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ABSTRACT. We establish a link between the behavior of length func-
tions on Teichmiiller space and the geometry of certain anti de Sitter
3-manifolds. As an application, we give new purely anti de Sitter proofs
of results of Teichmiiller theory such as (strict) convexity of length func-
tions along shear paths and geometric bounds on their first and second
variations along earthquakes. Along the way, we provide shear-bend
coordinates for Mess’ anti de Sitter 3-manifolds.

1. INTRODUCTION

The space T of hyperbolic metrics on a closed orientable surface 3 of
genus g = 2 up to isotopy, known as Teichmiiller space, is an object that
appears ubiquitously as a space of parameters but also as a geometric object.

Comparing different hyperbolic metrics on ¥ according to various mea-
surements of distortion endows 7 with a wealth of geometry. An example is
the Lipschitz distortion which corresponds to the so-called Thurston’s asym-
metric metric. Thurston proves in [19] that given hyperbolic metrics gx, gy
on X we have

. . Ly(v)
min Lip 1 (3, — (X, = sup
o8 (BPU) S 2 (S000) = (Rg)} = swp S

where Lx(v), Ly () is the length of the geodesic representatives of v with
respect to gx, gy .

This phenomenon of expressing the measurement of distortion in terms
of length spectra Lz (e) is not exclusive of the Thurston metric, for example
also the Teichmiiller and Weil-Petersson metrics on T have this property.

It is therefore important to understand better how length functions be-
have on Teichmiiller space. Often, this behavior is related to certain geo-
metric structures on low dimensional manifolds. A celebrated example is
the relation between quasi-Fuchsian hyperbolic 3-manifolds and Teichmiiller
geodesics discovered by Minsky [16].

Following an analogy between quasi-Fuchsian 3-manifolds and the so-
called Mess 3-manifolds, in this article we bring together:

e 3-dimensional anti de Sitter geometry.
e Convexity of length functions along shear paths and earthquakes.
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In particular, we use the global scale geometry of Mess manifolds to give
a proof of (strict) convexity of length functions. Using the same bridge,
we also develop geometric bounds for the first and second variations on
those functions along earthquakes. Our methods are inspired from ideas in
3-dimensional hyperbolic geometry.

1.1. Anti de sitter geometry. Anti de Sitter geometry in dimension 3.
is the geometry of H*! := PSLy(R) endowed with its natural pseudo-
Riemannian metric of signature (2,1). The link between Teichmiiller theory
and anti de Sitter 3-manifolds comes from the basic fact that the group of
symmetries of this space is

ISOH]Q(PSLQ(R)) = PSLQ(R) X PSLQ(R)

where (A, B) - X := AXB™! and, at the same time, PSLy(R) = Isom™ (H?).
A vast literature explores various aspects of this relation starting with the
seminal work of Mess [15] (for a survey on the topic and recent developments
see [9]).

Mess representations. Let X be a closed orientable surface of genus g > 2
that we fix once and for all. We denote by I' := (%) its fundamental group.

We realize the Teichmiiller space 7 of hyperbolic metrics on ¥ up to
isotopy as a component of the representation space

T < Hom(T, PSLy(R))/PSLa(R)

by associating to each hyperbolic structure X its holonomy representation
PX I' — PSLQ(R).
Given X,Y € T we can consider the corresponding Mess representation

pxy = (px,py) : T — PSLa(R) x PSLa(R).

The group px y(I') acts on H>! convex cocompactly, meaning that:

e There is an equivariant boundary map ¢ : 0I' — 0PSLe(R) = P{A €
M (R) [rank(A) = 1} whose image £(0T') = Axy has the property
that for every a,b,c € dI' the subspace P{Span{{(a),£(b),£(c)}} N
PSLy(R) is a spacelike plane, that is, it is isometric to H?.
e There is a canonical px y (I')-invariant properly convex open subset
Qxy < PSL2(R) on which the action is properly discontinuous.
e We have 0Qxy n dPSLa(R) = Axy and the group pxy(I') acts
cocompactly on the convex hull CHxy < Qxy of Axy.
In order to study the geometry of Mess representations, we will use lam-
inations and pleated surfaces as we introduced in [14]. Let us briefly recall
the construction.

Laminations and pleated surfaces. A geodesic lamination on a hyper-
bolic surface X is a px(T)-invariant closed subset A < H? that can be
decomposed as a disjoint union of complete geodesics, the leaves of the lam-
ination. The complementary regions H?—\ are ideal polygons, the plaques of
the lamination. The lamination is called mazimal, if all the plaques are ideal
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triangles. Conveniently, the data of a geodesic lamination can be encoded,
by recording the endpoints of the leaves, as a I'-invariant closed subset of
the space of geodesics

{(z,y)edl' x U |x #y}/(z,y) ~ (y,T).

This is the point of view that we adopt.
The boundary map & : dI' — Axy and the property of the curve Axy
allow us to associate with every maximal lamination A a geometric realization

A= [6a).€0)] = CHxy

(a,b)eX

and a pleated set

S’)\ = 5\U U A(f(a)vf(b)vf(@) CC’Hny'
A(a,b,c)cH2—X

Here [£(a),£(b)] denotes the spacelike geodesic with endpoints £(a),£(b)

while A(&(a),£(b),&(c)) is the ideal spacelike triangle contained in the space-

like plane P{Span{&(a),&(b),&(c)}} n PSLa(R) with vertices £(a), (D), &(c).
We have the following structural result:

Theorem (Theorems A, B, and C of [14]). Let px,y be a Mess representa-

tion. Consider a mazimal lamination A < 3. Let Sy < CHxy < Qxy be
the corresponding pleated set. Then:

(1) Sy is an acausal Lipschitz disk with boundary Ax )y . For every pair
points x,y € Sy the geodesic [x,y] joining them is spacelike. In
particular S\ has a pseudo-metric dye.i(x, y) =Lz, y].

(2) There is an intrinsic hyperbolic structure Z\ € T associated to A
with holonomy py : I' — PSLa(R). For every p € MLy = {u €
ML | support(p) € A} we have Ly, (11) = Ly(p).

(3) There exists a (pxy — px)-equivariant homeomorphism f : Sy — H?
which is 1-Lipschitz in the sense that dyea(z,y) = dyz(f(x), f(y))
and is totally geodesic on each leaf and plaque.

Furthermore, we have

Ly, () < pr,y (7)

for every v € T' — {1}, with strict inequality if and only if v intersects the
bending locus of S).

Mess |15], inspired by work of Thurston (Chapter 8 of [18]), observes that
0tCH x,y is the pleated set S \+ of a lamination AT and that measuring the
total turning angle along paths o : I — é’iC”HXy endows A\ with a natural
transverse measure, the bending measure. Then he shows that the surfaces
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X,Y and Z,+, Z,- are related by the following diagram

Zye
5
X y
Zy

where ElA+ , Eg, , By, E\_ are the left and right earthquakes induced by the
measured laminations AT, \™.

Recall that by work of Bonahon [6] and Thurston [19], for every maximal
geodesic lamination A of X, the Teichmiiller space 7 can be realized as an
open convex cone in a finite dimensional R-vector space H(\;R) via the
so-called shear coordinates oy : T — H(A\;R). Generalizing Mess, we prove:

Theorem 1. Let pxy be a Mess representation. Consider a mazximal lam-
ination A = X. Let S\ = S\/px.y (L) be the corresponding pleated surface.
Then, in shear coordinates 7 < H(A;R) for A we have:
(1) The intrinsic hyperbolic structure Z of Sy satisfies
oA (X) +oa(Y)
5 .
(2) The intrinsic bending cocycle By of Sy satisfies
_aX)—a(Y)
B = 5 :
Length functions. We now come to the main novelty of this article, namely,
the anti de Sitter perspective on length functions in Teichmiiller theory.
Let us first recall the following: For every element v € I'— {1} the isometry
px,y () has a unique pair of invariant spacelike lines: The azis £ < CHxy
on which it acts by translations by L,(v) = (Lx(y) + Ly(v))/2 and the
dual axis ¢* < H*! — Qxy on which it acts by translations by 6,(y) =

(Lx(y) = Ly (7))/2
We prove:

oa(Zy) =

Theorem 2. Let pxy be a Mess representation. Let v € I' — {1} be a non-
trivial element, denote by ¢ < CHxy the axis of pxy(y). Let A < X be
a mazimal lamination, let Zy € T be the intrinsic hyperbolic structure on
S’)\/pxy(r) where Sy CHx,y is the pleated set associated with \.

(a) Let § be the mazimal timelike distance of £ from Sy. Then:
cosh(Lz, (7)) < cos(8) cosh(L,(7)) + sin(8)* cosh(8,(7)).
(b) Let 6% be the mazimal timelike distance of £ from A\*. Then:
cosh(i(A*,7)) < sin(5i)2 cosh(L,(vy)) + cos(éi)2 cosh(6,(7)),
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and
iAT,y) = cos(éi)QHP(y).

Here i(e,®) is the geometric intersection form.

When combined, the previous results (Theorem [I| and Theorem [2]) give
a purely anti de Sitter proof of (strict) convexity of length functions in
shear coordinates, recovering simultaneously results of Bestvina, Bromberg,
Fujiwara, and Souto [4], and Théret |17]:

Theorem 3. Let A < X be a maximal lamination. The following holds:

(a) Let v € I' — {1} be a non-trivial loop. The length function L. :
T < H(NR) — (0,00) is convex. Moreover, convexity is strict if
intersects essentially every leaf of A.

(b) Let v € ML be a measured lamination. The length function L., :
T < H(AR) — (0,00) is convex. Furthermore, convezity is strict if
the support of v intersects transversely each leaf of X.

Note that (b) does not imply (a): In (a) the loop v does not necessarily
represent a simple curve.

In the case of earthquakes, they allow us to get the following infinitesi-
mal geometric bounds. We should mention that these bounds can also be
deduced from work of Kerckhoff [13] and Wolpert [21] respectively.

Theorem 4. Let A € ML be a measured lamination. Let Ey : [a,b] — T
be an earthquake path driven by A. Set L (t) := £(E\(t)). Then:

(i) For every v €T — {1} we have:
| <7, 0),

(ii) For every v eI — {1} we have:

b > i ] G0 -]

Anti de Sitter proofs. We now briefly discuss the main new ideas and
ingredients that go into the anti de Sitter proofs.

Theorem @ The idea is that as we move a closed geodesic v ¢ Mx )y
orthogonally along timelike directions, the length shrinks. Heuristically
speaking: Every closed geodesic ¥ < Mx y is the core of an (immersed)
anti de Sitter annulus A, < Mxy whose intrinsic metric has the form
ds? = —dt? + sin(t)?d¢2. Hence, the length of y(s) = (0,s) (in (¢, £) coordi-
nates) contracts as we move it away from the core {t = 0} along orthogonal
timelike directions. In the proof of the theorem we make precise some aspects
of this picture. In particular, we understand how various avatars of A, inter-

sect the pleated surfaces Sy /px y (') and 6£CC(Mxy) = 0*CHxy/px.v (D).
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Theorem[3. (Strict) convexity is equivalent to the (strict) inequality

L (X5 < 0

for every X,Y € T < H(\;R). We note that the right hand side is L,(¥)
for px,y and the left hand side is, by Theorem [I, Lz, (y) where Z) is the
hyperbolic structure on the pleated surface Sy /p(7y) associated with A and
p. The inequality is then a consequence of part (a) of Theorem The
inequality is not strict exactly when § = 0 which happens if and only if
¢ < Sy. This is possible if and only if v does not intersect the bending locus.

The proof for laminations requires a significantly more refined argument
based on the following heuristic principle: Every time £ passes at timelike
distance § > 0 from S it creates a gap of size k& > 0 between L 7, (7) and

Lﬂ(’Y)-

Theorem [J]. The idea is to analyze the geometry of the representations
pt = pz_, 7z, Where Z; = Ef\(t) as t — 0. Notice that, by Theorem (1}, the
bending lamination on 0YCHyz , z is A" = tA and the hyperbolic structure
is constant Z,” = Z. The main tool is again Theorem

Part (i) is a consequence of the fact that pz_, 7, is converging to a Fuchsian
representation pz z which preserves a totally geodesic plane CHz 7 = HZ2.
Since CHyz_, 7z, — CHz.z, this implies that §,” — 0. By part (b) of Theorem
we have

) 2
(AT, y) = cos(8)" 10, (v)] /t
and the right hand side converges to ’L«,‘

Part (ii) is a consequence of the following quantitative relation obtained
by combining the inequalities of part (a) and part (b) of Theorem

cosh(t-i(A*, 7)) — cosh(b,, (7)) < cosh(L, (7)) — cosh(Lz(7)).

The conclusion follows from basic analysis, essentially the mean value the-
orem cosh(z) — cosh(y) = sinh(§)(x — y) where £ € [z, y]| and the fact that

(f(=t) + f(t) — 2(0))/#* — f which we apply to (L,,(7) — Lz(v))/t* =
(Lz_,(7) + Lz,(v) = 2Lz(7))/2t* — Ly /2.

Shear-bend parametrization. As an application of our computations on
the intrinsic hyperbolic structure and intrinsic bending of a non-convex
pleated surface, we also obtain a shear-bend parametrization of the space of
Mess 3-manifolds in the spirit of Bonahon’s work [6]: Consider the space of
Mess representations

MR := T x T < Hom(T, PSLy(B))/PSLs(B),

where B := R[7]/(72—1) = R®7R denotes the ring of para-complex numbers.
Let H(A;B) be the finite dimensional B-module of transverse cocycles for A
with values in B as introduced by Bonahon [6]. Notice that there are natural
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identifications PSLy(B) = PSLa(R) x PSLo(R) and H(A\;B) = H(MR) @
TH(A;R). We have:

Theorem 5. Let A X be a maximal lamination. Then:
(1) The map
O : MR — H(\; B)
p—0p:i= Zx + 78
that associates to p the shear-bend cocycle of the unique pleated sur-
face Sy = S’A/p(l“) associated with \ is an analytic para-complex

embedding.
(2) If wry(e, ®) denotes the Thurston’s symplectic form on H(\;B), then

W%h(am a) = Ly(a) + 70,(a)

for every measured lamination o € MLy = {a € ML | support(a) < A}
and every p e MR.
(8) The image of the embedding is given by

OP(MR)={oc+78eHN\B)|oc+B,0—-8eT cH(\R)}
= {a—i—Tﬂe HN;B) | [w, (0 + 783, )]3 >0 on M,CA}.

Here |z + Ty|3 = 2* — y? is the para-complex norm.
(4) The pull-back of wry to MR =T x T coincides with

P*wrh = ¢ (wwp ® —wwp)
where wwp (e, ®) is the Weil-Petersson symplectic form.

Structure of the article. The paper is organized as follows:

e In Section [2] we recall some basic facts in Teichmiiller theory and
anti de Sitter 3-dimensional geometry.

e In Section [3] we introduce Mess representations and pleated surfaces
and recall some of their properties.

e In Section [4| we compute the intrinsic shear-bend cocycles of pleated
surfaces and prove Theorems [I] and

e In Section [5] we study the behavior of length functions for Mess
representations and prove Theorem

e In Section [6] we discuss the purely anti de Sitter proofs of Theorems

[ and Al
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2. TEICHMULLER AND ANTI DE SITTER SPACE

In this section we recall the amount of basic Teichmiiller theory and anti
de Sitter 3-dimensional geometry that we will need in the next sections.
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2.1. Teichmiiller theory. We start with hyperbolic surfaces and (mea-
sured) geodesic laminations.

2.1.1. Hyperbolic surfaces. We fix once and for all a closed oriented surface
Y of genus g > 2 and denote by I' := 71(3) its fundamental group.

Definition 2.1 (Hyperbolic Structures). A marked hyperbolic structure on
¥ is a quotient H?/px(I') of the hyperbolic plane H? by the image of a
faithful and discrete representation px : I' — PSLy(R), the holonomy of the
structure. Two marked hyperbolic structures X, X’ on ¥ are equivalent if
their holonomies px, px’ are conjugate.

Definition 2.2 (Teichmiiller Space). The Teichmiiller space of ¥, denoted
by T, is the space of equivalence classes of marked hyperbolic structures on
>.. It can be realized as a connected component of the space

T < Hom(T, PSLy(R))/PSLa(R)
where PSLy(R) acts on the space of representations by conjugation.

2.1.2. Geodesic laminations. To study the geometry of hyperbolic surfaces
it is quite useful to look at the behavior of their geodesic laminations which
are 1-dimensional objects generalizing simple closed geodesics.

Definition 2.3 (Space of Geodesics). The space of (unoriented) geodesics
on H? is naturally identified with the set of pairs of endpoints

G = {(z,y) e RP* x RP' |z # y} /(x,y) ~ (y,)
where z,y corresponds to the line [z, y].

Definition 2.4 (Geodesic Lamination). Let X = H?/px(T') be a hyperbolic
surface. A geodesic lamination on X is a px(I')-invariant closed subset
A © H? which can be expressed as a disjoint union of complete geodesics,
the leaves of the lamination. The complementary regions H? — X are ideal
polygons (with possibly infinitely many sides) and are called the plaques of
A. The geodesic lamination A is maximal if all its plaques are ideal triangles.
A geodesic lamination on X is completely determined by the endpoints on
RP! of the leaves which form a closed py(T)-invariant subset of G. We
denote by GL the space of geodesic laminations and by GL,, the subspace
consisting of maximal ones.

For more details, we address the reader to Chapter 1.4 of |10].

2.1.3. Currents and measured laminations. Both Teichmiiller space and mea-
sured laminations can be seen inside the space of geodesic currents as intro-
duced by Bonahon (see [5]). This framework is well-suited to study length
functions thanks to presence of a natural geometric intersection form as we
now explain.

Definition 2.5 (Geodesic Current). Let X = H?/px () be a hyperbolic
surface. A geodesic current on X is a px(I')-invariant locally finite Borel
measure on G. We denote by C the space of geodesic currents.



LENGTH FUNCTIONS IN TEICHMULLER AND ANTI DE SITTER GEOMETRY 9

Definition 2.6 (Closed Geodesics). A basic example of geodesic current is
the one associated to a (free homotopy class) of a loop v € I' — {1}. It is
defined as &y := X41er/cy) Or, Where lq is the axis of px(a) and &, is the
Dirac mass on the point £ € G.

Definition 2.7 (Geometric Intersection). On C there is a natural intersec-
tion form i(e,e) defined as follows: Let «, 8 € C be geodesic currents. Con-
sider the space of intersecting geodesics Z := {({,¢') e G x Gl{ nl' # I }.
The group px(I') acts properly discontinuously and freely on Z. By invari-
ance, the measure a x 8 on Z descends to a Borel measure on Z/px(T).
Define i(a, B) := a x B(Z/px(T)). An crucial property of the geometric
intersection form i(c, 3) is that it is continuous in «, S.

Definition 2.8 (Measured Lamination). Let X = H?/px(I') be a hyperbolic
surface. A measured lamination on X is a geodesic current A € C with
i(A, A) = 0. We denote by ML the space of measured laminations.

The support of a measured lamination support()\) is a geodesic lamination
(see |5]). We denote by MLy := {u € ML | support(u) = A} the space of

measured laminations whose support is contained in .

2.1.4. Length functions. Every hyperbolic surface X has a (marked) length
spectrum {Lx ()}, er—{1} given by the lengths of its closed geodesics. Con-
veniently, Bonahon [5] proves that the length function Lx(e) extends con-
tinuously to geodesic currents as follows:

Definition 2.9 (Liouville Current). The Liouville current £ on G is the
PSLy(R)-invariant Borel measure on G defined by

L([a,b] x [e,d]) := BR(a,b,c,d).

on boxes [a, b] x [¢,d] with [a,b] N [¢,d] = & (these sets generate the Borel
algebra of G). The Liouville current has the property that

Lx (7) = i(£> 57)

for every v € I' (see [5]). Therefore, i(L, o) extends continuously the length
function Lx(e) to the space of geodesic currents.

2.2. The PSLy(R) model of H?!. The second central object that we dis-
cuss is the anti de Sitter 3-space H*!. We will mostly work in its linear and
projective models which we now describe. For more details on the material
we present here, we refer the reader to [9].

The group SLy(R) sits inside the vector space of 2 x 2 matrices with real
entries Ms(R) as the hyperboloid of vectors of norm —1 for the quadratic
form (e, o) of signature (2,2) given by

AX,YY = det(X) + det(Y) — det(X +Y) = —tr(XY™).

Where[‘i Z]*:[i o ]
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Note that for every X € SLg(R), the restriction of the quadratic form
to TxSLa(R) = X has signature (2, 1) and, hence, induces a (2, 1)-pseudo-
Riemannian metric on SLa(R) (experts will have recognized the Killing form
of SLy(R)). The group SL2(R) x SLa(R) acts on Mz(R) by left and right
multiplications as (4, B) - X := AXB~! and the action is isometric with
respect to (e, e). Passing to the projectivization, PSLa(R) < P(M2(R)) we
obtain the projective model of anti de Sitter 3-space H*!.

2.2.1. Boundary at infinity. In this model, the boundary at infinity JH?!
of H?! identifies with the topological boundary of PSLy(R) in P(Ma(R))

OPSLy(R) = {[X] € P(M5(R)) | det(X) = 0}.

Observe that dPSLa(R) consists of rank one matrices and can be naturally
PSLy(R) x PSLy(R)-equivariantly identified with RP! x RP! via the map

0PSLy(R) — RP! x RP!
[X] = ([Im(X)], [Ker(X)]).

2.2.2. Subspaces. Totally geodesic subspaces in anti de Sitter 3-space H?!
are of the form P(V) n PSLy(R) where V' < M>(R) is a linear subspace
intersecting SLa(R). In particular we have

e timelike geodesics isometric to R/wZ < V 2-plane of signature (0, 2).
e spacelike geodesics isometric to R < V' 2-plane of signature (1, 1).
e spacelike planes isometric to H? < V 3-plane of signature (2,1).
Two distinct points z,y € H>! are joined by:
o A spacelike geodesic if and only if |(x,y)| > 1.
o A timelike geodesic if and only if |(z, y)| < 1.
The geodesic y(t) starting at 2 € H>! with velocity v € T,H?>! = xt is
parametrized by

| cosh(t)z + sinh(t)v if (v,v) =1,
() = { cos(t)x + sin(t)v if (v,v)y = —1.

2.2.3. Acausal sets and pseudo-metrics. The last concept that we need is
the one of acausality:

Definition 2.10 (Acausal Set). A subset S < H>! U 0H?*! is acausal if for
every z,y € S the geodesic [z, y] is spacelike.

Definition 2.11 (Pseudo Metric). On acausal subsets S < H?*! we have a
pseudo-metric dyp,1(e, e) defined as follows

cosh(dse. (2,9)) = |, ).

Notice that dy2,1 does not satisfy the triangle inequality in general.
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3. MESS REPRESENTATIONS AND PLEATED SURFACES

The goal of the section is to describe Mess representations and the geom-
etry of their pleated surfaces. In particular, at the end of the section, we
discuss the structure of the boundary of the convex core associated with a
Mess representation.

3.1. Mess representations. First of all we introduce the following class:

Definition 3.1 (Mess Representation). Let X,Y € T be hyperbolic struc-
tures. The Mess representation with parameters X,Y is

PXY = (pX,py) ' - PSLQ(R) X PSLQ(R)
where px, py are the holonomy representations of X, Y.

3.1.1. Boundary maps. Every Mess representation pyy comes with a nat-
ural equivariant boundary map

£:0I' > oH?!

It can be described explicitly as follows: Recall that dPSLa(R) is naturally
identified with RP! x RP!. Let hyx,hy : ' — RP! be the unique px, py-
equivariant homeomorphism. The boundary map ¢ : 0T — RP! x RP! is
just & = (hx, hy).

Its image £(JI') = Ax y is the graph of the unique (px — py)-equivariant
homeomorphism hyy : RP' — RP!.

Checking that Axy has the property that for every a,b,c € RP!, the 3-
space Span{(a, hx,y(a)), (b, hx y (D)), (¢, hxy(c))} has signature (2, 1) is not
difficult: Let us assume without loss of generalities that a < b < c. As hxy
is an orientation preserving homeomorphism, we have hxy(a) < hx y(b) <
hx y(c). Hence, up to the action of PSLa(R) x PSLy(R), we can assume that
a,b,c = hxy(a),hxy(b),hxy(c) =0,1,00. Tracing back the identification
with dPSLy(R) we see that

(070):[(1) 8]7 (171):[} :}]7 (O0,00):[S é]
The conclusion follows by an elementary computation.

3.1.2. Domain of discontinuity. From the boundary curve Axy < OH?! one
constructs a standard open domain:

Qxy = {y e H>'
It can also be described as a connected component of

= | (@ = 0)

J?EAX’Y

[z,y] spacelike Vo € Axy }

which is a properly convex subset of P(M>(R)) whose closure contains Ay y.
In particular, it contains a natural closed px y (I')-invariant convex subset,
namely the convex hull CHx y of the limit set Ax y.
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As Qx y does not contain closed timelike geodesics, it has a well defined
timelike distance:

Definition 3.2 (Timelike Distance). The timelike distance Opz2,1(e,®) on
Qx y is defined by

COS(5H2,1(3;7y)) ::{ |1<5L',y>‘

if [z,y] is timelike
otherwise.

The group px y (') acts freely and properly discontinuosly on Qxy (see
[15]). The quotient My y := Qx y/px,y (L) is the Mess manifold associated
with XY e T.

Let us mention the fact that Mx y is a so-called globally hyperbolic maz-
imal Cauchy compact anti de Sitter 3-manifold (GHMC). In particular, this
means that Mx y contains a closed spacelike surface S homeomorphic to X
which intersects every inextensible timelike geodesic exactly once. From this
property it is not difficult to deduce that My y is diffeomorphic to ¥ x R.
Mess proves in [15] that, in fact, all GHMC manifolds M where the Cauchy
surface is homeomorphic to ¥ have the form M = Mx y for some X,Y € T.

3.2. Laminations and pleated surfaces. Mess representations are ex-
amples of mazimal representations in PSLy(R) x PSLy(R) = PSOg(2, 2) as
introduced in [1] (in fact, by a celebrated result of Goldman [12], every
maximal representation in PSLy(R) x PSLy(R) is a Mess representation).

As a consequence, we can apply the results of [14] to our setting. In this
section, we recall the pleated surface construction from [14] and describe
some geometric properties of these objects.

3.2.1. Pleated sets. Let pxy be a Mess representation with boundary map
§:0I' = Axy.

Definition 3.3 (Geometric Realization). Let A € GL be a lamination. The
geometric realization of X for px y is

A= | [€@),¢0)] = CHxy
(a,b)eX
where (a, b) is the leaf of X\ with endpoints a, b and [£(a), £(b)] is the spacelike
geodesic with endpoints £(a), £(b).

Definition 3.4 (Pleated Set). Let A € GL,, be a maximal lamination. The
pleated set associated with A and px y is

Svi=Au | AE),€(0),4(0) = CHxy
A(a,b,c)cH2—\
where A(a, b, ¢) is the plaque of A with vertices a, b, c and A((a),&(b),&(c))
is the ideal spacelike triangle with endpoints £(a),£(b),£(c).

Proposition 3.5 (Proposition 3.7 of [14]). The pleated set Sy < CHxy 1s
a px,y (I')-invariant topological Lipschitz acausal subsurface.
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Incidentally, combining with classical 3-dimensional topology, Proposition
has also the following topological corollary:

Corollary 3.6. Let pxy be a Mess representation with parameters X,Y €
T. Identify the Mess manifold Mxy = Qxy/px,y (') with ¥ x R. Let
a C X be an essential multicurve. Then, the geodesic realization of « in
Mx y is isotopic to a < ¥ x {0}.

Proof. Let A\, be a maximal lamination obtained from « by adding finitely
many geodesics spiraling around the curves in a. By Proposition there
exists an embedded mi-injective (Lipschitz) surface S, = S, /pxy(T)
Mx y containing the geodesic realization of the curves in . By Proposition
3.1 and Corollary 3.2 of |20], such surface, being embedded and 7-injective,
is isotopic to ¥ x {0}. O

3.2.2. Bending locus. The pleated set Sy is not necessarily bent along all
the lines in A.

Definition 3.7 (Bending Locus). Let pxy be a Mess representation Con-
s1der A a maximal lamination with geometric realization )\ and denote by
S)\ the correspondmg pleated set. A point z € ¢ \ is in the bending lo-
cus of S \ if there is no (necessarily spacelike) geodesic segment k entirely
contained in Sy and such that int(k) n € = =.

We have:

Proposition 3.8 (Proposition 3.11 of |14]). The bending locus is a sublam-

ination of X, and its complement in Sy is a union of 2-dimensional totally
geodesic spacelike regions.

3.2.3. 1-Lipschitz developing map. Unfolding pleated sets along the bending
locus naturally maps them to H?. We formalize this heuristic picture as
follows:

Definition 3.9 (Developing Map). Let pxy be a Mess representation. Let
S » © CHx y be the pleated set associated with the maximal lamination A.
A 1-Lipschitz developing map is a homeomorphism f : Sy — H? with the
following properties:
(1) It is totally geodesic on every leaf of A and every plaque.
(2) It is 1-Lipschitz with respect to the intrinsic pseudo-metric on Sy
and the hyperbolic metric on H?.

Developing maps have a couple of useful general properties which we now
describe. First, they are totally geodesic outside the bending locus.

Lemma 3.10 (Lemma 6.2 of [14]). Let pxy be a Mess representation, and
let Sy be the pleated set associated to a mazimal lamination X\. Then every 1-
Lipschitz developing map f : Sy — H2 is totally geodesic on the complement
of the bending locus of Sh.
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Secondly, developing maps are contracting with respect to the natural
path metric structure on pleated sets.

Definition 3.11 (Regular Path). A (weakly) regular path is a map ~ : I =
[a,b] — H?! such that:
e The path is Lipschitz.

e The tangent vector 4(t) is spacelike (or lightlike) for almost every
t € I (at which 4 is defined).

The length of a weakly regular path is

L(y) = L NEIORTO. )

The Lipschitz property implies that the length L(v) is always finite.

Lemma 3.12 (Claim 2 of Lemma 6.4 in [14]). Let S < H2! be an acausal
subset. Let vy : I = [a,b] — S be a weakly reqular path. Then

J dyz1 (7(t),7(t +¢)) 4
I

€

L(vy) = lim

e—0

Lemma 3.13 (Lemma 6.4 of [14]). Let pxy be a Mess representation,
and let S”A be the pleated set associated to a maximal lamination \. Then
every 1-Lipschitz developing map f : Sy — H? sends weakly reqular paths
v : I — Sy to Lipschitz (hence rectifiable) paths f~v : I — H2 of smaller
length L(y) = L(f~).

3.2.4. Pleated surfaces. The following result makes sure that every pleated
set Sy admits a natural 1-Lipschitz developing map:

Proposition 3.14 (Proposition 6.6 in [14]). Let pxy be a Mess represen-
tation. For every maximal lamination A € GLy there is:
e An intrinsic hyperbolic structure Zy € T .
o A (pxy — px)-equivariant 1-Lipschitz developing map f : Sy — H2
where py is the holonomy of Zy.

We can finally define pleated surfaces:

Definition 3.15 (Pleated Surface). Let pxy be a Mess representation. The
pleated surface associated with the maximal lamination A € GL consists of
the following data:

(1) The pleated set Sy.

(2) The intrinsic hyperbolic holonomy py : I' — PSLa(R) of Zj.

(3) A (px.y — px)-equivariant 1-Lipschitz developing map f : Sy — H?2.

Let us conclude this discussion by observing that pleated surfaces for a
fixed Mess representation px y have some useful compactness properties:

Lemma 3.16. Let pxy be the Mess representation with parameters X,Y €
T. Then the space of intrinsic hyperbolic structures on the pleated sets

{ZA })\Egﬁm
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is pre-compact in T .

Proof. Recall that px y(I') acts cocompactly on CHxy. Let FF < CHxy
be a compact fundamental domain. For every maximal lamination A € GL,,
with associated pleated set S\ < CHx,y choose a basepoint x € S\ F.
Let fy : S\ — H2 be a (px,y — pa)-equivariant 1-Lipschitz developing map
normalized so that fy(z)) = o € H?, a fixed basepoint. The equivariance
and the 1-Lipschitz property tell us that

dg2(0, px(7)0) < dpz.a(zx, px,y (V)7))

for every v € I'. Notice that the right hand side is bounded from above by a
uniform constant K, independent of A as x) € F' is contained in a compact
set and

cosh(dyz.1 (2, pxy (7)72)) = Kza, pxv (V)22)]-

Therefore the set of representations {px}regr,, © T < Hom(I', PSLy(R)) is
pre-compact. U

3.2.5. Convex core. An example of pleated surface is given by the two con-
nected components of the boundary of the convex core ICHxy = 07CHx y U
0~ CHx,y. Each of them has the structure of a pleated set with bending loci
At and A\ and intrinsic hyperbolic structures Zy+, 2y~ € 7. As we men-
tioned in the introduction, measuring the total turning angles along paths
a: I — 0tCH x,v equips the geodesic laminations At with a transverse
measure and, hence identifies a pair of points A* € ML. Mess proves that
we have the following relations

Zy+
RN
X Y
where E\,, E\_, E}

e \+, B are the left and right earthquakes induced by the
measured lammatlons AT, A\7. Heuristically speaking, an earthquake is the
generalization to laminations of a twist deformation along a simple closed
geodesic. Given a closed geodesic v on a hyperbolic surface X and a real
parameter § > 0 we do the following operation: We lift v to a px(I')-
invariant family of pairwise disjoint geodesics A\ = H?. We cut H? along
A. We reglue all the ideal polygons P < H? — \ by composing all the
initial identifications £ < 0P — ¢ < dP’ (left-to-right) with the isometry
of ¢/ given by t — ¢ + 6 (the identification ¢/ = R is determined by the
orientation). The result is still isometric to H? but the action of T' on it is
the holonomy of a different hyperbolic structure, which, depending on the
choices of orientations, is Eéw(X) or B (X).
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We will describe more carefully the various elements that enter this picture
in the next section where we will prove a generalization of the result of Mess.

3.2.6. Initial and terminal singularities. We end this section by describing
the initial and terminal singularities of Q1 x y which are subsets of 0§2x y dual
to the boundary components of the convex core. Duality is understood in the
sense of the duality induced by the quadratic form (e, e)5 5y on P(M3(R)).
Explicitly, we have
P(L) < P(L1)
where L+ < M>s(R) is the linear subspace orthogonal to L with respect to
the quadratic form.
Define the following;:

Definition 3.17 (Initial and Terminal Singularities). The sets ST of dual
points of supporting planes of 0TCH x,y are the initial and terminal singu-
larities.

Let us start with the following observation:

Lemma 3.18. Let H = P(V) n H*! be a supporting plane of 0¥CHx y.
Then:

o H is spacelike and defines a dual point P(V+') € H>!. Let w e V*
be a unit timelike vector pointing outside CHx y .

o For every x € H n CHxy, the timelike geodesic ~(t) = cos(t)z —
sin(t)w with t € [0,7/2) is contained in Qxy while w = v(7/2) €
aQ)(,y.

Any two distinct supporting planes Hy, Hy of 0TCHx )y intersect in a
spacelike geodesic Hy n Hy. If wy,wq are the dual points of Hi, Hs, then
[wy,wa] is spacelike.

Proof. The first point: Recall that dH>! = RP! x RP! and that A x,y is the
graph of an orientation preserving homeomorphism hyy : RP! — RP!. If
H is a supporting hyperplane for CHx y then 0H does not intersect Axy
transversely. The fact that H must be spacelike follows from the following
observations: The boundary of a lightlike plane has the form {t} x RP! or
RP! x {t}. The boundary of a timelike plane is the graph of an orientation
reversing linear transformation RP! — RP!. In both cases the boundary
intersects A XY transversely.

The second point: Recall that 2y y is the set of points that can be
connected to every point in Axy by a spacelike geodesic. A point x € H21
and a point p € 0H>*! are connected by a spacelike geodesic if and only if
(x,py # 0. Let us show that v(t) € Qx y for every ¢ € [0,7/2). In order to
do so, lift Axy continuously to M>(R). As x € Qxy, we have (z,p) # 0
for every p € Axy and, by continuity, we can assume that it is negative
for every p € Axy. As H is a supporting hyperplane and w is timelike,
orthogonal to H, and pointing outside CH x y, we have (p,w) = 0 for every
p € Axy. Therefore (y(t),p) = cos(t){x,p) — sin(t){w,p) < 0 for every



LENGTH FUNCTIONS IN TEICHMULLER AND ANTI DE SITTER GEOMETRY 17

p € Axy and t < /2. In order to conclude, it is enough to observe that
w=y(m/2) ¢ Qxy as (w,p) = 0 for every pe 0H n Axy # .

For the last part notice that Hi n Hs is either empty or a spacelike ge-
odesic. Suppose that H; n Hy = . Then H*! — (H; U Hs) consists of
two connected components one of them containing CHxy. As Hy, Hs lies
on opposite sides of CHx y in such component, they cannot be support-
ing hyperplanes for the same boundary component of 0CHxy. This is a
contradiction. ([l

Notice that, by Lemma the initial and terminal singularities ST
are pxy(I')-invariant, acausal, and contained in 0Qxy. Benedetti and
Guadagnini 3] prove that they have the structure of a R-tree and relate
them to the bending laminations A*.

Definition 3.19 (R-tree). A R-tree is a geodesic metric space (S, ds(e,e))
such that between two points z,y € S there is a unique (up to reparametriza-
tion) injective path « : [0,1] — S with a(0) = z,a(1) = y.

Benedetti and Guadagnini 3] show the following:

Proposition 3.20. Let pxy be a Mess representation. Let St Nxy be
the initial and terminal singularities. Then:
o S* is pxy(D)-invariant, acausal, and path connected by regular
paths. In particular, it has an intrinsic path metric

dSi($7y)::-L(a)
where o : [0,1] — ST is a reqular path joining = to y.
e For every pair of points w,w' € ST there is a unique continuous
injective path conmecting them.
e For every v €' — {1}, the minimal displacement

min {ds+(z, px v (7)x)}
eSSt

coincides with (v, \*) and is realized by some point v € ST.

Here \* € ML is the bending lamination of 0*CHxy and i(e,e) is the
geometric intersection form.

For a proof we refer to [2].

4. A GENERALIZATION OF A RESULT OF MESS

The goal of the section is to define the shear-bend cocycles of pleated
surfaces and prove Theorem

We begin by recalling the Thurston-Bonahon shear parametrization of
Teichmiiller space (as discussed by Bonahon in [6]) which we will generalize
to the space of Mess representations in Theorem [5] at the end of the section.

4.1. Shear coordinates. We refer to Bonahon [6] for more details on the
material presented in this section.
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4.1.1. Transverse cocycles. Shear-bend cocycles are a special case of trans-
verse cocycles for A.

Definition 4.1 (Transverse Cocycle). Let A be a commutative ring. Let
A  H? be a maximal lamination. An A-transverse cocycle for X is a function
o (e, ) of pairs of plaques satisfying the following properties:

e Invariance: o(yP,vQ) = o(P, Q) for every v € I and plaques P, Q.

e Symmetry: o(P,Q) = o(Q, P) for every plaques P, Q.

e Additivity: o(P,R) = o(P,Q) + o(Q, R) for every plaques P,Q, R
such that R separates P from ().

The space of A-transverse cocycles is denoted by H(A; A). It has a natural
structure of A-module isomorphic to A=) (see Bonahon [6]).

4.1.2. Measured laminations. Every measured lamination pu € ML), deter-
mines a natural transverse cocycle which, with a little abuse of notation, we
will still denote by € H(A;R). It is defined as follows: Let P, P’ be plaques
of \. Let £ — P,/ ¢ be the (oriented) edges that separate P, P'. Then

p(P, P') = p([L, ]),

the measure, determined by u, of the box [¢,¢'] < G consisting of those
geodesics separating £ and /.

4.1.3. Hyperbolic structures. Every hyperbolic structure X on ¥ also deter-
mines a transverse cocycle ox € H(A;R), the so-called shear cocycle of X.
It is defined as follows: Let P, P’ be plaques of . Let £ < P,/ < ¢ be the
(oriented) edges that separate P, P’. Denote by x € ¢, 2" € ¢’ the orthogonal
projections of the opposite vertices in P, P’.

Consider the partial foliation Apps of the region [¢,¢'] bounded by ¢, ¢
given by all the leaves that separate P from P’ and note that [¢,¢'] — Apps is
a union of wedges, that is regions bounded by a pair of leaves of Apps that
are asymptotic in one or the other direction. Each of the wedges can be
foliated by adding all the geodesics separating the boundary leaves and to
their common endpoint at infinity. Thus, we get a natural geodesic foliation
of [¢,¢']. The line field on [¢,¢'] which is orthogonal to this foliation is
integrable and following its leaves provides a natural isometric identification
m: 0 — (. Define

o3 (P, P') := dp(n(z), ")

where dy is the signed distance along ¢'.
A straightforward computation in H? shows the following:

Lemma 4.2. Let B® be the cross ratio on RP'. We have
o If P, P’ are adjacent triangles and £ = (', then

oX (P, P') = BR(e*, 07, u, )

where u € P,u’ € P’ are the vertices opposite to £ = /.



LENGTH FUNCTIONS IN TEICHMULLER AND ANTI DE SITTER GEOMETRY 19

o If P, P’ are asymptotic to a leaf £ = X, then
ox (P, P') = B*(t*, 07 u,u)

where u € e,u’ € € are the vertices not on £ on the edges e — P, e’ <
P’ which separate the plaques P, P’.

Bonahon proves the following;:

Theorem 4.3 (Theorems A and B of |6]). Let A be a mazimal lamination.
For every X € T the function ai((O, e) is a transverse cocycle. The map

®:T — H(\R)
Xﬁaf\(

is a real analytic diffeomorphism. The image ®(T) is the open conver cone
O(T) ={0c e H(\,R)| wrn(o,) >0 on MLy}
where wry (e, ®) is the Thurston’s symplectic form on H(A; R).

The resulting set of coordinates for Teichmiiller space are called shear
coordinates relative to .

The Thurston’s symplectic form wry, (e, @) is a natural symplectic form on
the vector space H(A;R). For our purposes we don’t need a precise definition
of this object (we refer to Bonahon [6] for details), as we will only use the
following property:

Theorem 4.4 (Theorem E of [6]). Let A be a mazimal lamination. Let
wrh(e,®) is the Thurston’s symplectic form on H(A;R). Then, for every
we MLy and X € T we have

wrn(ox ;1) = Lx ().

4.1.4. Continuity of cocycles. In order to talk about continuity properties
of cocycles we need to compare H(N;R) with H(\; R) for X' close to A\. This
can be done using the weights system W(T;R) of a train track T carrying
A. For us it is not important the definition of these objects, but rather the
following facts (see the proof of Lemma 13 in Bonahon [7] or Proposition
5.10 and Corollary 5.11 in [14]):

e 7 determines an open set U, < GL,, containing .

e W(7;R) is a real vector space and there is a canonical linear isomor-
phism H(N;R) — W(r;R) for every X € U;.

e For every A1, Ao € U the following diagram commutes

T — H(A2; R)

A

H(A; R) —— W(T; R).

e For every X € T the map A € U; — o3y € W(7;R) is continuous.
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4.2. Para-complex numbers. In order to define the shear-bend cocycle of
pleated surfaces it is convenient to exploit the natural para-complex cross-
ratio on the boundary of H*! (see Section 2 of Danciger [11]).

Definition 4.5 (Para-complex Numbers). The ring of para-complex num-
bers is B := R[7]/(72 — 1). Similarly to the case of complex numbers, every
element z = x + 7y has:

e A conjugate z :=z — Ty.

e A pseudo-norm |z|? := 2z = 22 — 2 e R.

However B has also non trivial zero-divisors: An element z € B is invertible

if and only if |z|> # 0, in which case z~! = z/|z|*. We denote by B* the set
of invertible elements of B.

It is convenient to decompose B as R x R: Consider

14T R
€] 1= 5 y Ep 1= 5
The elements e;, e, are idempotent e? = e;, orthogonal e;e, = 0, and con-
jugate €; = e,. This implies that the map (A, u) € R x R — Ae; + pe, € B
is a ring isomorphism. In these coordinates, the conjugate of an element is
e + pey = pep + Aep and its norm is |Ae; + pe,| = Ap.

4.2.1. Ezxponential and logarithm. The para-complex exponential function
exp : B — B is given by exp(z) := ZZO:O %If In terms of the classical
exponential we have e = e”(cosh(y) + 7sinh(y)). The para-complex
exponential map is injective, but not surjective. Its image coincides with

Bt :={z+7yeB|x>0and|z+ 7y’ > 0}.

The inverse of the exponential is the para-complex logarithm log : BT — B.

In coordinates B = R x R, we have: BT = {(\,u) e Rx R| A\, u> 0}.
The exponential is exp(Ae; + pe,) = exp(A)e; + exp(p)e,. The logarithm is
log (Ae; + pey) = log(A)er + log(u)e;.

4.2.2. Projective para-complex line. The boundary dH*! = RP! x RP! can
be identified with the para-complex projective line BP* = (B2 — {0})/B* via

1+7 1-—
U

([u], [v]) € RP! x RP! — { Tv} e BP!

and PSLy(R) x PSLy(R) can be thought of as the para-complex projective
linear transformations PSLa(B) = SLo(B)/B* via the isomorphism

1+7
2

([A], [B]) € PSLa(R) x PSLy(R) — [ Al 5 TB} € PSLy(B).

The para-complex projective line BP! is equipped with a natural para-
complex cross-ratio:
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Definition 4.6 (Cross Ratio). The para-complex cross-ratio is defined by

21— k3 22— 24

e B.

B
B7 (21, 22, 23, 24) =
21— 24 22— 23

The following is an elementary computation:

Lemma 4.7. For every a,b,c,d € BP' = RP' x RP! we have
1+7

1—
/B]B(avb7 C, d) = /BR(CLl?bl)Cl?dl) + TTBR(QTWbracTudT)'

4.3. Shear-bend cocycle. We now recall the natural shear-bend cocycle
and its geometric interpretation as given in Sections 4 and 5 of |14].
Let pxy be a Mess representation with limit curve Ax y.

4.3.1. Elementary shear. Let us start with an elementary shear-bend.

Lemma 4.8. Let A = (u, 0, (7)), A" = (u/,¢*,07) < H>! be ideal triangles
sharing a common edge { = [£~,0T] and with vertices on Axy ordered as
w< 0~ <u <0t Then BB((*, 07, uy,u,) € BY.

Proof. Recall that Axy is the graph of the unique (px — py)-equivariant
homeomorphism hxy : RP! — RP!. For a point p € RP! x RP! denote by

p1, pr the left and right components. Then we have u; < 6;’ < u; < Kj_ on
RP! for j = I,7. The conclusion follows from Lemma (]

We define:
oB(A,A) = log BB(¢F, 07wy, u,) € B.

4.3.2. Mazimal laminations with countably many leaves. We then consider
the case of maximal laminations with countably many leaves.

These laminations always have the following structure: There is a canon-
ical collection of simple sublaminations

N=MNuUu-—ulCA

where each A; consists of the orbit of the axis of an element v; € I' — {1}
representing a simple closed curve. The complement A— )\ is made of isolated
geodesics asymptotic to leaves of \.

Let A ¢ H? be a maximal lamination with countably many leaves. Let
P,QQ  H? — X be a pair of plaques. Denote by Ppqg the set of plaques
separating P from Q. Let £q,--- ,£,, be the leaves of X' separating P from
Q. For each of those leaves ¢; select plaques R;f, Rj_ asymptotic to it from
the left and from the right. The elementary shear between them is

UB(R;,R;T) = UB(A(u;,EJ,E;F), A(Ej,f;,u;r)).

where u;, u;r are the vertices of Ry, R; that lie on the edges separating the

two plaques and are not endpoints of ¢;. Note that between R;r_l and R;
there are only finitely many consecutive adjacent plaques

T o7 .. . — RT
ijl = Tjo0, =Tj,kj - Rj :
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Define
m kj—1
UP(P7 Q) = Z O'E(R]_,R;_) + Z O-B(Tji,iaj—:i+l)
j=1 i=0

As observed in [14], a simple computation shows that a different choice
of plaques R;’, Rj_ asymptotic to the lifts of the leaves ¢; € X separating
P from @ gives the same value for o,(P, Q). The fact that o,(P,Q) is
well-defined immediately implies that it is also satisfies the properties of a
transverse cocycle. Therefore:

Definition 4.9 (Intrinsic Shear-Bend I). Let px y be a Mess representation.
Let A be a maximal lamination with countably many leaves. The cocycle
op(e,e) € H(X;B) is the intrinsic shear-bend cocycle of the pleated set Sj.

Furthermore we have:

Proposition 4.10 (Proposition 6.7 in [14]). Let pxy be a Mess represen-
tation. Let X\ be a maximal lamination with countably many leaves. Then
(0,+7,)/2 € H(A;R) is the shear cocycle of the intrinsic hyperbolic structure

Zx €T of the pleated set Sh.

4.3.3. General maximal laminations. Lastly, we describe the natural finite
approximation process that defines the shear-bend cocycle in general ex-
tending the previous case: Let A = H? be an arbitrary maximal lamination.
As before, let P,Q < H? — X be a pair of plaques and let Ppq be the set of
plaques separating P from (). Let

P={P1, -, Pn} < Ppq

be a finite subset of plaques ordered from P to (). Any two consecutive
P;, Pj11 cobound a (possibly empty) region U;. We decompose its boundary
as é’UJ = fj v €j+1 with fj e aP] and £j+1 e 6Pj+1. We add to the finite
collection P of plaques the triangles
A(ﬁj’ g]_v e;_Jrl)v A<£J_7 g]'_+17 E;_Jrl)
obtaining a chain of triangles P = T1,T5,- -+ ,T3n—2,T3m—1 = Q.
We then define
3Im—2
0p(P,Q) = Y, o*(Ty, Tjs).
j=1
We then carefully choose an exhaustion {P,}nen of Ppg by an finite
subsets and we set

0,(P,Q) := Tlim op (P,Q).

The existence of the limit as well as the independence of the choices made
to define it and the fact that the limit object is a B-transverse cocycle are
proved in [14]:
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Theorem 4.11 (Theorem B of [14]). Let pxy be a Mess representation.
For every mazimal geodesic lamination A € GL, the finite approrimation
process converges and defines a B-transverse cocycle o, € H(X\;B).

Definition 4.12 (Intrinsic Shear-Bend II). Let px y be a Mess representa-
tion. Let A\ be a maximal lamination. The cocycle o, € H(A;B) provided by

Theorem is the intrinsic shear-bend cocycle of the pleated set S.
The following is a summary of the results in Sections 4 and 5 of [14].

Proposition 4.13. We have the following properties:

(i) If X has countably many leaves the definitions I and II coincide.
(it) (o, + 7,)/2 is the shear cocycle of the intrinsic hyperbolic structure
Z)\ eT.
(i11) The map X\ € GL,, — 0, € W(T;B) is continuous with respect to the
Hausdorff topology on GL,,. Here W(7;R) is the weight space of a
train track T carrying .

4.4. Gauss map. In order to prove Theorem [I| we study the Gauss map of
the pleated set Sy which we now describe. To this purpose let us begin with
some general observations.

The group PSLa2(R) x PSLy(R) acts transitively on oriented timelike ge-
odesic. The stabilizer of the oriented timelike geodesic 7 (t) = cos(t)I +

sin(t)J € PSO(2) where J = ( 0 ) is PSO(2) x PSO(2).
Therefore, the space of oriented timelike geodesics is naturally PSLa(R) x
PSLs(R)-equivariantly identified with PSLo(R)/PSO(2) x PSLy(R)/PSO(2).
We identify RP' with P{A € Ms(R)|rk(A) = 1}/PSO(2) and H? with
PSL2(R)/PSO(2).

Lemma 4.14. Let H ¢ H>' be a spacelike plane. Consider the map g =
(g1,9-) : H — H? x H? where g(z) is the future pointing timelike geodesic
orthogonal to H at x. Then g; is isometric and extends continuously to the
map gj : 0H = RP' x RP* — RP! sending g;(a;, a,) = a; for j =1,7.

Proof. By equivariance it is enough to check the claim for a specific hyper-
plane H c H?! = PSLy(R). We choose H to be the dual plane of I, that is
H =P{M € SLa(R) | tr(M) = 0}. As above, let v = PSO(2).

Notice that J = H n~ and, hence, g(J) = v = ([I],[I]). As the diagonal
group of PSLy(R) x PSLy(R) preserves H and acts transitively on it, by
equivariance we have g;(AJ) = [A], that is, the components g; are the
restrictions of the standard projection m : PSLy — PSLy/PSO(2) to H.
Also observe that, as v is orthogonal to H at J, the differential dr; is
isometric. Thus, by equivariance, dr is isometric everywhere.

The boundary of H is 0H = P{M € MyR)|tr(M) =0,rk(M) =1}.
Notice that, by Hamilton-Cayley, every M € Ms(R) satisfies M2 —tr(M )M +
det(M) = 0. Therefore, if M € 0H, then M? = 0 < Im(M) = Ker(M).
The map gj(AJ) = [A] extends continuously to a map 0H — RP! sending
g;(lm(M), Ker(M)) = [m(M)] = [Ker(M)]. 0
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Let pxy be a Mess representation with limit curve Axy < RP! x RP.

Lemma 4.15. Consider two ideal spacelike adjacent triangles A = A(a,b, c)
and A" = (¢,b,a’) sharing a common edge [b, c] and with vertices ordered as
a<b<ad <calong Axy. Let g = (gi,gr) : int(A) Uint(A’) — H? x H? be
the map sending x to the future pointing timelike normal g(x) € H? x H?,
Then

o (A, A1) = 72 (018), 91(A) + 052 (9r(A), 9,(A)
’ 2

B(A, ATy = T8 (91(A), gu(A")) — o5 (9,(A), gr (A))
’ 2

where U%H(Al, Ay) denotes the hyperbolic shear of the adjacent ideal triangles
Al, Ag [ H2.

Proof. Identify BP! with RP! x RP'. By Lemma their left and right
projections of A, A’ are the ideal triangles g;(A) = A(aj, bj,¢;),g;(A') =
A(cj, bj,a}) where j = I, 7 respectively. Notice that we have a; < b; < a’; <

cj on RP! because the set AUA’ is acausal. In particular, o2 (g;(A), g;(A')) =
BR(bj, c;,a;, a;) by Lemma Recall that (A, A’), B(A, A’) are the real
and para-complex parts of o (A, A’) = 0®(a, b, ¢, d) and that, by definition,
oB(b,c,a,a’) = BB(b, c,a,a’). The conclusion follows from Lemma O

We are ready to prove Theorem

4.5. The proof of Theorem Let pxy be a Mess representation.

Consider the pleated set S, associated with the maximal lamination A.
Every point x € Sy — A\ lies in a plaque and, therefore, has a well-defined
future pointing timelike unit normal direction g(z). The map g = (g;, 9r) :
Sy — A — H2 x H? is the Gauss map of the pleated set Sy By Lemma
it is px y-equivariant and totally geodesic on each plaque.

Proof of Theorem [1 We split the proof into two cases.

Mazimal laminations with countably many leaves. Let P,Q be distinct
plaques. By definition and by Lemma [4.2] it is enough to consider the case
where P, () are either adjacent or asymptotic to the same leaf. The claim
then follows from the computations of Lemmas and

General maximal laminations. The general case follows density of finite
leaved maximal laminations in GL,, and continuity properties of the cocycles
as given in Theorem O

4.6. Shear-bend parametrization. The proof of Theorem [5|is a combi-
nation of Theorem [1| and some properties of the classical shear coordinates

DT > H(NR).

Proof of Theorem[J. We have

1+7 1—71

H(\B) = HLR) @

H(AR)
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as B-modules.

Part (1). Recall that 0y = o + 78 and that, by Theorem (1} we have
o= (0 +0))/2and B = (o — 0} )/2. Therefore, in terms of the above
splitting, the shear-bend map decomposes as
147 x 1—7 y

9 (25 9 gy -

The single components ®(X), ®(Y) = 0¥, 0} are analytic by Theorem
Injectivity also follows from the injectivity in the same theorem since:

/ ’
oggzafg@(:)ai(:ai( and o) = o} .

It remains to be checked that the map respects the para-complex struc-
tures of 7 x T and H(\;B). The para-complex structure J acts on TxT @
Ty T simply as J(u,v) = (u, —v) and acts on H(\;B) as the multiplication
by 7. Denote by ® : T — H(A;R) the classical shear coordinates, we have:

1+7
)

=T (1 ‘; Tdfb(u> &) 1;7-(1(1)(1))) = 7d¥(u,v).

B
V:pxy — o0\ =

dWT(u,v) = d¥(u, —v) AP (u) @ 1_TT(—d<D(v))

Part (2). The Thurston’s symplectic form on H(\;B) splits as
147 1—7
B R R
WTh = T“Th TWTha
with respect to the above decomposition. Thus, by Theorem we have

1+TR X 1_TR

wﬁ'fih(ogﬁu) =5 wrp (o 5 1) + 5 WTh(U}\/aM)
1+71 1—17
= —5Ix(w+ Ly (n)
_ Lx(p) + Ly (1) N Lx () — Ly ()
- 2 4 2

for every p1e MLy. We will see in the next section that L, = (Lx + Ly)/2
and ep = (LX — Ly)/2
Part (3). By part (1), the image of U is

{o+7B8eH(NB)|o+B,0-8eT cH(NR)}.
By Theorem [4.3 we have
T ={oceHN\R)|wrn(c,e) >0 on MLy},
Thus
o+7Be V(T xT) < wrn(o+B,pn) >0

2
< wrn(o, 1) — wrn(B, 1)? = |win(o + 76, 1) S 0

for every p e MLy.
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Part (4). By work of Bonahon and Sozen [§], we have that ®*wry,

¢-wwp. The conclusion comes from the fact that ¥ splits as HT”ID &) 17TT<I>
O

B : 147, R 1-7 R
and wpy, splits as Srwry, @ 5 Wy

5. LENGTH FUNCTIONS IN ANTI DE SITTER 3-MANIFOLDS

In this section we study the anti de Sitter length functions associated with
Mess representations and prove Theorem

5.1. Moving endpoints orthogonally. Let us start with some estimates
in H>! on how the length of a spacelike segment changes if we move its
endpoints orthogonally in timelike directions. The following is an elementary
computation:

Lemma 5.1. Let [z,y] be a spacelike segment. Let v € T,H>', w € T,H?>!
be unit timelike vectors orthogonal to [x,y]. Consider p = cos(t)x + sin(t)v
and q = cos(t)y + sin(t)w. Then

(1) [v,w] lies on the dual geodesic of [x,y]. Hence, it is spacelike.
(2) We have

—(p, q) = cos(t)? cosh(dyz.1 (2, y)) + sin(t)? cosh(dgz.1 (v, w)).

As —(p,q) > 1, [p,q] is spacelike and cosh(dy2.1(p,q)) = —{p, q).

In order to manipulate better some inequalities, later on we will use several
times the following estimates on hyperbolic trigonometric functions:

Lemma 5.2. We have:

(1) For every €,d > 0 there exists k > 0 such that
cos(6)? cosh(z) + sin(6)? cosh(z — €) < cosh(z — k)

for every x = e.
(2) For every e, Lo > 0 there exists ag < 1 such that

acosh(L) = cosh(L — ¢€)

for every L = Ly and a € (ap, 1).
(3) For every a > 1 we have cosh(ax) = acosh(z).

Proof. A straightforward computation shows that for every fixed b > 0 the
function cosh(z — b)/cosh(x) defined on the interval [¢, ) is decreasing, so
that we have e™® < cosh(z — b)/cosh(x) < cosh(e — b)/cosh(e).

Inequality (2). As cosh(zx — €)/ cosh(z) is decreasing on [¢, ), it is bounded
from above by cosh(Ly — €)/cosh(Lg) < 1. It is enough to choose ag in the
interval [cosh(Lg — €)/cosh(Ly), 1].

Inequality (1). We first rewrite it as

ycosh(x — ¢€) - cosh(z — k)
cosh(r) —  cosh(x)

cos(8)? + sin(d)
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As cosh(z — a)/ cosh(x) is decreasing, we have

gcosh(xz — ¢€)
cosh(x)

< cos(6)? + sin(0)? ! <1,

cos(6)? + sin(6) cosh(e)

So, it is enough to choose k > 0 so that cos(6)* + sin(8)?/ cosh(e) < e™*.
Inequality (3). The function cosh(ax)—a cosh(z) has derivative a(cosh(az)—
cosh(x)) which is positive when a > 1. O

5.2. Length and pleated surfaces. We now introduce loxodromic trans-
formations of H*! and the length functions associated to Mess representa-
tions.

Definition 5.3 (Loxodromic). Anisometry v = (A, B) € PSLa(R)xPSLa(R)
is lozodromic if A, B are both loxodromic transformations of PSLa(R). A
loxodromic transformation =y preserves two disjoint (dual) lines

S - - 2,1

[ = [(55;7%_2)7 (ngu J}B)],K* = [(xXPTB)v (:UAa J:E)] = H "
where xJA{, :Uj—é are the attracting and repelling fixed points of A, B on RP',
and acts on them by translations by

L(v) = L(A);L(B) and 0(y) = |L(A)_2L(B)|

respectively where L(A), L(B) are the translation lengths of A, B. The
quantities L(vy) and (v) are the translation length and torsion of ~.

Notice that if px y is a Mess representation, then for every v € I'— {1} the
transformation px y(v) = (px(7), py (7)) is loxodromic because px, py are
holonomies of hyperbolic structures. Furthermore, as Axy < RP! x RP!
is the graph of the unique (px — py)-equivariant homeomorphism hxy :
RP! x RP!, we see that the axis £, of pxy(7), having the endpoints on
Axy, is contained in CHx y.

We are now ready to prove the first part of Theorem [2

Proposition 5.4. Let pxy a Mess representation. Let v € I' — {1} be a
non-trivial element, denote by { < CHxy the axis of pxy(7y). Let A = X
be a mazimal lamination, let Zy € T be the intrinsic hyperbolic structure on
S’A/pr(F) where Sy, < CHxy is the pleated set associated with \. Let & be

the mazimal timelike distance of £ from Sy. Then:
cosh(Lz(7)) < cos(6)? cosh(L,(v)) + sin(6)? cosh(6,(7)).

Proof. Let x e l,ye Sy be points that realize the maximal timelike distance
d. Notice that the timelike segment [z,y] is orthogonal to ¢ at z. Denote
by v € T,H?! the unit timelike vector tangent to [z,y]. We can write
y = cos(d)x + sin(d)v.



28 FILIPPO MAZZOLI AND GABRIELE VIAGGI

We now apply Lemma to the spacelike segment [z, px v (7)z] < £ and
the timelike unit tangent vectors v, px y (7)v. We have:

cosh (dg2.1 (¥, px,y (7))
= cos(0)? cosh (dgz.1 (z, pxy (7)) + sin(8)? cosh (dge (v, px.y (7)v)) .

Notice that dgei(z, px,v (7)r) = Ly(y) and dgz.1 (v, px,y (7)v) = 0,(7).

The conclusion then follows from Proposition which says that the
intrinsic hyperbolic distance between y, pxy(v)y on Sy is smaller than
dp2.1(y, px,y (7)y) and the fact that Lz(y) coincides with the minimal dis-

placement of px y () with respect to the hyperbolic metric on Sh. (I

5.3. Intersection and pleated surfaces. We then prove the second part
of Theorem 2

Proposition 5.5. Let pxy be a Mess representation. Let v € I' — {1} be a
non-trivial element, denote by { = CHxy the azis of pxy(y). Let 6%, AT
be the mazimal timelike distances of £ from A* and 0*CHxy. Then:

(1) We have
cosh(i(A*,7)) < sin(éi)2 cosh(L,(v)) + cos(éi)2 cosh(6,(7)).
(2) We have
N+ +\2
i(AE,7) = cos(AT) 0,(7).
Proof of part (1) of Proposition . Let [z, 2%] be a timelike segment, with
x € l,zt € (T < \T that realizes the maximal timelike distance 6. Notice

that [z, 2%] is orthogonal to both £, ¢*. Let v € T,H?!, vt € T,+H*! be the
unit speed timelike vectors tangent to the geodesic [z, 2] at the endpoints.

Claim 1. We have
cosh (dgz. (vF, px,y (Y)vh)) = Sin(éi)2 cosh(L,(v)) + cos(éi)er(fy).
Proof of the claim. Note that
v* = cos(m/2 — 6F)x +sin(7/2 — 67 )v

and that v and px y (y)v are both orthogonal to the segment [z, px )y (7)z] <
£. The claim follows from Lemma 5.1] O

Claim 2. Let v,v’,v” € H>! be dual to the supporting planes H, H', H" of
OtCHxy.
(i) If v,0',v" are aligned along S then H n H' n H" = (.
(i) If v < v’ <" along 8T, then the reverse triangle inequality holds
de,l (U, U”) = dHQ,l (U, U/) + dHQ,l (’U/, v”).

Proof of the claim. The first part: Consider the faces F, F/, F" = H, H', H"
0tCH xy. As ST is an R-tree, there are two possibilities: Either one of
the faces separates the other two on 0TCHx y or there is a unique face
G < 0TCHx,y that separates every pair of them. The first case corresponds
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to the configuration where the dual points v, v’,v” are aligned. The second
case corresponds to the configuration where v,v’,v” are the vertices of a
tripod in St with center w, the dual point of G. Let us consider the first
case. In addition, let us assume that v < v’ < v” without loss of generalities.
Then F' separates H " H' from H' ~n H” in H'. Hence the triple intersection
H n H' n H” is empty.

The second part of the claim follows from Lemma 6.3.5 of [2]. O

Claim 3. Let v,w € ST be distinct points. Then
ds+[v, w] < dyza (v, w).

Proof of the claim. Let a : [ = [0,1] — ST be an injective weakly regular
path joining v and w. By Lemma [3.12] we have

f |a(t)|dt = hm dg2.1 (a(t), a(t + 6))dt.
I €

f diza(a(t),alt +6) L‘ <3
I

€

If € < ¢g then

Choose € = 1/2F. For convenience, we take dyadic approximations of the
integral with Riemann sums:

dgge (@), at + 1/29)) T e (alp/2M), alp/2m + 1/28))
L ; 1/2% di= lim 1;) ; 1/2k '

We reorganize the sum as

B Lo (o) (80 5)
ZZ< ()45

j=1 ¢=1

k
;7 Z dios ((0), (L)) = digor (a(0), a(L)) by Claim B}

A

We have:
cosh(i(A, 7)) < cosh(ds+ (v, px,y(7)v))
< cosh(dgz.1 (v, px,y (7)v)) by Claim
= s.in((SJ—r)2 cosh(L, (7)) + cos(d —) cosh(6,(7)) by Claim

O

1

n’
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Proof of part (2) of Proposition . We start with the following observa-
tion: Let H,¢ c H>! by a spacelike plane and a spacelike geodesic. If H
and ¢ have disjoint closures, then there exists a unique timelike segment
[z,y] with x € £,y € H which is orthogonal to both.

We apply the above to the following configuration: Consider ¢, the axis
of pxy (7). Being contained in CHx y, ¢ has disjoint closure from every
support plane H of 0*CHx y and, hence, it is connected to H by a timelike
segment [x,y] with = € ¢,y € H which is orthogonal to both. Denote
by v, w respectively the unit timelike velocity of the segment [x,y] at z,y
respectively.

Fix ¢ > 0. We prove that

i(y, AF) + e > cos(A+) 0(7).

Let a : I — S* be a geodesic of length /(o) = i(y, \*) with a(1) =
X7y(7)a(0) Recall that, by Lemma we have

di2.1 (a(t), ot + €))

i(y,\T) = £(a) = lim dt.
e—0 J; €
We deduce that:
Claim 1. There exists a dyadic subdivision with
2n k Qk
o Z D dea (a(G/2" + ¢/2), (/2" + (g + 1)/2") < i(Ay) + e
j=1q=1

We simplify the notation by introducing w; , := a(j/2"+q/2¥) and d; ; :=
dp2,1 (Wj,q, Wjq+1). By Claim [l we have:

k2n k ok k2n kokp,
2% Sl i) = 2 3 Yy <0
j=1 ¢=1 j=1 q=1

Each wjq is dual to a support plane Hj, of 0TCH. We associate to it the
segment [z 4,y;q] of length ¢;, > 0 and the velocities v; 4, w; 4 as provided
by the initial observations. Consider the spacelike distances

* 0jq = dp1 (Vg5 Vjg+1)-

o Djgq = dy2:1(Tjq,Tjq+1)-

Claim 2. We have
L4 ep(/y) < 9j71 + -+ ej,Zn_k‘
[ Lp('y) < Dj,l + ce + Dj72n—k.

Proof of the claim. Recall that x;, and v;, are respectively aligned along
the axis £ of v and its dual line £*. Thus, we have

0p(7) = dip21 (vj.1, p(V)Vj1 = Vjons) < > d2a(vjg, Vigi1)

q<2n7k
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and

Lp(v) = dyga (@)1, p(7)51 = Tjgn—r) < D degea (T5g, Tjgi1)

q<2n7k

By Lemma [5.1] we have
cosh(djq) = sin(d;q) sin(d;,4+1) cosh(Dj,4) + cos(d;,4) cos(8;54+1) cosh(B;4).

Notice that sin(d;q) sin(d;q+1) + cos(d;,4) cos(dj.4+1) = cos(djq — §jg+1)-
By part (3) of Lemma we have

cosh( djq > - cosh(dj,q) .
cos(0j,q — Gjg+1) cos(8j,q — 0jqg+1)

The right hand side is equal to

sin(d;,q) sin(6;,g+1) cosh(Dj 4) + cos(d;,4) cos(d;g+1) cosh(b; )

COS((5j7q — 5j7q+1)

)

therefore, by convexity of cosh(e), it is greater than

> cosh <Sin(5j,q) sin(dj,g+1)Djq + cos(dq) COS(5j7q+1)9j,q> '
COS((Sj,q - 5j,q+1)

As cosh(e) is increasing, we conclude
djq = sin(0j,q) sin(854+1)Djg + c08(854) c08(05,+1)0j.q-

Denoting by A := max{d; 4} and ¢ := min{d;,} and using the monotonicity
of cos(e) and sin(e), we can continue the previous inequality to

> cos(A)*0;, + sin(8)°Dj .

Summing all the contributions, by Claim [2| we get

2k
Z djq = COS(A)Zﬁp('y) + sin(d)QLp('y).
q=1
In conclusion,
2k 2n—k 2k
i) ez D Y dig
j=1 g=1
2k 2n—k
2 . 2
> on Z cos(A)“0,(y) + sin(6)"L,(7)
j=1

— cos(A)0,(7) + sin(8)° L, (7).
As e > 0 was arbitrary, this finishes the proof. O
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6. LENGTH FUNCTIONS IN TEICHMULLER SPACE

In this section we carry out an anti de Sitter analysis of length func-
tion on Teichmiiller space on both global and infinitesimal scales and prove

Theorems Bl and @l

6.1. Orthogonal projection to a line. We begin with some explicit com-
putations on the orthogonal projection 7 : H*! — ¢ to a spacelike geodesic.

Lemma 6.1. Let y,/ be a point and a spacelike line in H>' such that the
rays [y, 0*] are spacelike. Then

e = mip{~0)) = 2L

and it is realized at the unique point

. 1 YLD e (985,
W/—2<€+,£>< ey e )eg

such that [y, z] is orthogonal to £.

Proof. Write £(t) = (e'4* + e71™)/4/—2{¢*,¢~) and consider the function
ft) = =), y). As [y,£1],[y, €] are spacelike, we have f(t) — o0 as
|t| — oo. Hence, f(t) has a minimum which is a critical point. The unique
critical point of the function is at e?* = (y,¢~)/(y,£*). The conclusion
follows by elementary computations. O

6.2. Convexity of length functions. We now describe the purely anti de
Sitter proof of (strict) convexity of length functions on Teichmiiller space T
in shear coordinates for an arbitrary maximal lamination A c 3.

We prove separately the two parts of Theorem

Proposition 6.2. Let A\ ¢ ¥ be a mazimal lamination. Let v € I'— {1} be a
non-trivial loop. The length function L~ : T < H(A\R) — (0,00) is convex.
Moreover, convexity is strict if v intersects essentially every leaf of .

Proof. Recall that a function L : U < R"™ — R defined on an open convex
subset U < R™ is (strictly) convex if and only if for every z,y € U we have
a (strict) inequality

2 2

Consider X,Y € 7. Let pxy be the corresponding Mess representation. Let
S\ © CHxy be the pleated set associated with A and let py : I' — PSLa(R)

be the holonomy of the intrinsic hyperbolic structure Zy € 7 on Sy/px.y (T).
By Theorem [1] we have Z) = (X +Y)/2 in H(\;R). By Theorem 2| we have

cosh(Lz, (7)) < cos(8)? cosh(L, (7)) + sin(8)? cosh(6,(7))

L(:Hy) _ L) + L(y)



LENGTH FUNCTIONS IN TEICHMULLER AND ANTI DE SITTER GEOMETRY 33

where 0 is the maximal timelike distance of the axis ¢ of px y () from the
pleated set S’A. Notice that § > 0 unless £ < S’,\ in which case ¢ does
not intersect the bending locus. Also observe that unless p is Fuchsian,
which happens precisely when X =Y, the bending locus cannot be empty.
Therefore, if X,Y are distinct and the support of v € C intersects essentially
every leaf of A we have § > 0 and

cos(6)? cosh(L,(vy)) + sin(4)? cosh(6,(v)) < cosh(L,(v))

as L,(y) < 6,(7). Since cosh(e) is strictly increasing on (0, c0), we conclude
Lz(7) < Lp(v)- 0

Proposition 6.3. Let A < X be a mazimal lamination. Let v € ML be
a measured lamination. The length function L, : T < H(A\R) — (0,00)
is convex. Furthermore, convexity is strict if the support of v intersects
transversely each leaf of A.

Proof. We immediately deduce convexity by Proposition [6.2] and density
of weighted simple curves in ML and C*-convergence of length functions
L,, — L, if vy, - ~in ML.

We now discuss strict convexity.

Consider X,Y e T and the Mess representation p := pxy. Let S’A c
CHx y be the pleated set associated with A. Let v € ML be a measured
lamination whose support contains a leaf ¢ that intersects the bending locus
of Sy (which is non-empty unless the representation is Fuchsian).

Since ¢ intersects the bending locus, its geometric realization 7 is not
contained on Sy. Let z € ¢ and Yy € Sy be points that realize the maximal
timelike distance § = max{dgz.1(z,t) ‘ ze Sy, tell>0.

Let K := I x J denote the neighborhood of ¢ in the space of geodesics G

consisting of those lines with one endpoint in I and another endpoint in J.
Recall that, by Lemma [6.1], we have

e = min{—a, ) = | K2 KO

and that the minimum is realized at a point 7(z) € ¢, the orthogonal pro-
jection of z to ¢, described explicitly by

_ 1 [{z,07) | [{z, 0+ _
Tr(Z) - /_2<€+’€—> ( <z,£+>€ + <Z,E‘>€ ) .

As y is connected to £ by a timelike segment of length § orthogonal to £, we
have my ¢ = cos(d). As x € £ we have m,, = 1. By continuity of the above
expressions, we have:

Claim 1. There exist a neighborhood K = I xJ of £ € G and a neighborhood
U of z in H?>! with the following properties:
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(i) my ¢ € (cos(20),cos(d/2)) for every ¢ € K. In particular, y is con-
nected to every ¢ € K by a timelike segment of length at least 6/2
and, hence, oge.1(y,£) = §/2.

(ii) Every ¢’ € K intersects U.

(ili) If 1,45 € K, 1 U5 is acausal, and z;j € £; " U, then dy2.1(21,22) < €.

(iv) m, ¢ € (cos(e),cosh(e)) for every ¢’ € K and z € U.

v) For every z,y € U and ¢’ € K, we have dgz,1(7(x),7(y)) < € where

m is the orthogonal projection to £'.

Let K and U be the neighborhoods provided by the claim.

As ¢ lies in the support of v, we have m := v(K) > 0.

We approximate v in ML with a sequence of weighted simple closed
curves a,7y,. By convergence of a,7v, to 7y, we have a,m,, := apy,(K) — m.
Notice that m,, is the number of distinct leaves of the geometric realization
4n contained in K. Let ¢,, be one of those leaves.

Claim 2. Fix e > 0. We can find elements
o1, , 0y, €T
and corresponding points
21 << Zm,
on én with the following properties:
(i) am, - 1 = Yn.
(ii) dmea(zj, ploy -+ a1)x) < € for every j < my,.
(ili) The axis of oy lies in aj_q - - - o1 (K).
Proof of the claim. Consider the m,, translates of £, contained in K
{bn =0L, - 0,

For each of them there exists a point xﬁl € E% N U and an element ﬁ,jl such
that 23, := p(B%)x3, lies in [z, p(7,)x] < £,. We assume that the numbering
agrees with the linear order along [z, p(7y,)z], that is

T=20<21 << Zm, = p(n).

Set o := B]ﬂj__ll with gy = 1.

Property (i) follows by construction.

Property (ii) follows from Claim

Property (iii) follows from stability of quasi-geodesics on S,,, the pleated
set associated with the lamination A,, consisting of the closed geodesic -,
suitably completed to a maximal lamination of ¥ by adding finitely many
leaves spiraling around -,,.

Let us explain how: Consider the concatenation of the translates
k
1= nlay) ([%—1723‘]3” v [Zjvx]']é'n)'
keZ

By basic hyperbolic geometry, [ is a uniform quasi geodesic on S, with
respect to the intrinsic hyperbolic metric, with quasi-geodesic constants that
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are O(e)-close to 1. Hence, the invariant axis of p(c;) on Sy, lies in the O(e)-
neighborhood of [ with respect to the hyperbolic metric. In particular such
endpoints are close to the endpoints of ¢,, on the Gromov boundary (9005’”.
Let ¢y : 0Sn — T be the unique equivariant homeomorphism. By
Lemma the hyperbolic structures S, /p(T) lie in a compact subspace of
Teichmiiller space 7. Thus, as the boundary maps ¢,, depend continuously
on Sy, they are uniformly continuous. This implies that if € is small enough,
the endpoints of «; are contained in K. O

Define zj := p(a; - - - a1)x and y; = p(oy - - - aq)y.

Let 0; := dp2.1(y;-1, la,;) be the timelike distance of y; € Sy from la, the
axis of p(a;). By Property (ii) of Claim [2, we have (aj_1---a1) ', € K,
hence, by Claim 1, we deduce that

§j = Opz (Yj—1, Lay) = Oz (y, plej—1 -+~ 1) " May) > 6/2.
Claim 3. We have
cosh(dg2.1(yj—1,95)) = cos((Sj)2 cosh(L,(a;)) + sin(éj)2 cosh(f,(a;))
< cosh(L,(aj) — k).
Proof of the claim. Let m;(p) € Lo, be the unique point such that [p, 7;(p)]
is orthogonal to £;. Observe that 7;(p(;)p) = p(a;)m;(p). The conclusion
follows from Lemmalp.1]applied to the spacelike segment [m;(y;), p(cv;)m;(y;)]
of length L,(a;) and the orthogonal timelike segments [y;, 7;(y;)], [yj+1 =
p(a;)y;, p(oy)mi(y;)] combined with part (1) of Lemma [5.2] O
Claim 4. We have
Lp(Otj) — dH2,1 (Zj_l, Zj) < O(E)

Proof of the claim. Let m; be the orthogonal projection to £,,. By Claim
since lo; € aj_1---a1(K) and x;_1,2j1 € p(aj_1---a1)(U), we have that
dHQ,l(Wj($j,1), 7Tj(2j,1)) <€
Therefore dyz.1(mj(xj-1), 7j(z;)) — dygza(zj-1,2;) < 2e.

By Claim [1], we also have,

. 2aj1, 05, w1, 0a;)
Dj = zg;g;{_<$]*1’t>} = \/ —{E O = —(xj-1,m;(2j-1))-

is contained in the interval (cos(e), cosh(e)).

We prove that dyz (mj(xj-1), 7j(z;)) = €(a) — Ofe).

If D; > 1, then the segment [z;_1,7;(z;—1)] is spacelike. Write D; =
cosh(d;) and x;j_1 = cosh(d;)m;(z;—1)+sinh(d;)v; with v; orthogonal to £y,
at mj(x;j—1). Recall that x;,1 = p(a;)z;j—1 and

cosh(dgz1 (-1, 75)) = —(xj-1,2;)
= cosh(d;)? cosh(L,(a;)) — sinh(d;)? cosh(6,(a;)).
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Hence, as L,(c) > 0,(a;), we get cosh(dyz(xj—1,;)) > cosh(L,(a;)).
If D; < 1, then the segment x; = 7;(p) is timelike. Write D; = cos(d )
and w1 = cos(d;)m;(w;—1)+sin(d;)v; with v; orthogonal to £y, at mi(xj—1).
Recall that z; = p(a;)z;—1 and
COSh(de 1 (.%’j 1, 1‘])) = —<.7Jj_1, l‘j>
= cos(d;)? cosh(L,(a;)) + sin(d;)? cosh(8,(a;)).

Thus cosh(dgz1(z;_1,2;)) > cos(d;)? cosh(L,(;)). The conclusion fol-
lows from part (2) of Lemma[5.2] O

Conclusion:

Lz(vn) < dg(y, Yny)

< Z de(yi—1,Y;) triangle inequality
J

< da (Y1, 9)) by Theorem

< ZLp(aj) —K by Claim [3]

< Z dyz(zj-1,25) + O(e) — K by Claim [4]

J
— Ly() + ma(O(€) — )
Multiply by a, and take a limit to finish the proof (assuming that we chose

e so that O(e) — k < 0).
U

6.3. First and second variations along earthquakes. In the case of
earthquakes, we make quantitative estimates and compute the first and sec-
ond variations of length functions as given in Theorem

As before, we prove separately the two parts of the theorem.

Proposition 6.4. Let A € ML be a measured lamination. Let Ej : [a,b] —
T be an earthquake path driven by \. Let v € T' — {1} be a non-trivial loop.
Set L (t) := Ly(Ex(t)). Then:

Proof. Let Z; := E\(t), consider the Mess representation p; := pz_, 7, with
parameters Z_;, Z; € T. Notice that, by Theorem [l we have \; = t\.

For convenience, introduce 6; := 0, (7).
By Proposition we have

i(y,tA) = COS(A+) 01(7).

As t — 0, we have A;” — 0 since p; is converging to the Fuchsian represen-
tation pg. Moreover, we also have 6;(y)/t = |L,(t) — Ly(—=t)|/2t — |L|.
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Dividing by ¢ and passing to the limit, we obtain
i, A) = Ly
O

Proposition 6.5. Let A € ML be a measured lamination. Let Ey : [a,b] —
T be an earthquake path driven by \. Let v € I' — {1} be a non-trivial loop.

Set L (t) := Ly(Ex(t)). Then:

B> gy ol (000 = L)

Y

Proof. Let Z; := E\(t), consider the Mess representation p; := pz_, 7, with
parameters Z_;, Z; € T. Notice that, by Theorem [I| we have \;" = t\ and
Z)\;r = Z is constant.

For convenience, we introduce L; := L,, () and 6; := 0,,(7).
By Propositions [5.4 and [5.5] we have

cosh(Lz(7)) < Cos(5t+) cosh(Ly) + sin (5" ) cosh(6;)
and
cosh(i(\f,7)) < sm((5+) cosh(L;) + cos(é;—r)2 cosh(6y).
Summing the inequalities, we get
cosh(t - (A", 7)) — cosh(6;) < cosh(L;) — cosh(Lz(7)).
By the mean value theorem, we can write
cosh(t-i(A*, 7)) — cosh(6;) = sinh(&) (¢t -i(A*,~) — |64])
where & € [|04],¢-i(AT,v)], and
cosh(L;) — cosh(Lz(v)) = sinh(¢) (Ly — Lz (7))

where (; € [Lz(), Lt]-
We now divide both right and left hand side by 2 as follows

sinh(&) (i()\+,'y) B |9t|> < sinh(Q)Lt —Llz()
t t 12
and we observe that as ¢t — 0 the terms converge to: In the left hand side,
o [6:] /t = |Ly () — Lo ()] /2t — L,
o sinh()/t = sinh(|6:])/t as & > |04].
e sinh(|6;|)/t — cosh(6y)0p = L
In the right hand side,
e sinh((;) — sinh(L,(2)) as Ly = (Ly(t) + Ly(=1))/2 = Lz (7).
o (L= Lz(v)/t? = (Ly(t) + L'y(_ ) —2Lz(7))/2* = Ly /2.
The conclusion follows.
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