“ y. Let αj , α be the

lifts as a graph of rpj , pj`1s, rx, ys to Ŝ. The path f̂pαq Ă H2 is the composition of

the paths f̂pαjq. By the above discussion, as αj is entirely contained in (the clo-

sure of) a component Ŝi, each f̂pαjq is a rectifiable path of length ℓpf̂pαjqq “ ℓpαjq.

Therefore, f̂pαq is also a rectifiable path of length ℓpf̂pαqq “ ℓpαq and joins f̂pxq to

f̂pyq. Thus,

dH2pf̂pxq, f̂pyqq ď ℓpf̂pαqq “ ℓpαq “ dH2,npx, yq.

This concludes the proof of the claim. □ □

The only missing piece in the finite leaved setting is the equivalence of the in-
trinsic hyperbolic structure Xλ and the one given by the intrinsic shear cocycle
σρ
λ.

Proposition 6.6. Let λ be a finite maximal lamination, and let S be the pleated
surface of M realizing λ. Then the ρ-shear cocycle σρ

λ coincides with the shear
coordinates of the intrinsic hyperbolic metric X “ Xλ described in Proposition 6.5.
In other words, we have σρ

λ “ σX
λ .

Proof. By additivity of the shear cocycles σρ
λ, σ

X
λ P Hpλ;Rq, it is enough to show

that σρ
λpP,Qq “ σX

λ pP,Qq when P and Q are separated by at most one component
γ̃ of λc, the set of leaves of λ that project onto simple closed geodesics.

If no component of λc separates P from Q, then there exists a finite collection of
plaques P “ P0, P1, . . . , Pn, Pn`1 “ Q such that Pi and Pi`1 are adjacent for every
i. Again by additivity, it is sufficient to check that σX

λ pPi, Pi`1q “ σρ
λpPi, Pi`1q,

and this follows from what we observed in Remark 4.6.
Therefore it is enough to consider the case in which P and Q are separated by

exactly one component of λc. By what we just proved, we can further reduce the
discussion to the case in which both plaques P and Q have exactly one ideal vertex
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equal to one of the endpoints γ̃˘ of γ̃. Up to relabeling the plaques and change
orientation of γ̃, we can assume that P lies on the left of γ̃ and has one vertex equal
to γ̃`. We denote by xP , yP the vertices of P different from γ̃˘, so that ryP , γ̃

`s

is the boundary component of P that is closest to γ̃. If zQ denote the vertex of Q
that coincides with one of the endpoints of γ̃, then we label the other vertices of Q
as xQ, yQ, so that ryQ, zQs is the boundary component of Q that is closest to γ̃.

As usual, we denote by PPQ the set of plaques of λ that separate P from Q. By
Lemmas 4.7 and 4.8, for any finite collection P Ă PPQ we have

σρ
PpP,Qq “ log

∣∣βρpγ̃`, yP , xP , yQqβρpγ̃`, yQ, yP , xQq
∣∣,

σX
P pP,Qq “ log

∣∣βXpγ̃`, yP , xP , yQqβXpγ̃`, yQ, yP , xQq
∣∣,(14)

if zQ “ γ̃`, and

σρ
PpP,Qq “ log

∣∣βρpγ̃`, yP , xP , γ̃
´qβρpγ̃`, γ̃´, yP , yQqβρpyQ, γ̃

´, γ̃`, xQq
∣∣,

σX
P pP,Qq “ log

∣∣βXpγ̃`, yP , xP , γ̃
´qβXpγ̃`, γ̃´, yP , yQqβXpyQ, γ̃

´, γ̃`, xQq
∣∣,(15)

if zQ “ γ̃´. In particular σρ
λpP,Qq “ σρ

PpP,Qq and σX
λ pP,Qq “ σX

P pP,Qq are
independent of the choice of P Ă PPQ.

Select now an identification between the universal cover of Σ and H2 compatible
with the intrinsic hyperbolic structure X “ Xλ P T . Then the classical shear
σX
λ pP,Qq can be characterized as follows (see e. g. [Bon96]):

Fact. Let ℓ̂ “ ℓ̂psq be a unit speed parametrization of the geodesic rγ̃`, γ̃´s pointing

towards γ̃`, and denote by v̂P , v̂Q P H2 –X
rΣ the projections of the ideal vertices

xP , xQ onto the spacelike geodesics rγ̃`, yP s, rzQ, yP s, respectively. In addition we

set ℓ̂psP q (resp. ℓ̂psQq) to be the intersection point between ℓ̂ and the horocycle of
H2 based at γ̃` (resp. zQ) that passes through v̂P (resp. v̂Q). Then sQ ´ sP “

σX
λ pP,Qq.

On the other hand, we will prove that a similar description holds for the shear
σρ
λ:

Claim. Let ℓ “ ℓptq be a unit speed parametrization of the space-like geodesic
rξpγ̃`q, ξpγ̃´qs pointing towards ξpγ̃`q, and denote by vP , vQ P H2,n the projections
of the ideal vertices ξpxP q, ξpxQq onto the space-like geodesics rξpγ̃`q, ξpyP qs, rξpzQq, ξpyP qs,
respectively. In addition we set ℓptP q (resp. ℓptQq) to be the intersection point be-
tween ℓ and the horosphere of H2,n based at ξpγ̃`q (resp. ξpzQq) that passes through
vP (resp. vQ). Then tQ ´ tP “ σρ

λpP,Qq.

Assuming that such characterization holds true, we can finally prove the state-
ment. Let Ŝ denote the lift of the pleated surface S realizing λ to H2,n (compare
with the proof of Proposition 6.5). Since any horosphere O based at ξpγ̃`q P Ein1,n

(or ξpzQq) intersects every plaque that has an ideal vertex equal to ξpγ̃`q (or ξpzQq)

into a horocycle, it follows that the curve BO X Ŝ is a horocycle based at γ̃` (or

zQ) with respect to the intrinsic hyperbolic metric of Ŝ. On the other hand, the
points vP and vQ are uniquely determined by the intrinsic hyperbolic structures

of the plaques P and Q, so the horocycles BO X Ŝ pass through the point of Ŝ
corresponding to v̂P (or v̂Q). This implies that sQ ´ sP “ tQ ´ tP , and therefore
σX
λ pP,Qq “ σρ

λpP,Qq, which was what we were left to prove.

Proof of the claim. In order to simplify the notation, we will implicitly (and with

abuse of notation) identify Ŝ with one of its lifts to pH2,n, and similarly for the
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boundary map ξ associated with the representation ρ. The projections vP , vQ P

pH2,n satisfy

vP “

d

´
xξ̃pyP q, ξ̃pγ̃`qy

2xξ̃pxP q, ξ̃pγ̃`qyxξ̃pxP q, ξ̃pyP qy

˜

xξ̃pxP q, ξ̃pγ̃`qy

xξ̃pyP q, ξ̃pγ̃`qy
ξ̃pyP q `

xξ̃pxP q, ξ̃pyP qy

xξ̃pyP q, ξ̃pγ̃`qy
ξ̃pγ̃`q

¸

,

vQ “

d

´
xξ̃pyQq, ξ̃pzQqy

2xξ̃pxQq, ξ̃pzQqyxξ̃pxQq, ξ̃pyQqy

˜

xξ̃pxQq, ξ̃pzQqy

xξ̃pyQq, ξ̃pzQqy
ξ̃pyQq `

xξ̃pxQq, ξ̃pyQqy

xξ̃pyQq, ξ̃pzQqy
ξ̃pzQq

¸

,

where ξ̃pxq denotes a representative of the projective class ξpxq P Ein1,n Ă RPn`2

(compare with Remark 4.6). Consider now the parametrization of the leaf rξpγ̃`q, ξpγ̃´qs

given by

ℓptq “
1

b

´2xξ̃pγ̃`q, ξ̃pγ̃´qy

petξ̃pγ̃`q ` e´tξ̃pγ̃´qq

The horosphere based at ξpγ̃`q that passes through vP intersects the spacelike
geodesic rξpγ̃`q, ξpγ̃´qs at ℓptP q, where

etP “

d

xξ̃pγ̃`q, ξ̃pγ̃´qyxξ̃pxP q, ξ̃pyP qy

xξ̃pxP q, ξ̃pγ̃`qyxξ̃pyP q, ξ̃pγ̃`qy
.

Similarly, the horosphere based at ξpzQq that passes through vQ intersects the
spacelike geodesic rξpγ̃`q, ξpγ̃´qs at ℓptQq, where

e˘tQ “

d

xξ̃pγ̃`q, ξ̃pγ̃´qyxξ̃pxQq, ξ̃pyQqy

xξ̃pxQq, ξ̃pγ̃˘qyxξ̃pyQq, ξ̃pγ̃˘qy

if zQ “ γ̃˘, respectively. In particular we have

tQ ´ tP “
1

2
log

xξ̃pxQq, ξ̃pyQqyxξ̃pxP q, ξ̃pγ̃`qyxξ̃pyP q, ξ̃pγ̃`qy

xξ̃pxQq, ξ̃pγ̃`qyxξ̃pyQq, ξ̃pγ̃`qyxξ̃pxP q, ξ̃pyP qy

“ log
∣∣βρpγ̃`, yP , xP , yQqβρpγ̃`, yQ, yP , xQq

∣∣
“ σρ

PpP,Qq

if zQ “ γ̃`, and

tQ ´ tP “
1

2
log

xξ̃pxQq, ξ̃pγ̃´qyxξ̃pyQq, ξ̃pγ̃´qy

xξ̃pγ̃`q, ξ̃pγ̃´qyxξ̃pxQq, ξ̃pyQqy

xξ̃pxP q, ξ̃pγ̃`qyxξ̃pyP q, ξ̃pγ̃`qy

xξ̃pγ̃`q, ξ̃pγ̃´qyxξ̃pxP q, ξ̃pyP qy

“ log
∣∣βρpγ̃`, yP , xP , γ̃

´qβρpγ̃`, γ̃´, yP , yQqβρpyQ, γ̃
´, γ̃`, xQq

∣∣
“ σρ

PpP,Qq

if zQ “ γ̃´. □

This concludes the proof of Proposition 6.6. □

6.2. General maximal laminations. We now extend the result from finite leaved
laminations to the general case using the continuity of the construction.

Proposition 6.7. Let ρ : Γ Ñ SO0p2, n ` 1q be a maximal representation. Let λ

be a maximal lamination with associated pleated set Sλ “ Ŝλ{ρpΓq. Let Xλ P T
be the hyperbolic surface whose shear coordinates with respect to the lamination λ
agree with the intrinsic shear cocycle σρ

λ P Hpλ;Rq. Then there exists a (unique)
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developing map f : Sλ Ñ Xλ which is 1-Lipschitz with respect to the intrinsic
pseudo-metric on Sλ and the hyperbolic metric on Xλ.

Proof. Let λm be a sequence of finite leaved maximal laminations that converges
to λ in the Hausdorff topology. By Propositions 3.6 and 6.5 for every m we can
find a pleated set Sm “ Ŝm{ρpΓq, a hyperbolic surface Xm P T with shear cocycle
σm “ σρ

λm
P Hpλm;Rq and a developing map fm : Sm Ñ Xm which is 1-Lipschitz

with respect to the pseudo-metric and the hyperbolic metric.
Let S “ Ŝ{ρpΓq be the pleated set associated to λ.
By Proposition 5.10 the cocycles σm “ σρ

λm
converge to the cocycle σ “ σρ

λ

naturally associated with the lamination λ.
The cocycle σ represents a hyperbolic surface X P T , that is σρ

λ “ σX
λ and the

convergence σρ
λm

Ñ σρ
λ implies Xm Ñ X in T .

In order to obtain convergence of developing maps, we will work in the Poincaré

model Ψ : D2 ˆ Sn Ñ pH2,n associated to the choice of an orthogonal splitting
R2,n`1 “ E ‘F where E is a p2, 0q-plane. We write Ŝm, Ŝ as graphs of 1-Lipschitz
functions gm, g : D2 Ñ Sn, that is, they are the images of the functions um, u
defined by

um, u : D2 ÝÑ pSm, pS Ă pH2,n

x ÞÝÑ Ψpx, gmpxqq,Ψpx, gpxqq.

By Proposition 3.7, we have gm Ñ g and um Ñ u uniformly on compact subsets
of D2. Furthermore, by property (3) of Lemma 2.5, the maps um, u are 1-Lipschitz
with respect to the hyperbolic distance of D2 and the pseudo-distance dH2,n , that
is, they satisfy

(16) dH2,npupxq, upyqq, dH2,npumpxq, umpyqq ď dH2px, yq

for every x, y P D2.

Let f̂m : pSm Ñ pXm denote the lifts of the developing maps fm to the universal

covers. Fix x0 P D2 so that upx0q lies in the interior of a plaque of pS. This implies

in particular that umpx0q R λ̂m for m sufficiently large. Choose now identifications
pXm » H2 so that the sequence pf̂mumpx0qqm converges to some y0 P H2.

By Proposition 3.6 and relation (16), the maps hm :“ f̂mum : D2 Ñ H2 are
1-Lipschitz with respect to the hyperbolic metrics of both domain and codomain,
and hmpx0q Ñ y0 as m goes to 8. By Ascoli-Arzelà, up to subsequences, we have
that hm converges uniformly on compact sets to a 1-Lipschitz map h : D2 Ñ H2

with hpx0q “ y0. Finally, we set f̂ :“ hπ : pS Ñ H2, where π : H2,n Ñ D2 is the
projection determined by the map Ψ.

Notice that each f̂m is pρ, ρXm
q-equivariant where ρXm

is the holonomy asso-

ciated to the chosen identification X̂m » H2. The sequence of holonomies ρXm

converges to ρX , a representative of the holonomy of the hyperbolic surface X:
As Xn Ñ X in Teichmüller space T , we only have to check that the sequence is
precompact. This follows from the fact that

ρXm
pγqhmpx0q “ hmπpρpγqumpx0qq Ñ hπpρpγqupx0qq.
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As a consequence, we deduce that f̂ is pρ, ρXq-equivariant: Take x P pS and select

xm P pSm that converge to x. Then

f̂pρpγqxq “ hπpρpγq lim
mÑ8

xmq

“ lim
mÑ8

hmπpρpγqxmq

“ lim
mÑ8

ρXm
pγqhmπpxmq

“ ρXpγqf̂pxq,

where in the second equality we used the uniform convergence of the maps hm.

We now show that f̂ is the lift of a 1-Lipschitz developing map f : S Ñ X. In
order to do so, we have to prove that:

‚ f̂ is injective.

‚ f̂ is totally geodesic on each leaf of λ̂, each plaque of pS ´ λ̂, and on the
complement of the bending locus.

This will be enough to conclude the proof.

Let now P be a plaque of pS, and consider a sequence of plaques Pm Ă pSm that

converge to P . By hypothesis f̂m “ hmπ is an isometric embedding on Pm, and

therefore the same holds for the restriction of f̂ “ hπ on P . In the same way we

see that f̂pℓq is a parametrized geodesic for every leaf ℓ of λ̂.

Since distinct plaques of pSm are sent by f̂m into ideal triangles of H2 with disjoint

interiors, the same property is verified by f̂ and the plaques of pS. In particular the

map h restricts to a homeomorphism between D2zπpλ̂q and H2zf̂pλ̂q. In addition,

if P,Q,R are plaques of pS and R separates P from Q, then pfpRq separates f̂pP q

from f̂pQq. From here it is simple to see that f̂ is in fact globally injective.
□

6.3. Length estimates. The length spectrum of a pleated surface is dominated
by the length spectrum of the maximal representation:

Proposition 6.8. Let ρ : Γ Ñ SO0p2, n`1q be a maximal representation. Consider
a pleated surface Sλ associated to ρ and a maximal lamination λ, together with a
1-Lipschitz developing map f : Sλ Ñ Xλ. Then, for every γ P Γ we have

LXλ
pγq ď Lρpγq,

where the strict inequality holds if and only if γ intersects essentially the bending
locus of Sλ.

Proof. We proceed as in Proposition 3.38 of [CTT19].
If γ does not intersect essentially the bending locus then the invariant geodesic

ℓ of ρpγq is contained in Ŝλ. By Lemma 6.3, the 1-Lipschitz developing map f̂ :

Ŝλ Ñ H2 is an isometry on the complement of the bending locus. Therefore, we
have Lρpγq “ LXλ

pγq.
Assume that γ intersects essentially the bending locus of Sλ.
Let ℓ be the axis of ρpγq. We first observe that ℓ is not contained in Ŝλ: If

this was the case, then, as γ intersects the bending locus essentially, the geodesic ℓ

must also intersects some bending line ℓ1 Ă λ̂. However, this would contradict the
fact that ℓ1 is a bending line by the definition of bending locus. Therefore ℓ is not
contained in Ŝλ.
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As ℓ is not contained in Ŝλ, it can be connected to Ŝλ by a timelike geodesic and
we can take the timelike geodesic rx, ps of maximal length ℓrx, ps “ T ą 0 joining a

point x P ℓ to a point p P Ŝλ. We parametrize ℓ as ℓptq “ coshptqx` sinhptqw with
w a spacelike vector orthogonal to x and we write p :“ cospT qx ` sinpT qv with v
timelike and orthogonal to x,w (as rx, ps maximizes the timelike distance between

ℓ and Ŝλ). The isometry ρpγq acts on ℓ by translating points by L “ Lρpγq and
acts on Spantx, vuK by an isometry A. Thus, we have ρpγqp “ cospT qpcoshpLqx `

sinhpLqwq ` sinpT qAv.

cosh pdH2,npp, ρpγqnpqq “ ´xp, ρpγqnpy

“ cospT q
2
coshpnLq ´ sinpT q

2
xv,Anvy.

Since the developing map f̂ : Ŝλ Ñ H2 is 1-Lipschitz and equivariant, we get

dH2pfppq, ρXλ
pγqnfppqq ď dH2,npp, ρpγqnpq.

Furthermore, for a hyperbolic isometry ρXλ
pγqn, we have that the minimal dis-

placement coincides with the translation length so that

nLXλ
pγq “ LXλ

pγnq ď dH2pfppq, ρXλ
pγqnfppqq.

Putting together the previous inequalities we get

cosh pnLXλ
pγqqq ď cospT q

2
coshpnLq ´ sinpT q

2
xv,Anvy.

Since the spectral radius of A is strictly smaller than eL, we can choose n suffi-
ciently large so that |xv,Anvy| ă coshpnLq (see for example [CTT19, Corollary 2.6]
and [BPS19]). For this value of n we get

cosh pnLXλ
pγqqq ď cospT q

2
coshpnLq ´ sinpT q

2
xv,Anvy

ă cospT q
2
coshpnLq ` sinpT q

2
coshpnLq “ coshpnLq.

Which implies LXλ
pγq ă L. □

7. Teichmüller geometry and length spectra

In this section we relate the geometry of maximal representations to the geometry
of Teichmüller space and use Teichmüller geometry to study the length spectrum
of maximal representations. Our main goal is the proof of Theorem D from the
introduction.

7.1. Outline. Let us briefly describe the picture.
By Theorem C and Proposition 6.8, we know that the length spectrum Lρp‚q

of a maximal representation ρ : Γ Ñ SO0p2, n ` 1q dominates the length spectrum
LSλ

p‚q of all the pleated surfaces Sλ. Furthermore, we have characterized those
curves γ P Γ for which the strict inequality LSλ

pγq ă Lρpγq holds. They are
precisely the ones that do not intersect essentially the bending locus of Sλ.

Thus, we can consider the dominated set of ρ which is the following space

Definition 7.1 (Dominated Set). The dominated set of the maximal representation
ρ is the subset of Teichmüller space T defined by

Pρ :“ tZ P T | LZp‚q ď Lρp‚qu

where LZ , Lρ are the length spectra of Z, ρ.
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Similarly, the simply dominated set is

Psimple
ρ :“ tZ P T

ˇ

ˇ

ˇ
Lsimple
Z p‚q ď Lsimple

ρ p‚qu

where Lsimple
Z ď Lsimple

ρ are the simple length spectra of Z, ρ.

Clearly Pρ Ă Psimple
ρ .

Let us stress the fact that the set Pρ is non-empty as it contains the hyperbolic
structures Xλ of all pleated surfaces Sλ associated to maximal laminations λ, but
it always has more structure: By work of Bestvina, Bromberg, Fujiwara, and Souto
[BBFS13], and Théret [Thé14] on convexity of length functions in shear coordinates
(see also [MV] for a different approach), the dominated set Pρ is convex with
respect to shear paths. By results of Wolpert [Wol87], [Wol06] on covexity of
length functions along Weil-Petersson geodesics, it is also convex with respect to
the Weil-Petersson metric.

We will analyze more carefully the structure of the dominated set. In order to
do so, let us introduce the following useful auxiliary function which is an analogue
of the Thurston’s distortion function [Thu98] for hyperbolic surfaces:

Definition 7.2 (Maximal Length Distotion). The maximal length distortion κ :
T Ñ p0,8q is the function defined by

κpZq :“ sup
cPC´t0u

Lρpcq

LZpcq
.

Similarly, we also define

κsimplepZq :“ sup
µPML´t0u

Lρpµq

LZpµq
.

As both Lρ, LZ are continuous homogeneous positive functions on the space of
geodesic currents C their ratio κ descends to a continuous positive function on the
projectivization PC. Since the the projectivization PC is compact, the supremum
κpZq is a maximum κpZq “ Lρpc̄q{LZpc̄q, which is achieved at some current c̄ P C.

In the first part of the section, we use the maximal length distortion to charac-
terize interior points Z P intpPρq as those points for which κpZq ă 1 (see Lemma
7.4). In other words, those are exactly the points that are strictly dominated by ρ.
Thus, Theorem 7.6 is equivalent to intpPρq ‰ H in this setting.

Using strict convexity of length functions along Weil-Petersson one shows that
intpPρq ‰ H provided that Pρ contains at least two distinct points. If ρ is not
Fuchsian, such points can be produced by considering pleated surfaces associated
to maximal extensions of two intersecting simple closed curves α, β. This is the
content of Proposition 7.5.

For convenience of the reader, we recall the definition of Fuchsian representation

Definition 7.3 (Fuchsian). A maximal representation ρ : Γ Ñ SO0p2, n ` 1q is
Fuchsian if it preserves a spacelike plane H Ă H2,n.

In the second part of the section, we consider points on the boundary Z P BPρ

and exterior points Z P T ´ Pρ. An immediate observation is that the pleated
surfaces Sλ all lie on BPρ as thy have κpSλq “ 1 since we have LSλ

pµq “ Lρpµq

for every measured lamination µ P ML whose support is contained in λ. We
show that for every Z outside intpPρq, the maximum κpZq ě 1 is realized by some



68 FILIPPO MAZZOLI AND GABRIELE VIAGGI

measured lamination (see Proposition 7.7). The proof of this fact follows arguments
of Thurston [Thu98] on the existence of maximally stretched laminations between
two hyperbolic surfaces.

As a consequence we deduce that Pρ coincides with the simply dominated set
Psimple
ρ (see Corollary 7.8). In fact, on the one hand, we have Pρ Ă Psimple

ρ directly
from the definition. On the other hand, from the above discussion we get BPρ Ă

BPsimple
ρ . As both subsets are topological disks, we conclude that equality holds.

7.2. Structure of the dominated set. We start our analysis of the dominated
set by characterizing interior points.

Lemma 7.4. A point Z P Pρ lies in the interior intpPρq if and only if we have
κpZq ă 1.

Proof. Suppose that κpZq ă 1. There exists a small neighbourhood U of Z P T
such that for every X P U we have LXp‚q{K ă LZp‚q ă KLXp‚q with K “ 1{κ.
Thus, for every surface in X P U we have LX{Lρ ď KLZ{Lρ ď Kκ “ 1, that is,
X P Pρ.

Viceversa, if Z P intpPρq, then Z is the midpoint of a WP geodesic rZ,Z 1s entirely

contained in intpPρq. Let c P C be a geodesic current such that κ “
LZpcq

Lρpcq
. By strict

convexity of length functions along Weil-Petersson geodesics (see Wolpert [Wol06]),
we have LZpcq ă pLZ1 pcq ` LZ2 pcqq{2 ď Lρpcq. Therefore κ ă 1. □

We remark that exactly the same argument also shows that a point Z P Psimple
ρ

lies in the interior intpPsimple
ρ q if and only if we have κsimplepZq ă 1.

We now show that intpPρq is never empty when ρ is not Fuchsian.

Proposition 7.5. If ρ is not fuchsian then intpPρq ‰ H.

Proof. We prove the statement in two steps: First we show that if Pρ contains two
distinct points then intpPρq ‰ H. Then we show that if ρ is not fuchsian then Pρ

contains at least two points.
The first step only uses the Weil-Petersson geometry of Teichmüller space: Let

X,Y P Pρ be distinct points. Let Z be their Weil-Petersson midpoint. We
show that Z is an interior point: By Lemma 7.4 this is equivalent to κpZq “

supγPΓ tLZpγq{Lρpγqu ă 1. Let c P C be a geodesic current that achieves κ “

LZpcq{Lρpcq. By results of Wolpert, the length of a geodesic current is strictly con-
vex along a Weil-Petersson geodesic. Hence LZpcq ă pLXpcq ` LY pcqq{2 ď Lρpcq.
Therefore κpZq ă 1.

The second step, instead, relies on the pseudo-Riemannian geometry of H2,n.
Let α and β be intersecting essential simple closed curves. Extend α, β to two
finite leaved maximal laminations µ, ν of Σ by adding ideal triangulations of their
complementary regions Σ ´ α,Σ ´ β. Let Sλ, Sµ Ă M be the pleated surfaces
realizing λ, µ for ρ. Denote by Xλ, Xµ their intrinsic hyperbolic structures. Note
that LXλ

pαq “ Lρpαq and LXµ
pβq “ Lρpβq.

Since ρ is not fuchsian, the bending loci of Sλ and Sµ are both non-empty and,
by Proposition 3.9, they are sublaminations of λ and µ. By construction, any
non-trivial sublamination of λ, µ contains α and β as every leaf of λ ´ α, µ ´ β
spirals around α, β. Therefore, the bending locus of Sλ, Sµ contains α, β. As
α, β are intersecting, we conclude, by Proposition 6.8, that LXλ

pβq ă Lρpβq and
LXµ

pαq ă Lρpαq. Hence Xλ, Xµ are different hyperbolic surfaces. □
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From Lemma 7.4 and Proposition 7.5 we deduce the following result of Collier,
Tholozan, and Toulisse [CTT19]

Theorem 7.6. Let ρ be a maximal representation of a surface group into SO0p2, n`

1q. Then either ρ is fuchsian or there exists κ ą 1 and a fuchsian representation σ
such that Lρ ě κLσ

7.3. Simple length spectrum. We now analyze κpZq for points outside Pρ.

Proposition 7.7. For every Z P T ´ intpPρq, the maximum κpZq is achieved by
some measured lamination λ P ML.

Proof. Let us first consider Z P T ´Pρ. Following an argument of Thurston [Thu98],
we show that

Claim. κpZq “ κsimplepZq :“ supγ simple LZpγq{Lρpγq.

Once we know that κpZq can be computed by restricting to simple closed curves,
it immediately follows that the maximum is achieved at a measured lamination
λ P ML.

Proof of the claim. In order to prove the claim, we show that if γ is not simple and
we have LZpγq{Lρpγq ą 1, then there is a shorter curve α such that LZpαq{Lρpαq ě

LZpγq{Lρpγq: As γ is not simple, it describes an immersed figure 8 in Z. Let
P Ñ Z be the covering corresponding to the immersed figure 8. The surface P
is a pair of pants with boundary curves α1, α2, α3. Let S be a pleated surface
realizing the curves αj for the maximal representation given by the restriction of
ρ to the subgroup corresponding to π1pP q. We have Lρpαjq “ LSpαjq for j ď 3
by construction and Lρpγq ě LSpγq by the Lipschitz properties of pleated surfaces.
Furthermore, as S is a hyperbolic surface pair of pants, we have LSpγq ě LSpαjq

for every j ě 3.
As a consequence, we get

LZpγq{Lρpγq ď LP pγq{LSpγq.

By Lemma 3.4 of [Thu98], we have that

LP pγq{LSpγq ď max
jď3

tLP pαjq{LSpαjquq

which yields the conclusion. □

Lastly, we take care of boundary points Z P BPρ: Let Zn be a sequence of points
outside Pρ converging to Z. By the previous steps, we can associate to each of
them a measured lamination λn P ML such that LZn

pλnq{Lρpλnq “ κpZnq ą 1.
Up to subsequence and rescaling, we can assume that the sequence of measured
laminations λn converges to some λ P ML. By continuity of length functions, we
have LZn

pλnq{Lρpλnq Ñ LZpλq{Lρpλq ě 1. As Z P Pρ, we also have the opposite
inequality so we conclude that equality holds and LZpλq{Lρpλq “ 1 “ κpZq. □

From Proposition 7.7, we deduce the following

Corollary 7.8. We have Pρ “ Psimple
ρ .

Proof. Observe that, directly from the definitions, we always have Pρ Ă Psimple
ρ .

Also notice that both sets are topological convex disks with non-empty interior.
If we knew that BPρ Ă BPsimple

ρ , then the claim would follow from a topological
argument based on the following:
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Claim. Let D,D1 Ă Rn be topological n-disks such that D Ă D1 and BD Ă BD1.
Then D “ D1.

Proof of the claim. Consider the map ι˚ : HnpD, BDq Ñ HnpD1, BD1q induced by
the proper inclusion ι : pD, BDq Ñ pD1, BD1q. We now show that ι is degree one,
that is, ι˚ is an isomorphism. By well-known consequences, we deduce that ι is
surjective which implies the claim.

The computation of the degree can be done as follows: Let ‹ P intpDq Ă intpD1q

be any interior point. As D´‹, D1 ´‹ deformation retract to BD, BD1, we have that
the degree n relative homology groups are isomorphic to the local homology groups
HnpD, BDq “ HnpD,D ´ ‹q and HnpD1, BD1q “ HnpD1, D1 ´ ‹q. By the excision
theorem, if U Ă intpDq is a small ball around ‹, then HpD,D´ ‹q “ HnpU,U ´ ‹q

and HpD1, D1 ´ ‹q “ HnpU,U ´ ‹q. As ι restricts to the identity U Ñ U , we
conclude that ι˚ is an isomorphism.

□

Hence, it is sufficient to show that BPρ Ă BPsimple
ρ . Consider Z P BPρ, by

Lemma 7.4, we have κpZq “ 1. Furthermore, by Proposition 7.7, the maximum is
realized by a measured lamination λ P ML. Therefore κsimplepZq “ 1 and, hence,
Z P BPsimple

ρ , as interior points of Psimple
ρ are the ones for which κsimplepZq ă 1. □

8. Fibered photon structures

As shown by Guichard and Wienhard [GW12], maximal representations ρ : Γ Ñ

SO0p2, n ` 1q parametrize deformations of photon structures, a class of geometric
structures in the sense of Thurston (see Chapter 3 of [Thu79]), on certain closed
manifolds E.

Definition 8.1 (Photon Structure). A photon of R2,n`1 is an isotropic 2-plane.
We denote by Pho2,n the space of photons in R2,n`1. The group SO0p2, n` 1q acts
transitively on the homogeneous space Pho2,n with non-compact stabilizer. We call
a pSO0p2, n` 1q,Pho2,nq-structure on a manifold M a photon structure.

The construction of Guichard and Wienhard is the following: The maximal
representation ρ has a natural domain of discontinuity Ωρ Ă Pho2,n obtained by
removing from the space of photons, the closed subset

Kρ :“ tF P Pho2,n |ℓ Ă F for some isotropic line ℓ P Λρ u.

The group ρpΓq acts properly discontinuously, freely, and cocompactly on Ωρ

so that the quotient Eρ :“ Ωρ{ρpΓq is a closed manifold endowed with a photon
structure. By the Ehresmann-Thurston principle [Thu79], the topology of Eρ does
not change as we vary ρ continuously.

Collier, Tholozan, and Toulisse [CTT19] have shown that the manifold Eρ has
a natural description as Opnq{Opn ´ 2q-bundle Eρ Ñ Σ in a way compatible with
the geometric structure, that, is, in such a way that the fibers are also geometric.

Definition 8.2 (Fibered Photon Structure). Let E Ñ S be a fiber bundle over the

surface S such that the total space E has a photon structure. Let Ŝ be the universal
covering of S and let π : Ê Ñ Ŝ be the pull-back bundle. Let δ : Ê Ñ Pho2,n be
the developing map. We say that the photon structure is fibered if δpπ´1pxqq “

PhopfpxqKq for some fpxq P H2,n. In this case, there is an associated map Σ̂ Ñ H2,n

defined by x Ñ fpxq.
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In this section we consider the point of view of fibered photon structures E Ñ Σ
associated to maximal representations. We use pleated surfaces to give a geometric
decomposition of E Ñ S, namely triangles and lines of photons which we now
introduce.

Definition 8.3 (Triangles and Lines of Photons). For every ideal spacelike triangle
∆ Ă H2,n and spacelike geodesic ℓ Ă H2,n we define a triangle of photons Ep∆q Ă

Pho2,n and a line of photons Epℓq Ă Pho2,n consisting of those photons V that
are orthogonal to some point x P ∆ and x P ℓ respectively. Triangles and lines of
photons Ep∆q, Epℓq are naturally fiber bundles over ∆, ℓ where the fiber over the
point x P ∆ is the space PhopxKq.

Triangles of photons Ep∆q are codimension 0 submanifolds of Pho2,n with bound-
ary. The boundary BEp∆q consists of three components which are smooth subman-
ifolds of Pho2,n. Each boundary component is a line of photons. Notice that lines
of photons carry an action of the subgroup SOp1, 1q ˆSOp1, nq which is compatible
with the fibration Epℓq Ñ ℓ. Furthermore, they have natural ideal boundaries:

Definition 8.4 (Ideal Boundary). Triangles and lines of photons have both an
ideal boundary. Boundary components correspond to isotropic lines and have have
all the following form: For every isotropic line ras P BH2,n, we consider the subspace

Epaq :“ PhopaKq “ tF P Pho2,n |a Ă F u.

If ℓ Ă H2,n is a spacelike geodesic with endpoints at infinity a, b P BH2,n, then ideal
boundary of Epℓq is Epaq Y Epbq. The subspace Epaq Y Epℓq Y Epbq is the closure
of Epℓq in Pho2,n. Similarly, if ∆ Ă H2,n is a spacelike ideal triangle with vertices
a, b, c P BH2,n, then ideal boundary of Ep∆q is Epaq Y Epbq Y Epcq. The subspace
Ep∆q Y Epaq Y Epbq Y Epcq is the closure of Ep∆q in Pho2,n.

After having proved the geometric decomposition, we will explain, conversely,
how to explicitly construct abstractly photon structures that fiber over hyperbolic
surfaces by assembling together triangles of photons. The process is completely
analogous to the construction of hyperbolic surfaces by gluing ideal triangles. The
holonomy of such photon structures will correspond to maximal representations
ρ : Γ Ñ SO0p2, n ` 1q, the hyperbolic surface S, which is the base of the fibering,
corresponds to a pleated surface for ρ, and the gluing parameters of the triangles
of photons correspond to the bending of the pleated surface.

The goal of the section is to develop this picture in more details.

8.1. A geometric decomposition. We have the following is geometric decompo-
sition of the Guichard-Wienhard domain of discontinuity Ωρ Ă Pho2,n:

Proposition 8.5. Let ρ : Γ Ñ SO0p2, n ` 1q be a maximal representation with

Guichard-Wienhard domain of discontinuity Ωρ Ă Pho2,n. Let Σ̂ be the universal

covering of Σ. Let f : Σ̂ Ñ H2,n be a ρ-equivariant embedding with acausal image
Ŝ “ fpΣ̂q. Then we have:

‚ The closure of Ŝ in H2,n Y BH2,n is Ŝ Y Λρ.

‚ Ωρ is foliated by PhopfpxqKq and the map Ωρ Ñ Σ̂ that associates to a
point y P Ωρ the unique leaf PhopfpxqKq that contains it is an equivariant
fibration.
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In [CTT19] these properties are proved for smooth equivariant spacelike em-
beddings (see Lemma 3.23, Lemma 4.11, and Theorem 5.3 of [CTT19]). Here we
slightly generalize their results in a purely topological setting which is necessary
when we deal with pleated surfaces.

Proof. Let us first prove the first point.

We lift f to an acausal embedding f̂ : Σ̂ Ñ pH2,n. We will work in different

Poincaré models of pH2,n, for now we fix an arbitrary one ψ : D2 ˆ Sn Ñ pH2,n and

denote by π : pH2,n Ñ D2 the associated projection.

As Ŝ “ f̂pΣ̂q is acausal, by Lemma 2.6, it can be represented as the graph of

a 1-Lipschitz function g : πpŜq Ă D2 Ñ Sn. The domain πpŜq Ă D2 is a simply

connected open subset by invariance of domain as the map πf̂ : Σ̂ Ñ D2 is injective.
Let D denote the projection πpŜq and let D̄ be its closure in D2 Y BD2. As g is 1-
Lipschitz, it continuously extends to a 1-Lipschitz function ḡ : D Ă D2 YBD2 Ñ Sn.
We deduce that the closure Ŝ Y BŜ of Ŝ in pH2,n Y B pH2,n is the graph of ḡ.

We first show that
Claim. We have D “ D2.
Proof of the claim. As ρpΓq acts cocompactly on Ŝ, we can find a compact

fundamental domain F Ă Ŝ. Let U Ă Ŝ be an open neighborhood of F in Ŝ.
By compactness, there exists r ą 0 such that dH2,npx, yq ě r for every x P F and

y P BU . As ρpΓq preserves Ŝ and its pseudo metric, we deduce that every point

x P Ŝ has an open neighborhood Ux Ă Ŝ such that dH2,npx, BUxq ě r.

Recall that D2 is endowed with a hyperbolic metric. As Ŝ is acausal, by Lemma
2.5, we have that dH2pπpxq, πpyqq ě dH2,npx, yq for every x, y P Ŝ. In particular, for

every x P Ŝ we have

dH2pπpxq, πpBUxqq ě dH2,npx, BUxq ě r.

Since πf̂ : Σ̂ Ñ D2 is an injective map, by invariance of domain, it is also open.
Therefore, for every x P Ŝ the set πpUxq is an open neighborhood of πpxq. Fur-
thermore, by the above discussion, it contains the hyperbolic metric ball of radius
r centered at πpxq. We are now ready to conclude: The projection D “ πpŜq is a
subset of D2 with the property that its hyperbolic r-neighborhood NrpDq is still
contained in D. This is only possible if D “ D2. □

Using the dynamical properties of ρ we now show that BŜ “ Λ̂ρ.
First, recall that for every γ P Γ the element ρpγq preserves a spacelike geodesic

ra, bs, on which it acts by translations by L ą 0, and its orthogonal subspace
Spanta, buK, on which it acts with (generalized) largest eigenvalue ν with |ν| ă eL

(see [BPS19] or Corollary 2.6 of [CTT19]). Up to replacing γ with γ´1, we assume
that ρpγqa “ eLa, ρpγqb “ e´Lb where L ą 1 and eL is larger than |ν|.

Fix γ P Γ with invariant axis ra, bs. Every x P pH2,n can be written as x “

αa` βb` u with α, β P R and u P V “ Spanta, buK.

Claim. There exists x P Ŝ that can be written as x “ αa ` βb ` u with either
α ‰ 0 or β ‰ 0.

Proof of the claim. Suppose that this is not the case, then Ŝ Ă V . Let e P

Spanta, bu be a spacelike vector. As V has signature p1, nq, there exists e1 P V

spacelike. Consider the Poincaré model ψ : D2 ˆ Sn Ñ pH2,n associated to the
orthogonal splitting R2,n`1 “ E‘EK where E “ Spante, e1u. If a point x “ ψpu, vq

lies on V then
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0 “ xψpu, vq, ey

“ x
2

1 ´ |u|2
u`

1 ` |u|2

1 ´ |u|2
v, ey

“
2

1 ´ |u|2
xu, ey.

Therefore the projection of V to D2 lies on the line x‚, ey “ 0 of E. Since Ŝ is

acausal, the projection πEpŜq is an open subset of D2, therefore, there is a point

x P Ŝ which is not contained in V . □
Suppose that there is a point x “ αa ` βb ` u P Ŝ with α ‰ 0. Then a lies

in BŜ: By ρpΓq-invariance, we have ρpγqmx “ αemLa ` βe´mLb ` ρpγqnu P Ŝ. As
the largest (generalized) eigenvalue of the restriction of ρpγq to V “ Spanta, buK is
smaller than eL, the sequence rαemLa` βe´mLb` ρpγqnus converges to ras in the

sphere of rays R2,n`1 ´ t0u{y „ λ2y. Thus ras P BŜ.

Similarly, if there is a point x “ αa` βb` u P Ŝ with β ‰ 0, then b lies in BŜ.
By ρpΓq-invariance, the orbit ρpΓqa is contained in Λρ X BŜ and moreover, it

is dense in Λρ. Therefore Λρ Ă BŜ. As Λρ and BŜ are both graphs of functions

BD2 Ñ Sn, we conclude that Λρ “ BŜ.
This concludes the proof of the first point.
For the second point we need the following three properties:

(1) For every x P Σ̂, the space PhopfpxKqq is contained in Ωρ.

(2) If p P Ωρ, then p P fpxKq for some x P Σ̂.

(3) If x, y P Σ̂ are distinct points, then PhopfpxKqq,PhopfpyKqq are disjoint.

Together, the properties imply that Ωρ is foliated by PhopfpxqKq for x P Σ̂ and

is equipped with an equivariant map Ωρ Ñ Σ̂.
We now prove the properties.
Property (1). The first property follows from the following fact

Claim. PpfpxqKq X Λρ “ H for every x P Σ̂.
Proof of the claim. If a P PpfpxqKq X BH2,n, then the 2-plane Spanta, fpxqu

is lightlike, that is, a, fpxq are joined by a lightlike geodesic. Let D2 ˆ Sn be
a Poincaré model where a, fpxq correspond respectively to pp, ḡppqq and po, ḡpoqq

where p P BD2 and o P D2 is the center. By Lemma 2.5, since ra, fpxqs is lightlike, we
have dSnpḡpoq, ḡppqq “ dS2po, pq. As ḡ is 1-Lipschitz we must have dSnpḡpoq, ḡptqq “

dS2po, tq for every t on the radial segment ro, ps Ă D2 which is a minimal geodesic for
the hemispherical metric on D2. However, by Lemma 2.5, this implies that po, gpoqq

and pt, gptqq are connected by a lightlike geodesic. This contradicts the fact that Ŝ,
the graph of g, is acausal. □

Recall that Ωρ Ă Pho2,n is the complement of the set

Kρ :“ tF P Pho2,n |ℓ Ă F for some isotropic line ℓ P Λρ u.

If PhopfpxqKq XK ‰ H, then there is a photon F orthogonal to fpxq containing an
isotropic line a P Λρ. In particular, a Ă fpxqK which cannot happen by the claim.

Property (3). The last property follows from the fact that fpxq, fpyq are joined
by a spacelike segment: Suppose that there is a photon F that is simultaneously
orthogonal to fpxq and fpyq. Then it is orthogonal to the 2-plane Spantfpxq, fpyqu
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which has signature p1, 1q as fpxq, fpyq are joined by a spacelike segment. However,
the orthogonal of such plane, having signature p1, nq, cannot contain photons.

Property (2). The second property follows from the fact that every timelike

sphere intersects fpΣ̂q exactly once and Λρ “ BfpΣ̂q.

Let F P Pho2,n be a photon. The orthogonal FK is non-positive definite and can
be approximated by negative definite pn`1q-planes Fn. Each such plane intersects

fpΣ̂q exactly once in a point fpxnq. Thus FK either intersects fpΣ̂q in some point
fpxq or it intersects Λρ. In the first case, F Ă fpxqK, that is F P PhopfpxqKq, and,

moreover, by Property (3), FK intersects fpΣ̂q in exactly the point fpxq. In the
second case, a Ă FK for some isotropic line a P Λρ which implies a Ă F and, hence,
F P Kρ.

Note that, as a by-product of the proof, we can describe explicitly the projection
Ω Ñ Ŝ as F Ñ PpFKq X Ŝ. □

8.2. Gluing triangles of photons. We start with a simple computation: Let ∆
be an ideal spacelike triangle and let ℓ be a spacelike geodesic. Let f P SO0p2, n`1q

be an isometry such that fpEp∆qq “ Ep∆q or fpEpℓqq “ Epℓq. As f induces an
orientation preserving homeomorphism of Pho2,n, we have that f extends to a
homeomorphism of the closures of Ep∆q and Epℓq. In particular, f must permute
the ideal vertices of Ep∆q or Epℓq.

We denote by PStabSO0p2,n`1qpEp∆qq and PStabSO0p2,n`1qpEpℓqq the elements
that stabilize Ep∆q and Epℓq without permuting the ideal vertices. Observe that
if fpEpuqq “ Epuq for some isotropic line u P BH2,n, then fpuq “ u in BH2,n. As a
consequence, we have the following

Lemma 8.6. We have

‚ PStabSO0p2,n`1qpEp∆qq “ PStabSO0p2,n`1qp∆q.
‚ PStabSO0p2,n`1qpEpℓqq “ PStabSO0p2,n`1qpℓq.
‚ StabSO0p2,n`1qpEpaqq “ StabSO0p2,n`1qpaq.

We now fix once and for all an ideal spacelike triangle ∆ Ă H2,n with vertices
a, b, c P BH2,n. Denote by ℓa, ℓb, ℓc the edges opposite to a, b, c respectively.

Consider H :“ Spanta, b, cu Ă R2,n`1 and denote by F “ HK the orthogonal
complement. Let ιF P Op2, n ` 1q be an isometric involution that restricts to an
orthogonal reflection on F and to ´I on H. We have:

‚ PStabSO0p2,n`1qp∆q “ SOpF q \ ιFSOpF q.

‚ PStabSO0p2,n`1qpℓuq “ SO0pLuq ˆ SO0pLK
u q \ ιFSO0pLuq ˆ SO0pLK

u q.

Let ra, rb, rc P Op2, n ` 1q be the isometries of R2,n`1 that on H coincide with
the orthogonal reflections along the planes La “ Spantb, cu, Lb “ Spantc, au, Lc “

Spanta, bu and restrict to the identity on F .
Consider the standard triangle of photons Ep∆q Ñ ∆. We endow the boundary

components BEp∆q with the induced orientation. We now construct fibered photon
structures by gluing together two copies of Ep∆q along suitably boundary identifi-
cations. We now describe which gluing maps ϕ : BEp∆q Ñ BEp∆q are admissible:
For every edge ℓu of ∆, we start by choosing an isometry ϕBu : ℓu Ñ ℓu. Then, we
choose βu P PStabpEpℓuqq covering ϕBu : ℓu Ñ ℓu and form the orientation reversing
isometry ϕu :“ βuru. Observer that ϕu coincides with βu on Epℓuq.
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The choices of the three gluing maps of the base ϕBa , ϕ
B
b , ϕ

B
c determine an (in-

complete) hyperbolic surface

S “ ∆ Y ∆{ϕBa Y ϕBb Y ϕBc ,

a photon structure

E “ Ep∆q Y Ep∆q{ϕa Y ϕb Y ϕc,

where a pSO0p2, n` 1q,Pho2,nq-local chart around a point x P Epℓuq is obtained by
juxtaposing Ep∆q and ϕupEp∆qq.

We also have a natural fiber bundle projection

E Ñ S

with geometric fibers.
Observe that, if we choose elements ψ,ψ1 in PStabpEp∆qq and we change the

gluing maps ϕu with ψϕuψ
1 for all u P ta, b, cu, then, if we denote by E1 the new

photon structure, there is an isomorphism of photon structures E Ñ E1 covering
the identity S “ S1 induced by ψYψ1. Thus, the space of parameters for the gluing
maps is

PStabSO0p2,n`1qpℓaq ˆ PStabSO0p2,n`1qpℓbq ˆ PStabSO0p2,n`1qpℓcq

modulo the action by left and right multiplications of

PStabp∆q ˆ PStabp∆q.

The completion of the hyperbolic surface S is a hyperbolic pair of pants with
totally geodesic boundary S̄ and we can easily read off the length of the boundary
components from the gluing maps ϕBu . We now study the completion of E. In
particular, we give conditions on the gluing maps ϕu under which the fibered photon
structure E admits a completion Ē, which is a fibered photon structure with photon
boundary that naturally fibers over S̄.

First, let us compute the holonomies ρa, ρb, ρc around the vertices a, b, c of S
corresponding to the vertices a, b, c of ∆: A direct computation from the definition
of the photon structure on E shows that

ρv “ ϕuϕ
´1
w

where the u, v, w are in cyclic order.

Definition 8.7 (Loxodromic Isometry). An isometry ρ P SOp2, n`1q is loxodromic
if it admits an invariant spacelike line ℓ “ ra, bs such that the following holds:

‚ ρn Ñ a uniformly on H2,n ´ PpbKq.
‚ ρ´n Ñ b uniformly on H2,n ´ PpaKq.

We say that a and b are the attracting and repelling fixed points of ϕ.

Note that a loxodromic element ϕ with attracting and repelling fixed points a, b
has north-south dynamics on Pho2,n in the following sense:

‚ ρn Ñ Epaq uniformly on Pho2,n ´ Epbq.
‚ ρ´n Ñ Epbq uniformly on Pho2,n ´ Epaq.

In particular, it acts properly discontinuously and freely on Pho2,n ´pEpbqYEpaqq.
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Definition 8.8 (Fibered Photon Structure with Geodesic Boundary). Let S̄ be an
orientable compact surface with boundary and let Ē Ñ S̄ be a fiber bundle over it.

A half space of Pho2,n is a subspace of the form

EpW q “ tV P Pho2,n |V K x for some x P W u

where W Ă H is a half plane in a spacelike plane H Ă H2,n.
A photon structure with totally geodesic boundary on Ē is a maximal atlas of

charts with values in a half space of Pho2,n with change of charts that are restrictions
of transformations in SO0p2, n` 1q.

The photon structure is fibered if the following holds: Let Ŝ Ñ S̄ be the universal
covering and let Ê Ñ Ŝ be the pull-back bundle. Let δ : Ê Ñ Pho2,n be the
developing map. Then δpπ´1pxqq “ PhopfpxqKq for some fpxq P H2,n.

The map f : Ŝ Ñ H2,n is the associated map of the fibered photon structure.

We have the following:

Lemma 8.9. Let a, b, c be the vertices of S. Suppose that the holonomies ρv :“
pϕuϕ

´1
w q P Stabpvq for tv, u, wu “ ta, b, cu and u, v, w cyclically ordered are all

loxodromic. Denote the invariant lines by ℓpρvq. Then there is a completion E Ă Ē
which is a fibered photon structure with totally geodesic boundary where the boundary
component adjacent to v is Epℓpρvqq{ρv.

Proof. Let ℓpρvq be the invariant spacelike line of ρv. Notice that, as ρv is lox-
odromic and leaves invariant Epvq, we have ℓpρvq “ rv, ts. Let Epℓpρvqq be the
corresponding ρv-invariant line of photons. Note that the action ρv ñ Epℓpρvqq is
properly discontinuous and free. Let

Epℓpρvqq{ρv Ñ ℓpρvq{ρv

be the corresponding quotient bundle.
We now give local charts for

E Y pEpℓpρvqq{ρvq Ñ S Y pℓpρvq{ρvq.

Let Ê Ñ Ŝ be the pull-back bundle to the universal covering Ŝ Ñ S. Choose a
lift v of the vertex. Let Ŝv be the fan of triangles with an ideal vertex in v. Let Êv

be the fan of all triangles of photons of Ê with ideal vertex Epvq.

Claim. The restriction of the associated map f : Ŝ Ñ H2,n to Ŝv is an acausal
embedding.

Proof of the claim. The proof is a simpler version of the one of Proposition 3.6.

We lift f : Ŝ Ñ H2,n to the two fold cover pH2,n Ñ H2,n and work in a Poincaré

model D2 ˆ Sn of pH2,n. Observe that Ŝv “
Ť

jPZ ∆j where ∆j “ ∆pv, uj´1, ujq.

Notice that the cyclic order of the vertices of Ŝv on BŜ is

v ă ¨ ¨ ¨ ă uj´1 ă uj ă uj`1 ă ¨ ¨ ¨ ă v.

Let π : pH2,n Y B pH2,n Ñ D2 Y BD2 be the natural projection. Consider two
consecutive triangles ∆j “ ∆pv, uj´1, ujq,∆j`1 “ ∆pv, uj , uj`1q intersecting along
the geodesic rv, ujs. By construction, fp∆j Y ∆j`1q is acausal so the projections
πpvq, πpuj´1q, πpujq, πpuj`1q of the vertices v, uj´1, uj , uj`1 to BD2 appear in this
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exact cyclic order on BD2. We deduce that that the projections of the vertices πpujq

appear in the same order

πpvq ă ¨ ¨ ¨ ă πpuj´1q ă πpujq ă πpuj`1q ă ¨ ¨ ¨ ă πpvq

as they appear on BŜ. As a consequence, the restriction of f to the union λ “
Ť

jPZ B∆j of the sides of the triangles ∆j is an acausal embedding: For every

ℓ, ℓ1 Ă λ we have that the endpoints of ℓ, ℓ1 are in disjoint position.
We immediately deduce that fpintp∆jqqXfpintp∆iqq “ H for all j ‰ i which says

that f is an embedding: We already know that is is the case when |i´j| “ 1. Assume
|i´ j| ą 1. Note that πf is an embedding on both ∆j ,∆i and the images coincide
with the topological disks bounded by the closures in D2YBD2 of πfpB∆jq, πfpB∆iq.
Those curves are disjoint and not nested. The conclusion follows.

Checking that fpŜvq is acausal is simple: Suppose that τ is a lightlike geodesic

contained in fpŜvq then τ has a subsegment entirely contained in one of the triangles
fp∆jq but such triangle is spacelike, so it cannot contain any lightlike segment. □

A consequence of the claim is that the restriction of the developing map δ : Ê Ñ

Pho2,n to Êv is an embedding.
Notice that the images δpÊvq are ρv-invariant and contained in Pho2,n´Epℓpρvqq:

In fact, if Epℓpρvqq intersects the image of one of the triangles of photons Ep∆1q

in Êv under the developing map, then we have ρvδpEp∆1qq X ρvδpEp∆1q ‰ H as
both δpEp∆1qq and Epℓpρvqq have a vertex in Epvq. But ρv moves every triangle
δpEp∆1qq off itself.

Furthermore, by the loxodromic assumption on ρv, the ρv-orbit of every triangle
in δpÊvq accumulates to Epℓpρvqq either in the forward or backward direction and

to Epvq or Eptq in the opposite one. We deduce that the union δpÊvq YEpℓpρvqq Ă

Pho2,n is a ρv-invariant submanifold with boundary Epℓpρvqq. This provides local
charts for E Y pEpℓpρvqq{ρvq at points in Epℓpρvqq{ρv. □

We now describe the topology of the completion: We associate to the fibered
photon structure Ē Ñ S̄ the vector bundle V̄ Ñ S̄ where the fiber over the point
x P S̄ is the vector space xK Ă R2,n`1. Vector spaces over Ŝ are classified by the first
Stiefel-Whitney class w1pV̄ q P H1pS̄,Z{2Zq that can be computed as follows: Let

rγs P H1pS̄,Z{2Zq be represented by the loop γ : S1 Ñ Ŝ. Consider the pull-back
bundle γ˚V̄ Ñ S1, we define w1pV̄ qrαs P Z{2Z to be 0 if α˚V is orientable and 1
if it is non-orientable. This defines a homomorphism w1pV̄ q : H1pS̄,Z{2Zq Ñ Z{2Z
representing the first Stiefel-Whitney class.

If γa, γb, γc are the boundary curves of S̄ corresponding to the vertices a, b, c,
then, in order to compute w1pV̄ q, it is enough to know two among w1pV̄ qrγas,
w1pV̄ qrγbs, w1pV̄ qrγcs as two classes among rγas, rγbs, rγcs generate H1pS̄,Z{2Zq.

Let us compute w1pV̄ qrγas: Let ρa “ ϕcϕ
´1
b be the holonomy around γa. Recall

that ρa is a loxodromic element.
Loxodromic elements in SO0p2, n ` 1q are divided into two connected compo-

nents L`,L´: Let ρ P SO0p2, n ` 1q be a loxodromic isometry with invariant line
ℓpρq “ ra, bs. Consider the action of ρ on the 2-plane L :“ Spanta, bu. Then

ρ can either preserve or exchange the connected components of L X pH2,n. This
feature distinguishes the two connected components of SOpLq and the two con-
nected components of loxodromic elements in SO0p2, n` 1q. In the first case, when
ρ P SO0pLq, the bundle V pℓq{ρ is the trivial bundle over ℓ{ρ. In the second case,
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when ρ R SO0pLq, the bundle V pℓq{ρ Ñ ℓ{ρ is the unique non-orientable bundle
over ℓ{ρ.

The computation of the connected component of the loxodromic isometry ρa “

ϕcϕ
´1
b is simple: The connected components L`,L´ are distinguished by the sign

of the extremal eigenvalues. We already know that one of the eigenvectors is the
isotropic line a, so we can read off the connected component from ρapaq. If the sign
is positive, then w1pV̄ qrγas “ 0. Otherwise, w1pV̄ qrγas “ 1.

Theorem 8.10. The space of fibered photon structures with totally geodesc bound-
ary on a bundle E Ñ S over a hyperbolic pair of pants S admits a parametrization
by

$

&

%

rϕa, ϕb, ϕcs P

¨

˝

ź

jPta,b,cu

PStabpℓjq

˛

‚

L

PStabp∆q2
ˇ

ˇρk “ ϕiϕ
´1
j P L

,

.

-

The topology of E is determined by the first Stiefel-Whitney class w1pV q P

H1pS,Z{2Zq of the underlying vector bundle V Ñ S. The class w1pV q can be
computed as follows

w1pV qrγks “

"

0 if ρk P L`,
1 if ρk P L´,

8.3. Gluings pants of photons. Let Ēj Ñ S̄j be 2g´2 oriented pants of photons
with totally geodesic boundary. We label by γaj

, γbj , γcj the boundary components

of S̄j and by Epγaj q, Epγbj q, Epγcj q the corresponding boundary components of Ēj .

For every oriented pants of photons Ēj Ñ S̄j , we fix a developing map δj : Êj Ñ

Pho2,n and corresponding holonomy, and we denote by ρaj
, ρbj , ρcj the holonomies

of the boundary curves γaj , γbj , γcj and by ℓpρaj q, ℓpρbj q, ℓpρcj q their invariant space-
like geodesics.

Let τ be an orientation reversing pairing of the boundary components of the
fibered pairs of pants Ēj Ñ S̄j .

If we want to perform a geometric gluing of the blocks Ēj Ñ S̄j that implements
the pairing τ , some compatibility conditions must be fulfilled: Every time we have
an identification of a boundary component of S̄i labeled by vi with some bound-
ary component of S̄j labeled by vj , the holonomies ρvi , ρvj must be conjugate in
SO0p2, n` 1q.

If this happens we choose for every pair of boundary components Epγviq, Epγvj q

that are paired by τ an arbitrary initial orientation reversing identification cvjvi :
Epγviq Ñ Epγvj q as bundles over γvi , γvj which is induced by an element cvjvi P

SO0p2, n` 1q such that ρvj “ cvjviρvic
´1
vjvi .

All other admissible gluing maps will be of the form τvjvi :“ βvjcvjviβvi where
βvi P PStabpℓpρviqq and βvj P PStabpℓpρvj qq are isometries that commute with ρvi
and ρvj respectively. The restriction τBvjvi : ℓpρviq Ñ ℓpρvj q induces an orientation
reversing isometry between the boundary components γvi , γvj .

Thus we can form: A hyperbolic structure over a closed surface

S :“
ď

jď2g´2

S̄j

O

ď

jď2g´2

τBvjvi ,
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a photon structure over a closed manifold

E :“
ď

jď2g´2

Ēj

O

ď

jď2g´2

τvjvi ,

where a pSO0p2, n ` 1q,Pho2,nq-local chart around a point x P Epγvj q “ Epγviq is

obtained by juxtaposing δjpÊjq and τvjviδipÊiq.
As before, since gluing and fibering are compatible, we also get a fiber bundle

projection

E Ñ S

with geometric fibers.
The following, which is analogous to Proposition 3.13 of [CTT19], shows that

the holonomy ρ : π1pSq Ñ SO0p2, n` 1q of E Ñ S is maximal.

Lemma 8.11. Let ρ : Γ Ñ SO0p2, n ` 1q be a representation. Suppose that there

exists a ρ-equivariant local acausal embedding f : Σ̂ Ñ H2,n, meaning that every
point x P Σ̂ has a neighborhood U such that f |U : U Ñ H2,n is an embedding with
acausal image. Then ρ is maximal.

Proof. We can lift f to a local acausal embedding f : Σ̂ Ñ pH2,n. By assumption,
every point x P Σ̂ has a neighborhood U such that f |U is an embedding with acausal
image. In particular, by Lemma 2.6, we can represent fpUq in a Poincaré model
D2 ˆ Sn as a graph of a strictly 1-Lipschitz function g : πpUq Ă D2 Ñ Sn.

As Γ acts cocompactly on Σ̂ and f is ρ-equivariant, we can choose the neighbor-
hoods U in a uniform way. In order to do so we proceed as follows: We endow Σ̂
with a Γ-invariant hyperbolic metric obtained by pulling back a hyperbolic metric
on Σ. We cover Σ with the projections of the neighborhoods U and find r ą 0 a
Lebesgue number for the covering which is smaller than the injectivity radius of
Σ. With these choices the restriction of f to Bpx, rq is an embedding with acausal

image for every x P Σ̂.
Observe that we can choose a continuous ρpΓq-invariant family of orthogonal

splittings Px ‘ Nx of R2,n`1 where Px is a spacelike 2-plane: Let Grp2,0qpR2,nq

be the Grassmannian of spacelike 2-planes in R2,n. Topologically, we have an
identification

Grp2,0qpR2,nq “ SOp2, nq{SOp2q ˆ SOpnq,

where the right hand side is the symmetric space of SOp2, nq, in particular the

Grassmannian is contractible. Let G Ñ pH2,n be the bundle with fiber Grp2,0qpxKq

over the point x P pH2,n and let f˚G Ñ Σ̂ be the corresponding pull-back bundle.
As the fiber is contractible, we can always find a Γ-invariant global section. Such a
section corresponds to the desired continuous family of orthogonal splittings.

Consider the plane bundle

P Ñ Σ̂

whose fiber over x P Σ̂ is the spacelike plane Px and let P 1 Ă P the corresponding
unit circle bundle whose fiber over x is S1x Ă Px.

We now define a ρ-equivariant isomorphism between P 1 and the unit tangent
bundle T 1Σ̂: As a concrete model of T 1Σ̂, we exploit the Γ-invariant hyperbolic
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metric obtained by pulling back a hyperbolic metric on Σ, and, using the exponen-
tial map, we identify T 1Σ̂ Ñ Σ̂ with

B1 :“ tpx, yq P Σ̂ ˆ Σ̂ |dpx, yq “ ru Ñ Σ̂

where the bundle projection is the projection to the first factor and the fiber over
x is the unit circle B1

x around x in Σ̂. We will show that B1 is equivariantly
isomorphic to P 1.

For every y P B1
x let ξxpyq be the endpoint at infinity of the spacelike geodesic

ray issueing from fpxq and passing through fpyq. Explicitly, if txpyq P T 1
pH2,n is

the direction of the ray, then

ξxpyq “ rfpxq ` txpyqs P B pH2,n.

Notice that ξxpB1
xq Ă B pH2,n is a loop freely homotpic to a generator of the

fundamental group: This can be seen in the Poincaré disk model pH2,n » D2 ˆ Sn
associated to the splitting R2,n`1 “ Px ‘Nx where the circle fpB1

xq is the graph of
a topological circle around the origin and ξxpB1

xq is obtained by projecting radially

such circle to BD2 and then mapping it to B pH2,n via the graph map.

We now exhibit an explicit degree one map ϕx : B1
x Ñ S1x. If ras P B pH2,n

is an isotropic ray, then, we can represent it uniquely as uxprasq ` vxprasq with
uxprasq P Px and vxprasq P Nx vectors of norm 1 and ´1 respectively. Explicitely,

uxprasq, vxprasq :“ πPx
paq{

a

xπPx
paq, πPx

paqy, πNx
paq{

a

´xπNx
paq, πNx

paqy

where πPx
, πNx

: R2,n`1 Ñ Px, Nx are the orthogonal projections and a is any
representative of ras in the isotropic cone. We denote by S1x,Snx the unit spheres of

Px, Nx and by ux, vx : B pH2,n Ñ S1x,Snx the two projections.
Observe that ux satisfies

uγxpρpγqrasq “ ρpγquxprasq.

In fact, ρpγq maps isometrically Px ‘Nx to Pγx ‘Nγx.
Consider now y P B1

x. Split ξxpyq “ fpxq ` txpyq as uxpξxpyqq ` vxpξxpyqq. We
define

ϕxpyq :“ uxpξxpyqq.

The map Φ : B1 Ñ P 1 defined by

Φpx, yq :“ pfpxq, ϕxpyqq

is a ρ-equivariant continuous bundle map which covers the identity of Σ̂ and is
degree one on every fiber. From this, we deduce that the (flat) circle bundles B1{Γ
and P 1{ρpΓq have the same (maximal) Euler number and, hence, ρ is maximal. □

8.4. Topology of the gluing. We finish the discussion with a computation of the
topology of the gluing: In order to do so, we have to compute the first and second
Stiefel-Whitney classes of the vector bundle V Ñ S naturally associated to E Ñ S.

Let G be the dual graph associated to the gluing.
The homology group H1pS,Zq is generated by rγaj s, rγbj s, rγcj s for j ď 2g ´ 2

and by the simple cycles of G. Let κ Ă G be a simple cycle. Let u1, ¨ ¨ ¨ur be
the vertices appearing along κ. Every edge uj`1uj corresponds to an identification
τuj`1uj

: Epγuj
q Ñ Epγuj`1

q. Then, the holonomy around the cycle is given by

ρκ “ τu1ur
¨ ¨ ¨ τu2u1

.
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As the representation ρ is maximal, the holonomy ρκ is loxodromic. The value
w1pV qrκs is 0 if ρκ belongs to L` and 1 if ρκ belongs to L´.

The second Stiefel-Whitney class w2pV q can be computed as follows: Choose
for every pair of identified boundary components Epγviq, Epγvj

q a pair of non-
vanishing sections σvi , σvj of the underlying vector bundles V Ñ γvi , V Ñ γvj

that
are identified under the gluing map τvivj . The Stiefel-Whitney number w2pV qrSs,
that uniquely determines w2pV q, can be computed as the sum of the relative Stiefel-
Whitney numbers w2pVj , σjqrSj , BSjs which are the mod 2 reductions of the relative
Euler numbers epVj , σjq.

Appendix A. Other cross ratios

There are multiple non-equivalent definitions of cross ratios in the literature.
For the reader’s convenience, we summarize the relations between Definition 2.17

and the notions of cross ratios studied by Ledrappier [Led95], Hamenstädt [Ham97,
Ham99], and Labourie [Lab08]. If β “ βpu, v, w, zq satisfies Definition 2.17, then:

‚ The function pu, v, w, zq ÞÑ log |βpu, v, w, zq| is a Ledrappier’s cross ratio
(compare with [Led95, Définition 1.f], [MZ19, Definition 2.4]).

‚ The function pu, v, w, zq ÞÑ |βpu, v, w, zq| is a Hamenstädt’s cross ratio
(compare with [Ham97,Ham99]).

‚ If β further satisfies

(17) βpu, v, w, zq “ 1 ô u “ v or w “ z,

then the function Bpu, v, w, zq :“ βpu,w, v, zq is a Labourie’s cross ratio
(see [Lab08, Definition 3.2.1]).

For the sake of completeness, even if we do not investigate in detail the properties
of such cross ratios in this paper, we briefly discuss other examples of positive and
locally bounded cross ratios from the literature strictly related to representations
in SOpp, qq and pseudo-hyperbolic spaces Hp,q. They come from respectively:

‚ Hitchin representations ρ : Γ Ñ SOpp, p` 1q.
‚ More generally, Θ-positive Anosov representations ρ : Γ Ñ SOpp, qq.

In both cases (strict) positivity comes from transversality of the boundary maps
(as explained in [BP21]) and local boundedness comes from their Hölder regularity
(following the same strategy of Lemma 4.5).

As studied by Martone and Zhang in [MZ19] there are other natural classes of
positive cross ratios arising from the study of Anosov representations. The ones
that we mentioned above close to the setting of our interest and can have a more
direct link with similar pleated surface constructions in Hp,q.

Appendix B. Shears and symmetries of cross ratios

The current appendix is dedicated to the proofs of the relations satisfied by cross
ratios and their associated shears, which were deployed throughout Section 5. We
start by proving the following elementary relation:

Lemma B.1. Let β be a cross ratio. Then for every 6-tuple of pairwise distinct
points a, b, c, d, e, x P BΓ we have

|βpa, b, c, dqβpa, d, b, eq| “ |βpa, b, c, xqβpa, x, b, dqβpa, d, x, eq|
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Proof. It is sufficient to apply the symmetries of the cross ratio β in (1) as follows

|βpa, b, c, dqβpa, d, b, eq| “ |βpa, b, c, xqβpa, b, x, dqβpa, d, b, eq|
“ |βpa, b, c, xqβpa, b, x, dqβpa, d, b, xqβpa, d, x, eq|
“ |βpa, b, c, xqβpa, x, b, dqβpa, d, x, eq|,

where we used in the order twice the fourth relation and once the fifth relation from
(1). By applying log to both members we obtain relation (18). □

Making use of the relation described in Lemma B.1, we can now provide a proof
of the properties satisfied by finite β-shears and described by Lemmas 4.7 and 4.8:

Proof of Lemma 4.7. Let S denote the (closure of the) connected component of
rΣztP,Qu that separates P from Q. Observe that the right-hand side of the state-
ment can be expressed as σβpP, Sq ` σβpS,Qq. Consider now any geodesic g lying
in the interior of S with endpoints w and x, and denote by R and R1 the comple-
mentary regions of g inside S adjacent to P and Q, respectively. We claim that the
following equality holds:

(18) σβpP, Sq ` σβpS,Qq “ σβpP,Rq ` σβpR,R1q ` σβpR1, Qq.

This is in fact a simple consequence of Lemma B.1. To see this, observe that, by
definition of the finite shear σβ , the left-hand side coincides with

log |βpw, vP , uP , vQqβpw, vQ, vP , uQq|,

while the right-hand side is equal to

log |βpw, vP , uP , xqβpw, x, vP , vQqβpw, vQ, x, uQq|.

Therefore relation (18) follows from Lemma B.1 applied to the 6-tuple a “ w,
b “ vP , c “ uP , d “ vQ, e “ uQ, and x “ x.

The relation appearing in the statement can now be deduced simply by applying
relation (18) enough times: at the k-th step we introduce inside the region S a
leaf ℓk lying in the boundary of some plaque in P, obtaining a finite lamination
λk “ λk´1Ytℓku. Relation (18) then allows us to split the sum of the shears between
the complementary regions of λk´1 as the sum of the shear of the complementary

regions of λk. In a finite number of steps we obtain that σβ
PpP,Qq coincides with

σβpP, Sq`σβpS,Qq, as desired (observe that, in the notation of §4.3, the lamination

λ̃P does not contain any geodesic of type di, since every spike has ideal vertex equal
to w under our assumptions). □

Proof of Lemma 4.8. Among all the elements of P that lie on the left (resp. on the
right) of g, we denote by P 1 (resp. Q1) the plaque that is closest to g. Let x1

P , y
1
P

(resp. x1
Q, y

1
Q) be the vertices of P 1 (resp. Q1) different from g` (resp. g´), so that

ry1
p, g

`s (resp. ry1
Q, g

´s) is the boundary component of P 1 (resp. Q1) closest to g.

By following the process outlined in §4.3, we see that the shear σPpP,Qq satisfies

σβ
PpP,Qq “ σβ

λpP,RP q ` σβpRP , RQq ` σβ
λpRQ, Qq,

where RP and RQ denote the plaques of λ̃P with vertices g`, g´, y1
P and g`, g´, y1

Q,

respectively. By Lemma 4.7, the shear σβ
λpP,RP q is independent of the set of
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plaques that separate P and RP inside P, since P and RP share the ideal vertex

g`. The exact same argument applies for σβ
λpRQ, Qq. Furthermore we have

σβ
λpP,RP q “ log

∣∣βpg`, yP , xP , y
1
P qβpg`, y1

P , yP , g
´q

∣∣,
σβ
λpRQ, Qq “ log

∣∣βpg´, yQ, xQ, y
1
Qqβpg´, y1

Q, yQ, g
`q

∣∣.
On the other hand, the plaques RP and RQ share the boundary component rg`, g´s

and their shear satisfies

σβpRP , RQq “ log
∣∣βpg`, g´, y1

P , y
1
Qq

∣∣.
By applying Lemma B.1 to the 6-tuple a “ g`, b “ yP , c “ xP , d “ g´, e “ y1

Q,

and x “ y1
P , we obtain

σβ
λpP,RP q ` σβ

λpRP , RQq “ log
∣∣βpg`, yP , xP , g

´qβpg`, g´, yP , y
1
Qq

∣∣.
Combining this identity with the expression for σβ

λpRQ, Qq we deduce

σβ
λpP,RP q ` σβ

λpRP , RQq ` σβ
λpRQ, Qq

“ log
∣∣βpg`, yP , xP , g

´qβpg`, g´, yP , y
1
Qqβpg´, yQ, xQ, y

1
Qqβpg´, y1

Q, yQ, g
`q

∣∣
“ log

∣∣βpg`, yP , xP , g
´qβpg´, g`, y1

Q, yP qβpg´, yQ, xQ, y
1
Qqβpg´, y1

Q, yQ, g
`q

∣∣
“ log

∣∣βpg`, yP , xP , g
´qβpg´, g`, yQ, yP qβpg´, yQ, xQ, g

`q
∣∣

where in the second equality we applied relation (3), and in the last line we applied
again Lemma B.1 to the 6-tuple a “ g`, b “ yP , c “ xP , d “ g´, e “ y1

Q, and

x “ y1
P . This concludes the proof of the statement. □

We now provide a proof of Lemma 5.4, which again follows easily from the
symmetries of cross ratios:

Proof of Lemma 5.4. Let u denote the vertex of P that is not an endpoint of ℓP ,
and by v the vertex of Q that is not an endpoint of ℓQ. Then the left-hand side of
the equation can be expressed as∣∣∣∣∣log

∣∣∣∣∣βpℓ`
P , ℓ

´
P , u, ℓ

´
Qqβpℓ`

P , ℓ
´
Q, ℓ

´
P , ℓ

`
Qqβpℓ`

Q, ℓ
´
Q, ℓ

`
P , vq

βpℓ`
P , ℓ

´
P , u, ℓ

`
Qqβpℓ`

Q, ℓ
´
P , ℓ

`
P , ℓ

´
Qqβpℓ`

Q, ℓ
´
Q, ℓ

´
P , vq

∣∣∣∣∣
∣∣∣∣∣

Applying the third symmetry in (1), we obtain the identities∣∣∣βpℓ`
P , ℓ

´
P , u, ℓ

´
Qq

∣∣∣ “

∣∣∣βpℓ`
P , ℓ

´
P , u, ℓ

`
Qqβpℓ`

P , ℓ
´
P , ℓ

`
Q, ℓ

´
Qq

∣∣∣,∣∣∣βpℓ`
Q, ℓ

´
Q, ℓ

´
P , vq

∣∣∣ “

∣∣∣βpℓ`
Q, ℓ

´
Q, ℓ

´
P , ℓ

`
P qβpℓ`

Q, ℓ
´
Q, ℓ

`
P , vq

∣∣∣.
By replacing these terms in the expression above we obtain∣∣∣σβ

d pP,Qq ´ σβ
d1 pP,Qq

∣∣∣ “

∣∣∣∣∣log
∣∣∣∣∣βpℓ`

P , ℓ
´
P , ℓ

`
Q, ℓ

´
Qqβpℓ`

P , ℓ
´
Q, ℓ

´
P , ℓ

`
Qq

βpℓ`
Q, ℓ

´
P , ℓ

`
P , ℓ

´
Qqβpℓ`

Q, ℓ
´
Q, ℓ

´
P , ℓ

`
P q

∣∣∣∣∣
∣∣∣∣∣

“

∣∣∣log ∣∣∣βpℓ`
P , ℓ

´
P , ℓ

`
Q, ℓ

´
Qq2βpℓ`

P , ℓ
´
Q, ℓ

´
P , ℓ

`
Qq2

∣∣∣∣∣∣
where in the last equality we made use of (2) and (3). The desired expres-
sion then follows by applying the fourth relation in (1) and (2). (Notice that
βpg`, h`, h´, g´q ą 1 for any pair of coherently oriented geodesics g, h that share
no endpoint.) □
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We are now left with the proof of Lemma 4.10, which directly relates β-periods
and β-shears:

Proof of Lemma 4.10. Let x, y, γ˘ P BΓ be the vertices of P in counterclockwise
order along BΓ. By Lemma 4.7, we have

σβ
λpP, γP q “ log

∣∣βpγ˘, x, y, γyqβpγ˘, γy, x, γxq
∣∣.

The proof of the relation appearing in the statement now reduces to a careful
applications of the symmetries of the cross ratio β (see in particular (1), (2)). In
what follows, we express the chain of equalities that leads to the proof, reporting
on the right the relations that are applying (the symbol (1.n) refers to the n-th
symmetry of β appearing in (1)):

|βpγ˘, x, y, γyqβpγ˘, γy, x, γxq|

“
∣∣βpγ˘, x, γx, γyqβpγ˘, x, y, γxqβpγ˘, γy, x, γxq

∣∣(1.4)

“
∣∣βpγ˘, γx, x, γyqβpγ˘, x, y, γxq

∣∣(1.5)

“
∣∣βpγ˘, x, γ´1x, yqβpγ˘, x, y, γxq

∣∣(Γ-inv.)

“
∣∣βpγ˘, x, γ´1x, γxq

∣∣(1.4)

“
∣∣βpγ˘, x, γ¯, γxqβpγ˘, γx, x, γ¯q

∣∣(1.4)

“
∣∣βpγ˘, γ¯, x, γxq

∣∣(1.5)

“
∣∣βpγ`, γ´, x, γxq

∣∣˘1
.(2)

Taking the logarithm of this relation we obtain the identity σβpP, γP q “ ˘Lβpγq,
as desired. □

Appendix C. On divergence radius functions

In our construction of β-shear cocycles, we made use of a series of technical
properties satisfied by divergence radius functions, described in Lemmas 5.1, 5.2,
and 5.3. We remark that the statement of Lemma 5.1 already appeared in the work
of Bonahon and Dreyer [BD17]. The underlying strategy of proof is essentially the
same as the one described by Bonahon in [Bon96, Lemmas 3,5]. However, since
the work [Bon96] uses a definition of divergence radius function that is weaker
than the one we introduced in Section 5.1, we describe how to adapt the argument
accordingly. The strategy of proof is in fact particularly useful to understand the
dependence of the constants, as asserted in Lemma 5.2.

We start by fixing some hyperbolic metric on Σ and a train track τ that carries
a maximal lamination λ. Furthermore, we introduce the following terminology: If
B is a branch of τ , we define the width of B (with respect to the chosen metric) to

be the distance between the components of the horizontal boundary of b̃, for some

lift B̃ of B in rΣ. Similarly, the length of B is defined as the distance between the
components of the vertical boundary of B̃, for some lift B̃ of B.

Proof of Lemma 5.1. We start by selecting suitable constants M,A0, θ ą 0, which
depends exclusively on the train track τ and the fixed hyperbolic structure X:

‚ We selectM ă 1 so that every branch of the train track τ has length within
M and M´1.
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‚ We let A0 ą 1 be such that every component of the vertical boundary of τ
(compare with the terminology introduced in Section 2.4.4) has endpoints
at distance ě A´1

0 , and such that every branch of τ has width ď A0.
‚ We choose θ P p0, π{2q a lower bound for the intersection angle between the
geodesic arc k and the leaves of the lamination λ.

Consider now the following situation: Let ℓ and ℓ1 be two distinct asymptotic

geodesics in prΣ, rXq, and let u be their common endpoint in BΓ. Consider a geodesic
segment k1 joining a point p P ℓ to a point of ℓ1, and assume that the angles between
k1 and ℓ, ℓ1 satisfy

θ ď
∣∣=pk1, ℓq

∣∣, ∣∣=pk1, ℓq
∣∣ ď π ´ θ.

Finally, select a parametrization by arc length of the geodesic ℓ “ ℓptq such that
ℓptq tends to u as t Ñ ´8 and ℓp0q “ p, and assume that there exists some positive
t ą 0 for which ℓptq satisfies

A´1
0 ď dX̃pℓptq, ℓ1q ď A0.

A simple computation in the upper half plane model of H2 then shows that there
exists a constant A ą 0, which depends only on A0 and θ, such that

(19) A´1e´t ď LX̃pk1q ď Ae´t.

We now have all the technical ingredients for the proof the desired statement:
First recall the definition of the divergence radius function r : PPQ Ñ N outlined
in Section 5.1, select any plaque R P PPQ, and denote by s “ sR the switch of the

lift of the train track τ that separates the branches rBrpRq´1 and rBrpRq (see Section
5.1 for the necessary terminology). By definition of the divergence radius function
r, the boundary leaves ℓR and ℓ1

R of R that separate P from Q fellow travel along

the branches rBn for all n ă rpRq, and then take different turns at the switch s.

Indeed, while the leaf ℓR crosses s to then enter in the branch rBrpRq, the leaf ℓ1
R

passes through the unique branch of τ̃ adjacent to s and different from rBrpRq´1 and
rBrpRq.
Now, if γR denotes the subsegment of ℓR that joins k XR to the switch s of the

train track τ̃ , then by the choice of M we have

(20) M rpRq ď LX̃pγRq ď M´1 rpRq

whenever rpRq ą 1. Moreover, if we travel along the geodesic ℓR at distance
ℓpγRq towards the positive direction of ℓR, the geodesics ℓR and ℓ1

R are at distance
dps X ℓR, s X ℓ1

Rq P pA´1
0 , A0q by our initial choices. (Notice that the switch s

contains exactly one connected component of the vertical boundary of τ̃ , whose
endpoints are at distance between A´1

0 and A0.) We then are in right setting to
apply relation (19) to k1 “ k X R, ℓ “ ℓR, ℓ

1 “ ℓ1
R and t “ LX̃pγRq: consequently

we conclude that

A´1 e´LX̃pγRq ď LX̃pk XRq ď Ae´LX̃pγRq

Combining this comparison with relation (20), we obtain the control appearing
in property (1) of Lemma 5.1 for all rpRq ą 1. Now, up to enlarging the multi-
plicative constant A ą 0 to obtain a bound from above of the diameter of every
complementary region of τ in X, we can then make sure that (1) holds for every
R P PP,Q.



86 FILIPPO MAZZOLI AND GABRIELE VIAGGI

The proof of the second bound appearing in (2) is a simple generalization of
[Bon96, Lemma 4]: in his work Bonahon showed that, if k0 is a geodesic arc

transverse to λ̃ that projects onto an embedded arc in Σ, then the number of
plaques R P PPQ satisfying rk0

pRq “ n is bounded above by an explicit func-
tion N0 “ N0pΣq that depends only on the topology of Σ. For a general geodesic
arc k, we can argue as follows: there exists a natural number m such that the arc
k can be subdivided into m subsegments pkiqi with disjoint interiors and such that
every ki projects onto an embedded geodesic arc in Σ. Then the cardinality of
r´1
k pnq is bounded above by N :“ mN0pΣq. Observe also that, if ε0 is equal to the
injectivity radius of X, then m ď ℓpkq{ε0. □

From the proof provided above, and in particular from the definition of the
constants A,M,N ą 0, Lemma 5.2 easily follows:

Proof of Lemma 5.2. We fix a hyperbolic structure X on Σ, and we select a train
track τ that carries λ and a X-geodesic ark k joining the interiors of the plaques
P and Q. We denote by M,A0, A, θ ą 0 the constants introduced in the proof of
Lemma 5.1. Up to selecting a smaller θ ą 0, we can find a small neighborhood U
of λ inside GL satisfying the following conditions:

‚ Every λ1 P U is carried by τ .
‚ For every λ1 P U , the geodesic segment k is transverse to λ1 and θ ą 0 is a
uniform lower bound of the intersection angle between k and λ1.

‚ the endpoints of k lie in the interior of two distinct plaques P 1, Q1 of λ1, for
every λ1 P U .

The constants M,A0 ą 0 depends only on the train track τ (and the hyperbolic
structure X), and A is determined by A0 and θ. In particular, A and M satisfy
relations (19), (20) for any divergence radius function r1 “ rX,τ,λ1,k : PP 1Q1 Ñ N
associated to a lamination λ1 P U and the path k. Relations (19), (20) in turn imply
property (1) for all such divergence radius functions r1. Finally, it is immediate from
the explicit description of the constant N ą 0 satisfying property (2) provided in
the proof of Lemma 5.1 that we can assume N to be uniform in λ1 P U . □

The only technical statement left to prove is Lemma 5.3. For its proof, we will
make use of an elementary lemma of planar hyperbolic geometry. In order to recall
its statement, we need to introduce some notation.

If X P T is a hyperbolic structure and prΣ, rXq – H2 is a fixed identification
between the universal cover of Σ and the hyperbolic plane determined by X, then
we select d8 a fixed Riemannian distance on BΓ – BH2. The choice of the metric
d8 determines a distance (which we will continue to denote with abuse by d8) on

the space of oriented geodesics of rΣ, by setting

d8pg, hq :“ d8pg`, h`q ` d8pg´, h´q

for any pair of oriented geodesics g and h. Then we have:

Lemma C.1. Let λ be a maximal geodesic lamination on Σ, and let P and Q be
two distinct plaques of λ. For any geodesic segment k joining two points in the
interior of P and Q, respectively, we can find a constant C “ Cpkq ą 0 such that,
for every plaque R P PPQ

C´1 d8pℓR, hRq ď LX̃pk XRq ď C d8pℓR, hRq,
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where ℓR, ℓ
1
R denote the boundary leaves of R that separate P from Q.

We are now ready to prove Lemma 5.3:

Proof of Lemma 5.3. By property (1) of Lemma 5.1, there exist positive constants
A,A1,M,M 1 ą 0 such that

A´1e´M´1rpRq ď LX̃pk XRq ď Ae´MrpRq

pA1q´1e´pM 1
q

´1r1
pRq ď LX̃pk1 XRq ď A1e´M 1r1

pRq

for every R P PPQ. On the other hand, by Lemma C.1, there exist constants
S, T ą 0 such that for every R P PPQ we have

W´1d8pℓR, hRq ď LX̃pk XRq ď W d8pℓR, hRq,

pW 1q´1d8pℓR, hRq ď LX̃pk1 XRq ď W 1 d8pℓR, hRq.

By combining the inequalities above, we obtain

eMrpRq ď
A

LX̃pk XRq

ď
AW

d8pℓR, hRq

ď
AWW 1

LX̃pk1 XRq

ď AA1WW 1eM
1r1

pRq,

which implies the upper bound appearing in the statement with suitable choices of
H,K ą 0. By exchanging the roles of r and r1 in the argument above we determine
the existence of the lower bound. □

References

[ABB`07] Lars Andersson, Thierry Barbot, Riccardo Benedetti, Francesco Bonsante, William M.

Goldman, François Labourie, Kevin P. Scannell, and Jean-Marc Schlenker, Notes on
a paper of Mess, Geom. Dedicata 126 (2007), 47–70 (English).

[AGRW22] Daniele Alessandrini, Olivier Guichard, Eugen Rogozinnikov, and Anna Wienhard,
Noncommutative coordinates for symplectic representations, Mem. Am. Math. Soc.
(2022), To appear.

[BB09] Riccardo Benedetti and Francesco Bonsante, Canonical Wick rotations in 3-dimen-
sional gravity, Mem. Amer. Math. Soc. 198 (2009), no. 926, viii+164. MR2499272

[BBFS13] Mladen Bestvina, Kenneth Bromberg, Koji Fujiwara, and Juan Souto, Shearing coor-

dinates and convexity of length functions on Teichmüller space, Amer. J. Math. 135
(2013), no. 6, 1449–1476. MR3145000
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