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Abstract. We establish a link between the behavior of length func-
tions on Teichmüller space and the geometry of certain anti de Sitter
3-manifolds. As an application, we give new purely anti de Sitter proofs
of results of Teichmüller theory such as (strict) convexity of length func-
tions along shear paths and geometric bounds on their first and second
variations along earthquakes. Along the way, we provide shear-bend
coordinates for Mess’ anti de Sitter 3-manifolds.

1. Introduction

The space T of hyperbolic metrics on a closed orientable surface Σ of
genus g ě 2 up to isotopy, known as Teichmüller space, is an object that
appears ubiquitously as a space of parameters but also as a geometric object.

Comparing different hyperbolic metrics on Σ according to various mea-
surements of distortion endows T with a wealth of geometry. An example is
the Lipschitz distortion which corresponds to the so-called Thurston’s asym-
metric metric. Thurston proves in [19] that given hyperbolic metrics gX , gY
on Σ we have

min
f homotopic to Id

tLippfq | f : pΣ, gXq Ñ pΣ, gY qu “ sup
γPπ1pΣq´t1u

LY pγq

LXpγq

where LXpγq, LY pγq is the length of the geodesic representatives of γ with
respect to gX , gY .

This phenomenon of expressing the measurement of distortion in terms
of length spectra LZp‚q is not exclusive of the Thurston metric, for example
also the Teichmüller and Weil-Petersson metrics on T have this property.

It is therefore important to understand better how length functions be-
have on Teichmüller space. Often, this behavior is related to certain geo-
metric structures on low dimensional manifolds. A celebrated example is
the relation between quasi-Fuchsian hyperbolic 3-manifolds and Teichmüller
geodesics discovered by Minsky [16].

Following an analogy between quasi-Fuchsian 3-manifolds and the so-
called Mess 3-manifolds, in this article we bring together:

‚ 3-dimensional anti de Sitter geometry.
‚ Convexity of length functions along shear paths and earthquakes.
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2 FILIPPO MAZZOLI AND GABRIELE VIAGGI

In particular, we use the global scale geometry of Mess manifolds to give
a proof of (strict) convexity of length functions. Using the same bridge,
we also develop geometric bounds for the first and second variations on
those functions along earthquakes. Our methods are inspired from ideas in
3-dimensional hyperbolic geometry.

1.1. Anti de sitter geometry. Anti de Sitter geometry in dimension 3.
is the geometry of H2,1 :“ PSL2pRq endowed with its natural pseudo-
Riemannian metric of signature p2, 1q. The link between Teichmüller theory
and anti de Sitter 3-manifolds comes from the basic fact that the group of
symmetries of this space is

Isom0pPSL2pRqq “ PSL2pRq ˆ PSL2pRq

where pA,Bq ¨X :“ AXB´1 and, at the same time, PSL2pRq “ Isom`pH2q.
A vast literature explores various aspects of this relation starting with the
seminal work of Mess [15] (for a survey on the topic and recent developments
see [9]).

Mess representations. Let Σ be a closed orientable surface of genus g ě 2
that we fix once and for all. We denote by Γ :“ π1pΣq its fundamental group.

We realize the Teichmüller space T of hyperbolic metrics on Σ up to
isotopy as a component of the representation space

T Ă HompΓ,PSL2pRqq{PSL2pRq

by associating to each hyperbolic structure X its holonomy representation
ρX : Γ Ñ PSL2pRq.

Given X,Y P T we can consider the corresponding Mess representation

ρX,Y “ pρX , ρY q : Γ Ñ PSL2pRq ˆ PSL2pRq.

The group ρX,Y pΓq acts on H2,1 convex cocompactly, meaning that:

‚ There is an equivariant boundary map ξ : BΓ Ñ BPSL2pRq “ PtA P

M2pRq |rankpAq “ 1u whose image ξpBΓq “ ΛX,Y has the property
that for every a, b, c P BΓ the subspace PtSpantξpaq, ξpbq, ξpcquu X

PSL2pRq is a spacelike plane, that is, it is isometric to H2.
‚ There is a canonical ρX,Y pΓq-invariant properly convex open subset
ΩX,Y Ă PSL2pRq on which the action is properly discontinuous.

‚ We have BΩX,Y X BPSL2pRq “ ΛX,Y and the group ρX,Y pΓq acts
cocompactly on the convex hull CHX,Y Ă ΩX,Y of ΛX,Y .

In order to study the geometry of Mess representations, we will use lam-
inations and pleated surfaces as we introduced in [14]. Let us briefly recall
the construction.

Laminations and pleated surfaces. A geodesic lamination on a hyper-
bolic surface X is a ρXpΓq-invariant closed subset λ Ă H2 that can be
decomposed as a disjoint union of complete geodesics, the leaves of the lam-
ination. The complementary regions H2´λ are ideal polygons, the plaques of
the lamination. The lamination is called maximal, if all the plaques are ideal
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triangles. Conveniently, the data of a geodesic lamination can be encoded,
by recording the endpoints of the leaves, as a Γ-invariant closed subset of
the space of geodesics

tpx, yq P BΓ ˆ BΓ | x ‰ y u{px, yq „ py, xq.

This is the point of view that we adopt.
The boundary map ξ : BΓ Ñ ΛX,Y and the property of the curve ΛX,Y

allow us to associate with every maximal lamination λ a geometric realization

λ̂ :“
ď

pa,bqPλ

rξpaq, ξpbqs Ă CHX,Y

and a pleated set

Ŝλ :“ λ̂ Y
ď

∆pa,b,cqĂH2´λ

∆pξpaq, ξpbq, ξpcqq Ă CHX,Y .

Here rξpaq, ξpbqs denotes the spacelike geodesic with endpoints ξpaq, ξpbq
while ∆pξpaq, ξpbq, ξpcqq is the ideal spacelike triangle contained in the space-
like plane PtSpantξpaq, ξpbq, ξpcquu X PSL2pRq with vertices ξpaq, ξpbq, ξpcq.

We have the following structural result:

Theorem (Theorems A, B, and C of [14]). Let ρX,Y be a Mess representa-

tion. Consider a maximal lamination λ Ă Σ. Let Ŝλ Ă CHX,Y Ă ΩX,Y be
the corresponding pleated set. Then:

(1) Ŝλ is an acausal Lipschitz disk with boundary ΛX,Y . For every pair

points x, y P Ŝλ the geodesic rx, ys joining them is spacelike. In

particular Ŝλ has a pseudo-metric dH2,1px, yq :“ ℓrx, ys.
(2) There is an intrinsic hyperbolic structure Zλ P T associated to λ

with holonomy ρλ : Γ Ñ PSL2pRq. For every µ P MLλ “ tµ P

ML | supportpµq Ă λu we have Lρλpµq “ Lρpµq.

(3) There exists a pρX,Y ´ ρλq-equivariant homeomorphism f̂ : Ŝλ Ñ H2

which is 1-Lipschitz in the sense that dH2,1px, yq ě dH2pf̂pxq, f̂pyqq

and is totally geodesic on each leaf and plaque.

Furthermore, we have

Lρλpγq ď LρX,Y pγq

for every γ P Γ ´ t1u, with strict inequality if and only if γ intersects the
bending locus of Sλ.

Mess [15], inspired by work of Thurston (Chapter 8 of [18]), observes that

B˘CHX,Y is the pleated set Ŝλ˘ of a lamination λ˘ and that measuring the
total turning angle along paths α : I Ñ B˘CHX,Y endows λ˘ with a natural
transverse measure, the bending measure. Then he shows that the surfaces
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X,Y and Zλ` , Zλ´ are related by the following diagram

Zλ`

Er
λ`

}}

El
λ`

!!

X Y

Zλ´

Er
λ´

aa

El
λ´

==

where El
λ` , E

l
λ´ , E

r
λ` , E

r
λ´ are the left and right earthquakes induced by the

measured laminations λ`, λ´.
Recall that by work of Bonahon [6] and Thurston [19], for every maximal

geodesic lamination λ of Σ, the Teichmüller space T can be realized as an
open convex cone in a finite dimensional R-vector space Hpλ;Rq via the
so-called shear coordinates σλ : T Ñ Hpλ;Rq. Generalizing Mess, we prove:

Theorem 1. Let ρX,Y be a Mess representation. Consider a maximal lam-

ination λ Ă Σ. Let Sλ “ Ŝλ{ρX,Y pΓq be the corresponding pleated surface.
Then, in shear coordinates T Ă Hpλ;Rq for λ we have:

(1) The intrinsic hyperbolic structure Zλ of Sλ satisfies

σλpZλq “
σλpXq ` σλpY q

2
.

(2) The intrinsic bending cocycle βλ of Sλ satisfies

βλ “
σλpXq ´ σλpY q

2
.

Length functions. We now come to the main novelty of this article, namely,
the anti de Sitter perspective on length functions in Teichmüller theory.

Let us first recall the following: For every element γ P Γ´t1u the isometry
ρX,Y pγq has a unique pair of invariant spacelike lines: The axis ℓ Ă CHX,Y

on which it acts by translations by Lρpγq “ pLXpγq ` LY pγqq{2 and the
dual axis ℓ˚ Ă H2,1 ´ ΩX,Y on which it acts by translations by θρpγq “

pLXpγq ´ LY pγqq{2.
We prove:

Theorem 2. Let ρX,Y be a Mess representation. Let γ P Γ ´ t1u be a non-
trivial element, denote by ℓ Ă CHX,Y the axis of ρX,Y pγq. Let λ Ă Σ be
a maximal lamination, let Zλ P T be the intrinsic hyperbolic structure on
Ŝλ{ρX,Y pΓq where Ŝλ Ă CHX,Y is the pleated set associated with λ.

(a) Let δ be the maximal timelike distance of ℓ from Ŝλ. Then:

coshpLZλ
pγqq ď cospδq

2 coshpLρpγqq ` sinpδq
2 coshpθρpγqq.

(b) Let δ˘ be the maximal timelike distance of ℓ from λ˘. Then:

cosh
`

ipλ˘, γq
˘

ď sin
`

δ˘
˘2

coshpLρpγqq ` cos
`

δ˘
˘2

coshpθρpγqq,
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and

ipλ˘, γq ě cos
`

δ˘
˘2
θρpγq.

Here ip‚, ‚q is the geometric intersection form.

When combined, the previous results (Theorem 1 and Theorem 2) give
a purely anti de Sitter proof of (strict) convexity of length functions in
shear coordinates, recovering simultaneously results of Bestvina, Bromberg,
Fujiwara, and Souto [4], and Théret [17]:

Theorem 3. Let λ Ă Σ be a maximal lamination. The following holds:

(a) Let γ P Γ ´ t1u be a non-trivial loop. The length function Lγ :
T Ă Hpλ;Rq Ñ p0,8q is convex. Moreover, convexity is strict if γ
intersects essentially every leaf of λ.

(b) Let γ P ML be a measured lamination. The length function Lγ :
T Ă Hpλ;Rq Ñ p0,8q is convex. Furthermore, convexity is strict if
the support of γ intersects transversely each leaf of λ.

Note that (b) does not imply (a): In (a) the loop γ does not necessarily
represent a simple curve.

In the case of earthquakes, they allow us to get the following infinitesi-
mal geometric bounds. We should mention that these bounds can also be
deduced from work of Kerckhoff [13] and Wolpert [21] respectively.

Theorem 4. Let λ P ML be a measured lamination. Let Eλ : ra, bs Ñ T
be an earthquake path driven by λ. Set Lγptq :“ ℓγpEλptqq. Then:

(i) For every γ P Γ ´ t1u we have:
ˇ

ˇ

ˇ

9Lγ

ˇ

ˇ

ˇ
ď ipγ, λq.

(ii) For every γ P Γ ´ t1u we have:

:Lγ ě
1

sinhpLγq

ˇ

ˇ

ˇ

9Lγ

ˇ

ˇ

ˇ

´

ipγ, λq ´

ˇ

ˇ

ˇ

9Lγ

ˇ

ˇ

ˇ

¯

.

Anti de Sitter proofs. We now briefly discuss the main new ideas and
ingredients that go into the anti de Sitter proofs.

Theorem 2. The idea is that as we move a closed geodesic γ Ă MX,Y

orthogonally along timelike directions, the length shrinks. Heuristically
speaking: Every closed geodesic γ Ă MX,Y is the core of an (immersed)
anti de Sitter annulus Aγ Ă MX,Y whose intrinsic metric has the form

ds2 “ ´dt2 ` sinptq2dℓ2. Hence, the length of γpsq “ p0, sq (in pt, ℓq coordi-
nates) contracts as we move it away from the core tt “ 0u along orthogonal
timelike directions. In the proof of the theorem we make precise some aspects
of this picture. In particular, we understand how various avatars of Aγ inter-

sect the pleated surfaces Ŝλ{ρX,Y pΓq and B˘CCpMX,Y q “ B˘CHX,Y {ρX,Y pΓq.



6 FILIPPO MAZZOLI AND GABRIELE VIAGGI

Theorem 3. (Strict) convexity is equivalent to the (strict) inequality

Lγ

ˆ

X ` Y

2

˙

ď
LγpXq ` LγpY q

2

for every X,Y P T Ă Hpλ;Rq. We note that the right hand side is Lρpγq

for ρX,Y and the left hand side is, by Theorem 1, LZλ
pγq where Zλ is the

hyperbolic structure on the pleated surface Ŝλ{ρpγq associated with λ and
ρ. The inequality is then a consequence of part (a) of Theorem 2. The
inequality is not strict exactly when δ “ 0 which happens if and only if
ℓ Ă Ŝλ. This is possible if and only if γ does not intersect the bending locus.

The proof for laminations requires a significantly more refined argument
based on the following heuristic principle: Every time ℓ passes at timelike
distance δ ą 0 from Ŝλ it creates a gap of size κ ą 0 between LZλ

pγq and
Lρpγq.

Theorem 4. The idea is to analyze the geometry of the representations
ρt :“ ρZ´t,Zt where Zt “ El

λptq as t Ñ 0. Notice that, by Theorem 1, the

bending lamination on B`CHZ´t,Zt is λ
`
t “ tλ and the hyperbolic structure

is constant Z`
t “ Z. The main tool is again Theorem 2.

Part (i) is a consequence of the fact that ρZ´t,Zt is converging to a Fuchsian

representation ρZ,Z which preserves a totally geodesic plane CHZ,Z “ H2.
Since CHZ´t,Zt Ñ CHZ,Z , this implies that δ`

t Ñ 0. By part (b) of Theorem
2, we have

ipλ`, γq ě cos
`

δ`
t

˘2
|θρtpγq| {t

and the right hand side converges to
ˇ

ˇ

ˇ

9Lγ

ˇ

ˇ

ˇ
.

Part (ii) is a consequence of the following quantitative relation obtained
by combining the inequalities of part (a) and part (b) of Theorem 2:

cosh
`

t ¨ ipλ`, γq
˘

´ coshpθρtpγqq ď coshpLρtpγqq ´ coshpLZpγqq.

The conclusion follows from basic analysis, essentially the mean value the-
orem coshpxq ´ coshpyq “ sinhpξqpx ´ yq where ξ P rx, ys and the fact that

pfp´tq ` fptq ´ 2fp0qq{t2 Ñ :f which we apply to pLρtpγq ´ LZpγqq{t2 “

pLZ´tpγq ` LZtpγq ´ 2LZpγqq{2t2 Ñ :Lγ{2.

Shear-bend parametrization. As an application of our computations on
the intrinsic hyperbolic structure and intrinsic bending of a non-convex
pleated surface, we also obtain a shear-bend parametrization of the space of
Mess 3-manifolds in the spirit of Bonahon’s work [6]: Consider the space of
Mess representations

MR :“ T ˆ T Ă HompΓ,PSL2pBqq{PSL2pBq,

where B :“ Rrτ s{pτ2´1q “ R‘τR denotes the ring of para-complex numbers.
Let Hpλ;Bq be the finite dimensional B-module of transverse cocycles for λ
with values in B as introduced by Bonahon [6]. Notice that there are natural
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identifications PSL2pBq “ PSL2pRq ˆ PSL2pRq and Hpλ;Bq “ Hpλ;Rq ‘

τHpλ;Rq. We have:

Theorem 5. Let λ Ă Σ be a maximal lamination. Then:

(1) The map

Φ : MR Ñ Hpλ;Bq

ρ Ñ σρ :“ Zλ ` τβλ

that associates to ρ the shear-bend cocycle of the unique pleated sur-
face Sλ “ Ŝλ{ρpΓq associated with λ is an analytic para-complex
embedding.

(2) If ωThp‚, ‚q denotes the Thurston’s symplectic form on Hpλ;Bq, then

ωB
Thpσρ, αq “ Lρpαq ` τθρpαq

for every measured lamination α P MLλ “ tα P ML | supportpαq Ă λu

and every ρ P MR.
(3) The image of the embedding is given by

ΦpMRq “ tσ ` τβ P Hpλ;Bq | σ ` β, σ ´ β P T Ă Hpλ;Rqu

“

!

σ ` τβ P Hpλ;Bq

ˇ

ˇ

ˇ
|ωB

Thpσ ` τβ, ‚q|2B ą 0 on MLλ

)

.

Here |x ` τy|2B “ x2 ´ y2 is the para-complex norm.
(4) The pull-back of ωTh to MR “ T ˆ T coincides with

Φ˚ωTh “ c ¨ pωWP ‘ ´ωWPq

where ωWPp‚, ‚q is the Weil-Petersson symplectic form.

Structure of the article. The paper is organized as follows:

‚ In Section 2 we recall some basic facts in Teichmüller theory and
anti de Sitter 3-dimensional geometry.

‚ In Section 3 we introduce Mess representations and pleated surfaces
and recall some of their properties.

‚ In Section 4 we compute the intrinsic shear-bend cocycles of pleated
surfaces and prove Theorems 1 and 5.

‚ In Section 5 we study the behavior of length functions for Mess
representations and prove Theorem 2.

‚ In Section 6 we discuss the purely anti de Sitter proofs of Theorems
3 and 4.

Acknowledgements. We thank Sara Maloni, Beatrice Pozzetti, and An-
drea Seppi for useful discussions and generous feedback on the article.

Gabriele gratefully acknowledges the support of the DFG 427903332.

2. Teichmüller and anti de Sitter space

In this section we recall the amount of basic Teichmüller theory and anti
de Sitter 3-dimensional geometry that we will need in the next sections.
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2.1. Teichmüller theory. We start with hyperbolic surfaces and (mea-
sured) geodesic laminations.

2.1.1. Hyperbolic surfaces. We fix once and for all a closed oriented surface
Σ of genus g ě 2 and denote by Γ :“ π1pΣq its fundamental group.

Definition 2.1 (Hyperbolic Structures). A marked hyperbolic structure on
Σ is a quotient H2{ρXpΓq of the hyperbolic plane H2 by the image of a
faithful and discrete representation ρX : Γ Ñ PSL2pRq, the holonomy of the
structure. Two marked hyperbolic structures X,X 1 on Σ are equivalent if
their holonomies ρX , ρX 1 are conjugate.

Definition 2.2 (Teichmüller Space). The Teichmüller space of Σ, denoted
by T , is the space of equivalence classes of marked hyperbolic structures on
Σ. It can be realized as a connected component of the space

T Ă HompΓ,PSL2pRqq{PSL2pRq

where PSL2pRq acts on the space of representations by conjugation.

2.1.2. Geodesic laminations. To study the geometry of hyperbolic surfaces
it is quite useful to look at the behavior of their geodesic laminations which
are 1-dimensional objects generalizing simple closed geodesics.

Definition 2.3 (Space of Geodesics). The space of (unoriented) geodesics
on H2 is naturally identified with the set of pairs of endpoints

G :“ tpx, yq P RP1 ˆ RP1 |x ‰ yu {px, yq „ py, xq

where x, y corresponds to the line rx, ys.

Definition 2.4 (Geodesic Lamination). Let X “ H2{ρXpΓq be a hyperbolic
surface. A geodesic lamination on X is a ρXpΓq-invariant closed subset
λ Ă H2 which can be expressed as a disjoint union of complete geodesics,
the leaves of the lamination. The complementary regions H2 ´ λ are ideal
polygons (with possibly infinitely many sides) and are called the plaques of
λ. The geodesic lamination λ is maximal if all its plaques are ideal triangles.
A geodesic lamination on X is completely determined by the endpoints on
RP1 of the leaves which form a closed ρXpΓq-invariant subset of G. We
denote by GL the space of geodesic laminations and by GLm the subspace
consisting of maximal ones.

For more details, we address the reader to Chapter I.4 of [10].

2.1.3. Currents and measured laminations. Both Teichmüller space and mea-
sured laminations can be seen inside the space of geodesic currents as intro-
duced by Bonahon (see [5]). This framework is well-suited to study length
functions thanks to presence of a natural geometric intersection form as we
now explain.

Definition 2.5 (Geodesic Current). Let X “ H2{ρXpΓq be a hyperbolic
surface. A geodesic current on X is a ρXpΓq-invariant locally finite Borel
measure on G. We denote by C the space of geodesic currents.
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Definition 2.6 (Closed Geodesics). A basic example of geodesic current is
the one associated to a (free homotopy class) of a loop γ P Γ ´ t1u. It is
defined as δγ :“

ř

rαsPΓ{xγy δℓα where ℓα is the axis of ρXpαq and δℓ is the

Dirac mass on the point ℓ P G.

Definition 2.7 (Geometric Intersection). On C there is a natural intersec-
tion form ip‚, ‚q defined as follows: Let α, β P C be geodesic currents. Con-
sider the space of intersecting geodesics I :“ tpℓ, ℓ1q P G ˆ G |ℓ X ℓ1 ‰ Hu.
The group ρXpΓq acts properly discontinuously and freely on I. By invari-
ance, the measure α ˆ β on I descends to a Borel measure on I{ρXpΓq.
Define ipα, βq :“ α ˆ βpI{ρXpΓqq. An crucial property of the geometric
intersection form ipα, βq is that it is continuous in α, β.

Definition 2.8 (Measured Lamination). LetX “ H2{ρXpΓq be a hyperbolic
surface. A measured lamination on X is a geodesic current λ P C with
ipλ, λq “ 0. We denote by ML the space of measured laminations.

The support of a measured lamination supportpλq is a geodesic lamination
(see [5]). We denote by MLλ :“ tµ P ML | supportpµq Ă λu the space of
measured laminations whose support is contained in λ.

2.1.4. Length functions. Every hyperbolic surface X has a (marked) length
spectrum tLXpγquγPΓ´t1u given by the lengths of its closed geodesics. Con-
veniently, Bonahon [5] proves that the length function LXp‚q extends con-
tinuously to geodesic currents as follows:

Definition 2.9 (Liouville Current). The Liouville current L on G is the
PSL2pRq-invariant Borel measure on G defined by

Lpra, bs ˆ rc, dsq :“ βRpa, b, c, dq.

on boxes ra, bs ˆ rc, ds with ra, bs X rc, ds “ H (these sets generate the Borel
algebra of G). The Liouville current has the property that

LXpγq “ ipL, δγq

for every γ P Γ (see [5]). Therefore, ipL, ‚q extends continuously the length
function LXp‚q to the space of geodesic currents.

2.2. The PSL2pRq model of H2,1. The second central object that we dis-
cuss is the anti de Sitter 3-space H2,1. We will mostly work in its linear and
projective models which we now describe. For more details on the material
we present here, we refer the reader to [9].

The group SL2pRq sits inside the vector space of 2 ˆ 2 matrices with real
entries M2pRq as the hyperboloid of vectors of norm ´1 for the quadratic
form x‚, ‚y of signature p2, 2q given by

4xX,Y y :“ detpXq ` detpY q ´ detpX ` Y q “ ´trpXY ‹q.

where
”

a b
c d

ı‹

:“
”

d ´b
´c a

ı

.
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Note that for every X P SL2pRq, the restriction of the quadratic form
to TXSL2pRq “ XK has signature p2, 1q and, hence, induces a p2, 1q-pseudo-
Riemannian metric on SL2pRq (experts will have recognized the Killing form
of SL2pRq). The group SL2pRq ˆ SL2pRq acts on M2pRq by left and right
multiplications as pA,Bq ¨ X :“ AXB´1 and the action is isometric with
respect to x‚, ‚y. Passing to the projectivization, PSL2pRq Ă PpM2pRqq we
obtain the projective model of anti de Sitter 3-space H2,1.

2.2.1. Boundary at infinity. In this model, the boundary at infinity BH2,1

of H2,1 identifies with the topological boundary of PSL2pRq in PpM2pRqq

BPSL2pRq “ trXs P PpM2pRqq | detpXq “ 0u.

Observe that BPSL2pRq consists of rank one matrices and can be naturally
PSL2pRq ˆ PSL2pRq-equivariantly identified with RP1 ˆ RP1 via the map

BPSL2pRq Ñ RP1 ˆ RP1

rXs Ñ prImpXqs, rKerpXqsq.

2.2.2. Subspaces. Totally geodesic subspaces in anti de Sitter 3-space H2,1

are of the form PpV q X PSL2pRq where V Ă M2pRq is a linear subspace
intersecting SL2pRq. In particular we have

‚ timelike geodesics isometric to R{πZ ô V 2-plane of signature p0, 2q.
‚ spacelike geodesics isometric to R ô V 2-plane of signature p1, 1q.
‚ spacelike planes isometric to H2 ô V 3-plane of signature p2, 1q.

Two distinct points x, y P H2,1 are joined by:

‚ A spacelike geodesic if and only if |xx, yy| ą 1.
‚ A timelike geodesic if and only if |xx, yy| ă 1.

The geodesic γptq starting at x P H2,1 with velocity v P TxH2,1 “ xK is
parametrized by

γptq “

"

coshptqx ` sinhptqv if xv, vy “ 1,
cosptqx ` sinptqv if xv, vy “ ´1.

2.2.3. Acausal sets and pseudo-metrics. The last concept that we need is
the one of acausality:

Definition 2.10 (Acausal Set). A subset S Ă H2,1 Y BH2,1 is acausal if for
every x, y P S the geodesic rx, ys is spacelike.

Definition 2.11 (Pseudo Metric). On acausal subsets S Ă H2,1 we have a
pseudo-metric dH2,1p‚, ‚q defined as follows

coshpdH2,1px, yqq “ |xx, yy|.

Notice that dH2,1 does not satisfy the triangle inequality in general.
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3. Mess representations and pleated surfaces

The goal of the section is to describe Mess representations and the geom-
etry of their pleated surfaces. In particular, at the end of the section, we
discuss the structure of the boundary of the convex core associated with a
Mess representation.

3.1. Mess representations. First of all we introduce the following class:

Definition 3.1 (Mess Representation). Let X,Y P T be hyperbolic struc-
tures. The Mess representation with parameters X,Y is

ρX,Y :“ pρX , ρY q : Γ Ñ PSL2pRq ˆ PSL2pRq

where ρX , ρY are the holonomy representations of X,Y .

3.1.1. Boundary maps. Every Mess representation ρX,Y comes with a nat-
ural equivariant boundary map

ξ : BΓ Ñ BH2,1

It can be described explicitly as follows: Recall that BPSL2pRq is naturally
identified with RP1 ˆ RP1. Let hX , hY : BΓ Ñ RP1 be the unique ρX , ρY -
equivariant homeomorphism. The boundary map ξ : BΓ Ñ RP1 ˆ RP1 is
just ξ “ phX , hY q.

Its image ξpBΓq “ ΛX,Y is the graph of the unique pρX ´ ρY q-equivariant

homeomorphism hX,Y : RP1 Ñ RP1.

Checking that ΛX,Y has the property that for every a, b, c P RP1, the 3-
space Spantpa, hX,Y paqq, pb, hX,Y pbqq, pc, hX,Y pcqqu has signature p2, 1q is not
difficult: Let us assume without loss of generalities that a ă b ă c. As hX,Y

is an orientation preserving homeomorphism, we have hX,Y paq ă hX,Y pbq ă

hX,Y pcq. Hence, up to the action of PSL2pRqˆPSL2pRq, we can assume that
a, b, c “ hX,Y paq, hX,Y pbq, hX,Y pcq “ 0, 1,8. Tracing back the identification
with BPSL2pRq we see that

p0, 0q “

”

0 0
1 0

ı

, p1, 1q “

”

1 ´1
1 ´1

ı

, p8,8q “

”

0 1
0 0

ı

.

The conclusion follows by an elementary computation.

3.1.2. Domain of discontinuity. From the boundary curve ΛX,Y Ă BH2,1 one
constructs a standard open domain:

ΩX,Y :“ ty P H2,1 | rx, ys spacelike @x P ΛX,Y u

It can also be described as a connected component of

H2,1 ´
ď

xPΛX,Y

txx, ‚y “ 0u

which is a properly convex subset of PpM2pRqq whose closure contains ΛX,Y .
In particular, it contains a natural closed ρX,Y pΓq-invariant convex subset,
namely the convex hull CHX,Y of the limit set ΛX,Y .
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As ΩX,Y does not contain closed timelike geodesics, it has a well defined
timelike distance:

Definition 3.2 (Timelike Distance). The timelike distance δH2,1p‚, ‚q on
ΩX,Y is defined by

cospδH2,1px, yqq :“

"

|xx, yy| if rx, ys is timelike
1 otherwise.

The group ρX,Y pΓq acts freely and properly discontinuosly on ΩX,Y (see
[15]). The quotient MX,Y :“ ΩX,Y {ρX,Y pΓq is the Mess manifold associated
with X,Y P T .

Let us mention the fact that MX,Y is a so-called globally hyperbolic max-
imal Cauchy compact anti de Sitter 3-manifold (GHMC). In particular, this
means that MX,Y contains a closed spacelike surface S homeomorphic to Σ
which intersects every inextensible timelike geodesic exactly once. From this
property it is not difficult to deduce that MX,Y is diffeomorphic to Σ ˆ R.
Mess proves in [15] that, in fact, all GHMC manifolds M where the Cauchy
surface is homeomorphic to Σ have the form M “ MX,Y for some X,Y P T .

3.2. Laminations and pleated surfaces. Mess representations are ex-
amples of maximal representations in PSL2pRq ˆ PSL2pRq “ PSO0p2, 2q as
introduced in [1] (in fact, by a celebrated result of Goldman [12], every
maximal representation in PSL2pRq ˆ PSL2pRq is a Mess representation).

As a consequence, we can apply the results of [14] to our setting. In this
section, we recall the pleated surface construction from [14] and describe
some geometric properties of these objects.

3.2.1. Pleated sets. Let ρX,Y be a Mess representation with boundary map
ξ : BΓ Ñ ΛX,Y .

Definition 3.3 (Geometric Realization). Let λ P GL be a lamination. The
geometric realization of λ for ρX,Y is

λ̂ :“
ď

pa,bqPλ

rξpaq, ξpbqs Ă CHX,Y

where pa, bq is the leaf of λ with endpoints a, b and rξpaq, ξpbqs is the spacelike
geodesic with endpoints ξpaq, ξpbq.

Definition 3.4 (Pleated Set). Let λ P GLm be a maximal lamination. The
pleated set associated with λ and ρX,Y is

Ŝλ :“ λ̂ Y
ď

∆pa,b,cqĂH2´λ

∆pξpaq, ξpbq, ξpcqq Ă CHX,Y

where ∆pa, b, cq is the plaque of λ with vertices a, b, c and ∆pξpaq, ξpbq, ξpcqq

is the ideal spacelike triangle with endpoints ξpaq, ξpbq, ξpcq.

Proposition 3.5 (Proposition 3.7 of [14]). The pleated set pSλ Ă CHX,Y is
a ρX,Y pΓq-invariant topological Lipschitz acausal subsurface.
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Incidentally, combining with classical 3-dimensional topology, Proposition
3.5 has also the following topological corollary:

Corollary 3.6. Let ρX,Y be a Mess representation with parameters X,Y P

T . Identify the Mess manifold MX,Y :“ ΩX,Y {ρX,Y pΓq with Σ ˆ R. Let
α Ă Σ be an essential multicurve. Then, the geodesic realization of α in
MX,Y is isotopic to α Ă Σ ˆ t0u.

Proof. Let λα be a maximal lamination obtained from α by adding finitely
many geodesics spiraling around the curves in α. By Proposition 3.5 there
exists an embedded π1-injective (Lipschitz) surface Sα “ Ŝλα{ρX,Y pΓq Ă

MX,Y containing the geodesic realization of the curves in α. By Proposition
3.1 and Corollary 3.2 of [20], such surface, being embedded and π1-injective,
is isotopic to Σ ˆ t0u. □

3.2.2. Bending locus. The pleated set Ŝλ is not necessarily bent along all
the lines in λ̂.

Definition 3.7 (Bending Locus). Let ρX,Y be a Mess representation. Con-

sider λ a maximal lamination with geometric realization λ̂, and denote by
pSλ the corresponding pleated set. A point x P ℓ Ă λ̂ is in the bending lo-

cus of pSλ if there is no (necessarily spacelike) geodesic segment k entirely

contained in pSλ and such that intpkq X ℓ “ x.

We have:

Proposition 3.8 (Proposition 3.11 of [14]). The bending locus is a sublam-

ination of λ̂, and its complement in pSλ is a union of 2-dimensional totally
geodesic spacelike regions.

3.2.3. 1-Lipschitz developing map. Unfolding pleated sets along the bending
locus naturally maps them to H2. We formalize this heuristic picture as
follows:

Definition 3.9 (Developing Map). Let ρX,Y be a Mess representation. Let

Ŝλ Ă CHX,Y be the pleated set associated with the maximal lamination λ.

A 1-Lipschitz developing map is a homeomorphism f : Ŝλ Ñ H2 with the
following properties:

(1) It is totally geodesic on every leaf of λ̂ and every plaque.

(2) It is 1-Lipschitz with respect to the intrinsic pseudo-metric on Ŝλ

and the hyperbolic metric on H2.

Developing maps have a couple of useful general properties which we now
describe. First, they are totally geodesic outside the bending locus.

Lemma 3.10 (Lemma 6.2 of [14]). Let ρX,Y be a Mess representation, and

let Ŝλ be the pleated set associated to a maximal lamination λ. Then every 1-
Lipschitz developing map f : Ŝλ Ñ H2 is totally geodesic on the complement
of the bending locus of Ŝλ.
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Secondly, developing maps are contracting with respect to the natural
path metric structure on pleated sets.

Definition 3.11 (Regular Path). A (weakly) regular path is a map γ : I “

ra, bs Ñ H2,1 such that:

‚ The path is Lipschitz.
‚ The tangent vector 9γptq is spacelike (or lightlike) for almost every
t P I (at which 9γ is defined).

The length of a weakly regular path is

Lpγq :“

ż

I

a

x 9γptq, 9γptqydt.

The Lipschitz property implies that the length Lpγq is always finite.

Lemma 3.12 (Claim 2 of Lemma 6.4 in [14]). Let Ŝ Ă H2,1 be an acausal

subset. Let γ : I “ ra, bs Ñ Ŝ be a weakly regular path. Then

Lpγq “ lim
ϵÑ0

ż

I

dH2,1pγptq, γpt ` ϵqq

ϵ
dt.

Lemma 3.13 (Lemma 6.4 of [14]). Let ρX,Y be a Mess representation,

and let Ŝλ be the pleated set associated to a maximal lamination λ. Then
every 1-Lipschitz developing map f : Ŝλ Ñ H2 sends weakly regular paths
γ : I Ñ Ŝλ to Lipschitz (hence rectifiable) paths fγ : I Ñ H2 of smaller
length Lpγq ě Lpfγq.

3.2.4. Pleated surfaces. The following result makes sure that every pleated
set Ŝλ admits a natural 1-Lipschitz developing map:

Proposition 3.14 (Proposition 6.6 in [14]). Let ρX,Y be a Mess represen-
tation. For every maximal lamination λ P GLλ there is:

‚ An intrinsic hyperbolic structure Zλ P T .
‚ A pρX,Y ´ ρλq-equivariant 1-Lipschitz developing map f : Ŝλ Ñ H2

where ρλ is the holonomy of Zλ.

We can finally define pleated surfaces:

Definition 3.15 (Pleated Surface). Let ρX,Y be a Mess representation. The
pleated surface associated with the maximal lamination λ P GL consists of
the following data:

(1) The pleated set Ŝλ.
(2) The intrinsic hyperbolic holonomy ρλ : Γ Ñ PSL2pRq of Zλ.

(3) A pρX,Y ´ ρλq-equivariant 1-Lipschitz developing map f : Ŝλ Ñ H2.

Let us conclude this discussion by observing that pleated surfaces for a
fixed Mess representation ρX,Y have some useful compactness properties:

Lemma 3.16. Let ρX,Y be the Mess representation with parameters X,Y P

T . Then the space of intrinsic hyperbolic structures on the pleated sets

tZλuλPGLm



LENGTH FUNCTIONS IN TEICHMÜLLER AND ANTI DE SITTER GEOMETRY 15

is pre-compact in T .

Proof. Recall that ρX,Y pΓq acts cocompactly on CHX,Y . Let F Ă CHX,Y

be a compact fundamental domain. For every maximal lamination λ P GLm

with associated pleated set Ŝλ Ă CHX,Y choose a basepoint xλ P Ŝλ X F .

Let fλ : Ŝλ Ñ H2 be a pρX,Y ´ ρλq-equivariant 1-Lipschitz developing map
normalized so that fλpxλq “ o P H2, a fixed basepoint. The equivariance
and the 1-Lipschitz property tell us that

dH2po, ρλpγqoq ď dH2,1pxλ, ρX,Y pγqxλq

for every γ P Γ. Notice that the right hand side is bounded from above by a
uniform constant Kγ independent of λ as xλ P F is contained in a compact
set and

coshpdH2,1pxλ, ρX,Y pγqxλqq “ |xxλ, ρX,Y pγqxλy|.

Therefore the set of representations tρλuλPGLm
Ă T Ă HompΓ,PSL2pRqq is

pre-compact. □

3.2.5. Convex core. An example of pleated surface is given by the two con-
nected components of the boundary of the convex core BCHX,Y “ B`CHX,Y Y

B´CHX,Y . Each of them has the structure of a pleated set with bending loci
λ` and λ´ and intrinsic hyperbolic structures Zλ` , Zλ´ P T . As we men-
tioned in the introduction, measuring the total turning angles along paths
α : I Ñ B˘CHX,Y equips the geodesic laminations λ˘ with a transverse
measure and, hence identifies a pair of points λ˘ P ML. Mess proves that
we have the following relations

Zλ`

Er
λ`

}}

El
λ`

!!

X Y

Zλ´

Er
λ´

aa

El
λ´

==

where El
λ` , E

l
λ´ , E

r
λ` , E

r
λ´ are the left and right earthquakes induced by the

measured laminations λ`, λ´. Heuristically speaking, an earthquake is the
generalization to laminations of a twist deformation along a simple closed
geodesic. Given a closed geodesic γ on a hyperbolic surface X and a real
parameter θ ą 0 we do the following operation: We lift γ to a ρXpΓq-
invariant family of pairwise disjoint geodesics λ Ă H2. We cut H2 along
λ. We reglue all the ideal polygons P Ă H2 ´ λ by composing all the
initial identifications ℓ Ă BP Ñ ℓ1 Ă BP 1 (left-to-right) with the isometry
of ℓ1 given by t Ñ t ` θ (the identification ℓ1 “ R is determined by the
orientation). The result is still isometric to H2 but the action of Γ on it is
the holonomy of a different hyperbolic structure, which, depending on the
choices of orientations, is El

θγpXq or Er
θγpXq.
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We will describe more carefully the various elements that enter this picture
in the next section where we will prove a generalization of the result of Mess.

3.2.6. Initial and terminal singularities. We end this section by describing
the initial and terminal singularities of ΩX,Y which are subsets of BΩX,Y dual
to the boundary components of the convex core. Duality is understood in the
sense of the duality induced by the quadratic form x‚, ‚yp2,2q on PpM2pRqq.
Explicitly, we have

PpLq Ø PpLKq

where LK Ă M2pRq is the linear subspace orthogonal to L with respect to
the quadratic form.

Define the following:

Definition 3.17 (Initial and Terminal Singularities). The sets S˘ of dual
points of supporting planes of B˘CHX,Y are the initial and terminal singu-
larities.

Let us start with the following observation:

Lemma 3.18. Let H “ P pV q X H2,1 be a supporting plane of B˘CHX,Y .
Then:

‚ H is spacelike and defines a dual point P pV Kq P H2,1. Let w P V K

be a unit timelike vector pointing outside CHX,Y .
‚ For every x P H X CHX,Y , the timelike geodesic γptq “ cosptqx ´

sinptqw with t P r0, π{2q is contained in ΩX,Y while w “ γpπ{2q P

BΩX,Y .

Any two distinct supporting planes H1, H2 of B`CHX,Y intersect in a
spacelike geodesic H1 X H2. If w1, w2 are the dual points of H1, H2, then
rw1, w2s is spacelike.

Proof. The first point: Recall that BH2,1 “ RP1 ˆRP1 and that ΛX,Y is the

graph of an orientation preserving homeomorphism hX,Y : RP1 Ñ RP1. If
H is a supporting hyperplane for CHX,Y then BH does not intersect ΛX,Y

transversely. The fact that H must be spacelike follows from the following
observations: The boundary of a lightlike plane has the form ttu ˆ RP1 or
RP1 ˆ ttu. The boundary of a timelike plane is the graph of an orientation
reversing linear transformation RP1 Ñ RP1. In both cases the boundary
intersects ΛX,Y transversely.

The second point: Recall that ΩX,Y is the set of points that can be
connected to every point in ΛX,Y by a spacelike geodesic. A point x P H2,1

and a point p P BH2,1 are connected by a spacelike geodesic if and only if
xx, py ‰ 0. Let us show that γptq P ΩX,Y for every t P r0, π{2q. In order to
do so, lift ΛX,Y continuously to M2pRq. As x P ΩX,Y , we have xx, py ‰ 0
for every p P ΛX,Y and, by continuity, we can assume that it is negative
for every p P ΛX,Y . As H is a supporting hyperplane and w is timelike,
orthogonal to H, and pointing outside CHX,Y , we have xp, wy ě 0 for every
p P ΛX,Y . Therefore xγptq, py “ cosptqxx, py ´ sinptqxw, py ă 0 for every
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p P ΛX,Y and t ă π{2. In order to conclude, it is enough to observe that
w “ γpπ{2q R ΩX,Y as xw, py “ 0 for every p P BH X ΛX,Y ‰ H.

For the last part notice that H1 X H2 is either empty or a spacelike ge-
odesic. Suppose that H1 X H2 “ H. Then H2,1 ´ pH1 Y H2q consists of
two connected components one of them containing CHX,Y . As H1, H2 lies
on opposite sides of CHX,Y in such component, they cannot be support-
ing hyperplanes for the same boundary component of BCHX,Y . This is a
contradiction. □

Notice that, by Lemma 3.18, the initial and terminal singularities S˘

are ρX,Y pΓq-invariant, acausal, and contained in BΩX,Y . Benedetti and
Guadagnini [3] prove that they have the structure of a R-tree and relate
them to the bending laminations λ˘.

Definition 3.19 (R-tree). A R-tree is a geodesic metric space pS, dSp‚, ‚qq

such that between two points x, y P S there is a unique (up to reparametriza-
tion) injective path α : r0, 1s Ñ S with αp0q “ x, αp1q “ y.

Benedetti and Guadagnini [3] show the following:

Proposition 3.20. Let ρX,Y be a Mess representation. Let S˘ Ă BΩX,Y be
the initial and terminal singularities. Then:

‚ S˘ is ρX,Y pΓq-invariant, acausal, and path connected by regular
paths. In particular, it has an intrinsic path metric

dS˘px, yq “ Lpαq

where α : r0, 1s Ñ S˘ is a regular path joining x to y.
‚ For every pair of points w,w1 P S˘ there is a unique continuous
injective path connecting them.

‚ For every γ P Γ ´ t1u, the minimal displacement

min
xPS˘

tdS˘px, ρX,Y pγqxqu

coincides with ipγ, λ˘q and is realized by some point x P S˘.

Here λ˘ P ML is the bending lamination of B˘CHX,Y and ip‚, ‚q is the
geometric intersection form.

For a proof we refer to [2].

4. A generalization of a result of Mess

The goal of the section is to define the shear-bend cocycles of pleated
surfaces and prove Theorem 1.

We begin by recalling the Thurston-Bonahon shear parametrization of
Teichmüller space (as discussed by Bonahon in [6]) which we will generalize
to the space of Mess representations in Theorem 5 at the end of the section.

4.1. Shear coordinates. We refer to Bonahon [6] for more details on the
material presented in this section.
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4.1.1. Transverse cocycles. Shear-bend cocycles are a special case of trans-
verse cocycles for λ.

Definition 4.1 (Transverse Cocycle). Let A be a commutative ring. Let
λ Ă H2 be a maximal lamination. An A-transverse cocycle for λ is a function
σp‚, ‚q of pairs of plaques satisfying the following properties:

‚ Invariance: σpγP, γQq “ σpP,Qq for every γ P Γ and plaques P,Q.
‚ Symmetry: σpP,Qq “ σpQ,P q for every plaques P,Q.
‚ Additivity: σpP,Rq “ σpP,Qq ` σpQ,Rq for every plaques P,Q,R
such that R separates P from Q.

The space of A-transverse cocycles is denoted by Hpλ;Aq. It has a natural

structure of A-module isomorphic to A´3χpΣq (see Bonahon [6]).

4.1.2. Measured laminations. Every measured lamination µ P MLλ deter-
mines a natural transverse cocycle which, with a little abuse of notation, we
will still denote by µ P Hpλ;Rq. It is defined as follows: Let P, P 1 be plaques
of λ. Let ℓ Ă P, ℓ1 Ă ℓ1 be the (oriented) edges that separate P, P 1. Then

µpP, P 1q :“ µprℓ, ℓ1sq,

the measure, determined by µ, of the box rℓ, ℓ1s Ă G consisting of those
geodesics separating ℓ and ℓ1.

4.1.3. Hyperbolic structures. Every hyperbolic structure X on Σ also deter-
mines a transverse cocycle σX

λ P Hpλ;Rq, the so-called shear cocycle of X.
It is defined as follows: Let P, P 1 be plaques of λ. Let ℓ Ă P, ℓ1 Ă ℓ1 be the
(oriented) edges that separate P, P 1. Denote by x P ℓ, x1 P ℓ1 the orthogonal
projections of the opposite vertices in P, P 1.

Consider the partial foliation λPP 1 of the region rℓ, ℓ1s bounded by ℓ, ℓ1

given by all the leaves that separate P from P 1 and note that rℓ, ℓ1s´λPP 1 is
a union of wedges, that is regions bounded by a pair of leaves of λPP 1 that
are asymptotic in one or the other direction. Each of the wedges can be
foliated by adding all the geodesics separating the boundary leaves and to
their common endpoint at infinity. Thus, we get a natural geodesic foliation
of rℓ, ℓ1s. The line field on rℓ, ℓ1s which is orthogonal to this foliation is
integrable and following its leaves provides a natural isometric identification
π : ℓ Ñ ℓ1. Define

σX
λ pP, P 1q :“ dℓ1pπpxq, x1q

where dℓ1 is the signed distance along ℓ1.
A straightforward computation in H2 shows the following:

Lemma 4.2. Let βR be the cross ratio on RP1. We have

‚ If P, P 1 are adjacent triangles and ℓ “ ℓ1, then

σX
λ pP, P 1q “ βRpℓ`, ℓ´, u, u1q

where u P P, u1 P P 1 are the vertices opposite to ℓ “ ℓ1.
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‚ If P, P 1 are asymptotic to a leaf ℓ Ă λ, then

σX
λ pP, P 1q “ βRpℓ`, ℓ´, u, u1q

where u P e, u1 P e1 are the vertices not on ℓ on the edges e Ă P, e1 Ă

P 1 which separate the plaques P, P 1.

Bonahon proves the following:

Theorem 4.3 (Theorems A and B of [6]). Let λ be a maximal lamination.
For every X P T the function σX

λ p‚, ‚q is a transverse cocycle. The map

Φ : T Ñ Hpλ;Rq

X Ñ σX
λ

is a real analytic diffeomorphism. The image ΦpT q is the open convex cone

ΦpT q “ tσ P Hpλ,Rq | ωThpσ, ‚q ą 0 on MLλ u

where ωThp‚, ‚q is the Thurston’s symplectic form on Hpλ;Rq.

The resulting set of coordinates for Teichmüller space are called shear
coordinates relative to λ.

The Thurston’s symplectic form ωThp‚, ‚q is a natural symplectic form on
the vector spaceHpλ;Rq. For our purposes we don’t need a precise definition
of this object (we refer to Bonahon [6] for details), as we will only use the
following property:

Theorem 4.4 (Theorem E of [6]). Let λ be a maximal lamination. Let
ωThp‚, ‚q is the Thurston’s symplectic form on Hpλ;Rq. Then, for every
µ P MLλ and X P T we have

ωThpσX
λ , µq “ LXpµq.

4.1.4. Continuity of cocycles. In order to talk about continuity properties
of cocycles we need to compare Hpλ1;Rq with Hpλ;Rq for λ1 close to λ. This
can be done using the weights system Wpτ ;Rq of a train track τ carrying
λ. For us it is not important the definition of these objects, but rather the
following facts (see the proof of Lemma 13 in Bonahon [7] or Proposition
5.10 and Corollary 5.11 in [14]):

‚ τ determines an open set Uτ Ă GLm containing λ.
‚ Wpτ ;Rq is a real vector space and there is a canonical linear isomor-
phism Hpλ1;Rq Ñ Wpτ ;Rq for every λ1 P Uτ .

‚ For every λ1, λ2 P Uτ the following diagram commutes

T

��

// Hpλ2;Rq

��

Hpλ1;Rq // Wpτ ;Rq.

‚ For every X P T the map λ P Uτ Ñ σX
λ P Wpτ ;Rq is continuous.



20 FILIPPO MAZZOLI AND GABRIELE VIAGGI

4.2. Para-complex numbers. In order to define the shear-bend cocycle of
pleated surfaces it is convenient to exploit the natural para-complex cross-
ratio on the boundary of H2,1 (see Section 2 of Danciger [11]).

Definition 4.5 (Para-complex Numbers). The ring of para-complex num-
bers is B :“ Rrτ s{pτ2 ´ 1q. Similarly to the case of complex numbers, every
element z “ x ` τy has:

‚ A conjugate z̄ :“ x ´ τy.
‚ A pseudo-norm |z|2 :“ zz̄ “ x2 ´ y2 P R.

However B has also non trivial zero-divisors: An element z P B is invertible
if and only if |z|2 ‰ 0, in which case z´1 “ z̄{|z|2. We denote by B˚ the set
of invertible elements of B.

It is convenient to decompose B as R ˆ R: Consider

el :“
1 ` τ

2
, er :“

1 ´ τ

2
.

The elements el, er are idempotent e2j “ ej , orthogonal eler “ 0, and con-

jugate ēl “ er. This implies that the map pλ, µq P R ˆ R Ñ λel ` µer P B
is a ring isomorphism. In these coordinates, the conjugate of an element is
λel ` µer “ µel ` λer and its norm is |λel ` µer| “ λµ.

4.2.1. Exponential and logarithm. The para-complex exponential function

exp : B Ñ B is given by exppzq :“
ř8

k“0
zk

k! . In terms of the classical
exponential we have ex`τy “ expcoshpyq ` τ sinhpyqq. The para-complex
exponential map is injective, but not surjective. Its image coincides with

B` :“ tx ` τy P B | x ą 0 and |x ` τy|2 ą 0u.

The inverse of the exponential is the para-complex logarithm log : B` Ñ B.
In coordinates B “ R ˆ R, we have: B` “ tpλ, µq P R ˆ R | λ, µ ą 0u.

The exponential is exppλel ` µerq “ exppλqel ` exppµqer. The logarithm is
log pλel ` µerq “ logpλqel ` logpµqer.

4.2.2. Projective para-complex line. The boundary BH2,1 “ RP1 ˆ RP1 can
be identified with the para-complex projective line BP1 “ pB2 ´ t0uq{B˚ via

prus, rvsq P RP1 ˆ RP1 Ñ

„

1 ` τ

2
u `

1 ´ τ

2
v

ȷ

P BP1

and PSL2pRq ˆ PSL2pRq can be thought of as the para-complex projective
linear transformations PSL2pBq “ SL2pBq{B˚ via the isomorphism

prAs, rBsq P PSL2pRq ˆ PSL2pRq Ñ

„

1 ` τ

2
A `

1 ´ τ

2
B

ȷ

P PSL2pBq.

The para-complex projective line BP1 is equipped with a natural para-
complex cross-ratio:
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Definition 4.6 (Cross Ratio). The para-complex cross-ratio is defined by

βBpz1, z2, z3, z4q “
z1 ´ z3
z1 ´ z4

¨
z2 ´ z4
z2 ´ z3

P B.

The following is an elementary computation:

Lemma 4.7. For every a, b, c, d P BP1 “ RP1 ˆ RP1 we have

βBpa, b, c, dq “
1 ` τ

2
βRpal, bl, cl, dlq `

1 ´ τ

2
βRpar, br, cr, drq.

4.3. Shear-bend cocycle. We now recall the natural shear-bend cocycle
and its geometric interpretation as given in Sections 4 and 5 of [14].

Let ρX,Y be a Mess representation with limit curve ΛX,Y .

4.3.1. Elementary shear. Let us start with an elementary shear-bend.

Lemma 4.8. Let ∆ “ pu, ℓ´, ℓ`q,∆1 “ pu1, ℓ`, ℓ´q Ă H2,1 be ideal triangles
sharing a common edge ℓ “ rℓ´, ℓ`s and with vertices on ΛX,Y ordered as

u ă ℓ´ ă u1 ă ℓ`. Then βBpℓ`, ℓ´, ul, urq P B`.

Proof. Recall that ΛX,Y is the graph of the unique pρX ´ ρY q-equivariant

homeomorphism hX,Y : RP1 Ñ RP1. For a point p P RP1 ˆ RP1 denote by
pl, pr the left and right components. Then we have uj ă ℓ`

j ă u1
j ă ℓ´

j on

RP1 for j “ l, r. The conclusion follows from Lemma 4.7. □

We define:
σBp∆,∆1q :“ log βBpℓ`, ℓ´, ul, urq P B.

4.3.2. Maximal laminations with countably many leaves. We then consider
the case of maximal laminations with countably many leaves.

These laminations always have the following structure: There is a canon-
ical collection of simple sublaminations

λ1 “ λ1 \ ¨ ¨ ¨ \ λn Ă λ

where each λj consists of the orbit of the axis of an element γj P Γ ´ t1u

representing a simple closed curve. The complement λ´λ1 is made of isolated
geodesics asymptotic to leaves of λ1.

Let λ Ă H2 be a maximal lamination with countably many leaves. Let
P,Q Ă H2 ´ λ be a pair of plaques. Denote by PPQ the set of plaques
separating P from Q. Let ℓ1, ¨ ¨ ¨ , ℓm be the leaves of λ1 separating P from
Q. For each of those leaves ℓj select plaques R`

j , R
´
j asymptotic to it from

the left and from the right. The elementary shear between them is

σBpR´
j , R

`
j q :“ σBp∆pu´

j , ℓ
´
j , ℓ

`
j q,∆pℓ`

j , ℓ
´
j , u

`
j qq.

where u´
j , u

`
j are the vertices of R´

j , R
´
j that lie on the edges separating the

two plaques and are not endpoints of ℓj . Note that between R`
j´1 and R´

j

there are only finitely many consecutive adjacent plaques

R`
j´1 “ Tj,0, ¨ ¨ ¨ , Tj,kj “ R´

j .
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Define

σρpP,Qq :“
m
ÿ

j“1

¨

˝σBpR´
j , R

`
j q `

kj´1
ÿ

i“0

σBpTj,i, Ti`1q

˛

‚.

As observed in [14], a simple computation shows that a different choice
of plaques R`

j , R
´
j asymptotic to the lifts of the leaves ℓj P λ1 separating

P from Q gives the same value for σρpP,Qq. The fact that σρpP,Qq is
well-defined immediately implies that it is also satisfies the properties of a
transverse cocycle. Therefore:

Definition 4.9 (Intrinsic Shear-Bend I). Let ρX,Y be a Mess representation.
Let λ be a maximal lamination with countably many leaves. The cocycle
σρp‚, ‚q P Hpλ;Bq is the intrinsic shear-bend cocycle of the pleated set Ŝλ.

Furthermore we have:

Proposition 4.10 (Proposition 6.7 in [14]). Let ρX,Y be a Mess represen-
tation. Let λ be a maximal lamination with countably many leaves. Then
pσρ`σ̄ρq{2 P Hpλ;Rq is the shear cocycle of the intrinsic hyperbolic structure

Zλ P T of the pleated set Ŝλ.

4.3.3. General maximal laminations. Lastly, we describe the natural finite
approximation process that defines the shear-bend cocycle in general ex-
tending the previous case: Let λ Ă H2 be an arbitrary maximal lamination.
As before, let P,Q Ă H2 ´ λ be a pair of plaques and let PPQ be the set of
plaques separating P from Q. Let

P “ tP1, ¨ ¨ ¨ , Pmu Ă PPQ

be a finite subset of plaques ordered from P to Q. Any two consecutive
Pj , Pj`1 cobound a (possibly empty) region Uj . We decompose its boundary
as BUj “ ℓj Y ℓj`1 with ℓj Ă BPj and ℓj`1 Ă BPj`1. We add to the finite
collection P of plaques the triangles

∆pℓ`
j , ℓ

´
j , ℓ

`
j`1q,∆pℓ´

j , ℓ
´
j`1, ℓ

`
j`1q

obtaining a chain of triangles P “ T1, T2, ¨ ¨ ¨ , T3m´2, T3m´1 “ Q.
We then define

σρpP,Qq :“
3m´2
ÿ

j“1

σBpTj , Tj`1q.

We then carefully choose an exhaustion tPnunPN of PPQ by an finite
subsets and we set

σρpP,Qq :“ lim
nÑ8

σB
Pn

pP,Qq.

The existence of the limit as well as the independence of the choices made
to define it and the fact that the limit object is a B-transverse cocycle are
proved in [14]:
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Theorem 4.11 (Theorem B of [14]). Let ρX,Y be a Mess representation.
For every maximal geodesic lamination λ P GL, the finite approximation
process converges and defines a B-transverse cocycle σρ P Hpλ;Bq.

Definition 4.12 (Intrinsic Shear-Bend II). Let ρX,Y be a Mess representa-
tion. Let λ be a maximal lamination. The cocycle σρ P Hpλ;Bq provided by

Theorem 4.11 is the intrinsic shear-bend cocycle of the pleated set Ŝλ.

The following is a summary of the results in Sections 4 and 5 of [14].

Proposition 4.13. We have the following properties:

(i) If λ has countably many leaves the definitions I and II coincide.
(ii) pσρ ` σ̄ρq{2 is the shear cocycle of the intrinsic hyperbolic structure

Zλ P T .
(iii) The map λ P GLm Ñ σρ P Wpτ ;Bq is continuous with respect to the

Hausdorff topology on GLm. Here Wpτ ;Rq is the weight space of a
train track τ carrying λ.

4.4. Gauss map. In order to prove Theorem 1 we study the Gauss map of
the pleated set Ŝλ which we now describe. To this purpose let us begin with
some general observations.

The group PSL2pRq ˆ PSL2pRq acts transitively on oriented timelike ge-
odesic. The stabilizer of the oriented timelike geodesic γptq “ cosptqI `

sinptqJ P PSOp2q where J “

´

0 ´1
1 0

¯

is PSOp2q ˆ PSOp2q.

Therefore, the space of oriented timelike geodesics is naturally PSL2pRqˆ

PSL2pRq-equivariantly identified with PSL2pRq{PSOp2qˆPSL2pRq{PSOp2q.
We identify RP1 with PtA P M2pRq | rkpAq “ 1u{PSOp2q and H2 with

PSL2pRq{PSOp2q.

Lemma 4.14. Let H Ă H2,1 be a spacelike plane. Consider the map g “

pgl, grq : H Ñ H2 ˆ H2 where gpxq is the future pointing timelike geodesic
orthogonal to H at x. Then gj is isometric and extends continuously to the

map gj : BH Ă RP1 ˆ RP1 Ñ RP1 sending gjpal, arq “ aj for j “ l, r.

Proof. By equivariance it is enough to check the claim for a specific hyper-
plane H Ă H2,1 “ PSL2pRq. We choose H to be the dual plane of I, that is
H “ PtM P SL2pRq | trpMq “ 0u. As above, let γ “ PSOp2q.

Notice that J “ H X γ and, hence, gpJq “ γ “ prIs, rIsq. As the diagonal
group of PSL2pRq ˆ PSL2pRq preserves H and acts transitively on it, by
equivariance we have gjpAJq “ rAs, that is, the components gj are the
restrictions of the standard projection π : PSL2 Ñ PSL2{PSOp2q to H.
Also observe that, as γ is orthogonal to H at J , the differential dπJ is
isometric. Thus, by equivariance, dπ is isometric everywhere.

The boundary of H is BH “ PtM P M2pRq | trpMq “ 0, rkpMq “ 1u.
Notice that, by Hamilton-Cayley, everyM P M2pRq satisfiesM2´trpMqM`

detpMq “ 0. Therefore, if M P BH, then M2 “ 0 ðñ ImpMq “ KerpMq.
The map gjpAJq “ rAs extends continuously to a map BH Ñ RP1 sending
gjpImpMq,KerpMqq “ rImpMqs “ rKerpMqs. □
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Let ρX,Y be a Mess representation with limit curve ΛX,Y Ă RP1 ˆ RP1.

Lemma 4.15. Consider two ideal spacelike adjacent triangles ∆ “ ∆pa, b, cq
and ∆1 “ pc, b, a1q sharing a common edge rb, cs and with vertices ordered as
a ă b ă a1 ă c along ΛX,Y . Let g “ pgl, grq : intp∆q Y intp∆1q Ñ H2 ˆ H2 be
the map sending x to the future pointing timelike normal gpxq P H2 ˆ H2.
Then

σp∆,∆1q “
σH2pglp∆q, glp∆

1qq ` σH2pgrp∆q, grp∆1qq

2

βp∆,∆1q “
σH2pglp∆q, glp∆

1qq ´ σH2pgrp∆q, grp∆1qq

2

where σ2
Hp∆1,∆2q denotes the hyperbolic shear of the adjacent ideal triangles

∆1,∆2 Ă H2.

Proof. Identify BP1 with RP1 ˆ RP1. By Lemma 4.14, their left and right
projections of ∆,∆1 are the ideal triangles gjp∆q “ ∆paj , bj , cjq, gjp∆

1q “

∆pcj , bj , a
1
jq where j “ l, r respectively. Notice that we have aj ă bj ă a1

j ă

cj on RP1 because the set ∆Y∆1 is acausal. In particular, σH2pgjp∆q, gjp∆
1qq “

βRpbj , cj , aj , a
1
jq by Lemma 4.2. Recall that σp∆,∆1q, βp∆,∆1q are the real

and para-complex parts of σBp∆,∆1q “ σBpa, b, c, dq and that, by definition,
σBpb, c, a, a1q “ βBpb, c, a, a1q. The conclusion follows from Lemma 4.7. □

We are ready to prove Theorem 1.

4.5. The proof of Theorem 1. Let ρX,Y be a Mess representation.

Consider the pleated set Ŝλ associated with the maximal lamination λ.
Every point x P Ŝλ ´ λ̂ lies in a plaque and, therefore, has a well-defined
future pointing timelike unit normal direction gpxq. The map g “ pgl, grq :

Ŝλ ´ λ̂ Ñ H2 ˆH2 is the Gauss map of the pleated set Ŝλ. By Lemma 4.14,
it is ρX,Y -equivariant and totally geodesic on each plaque.

Proof of Theorem 1. We split the proof into two cases.
Maximal laminations with countably many leaves. Let P,Q be distinct

plaques. By definition and by Lemma 4.2, it is enough to consider the case
where P,Q are either adjacent or asymptotic to the same leaf. The claim
then follows from the computations of Lemmas 4.14 and 4.15.

General maximal laminations. The general case follows density of finite
leaved maximal laminations in GLm and continuity properties of the cocycles
as given in Theorem 4.13. □

4.6. Shear-bend parametrization. The proof of Theorem 5 is a combi-
nation of Theorem 1 and some properties of the classical shear coordinates
Φ : T Ñ Hpλ;Rq.

Proof of Theorem 5. We have

Hpλ;Bq “
1 ` τ

2
Hpλ;Rq ‘

1 ´ τ

2
Hpλ;Rq
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as B-modules.
Part (1). Recall that σB

λ “ σ ` τβ and that, by Theorem 1, we have

σ “ pσX
λ ` σY

λ q{2 and β “ pσX
λ ´ σY

λ q{2. Therefore, in terms of the above
splitting, the shear-bend map decomposes as

Ψ : ρX,Y Ñ σB
λ “

1 ` τ

2
σX
λ ‘

1 ´ τ

2
σY
λ .

The single components ΦpXq,ΦpY q “ σX
λ , σY

λ are analytic by Theorem 4.3.
Injectivity also follows from the injectivity in the same theorem since:

σB
ρ “ σB

ρ1 ðñ σX
λ “ σX 1

λ and σY
λ “ σY 1

λ .

It remains to be checked that the map respects the para-complex struc-
tures of T ˆ T and Hpλ;Bq. The para-complex structure J acts on TXT ‘

TY T simply as Jpu, vq “ pu,´vq and acts on Hpλ;Bq as the multiplication
by τ . Denote by Φ : T Ñ Hpλ;Rq the classical shear coordinates, we have:

dΨJpu, vq “ dΨpu,´vq “
1 ` τ

2
dΦpuq ‘

1 ´ τ

2
p´dΦpvqq

“ τ

ˆ

1 ` τ

2
dΦpuq ‘

1 ´ τ

2
dΦpvq

˙

“ τdΨpu, vq.

Part (2). The Thurston’s symplectic form on Hpλ;Bq splits as

ωB
Th “

1 ` τ

2
ωR
Th ‘

1 ´ τ

2
ωR
Th,

with respect to the above decomposition. Thus, by Theorem 4.4, we have

ωB
ThpσB

ρ , µq “
1 ` τ

2
ωR
ThpσX

λ , µq `
1 ´ τ

2
ωR
ThpσY

λ , µq

“
1 ` τ

2
LXpµq `

1 ´ τ

2
LY pµq

“
LXpµq ` LY pµq

2
` τ

LXpµq ´ LY pµq

2

for every µ P MLλ. We will see in the next section that Lρ “ pLX ` LY q{2
and θρ “ pLX ´ LY q{2.

Part (3). By part (1), the image of Ψ is

tσ ` τβ P Hpλ;Bq | σ ` β, σ ´ β P T Ă Hpλ;Rqu .

By Theorem 4.3, we have

T “ tσ P Hpλ,Rq | ωThpσ, ‚q ą 0 on MLλ u,

Thus

σ ` τβ P ΨpT ˆ T q ô ωThpσ ˘ β, µq ą 0

ô ωThpσ, µq2 ´ ωThpβ, µq2 “

ˇ

ˇ

ˇ
ωB
Thpσ ` τβ, µq

ˇ

ˇ

ˇ

2

B
ą 0

for every µ P MLλ.
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Part (4). By work of Bonahon and Sözen [8], we have that Φ˚ωTh “

c ¨ ωWP. The conclusion comes from the fact that Ψ splits as 1`τ
2 Φ ‘ 1´τ

2 Φ

and ωB
Th splits as 1`τ

2 ωR
Th ‘ 1´τ

2 ωR
Th. □

5. Length functions in anti de Sitter 3-manifolds

In this section we study the anti de Sitter length functions associated with
Mess representations and prove Theorem 2.

5.1. Moving endpoints orthogonally. Let us start with some estimates
in H2,1 on how the length of a spacelike segment changes if we move its
endpoints orthogonally in timelike directions. The following is an elementary
computation:

Lemma 5.1. Let rx, ys be a spacelike segment. Let v P TxH2,1, w P TyH2,1

be unit timelike vectors orthogonal to rx, ys. Consider p “ cosptqx ` sinptqv
and q “ cosptqy ` sinptqw. Then

(1) rv, ws lies on the dual geodesic of rx, ys. Hence, it is spacelike.
(2) We have

´xp, qy “ cosptq2 coshpdH2,1px, yqq ` sinptq2 coshpdH2,1pv, wqq.

As ´xp, qy ą 1, rp, qs is spacelike and coshpdH2,1pp, qqq “ ´xp, qy.

In order to manipulate better some inequalities, later on we will use several
times the following estimates on hyperbolic trigonometric functions:

Lemma 5.2. We have:

(1) For every ϵ, δ ą 0 there exists κ ą 0 such that

cospδq
2 coshpxq ` sinpδq

2 coshpx ´ ϵq ď coshpx ´ κq

for every x ě ϵ.
(2) For every ϵ, L0 ą 0 there exists a0 ă 1 such that

a coshpLq ě coshpL ´ ϵq

for every L ě L0 and a P pa0, 1q.
(3) For every a ą 1 we have coshpaxq ě a coshpxq.

Proof. A straightforward computation shows that for every fixed b ą 0 the
function coshpx ´ bq{ coshpxq defined on the interval rϵ,8q is decreasing, so
that we have e´b ď coshpx ´ bq{ coshpxq ď coshpϵ ´ bq{ coshpϵq.

Inequality (2). As coshpx ´ ϵq{ coshpxq is decreasing on rϵ,8q, it is bounded
from above by coshpL0 ´ ϵq{ coshpL0q ă 1. It is enough to choose a0 in the
interval rcoshpL0 ´ ϵq{ coshpL0q, 1s.

Inequality (1). We first rewrite it as

cospδq
2

` sinpδq
2 coshpx ´ ϵq

coshpxq
ď

coshpx ´ κq

coshpxq
.
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As coshpx ´ aq{ coshpxq is decreasing, we have

cospδq
2

` sinpδq
2 coshpx ´ ϵq

coshpxq
ď cospδq

2
` sinpδq

2 1

coshpϵq
ă 1,

So, it is enough to choose κ ą 0 so that cospδq
2

` sinpδq
2
{ coshpϵq ă e´κ.

Inequality (3). The function coshpaxq´a coshpxq has derivative apcoshpaxq´

coshpxqq which is positive when a ą 1. □

5.2. Length and pleated surfaces. We now introduce loxodromic trans-
formations of H2,1 and the length functions associated to Mess representa-
tions.

Definition 5.3 (Loxodromic). An isometry γ “ pA,Bq P PSL2pRqˆPSL2pRq

is loxodromic if A,B are both loxodromic transformations of PSL2pRq. A
loxodromic transformation γ preserves two disjoint (dual) lines

ℓ “ rpx`
A, x

`
Bq, px´

A, x
´
Bqs, ℓ˚ “ rpx`

A, x
´
Bq, px´

A, x
`
Bqs Ă H2,1,

where x˘
A, x

˘
B are the attracting and repelling fixed points of A,B on RP1,

and acts on them by translations by

Lpγq “
LpAq ` LpBq

2
and θpγq “

|LpAq ´ LpBq|

2

respectively where LpAq, LpBq are the translation lengths of A,B. The
quantities Lpγq and θpγq are the translation length and torsion of γ.

Notice that if ρX,Y is a Mess representation, then for every γ P Γ´t1u the
transformation ρX,Y pγq “ pρXpγq, ρY pγqq is loxodromic because ρX , ρY are

holonomies of hyperbolic structures. Furthermore, as ΛX,Y Ă RP1 ˆ RP1

is the graph of the unique pρX ´ ρY q-equivariant homeomorphism hX,Y :

RP1 ˆ RP1, we see that the axis ℓγ of ρX,Y pγq, having the endpoints on
ΛX,Y , is contained in CHX,Y .

We are now ready to prove the first part of Theorem 2.

Proposition 5.4. Let ρX,Y a Mess representation. Let γ P Γ ´ t1u be a
non-trivial element, denote by ℓ Ă CHX,Y the axis of ρX,Y pγq. Let λ Ă Σ
be a maximal lamination, let Zλ P T be the intrinsic hyperbolic structure on
Ŝλ{ρX,Y pΓq where Ŝλ Ă CHX,Y is the pleated set associated with λ. Let δ be

the maximal timelike distance of ℓ from Ŝλ. Then:

coshpLZpγqq ď cospδq
2 coshpLρpγqq ` sinpδq

2 coshpθρpγqq.

Proof. Let x P ℓ, y P Ŝλ be points that realize the maximal timelike distance
δ. Notice that the timelike segment rx, ys is orthogonal to ℓ at x. Denote
by v P TxH2,1 the unit timelike vector tangent to rx, ys. We can write
y “ cospδqx ` sinpδqv.
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We now apply Lemma 5.1 to the spacelike segment rx, ρX,Y pγqxs Ă ℓ and
the timelike unit tangent vectors v, ρX,Y pγqv. We have:

cosh pdH2,1py, ρX,Y pγqyqq

“ cospδq
2 cosh pdH2,1px, ρX,Y pγqxqq ` sinpδq

2 cosh pdH2,1pv, ρX,Y pγqvqq .

Notice that dH2,1px, ρX,Y pγqxq “ Lρpγq and dH2,1pv, ρX,Y pγqvq “ θρpγq.
The conclusion then follows from Proposition 3.14 which says that the

intrinsic hyperbolic distance between y, ρX,Y pγqy on Ŝλ is smaller than
dH2,1py, ρX,Y pγqyq and the fact that LZpγq coincides with the minimal dis-

placement of ρX,Y pγq with respect to the hyperbolic metric on Ŝλ. □

5.3. Intersection and pleated surfaces. We then prove the second part
of Theorem 2.

Proposition 5.5. Let ρX,Y be a Mess representation. Let γ P Γ ´ t1u be a
non-trivial element, denote by ℓ Ă CHX,Y the axis of ρX,Y pγq. Let δ˘,∆˘

be the maximal timelike distances of ℓ from λ˘ and B˘CHX,Y . Then:

(1) We have

cosh
`

ipλ˘, γq
˘

ď sin
`

δ˘
˘2

coshpLρpγqq ` cos
`

δ˘
˘2

coshpθρpγqq.

(2) We have

ipλ˘, γq ě cos
`

∆˘
˘2
θρpγq.

Proof of part (1) of Proposition 5.5. Let rx, x˘s be a timelike segment, with
x P ℓ, x˘ P ℓ˘ Ă λ˘ that realizes the maximal timelike distance δ˘. Notice
that rx, x˘s is orthogonal to both ℓ, ℓ˘. Let v P TxH2,1, v˘ P Tx˘H2,1 be the
unit speed timelike vectors tangent to the geodesic rx, x˘s at the endpoints.

Claim 1. We have

cosh
`

dH2,1pv˘, ρX,Y pγqv˘q
˘

“ sin
`

δ˘
˘2

coshpLρpγqq ` cos
`

δ˘
˘2
θρpγq.

Proof of the claim. Note that

v˘ “ cos
`

π{2 ´ δ˘
˘

x ` sin
`

π{2 ´ δ˘
˘

v

and that v and ρX,Y pγqv are both orthogonal to the segment rx, ρX,Y pγqxs Ă

ℓ. The claim follows from Lemma 5.1. □

Claim 2. Let v, v1, v2 P H2,1 be dual to the supporting planes H,H 1, H2 of
B`CHX,Y .

(i) If v, v1, v2 are aligned along S` then H X H 1 X H2 “ H.
(ii) If v ă v1 ă v2 along S`, then the reverse triangle inequality holds

dH2,1pv, v2q ě dH2,1pv, v1q ` dH2,1pv1, v2q.

Proof of the claim. The first part: Consider the faces F, F 1, F 2 “ H,H 1, H2X

B`CHX,Y . As S` is an R-tree, there are two possibilities: Either one of
the faces separates the other two on B`CHX,Y or there is a unique face
G Ă B`CHX,Y that separates every pair of them. The first case corresponds



LENGTH FUNCTIONS IN TEICHMÜLLER AND ANTI DE SITTER GEOMETRY 29

to the configuration where the dual points v, v1, v2 are aligned. The second
case corresponds to the configuration where v, v1, v2 are the vertices of a
tripod in S` with center w, the dual point of G. Let us consider the first
case. In addition, let us assume that v ă v1 ă v2 without loss of generalities.
Then F 1 separates H XH 1 from H 1 XH2 in H 1. Hence the triple intersection
H X H 1 X H2 is empty.

The second part of the claim follows from Lemma 6.3.5 of [2]. □

Claim 3. Let v, w P S` be distinct points. Then

dS`rv, ws ď dH2,1pv, wq.

Proof of the claim. Let α : I “ r0, 1s Ñ S` be an injective weakly regular
path joining v and w. By Lemma 3.12, we have

L “

ż

I
| 9αptq|dt “ lim

ϵÑ0

ż

I

dH2,1pαptq, αpt ` ϵqq

ϵ
dt.

If ϵ ă ϵ0 then
ˇ

ˇ

ˇ

ˇ

ż

I

dH2,1pαptq, αpt ` ϵqq

ϵ
dt ´ L

ˇ

ˇ

ˇ

ˇ

ă δ

Choose ϵ “ 1{2k. For convenience, we take dyadic approximations of the
integral with Riemann sums:

ż

I

dH2,1pαptq, αpt ` 1{2kqq

1{2k
dt “ lim

nÑ8

2n´2n´k
ÿ

p“0

dH2,1pαpp{2nq, αpp{2n ` 1{2kqq

1{2k
¨
1

2n
.

We reorganize the sum as

2k

2n

2n´k
ÿ

p“0

dH2,1

ˆ

α
´ p

2n

¯

, α

ˆ

p

2n
`

1

2k

˙˙

“
2k

2n

2n´k
ÿ

j“1

2k´1
ÿ

q“1

dH2,1

ˆ

α

ˆ

j

2n
`

q

2k

˙

, α

ˆ

j

2n
`

q ` 1

2k

˙˙

ď
2k

2n

2n´k
ÿ

j“1

dH2,1 pαp0q, αpLqq “ dH2,1 pαp0q, αpLqq by Claim 2.

□

We have:

coshpipλ, γqq ď coshpdS`pv, ρX,Y pγqvqq

ď coshpdH2,1pv, ρX,Y pγqvqq by Claim 3

“ sin
`

δ˘
˘2

coshpLρpγqq ` cos
`

δ˘
˘2

coshpθρpγqq by Claim 1.

□
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Proof of part (2) of Proposition 5.5. We start with the following observa-
tion: Let H, ℓ Ă H2,1 by a spacelike plane and a spacelike geodesic. If H
and ℓ have disjoint closures, then there exists a unique timelike segment
rx, ys with x P ℓ, y P H which is orthogonal to both.

We apply the above to the following configuration: Consider ℓ, the axis
of ρX,Y pγq. Being contained in CHX,Y , ℓ has disjoint closure from every
support plane H of B`CHX,Y and, hence, it is connected to H by a timelike
segment rx, ys with x P ℓ, y P H which is orthogonal to both. Denote
by v, w respectively the unit timelike velocity of the segment rx, ys at x, y
respectively.

Fix ϵ ą 0. We prove that

ipγ, λ˘q ` ϵ ě cos
`

∆˘
˘2
θpγq.

Let α : I Ñ S˘ be a geodesic of length ℓpαq “ ipγ, λ˘q with αp1q “

ρX,Y pγqαp0q. Recall that, by Lemma 3.12, we have

ipγ, λ˘q “ ℓpαq “ lim
ϵÑ0

ż

I

dH2,1pαptq, αpt ` ϵqq

ϵ
dt.

We deduce that:

Claim 1. There exists a dyadic subdivision with

2k

2n

2n´k
ÿ

j“1

2k
ÿ

q“1

dH2,1pαpj{2n ` q{2kq, αpj{2n ` pq ` 1q{2kqq ď ipλ, γq ` ϵ.

We simplify the notation by introducing wj,q :“ αpj{2n`q{2kq and dj,q :“
dH2,1pwj,q, wj,q`1q. By Claim 1, we have:

2k

2n

2n´k
ÿ

j“1

2k
ÿ

q“1

dH2,1pwj,q, wj,q`1q “
2k

2n

2n´k
ÿ

j“1

2kL
ÿ

q“1

dj,q ď ipλ, γq ` ϵ.

Each wj,q is dual to a support plane Hj,q of B`CH. We associate to it the
segment rxj,q, yj,qs of length δj,q ą 0 and the velocities vj,q, wj,q as provided
by the initial observations. Consider the spacelike distances

‚ θj,q :“ dH2,1pvj,q, vj,q`1q.
‚ Dj,q :“ dH2,1pxj,q, xj,q`1q.

Claim 2. We have

‚ θρpγq ď θj,1 ` ¨ ¨ ¨ ` θj,2n´k .
‚ Lρpγq ď Dj,1 ` ¨ ¨ ¨ ` Dj,2n´k .

Proof of the claim. Recall that xj,q and vj,q are respectively aligned along
the axis ℓ of γ and its dual line ℓ˚. Thus, we have

θρpγq “ dH2,1pvj,1, ρpγqvj,1 “ vj,2n´kq ď
ÿ

qď2n´k

dH2,1pvj,q, vj,q`1q
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and

Lρpγq “ dH2,1pxj,1, ρpγqxj,1 “ xj,2n´kq ď
ÿ

qď2n´k

dH2,1pxj,q, xj,q`1q

□

By Lemma 5.1, we have

coshpdj,qq “ sinpδj,qq sinpδj,q`1q coshpDj,qq ` cospδj,qq cospδj,q`1q coshpθj,qq.

Notice that sinpδj,qq sinpδj,q`1q ` cospδj,qq cospδj,q`1q “ cospδj,q ´ δj,q`1q.
By part (3) of Lemma 5.2, we have

cosh

ˆ

dj,q
cospδj,q ´ δj,q`1q

˙

ě
coshpdj,qq

cospδj,q ´ δj,q`1q
.

The right hand side is equal to

sinpδj,qq sinpδj,q`1q coshpDj,qq ` cospδj,qq cospδj,q`1q coshpθj,qq

cospδj,q ´ δj,q`1q
,

therefore, by convexity of coshp‚q, it is greater than

ě cosh

ˆ

sinpδj,qq sinpδj,q`1qDj,q ` cospδj,qq cospδj,q`1qθj,q
cospδj,q ´ δj,q`1q

˙

.

As coshp‚q is increasing, we conclude

dj,q ě sinpδj,qq sinpδj,q`1qDj,q ` cospδj,qq cospδj,q`1qθj,q.

Denoting by ∆ :“ maxtδj,qu and δ :“ mintδj,qu and using the monotonicity
of cosp‚q and sinp‚q, we can continue the previous inequality to

ě cosp∆q
2θj,q ` sinpδq

2Dj,q.

Summing all the contributions, by Claim 2, we get

2kL
ÿ

q“1

dj,q ě cosp∆q
2θρpγq ` sinpδq

2Lρpγq.

In conclusion,

ipλ, γq ` ϵ ě
2k

2n

2n´k
ÿ

j“1

2k
ÿ

q“1

dj,q

ě
2k

2n

2n´k
ÿ

j“1

cosp∆q
2θρpγq ` sinpδq

2Lρpγq

“ cosp∆q
2θρpγq ` sinpδq

2Lρpγq.

As ϵ ą 0 was arbitrary, this finishes the proof. □
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6. Length functions in Teichmüller space

In this section we carry out an anti de Sitter analysis of length func-
tion on Teichmüller space on both global and infinitesimal scales and prove
Theorems 3 and 4.

6.1. Orthogonal projection to a line. We begin with some explicit com-
putations on the orthogonal projection π : H2,1 Ñ ℓ to a spacelike geodesic.

Lemma 6.1. Let y, ℓ be a point and a spacelike line in H2,1 such that the
rays ry, ℓ˘s are spacelike. Then

my,ℓ “ min
xPℓ

t´xy, xyuq “

d

2xy, ℓ`yxy, ℓ´y

´xℓ`, ℓ´y

and it is realized at the unique point

x “
1

a

´2xℓ`, ℓ´y

˜

d

xy, ℓ´y

xy, ℓ`y
ℓ` `

d

xy, ℓ`y

xy, ℓ´y
ℓ´

¸

P ℓ

such that ry, xs is orthogonal to ℓ.

Proof. Write ℓptq “ petℓ` ` e´tℓ´q{
a

´2xℓ`, ℓ´y and consider the function
fptq “ ´xℓptq, yy. As ry, ℓ`s, ry, ℓ´s are spacelike, we have fptq Ñ 8 as
|t| Ñ 8. Hence, fptq has a minimum which is a critical point. The unique
critical point of the function is at e2t “ xy, ℓ´y{xy, ℓ`y. The conclusion
follows by elementary computations. □

6.2. Convexity of length functions. We now describe the purely anti de
Sitter proof of (strict) convexity of length functions on Teichmüller space T
in shear coordinates for an arbitrary maximal lamination λ Ă Σ.

We prove separately the two parts of Theorem 3.

Proposition 6.2. Let λ Ă Σ be a maximal lamination. Let γ P Γ´ t1u be a
non-trivial loop. The length function Lγ : T Ă Hpλ;Rq Ñ p0,8q is convex.
Moreover, convexity is strict if γ intersects essentially every leaf of λ.

Proof. Recall that a function L : U Ă Rn Ñ R defined on an open convex
subset U Ă Rn is (strictly) convex if and only if for every x, y P U we have
a (strict) inequality

L

ˆ

x ` y

2

˙

ď
Lpxq ` Lpyq

2
.

Consider X,Y P T . Let ρX,Y be the corresponding Mess representation. Let

Ŝλ Ă CHX,Y be the pleated set associated with λ and let ρλ : Γ Ñ PSL2pRq

be the holonomy of the intrinsic hyperbolic structure Zλ P T on Ŝλ{ρX,Y pΓq.
By Theorem 1 we have Zλ “ pX `Y q{2 in Hpλ;Rq. By Theorem 2, we have

coshpLZλ
pγqq ď cospδq

2 coshpLρpγqq ` sinpδq
2 coshpθρpγqq
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where δ is the maximal timelike distance of the axis ℓ of ρX,Y pγq from the

pleated set Ŝλ. Notice that δ ą 0 unless ℓ Ă Ŝλ in which case ℓ does
not intersect the bending locus. Also observe that unless ρ is Fuchsian,
which happens precisely when X “ Y , the bending locus cannot be empty.
Therefore, if X,Y are distinct and the support of γ P C intersects essentially
every leaf of λ we have δ ą 0 and

cospδq
2 coshpLρpγqq ` sinpδq

2 coshpθρpγqq ă coshpLρpγqq

as Lρpγq ă θρpγq. Since coshp‚q is strictly increasing on p0,8q, we conclude
LZpγq ă Lρpγq. □

Proposition 6.3. Let λ Ă Σ be a maximal lamination. Let γ P ML be
a measured lamination. The length function Lγ : T Ă Hpλ;Rq Ñ p0,8q

is convex. Furthermore, convexity is strict if the support of γ intersects
transversely each leaf of λ.

Proof. We immediately deduce convexity by Proposition 6.2 and density
of weighted simple curves in ML and C8-convergence of length functions
Lγn Ñ Lγ if γn Ñ γ in ML.

We now discuss strict convexity.
Consider X,Y P T and the Mess representation ρ :“ ρX,Y . Let Ŝλ Ă

CHX,Y be the pleated set associated with λ. Let γ P ML be a measured
lamination whose support contains a leaf ℓ that intersects the bending locus
of Ŝλ (which is non-empty unless the representation is Fuchsian).

Since ℓ intersects the bending locus, its geometric realization ℓ̂ is not
contained on Ŝλ. Let x P ℓ̂ and y P Ŝλ be points that realize the maximal

timelike distance δ “ maxtδH2,1pz, tq
ˇ

ˇ

ˇ
z P Ŝλ, t P ℓ̂u ą 0.

Let K :“ I ˆ J denote the neighborhood of ℓ in the space of geodesics G
consisting of those lines with one endpoint in I and another endpoint in J .

Recall that, by Lemma 6.1, we have

mz,ℓ :“ min
tPℓ

t´xz, tyuq “

d

2xz, ℓ`yxz, ℓ´y

´xℓ`, ℓ´y

and that the minimum is realized at a point πpzq P ℓ, the orthogonal pro-
jection of z to ℓ, described explicitly by

πpzq “
1

a

´2xℓ`, ℓ´y

˜

d

xz, ℓ´y

xz, ℓ`y
ℓ` `

d

xz, ℓ`y

xz, ℓ´y
ℓ´

¸

.

As y is connected to ℓ by a timelike segment of length δ orthogonal to ℓ, we
have my,ℓ “ cospδq. As x P ℓ we have mx,ℓ “ 1. By continuity of the above
expressions, we have:

Claim 1. There exist a neighborhood K “ IˆJ of ℓ P G and a neighborhood
U of x in H2,1 with the following properties:
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(i) my,ℓ1 P pcosp2δq, cospδ{2qq for every ℓ1 P K. In particular, y is con-
nected to every ℓ1 P K by a timelike segment of length at least δ{2
and, hence, δH2,1py, ℓq ě δ{2.

(ii) Every ℓ1 P K intersects U .
(iii) If ℓ1, ℓ2 P K, ℓ1Yℓ2 is acausal, and zj P ℓj XU , then dH2,1pz1, z2q ă ϵ.
(iv) mz,ℓ1 P pcospϵq, coshpϵqq for every ℓ1 P K and z P U .
(v) For every x, y P U and ℓ1 P K, we have dH2,1pπpxq, πpyqq ă ϵ where

π is the orthogonal projection to ℓ1.

Let K and U be the neighborhoods provided by the claim.
As ℓ lies in the support of γ, we have m :“ γpKq ą 0.
We approximate γ in ML with a sequence of weighted simple closed

curves anγn. By convergence of anγn to γ, we have anmn :“ anγnpKq Ñ m.
Notice that mn is the number of distinct leaves of the geometric realization
γ̂n contained in K. Let ℓn be one of those leaves.

Claim 2. Fix ϵ ą 0. We can find elements

α1, ¨ ¨ ¨ , αmn P Γ

and corresponding points
z1 ă ¨ ¨ ¨ ă zmn

on ℓ̂n with the following properties:

(i) αmn ¨ ¨ ¨α1 “ γn.
(ii) dH2,1pzj , ρpαj ¨ ¨ ¨α1qxq ă ϵ for every j ď mn.
(iii) The axis of αj lies in αj´1 ¨ ¨ ¨α1pKq.

Proof of the claim. Consider the mn translates of ℓn contained in K

tℓn “ ℓ1n, ¨ ¨ ¨ , ℓmn
n u.

For each of them there exists a point xjn P ℓjn X U and an element βj
n such

that zjn :“ ρpβj
nqxjn lies in rx, ρpγnqxs Ă ℓn. We assume that the numbering

agrees with the linear order along rx, ρpγnqxs, that is

x “ z0 ă z1 ă ¨ ¨ ¨ ă zmn “ ρpγnqx.

Set αj :“ βjβ
´1
j´1 with β0 “ 1.

Property (i) follows by construction.
Property (ii) follows from Claim 1.

Property (iii) follows from stability of quasi-geodesics on Ŝn, the pleated
set associated with the lamination λn consisting of the closed geodesic γn
suitably completed to a maximal lamination of Σ by adding finitely many
leaves spiraling around γn.

Let us explain how: Consider the concatenation of the translates

l “
ď

kPZ
ρpαjq

k
´

rxj´1, zjsŜn
Y rzj , xjsŜn

¯

.

By basic hyperbolic geometry, l is a uniform quasi geodesic on Ŝn with
respect to the intrinsic hyperbolic metric, with quasi-geodesic constants that



LENGTH FUNCTIONS IN TEICHMÜLLER AND ANTI DE SITTER GEOMETRY 35

are Opϵq-close to 1. Hence, the invariant axis of ρpαjq on Ŝn lies in the Opϵq-
neighborhood of l with respect to the hyperbolic metric. In particular such
endpoints are close to the endpoints of ℓn on the Gromov boundary B8Ŝn.

Let ϕn : B8Ŝn Ñ BΓ be the unique equivariant homeomorphism. By
Lemma 3.16, the hyperbolic structures Ŝn{ρpΓq lie in a compact subspace of
Teichmüller space T . Thus, as the boundary maps ϕn depend continuously
on Sn, they are uniformly continuous. This implies that if ϵ is small enough,
the endpoints of αj are contained in K. □

Define xj :“ ρpαj ¨ ¨ ¨α1qx and yj “ ρpαj ¨ ¨ ¨α1qy.

Let δj :“ δH2,1pyj´1, ℓαj q be the timelike distance of yj P Ŝλ from ℓαj , the

axis of ρpαjq. By Property (ii) of Claim 2, we have pαj´1 ¨ ¨ ¨α1q´1ℓαj P K,
hence, by Claim 1, we deduce that

δj “ δH2,1pyj´1, ℓαj q “ δH2,1py, ρpαj´1 ¨ ¨ ¨α1q´1ℓαj q ą δ{2.

Claim 3. We have

coshpdH2,1pyj´1, yjqq “ cospδjq
2 coshpLρpαjqq ` sinpδjq

2 coshpθρpαjqq

ď coshpLρpαjq ´ κq.

Proof of the claim. Let πjppq P ℓαj be the unique point such that rp, πjppqs

is orthogonal to ℓαj . Observe that πjpρpαjqpq “ ρpαjqπjppq. The conclusion
follows from Lemma 5.1 applied to the spacelike segment rπjpyjq, ρpαjqπjpyjqs

of length Lρpαjq and the orthogonal timelike segments ryj , πjpyjqs, ryj`1 “

ρpαjqyj , ρpαjqπjpyjqs combined with part (1) of Lemma 5.2. □

Claim 4. We have

Lρpαjq ´ dH2,1pzj´1, zjq ď Opϵq.

Proof of the claim. Let πj be the orthogonal projection to ℓαj . By Claim 1,
since ℓαj P αj´1 ¨ ¨ ¨α1pKq and xj´1, zj´1 P ρpαj´1 ¨ ¨ ¨α1qpUq, we have that

dH2,1pπjpxj´1q, πjpzj´1qq ď ϵ.

Therefore dH2,1pπjpxj´1q, πjpxjqq ´ dH2,1pzj´1, zjq ď 2ϵ.
By Claim 1, we also have,

Dj “ min
tPℓαj

t´xxj´1, tyu “

d

2xxj´1, ℓ
`
αjyxxj´1, ℓ

´
αjy

´xℓ`
αj , ℓ

´
αjy

“ ´xxj´1, πjpxj´1qy.

is contained in the interval pcospϵq, coshpϵqq.
We prove that dH2,1pπjpxj´1q, πjpxjqq ě ℓpαjq ´ Opϵq.
If Dj ą 1, then the segment rxj´1, πjpxj´1qs is spacelike. Write Dj “

coshpdjq and xj´1 “ coshpdjqπjpxj´1q` sinhpdjqvj with vj orthogonal to ℓαj

at πjpxj´1q. Recall that xj`1 “ ρpαjqxj´1 and

coshpdH2,1pxj´1, xjqq “ ´xxj´1, xjy

“ coshpdjq
2 coshpLρpαjqq ´ sinhpdjq

2 coshpθρpαjqq.
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Hence, as Lρpαjq ą θρpαjq, we get coshpdH2,1pxj´1, xjqq ą coshpLρpαjqq.
If Dj ă 1, then the segment xj “ πjppq is timelike. Write Dj “ cospdjq

and xj´1 “ cospdjqπjpxj´1q`sinpdjqvj with vj orthogonal to ℓαj at πjpxj´1q.
Recall that xj “ ρpαjqxj´1 and

coshpdH2,1pxj´1, xjqq “ ´xxj´1, xjy

“ cospdjq
2 coshpLρpαjqq ` sinpdjq

2 coshpθρpαjqq.

Thus coshpdH2,1pxj´1, xjqq ą cospdjq
2 coshpLρpαjqq. The conclusion fol-

lows from part (2) of Lemma 5.2. □

Conclusion:

LZpγnq ď dŜpy, γnyq

ď
ÿ

j

dŜpyj´1, yjq triangle inequality

ď
ÿ

j

dH2,1pyj´1, yjq by Theorem 1.1

ď
ÿ

j

Lρpαjq ´ κ by Claim 3

ď
ÿ

j

dH2,1pzj´1, zjq ` Opϵq ´ κ by Claim 4

“ Lρpγnq ` mnpOpϵq ´ κq .

Multiply by an and take a limit to finish the proof (assuming that we chose
ϵ so that Opϵq ´ κ ă 0).

□

6.3. First and second variations along earthquakes. In the case of
earthquakes, we make quantitative estimates and compute the first and sec-
ond variations of length functions as given in Theorem 4.

As before, we prove separately the two parts of the theorem.

Proposition 6.4. Let λ P ML be a measured lamination. Let Eλ : ra, bs Ñ

T be an earthquake path driven by λ. Let γ P Γ ´ t1u be a non-trivial loop.
Set Lγptq :“ LγpEλptqq. Then:

ˇ

ˇ

ˇ

9Lγ

ˇ

ˇ

ˇ
ď ipγ, λq.

Proof. Let Zt :“ Eλptq, consider the Mess representation ρt :“ ρZ´t,Zt with

parameters Z´t, Zt P T . Notice that, by Theorem 1, we have λ`
t “ tλ.

For convenience, introduce θt :“ θρtpγq.
By Proposition 5.5, we have

ipγ, tλq ě cos
`

∆`
t

˘2
θtpγq.

As t Ñ 0, we have ∆`
t Ñ 0 since ρt is converging to the Fuchsian represen-

tation ρ0. Moreover, we also have θtpγq{t “ |Lγptq ´ Lγp´tq|{2t Ñ | 9Lγ |.
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Dividing by t and passing to the limit, we obtain

ipγ, λq ě | 9Lγ |.

□

Proposition 6.5. Let λ P ML be a measured lamination. Let Eλ : ra, bs Ñ

T be an earthquake path driven by λ. Let γ P Γ ´ t1u be a non-trivial loop.
Set Lγptq :“ LγpEλptqq. Then:

:Lγ ě
1

sinhpLγq

ˇ

ˇ

ˇ

9Lγ

ˇ

ˇ

ˇ

´

ipγ, λq ´

ˇ

ˇ

ˇ

9Lγ

ˇ

ˇ

ˇ

¯

.

Proof. Let Zt :“ Eλptq, consider the Mess representation ρt :“ ρZ´t,Zt with

parameters Z´t, Zt P T . Notice that, by Theorem 1, we have λ`
t “ tλ and

Zλ`
t

“ Z is constant.

For convenience, we introduce Lt :“ Lρtpγq and θt :“ θρtpγq.
By Propositions 5.4 and 5.5, we have

coshpLZpγqq ď cos
`

δ˘
t

˘2
coshpLtq ` sin

`

δ˘
t

˘2
coshpθtq

and

cosh
`

ipλ˘
t , γq

˘

ď sin
`

δ˘
t

˘2
coshpLtq ` cos

`

δ˘
t

˘2
coshpθtq.

Summing the inequalities, we get

cosh
`

t ¨ ipλ`, γq
˘

´ coshpθtq ď coshpLtq ´ coshpLZpγqq.

By the mean value theorem, we can write

cosh
`

t ¨ ipλ`, γq
˘

´ coshpθtq “ sinhpξtq
`

t ¨ ipλ`, γq ´ |θt|
˘

where ξt P r|θt| , t ¨ ipλ`, γqs, and

coshpLtq ´ coshpLZpγqq “ sinhpζtq pLt ´ LZpγqq

where ζt P rℓZpγq, Lts.
We now divide both right and left hand side by t2 as follows

sinhpξtq

t

ˆ

ipλ`, γq ´
|θt|

t

˙

ď sinhpζtq
Lt ´ ℓZpγq

t2

and we observe that as t Ñ 0 the terms converge to: In the left hand side,

‚ |θt| {t “ |Lγptq ´ Lγp´tq| {2t Ñ 9Lγ .
‚ sinhpξtq{t ě sinhp|θt|q{t as ξt ě |θt|.

‚ sinhp|θt|q{t Ñ coshpθ0q 9θ0 “ 9Lγ .

In the right hand side,

‚ sinhpζtq Ñ sinhpLγpZqq as Lt “ pLγptq ` Lγp´tqq{2 Ñ LZpγq.

‚ pLt ´ LZpγqq{t2 “ pLγptq ` Lγp´tq ´ 2LZpγqq{2t2 Ñ :Lγ{2.

The conclusion follows.
□
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