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Abstract
We study some problems and develop some theory related to persistent homology, separated
into two lines of investigation.

In the first part, we introduce lifespan functors, which are endofunctors on the category of
persistence modules that filter out intervals from barcodes according to their boundedness
properties. They can be used to classify injective and projective objects in the category
of barcodes and the category of pointwise finite-dimensional persistence modules. They
also naturally appear in duality results for absolute and relative versions of persistent
(co)homology, generalizing previous results in terms of barcodes by de Silva, Morozov, and
Vejdemo-Johansson. Due to their functoriality, we can apply these results to morphisms
in persistent homology that are induced by morphisms between filtrations. This lays the
groundwork for an efficient algorithm to compute barcodes of images and induced matchings
of such morphisms, which performs computations in terms of relative cohomology and then
translates to absolute homology via the aforementioned dualities. Our method is based on
a previous algorithm by Cohen-Steiner, Edelsbrunner, Harer, and Morozov that did not
make use of relative cohomology. Using it is crucial, however, because our algorithm applies
the clearing optimization introduced by Chen and Kerber, which works particularly well in
the context of relative cohomology. We provide an implementation of our algorithm for
inclusions of filtrations of Vietoris–Rips complexes in the framework of the software Ripser
by Ulrich Bauer.

In the second part, we introduce local connectedness conditions on a broad class of
functionals that ensure that the persistent homology of their associated sublevel set filtration
is q-tame, which, in particular, implies that they satisfy generalized Morse inequalities. We
illustrate the applicability of these results by recasting the original proof of the unstable
minimal surface theorem given by Morse and Tompkins in terms of persistent Čech homology
in a modern and rigorous framework. Moreover, we show that the interleaving distance
between the persistent singular homology and the persistent Čech homology of a filtration
consisting of paracompact Hausdorff spaces is 0 if it satisfies a similar local connectedness
condition to the one used to ensure q-tameness, generalizing a result by Mardešić for
locally connected spaces to the setting of filtrations. In contrast to singular homology, the
persistent Čech homology of a compact filtration is always upper semi-continuous, which has
structural implications in the q-tame case: using a result by Chazal, Crawley-Boevey, and de
Silva concerning radicals of persistence modules, we show that every lower semi-continuous
q-tame persistence module can be decomposed as a direct sum of interval modules and that
every upper semi-continuous q-tame persistence module can be decomposed as a product of
interval modules.
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Zusammenfassung
Wir betrachten einige Probleme und entwickeln etwas Theorie zu persistenter Homologie,
unterteilt in zwei Forschungslinien.

Im ersten Teil führen wir Lifespan-Funktoren ein; also Endofunktoren auf der Kategorie
der Persistenzmoduln, die Intervalle entsprechend ihrer Beschränktheitseigenschaften aus
Barcodes herausfiltern. Mit diesen Funktoren können injektive und projektive Objekte
in der Kategorie der Barcodes und der Kategorie der punktweise endlich dimensionalen
Persistenzmoduln klassifiziert werden. Sie erscheinen ebenfalls auf natürliche Weise in Dual-
itätsresultaten für absolute und relative Versionen von persistenter (Ko)Homologie, welche
Resultate bezüglich Barcodes von de Silva, Morozov und Vejdemo-Johansson verallgemein-
ern. Aufgrund ihrer Funktorialität können diese Resultate auf Morphismen in persistenter
Homologie angewendet werden, die von Morphismen zwischen Filtrationen induziert werden.
Dies legt den Grundstein für einen effizienten Algorithmus zur Berechnung von Barcodes von
Bildern und induzierten partiellen Bijektionen solcher Morphismen, welcher Berechnungen
in relativer Kohomologie ausführt und dann mittels der zuvor beschriebenen Dualität in
absolute Homologie übersetzt. Diese Methode basiert auf einem vorangegangen Algorith-
mus von Cohen-Steiner, Edelsbrunner, Harer und Morozov, der relative Kohomologie nicht
verwendet. Relative Kohomologie zu verwenden ist aber zentral, weil unser Algorithmus die
sogenannte clearing Optimierung von Chen und Kerber benutzt, die im Zusammenspiel mit
relativer Kohomologie besonders wirksam ist. Wir stellen eine Implementierung unseres
Algorithmus für den Spezialfall von Vietoris–Rips Komplexen basierend auf der Software
Ripser von Ulrich Bauer zur Verfügung.

Im zweiten Teil führen wir lokale Zusammenhangsbedingungen für die Subniveaumengen-
filtrationen einer weiten Klasse von Funktionalen ein, die sicherstellen, dass die zugehörige
persistente Homologie q-zahm ist, was insbesondere impliziert, dass diese Funktionale
verallgemeinerte Morse-Ungleichungen erfüllen. Wir illustrieren die Anwendbarkeit dieser
Resultate, indem wir den ursprünglichen Beweis des Satzes zu instabilen Minimalflächen von
Morse und Tompkins mittels Čech Homologie auf moderne und präzise Weise aufbereiten.
Darüber hinaus zeigen wir, dass die Interleaving-Distanz zwischen persistenter singulärer
und persistenter Čech Homologie einer Filtration 0 ist, falls sie eine der vorherigen ähnliche
lokale Zusammenhangsbedingung erfüllt, was ein Resultat von Mardešić für lokal zusammen-
hängende Räume auf Filtrationen verallgemeinert. Im Gegensatz zu singulärer Homologie
hat die persistente Čech Homologie einer kompakten Filtration immer die Eigenschaft,
oberhalbstetig zu sein, was im q-zahmen Fall strukturelle Auswirkungen hat: Mithilfe
eines Resultats von Chazal, Crawley-Boevey und de Silva zu Radikalen von Persistenz-
moduln zeigen wir, dass alle unterhalbstetigen q-zahmen Persistenzmoduln als direkte
Summe von Intervallmoduln zerlegt werden können und alle oberhalbstetigen q-zahmen
Persistenzmoduln als Produkt von Intervallmoduln zerlegt werden können.
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Introduction
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1. A brief introduction to persistent
homology

Before presenting the original contents of this thesis, we briefly recall some terminology
from the existing literature that we will use freely throughout the rest of this work and that
is necessary to state our results precisely. In Section 1.1 we remind the reader of persistent
homology, persistence modules and their barcodes, as well as the stability theorem. Relevant
to computational applications, we review the basic algorithm for determining barcodes of
filtrations of simplicial complexes as well as the so-called clearing optimization in Section 1.2.
We then present the framework of persistence diagrams as an alternative to barcodes and
how they can be defined for q-tame persistence modules via the observable category in
Section 1.3. To finish this primer, we discuss the less commonly used Čech homology theory
in Section 1.4, which will be important for our considerations regarding Morse theory and
minimal surfaces. A reader who is already familiar with these concepts and wants to skip
this chapter should take away that for the rest of this thesis we fix a field F, which, unless
stated otherwise, will be used as the coefficient group for all homology groups and chain
complexes and as the base field for all vector spaces. We also notationally fix an index set
T for all persistence modules, which is always assumed to be totally ordered and sometimes
specialized to the cases where T is finite or T = R.

1.1. Persistence modules and barcodes

The main motivation for the development of persistence theory is the study of persistent
homology, which is also the main concept of study in this thesis. We start by reviewing
what persistent homology is and where it originates in § 1.1.1. In § 1.1.2, we then consider
the structure theory of the underlying algebraic objects called persistence modules. In
particular, we remind the reader of the basic concept of barcodes. We then review the
standard notions of distance for persistence modules and barcodes, namely the interleaving
distance in §1.1.3, and the bottleneck distance in §1.1.4. For completeness of the exposition,
we also recall the stability theorem in § 1.1.5, which asserts that passing to barcodes is a
1-Lipschitz map.

1.1.1. Persistent homology and persistence modules

Persistent homology, the homology of a filtration of simplicial complexes, is a cornerstone
in the foundations of topological data analysis. It has found numerous applications in
a variety of disciplines, including for example computer vision, neuroscience, materials
science, and evolutionary biology [Ble+21; Clo+20; Dab+12; Hu+19; Nak+15]. The most
common setting studied in the topological data analysis literature is as follows: Given a
finite metric space, to be thought of as a data set, one uses for example Rips, Čech, or

3



1. A brief introduction to persistent homology

Delaunay complexes to construct a filtration of simplicial complexes

K• : ∅ = K0 ⊆ K1 ⊆ · · · ⊆ KN = K,

where increasing the filtration parameter corresponds in some sense to increasing the
distance at which points in the data set are allowed to be connected by simplices. By
applying homology with coefficients in a field to each space and to each inclusion map one
obtains a diagram of vector spaces

H∗(K•) : H∗(K0)→ H∗(K1)→ · · · → H∗(K).

Such a diagram is called a persistence module, and it decomposes into a direct sum of
indecomposable diagrams, each supported on an interval [Bar94; Cra15; ZC05]. The
collection of these intervals, called the (persistence) barcode, has proven to be a powerful
invariant of the filtration. The passage from data sets to barcodes is often referred to as
the pipeline of persistent homology and we refer to [Cha+16; EH10; Oud15; Pol+20] for a
more detailed overview over each of its steps.

Category of persistence modules For our purposes, the category of persistence modules
Pers = VecT is defined as the category of functors T→ Vec, where T is a totally ordered
set (T,≤) considered as a poset category, and Vec is the category of vector spaces over some
field F, which we fix for the rest of this thesis. Spelled out, this means that a persistence
module M consists of a vector space Mt for any t ∈ T , and for any pair s, t ∈ T with s ≤ t
a linear map Ms,t : Ms →Mt such that Mt,t is the identity and

Ms,t ◦Mr,s = Mr,t

for any triple r ≤ s ≤ t. The maps Ms,t are called structure maps. A morphism of
persistence modules φ : M → N is a natural transformation, i.e., a collection of linear maps
φt : Mt → Nt for all t ∈ T such that

φt ◦Ms,t = Ns,t ◦ φs

for all s, t ∈ T with s ≤ t. The category of persistence modules is an abelian category with
kernels, cokernels, direct sums etc. given by their pointwise analogues.

Persistent homology The notion of persistence module above includes the persistent
homology of filtered complexes coming from topological data analysis as described earlier.
In this case, the index set T is a finite set. However, instead of starting with a data set or
filtration of complexes, one may for example also start the pipeline with a not necessarily
continuous function f : X → R on some topological space X and consider its sublevel set
filtration, which is defined by

f≤t = f−1(−∞, t].

Applying any vector space valued homology theory to each of the sublevel sets and the
inclusion maps then yields a (graded) persistence module, this time indexed by T = R.
This persistence module is called the persistent homology of the sublevel set filtration, or
sometimes just the persistent homology of the function. Slightly abusing terminology, we
will sometimes say that the function f has a certain property if the persistent homology of

4



1.1. Persistence modules and barcodes

its sublevel set filtration has that property. More generally, we call any diagram T→ Top
a filtration if its structure maps are all injective. Composing a diagram of topological
spaces T→ Top with a functor Top→ Vec yields a persistence module, which, in case
this functor is a homology, is called the persistent homology of the diagram. In the case
where the functor Top→ Vec applied to a filtration is contravariant, for example if one
uses cohomology instead of homology, the resulting persistence module will be indexed
by the opposite category Top, which is the poset category corresponding to (T,≥), i.e., T
with the opposite of the original order. Purely algebraicly, one may also consider persistent
chain complexes, i.e., diagrams of chain complexes T→ Ch(Vec), and take their homology
to obtain persistent homology. Note that persistent chain complexes may equivalently be
thought of as chain complexes in the abelian category of persistence modules.

1.1.2. Barcodes and the structure of persistence modules

One of the most important questions in the theory of persistence is when a given persistence
module can be decomposed into elementary building blocks: Recall that I ⊆ T is called an
interval if I ̸= ∅ and if for all s, u ∈ I and t ∈ T with s ≤ t ≤ u we have t ∈ I. For I ⊆ T
an interval, define a persistence module C(I) via

C(I)t =
{︄
F if t ∈ I,
0 otherwise,

with structure maps

C(I)s,t =
{︄

idF if s, t ∈ I,
0 otherwise.

Such persistence modules are called interval modules. We say that a persistence module M
has a barcode or is interval-decomposable if there exists an index set A and a collection of
intervals (Iα)α∈A such that

M ∼=
⨁︂
α∈A

C(Iα).

A collection of intervals as above is called a barcode and a choice of such an isomorphism is
called a barcode decomposition or interval decomposition. Barcode decompositions need not
be unique, but by a version of the Krull–Remak–Schmidt–Azumaya theorem [Azu50] (see
also [Cha+16, Theorem 2.7] and [Par70, Section 4.8]) the barcode itself is unique up to a
choice of the index set if it exists. This justifies sometimes talking about the barcode of a
persistence module M , often denoted by B(M).

The most important existence result for barcodes is Crawley-Boevey’s theorem [BC20;
Cra15]. It states that every pointwise finite-dimensional (or PFD) persistence module,
meaning every persistence module M for which Mt is a finite-dimensional vector space for
all t, has a barcode. The full subcategory vec in Vec of finite-dimensional vector spaces is
closed under taking kernels, cokernels, and finite direct sums, so the full subcategory of
PFD persistence modules pers = vecT is an abelian subcategory of Pers = VecT.

Note that one can define a notion of morphism for barcodes called overlap matching such
that barcodes form a category and the assignment (Iα)α∈A ↦→

⨁︁
α∈AC(Iα) is a functor. An

equivalent description of this category can be given in terms of so-called matching diagrams
(see § 3.1.1).

5



1. A brief introduction to persistent homology

1.1.3. Interleaving distance
We briefly review the definition of the interleaving distance for persistence modules indexed
by T = R as introduced by Chazal et al. [Cha+09] and described in great detail and
generality in [Les15]. Let M and N be two persistence modules. For δ ≥ 0, a δ-interleaving
between M and N is given by two morphisms M → N(δ) and N →M(δ), where M(δ) is
the δ-shift of M given by M(δ)t = Mt+δ, such that the diagram

Mt Mt+δ Mt+2δ

Nt Nt+δ Nt+2δ

commutes for all t ∈ R. Clearly, a 0-interleaving describes an isomorphism of persistence
modules. A δ-interleaving for δ > 0 may hence be thought of as an approximate isomorphism
between persistence modules. The interleaving distance between M and N is then defined
as

dI(M,N) = inf{δ ≥ 0 | there is a δ-interleaving between M and N}.
Note that this definition does not just make sense for the category of R-indexed persistence
modules, i.e., functors R → Vec, but for any category of functors R → C, where C is
any category. The interleaving distance is easily verified to be an extended pseudo-metric
on isomorphism classes of persistence modules. This means that it satisfies all the usual
properties of a metric, except for the facts that two non-isomorphic persistence modules
may be at interleaving distance 0 to each other and that two persistence modules may
have infinite interleaving distance to each other. For example, for any pair of numbers
a, b ∈ R with a < b, the interval modules C((a, b)), C([a, b)), C((a, b]), and C([a, b]) are all
at distance 0 to each other, but none of them are isomorphic to each other. Moreover, the
persistence modules C([a,∞)) and C([a,∞))⊕C([a,∞)) have infinite interleaving distance
to each other. In fact, one can easily check that the interleaving distance between two
persistence modules with barcodes can only be finite if the number of unbounded intervals
in their barcodes is the same.

1.1.4. Bottleneck distance
Corresponding to the interleaving distance for persistence modules, we review the bottle-
neck distance for barcodes consisting of intervals in R as introduced by Cohen-Steiner,
Edelsbrunner, and Harer [CEH07]. Let B = (Iα)α∈A and B′ = (I ′

α′)α′∈A′ be barcodes
consisting of intervals in R with index sets A and A′, respectively. A δ-matching between
B and B′ is given by subsets X ⊆ A, X ′ ⊆ A′ and a bijection f : X → X ′ such that

|sup I − inf I| < 2δ

whenever there is α ∈ A \X with I = Iα or α′ ∈ A′ \X ′ with I = I ′
α′ , and

|sup I ′
f(α) − sup Iα| < δ,

|inf I ′
f(α) − inf Iα| < δ

for all α ∈ X. The bottleneck distance between B and B′ is then defined as

dI(B,B′) = inf{δ ≥ 0 | there is a δ-matching between B and B′}.

6
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The bottleneck distance defines an extended pseudo-metric on barcodes. As an example
of different barcodes that have 0 bottleneck distance to each other, one may consider the
single interval barcodes given by (a, b), [a, b), (a, b], and [a, b] for a < b ∈ R. The barcodes
given by a single copy of [a,∞) and two copies of [a,∞) have infinite bottleneck distance
to each other.

1.1.5. Stability theorem
We are now ready to review the stability theorem [BL15; Cha+09; Cha+16; CEH07], which
has received widespread attention in the topological data analysis community and which
provides one of the major justifications for the potential usefulness of persistent homology
in applications. Roughly, the stability theorem asserts that passing from sufficiently well-
behaved real-valued functions to the barcodes of the persistent homology of their sublevel
sets is a 1-Lipschitz map with respect to the supremum norm and the bottleneck distance.
In more detail, mapping from functions to barcodes can be seen as the composition of several
1-Lipschitz maps that make up the persistence pipeline: from functions (with the supremum
norm) to filtrations by sublevel sets (with the interleaving distance) to persistence modules
(with the interleaving distance) and finally to barcodes (with the bottleneck distance).

From functions to filtrations For the first map in the pipeline, recall that the definition of
the interleaving distance does not only make sense for the category of persistence modules,
but actually for any category of diagrams R → C, where C is any category. In particular,
we can define the interleaving distance for R-indexed diagrams of topological spaces, so
we can use it to compare sublevel set filtrations of real-valued functions. If X is some
topological space and f, g : X → R are functions, then, setting e = ∥f − g∥∞, it is clear that
for all t ∈ R we have sublevel set inclusions f≤t ⊆ g≤t+e and g≤t ⊆ f≤t+e. The inclusion
maps form an e-interleaving, showing that

f ↦→ f≤•

is 1-Lipschitz with respect to the supremum norm and the interleaving distance for real-
valued functions on a given topological space.

From filtrations to persistence modules As the next step in the pipeline, we note that
for categories of diagrams R → C and R → C′ and any functor F : C→ C′ it is clear that
composing a δ-interleaving with F again yields a δ-interleaving. In particular, this means
that the interleaving distance does not increase when passing from filtrations to persistence
modules by composing with homology, so

X• ↦→ H(X•)

is 1-Lipschitz with respect to the interleaving distance for diagrams of topological spaces
X• and any choice of homology theory H.

From persistence modules to barcodes By far the most difficult step in proving the
stability theorem is showing that passing from persistence modules that admit barcodes to
their barcodes is 1-Lipschitz with respect to the interleaving and the bottleneck distance.
This result is known as the algebraic stability theorem [BL15; Cha+09; Cha+16]. In fact,
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one can show that, at least for PFD persistence modules, passing from persistence modules
to their barcodes

M ↦→ B(M)

is an isometry with respect to the interleaving and the bottleneck distance. Reviewing
the proof of algebraic stability would go beyond the scope of this work. We mention that
there are currently essentially two approaches, one via the non-constructive interpolation
lemma [Cha+09; CEH07], and one by actually constructing matchings from interleavings
via induced matchings [BL15], which will also play a motivating role for us later on.

Stability theorems Going through all of the previous steps, we obtain in total that

f ↦→ B(H(f≤•))

is 1-Lipschitz for real-valued functions f and homology theories H for which H∗(f≤•) admits
a barcode. For completeness, we also mention that there are more computationally flavored
versions of the stability theorem, for example stating that passing from finite metric spaces
with the Gromov-Hausdorff distance to the barcodes of the persistent homology of their
Rips- or Čech-filtrations with the bottleneck distance is 1-Lipschitz [CdSO14]. One may also
define other metrics for barcodes than the bottleneck distance and there are corresponding
stability results for these metrics [Coh+10].

1.2. Barcode computation
In order to apply persistent homology to data analysis problems, one needs to be able to
compute barcodes for filtrations of simplicial complexes, and we now review the basic way
to do so. We recall some terminology and the matrix reduction algorithm in § 1.2.1. Then,
we explain how to use this algorithm on a matrix representing the simplicial boundary
operator to obtain barcodes in § 1.2.2. In § 1.2.3, we then briefly describe the clearing
optimization as a first speed-up for barcode computations.

1.2.1. Matrix reduction

We recall the basic matrix reduction algorithm that underlies the computation for barcodes
of filtrations of simplicial complexes. If X is a matrix, we write xi for the i-th column
of X. For a non-zero column xi, we define pivotxi as the largest index where xi has a
non-zero entry and we write pentry xi for this entry. We write pivotsX for the set of all
indices which occur as pivots of non-zero columns of X. A matrix is called reduced if no
two non-zero columns have the same pivot. A reduction of a matrix X is a pair of matrices
R and V such that R is reduced, V is full-rank and upper-triangluar, and we have R = XV .
The following algorithm takes a matrix X with entries in a field and produces a reduction
using left-to-right column additions. We write In for the identity matrix with n× n entries.
Input: Matrix X with entries in a field and n rows
Output: A reduction R = XV
R← X
V ← In
while ∃i < j with ri ̸= 0 and pivot ri = pivot rj do
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rj ← rj − pentry rj

pentry ri
ri

vj ← vj − pentry rj

pentry ri
vi

end while
return R, V

1.2.2. Barcode computation via matrix reduction

Using matrix reduction as presented in § 1.2.1, we now describe how to compute barcodes
for filtrations of simplicial complexes. A first method for this computation, not using the
language of barcodes, yet, was given by Barannikov [Bar94]. In the context of topological
data analysis, a first algorithm was given by Zomorodian and Carlsson [ZC05]. The
formulation we present goes back to Cohen-Steiner, Edelsbrunner, and Morozov [CEM06].

Let
K• : ∅ = K−∞ = K0 ⊆ K1 ⊆ · · · ⊆ KN = K∞ = K

be a filtration of finite simplicial complexes with finite index set. For simplicity of the
notation, we assume that we are given a function k : K → {0, . . . , N} such that its sublevel
set filtration is K•, i.e., such that Kj = k−1({0, . . . , j}). Let σ1, . . . , σn be the simplices of
the full simplex K in filtration order, i.e., ordered such that i ≤ i′ implies k(σi) ≤ k(σi′).
The simplices form an ordered basis for the simplicial chain complex C∗(K). Hence, we can
consider the corresponding filtration boundary matrix D, which is the matrix encoding the
boundary operator ∂ : C∗(K)→ C∗(K) with respect to this ordered basis. Now, assume we
have computed a reduction R = DV of D. The row and column indices of these matrices
correspond one-to-one to the simplices of K in filtration order. As such, the pivot of a
column x corresponds to a simplex of K, denoted by psimpx. Then H∗(K•) has a barcode
given by the multiset

{[k(psimp vj), k(psimp rj)) ̸= ∅ | rj ̸= 0} ∪ {[k(psimp vi),∞) | ri = 0 and i /∈ pivotsR} .

Here, to deemphasize the dependence on the concrete index set {0, . . . , N} we chose as
notation, we write [k(psimp vi),∞) for the interval [k(psimp vi), N ] including the largest
element of the index set.

1.2.3. Clearing

We recall the basic idea of the clearing optimization by Chen and Kerber [CK11] for the
computation of barcodes of filtrations of simplicial complexes, also implicitly present in the
work of de Silva, Morozov, and Vejdemo-Johansson [dSMV11]. Given a filtration boundary
matrix D for simplices σ1, . . . , σn in filtration order for a filtration K• as in § 1.2.2, we
know that a reduction R = DV of D can be used to determine the barcode of H∗(K•). To
compute such a reduction, we can make use of the homological grading on D to improve the
basic matrix reduction algorithm from § 1.2.1. In short, this is because if we have rj ̸= 0,
then we must have ri = 0 for i = pivot rj , and we also have dim σi = dim σj − 1. This leads
to the clearing procedure: Instead of simply reducing D by column operations from left to
right, we reduce columns in decreasing order of their homological degree (increasing in the
case of cohomology). Before using column operations to reduce the columns in dimension
m, we set rj = 0 for all indices j which appear as pivots of the already reduced columns in
dimension m+ 1.
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Input: Filtration boundary matrix D with n rows
Output: A reduction R = DV
R← D
V ← In
for m = dimK, . . . , 1 do

while ∃i < j with ri ̸= 0, pivot ri = pivot rj , and dim σi = m do
rj ← rj − pentry rj

pentry ri
ri

vj ← vj − pentry rj

pentry ri
vi

end while
for j with dim σj = m and rj ̸= 0 do
rpivot rj ← 0
vpivot rj ← rj

end for
end for
return R, V

1.3. The observable category

In some settings we consider, the standard notion of barcode is not quite suitable because
some of the persistence modules that may appear do not admit one. To deal with this issue,
we review the construction of the observable category of persistence modules in § 1.3.1. Via
the radical construction, reviewed in § 1.3.2, the observable category leads to a well-defined
notion of persistence diagram for q-tame persistence modules, which we discuss in § 1.3.3.

1.3.1. The observable category of persistence modules

By Crawley-Boevey’s theorem [BC20; Cra15], every PFD persistence module has a barcode.
This is no longer true for q-tame persistence modules M , which are persistence modules
such that rankMs,t < ∞ for all s < t. For example, the R-indexed persistence module∏︁
n∈NC([0, n−1) does not decompose as a direct sum of interval modules. Still, there is

a similar structure theory for q-tame persistence modules if one passes to the observable
category of persistence modules [CCdS16]. For the construction of the observable category to
work, we need to assume that the set T indexing our persistence modules is dense, meaning
that for all s, t ∈ T with s < t there exists u ∈ T with s < u < t.

Starting with some more terminology, a persistence module M is called ephemeral if
Ms,t = 0 for all s < t. A morphism of persistence modules is called a weak isomorphism
if its kernel and cokernel are ephemeral. Roughly, the idea for the observable category is
to decompose persistence modules into interval modules only up to weak isomorphisms.
However, since weak isomorphisms are not invertible, the relation of being weakly isomorphic
is not symmetric. This can be dealt with by passing to a category in which weak isomorphism
do become invertible.

Let M and N be persistence modules. An observable morphism φ : M ‧‧➡ N is given by
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linear maps φt,u : Mt → Nu for t < u such that the diagram

Ms Mt

Nu Nv

Ms,t

φs,v

φt,u

Nu,v

commutes for all s ≤ t < u ≤ v. The composition of two observable morphisms φ : M ‧‧➡ N
and ψ : N ‧‧➡ P is defined by setting (ψ◦φ)s,u = ψt,u ◦φs,t for some t with s < t < u, where
such an index t can always be chosen because we assume T to be dense. This is easily seen
to be well-defined by the above commutativity property. Observable identity morphisms
are defined in the obvious way via the structure morphisms. We call the resulting category
consisting of persistence modules with observable morphisms the observable category of
persistence modules Ob. If persistence modules M and N are isomorphic in Ob, we write
M ≃ N .

There is a functor π : Pers→ Ob sending a persistence module to itself and a morphism
φ : M → N to the observable morphism given by

π(φ)t,u = Nt,u ◦ φt = φu ◦Mt,u

for t < u. Importantly, π takes weak isomorphisms to isomorphisms by [CCdS16, Theorem
2.7].

1.3.2. Radicals
A major technical tool from [CCdS16] for working with q-tame persistence modules is the
radical of a persistence module M , which is the persistence module radM defined by

(radM)t =
∑︂
s<t

imMs,t

with structure maps given by the restrictions of those of M . The radical may also be
abstractly described as the minimal submodule with an ephemeral quotient. Another possible
definition is to view (radM)t as the image of the canonical morphism colims<tMs →Mt.

An important property of radicals is that when passing to the observable category, a
persistence module cannot be distinguished from its radical. More explicitly, we have that
the inclusion radM ↪→ M is a weak isomorphism for every persistence module M , and
hence radM ≃M . This is helpful since, loosely speaking, the radical is usually more tame
than the original module.

Observable barcode decompositions for q-tame persistence modules Now, assume M
is a q-tame persistence module. While each vector space imMs,t is finite-dimensional for
s < t, the radical need still not be PFD. As an example, consider the R-indexed persistence
module M =

⨁︁
n∈NC((−n−1, 0]). Clearly, radM = M , but (radM)0 = M0 has infinite

dimension. In any case, it turns out that the radical of a q-tame persistence module always
has a barcode, given that the index set T is dense and every interval I ⊆ T has a countable
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coinitial subset, i.e., a countable set N ⊆ I ⊆ T such that for all t ∈ I there exists s ∈ N
with s ≤ t. These conditions are satisfied in the special case T = R. That the radical
has a barcode follows from a general version of Crawley-Boevey’s theorem using chain
conditions on kernel and images; see [CCdS16, Section 3.1 and Corollary 3.6] for more
details. Via this barcode of the radical, we obtain an observable barcode decomposition
for any q-tame persistence module, i.e., for any q-tame persistence module M there is a
collection of intervals (Iα)α∈A such that

M ≃
⨁︂
α∈A

C(Iα).

However, such an observable barcode decomposition does not yield a well-defined barcode
since different interval modules can be observably isomorphic. In fact, for any a, b ∈ R with
a < b the interval modules C((a, b)), C([a, b)), C((a, b]), and C([a, b]) are all observably
isomorphic to each other. In order to get a well-defined invariant, we hence need to forget
whether to include the endpoints of an interval or not, leading to the notion of persistence
diagram.

1.3.3. Persistence diagrams
As an alternative to the barcode formalism, one may also describe the observable structure
of persistence modules in terms of so-called persistence diagrams, which we describe here
in the R-indexed case. Starting with a barcode B = (Iα)α∈A, we define its associated
persistence diagram as the multiset given by the multiplicity function m that associates to
an element in

E =
{︁
(p, q) | p ∈ R ∪ {−∞}, q ∈ R ∪ {+∞}, p < q

}︁
the cardinality of the set {α ∈ A | inf Iα = p, sup Iα = q}. Note that there may be
foundational issues with this definition since there is no set containing all cardinals so that
m does not have a well-defined codomain. For the purposes of this thesis, this is not an issue
since we will only be interested in persistence diagrams associated to q-tame persistence
modules. For such persistence modules, the relevant cardinalities will always we finite so
that m can be considered as a function E → N. The version of the persistence diagram
defined above is also sometimes called the undecorated persistence diagram, because we do
not record any information about whether the endpoints of an interval are included or not.

In the observable category, the persistence diagram is a complete invariant for interval-
decomposable persistence modules. That is, we have

⨁︁
α∈AC(Iα) ≃

⨁︁
α′∈A′ C(I ′

α′) if
and only if the persistence diagrams associated to (Iα)α∈A and (I ′

α′)α′∈A′ agree [CCdS16,
Theorem 3.9]. This theorem follows from the fact that the observable category is a
Grothendieck category and consequently a version of the Krull–Schmidt theorem holds;
for details see the given reference. Finally, we can now define the persistence diagram
of an R-indexed q-tame persistence module as the persistence diagram associated to the
barcode of its radical. This invariant then completely describes the isomorphism type of
the persistence module in the observable category.

1.4. Čech and Vietoris homology
For parts of this thesis, we will use some less commonly studied homology theory, namely
Čech homology. We review the standard definition of Čech homology and recall some of
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its important properties in § 1.4.1. We also review Vietoris homology in § 1.4.2, which is
of historical interest in some of Morse’s work that we consider in Chapter 7. These two
homology theories turn out to be the same by a theorem of Dowker that we review in
§ 1.4.3.

1.4.1. Čech homology
Let us recall the definition of Čech homology as presented for example by Eilenberg and
Steenrod [ES52, Section IX–X]. A cover of a topological space X is a set α consisting of
open subsets of X such that X =

⋃︁
U∈α U . The set of all covers is denoted by Cov(X). It

is a directed set with respect to the refinement relation, where a cover α of a space A ⊆ X
is said to refine a cover β of X if for all U ∈ α there exists V ∈ β with U ⊆ V . Recall that
for a cover α ∈ Cov(X) its nerve Nrv(α) is defined as the abstract simplicial complex

Nrv(α) =
{︁
β ⊆ α | β is finite and

⋂︁
U∈β U ̸= ∅

}︁
.

For any abelian group G, the nerve construction composed with the functor of simplicial
homology with coefficients in G defines a functor from Cov(X), regarded as a poset category,
to the category of graded abelian groups. The Čech homology with coefficients in G in
dimension d of X is defined as

Ȟd(X;G) = lim
α∈Cov(X)

Hd(Nrv(α);G).

Čech homology may also be defined for pairs of spaces (X,A) in a corresponding way, and
there is also a natural definition of a boundary operator ∂ : Ȟ∗(X,A)→ Ȟ∗−1(A) induced
by the boundary operators on nerves. For any coefficient group, Čech homology defines
a homotopy invariant functor from the category of topological spaces to the category of
abelian groups satisfying all of the Eilenberg–Steenrod axioms for homology, except for
the fact that the long sequences for pairs of spaces need not be exact in general [ES52,
Theorems IX.4.3, IX.4.4, IX.5.1, IX.6.1, and IX.7.6]. One does get long exact sequences, and
thus a homology theory in the sense of Eilenberg–Steenrod, if one restricts to triangulable
spaces [ES52, Corollary 9.4], or to vector space coefficients and pairs of compact Hausdorff
spaces [Kel61].

Special properties of Čech homology One special feature of Čech homology compared
to other homology theories such as singular homology is that it satisfies a strong version of
the excision axiom for compact Hausdorff spaces [ES52, Theorem X.5.4], which, together
with the fact that we have long exact sequences for compact Hausdorff spaces and field
coefficients, implies by [tDie08, Theorem 10.7.2] that we get a natural Mayer-Vietoris
sequence

· · · Ȟn+1(X;F)

Ȟn(X1 ∩X2;F) Ȟn(X1;F)⊕ Ȟn(X2;F) Ȟn(X;F)

Ȟn−1(X1 ∩X2;F) · · ·
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whenever X1, X2 ⊆ X are all compact Hausdorff spaces with X = X1 ∪ X2. Another
advantage of Čech homology over other homology theories is provided by the fact that if
(Xi, Ai)i is an inverse system of compact Hausdorff pairs, then the inverse limit limi(Xi, Ai)
in the category of pairs of topological spaces is again a compact Hausdorff pair and for all
d and G the natural map

Ȟd(lim
i

(Xi, Ai);G)→ lim
i
Ȟd(Xi, Ai;G)

is an isomorphism [ES52, Theorems VIII.3.6 and X.3.1].

1.4.2. Vietoris homology
We review the definition of Vietoris homology in terms of Vietoris complexes of covers,
generalized from the original definition for metric spaces in terms of ball covers [Vie27].
For a cover α of a topological space X, we define its Vietoris complex to be the simplicial
complex given by

Vtr(α) = {ρ ⊆ X | ρ is finite and ρ ⊆ U for some U ∈ α} .

If α refines β, we get a simplicial inclusion π : Vtr(α)→ Vtr(β). We can compose the
Vietoris complex construction with simplicial homology with coefficients in some abelian
group G, which yields a functor from Cov(X) to the category of graded abelian groups.
Then the Vietoris homology with coefficients in G in dimension d of X is defined as

HV
d (X;G) = lim

α∈Cov(X)
Hd(Vtr(α);G).

Vietoris homology is also defined for pairs of spaces (X,A) in a corresponding way, and
there is a natural boundary operator ∂ : HV

∗ (X,A)→ HV
∗−1(A) induced by the boundary

operators on nerves.

Metric Vietoris homology If X is a metric space, the construction above is not exactly
the same as the construction of metric Vietoris homology, as originally defined by Vietoris
[Vie27], which in modern notation can be expressed as the limit over all covers of X by
metric δ-balls, i.e.,

lim
α∈Balls(X)

H∗(Vtr(α);G),

where
Balls(X) = {(Bδ(x))x∈X | δ > 0} ⊆ Cov(X).

If the metric space X is compact, then for each cover α there exists λ > 0 by Lebesgue’s
number lemma [Mun00, Lemma 27.5] such that (Bλ(x))x∈X refines α. In other words, if
the metric space X is compact, then Balls(X) is coinitial in Cov(X), that is to say, they
yield the same limit and hence the two versions of Vietoris homology agree with each other.

1.4.3. Dowker’s theorem
The Vietoris and nerve constructions are dual to each other in the sense of Dowker’s theorem
[Dow52], which asserts that the two complexes Nrv(α) and Vtr(α) are homotopy equivalent
after geometric realization for any cover α of any topological space X. As a consequence,
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we have that H∗(Nrv(α);G) ∼= H∗(Vtr(α);G). This isomorphism is natural with respect to
refinement of covers and maps between spaces, so we get a natural isomorphism

Ȟ∗(X;G) = lim
α∈Cov(X)

H∗(Nrv(α);G) ∼= lim
α∈Cov(X)

H∗(Vtr(α);G) = HV
∗ (X;G)

after passing to limits over Cov(X). This result naturally extends to the setting of pairs of
spaces, and the isomorphism is also compatible with the boundary operators. Thus, we may
use Čech and Vietoris homology completely interchangeably from now on. In particular,
Vietoris homology also commutes with inverse limits for compact Hausdorff pairs, and is a
homology theory in the sense of Eilenberg–Steenrod for such spaces if one restrict to field
coefficients.
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We now introduce our results. Our contributions, and also this thesis, diverge into two
more or less separate lines of research, with the first part being motivated by computational
problems in topological data analysis, and the second part being inspired by the origins
of persistence in Morse theory. Starting with Section 2.1, we present our findings in the
first part. They are centered around the framework of lifespan functors, which is applied
to classify injectives and projectives in certain categories as well as to duality results and
the efficient computation of images in persistent homology. These results have previously
appeared in two articles written in collaboration with Ulrich Bauer [BS21a; BS22]. In
Section 2.2, we then discuss our findings in the second part, which are related to Morse theory
and concern Čech homology, q-tameness, and the structure theory of persistence modules.
These results have previoulsy appeared in three articles [BMS21; Sch22a; Sch22b], the first
of which was written in collaboration with Ulrich Bauer and Anibal Medina-Mardones.

Recall that we fixed a totally ordered set T acting as the index set of our persistence
modules, which will sometimes be specialized to T being a finite set or the real numbers.
Moreover, recall that we fixed a field F underlying all vector spaces and used as a coefficient
group for all (co)homology groups and (co)chain complexes unless stated otherwise.

2.1. Lifespan functors and applications

In this section we describe our results pertaining to what we call lifespan functors. To
motivate their introduction, we describe the problem of computing images in persistent
homology, and explain how lifespan functors naturally appear when talking about certain
dualities in persistent homology in § 2.1.1. There, we also state the main theorem for
lifespan functors of persistence modules, which describes their impact in terms of barcodes.
In §2.1.2 we state our main result concerning injectivity and projectivity of PFD persistence
modules in terms of lifespan functors, and the previously mentioned dualities are generalized
and described in more detail. Finally, §2.1.3 contains our results on applying these dualities
and other optimizations for computing images in persistent homology.

2.1.1. Introducing lifespan functors

Images in persistent homology Roughly, the famous (algebraic) stability theorem for
persistence modules (reviewed in § 1.1.5) states that closely interleaved persistence modules
admit matchings, i.e., partial bijections, between their barcodes that only match intervals
whose endpoints are close to each other. One way to approach the stability theorem
is via induced matchings, which were introduced by Bauer and Lesnick [BL15]. In the
computational setting, given a morphism of simplicial filtrations f• : L• → K•, i.e., a
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commutative diagram of simplicial maps

∅ = L−∞ = L0 L1 . . . LN−1 LN = L∞ = L

∅ = K−∞ = K0 K1 . . . KN−1 KN = K∞ = K,

f0 f1 fN−1 fN =f

the homology functor induces a morphismH∗(f•) : H∗(L•)→ H∗(K•) of persistence modules.
From this morphism the induced matching construction yields a matching between the
barcodes of H∗(L•) and H∗(K•) that can be used to bound the bottleneck distance between
these two barcodes from above. The induced matching is defined in terms of the image
persistence of f•, i.e., the barcode of imH∗(f•), motivating the problem of computing this
barcode. A first algorithm for this problem was given by Cohen-Steiner et al. [Coh+09] for
the special case where f• is of the form L• = K• ∩ L ↪→ K•. In addition to their algorithm
for image persistence, Cohen-Steiner et al. [Coh+09] present algorithms for computing
barcodes of the kernel and cokernel of the morphism H∗(f•). All of their algorithms rely
on the standard reduction of boundary matrices (reviewed in § 1.2.2).

The barcode of the image of a morphism of persistence modules has various applications
besides the construction of the induced matching. Cohen-Steiner et al. [Coh+09] propose
applications of the image barcode to recovering the persistent homology of a noisy function
on a noisy domain; see also the related work by Chazal et al. [Cha+11]. More recently,
Reani and Bobrowski [RB21] proposed a method that includes the computation of induced
matchings in order to pair up common topological features in different data sets, with
applications to statistical bootstrapping. Furthermore, the computation of image barcodes
is used in a distributed algorithm for persistent homology computation based on the Mayer–
Vietoris spectral sequence by Casas [Cas20]. Image persistence of endomorphisms such as
Steenrod squares on the persistent (co)homology of a single filtration has also been proposed
by Lupo, Medina-Mardones, and Tauzin [LMT22] as a tool to get more comprehensive
invariants than the standard persistent (co)homology barcodes.

Despite the usefulness of image persistence, there are a few aspects that have prevented
these techniques from being widely used in applications so far. Specifically, to the best
of our knowledge, there was no publicly available implementation for the algorithm by
Cohen-Steiner et al. [Coh+09]. Furthermore, computation using the known algorithms is
slow in comparison to modern algorithms for a single filtration. Indeed, computing usual
persistent homology for larger data sets arising in real-world applications only became
feasible in recent years due to optimizations that exploit various structural properties and
algebraic identities of the problem [Bau21; CK11; dSMV11]. The main motivation for the
work summarized in this section is to develop a theory allowing for the adaptation of these
speed-ups to the computation of images and induced matchings.

Dualities in persistent homology One of the most important improvements for barcode
computations relies on the use of cohomology based algorithms. These were first studied
by de Silva, Morozov, and Vejdemo-Johansson [dSMV11] and justified by certain duality
results. In summary, these duality results provide correspondences between the barcodes
for persistent homology and for persistent cohomology, i.e.,

H∗(K•) : H∗(K0)← H∗(K1)← · · · ← H∗(K),

18



2.1. Lifespan functors and applications

as well as the barcodes for persistent relative homology

H∗(K,K•) : H∗(K,K0)→ H∗(K,K1)→ · · · → H∗(K,K)

and persistent relative cohomology

H∗(K,K•) : H∗(K,K0)← H∗(K,K1)← · · · ← H∗(K,K).

The homology persistence modules simply have the same barcode as their cohomology
counterparts [dSMV11, Proposition 2.3]. For the absolute-relative correspondence [dSMV11,
Proposition 2.4], it turns out that the bounded intervals in the barcodes of Hd−1(K•) and
Hd(K,K•) are also exactly the same, and there is a one-to-one correspondence between
intervals of the form [a,∞) in the barcode of Hd(K•) and intervals of the form (−∞, a) in
the barcode of Hd(K,K•).

The original proof for the absolute-relative correspondence uses a decomposition of filtered
chain complexes. This strategy relies on a non-canonical choice, which does not extend
to the functorial setting. We thus adopt a different point of view based on the long exact
sequence of a pair in homology. Applying this functorial construction to a filtration K•, we
obtain a long exact sequence of persistence modules

· · · ∆Hd(K) Hd(K,K•) Hd−1(K•) ∆Hd−1(K) · · ·ϵd ∂ ηd−1

where ∆ denotes constant persistence modules. As it turns out, the first two of the short
exact sequences

0 im ∂ Hd−1(K•) im ηd−1 0

0 im ϵd Hd(K,K•) im ∂ 0

0 im ηd ∆Hd(K) im ϵd 0

split (as a special case of Corollary 4.2.8), showing that im ∂ ∼= ker ηd−1 ∼= coker ϵd is a
summand of both Hd(K,K•) and Hd−1(K•). Its barcode consists of the bounded intervals
of either persistence module. Moreover, the third short exact sequence has a constant
persistence module ∆Hd(K) in the middle, implying that the persistence modules im ηd
and im ϵd determine each other. Together, this shows that the barcodes of H∗(K•) and
H∗(K,K•) completely determine each other. For details see § 5.3.1.

By observing that ∆Hd(K) ∼= ∆ colimHd(K) ∼= ∆ limHd(K,K•) and that ϵ and η are
the counit and the unit of the adjunctions ∆ ⊣ lim and colim ⊣ ∆, respectively, we can
generalize this discussion to arbitrary persistence modules. Taking images, kernels, and
cokernels of the morphisms ϵ and η yields endofunctors on the category of persistence
modules, which we call lifespan functors. In particular, the mortal part (−)† = ker η(−) and
the immortal part (−)∞ = im η(−) determine death in the persistence module, while the
nascent part (−)∗ = coker ϵ(−) and the ancient part (−)−∞ = im ϵ(−) determine birth.

Effect of lifespan functors on barcodes The general definition of lifespan functors above
also works in the category of matching diagrams, since these diagrams admit limits and
colimits (Proposition 4.2.1). The category of matching diagrams is equivalent to the category
of barcodes [BL20]. We will review the definitions of these categories in § 3.1.1 and the
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equivalence between them in § 3.1.2. The effect of the lifespan functors on persistence
modules and matching diagrams is best described in terms of barcodes, as for the above
example im ∂ ∼= ker ηd−1 ∼= coker ϵd, whose barcode corresponds to the bounded intervals;
see also Figure 2.1 for an illustration.

Definition (Definition 4.2.3). Write I = I(T ) for the set of all intervals in T . We define
the following subsets of I.

I∗ = {I ∈ I | I is strictly bounded below}, I−∞ = I \ I∗,

I† = {I ∈ I | I is strictly bounded above}, I∞ = I \ I†,

I†,∗ = I∗ ∩ I†, I−∞,∞ = I−∞ ∩ I∞,

I−∞,† = I−∞ ∩ I†, I∗,∞ = I∗ ∩ I∞.

If B is a barcode, we also define

B⋄ = {I ∈ B | I ∈ I⋄}

for any (−)⋄ from the list above. These operations are referred to as lifespan operations.

With this terminology, we can now state the main theorem for lifespan functors of
persistence modules. It tells us that the above manipulations of barcodes may be achieved
on the level of persistence modules in a functorial way. This is particularly remarkable in
light of the fact that there is no functor from pers to barcodes that assigns to each PFD
persistence module its barcode [BL15, Proposition 5.10].

Theorem (Corollary 4.2.7). There are lifespan functors (−)⋄ : Pers → Pers from the
category of persistence modules to itself, constructed by forming images, kernels, and
cokernels of the counit and the unit of the adjunctions ∆ ⊣ lim and colim ⊣ ∆, such that if
M is a persistence module and B is a barcode of M , then B⋄ is a barcode for M⋄, where
(−)⋄ is any lifespan functor.

2.1.2. Some applications of lifespan functors
Injectives and projectives in categories of barcodes and persistence modules In some
sense, the study of persistent homology may be seen as the study of homological algebra in the
abelian category of persistence modules; see [BM21] for a detailed account of this perspective
on persistence theory. As such, projective and injective resolutions, and hence projective
and injective objects, in the category of persistence modules are of interest. Bubenik and
Milićević [BM21] give classifications of interval modules that have these properties in Pers.
Höppner [Höp83] and Höppner and Lenzing [HL81a; HL81b] give structural results for
injective and projective objects in very general diagram categories including Pers, showing,
among other things, that projective objects in Pers always have barcodes (long before the
barcode terminology was introduced). Particularly in computational settings, however, one
often only deals with PFD persistence modules and restricting from Pers to pers changes
which persistence modules are injective and projective. Moreover, as argued by Bauer and
Lesnick [BL20], it is also worthwhile to consider homological algebra in the categories of
barcodes and matchings diagrams, which are not abelian but have the structure of a p-exact
category (we will recall this in more detail in § 3.1.3). This structure also allows one to
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V †,∗

V † V ∗

V −∞,† V V ∗,∞

V −∞ V ∞

V −∞,∞

Figure 2.1.: Lifespan functors applied to a finite type R-indexed persistence module V ,
visualized via their barcode according to Corollary 4.2.7.

develop large parts of the standard theory of homological algebra as presented for example
in [Gra12].

As a first application of lifespan functors, we can now give a simple characterization of
the projective and injective objects in the category of barcodes (or matching diagrams).

Theorem (Theorem 5.1.2). A barcode B is projective if and only if the mortal part of B
satisfies B† = 0, and injective if and only if the nascent part of B satisfies B∗ = 0.

In the same vein, projective objects in pers can be characterized by their vanishing mortal
parts and injective objects by their vanishing nascent part. In addition, these properties turn
out to be equivalent to a persistence module only having injective or surjective structure
maps, respectively, which is also true in the case of matching diagrams (Corollary 5.1.5).

Theorem (Theorem 5.2.3). Let M be a PFD persistence module.

1. The following are equivalent:

a) All structure maps of M are monomorphisms.

b) The mortal part of M satisfies M † = 0.

c) M is projective in the category of PFD persistence modules pers.

2. The following are equivalent:

a) All structure maps of M are epimorphisms.

b) The nascent part of M satisfies M∗ = 0.

c) M is injective in the category of PFD persistence modules pers.
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Functorial dualities in persistent homology The lifespan functors allow us to succinctly
express the previously described absolute-relative correspondence between the barcodes of
H∗(K•) and H∗(K,K•) in terms of natural isomorphisms. The correspondence [a,∞)↔
(−∞, a) between the semi-infinite intervals is encapsulated via functors (−)▷ and (−)◁,
which are complementary to the lifespan functors and, under favorable circumstances,
change the barcode of a persistence module by taking complements of semi-infinite intervals
(Definition 4.1.7 and Propositions 4.2.9 and 4.2.10).

To state our result in its full generality, recall that the category of topological spaces
has all colimits. In particular, if X is a diagram of topological spaces indexed by our
index set T , it has a colimit. The natural map X → ∆ colimX from X to the constant
T -indexed diagram of its colimit ∆ colimX induces a map C∗(X) → C∗(∆ colimX) of
persistent singular chain complexes. If X is a filtration, i.e., all of its structure maps are
injective, then this map is a monomorphism. The cokernel of this map is again a persistent
chain complex, and its homology is denoted by H∗(colimX,X) as a generalization of the
persistent relative homology H∗(K,K•) that we described in the computational setting of
filtrations of simplicial complexes.

Theorem (Theorem 5.3.2). Let X be a filtration of topological spaces such that the natural
maps colimH∗(X)→ H∗(colimX)→ limH∗(colimX,X) are isomorphisms. Then for all
d we have the following isomorphisms, which are natural in X:

Hd−1(X)† ∼= Hd(colimX,X)∗,

Hd(X)◁ ∼= Hd(colimX,X)−∞,

Hd(X)∞ ∼= Hd(colimX,X)▷.

Dualities for image persistence In Theorem 5.3.2, naturality of the isomorphisms is
inherited from the construction of the long exact homology sequence. In particular, from a
morphism of filtrations of simplicial complexes f• : L• → K• inducing a map on colimits
f : L→ K, we get an isomorphism Hd−1(f•)† ∼= Hd(f, f•)∗ in the category of morphisms of
persistence modules. We also get a morphism

· · · ∆Hd(K) Hd(K,K•) Hd−1(K•) ∆Hd−1(K) · · ·

· · · ∆Hd(L) Hd(L,L•) Hd−1(L•) ∆Hd−1(L) · · ·

ϵd ∂ ηd−1

ϵd ∂ ηd−1

of long exact sequences, with vertical maps induced by f•. Note, however, that the induced
sequences of kernels, images, and cokernels are no longer exact in general, so the rest of
the proof of the absolute-relative correspondence for a single filtration does not carry over
completely to the setting of image persistence described in § 2.1.1. In order to still obtain a
useful absolute-relative correspondence for imH∗(f•), which we require for our algorithmic
applications, we need to develop conditions for when the lifespan functors, which are in
general not exact functors, commute with passing from morphisms to their images.

Theorem (Theorem 4.1.10). Let M and N be persistence modules and φ : M → N a
morphism. If the induced map colimφ : colimM → colimN is a monomorphism, we have
canonical isomorphisms for the mortal and immortal parts

imφ† ∼= (imφ)†, imφ∞ ∼= (imφ)∞ ∼= M∞.
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If the induced map limφ : limM → limN is an epimorphism, we have canonical isomor-
phisms for the nascent and ancient parts

imφ∗ ∼= (imφ)∗, imφ−∞ ∼= (imφ)−∞ ∼= N−∞.

Regarding the morphism f• of simplicial filtrations from above, if the colimit morphism
f : L→ K is an isomorphism, then Theorems 4.1.10 and 5.3.2 together imply for example
that

(imHd−1(f•))† ∼= im
(︁
Hd−1(f•)†)︁ ∼= im

(︁
Hd(f, f•)∗)︁ ∼= (imHd(f, f•))∗.

This means that, as in the single filtration case, the bounded intervals in the barcodes of
the images of the absolute and relative morphism agree.

To complete the picture of the known dualities for a single filtration in the image
persistence setting, we will also state a functorial version of the correspondence between
persistent homology and cohomology in terms of vector space duality (Proposition 5.3.4)
and analyze how the lifespan functors behave with respect to dualization (§ 4.2.2). In
summary, we then have the following correspondence for images of morphisms in persistent
absolute homology and relative cohomology.

Corollary (Corollary 5.3.5). Let f• : L• → K• be a morphism of filtrations of finite
simplicial complexes inducing a map f : L→ K on colimits such that H∗(f) is an isomor-
phism. Assume that the index set T has a largest element and a smallest element tmin with
Ltmin = Ktmin = ∅, so that no intervals in the barcodes of L• and K• contain tmin. Then

B(imHd−1(f•))†,∗ = B(imHd(f, f•))†,∗

for all degrees d, and the map I ↦→ T \ I defines bijections

B(imH∗(f•))∞ ↔ B(H∗(L,L•))−∞,

B(imH∗(f, f•))−∞ ↔ B(H∗(K•))∞.

2.1.3. Efficient computation of barcodes for images in persistent homology
Clearing for image persistence We have reviewed in Section 1.2 that the basic algorithm
for computing persistent homology is based on performing matrix reduction on a filtration
boundary matrix, which can be improved by the clearing optimization. The basic algorithm
for computing image persistence introduced by Cohen-Steiner et al. [Coh+09] not only
requires the reduction of a filtration boundary matrix, but also the reduction of a permuted
boundary matrix, to which clearing cannot be straightforwardly applied. We will remedy
this by showing that before reducing it one can delete the columns in the permuted
boundary matrix that were already reduced to 0 in the boundary matrix corresponding to
the codomain filtration (Corollary 6.2.7).

The clearing optimization is particularly useful when applied in the setting of computing
relative cohomology. This is due to the fact that there, the grading is cohomological, so we
can apply clearing in ascending rather than descending dimension. Thus, one can restrict to
computing barcodes in small dimensions, which increases the feasibility of the computations
and is usually sufficient for practical applications, see [Bau21] for a more detailed discussion.

To apply clearing in the relative cohomology setting for image persistence, we will
reformulate the algorithm by Cohen-Steiner et al. [Coh+09] in the purely algebraic setting

23



2. Results

of filtered chain complexes of vector spaces. More precisely, we will consider two filtrations
of (co)chain complexes C• and C ′

• and a monomorphism φ• : C• → C ′
• that induces an

isomorphism on colimits. For our morphism f• : L• → K•, his setup includes both the
absolute homology case C∗(L•) ↪→ C∗(K•) and the relative cohomology case C∗(K,K•) ↪→
C∗(L,L•). The general idea for computing the image of H∗(φ•) is then to first write it as a
subquotient of C ′

•:

imH∗(φ•) ∼=
φ•(Z∗(C•))

φ•(Z∗(C•)) ∩B∗(C ′
•) ,

where Z∗ and B∗ denote cycles and boundaries of the corresponding chain complexes,
respectively, and where the intersection of persistence modules is to be interpreted indexwise,
meaning that (φ•(Z∗(C•))∩B∗(C ′

•))t = φt(Z∗(Ct))∩B∗(C ′
t). Performing matrix reductions

that make use of the clearing optimization, we find a pair of inclusion-related filtration
compatible bases for the filtrations appearing in the equation above. Filtration compatible
bases provide a formal framework for many standard arguments for barcode computations
via matrix reduction, and they can be interpreted as special instances of matching diagrams.
Using the general theory of matching diagrams, the data we compute can then easily be
shown to determine the barcode of imH∗(φ•) (Theorem 6.2.1).

The final algorithm We now come back to the computational setting and fix a monomor-
phism f• : L• → K• of filtrations of finite simplicial complexes inducing an isomorphism
f : L→ K on the colimits. If DL is a filtration boundary matrix for L• (see § 1.2.2), then
its transpose along the anti-diagonal, denoted (DL)⊥, is a filtration coboundary matrix for
the relative cochain complex C∗(L,L•). Denoting by F the matrix encoding C∗(f) with
respect to the simplices of L and K in their respective filtration orders, we set Df = DLF−1.
Applying the general considerations from before in this setting and combining this with
the translation between relative cohomology and absolute homology from § 2.1.2 yields an
algorithm for computing the absolute homology image of f• : L• → K• by reducing the two
coboundary matrices (DL)⊥ and (Df )⊥, which can be done with clearing.

Corollary (Corollary 6.2.8). Let f• : L• → K• be a monomorphism of filtrations of finite
simplicial complexes inducing an isomorphism f : L→ K on the colimits. Assume that the
index set T has a largest element and a smallest element tmin with Ltmin = Ktmin = ∅. Let
L• and K• be sublevel set filtrations of functions l : L→ T and k : K → T , respectively.

Then the associated coboundary matrices (DL)⊥ and (Df )⊥ can be reduced with clearing,
and given reductions S = (Df )⊥W and R = (DL)⊥V the barcode of imH∗(f•) can be
determined as the multiset

{[l(psimpwj), k(psimp sj)) ̸= ∅ | sj ̸= 0} ∪ {[l(psimp vi),∞) | ri = 0 and i /∈ pivotsR} ,

where psimp c is the simplex corresponding to the index pivot c for any column c.

An implementation of this method based on Ripser [Bau21] is publicly available [BS21b].
Our software works under the assumption that L• = Rips•(X, d) and K• = Rips•(X, d′)
are filtrations of Vietoris–Rips complexes corresponding to two metrics d and d′ on a finite
set X that satisfy d(x, y) ≥ d′(x, y) for all x, y ∈ X with the maps ft : Lt → Kt being given
by inclusion. Note that Lt = Ripst(X, d) being a subcomplex of Kt = Ripst(X, d′) for all t
is ensured by the inequality d ≥ d′. The implementation also makes use of a version of the
emergent and apparent pairs optimizations [Bau21], which we do not discuss here, referring
to [BS22] instead.
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2.2. Q-tameness, Čech homology, and Morse theory for minimal
surfaces

In this section we describe our results concerning Čech homology, q-tameness, and the
structure theory for q-tame semi-continuous persistence modules. These are inspired by
Morse’s work on minimal surfaces, which is part of a general framework that Morse termed
functional topology. We start with a review of the unstable minimal surface theorem by
Morse and Tompkins in § 2.2.1, focusing on a slightly reformulated version of the mountain
pass theorem originally used to prove the existence of an unstable minimal surface. We
also formulate Morse inequalities for q-tame persistence modules purely in terms of their
persistence diagrams. Motivated by these developments, we then go on to see that filtrations
of compact spaces satisfying a certain local connectedness condition have q-tame persistent
homology in § 2.2.2, fixing an inaccuracy in Morse’s work and providing a generalization
of similar statements in the existing persistence literature. A similar local connectedness
condition is sufficient for implying that the interleaving distance between the persistent
singular and the persistent Čech homology of the filtration is 0, which we discuss in § 2.2.3.
The persistent Čech homology of a filtration of compact Hausdorff spaces, also considered
in Morse’s functional topology, has a certain semi-continuity property, which appears in a
structural result for q-tame persistence modules presented in § 2.2.4.

2.2.1. Morse inequalities in terms of persistence and minimal surfaces

Functional Topology Given that persistent homology can be used for analyzing sublevel
sets of functions, it might not come as a surprise that it can be intimately linked to Morse
theory. Nowadays, when thinking about the work of Marston Morse, our first thought
probably involves a differentiable function on a closed smooth manifold, but more general
settings should also be considered. Morse theory in the smooth context was presented in
Milnor’s famous book on the subject [Mil63], where he also gave a new proof of Bott’s
periodicity by applying Morse theory to the energy functional of paths in a Riemannian
manifold, which notably goes beyond the compact setting. Another important example of
the use of Morse’s insights in an infinite-dimensional context is Floer’s work on the Arnold
conjecture and its many ramifications in symplectic topology, as surveyed for example in
[Sal99]. Morse himself worked in a very general setting, publishing in the 1930s a pair of
papers [Mor37; Mor40] and a monograph [Mor38] in which he established the key results
of Morse theory in the broad context defined by semi-continuous functionals on metric
spaces. He called the theory set forth in this body of work functional topology and used
it to study questions about minimal surfaces motivated by Douglas’ solution to Plateau’s
problem [Dou31]. In particular, Morse and Tompkins [MT39] used these techniques to
prove a general mountain pass theorem – an existence result for saddle points – applying to
functions that are not necessarily differentiable or not even continuous.

A mountain pass theorem for homotopically critical points To state the mountain pass
theorem on the existence of saddle points in a non-differentiable, or even non-continuous
setting, we need an appropriate notion of critical points.

Definition (Definition 7.2.1, [Str88, Definition II.6.1-II.6.2], [MT39, p. 445, 466]). Consider
a real-valued function F on a metric space (M,d). A point p ∈M is called homotopically
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regular if there exists a neighborhood U of p in F≤F (p) and a continuous map φ : U× [0, 1]→
M , which satisfies φ(·, 0) = idU and φ(p, 1) ̸= p, such that for every compact subset V ⊆ U
there exists a continuous displacement function δ : R≥0 → R≥0. That is, a continuous
function δ with δ(e) = 0 if and only if e = 0 and

F (φ(x, s))− F (φ(x, t)) ≥ δ(d(φ(x, s), φ(x, t)))

for all x ∈ V and 0 ≤ s ≤ t ≤ 1. A point that is not homotopically regular is called
homotopically critical. Function values of homotopically critical points will be called critical
values and all other values will be called regular values. A critical set S is a closed and
open subset of the subspace of all homotopically critical points with a given function value.
It is said to be of minimum type if there exists a neighborhood N of the closure S of S,
taken in M , such that the function values on N \ S strictly exceed the function value on S.

Note that, in particular, an isolated local minimum constitutes a critical set of minimum
type. Similarly, a critical submanifold of a Morse-Bott function on which the function
values are locally minimized is also a critical set of minimum type.

Definition (Definition 7.2.2, [MT39, p. 445]). Let F : M → R be a function on a metric
space. We say that F is weakly upper-reducible if for all p ∈ M and all c > F (p) there
exists a neighborhood U of p in F≤c, a positive constant η > 0, and a continuous map
φ : U × [0, 1] → M , which satisfies φ(·, 0) = idU and φ(U, 1) ⊆ f≤c−η, such that on every
compact subset V ⊆ U there exists a displacement function for φ as in Definition 7.2.1.

With this terminology in mind, we can now state the mountain pass theorem, formulated
by Morse and Tompkins [MT39, Corollary 7.1] under slightly different assumptions, and
with a slightly different conclusion. We provide more detailed comments regarding the
differences between these assumptions and the conclusions of the mountain pass theorem in
Subsections 7.2.2 and 8.2.1.

Theorem (Mountain pass theorem, Theorem 7.2.3, [MT39, Corollary 7.1]). Let F : M → R
be a weakly upper-reducible function on a non-empty connected metric space with compact
sublevel sets. Assume that the natural map colim Ȟ0(F≤•)→ Ȟ0(M) is an isomorphism,
and that Ȟ∗(F≤•) is q-tame. If M contains two distinct critical sets of F of minimum type,
then it also contains a critical set not of minimum type.

It is worth noting that the details in [MT39] are incomplete, with some crucial theorems
such as [MT39, Theorems 7.3 and 7.4, Corollary 7.1] being stated without proof, and with a
citation to a paper in preparation that has never been published under the given name (we
suppose that this paper is [Mor40]). Moreover, there is a gap in [Mor40], because [Mor40,
Theorem 6.3], which establishes q-tameness, is incorrect as we will show in Corollary 8.2.3.
We fix this by employing a similar but different condition that does indeed ensure q-tameness,
which we discuss in § 2.2.2. This condition can be shown from the results of Morse and
Tompkins [MT39] to be satisfied by the Douglas functional. From this the unstable minimal
surface theorem can be deduced, showing the existence of a critical set not of minimum type
for the Douglas functional (Theorem 7.2.14). In the intervening years, this result has been
reproven and generalized in several directions using various techniques, and the problem
class is still an active area of research [JS90; Jos91; MN21; Mon20; Str84].

Morse’s work on functional topology did not have a long lasting impact on minimal
surface theory or the calculus of variations in general; possibly in part because, as expressed
by Struwe:
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The technical complexity and the use of a sophisticated topological machinery
[...] tend to make Morse–Tompkins’ original paper unreadable and inaccessible
for the non-specialist. [Str88, p. 82]

A similar assessment was given by Bott, who writes in [Bot80, p. 934] that the papers
[Mor37; Mor40] “are not easy reading” and constitute a “tour de force” by Morse. The
intricacies of Morse’s development notwithstanding, many of his ideas may be seen as early
precursors to ideas that are now part of the standard framework of persistence theory.

Morse inequalities for cap numbers The most remarkable connections between functional
topology and persistence theory come from Morse’s paper [Mor40], where he developed
the theory of caps and their spans. They capture much of the same information as the
modern notion of persistence diagram, including concepts such as the persistence or birth
and death of a homology class, although Morse’s results still fall short of yielding global
decompositions of persistence modules. Morse used his theory of caps to study functionals
on a metric space by analyzing the evolution of the topology of their sublevel sets. A key
tool to this end is a version of his eponymous inequalities for cap numbers, which expands
their usual version in the compact and smooth setting. In this work, using persistence
diagrams, we generalize the definition of these cap numbers to persistence modules and
prove the existence of Morse inequalities for a large class of them.

Definition (Definition 7.1.1). Let M be a graded q-tame persistence module with per-
sistence diagram of the degree d part of M given by md. Whenever the sums below are
well-defined, we define the (d, ϵ)-cap numbers

cϵd = αϵd + ωϵd−1,

where

αϵd =
∑︂

(p,q)∈E
q−p>ϵ
p ̸=−∞

md(p, q), ωϵd =
∑︂

(p,q)∈E
q−p>ϵ
q ̸=∞

md(p, q)

are the total number of births and the total number of deaths, respectively, in degree d and
with persistence greater than ϵ.

Comparing to the classical Morse inequalities, the cap numbers in dimension d act like
the number of critical points with index d. As an analogue to the Betti numbers of the
manifold appearing in the usual Morse inequalities, we define the essential dimensions pd as

pd =
∑︂

p∈R∪{−∞}
md(p,∞),

which is also the dimension of the colimit of the degree d part of M .

Theorem (Theorem 7.1.2). Let ϵ > 0, and let M be a graded q-tame persistence module
with finite cap numbers cϵd and finite essential dimensions pd for all d. If md(−∞, p) = 0
for all p ∈ R ∪ {∞} and all d, then we have Morse inequalities

n∑︂
d=0

(−1)n−d(cϵd − pd) ≥ 0

for any dimension n.
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2.2.2. Q-tameness for locally connected filtrations
Morse’s local connectedness conditions Throughout his work on functional topology, in
order to obtain q-tameness, Morse assumed slightly varying forms of local connectedness
on the sublevel set filtrations of the functions he considered. In particular, Morse and
Tompkins used the following condition from [Mor38; Mor40] in their applications to minimal
surface theory:

Let p be a point of M at which F (p) = c. The space M is said to be locally F -
connected of order r at p if corresponding to each positive constant e there exists
a positive constant δ such that each singular r-sphere on the δ-neighborhood of
p and on Fc+δ bounds an (r + 1)-cell of norm e on Fc+e. [Mor40, p. 431]

See also [Mor38, p. 25] and [MT39, p. 464], but note that the definitions given there contain
evident typographical errors.

Morse then goes on to claim that the persistent Čech homology of the sublevel set
filtration of a function F is q-tame, provided that F is bounded from below and satisfies
the assumptions of local F -connectedness and compactness of sublevel sets. In the original
(where the function is assumed to take values in [0, 1)) the claim reads:

Let a and c be positive constants such that a < c < 1. The kth connectivity
Rk(a, c) of Fa on Fc is finite. [Mor40, Theorem 6.3, p. 432]

Morse does not prove this statement in the given reference, but rather refers to [Mor38,
Theorem 6.1]. Unfortunately, the above claim does not hold in general, as exemplified by
the sublevel set filtration from Example 8.1.13, see also Corollary 8.2.3. The mountain
pass theorem (Theorem 7.2.3) does, however, require q-tameness, so we want to develop
a variation of the local connectedness condition above that is applicable in the minimal
surface setting and indeed implies q-tameness.

Local connectedness revisited

Definition (Definition 8.1.2). The sublevel set filtration of a function f : X → R is called
locally homologically small or LHS with respect to a homology theory H if for any x ∈ X, any
neighborhood V of x, and any pair of indices s, t with f(x) < s < t there is a neighborhood
U of x with U ⊆ V such that the inclusion f≤s ∩ U → f≤t ∩ V is homologically small or
HS, i.e., has finite rank in every degree after applying H.

What we mean precisely by a homology theory H in this context is made more precise in
§ 8.1.1; importantly, our notion includes Čech homology with field coefficients on compact
Hausdorff spaces, as well as any homology theory in the sense of the Eilenberg-Steenrod
axioms.

Theorem (Theorem 8.1.4). If the sublevel set filtration of a function F : X → R on a
topological space X is LHS and consists of compact Hausdorff spaces, then its persistent
homology is q-tame.

We also introduce a weaker local-connectedness condition that can be used instead of LHS
in the statement above if the filtration is defined by a continuous function (Corollary 8.1.12).
The existence of a result of this kind has been suggested by Weinberger [Wei11], and a
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multiparameter version has been shown by Cagliari and Landi [CL11] with slightly stronger
assumptions on the domain of the function.

To illustrate the suitability of our results in the context of minimal surface theory, we
discuss why the Douglas functional has the LHS property for Čech homology (§ 8.2.2),
so that its associated persistent Čech homology is indeed q-tame and the mountain pass
theorem (Theorem 7.2.3) applies.

2.2.3. Comparison of singular and Čech homology in locally connected
filtrations

Weak isomorphism from singular to Čech homology From the point of view of modern
algebraic topology, the use of Čech homology in Morse’s work on functional topology and
in the mountain pass theorem (Theorem 7.2.3) might seem peculiar. We now discuss this in
more detail, presenting an argument for why the use of Čech homology instead of the more
common singular homology might not be necessary if one works with locally connected
filtrations. As a counterpoint, we present an argument for why Čech homology might be
useful after all in § 2.2.4. A general review of Čech homology can be found in Section 1.4.

Definition (Definition 9.3.3). Let f : X → R be a function on a topological space. We say
that the sublevel set filtration f≤• induced by f is homologically locally connected (HLC)
with respect to the homology theory H if for any x ∈ X, any neighborhood V of x, and
any pair of indices s, t with f(x) < s < t there is a neighborhood U of x with U ⊆ V such
that the inclusion f≤s ∩ U → f≤t ∩ V is taken to the trivial map by H.

Clearly, any filtration that is HLC is also LHS in the sense of Definition 8.1.2. By
Theorem 8.1.4, we know that if the sublevel set filtration of f is LHS and all sublevel sets
are compact Hausdorff, then the persistent homology of the sublevel set filtration is q-tame.
There are also several results stating that the homology of a single compact Hausdorff space
has finite rank if it is LHS (or HLC) (see [Bre97, Corollary II.17.7] for an example), where
a single space X is called LHS (or HLC) if for any x ∈ X and any neighborhood V of x
there is a neighborhood U of x with U ⊆ V such that the inclusion U → V induces a finite
rank map (or the trivial map) in homology. Applying such finiteness results at every index,
we see that the persistent homology of a filtration is PFD if all sublevel sets are locally
connected in a suitable sense, and Theorem 8.1.4 may informally be seen as an observable
(in the sense of [CCdS16]) version of such results.

Apart from finiteness results as the above one, local connectedness conditions play
an important role in comparison results for different homology theories, see [Skl80] for
a plethora of results in this direction. As a specific instance, Mardešić [Mar59] proved
that paracompact Hausdorff spaces that are HLC with respect to singular homology have
naturally isomorphic singular and Čech homology groups. Similarly to before, applying this
to each sublevel set individually implies that the persistent singular and Čech homologies
of a filtration are naturally isomorphic if the constituent sets are all HLC paracompact
Hausdorff spaces. We now also provide an obserable version of the comparison result by
Mardešić [Mar59].

Theorem (Theorem 9.3.4). If f : X → R induces a sublevel set filtration of paracompact
Hausdorff spaces that is HLC with respect to singular homology with coefficients in an
abelian group G, then the natural map φ : H∗(f≤•;G) → Ȟ∗(f≤•;G) from its persistent
singular to its persistent Čech homology is a weak isomorphism.
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The construction of the natural map φ from singular to Čech homology will be reviewed
in § 9.1.1. Note that the persistent homologies appearing in the theorem need not be
persistence modules in the sense that we have talked about before, because for general
abelian coefficient groups G they will be functors from R to the category of G-modules and
not necessarily to a category of vector spaces. However, the notion of weak isomorphism
still makes sense in this more general setting and the result holds as stated. The interleaving
distance between two persistence modules is 0 if there is a weak isomorphism from one to
the other, so we also obtain the following corollary as a consequence of Theorem 9.3.4.

Corollary (Corollary 9.3.6). If f : X → R induces a sublevel set filtration of paracompact
Hausdorff spaces that is locally connected with respect to singular homology with coefficients
in an abelian group G, then

dI
(︁
H∗(f≤•;G), Ȟ∗(f≤•;G)

)︁
= 0.

Corollary 9.3.6 generalizes a recent result by Buhovsky et al. [Buh+22, Proposition
2.12], where f is assumed to be continuous and X is assumed to be a compact manifold.
A persistence module that has 0 interleaving distance to a q-tame persistence module is
again q-tame, so combining Theorem 9.3.4 with Theorem 8.1.4, we obtain that a compact
filtration that is HLC with respect to singular homology is not only q-tame with respect to
singular homology, but also with respect to Čech homology. Being q-tame, both persistence
modules then admit a persistence diagram, and as a consequence of Corollary 9.3.6 the two
persistence diagrams agree.

Local connectedness shift Our techniques will allow us to prove a stronger, quantitative
version of Corollary 9.3.6. It bounds the interleaving distance between singular and Čech
homology in terms of a measurement for how locally connected a filtration is.

Definition (Definition 9.1.4). Let f : X → R be a function on a topological space. For
δ ≥ 0, we say that the sublevel set filtration f≤• induced by f is δ homologically locally
connected (δ − HLC) with respect to the homology theory H if for any x ∈ X, any
neighborhood V of x, and any pair of indices s, t with f(x) < s ≤ s + δ < t there is a
neighborhood U of x with U ⊆ V such that the inclusion f≤s ∩ U → f≤t ∩ V is taken to
the trivial map by H. We define the local connectedness shift of f with respect to H as

lcsH(f) = inf{δ > 0 | f is δ −HLC}.

Note that if the filtration induced by a function f is HLC, then its local connectedness
shift is 0.

Theorem (Theorem 9.3.5). If f : X → R induces a sublevel set filtration of paracompact
Hausdorff spaces and G is an abelian group, then

dI
(︁
H≤d−1(f≤•;G), Ȟ≤d−1(f≤•;G)

)︁
≤ d · lcs(f)

for all d, where lcs(f) is the local connectedness shift of f with respect to singular homology
with coefficients in G.
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Theorem 9.3.5 can be interpreted as providing a kind of stability theorem for when the
function inducing the filtration is fixed but the homology theory varies from singular to Čech.
Concerning stability with respect to variations of the function, we will also prove that the
local connectedness shift lcsH is 2-Lipschitz for any homology theory H (Proposition 9.3.7).

Our proofs of Theorems 9.3.4 and 9.3.5 closely follow the arguments presented in [Mar59]
for a single space. Other approaches to proving our results could be to use an approximate
nerve theorem [GS18] and analyze how the interleaving distance behaves with respect to
inverse limits in the category of persistence modules, or to use an approach via cosheaves
as in [Bre97], akin to the usual approach to comparison results between singular and
Čech cohomology via sheaf cohomology. In the present work, we do not investigate these
possibilities further.

2.2.4. Structure of semi-continuous q-tame persistence modules
While Theorem 9.3.4 implies that singular and Čech homology have the same persistence
diagrams for locally connected filtrations, Čech homology does have one advantage that
is not visible in the persistence diagram: At least for filtrations consisting of compact
Hausdorff spaces, persistent Čech homology is always upper semi-continuous.

Definition (Definition 10.1.1). A persistence module M is called upper semi-continuous
(u.s.c.) or continuous from above if the canonical map

Mt → lim
s>t

Ms

is an isomorphism for all t ∈ T . It is called lower semi-continuous (l.s.c.) or continuous
from below if the canonical map

colim
s<t

Ms →Mt

is an isomorphism for all t ∈ T .

Using the techniques developed in the context of the observable category by Chazal,
Crawley-Boevey, and de Silva [CCdS16], we will show that, under some mild assumptions on
the index set, semi-continuous q-tame persistence modules actually admit decompositions
into interval modules up to isomorphism and not just weak isomorphism. While not
explicitly stated by Chazal et al., the next result is an immediate corollary of [CCdS16,
Corollary 3.6.]. The terms involving the index set were introduced in Section 1.3 and will
also be recalled again in § 10.1.1. In the important special case T = R, all assumptions are
satisfied.

Theorem (Theorem 10.2.3). Let T be a dense totally ordered set such that every interval
in T has a countable coinitial subset. Then every q-tame lower semi-continuous persistence
module indexed by T has a barcode.

With some additional work, we will prove the following novel result.

Theorem (Theorem 10.2.4). Let T be a dense totally ordered set such that every interval in
T has a countable coinitial subset. Then for every q-tame upper semi-continuous persistence
module M indexed by T there exists a collection of intervals (Iα)α∈A, unique up to reordering,
such that

M ∼=
∏︂
α∈A

C(Iα).
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In general, uniqueness statements for product decompositions are much harder to come
by than in the case of direct sums where one has the Krull–Remak–Schmidt–Azumaya
Theorem. We will also infer our uniqueness statement from this theorem, rather than
from a general statement about products. In order to distinguish product and direct sum
decompositions, when the distinction is not clear from the context, we suggest to called
barcodes in the usual sense additive barcodes, while barcodes in the sense of Theorem 10.2.4
can be called multiplicative barcodes. In the PFD case, the two notions agree. In the q-tame
case, however, there are persistence modules that have a multiplicative barcode, but no
additive barcode and vice versa (Example 10.1.3).

2.3. Outline
The rest of this thesis will be structured like this chapter presenting our results was.
Concretely, we have two more parts, with Part II corresponding to Section 2.1 and Part III
corresponding to Section 2.2.

Part II will start with Chapter 3 recalling some more general persistence theory from
the literature, in particular regarding barcodes and matching diagrams, expanding our
treatment from Section 1.1. After this background chapter, we continue Part II with
Chapter 4 corresponding to §2.1.1, where the lifespan functors are introduced in more detail
and the main theorems for the general theory are proven. We follow up with Chapter 5,
where the injectivity and projectivity results, as well as the duality results stated in § 2.1.2
are proven and expanded on. We finish Part II in Chapter 6 by proving correctness of the
method for efficiently computing image persistence outlined in § 2.1.3.

For Part III, we start with Chapter 7, where we present our persistence-flavored account
of the Morse inequalities and the unstable minimal surface theorem previewed in § 2.2.1. In
Chapter 8, we then discuss some shortcomings of Morse’s original approach to functional
topology and prove our theorem from § 2.2.2 that can be used to fix these shortcomings.
Relating to the use of Čech homology in Morse’s work, we then prove our comparison
results with singular homology in Chapter 9, which completes the discussion from § 2.2.3.
Finally, we prove our structural results for semi-continuous q-tame persistence modules
from § 2.2.4 in Chapter 10.

2.4. Notes on collaborations and publications related to this
thesis

As mentioned, most of the results in this thesis have previously appeared in the articles and
preprints [BMS21; BS21a; BS22; Sch22a; Sch22b]. Large parts of this thesis also appear
verbatim in these articles. We will now describe this in more detail.

The results in Section 2.1 and the work in Part II have previously appeared in two articles
written in collaboration with Ulrich Bauer [BS21a; BS22], who initiated the projects and
played an advisory role in them. In terms of content overlap, we have the following.

• Chapter 3 roughly corresponds to [BS21a, Section 2],

• Chapter 4 and § 2.1.1 roughly correspond to [BS21a, Sections 1, 3, and 4],

• Chapter 5 and § 2.1.2 roughly correspond to [BS21a, Sections 5 and 6], and
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• Chapter 6 and § 2.1.3 roughly correspond to [BS22].

The results in Section 2.2 and the work in Part III have previoulsy appeared in three
articles [BMS21; Sch22a; Sch22b], the first of which was written in collaboration with Ulrich
Bauer and Anibal Medina-Mardones. These results are also partly a continuation of the
author’s master’s thesis. Specifically, Theorem 7.1.5 has already appeared there, as have
prototypical versions of Theorem 7.1.2 and Proposition 7.2.12. Those results that have
previously appeared in the author’s master’s thesis are not essential parts of the present
thesis and are mostly presented for completeness of the exposition and for the convenience
of the reader. Ulrich Bauer supervised the author’s master’s thesis and again initiated
and advised the collaborative project [BMS21]. In terms of content overlap, we have the
following.

• Chapter 7 and § 2.2.1 roughly correspond to [BMS21, Sections 1, 3 and 5.1, Appendix
B],

• Chapter 8 and § 2.2.2 roughly correspond to [BMS21, Sections 4 and 5.2],

• Chapter 9 and § 2.2.3 roughly correspond to [Sch22a], and

• Chapter 10 and § 2.2.4 roughly correspond to [Sch22b].
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3. More background on persistence theory

In this chapter we augment the introduction to persistence theory from Chapter 1 with some
more specific background knowledge that is only needed for the present part of the thesis.
We start by defining the categories of barcodes and matching diagrams, reviewing the
equivalence between them, and showing that they have a p-exact structure in Section 3.1. In
Section 3.2, we then discuss the passage from these categories to the category of persistence
modules.

For this chapter, we do not put any additional constraints on our totally ordered index
set T .

3.1. Categories of barcodes and matching diagrams
We now review the interpretation and categorification of barcodes via matching diagrams
following [BL15; BL20]. To start off, we define the categories of barcodes and matching
diagrams in § 3.1.1. In § 3.1.2, we review the equivalence between these two categories.
§ 3.1.3 contains a brief recollection of what constitutes a p-exact category, and we recall
that barcodes and matching diagrams have this structure.

3.1.1. Barcodes and matching diagrams
Barcodes revisited We have seen in § 1.1.2 that a persistence module M is said to have
a barcode (Iα)α∈A if M is isomorphic to the direct sum over the interval modules C(Iα),
and that the collection of intervals is unique up to a choice of the index set A. Making this
more formal, we will now introduce a framework where the choice of A is encoded as part
of the barcode.

Definition 3.1.1. We denote the set of all intervals in T as I(T ), or simply as I when the
index set is clear from the context. If A is an arbitrary set, we call any subset B ⊆ I×A a
barcode in T .

The purpose of the set A in this definition is to distinguish multiple instances of the
same interval, as in the standard construction of a disjoint union. If clear from the context,
we sometimes suppress this index from the notation. If B ⊆ I×A is a barcode and I an
interval in T , the cardinality of the set {a ∈ A | (I, a) ∈ B} measures how many copies of I
are in B, similar to the definition of persistence diagrams in § 1.3.3, but remembering the
whole interval and not just its endpoints.

Overlap matchings

Definition 3.1.2. If A and B are sets, a subset σ ⊆ A×B is called a matching if for each
a ∈ A there is at most one b ∈ B with (a, b) ∈ σ and for each b ∈ B there is at most one
a ∈ A with (a, b) ∈ σ.
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When introducing the bottleneck distance between barcodes in § 1.1.4, we have already
talked about certain matchings between barcodes, namely δ-matchings. Barcodes form a
category in a way that is compatible with the passage to persistence modules, with the
morphisms in the category of barcodes being certain other matchings.

Definition 3.1.3. Let I and J be intervals in T . We say that I bounds J above if for all
s ∈ J there exists t ∈ I such that s ≤ t. We say that I bounds J below if for all u ∈ J there
exists t ∈ I such that t ≤ u. We say that I overlaps J above, or that J overlaps I below, if
their intersection is non-empty, I bounds J above, and J bounds I below.

With this terminology in mind, we can now define the category of barcodes.

Definition 3.1.4. For barcodes B and B′, we call a matching σ ⊆ B × B′ an overlap
matching if for each ((I, a), (I ′, a′)) ∈ σ the interval I overlaps the interval I ′ above. If
σ ⊆ B ×B′ and τ ⊆ B′ ×B′′ are overlap matchings, we define their overlap composition as

τ • σ = {((I, a), (I ′′, a′′)) | there exists (I ′, a′) ∈ B′ with
((I, a), (I ′, a′) ∈ σ,
((I ′, a′), (I ′′, a′′) ∈ τ, and
I overlaps I ′′ above}.

The resulting category with barcodes as objects, overlap matchings as morphisms and
overlap composition will be denoted by Barc(T).

Note that two barcodes B ⊆ I×A and B′ ⊆ I×A′ are isomorphic if and only if there is
a bijection f : B → B′ such that for all (I, a) ∈ B there is a′ in A′ with f(I, a) = (I, a′).
In other words, B and B′ are isomorphic if and only if the sets {a ∈ A | (I, a) ∈ B} and
{a′ ∈ A′ | (I, a′) ∈ B′} have the same cardinality for every interval I ∈ I.

Matching diagrams Apart from the requirement that I needs to overlap I ′′ above, the
composition law from Definition 3.1.4 also makes sense for matchings between general sets
and not just barcodes. This leads to the category of matching diagrams.

Definition 3.1.5. If A, B, C are sets and σ ⊆ A×B, τ ⊆ B×C are matchings, we define
the composition τ ◦ σ ⊆ A× C as

τ ◦ σ = {(a, c) | there exists b ∈ B with (a, b) ∈ σ and (b, c) ∈ τ}.

The resulting category, with sets as objects, matchings as morphisms, and the above
composition, will be denoted by Mch. We define the category of matching diagrams indexed
by T as the category MchT of functors T→Mch.

Note that the standard composition from Definition 3.1.5 and the overlap composition
Definition 3.1.4 need not yield the same result when applied to overlap matchings between
barcodes. This is due to the fact that if I overlaps I ′ above and I ′ overlaps I ′′, it need
not be true that I overlaps I ′′ above. More specifically, the bounding conditions for I to
overlap I ′′ above will be satisfied, but what may happen is that I ∩ I ′′ = ∅. As an example
where this occurs, one may consider the real intervals I = [2, 3], I ′ = [1, 2], and I ′′ = [0, 1].
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3.1.2. Equivalence of barcodes and matching diagrams
As we have mentioned before, the two categories MchT and Barc(T) are equivalent. We
will now review the construction of an explicit equivalence following [BL20].

From matching diagrams to barcodes
Definition 3.1.6. Let D be a matching diagram. We define its components as the set of
equivalence classes

C(D) =
(︄ ⋃︁
t∈T
{t} ×Dt

)︄
/∼,

where the equivalence relation ∼ is defined as follows: for t ≤ u ∈ T , d ∈ Dt, and d′ ∈ Du,
we set (t, d) ∼ (u, d′) if and only if (d, d′) ∈ Dt,u. Note that each component Q ∈ C(D) can
also be regarded as a matching diagram such that Qt ⊆ Dt has at most one element for
each t ∈ T . For a component Q ∈ C(D), we define its support as the range of indices in T
spanned by the component,

supp(Q) = {t ∈ T | (t, d) ∈ Q for some d ∈ Dt}.

Note that the component set construction may be regarded as a functor C : MchT →Mch.
Even more than that, it can not only be used to pass from matching diagrams to the
matching category, but it can also be used to pass from matching diagrams to barcodes.
Definition 3.1.7. We define a functor B : MchT → Barc(T) by setting

B(D) = {(I,Q) ∈ I× C(D) | I = supp(Q)}

for any matching diagram D and

B(ψ) = {((I,Q), (I ′, R)) ∈ B(D)× B(E) | Qt ×Rt ⊆ ψt for all t ∈ I ∩ I ′}

for any morphism of matching diagrams ψ : D → E.
As shown in [BL20], the support of a component is indeed an interval, a morphism of

matching diagrams is mapped to an overlap matching by the above construction, and we
indeed get a functor.

From barcodes to matching diagrams Conversely to the previous construction, we can
also pass from barcodes to matching diagrams.
Definition 3.1.8. We define a functor D : Barc(T) → MchT by setting D(B) for any
barcode B to be the matching diagram given by

D(B)t = {(I, a) ∈ B | t ∈ I},
D(B)t,u = {((I, a), (I ′, a′)) ∈ D(B)t ×D(B)u | (I, a) = (I ′, a′)}.

For an overlap matching σ, we let D(σ) be the morphism of matching diagrams with

D(σ)t = {((I, a), (I ′, a′)) ∈ σ | t ∈ I ∩ I ′}.

Again, we refer to [BL20] for the fact that D is a well-defined functor.
Theorem 3.1.9 ([BL20]). The functors B : MchT → Barc(T) and D : Barc(T)→MchT

defined above are quasi-inverses. In particular, the categories MchT and Barc(T) are
equivalent.

Note that in [BL20], the equivalences were denoted by E and F .
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3.1.3. P-exactness for barcodes and matching diagrams

P-exact categories The categories of barcodes and matching diagrams have a certain
property that allows one to do homological algebra in them.

Definition 3.1.10. A category is called Puppe-exact or p-exact if it has a zero object, it
has all kernels and cokernels, every mono is a kernel and every epi is a cokernel, and every
morphism has an epi-mono-factorization.

Put informally, a Puppe-exact category is an abelian category that need not have
(co)products. For an in-depth look at p-exactness we refer to [Gra12]. Recall that in any
category with kernels and cokernels, monos have vanishing kernels and epis have vanishing
cokernels. While the converse is not true in general, it is true in p-exact categories.

Lemma 3.1.11 ([BP69, Korollar 2.4.4]). A morphism in a p-exact category is mono if and
only if its kernel vanishes and it is epi if and only if its cokernel vanishes.

We will use Lemma 3.1.11 throughout without explicit reference.

Proposition 3.1.12 ([Gra12, Section 1.6.4]). Mch is Puppe-exact. For a matching σ ⊆
A×B we have

kerσ = {a ∈ A | (a, b) /∈ σ for all b ∈ B},
im σ = {b ∈ B | (a, b) ∈ σ for some a ∈ A},

cokerσ = {b ∈ B | (a, b) /∈ σ for all a ∈ A},
coim σ = {a ∈ A | (a, b) ∈ σ for some b ∈ B}.

MchT is also Puppe-exact, with kernels, cokernels etc. given pointwise.

Using the equivalence between MchT and Barc(T), we can translate the constructions
in Proposition 3.1.12 to describe the kernels, cokernels, and images of overlap matchings
explicitly as barcodes.

Definition 3.1.13. For an overlap matching σ ⊆ B ×B′ and (I, a) ∈ B, (I ′, a′) ∈ B′, we
set

ker(σ, (I, a)) =
{︄

(I \ I ′, a) if ((I, a), (I ′, a′)) ∈ σ,
(I, a) otherwise;

coker(σ, (I ′, a′)) =
{︄

(I ′ \ I, a′) if ((I, a), (I ′, a′)) ∈ σ,
(I ′, a′) otherwise.

Proposition 3.1.14 ([BL20]). Let B ⊆ I×A and B′ ⊆ I×A′ be barcodes. Any overlap
matching σ ⊆ B ×B′ has a kernel, coimage, image and cokernel in Barc(T), with

kerσ = {(J, a) ∈ I×A | J = ker(σ, (I, a)) for (I, a) ∈ B}
coim σ = {(J, a) ∈ I×A | J = I ∩ I ′ for ((I, a), (I ′, a′)) ∈ σ}

im σ = {(J, a′) ∈ I×A′ | J = I ∩ I ′ for ((I, a), (I ′, a′)) ∈ σ}
cokerσ = {(J, a′) ∈ I×A′ | J = coker(σ, (I ′, a′)) for (I ′, a′) ∈ B′}.
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3.2. From barcodes and matching diagrams to persistence
modules

Of course, the main motivation for the introduction of the formal framework for barcodes
and matching diagrams from Section 3.1 is their relationship to persistence modules. To
elaborate on this, we briefly discuss the natural functors from the categories of barcodes
and matching diagrams to the category of persistence modules in § 3.2.1. We then go on to
review how dualization works in all of these categories in § 3.2.2.

3.2.1. Functors to persistence modules
Functor from barcodes to persistence modules With the overlap composition in Barc(T)
being defined as in Definition 3.1.4, we can make the passage from barcodes to persistence
modules into a functor.

Definition 3.2.1. If I and J are intervals such that I overlaps J above, there exists a
canonical morphism on interval modules φ(I, J) : C(I)→ C(J) defined by

φ(I, J)t =
{︄

idF if t ∈ I ∩ J,
0 otherwise.

We define the barcode module functorM : Barc(T)→ Pers by sending a barcode B to the
direct sum of interval modules

⨁︁
(I,a)∈B C(I) and sending an overlap matching σ ⊆ B ×B′

to the direct sum of the morphisms φ(I, I ′) : C(I)→ C(I ′) for all pairs ((I, a), (I ′, a′)) ∈ σ.
If a persistence module M satisfies M(B) ∼= M for some barcode B ∈ Barc(T), we say
that B is a barcode of M .

Note that, in contrast to the usual language, we only talk about B being a barcode of
M if M(B) ∼= M , because B is of course not unique. As discussed before, however, B is
unique up to a choice of its index set, i.e., it is unique up to isomorphism in Barc(T).

Functor from matching diagrams to persistence modules The aforementioned functor
from matching diagrams to persistence modules can now be defined as follows.

Definition 3.2.2. We define the functor F : Mch→ Vec by sending a set A to the free
vector space generated by A and sending a matching σ ⊆ A×B to the linear extension of
the map

a ↦→
{︄
b if (a, b) ∈ σ
0 otherwise.

By a slight abuse of notation, we also define the matching module functor F : MchT → Pers
by applying F pointwise, i.e., F(D) = F ◦D.

From the definitions, one easily checks the following proposition.

Proposition 3.2.3. There are natural isomorphisms F ∼=M◦B and M∼= F ◦ D.

Importantly, the barcode and matching module functors translate the p-exact structure
on barcodes and matching diagrams to p-exact structure on persistence modules, inherited
by their abelian structure. That is, we have the following straightforward result.
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3. More background on persistence theory

Proposition 3.2.4. The functor F preserves and reflects exactness, i.e., a sequence of
matchings V → V ′ → V ′′ is exact if and only if the corresponding sequence of vector spaces
F(V )→ F(V ′)→ F(V ′′) is exact. The same holds for F as a functor MchT → Pers and
for M : Barc(T)→ Pers.

3.2.2. Dualization
If σ ⊆ A×B is a matching, we define its opposite matching

σ◦ = {(b, a) | (a, b) ∈ σ} ⊆ B ×A.

This construction makes the category Mch self-dual, i.e., it yields an isomorphism between
Mch and its opposite category, mapping every set to itself and every matching to its
opposite matching. Taking opposite matchings at every index also yields a dualization
construction for matching diagrams, and it also makes MchT self-dual. As a consequence of
the equivalence between MchT and Barc(T), this also implies that Barc(T) is equivalent
to its opposite category. Note, however, that in Barc(T), the opposite matching of an
overlap matching need not be an overlap matching again in general, so the self-duality does
not stem from the same construction.

Barcodes over the opposite poset and dualization of persistence modules One can not
only compare Barc(T) to its opposite category Barc(T)op, but also to the category of
barcodes with respect to the opposite poset (T,≥), ie., to Barc(Top). To do so, note that
a subset I ⊆ T is an interval with respect to ≤ if and only if it is an interval with respect
to ≥, and that an interval I overlaps and interval J above with respect to ≤ if and only if
J overlaps I above with respect to ≥. This yields an obvious contravariant isomorphism
between Barc(T) and Barc(Top) which maps each barcode to itself. Thus, we can compare
barcodes of persistence modules indexed by (T,≤) with barcodes of persistence modules
indexed by (T,≥). Algebraically, the following construction yields a method for comparing
the two.
Definition 3.2.5. We define the contravariant dualization functor (−)∨ : VecT → VecTop

by applying vector space dualization pointwise, i.e., for a T-indexed persistence module M ,
its dual M∨ is the Top-indexed persistence module given by M∨

t = HomVec(Mt,F) for all
t ∈ T .

We have the following well-known fact.
Lemma 3.2.6. Let M be a PFD persistence module. Then B is a barcode for M if and
only if it is a barcode for M∨.

Note, however, that Lemma 3.2.6 does not extend beyong the PFD setting since no
infinite-dimensional vector space is isomorphic to its dual.

Exactness of dualization Recall that F is injective as a module over itself, which means
that the contravariant functor HomVec(−,F) : Vec→ Vec is exact. As pointwise application
of an exact functor yields an exact functor of diagram categories, we get the following.
Lemma 3.2.7. The dualization functor (−)∨ is exact. In particular, a morphism φ : M →
N of persistence modules yields isomorphisms

(kerφ)∨ ∼= cokerφ∨, (imφ)∨ ∼= imφ∨, (cokerφ)∨ ∼= kerφ∨.
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4. Introducing lifespan functors
In this chapter, we will define the lifespan functors and prove the main result presented in
§ 2.1.1, as well as the result on lifespan functors and images described in § 2.1.2. We start
with the definitions and the main properties of lifespan functors in a very general setting
in Section 4.1. The special case of persistence modules and barcodes is then discussed in
Section 4.2.

For this chapter, we do not put any additional constraints on our totally ordered index
set T .

4.1. Lifespan in p-exact diagram categories
We will now start our introduction to lifespan functors. As the first step, we will define
lifespan functors for very general diagrams in § 4.1.1. We then analyze some exactness
properties of these functors, i.e., whether and when they commute with taking kernels and
cokernels of morphisms in § 4.1.2.

4.1.1. Defining lifespan functors
Let A be any category with T-shaped limits and colimits, so that we get functors lim: AT →
A and colim: AT → A, where AT denotes the category of functors T → A. As for any
functor category, we also have a diagonal functor ∆: A→ AT, mapping each object to the
corresponding constant diagram. Of course, this setting includes the case where A = Vec.

For each object V in AT, the canonical maps Vt → colimV for t ∈ T form a natural
transformation ηV : V → ∆ colimV. Recall that colim is left adjoint to the diagonal functor
∆, and the morphism ηV is the component at V for the unit η : idAT → ∆ ◦ colim of
the adjunction colim ⊣ ∆. Similarly, the canonical maps limV → Vt give a natural
transformation ϵV : ∆ limV → V, which is the counit ϵ : ∆ ◦ lim→ idAT of the adjunction
∆ ⊣ lim. We thus get the diagram

∆ limV V ∆ colimV.
ϵV ηV

From now on, we assume that A is Puppe-exact, so that we can form kernels, cokernels,
and images of morphisms in A and AT. For a brief review of Puppe-exactness, see § 3.1.3
and for an in-depth review see the references therein.

Definition 4.1.1. We define the following functors AT → AT.

1. The mortal part functor is defined as (−)† = ker η(−).

2. The immortal part functor is defined as (−)∞ = im η(−).

3. The nascent part functor is defined as (−)∗ = coker ϵ(−).

4. The ancient part functor is defined as (−)−∞ = im ϵ(−).
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4. Introducing lifespan functors

By definition, for each object V in AT we get a natural diagram

V † V ∗

V

V −∞ V ∞

with diagonal short exact sequences. We also get composite natural transformations

(−)† → idAT → (−)∗ and (−)−∞ → idAT → (−)∞

and can again form kernels, cokernels and images to get new functors.

Definition 4.1.2. We define the following functors AT → AT.

1. The finite part functor is defined as (−)†,∗ = im((−)† → (−)∗).

2. The constant part functor is defined as (−)−∞,∞ = im((−)−∞ → (−)∞).

Remark 4.1.3. The universal property of epi-mono-factorizations implies that we have a
canonical isomorphism V −∞,∞ ∼= im(∆ limV → ∆ colimV ) for all objects V in AT.

We will also form kernels and cokernels of the above composite morphisms. In the cases
we are interested in, these turn out to coincide: by [Gra12, Lemma 2.2.4], pullbacks of
monos and pushouts of epis exist in p-exact categories, and we have canonical isomorphisms

ker(V † → V ∗) ∼= V † ×V V −∞ ∼= ker(V −∞ → V ∞)
coker(V † → V ∗) ∼= V ∗ +V V

∞ ∼= coker(V −∞ → V ∞)

for any V . Using this fact, we can make the following well-posed definition.

Definition 4.1.4. We define the following functors AT → AT.

1. The ancient mortal part functor is defined as

(−)−∞,† = ker((−)† → (−)∗) = ker((−)−∞ → (−)∞).

2. The immortal nascent part functor is defined as

(−)∗,∞ = coker((−)† → (−)∗) = coker((−)−∞ → (−)∞).

We give a common name to all the functors defined above.

Definition 4.1.5. For an object V in AT, we will call the diagram

V †,∗

V † V ∗

V −∞,† V V ∗,∞

V −∞ V ∞

V −∞,∞
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4.1. Lifespan in p-exact diagram categories

the lifespan diagram of V . We call the functors at the nodes of the diagram lifespan functors
and the natural maps between them lifespan transformations. We use the notation (−)⋄ as
a wildcard symbol for an arbitrary lifespan functors.

See Figure 2.1 for an example of a lifespan diagram of persistence modules.

Vanishing of lifespan functors Note that the lifespan diagram simplifies to a smaller
diagram in many applications. For example, the short exact sequence V −∞,† ↪→ V −∞ ↠
V −∞,∞ on the bottom left vanishes if V is bounded below in the sense that there exists
some t ∈ T with Vs = 0 for all s ≤ t. Similarly, the bottom right sequence vanishes if V
is bounded above in the sense that there exists some t ∈ T with Vu = 0 for all u ≥ t. For
the top left and the top right short exact sequences in the lifespan diagram, we have the
following conditions.

Proposition 4.1.6. Consider lim, colim: AT → A and an object V in AT.

1. If colim is exact, then V † = 0 if and only if all structure maps of V are mono.

2. If lim is exact, then V ∗ = 0 if and only if all structure maps of V are epi.

Proof. We only show the first statement since the second one is dual to it. So, assume that
taking colimits is exact.

If V † = 0, then V → ∆ colimV is mono, i.e., Vt → colimV is mono for any t ∈ T . Now,
for any structure map Vt → Vu, we obtain that the composition Vt → Vu → colimV is mono
since it is equal to the natural map Vt → colimV . This implies that Vt → Vu is mono.

Next, assume that all structure maps of V are mono and let t ∈ T . Define an object Ṽ in
AT by setting Ṽ s = Vs for any s < t and Ṽ u = Vt for any u ≥ t. There is an obvious map
Ṽ → V consisting of structure maps of V and because we assume these structure maps to
be mono the map Ṽ → V is mono, too. We assume that taking colimits is exact, so the
induced map colim Ṽ → colimV is still mono. But colim Ṽ = Vt and the induced map is
given by the natural map Vt → colimV . Hence, V → ∆ colimV is mono, which implies
V † = 0.

Complementary functors The construction of the lifespan functors involves kernels, cok-
ernels, and images of the natural transformations ϵ and η. Note, however, that we have not
used ker ϵ(−) and coker η(−) so far. These play a somewhat different role than the lifespan
functors, as they do not yield subobjects or quotients of the object we start with. Still,
their properties will be of similar importance, specifically, in Theorem 5.3.2.

Definition 4.1.7. We define the following functors AT → AT.

1. The ghost complement functor is defined as (−)▷ = ker ϵ(−).

2. The unborn complement functor is defined as (−)◁ = coker η(−).

See Figure 4.1 for an illustration of the complement functors.
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4. Introducing lifespan functors

V

∆ limV ∆ colimV

V ▷ V ◁

ηϵ

Figure 4.1.: Complement functors applied to a finite type R-indexed persistence module V ,
visualized via their barcode according to Propositions 4.2.9 and 4.2.10.

4.1.2. Lifespan functors and images
One of our overall goals is to study images of morphisms in persistent homology. For
that purpose, we want to study how the lifespan functors appearing in the statement of
Theorem 5.3.2 behave with respect to this operation. The relevant theorems hold in the
general setting, so, as before, let A be p-exact with T-indexed limits and colimits.

Example 4.1.8. The following examples show that the nascent and mortal part do not
preserve images. For both examples, let the index set be Z.

1. Consider a morphism φ : C([0,+∞))→ C([0, 1]) which has maximal rank everywhere,
e.g., by taking φ0 and φ1 to be identities and all other maps 0. Clearly, φ is epi and
in particular (imφ)† = C([0, 1])† = C([0, 1]). However, we have C([0,+∞))† = 0, so
imφ† = 0 and thus imφ† ̸= (imφ)†.

2. Now let φ : C([−1, 0])→ C((−∞, 0]) be of maximal rank everywhere. By a similar
argument, we get imφ∗ = 0 but (imφ)∗ = C([−1, 0]).

While the preservation of images fails in general, there are classes of morphisms for which
we get the desired result. We start with a lemma.

Lemma 4.1.9. Let V and W be objects in AT and φ : V →W a morphism.

1. If φ is epi, then φ∗ is epi; if φ is mono, then φ† is mono.

2. If limφ is epi, then φ−∞ is epi; if colimφ is mono, then φ∞ is mono.

Proof. Assume φ is epi. Note that the canonical map P ↠ P ∗ is also epi for any object P
in AT. We get a commutative diagram

V W

V ∗ W ∗

φ

φ∗

where the composition V → W ∗ is epi. Thus, φ∗ must be epi, too. The other assertions
can be shown analogously.
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4.1. Lifespan in p-exact diagram categories

Theorem 4.1.10. Let V and W be objects in AT and φ : V →W a morphism.

1. If colimφ is mono, we have canonical isomorphisms

imφ† ∼= (imφ)†, imφ∞ ∼= (imφ)∞ ∼= V ∞.

2. If limφ is epi, we have canonical isomorphisms

imφ∗ ∼= (imφ)∗, imφ−∞ ∼= (imφ)−∞ ∼= W−∞.

Proof. We only show the first part of the theorem, the second one being completely dual.
So, assume that colimφ is mono. To start, consider the epi-mono-factorizations

V † imφ† W † and V imφ W
p i

of φ† and φ, respectively. Applying the mortal part functor to the second factorization and
leaving the first one as is yields a commutative diagram

V † imφ† W †

(imφ)†
p† i†

By the universal property of epi-mono-factorizations, we get imφ† ∼= (imφ)† if i† is mono
and p† is epi, which is what we will show now. Since i is mono, by Lemma 4.1.9 i† is mono,
too. To see that p† is epi, consider the commutative diagram

0 V † V V ∞ 0

0 (imφ)† imφ (imφ)∞ 0

p† p p∞

with short exact rows. Applying the snake lemma (which holds in p-exact categories, see
[Gra12, Lemma 6.2.8]), we get an exact sequence

. . . ker p∞ coker p† coker p . . . .

By construction, p is epi so that coker p = 0. By assumption, colimφ = colim i ◦ colim p is
mono, so colim p is mono. Using the second part of Lemma 4.1.9, we get that p∞ is mono
as well. Thus, we get ker p∞. The exact sequence above now reads

. . . 0 coker p† 0 . . . ,

so that coker p† and hence p† is epi as needed. This finishes the proof of imφ† ∼= (imφ)†.
Next, recall that colim preserves epis, so colim p is not only mono as noted before but

also epi. Hence, colim p is an isomorphism because monos and epis in p-exact categories
are always normal, see [Gra12, §1.5.4]. Thus, we get a commutative diagram

V im ηV ∆ colim(V )

imφ im ηimφ ∆ colim(imφ)

p (∆ colim p)−1
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4. Introducing lifespan functors

with the epi-mono-factorizations of ηV and ηimφ in the rows. Uniqueness of the epi-mono-
factorization implies that the middle terms have to agree, so we obtain V ∞ = im ηV ∼=
im ηimφ = (imφ)∞. With our assumption that colimφ is mono, the first part of Lemma 4.1.9
yields that φ∞ is also mono. Thus, we have imφ∞ = V ∞. This finishes the proof.

A kernel-cokernel correspondence In our computational applications, we will often need
to assume that maps on the limit and colimit are not only mono or epi, but actually
isomorphisms. In this case, we have the following result, which we will not need later on
and record for its own sake. It might be of use in devising efficient algorithms for the
computation of kernels and cokernels of maps in persistent homology, which we do not
investigate further in this thesis. For this purpose, one can also show results similar to
Theorem 4.1.10 with kernels and cokernels replacing images.

Proposition 4.1.11. Let V and W be objects in AT and φ : V →W a morphism.

1. If colimφ is an isomorphism, we have a canonical isomorphism

cokerφ∞ ∼= kerφ◁.

2. If limφ is an isomorphism, we have a canonical isomorphism

kerφ−∞ ∼= cokerφ▷.

Proof. We only show the first assertion, the proof of the second one is completely analogous.
Consider the diagram

0 V ∞ ∆ colimV V ◁ 0

0 W∞ ∆ colimW W ◁ 0

φ−∞ ∆ colimφ φ◁

Its rows are exact, so we can apply the snake lemma to get an exact sequence

. . . ker(∆ colimφ) kerφ◁ cokerφ∞ coker(∆ colimφ) . . .

By assumption, the terms on the left and the right vanish, which yields the claim.

4.2. Lifespan of persistence modules

We will now specialize the discussion of the lifespan functors from general p-exact diagram
categories to those categories we are chiefly interested in, namely persistence modules
and barcodes. More precisely, we analyze how lifespan functors and their complementary
functors change the barcodes of persistence modules in § 4.2.1. To finish the chapter, we
discuss how lifespan functors behave with respect to dualization of persistence modules and
the corresponding change from T to Top as the index category in § 4.2.2.

48



4.2. Lifespan of persistence modules

4.2.1. Lifespan functors and barcodes
In order to give an explicit description of how our lifespan functors change the barcode of
an interval-decomposable persistence module, we will take a detour via matching diagrams
as reviewed in § 3.1.1. We can apply the theory of lifespan functors to category of matching
diagrams MchT because Mch is p-exact and every object in MchT has a limit and a
colimit, as we will show using the component set from Definition 3.1.6.

Proposition 4.2.1. Every matching diagram D in MchT has a limit and a colimit.

Proof. The limit is given by

limD = {Q ∈ C(D) | supp(Q) is not strictly bounded below},

with natural maps limD → Dt matching a class Q to its representative in Dt if there is
one. We can also explicitly construct the colimit of D as

colimD = {Q ∈ C(D) | supp(Q) is not strictly bounded above}.

Here, the natural maps Dt → colimD match an element to its equivalence class if this
class is contained in the set above. We omit the straightforward verification that these
construction satisfy the universal properties of limits and colimits.

Remark 4.2.2. The construction above can be adapted to show that Mch not only has
totally ordered limits and colimits, but all cofiltered limits and filtered colimits.

Lifespan functors for barcodes We will now look at how the lifespan functors behave
when being transported to barcodes via the equivalences B and D between barcodes and
matching diagrams reviewed in Theorem 3.1.9. Recall that I = I(T ) denotes the set of all
intervals in T . We introduce some more notation.

Definition 4.2.3. We define the following subsets of the intervals I in T .

I∗ = {I ∈ I | I is strictly bounded below}, I−∞ = I \ I∗,

I† = {I ∈ I | I is strictly bounded above}, I∞ = I \ I†,

I†,∗ = I∗ ∩ I†, I−∞,∞ = I−∞ ∩ I∞,

I−∞,† = I−∞ ∩ I†, I∗,∞ = I∗ ∩ I∞.

If B is a barcode, we also define

B⋄ = {(I, a) ∈ B | I ∈ I⋄}

for any lifespan functor (−)⋄.

Theorem 4.2.4. Let B be a barcode. We have

B(D(B)⋄) ∼= B⋄

for all lifespan functors (−)⋄. Moreover, under these isomorphisms, all lifespan transfor-
mations correspond to the respective inclusions and coinclusions.
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4. Introducing lifespan functors

Proof. From the definitions of B and D as well as the explicit constructions of limits and
colimits for matching diagrams in the proof of Proposition 4.2.1, we obtain

B(∆ limD(B)) ∼= {(T, (I, a)) ∈ I×B | I ∈ I−∞},
B(∆ colimD(B)) ∼= {(T, (I, a)) ∈ I×B | I ∈ I∞}.

The overlap matching B(ϵD(B)) : B(∆ limD(B)) → B(D(B)) ∼= B matches every interval
(T, (I, a)) with I ∈ I−∞ to (I, a). Similarly, B(ηD(B)) matches every element (I, a) with
I ∈ I∞ to (T, (I, a)). All lifespan functors are given on the level of barcodes by first forming
kernels, cokernels, and images of B(ϵD(B)) and B(ηD(B)), and then kernels, cokernels,
and images of the resulting composite lifespan transformations. Hence, the claim follows
by applying the formulas for kernels, cokernels, and images of overlap matchings from
Proposition 3.1.14 several times.

Lifespan functors and the passage to persistence modules Next, we want to show that
all the lifespan functors are compatible with the matching module functor F . Since F is
exact, a straightforward proof strategy would be to show that F also commutes with lim
and colim and then use the fact that all lifespan functors are obtained from lim and colim
by forming kernels, cokernels, and images. For colimits, this works out.

Lemma 4.2.5. The functor F : Mch→ Vec commutes with T-indexed colimits.

Proof. Recall that in the proof of Proposition 4.2.1 we constructed the colimit of a matching
diagram D as the set of components Q ∈ C(D) whose support is in I∞. Further, recall from
the definition of the component set that each component can be regarded as a matching
diagram. As such, D is canonically isomorphic to the disjoint union (which is not the
coproduct, but rather a butterfly product in Mch, see [Gra12, Section 2.1.7]) of all its
components. Clearly, F takes disjoint unions to direct sums. Moreover, for each component
Q ∈ C(D) the colimit of F(Q) is one-dimensional if suppQ ∈ I∞ and trivial else. Altogether,
we obtain a natural isomorphism

colimF(D) ∼= colim
⨁︂

Q∈C(D)
F(Q) ∼=

⨁︂
Q∈C(D)

colimF(Q) ∼=
⨁︂

Q∈C(D)
supp(Q)∈I∞(T )

F ∼= F(colimD),

proving the claim.

In contrast to colimits, F generally does not commute with T-indexed limits: Consider
the matching diagram D indexed by the negative integers and given by D−n = {1, . . . , n}
with structure maps matching each number to itself. Then F(limD) =

⨁︁
n∈N F, but

limF(D) =
∏︁
n∈N F.

Instead, we will use a more explicit argument to show that F commutes with the ancient
part, which, together with the colimit, can also be used as a starting point to construct the
other lifespan functors by forming kernels, cokernels, and images.

Theorem 4.2.6. Let D be a matching diagram. We have canonical isomorphisms

F(D)⋄ ∼= F(D⋄)

for all lifespan functors (−)⋄, which commute with the lifespan transformations.
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Proof. We start by showing that F commutes with the ancient part. For this, consider
the epi-mono-factorizations ∆ limD ↠ D−∞ ↪→ D and ∆ limF(D) ↠ F(D)−∞ ↪→ F(D).
Recall that F preserves exactness and hence also monos and epis. Thus, by applying F to
the first diagram, we get another epi-mono-factorization. The universal property of the
limit also induces a unique morphism F(∆ limD)→ ∆ limF(D) through which the cone
morphism F(∆ limD)→ F(D) factors. We obtain a commutative diagram

F(∆ limD) F(D−∞) F(D)

∆ limF(D) F(D)−∞ F(D)

id

Since epi-mono factorizations are unique up to unique isomorphism, we only need to show
that the composite morphism F(∆ limD)→ F(D)−∞ is epi in order to obtain our claim.
So let t0 ∈ T and m ∈ F(D)−∞

t0 . Because m is in the ancient part, i.e., the image of the
natural map limF(D)→ F(D)t0 , there exists a family (mt)t with mt ∈ F(D)t, mt0 = m
and such that F(D)s,t(ms) = mt whenever s ≤ t. Now, choose finite index sets At for t ∈ T
such that we can write each mt as a linear combinations mt =

∑︁
α∈At

λα,tdα,t with dα,t ∈ Dt

and λα,t ̸= 0 for all t ∈ T . Because F(D)s,t0(ms) = mt0 holds for any s ≤ t0, we obtain
that for any α ∈ At0 and s ≤ t0 there exists β = β(α, s) ∈ As with (dβ,s, dα,t0) ∈ Ds,t0 .
In particular, the component Qα ∈ C(D) represented by dα,t0 has support in I−∞ for any
α ∈ At0 . Thus, m = mt0 is the image of

∑︁
α∈At0

λα,t0Qα ∈ F(limD) under the composite
morphism F(limD)→ F(D)−∞

t0 . Hence, this map is epi as we needed to show.
The claimed isomorphisms for the other lifespan functors can now be deduced from the

isomorphisms we have shown already: Consider the commutative squares

F(D) ∆ colimF(D)

F(D) F(∆ colimD)

id

ηF(D)

F(ηD)

and
F(D)−∞ F(D)

F(D−∞) F(D)

αF(D)

id
F(αD)

We have just shown that the vertical maps in the square on the right are isomorphisms.
The vertical maps in the square on the left are isomorphisms because F and colim commute
by Lemma 4.2.5. Thus, we obtain

F(D)† = ker ηF(D) ∼= F(ker ηD) = F(D†)
F(D)∞ = im ηF(D) ∼= F(im ηD) = F(D∞)
F(D)∗ = cokerαF(D) ∼= F(cokerαD) = F(D∗).

By these isomorphisms, the vertical maps in the commutative squares

F(D)† F(D)∗

F(D†) F(D∗)

βF(D)

F(βD)

and
F(D)−∞ F(D)∞

F(D−∞) F(D∞)

γF(D)

F(γD)
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are isomorphisms, too. This yields

F(D)−∞,† = kerβF(D) ∼= F(kerβD) = F(D−∞,†)
F(D)†,∗ = im βF(D) ∼= F(im βD) = F(D†,∗)

F(D)∗,∞ = coker γF(D) ∼= F(coker γD) = F(D∗,∞)
F(D)−∞,∞ = im γF(D) ∼= F(im γD) = F(D−∞,∞).

Lifespan functors for interval-decomposable persistence modules Finally, combining
the fact that the matching module functor F and the lifespan functors commute by
Theorem 4.2.6 with the fact that F and the barcode module functor M are compatible
with each other by Proposition 3.2.3, we can use the formulas for the effect of lifespan
functors on barcodes from Theorem 4.2.4 to describe how the lifespan functors change the
barcodes of persistence modules.

Corollary 4.2.7. Let M be a persistence module. If B is a barcode of M , then

B⋄ = {(I, a) ∈ B | I ∈ I⋄}

is a barcode for M⋄, where (−)⋄ is any lifespan functor.

From Corollary 4.2.7 we obtain that all the short exact sequences in the lifespan diagram
of an interval-decomposable persistence module are obtained up to isomorphism by applying
the barcode module functor M to a short exact sequence of barcodes of the form B′ ↪→
B′ ⊔B′′ ↠ B′′. The inclusion and coinclusion into and out of the disjoint union only match
bars with identical underlying intervals, so they admit one-sided inverses by Lemma 5.1.1.
Applying M to the sequence of barcodes above preserves these one-sided inverses, so we
obtain the following corollary.

Corollary 4.2.8. All the short exact sequences in the lifespan diagram of an interval-
decomposable persistence module split.

Complementary functors for interval-decomposable persistence modules For the un-
born complement, the expected formula for the effect on barcodes and the compatibility
with F hold as for the lifespan functors. We summarize the results and omit the analogous
proofs.

Proposition 4.2.9. The unborn complement satisfies

B(D(B)◁) ∼= B◁ := {(T \ I, a) | (I, a) ∈ B, I ̸= T and I ∈ I∞}

for any barcode B. Moreover, the unborn complement commutes with the matching module
functor up to natural transformation. In particular, if M is a persistence module with
barcode B, then B◁ is a barcode of M◁.

For the ghost complement, however, not all of the corresponding statements hold in
general: It does not commute with the matching module functor and thus does not change the
barcode of a persistence module as we would like it to. This is closely related to the fact that
F does not commute with limits as mentioned before Theorem 4.2.6, which can even happen
for PFD persistence modules indexed by the real line as the example

⨁︁
n∈NC((−∞,−n))
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shows. The problems with the ghost complement disappear for classes of persistence
modules where limits do commute with F , e.g., those of finite type, which are persistence
modules with a finite barcode. Similarly, everything works out as desired if the index set
has a minimal element tmin, because then we have limF(D) ∼= F(Dtmin) ∼= F(limD).

Proposition 4.2.10. Let B be a barcode satisfying limF(D(B)) ∼= F(limD(B)). Then we
have

B(D(B)▷) ∼= B▷ := {(T \ I, a) | (I, a) ∈ B, I ̸= T and I ∈ I−∞}.

Moreover, on the full subcategory of these barcodes the ghost complement commutes with the
matching module functor up to natural transformation. In particular, if M is a persistence
module with barcode B satisfying the requirement above, then B▷ is a barcode of M▷.

Remark 4.2.11. For persistence modules, some of the lifespan functors admit more explicit
descriptions. In particular, the mortal part of a persistence module M = ((Mt)t, (ms,t)s,t)
is the submodule given by the subspaces M †

t =
⋃︁
u kermt,u ⊆ Mt. In this form, the

construction has been considered before by Höppner and Lenzing in [HL81a]. They describe
it as analogous to taking the submodule of all torsion elements of a module over some
integral domain. Certain categories of persistence modules can be shown to be equivalent
to categories of modules over some ring (see [CK18; Les15; ZC05]), and under these
equivalences, the mortal part indeed corresponds to the torsion submodule. Furthermore,
the immortal part has also been considered before in applications of barcodes to symplectic
geometry. For a recent example, see [Dah21].

Note that, on the other hand, while the ancient part is always a submodule of the
intersection of images, M−∞

t ⊆
⋂︁
s imms,t, in general the two need not be isomorphic. The

persistence module M3 described in § 5.2.2 provides a counterexample.

4.2.2. Lifespan and dualization

When passing from homology to cohomology, we will see later in Proposition 5.3.4 that what
happens on the level of persistence modules is dualization. When passing from absolute
to relative persistent homology, our correspondence result Theorem 5.3.2 will involve the
lifespan functors. So, in order to get the full picture involving all four persistence modules
associated to a diagram of spaces, we now also have to analyze whether dualization is
compatible with lifespan functors.

Because we dualize, we will not only consider persistence modules indexed by (T,≤),
but also ones indexed by (T,≥). When interpreting lifespan in terms of barcodes, it is
important to note that the direction of the order on the index set changes the meaning
of the different classes of intervals we consider, i.e., Definition 4.2.3 depends on whether
we use the usual or the opposite order. For example, we have I∗(T,≤) = I†(T,≥) and
I−∞(T,≤) = I∞(T,≥). Thus, one should expect duals of mortal parts to correspond to
nascent parts of duals and so on. To avoid confusion, we introduce some notation.

Notation 4.2.12. In the context of the indexing category Top, we will write

(−)† := (−)∗, (−)∞ := (−)−∞, (−)∗ := (−)†, (−)−∞ := (−)∞,

(−)†,∗ := (−)†,∗, (−)−∞,∞ := (−)−∞,∞, (−)∗,∞ := (−)−∞,†, (−)−∞,† := (−)∗,∞,

(−)◁ := (−)▷, (−)▷ := (−)◁.
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The above convention now yields I⋄(T,≥) = I⋄(T,≤) for any lifespan functor (−)⋄.

Proposition 4.2.13. Let M be a persistence module. We have canonical isomorphisms

(M †)∨ ∼= (M∨)†, (M∞)∨ ∼= (M∨)∞, (M◁)∨ ∼= (M∨)◁

Proof. The functor Hom(−,F) takes colimits to limits, so we have a canonical isomorphism
(∆ colimM)∨ ∼= ∆ limM∨. Together with the kernel, cokernel, and image descriptions for
dual maps from Lemma 3.2.7, this yields the claim.

The limit functor for persistence modules commonly exhibits less desirable properties than
the colimit functor. For example, the limit functor does not preserve exactness and does not
commute with the functor F while the colimit functor does. A similar phenomenon arises
with dualization of persistence modules, preventing the previous proposition from holding
for all lifespan functors: In general, we do not have an isomorphism between (∆ limM)∨

and ∆ colimM∨, because the vector spaces Hom(limM,F) and colimM∨ need not be
isomorphic. However, if (T,≤) has a smallest element tmin, then we have (∆ limM)∨ ∼=
∆ Hom(Mtmin ,F) ∼= ∆ colimM∨. Thus, we get the following.

Proposition 4.2.14. Assume that (T,≤) has a smallest element and let M be a T-indexed
persistence module. Then we have canonical isomorphisms (M⋄)∨ ∼= (M∨)⋄ for any lifespan
functor or complementary functor (−)⋄.

For later use, we also record the following completely equivalent reformulation in terms
of persistence modules indexed by the opposite order.

Proposition 4.2.15. Assume that (T,≤) has a largest element and let M be a Top-indexed
persistence module. Then we have canonical isomorphisms (M⋄)∨ ∼= (M∨)⋄ for any lifespan
functor of complementary functor (−)⋄.

Note that above, we use the notation (−)∨ as a functor from T-indexed persistence
modules to Top-indexed persistence modules and also vice versa.

Furthermore, in the PFD case, applying any lifespan functor (−)⋄ to a persistence module
M has the same effect on barcodes as the corresponding functor (−)⋄ applied to the dual
persistence module M∨.

Proposition 4.2.16. Let M be a PFD persistence module. Then M⋄ and (M∨)⋄ have the
same barcodes for any lifespan functor (−)⋄.

Proof. By Lemma 3.2.6 we know that PFD persistence modules have the same barcode as
their duals, so the claim follows immediately from the explicit formula in Corollary 4.2.7
for the effect of lifespan functors on barcodes.
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In this chapter, we prove the results stated in § 2.1.2. We start by discussing injective
and projective objects in the equivalent categories of barcodes and matching diagrams in
Section 5.1. Afterwards, we classify injective and projective objects in pers in Section 5.2,
and discuss which parts of this classification also hold in Pers. As our last application, we
discuss natural dualities in persistent homology in terms of lifespan functors in Section 5.3.

For this chapter, we do not put any general constraints on our totally ordered index set
T . In Section 5.2, we will make some special considerations in the case where T = R, and
in Section 5.3 we will at some point consider the case where T is finite.

5.1. Injective and projective barcodes and matching diagrams
As our first application, we classify injective and projective objects in the p-exact categories
of barcodes and matching diagrams. We start by characterizing injective and projective
barcodes in terms of vanishing lifespan functors in § 5.1.1. These characterizations are then
translated to the category of matching diagrams and combined with previous results on
lifespan functors in § 5.1.2.

5.1.1. Injective and projective barcodes
As a first application, we will now use our lifespan functors to characterize projective and
injective objects in the categories of barcodes. The following characterization of split mono
and epi overlap matchings will be important in what follows.

Lemma 5.1.1. Let σ be an overlap matching and assume that σ is mono or epi. Then σ
is split if and only if ((I, a), (I ′, a′)) ∈ σ implies I = I ′.

Proof. If ((I, a), (I ′, a′)) ∈ σ implies I = I ′ for some overlap matching σ, then its opposite
matching σ◦ is again an overlap matching. If σ is epi, this yields a right inverse and if σ is
mono, this yields a left inverse.

If on the other hand σ is split mono or split epi, there needs to be an overlap matching
τ with ((I ′, a′), (I, a)) ∈ τ whenever ((I, a), (I ′, a′)) ∈ σ. Since both σ and τ are overlap
matchings, I and I ′ overlap each other above, so we have I = I ′ whenever ((I, a), (I ′, a′)) ∈
σ.

In other words, Lemma 5.1.1 states that an overlap matching is split if and only if its
opposite matching is again an overlap matching.

Theorem 5.1.2. A barcode B is projective if and only if B† = 0, and injective if and only
if B∗ = 0.

Proof. We will only show the first statement, the second one can be shown analogously.
First, assume that B† = 0. In order to show that B is projective, we consider some overlap
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matching σ : B → B′ and need to show that it factors through an arbitrary epi τ : B′′ → B′.
Consider σ and τ as ordinary matchings and set ρ = τ◦ ◦ σ, where τ◦ is the opposite
matching of τ (see Definition 3.1.2). We show that ρ is in fact an overlap matching, i.e.,
that for any ((I, a), (I ′′, a′′)) ∈ ρ we have that I overlaps I ′′ above:

Since B† = 0, we have I ∈ I∞, so that I bounds any other interval, and in particular I ′′,
above. What is left to check is that I ′′ bounds I below and that the two intervals have non-
empty intersection. If ((I, a), (I ′′, a′′)) ∈ ρ, then by definition of ρ there is some (I ′, a′) ∈ B′

such that ((I, a), (I ′, a′)) ∈ σ and ((I ′′, a′′), (I ′, a′)) ∈ τ . Since τ is epi, its cokernel vanishes
and we obtain I ′ ⊆ I ′′ from the explicit cokernel formula in Proposition 3.1.14. Moreover,
I overlaps I ′ above, so we know that I ′ bounds I below and that I ∩ I ′ ̸= ∅. Together with
I ′ ⊆ I ′′, this implies that I ′′ bounds I below and that I ∩ I ′′ ≠ ∅. In total, I overlaps I ′′

above and ρ is an overlap matching.
Now, an easy calculation verifies that we have τ • ρ = σ, i.e., that when considering ρ as

an overlap matching, its overlap composition with τ recovers σ. Hence, we have shown that
σ factors through τ , so B is projective.

Next, assume that B† ≠ 0. We want to show that in this case B is not projective by
constructing a barcode B′ and an epi σ : B′ → B that does not split. To do so, choose
(I, a) ∈ B such that I ∈ I†, which is possible by our assumption B† ̸= 0. Define

J = {t ∈ T | there exists s ∈ I with s ≤ t}.

Clearly, J is an interval in T and it overlaps I above. We define

B′ = (B \ {(I, a)}) ∪ {(J, a)}

and σ : B′ → B by matching each element of B \ {(I, a)} to itself and matching (J, a) to
(I, a). This matching σ has trivial cokernel since I ⊆ J , so σ is epi as desired. But, we have
I ̸= J since I ∈ I†. Thus, σ matches non-identical intervals and consequently does not split
by Lemma 5.1.1, so B cannot be projective.

5.1.2. Injective and projective matching diagrams
Translating Theorem 5.1.2 via the equivalence of barcodes and matching diagrams, we also
obtain that a matching diagram is projective if and only if its mortal part vanishes and
injective if and only if nascent part vanishes.

Corollary 5.1.3. A matching diagram D is projective if and only if D† = 0, and injective
if and only if D∗ = 0.

By Proposition 4.1.6 we know that vanishing mortal and nascent part can equivalently
be described in terms of the structure maps of a diagram, given that taking limits and
colimits of diagrams is exact. It is therefore interesting to check whether taking limits and
colimits of matching diagrams is exact.

Proposition 5.1.4. The functors colim, lim: MchT →Mch are exact.

Proof. Let D → D′ → D′′ be an exact sequence of matching diagrams. By Proposition 3.2.4
the functor F preserves exactness, so the sequence F(D) → F(D′) → F(D′′) remains
exact. It is well-known that taking colimits of persistence modules is exact. Thus, the
sequence colimF(D)→ colimF(D′)→ colimF(D′′) is still exact. Using that F commutes
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with taking T-indexed colimits by Lemma 4.2.5, we get that F(colimD)→ F(colimD′)→
F(colimD′′) is also exact. By Proposition 3.2.4 the functor F reflects exactness, so
colimD → colimD′ → colimD′′ is exact, proving that taking colimits of matching diagrams
is exact. Self-duality of the category Mch implies that taking limits then has to be exact,
too.

Knowing that taking limits and colimits of matching diagrams is exact, we can now com-
bine the equivalent conditions for vanishing mortal and nascent parts from Proposition 4.1.6
and Corollary 5.1.3 to obtain the following.

Corollary 5.1.5. A matching diagram D is projective if and only if all of its structure
maps are mono, and injective if and only if all of its structure maps are epi.

A natural question to ask is whether statements analogous to the above Corollaries 5.1.3
and 5.1.5 also hold for persistence modules instead of matching diagrams: can we characterize
projectivity/injectivity or structure maps being mono/epi by vanishing mortal/nascent
parts?

5.2. Injective and projective persistence modules

After having classified injectives and projectives in the categories of barcodes and matching
diagrams, we will now check which of the characterizations given in Section 5.1 also hold for
persistence modules. Specifically, in § 5.2.1, we show that the characterization of injective
and projective matching diagrams from before also holds in the case of PFD persistence
modules. We finish by discussing which parts of the characterization also hold for general
persistence modules in § 5.2.2.

5.2.1. Injective and projective objects in pers

Before talking about PFD persistence modules, we prove one more result about lifespan
functors of persistence modules in general.

Proposition 5.2.1. For any persistence module M , we have M † = 0 if and only if all
structure maps of M are mono. Moreover, if M∗ = 0, then all structure maps of M are epi.

Proof. The first part of the proposition is just a special case of the first part of Proposi-
tion 4.1.6, noting that taking colimits of persistence modules is exact.

For the second part, we repeat parts of the dual version of the proof of Proposition 4.1.6:
If M∗ = 0, then ∆ limM →M is epi, i.e., limM →Mt is epi for all t ∈ T . This implies in
particular that for any structure map Ms → Mt, the composition limM →Ms →Mt is
epi since it is equal to limM →Mt. As a consequence, Ms →Mt needs to be epi, finishing
the proof.

As we will see in § 5.2.2, the converse to the second part of the proposition does not
hold in general. In the category pers of PFD persistence modules, however, we can indeed
characterize projectives and injectives in a way analogous to matching diagrams MchT.
We prove a lemma before stating and proving the main theorem.
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Lemma 5.2.2. Let B ⊆ I×A be a barcode such that M(B) is PFD and let I ∈ I∞ be an
interval. If there exists an epimorphism φM(B)→ C(I), then there exists (J, a) ∈ B with
I = J and φ induces the identity morphism C(J)→ C(I).

Proof.

Theorem 5.2.3. Let M be a PFD persistence module.

1. The following are equivalent:
a) All structure maps of M are mono.
b) M † = 0.
c) M is projective in pers.

2. The following are equivalent:
a) All structure maps of M are epi.
b) M∗ = 0.
c) M is injective in pers.

Proof. Starting with the first part of the theorem, we first note that we have already shown
that M † = 0 is equivalent to M having mono structure maps for any persistence module M
in Proposition 5.2.1. Thus, what is left to show for the first part is that M † = 0 is equivalent
to M being projective in the PFD category. To do so, we fix a barcode decomposition
M ∼=

⨁︁
αC(Iα), which is possible by Crawley-Boevey’s theorem [BC20; Cra15] since M is

PFD.
Now, assume that M † = 0, or equivalently M = M∞. We want to show that M is

projective in pers. A direct sum of projectives is projective, so it suffices to check that the
interval modules C(Iα) in the decomposition of M are projective in pers. Recall that pers
is abelian, so in order to show that C(Iα) is projective in pers we only need to show now
that any epimorphism φ : N → C(Iα) with N PFD splits:

Choosing a barcode decomposition N ∼=
⨁︁

β C(Jβ) induces maps φβ : C(Jβ)→ C(Iα) for
each β. According to the dual version of [BL15, Lemma 4.3] (which Bauer and Lesnick
state in the R-indexed case, but whose proof generalizes to our T -indexed setting), there
has to be some β0 such that Iα ⊆ Jβ0 and that simultaneously Jβ0 has to overlap Iα above.
Since we assume M † = 0, Iα ∈ I∞ holds by Corollary 4.2.7, so we obtain Iα = Jβ0 . This
yields that φβ0 is an isomorphism. We can thus define ψ : C(Iα)→ N as the composition

C(Iα) C(Jβ0)
⨁︁
β
C(Jβ) ∼= N.

φ−1
β0

By construction, we have φ ◦ ψ = φ−1
β0
◦ φβ0 , which is the identity on C(Iα), so φ splits.

Thus, we have shown that C(Iα), and consequently M , is projective.
Next, we assume that M † ̸= 0 and show that M is not projective in pers. Because the

mortal part of M does not vanish, there now has to be some α0 with Iα0 ∈ I†. We proceed
as in the proof of Theorem 5.1.2 and define

J = {t ∈ T | there exists s ∈ Iα0 with s ≤ t}.
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Clearly, J is an interval in T and it overlaps Iα0 above. The canonical map C(J)→ C(Iα0)
is an epi, which we can use to obtain an epi⨁︂

α ̸=α0

C(Iα)⊕ C(J)→
⨁︂
α ̸=α0

C(Iα)⊕ C(Iα0) ∼= M

in pers, which is an isomorphism on all summands except for C(J). If this map would
split, the splitting would induce a morphism C(Iα0)→ C(J), which cannot exist since Iα0

by construction does not overlap J above. Thus, the epi we constructed does not split and
M is not projective in pers. This finishes the proof of the first part.

For the second part, we first observe that in the PFD setting, barcode decompositions can
not only be interpreted as direct sums but even as biproducts. Note that a PFD persistence
module may have a barcode consisting of infinitely many intervals, so this assertion is
not guaranteed by pers being abelian and thus having finite biproducts. However, the
observation is still true due to the fact that direct sums and products of persistence modules
are given pointwise, and they coincide for finite-dimensional vector spaces, so they also
coincide for PFD persistence modules. Thus, since we have biproduct decompositions, one
can now show that M∗ = 0 is equivalent to M being injective in pers by dualizing the
previous argument and exploiting the fact that products of injectives are again injectives.

That M∗ = 0 implies M having epi structure maps has been shown for all persistence
modules M before in Proposition 5.2.1, so what remains to be checked is that M∗ = 0 if M
is PFD and its structure maps are epi. To see that this is the case, one can use the fact that
the functor lim: pers→ Vec is exact (because derived inverse limits of PFD persistence
modules vanish [Jen70, Proposition 1.1], [Roo62, Théorème 2] and reuse the argument in
the proof of Proposition 4.1.6 to show that ∆ limM →M is epi if the structure maps of M
are epi, which implies that M∗ = 0.

Any PFD persistence module has a barcode and the lifespan functors are compatible
with the passage to barcodes, so another way of phrasing the previous theorem is that a
PFD persistence module is projective or injective in pers if and only if its barcode has the
corresponding property in Barc(T).

5.2.2. Injective and projective objects in Pers

When considering persistence modules beyond the PFD category, some of the equivalences
established in Theorem 5.2.3 do not hold anymore in general. We give a few examples.

First consider the case T = R, which is the most important for persistent homology. In
this case, if the structure maps of M are epi, then M∗ = 0, providing a converse to the
second part of Proposition 5.2.1. The assertion can be shown by a simple argument as in
the proof of [Zel51, Lemma 7]. Moreover, any injective object in VecR has epi structure
maps (see [Höp83; HL81a] for classification results for injectives in Pers). The converse
does not hold: the real-indexed persistence module M1 = C(−∞, 0) satisfies M∗

1 = 0
and has epi structure maps, but it is not injective in VecR because the obvious mono
M1 = C(−∞, 0)→

∏︁
n∈N>0 C

(︂
−∞,− 1

n

)︂
does not split. Similarly, any projective object in

VecR has vanishing mortal part and mono structure maps (see [HL81b] for a classification
of projectives in Pers). Again, the converse does not hold: the real-indexed interval module
M2 = C(0,∞) satisfies M †

1 = 0 and has mono structure maps, but it is not projective in
VecR because the obvious epi

⨁︁
n∈N>0 C

(︂
1
n ,∞

)︂
→ C(0,∞) = M2 does not split.
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For general totally ordered indexing sets T , we still have the implications that any
injective object in Pers has epi structure maps and that any projective object in Pers
has mono structure maps and vanishing mortal part. However, for persistence modules,
having epi structure maps does not always imply vanishing nascent part: there is a non-zero
persistence module M3 indexed by the opposite poset of the first uncountable ordinal ω1
whose structure maps are all epi, but which satisfies limM3 = 0 ([HS54, Section 3]), so
that M∗

3 = M3 ̸= 0. We are presently unable to determine whether injective persistence
modules necessarily have vanishing nascent part.

5.3. Dualities in terms of lifespan functors
As we have seen in § 2.1.1, the main motivation for the introduction of lifespan functors is
that they naturally appear when discussing certain duality results in persistent homology.
In §5.3.1, we prove these natural duality results in terms of lifespan functors and dualization
of persistence modules. These dualities are then combined in §5.3.2 with previous results on
when lifespan functors commute with taking images of morphisms from § 4.1.2 in order to
obtain correspondence results between barcodes of images of maps in absolute and relative
persistent (co)homology.

All chain complexes and (co)homology groups in this section are understood to be singular
(co)homology with coefficients in our fixed field F.

5.3.1. Persistent homology dualities
Absolute-relative correspondence We will now prove a generalization of the absolute-
relative correspondence [dSMV11, Proposition 2.4] involving our lifespan functors. In order
for this to work nicely, we only consider filtrations that satisfy the following condition.

Definition 5.3.1. Let X be a T-indexed diagram of topological spaces. Recall that X is
called a filtration if all of its structure maps are injective. We say that X is colimit proper
if the natural maps colimHd(X) → Hd(colimX) and Hd(colimX) → limHd(colimX,X)
are isomorphisms for all d.

Note that colimit properness is always satisfied if the diagram X is initially empty and
eventually constant. In particular, if the index set has a largest element tmax and a minimal
element tmin then every X with Xtmin = ∅ is colimit proper. These properties are usually
given in the computational setting for persistent homology.

Theorem 5.3.2. Let X be a colimit proper filtration of topological spaces. For all d, we
have the following isomorphisms, which are natural in X:

Hd−1(X)† ∼= Hd(colimX,X)∗,

Hd(X)◁ ∼= Hd(colimX,X)−∞,

Hd(X)∞ ∼= Hd(colimX,X)▷.

Proof. To shorten notation, we write A for colimX. Since X is a filtration, the natural
map C∗(X)→ C∗(∆A) is mono. Denoting the cokernel of this map by C∗(A,X), we have
a short exact sequence

0 C∗(X) C∗(∆A) C∗(A,X) 0
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of persistent chain complexes. This induces a long exact sequence of persistence modules

· · · ∆Hd(A) Hd(A,X) Hd−1(X) ∆Hd−1(A) · · · .ϵd ∂ ηd−1

Since we assume X to be colimit proper, the map ϵd can be identified with the counit

ϵHd(A,X) : ∆ limHd(A,X)→ Hd(A,X)

of the adjunction ∆ ⊣ lim. Similarly, the map ηd−1 may be identified with the unit

ηHd−1(X) : Hd−1(X)→ ∆ colimHd−1(X)

of the adjunction colim ⊣ ∆. Applying the definition of the lifespan functors, the claimed
isomorphisms are now simply given by exactness of the above sequence :

Hd−1(X)† ∼= ker ηd−1 ∼= coker ϵd ∼= Hd(A,X)∗,

Hd(X)◁ ∼= coker ηd ∼= im ϵd ∼= Hd(A,X)−∞,

Hd(X)∞ ∼= im ηd ∼= ker ϵd ∼= Hd(A,X)▷.

These isomorphisms are natural in X as a direct consequence of the fact that the
construction of the long exact sequence is natural in X.

Using the barcode formulas for lifespan functors and complements in Corollary 4.2.7
and Propositions 4.2.9 and 4.2.10, one can easily recover the original duality result by
de Silva et al. [dSMV11, Proposition 2.4]. Moreover, naturality in the filtration variable
implies that for a morphism f : X → Y between colimit proper filtrations with ϕ = colim f
we also get isomorphisms

Hd−1(f)† ∼= Hd(ϕ, f)∗, Hd(f)◁ ∼= Hd(ϕ, f)−∞, Hd(f)∞ ∼= Hd(ϕ, f)▷

in the category of morphisms of persistence modules. These also translate to isomorphisms
between the corresponding images, kernels, and cokernels.

Note that the isomorphism between the mortal part of the absolute persistent homology
and the nascent part of the relative persistent homology in the proof of Theorem 5.3.2 is
induced by the boundary operator. This means that if an interval in the nascent part of
the barcode of the relative persistent homology is represented by some relative cycle, the
boundary of this cycle represents the same interval in the absolute persistent homology in
one dimension lower, as observed in [dSMV11].

Remark 5.3.3. While the above result is stated for persistent homology of filtrations of
spaces, a similar statement holds in the purely algebraic setting. Given a filtered chain
complex C, we can consider the short exact sequence

0 C ∆ colimC C◁ 0.

We can then continue as in the proof above to get natural isomorphisms

Hd−1(C)† ∼= Hd(C◁)∗ Hd(C)◁ ∼= Hd(C◁)−∞ Hd(C)∞ ∼= Hd(C◁)▷.
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Homology-cohomology correspondence For completeness, we also record a functorial
version of the correspondence between persistent homology and persistent cohomology
[dSMV11, Proposition 2.3], which follows immediately from the universal coefficient theorem.

Proposition 5.3.4. Let X be a T-indexed diagram of topological spaces. For all d, we
have the following isomorphisms, which are natural in X:

Hd(X)∨ ∼= Hd(X),
Hd(colimX,X)∨ ∼= Hd(colimX,X).

While the correspondence in [dSMV11, Proposition 2.3] is stated on the level of barcodes,
the natural isomorphism asserted in Proposition 5.3.4 appears in its proof, which essentially
combines the previous statement with the fact that PFD persistence modules have the
same barcode as their duals (Lemma 3.2.6).

As in the absolute-relative correspondence, naturality in the variable X yields corre-
sponding isomorphisms in the category of morphisms of persistence modules for maps
f : X → Y .

5.3.2. Absolute homology images from relative cohomology images
As a concrete application, we want to explain how to use our previous results for the efficient
computation of barcodes for images of morphisms in persistent homology. Note that similar
considerations also apply for kernels and cokernels of such morphisms.

As mentioned before, and as is explained, e.g., in [Bau21], one of the most efficient ways
currently known to compute the barcode of the persistent homology of a filtration of finite
simplicial complexes is to actually compute the barcode of the persistent relative cohomology
with the clearing optimization, and to then translate this to persistent homology via the
two duality results from de Silva, Morozov, and Vejdemo-Johansson [dSMV11].

Our generalizations of these duality results now allow us to proceed similarly for the
image of a map f : X → Y . Since we are talking about computational speed-ups, X
and Y are assumed to be filtrations with PFD persistent homology indexed by a totally
ordered set T with a smallest element tmin and a largest element tmax. We also assume
that Xtmin = Ytmin = ∅, so that both filtrations are colimit proper, and we assume that
colimHd(f) = limHd(colim f, f) = Hd(ftmax) is an isomorphism.

In order to obtain the barcode for imHd(f) from barcodes computed with relative
cohomology, we start by applying the (non-natural) decomposition

imHd(f) ∼= (imHd(f))† ⊕ (imHd(f))∞

from Corollary 4.2.8. We consider both summands separately, making use of the fact that
taking barcodes is compatible with direct sums.

Recovering the mortal part Starting with the first summand, we observe that because
colimHd(f) = Hd(ftmax) is an isomorphism, and in particular a monomorphism, we have

(imHd(f))† ∼= im(Hd(f)†)

using the first part of Theorem 4.1.10. The natural duality Theorem 5.3.2, which we can
apply since X and Y are colimit proper, provides an isomorphism

im(Hd(f)†) ∼= im(Hd+1(colim f, f)∗).
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An application of the second part of Theorem 4.1.10 yields the isomorphism

im(Hd+1(colim f, f)∗) ∼= (imHd+1(colim f, f))∗

using that limHd(colim f, f) = Hd(ftmax) is epi. Finally, the duality of homology and
cohomology from Proposition 5.3.4 yields an isomorphism

(imHd+1(colim f, f))∗ ∼= ((imHd+1(colim f, f))∨)∗,

where we also make use of the fact that applying dualization twice yields the identity on PFD
persistence modules. Finally, because our index set has a largest element, Proposition 4.2.15
gives

((imHd+1(colim f, f))∨)∗ ∼= ((imHd+1(colim f, f))∗)∨.

In total, the above implies that (imHd(f))† and (imHd+1(colim f, f))∗ have the same
barcode by Lemma 3.2.6 because we are in the PFD setting, so we can obtain the mortal
part of the absolute homology barcode from some relative cohomology persistence module.

Recovering the immortal part For the second term in the mortal-immortal decomposition
of imHd(f), we have

(imHd(f))∞ ∼= Hd(X)∞

by Theorem 4.1.10. We proceed again with our natural absolute-relative duality from
Theorem 5.3.2 to obtain

Hd(X)∞ ∼= Hd(colimX,X)▷.
Since all modules are PFD, passing to cohomology with Proposition 5.3.4 yields

(Hd(colimX,X))▷ ∼= ((Hd(colimX,X))∨)▷.

Proposition 4.2.15 finally yields

((Hd(colimX,X))∨)▷ ∼= (Hd(colimX,X)▷))∨.

Thus, we can also obtain the immortal part of the absolute homology barcode from some
relative cohomology persistence module.

Summary in the computational setting Using the results on lifespan functors, comple-
mentary functors, and barcodes Corollary 4.2.7 and Propositions 4.2.9 and 4.2.10, we can
translate the previous isomorphisms to barcode formulas. We record them in the following
corollary, formulated with notation as in the computational setting of filtrations of finite
simplicial complexes for later use.

Corollary 5.3.5. Let f• : L• → K• be a morphism of filtrations of finite simplicial complexes
inducing a map f : L → K on colimits such that H∗(f) is an isomorphism. Assume
that the index set T has a smallest element tmin and a largest element, and assume that
Ltmin = Ktmin = ∅, so that no intervals in the barcodes of L• and K• contain tmin. Then

B(imHd−1(f•))†,∗ = B(imHd(f, f•))†,∗

for all degrees d, and the map I ↦→ T \ I defines bijections

B(imH∗(f•))∞ ↔ B(H∗(L,L•))−∞,

B(imH∗(f, f•))−∞ ↔ B(H∗(K•))∞.
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5. Some applications of lifespan functors

Note that our formulation of the above result in the introduction was slightly ambiguous
because there we did not distinguish the lifespan operations depending on whether a barcode
comes from a (T,≤)-indexed or a (T,≥)-indexed persistence module. That is, we interpreted
all barcodes there as living in Barc(T) even though, technically, some of them would live
in Barc(Top). In the present formulation, all barcodes are assumed to live in the ’correct’
category coming from the index set of the underlying persistence modules.
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6. Efficient computation of barcodes for
images in persistent homology

In this chapter, we develop the algorithm for computing images in persistent homology
described in § 2.1.3, making use of the duality results established in Section 5.3. We start
by describing some general theory for bases of filtrations of vector spaces in Section 6.1.
This theory is then applied in the context of filtrations of simplicial complexes to compute
barcodes for images of maps in persistent homology in Section 6.2, where we also describe
the speed-ups for the basic algorithm.

In order to emphasize the difference between persistent and non-persistent objects, we will
throughout the chapter use the convention of denoting persistence modules and filtrations
with a (−)• subscript, as we have done before when talking about computational applications.
Since we are dealing with the computational setting, the reader may also think of all vector
spaces in this chapter being finite-dimensional and the index set T having finitely many
elements, although many of the statements also hold more generally.

6.1. Filtration compatible bases

Before talking about our computational results, we introduce the framework of filtration
compatible bases and show some results in this general framework that will be helpful in
the computational setting later on. In § 6.1.1, we define the notion of filtration compatible
basis and state an important result for obtaining barcodes of quotients of filtrations that
is an immediate consequence of the theory of matching diagrams. We then prove some
basic but helpful results on filtration compatible bases whose proofs essentially boil down
to linear algebra in § 6.1.2. Similar statements to the ones we make in this section may be
seen as folklore results in the topological data analysis community, but to the best of our
knowledge there is no comprehensive and systematic treatment as the one we present in
the literature, yet.

6.1.1. Filtration compatible bases for barcode computations

Definition 6.1.1. We say that a persistence module M• is a filtration of the vector space
M = colimM• if Mt ⊆ Mu for all t ≤ u and the structure maps Mt,u are given by the
subspace inclusions. For any m ∈M , we define its support in M• as suppM•(m) = {t ∈ T |
m ∈Mt)}. A basis M of M will be called filtration compatible if Mt = M∩Mt is a basis for
Mt for all t ∈ T . If (M,≤) is an ordered basis for M , we say that it is a filtration compatible
ordered basis if it is filtration compatible and m ≤ m′ ∈M implies suppm′ ⊆ suppm.

If M• and M ′
• are filtrations of vector spaces, we write M• ⊆ M ′

• if Mt ⊆ M ′
t for

all t ∈ T . We write M ′
•/M• for the persistence module given by (M ′

•/M•)t = M ′
t/Mt,

i.e., for the cokernel of the inclusion-induced morphism M• ↪→ M ′
•. Similarly, if M ′′

• is
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6. Efficient computation of barcodes for images in persistent homology

another filtration with M ′′
• ⊆M ′

•, we write M• ∩M ′′
• for the persistence module given by

(M• ∩M ′′
• )t = Mt ∩M ′′

t .
Observe that if M• is a filtration of vector spaces and M is a filtration compatible basis,

then (supp(m))m∈M is a barcode of M•. By interpreting M as a matching diagram in the
obvious way, this may be seen as a special case of the general equivalence of matching
diagrams and barcodes as reviewed in § 3.1.2. With this in mind, the following result is an
immediate consequence of Propositions 3.1.14 and 3.2.4.

Proposition 6.1.2. Let M• ⊆M ′
• be filtrations of vector spaces with respective filtration

compatible bases M and M′ related by an inclusion M ⊆M′. Then M ′
•/M• has a barcode

given by
(suppM ′

•
(m) \ suppM•(m))m∈M ∪ (suppM ′

•
(m))m∈M′\M.

6.1.2. Some linear algebra for filtrations

Basis exchange lemma for filtrations We now develop some helpful facts about filtration
compatible bases. We start with a lemma relating supports of basis elements with filtration
compatibility.

Lemma 6.1.3. Let M• be a filtration of the vector space M with filtration compatible
basis M. Let M′ be another basis for M such that there exists a bijection g : M→M′ with
suppM•(m) = suppM•(g(m)) for all m ∈M. Then M′ is a filtration compatible basis for
M•.

Proof. We need to show that M′
t is a basis for Mt for all t. Since M′ is a basis, M′

t = M∩Mt

is linearly independent. We assume Mt to be a basis for Mt, so it suffices to show that Mt

and M′
t have the same cardinality.

To see this, note that if m ∈Mt = M∩Mt, we must have t ∈ suppM•(m) = suppM•(g(m)),
so that g(m) ∈ M′

t = M′ ∩Mt holds. Thus, g restricts to a map Mt → M′
t. Similarly,

the restriction of g−1 to M′
t yields a map M′

t →Mt. As the restrictions of g and g−1 are
inverse to each other, Mt and M′

t indeed have the same cardinality.

Intersections of filtrations Next, we prove a version of a standard fact about intersections
of vector spaces for filtrations.

Lemma 6.1.4. Let M ′
•,M

′′
• ⊆ M• be filtrations of vector spaces and let M′ and M′′ be

filtration compatible bases for M ′
• and M ′′

• , respectively, such that M′ ∪M′′ is linearly
independent. Then M′ ∩M′′ is a filtration compatible basis for M ′

• ∩M ′′
• . Moreover, for all

m ∈M′ ∩M′′ we have

suppM ′
•∩M ′′

•
(m) = suppM ′

•
(m) ∩ suppM ′′

•
(m).

Proof. We want to show that M′ ∩M′′ is a filtration compatible basis for M ′
• ∩M ′′

• , i.e.,
that

(M′ ∩M′′)t = M′ ∩M′′ ∩M ′
t ∩M ′′

t = M′
t ∩M′′

t

is a basis for (M ′
•∩M ′′

• )t = M ′
t ∩M ′′

t for all t ∈ T . By standard linear algebra, for subspaces
V ′, V ′′ ⊆ V of some vector space V with respective bases V′ and V′′, the intersection
V′ ∩V′′ of the bases is a basis for the intersection V ′ ∩ V ′′ of spaces if the union V′ ∪V′′ of
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the bases is linearly independent. In particular, M′
t ∩M′′

t is a basis for M ′
t ∩M ′′

t since the
union M′

t ∪M′′
t ⊆ M′ ∪M′′ is linearly independent by assumption. Thus, M′ ∩M′′ is a

filtration compatible basis for M ′ ∩M ′′.
For the supports, we have

suppM ′
•∩M ′′

•
(m) = {t ∈ T | m ∈M ′

t ∩M ′′
t }

= {t ∈ T | m ∈M ′
t} ∩ {t ∈ T | m ∈M ′′

t }
= suppM ′

•
(m) ∩ suppM ′′

•
(m)

for all m ∈M′ ∩M′′, proving the claim.

Note that the union M′ ∪M′′ in the statement of Lemma 6.1.4 is to be interpreted as the
set-theoretic union of the two bases and not as the concatenation of families of vectors. In
this second interpretation, the union could only be linearly independent if the intersection
is empty, in which case the statement of the lemma is not meaningful. We will use the
special case of Lemma 6.1.4 where M ′

• is included in M ′′
• at the last filtration step (but not

necessarily before):

Corollary 6.1.5. Let M ′
•,M

′′
• ⊆M• be filtrations of vector spaces M ′ ⊆M ′′ ⊆M , respec-

tively. Moerover, let M′ ⊆M′′ be filtration compatible bases for M ′
• and M ′′

• , respectively.
Then M′ is a filtration compatible basis for M ′

• ∩M ′′
• . Moreover, for all m ∈M′ we have

suppM ′
•∩M ′′

•
(m) = suppM ′

•
(m) ∩ suppM ′′

•
(m).

Rank-nullity for filtrations To finish the general discussion about filtration compatible
bases, we state a version of the rank-nullity-theorem for filtrations.

Lemma 6.1.6. Let ϕ• : M• → P• be a morphism of filtrations of vector spaces and consider
the linear map ϕ = ϕN : M → P . Let M be a filtration compatible basis for M•, let
M′ = M ∩ kerϕ, and assume that M′′ = (ϕ(m))m∈M\M′ is a linearly independent family of
vectors. Then M′ is a filtration compatible basis for kerϕ•, and M′′ is a filtration compatible
basis for imϕ•. Moreover,

suppkerϕ•(m′) = suppM•(m′) and suppimϕ•(ϕ(m)) = suppM•(m)

for all m′ ∈M′ and for all m ∈M \M′.

Proof. We show that M′ = M∩kerϕ is a filtration compatible basis for kerϕ•. Because M•
is a filtration, i.e., its structure maps are all injective, we have kerϕt = Mt∩kerϕ for all t ∈ T .
Denoting the constant filtration of kerϕ by ∆ kerϕ, we thus have kerϕ• = M• ∩∆ kerϕ.
By standard linear algebra, M′′ = (ϕ(m))m∈M\M′ being linearly independent implies that
M′ is a basis for kerϕ. Hence, M′ is a filtration compatible basis for the constant filtration
∆ kerϕ. We can apply Corollary 6.1.5 to obtain that M′ is a filtration compatible basis for
the intersection M• ∩∆ kerϕ = kerϕ• satisfying

suppkerϕ•(m′) = supp∆ kerϕ(m′) ∩ suppM•(m′) = T ∩ suppM•(m′) = suppM•(m′)

for all m′ ∈M′.
To show that M′′ is a filtration compatible basis for imϕ•, we need to show that

M′′
t = M′′ ∩ imϕt is a basis for imϕt for all t ∈ T . Since we assume M′′ to be linearly
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independent, M′′
t is linearly independent as well. It remains to be shown that M′′

t is
also a generating set for imϕt. Because Mt is a basis for Mt by assumption, the family
(ϕt(m))m∈Mt\kerϕt

generates imϕt. Hence, it suffices to show that

(ϕt(m))m∈Mt\kerϕt
⊆ (ϕ(m))m∈M\M′ ∩ imϕt = M′′

t .

So let m ∈ Mt \ kerϕt. We have ϕt(m) ̸= 0 ∈ Pt, so since P• is a filtration we also get
ϕ(m) ̸= 0 ∈ P . Thus, m ∈Mt \kerϕt ⊆M \kerϕ = M \M′. This implies ϕt(m) = ϕ(m) ∈
M′′

t as needed, so M′′
t generates imϕt and hence forms a basis for imϕt. Bases are minimal

generating sets, so we obtain an equality (ϕt(m))m∈Mt\kerϕt
= (ϕ(m))m∈M\M′ ∩ imϕt from

the previously shown inclusion. Thus, for m ∈M \M′ we have ϕ(m) ∈ imϕt if and only
if m ∈ Mt = M ∩Mt if and only if m ∈ Mt. This yields suppimϕ•(ϕ(m)) = suppM•(m),
which finishes the proof.

In contrast to the considerations about linear independent unions regarding Lemma 6.1.4,
we now really need the family (ϕ(m))m∈M\M′ to be linearly independent (meaning in
particular that no vectors appear more than once) and not just the set {ϕ(m)) | m ∈M\M′}.
Otherwise, the conclusion of Lemma 6.1.6 may be false. Moreover, note that if one drops
the assumption of the above lemma that P• – and hence the image imϕ• – is a filtration,
then it may happen that M′ = M ∩ kerϕ is a basis for the vector space kerϕ but not a
filtration compatible basis for the filtration kerϕ•.

6.2. Computing images in persistent homology

We will now present our results on the efficient computation of image persistence. In § 6.2.1,
we describe the basic algorithm for computing barcodes of images of morphisms in persistent
homology induced by monomorphisms of filtrations of chain complexes. We then describe
how to use clearing in this setting in § 6.2.2. Finally, we formulate the full algorithm for
obtaining images in persistent homology in § 6.2.3, which works by applying the previously
described algorithm to relative cohomology and then translating via the absolute-relative
correspondence.

Recall that throughout the chapter we assume all vector spaces to be finite-dimensional,
thus all persistence modules to be PFD, and our index set T to have finitely many elements.
As usual, all (co)homology groups in this section are understood to be singular or simplicial
(co)homology with coefficients in our fixed field F.

6.2.1. Image barcodes via matrix reduction

We now turn to the setting of image persistence, initially formulated in the simplex-free
setting of filtrations of chain complexes. A chain complex of persistence modules C• with
differential ∂• is called a filtration of a chain complex of vector spaces C with differential
∂ if C• is a filtration of C as a vector space and the map induced by ∂• on the colimit
of C• is the same as ∂. Let C• and C ′

• be filtrations of the chain complexes C and C ′

with corresponding filtration compatible ordered bases C and C′. Let D and D′ be the
corresponding filtration boundary matrices, i.e., the matrices representing ∂ and ∂′ with
respect to C and C′. Assume that we are given a monomorphism of filtrations of chain
complexes φ• : C• → C ′

• such that the map φ : C → C ′ on the final filtration step is an
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isomorphism. Let F be the matrix representing φ with respect to C and C′ and define the
mixed basis boundary matrix Dφ = DF−1 = F−1D′.

Our goal is to determine a barcode for imH∗(φ•) via matrix reduction, so assume we
have R = DV and Rφ = DφV φ reduced with V and V φ full-rank and upper-triangular.
The columns of R, D, V , Rφ and Dφ should be interpreted as coordinate vectors with
respect to C and the columns of V φ as coordinate vectors with respect to C′. Recall that if
X is a matrix, we denote its jth column by xj . The main result of this section can then be
stated as follows.

Theorem 6.2.1. The image of H∗(φ•) has a barcode given by the multiset{︂
suppC•(rφj ) \ suppC′

•
(vφj ) ̸= ∅ | rφj ̸= 0

}︂
∪
{︁
suppC•(vi) | ri = 0 and i /∈ pivotsR

}︁
.

Special cases of the general theorem The first algorithm to compute images in persistent
homology given by Cohen-Steiner et al. [Coh+09] works essentially in the same way as
the algorithm implied by Theorem 6.2.1. That is, Cohen-Steiner et al. [Coh+09] construct
D and Dφ as above and obtain the same formula for the barcode of imH∗(φ). However,
they prove correctness of this method only in the special case where C• = C∗(L•) and
C ′

• = C∗(K•) are the simplicial chain complexes of filtrations of simplicial complexes
L• ↪→ K• such that Lt = Kt ∩L for some fixed complex L, which implies that the filtration
orders on the simplices induced by L• and K• are the same. Theorem 6.2.1 shows that this
condition is not necessary.

If we assume that C• = C ′
• and that φ is the identity then Theorem 6.2.1 yields a formula

for the barcode of H∗(C•). Note that the intervals suppC•(vi) only depend on C•, so we
obtain that for any choice of φ as above, the intervals in the barcode of imH∗(φ•) that are
not bounded above are precisely the same as those in the barcode of H∗(C•). This can also
be inferred from the first part of Theorem 4.1.10.

In the case where C• = C ′
• = C∗(K•) is the simplicial chain complex of a filtration of

simplicial complexes K•, the statement above is exactly the same as the classical barcode
formula reviewed in § 1.2.2. As noted by de Silva, Morozov, and Vejdemo-Johansson
[dSMV11], this formula may also be applied to the persistent relative cohomology of K•,
where C• = C ′

• = C∗(K,K•) and K denotes the last complex in the filtration. They
also note that if D is a filtration boundary matrix for C∗(K•), then D⊥ is a filtration
(co)boundary matrix for C∗(K,K•). Here, (−)⊥ denotes transposing a matrix along the
anti-diagonal. Similarly, we note that if we have a non-trivial morphism f• : L• → K•
inducing maps C∗(f•) and C∗(f, f•), then if Df is a mixed basis boundary matrix in
the absolute homology case, (Df )⊥ is a mixed basis (co)boundary matrix in the relative
cohomology case.

Proving the general theorem The proof of Theorem 6.2.1 will be based on a sequence of
intermediate results. As alluded to before, the general idea is to write

imH∗(φ•) ∼=
φ(Z∗(C•))

φ(Z∗(C•)) ∩B∗(C ′
•) ,

where Z∗ and B∗ denote cycles and boundaries of the corresponding chain complexes,
respectively. We will find filtration compatible bases Z and B for φ(Z∗(C•)) and φ(Z∗(C•))∩
B∗(C ′

•), respectively, such that B ⊆ Z holds and we can apply Proposition 6.1.2.
If X is a matrix, we will write colsX for the family of all its non-zero column vectors.
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Lemma 6.2.2. The familiy colsV φ is a filtration compatible basis for C ′
•,

B = colsFRφ

is a filtration compatible basis for B∗(C ′
•), and for all j with rφj ̸= 0 we have

suppB∗(C′
•)(Fr

φ
j ) = suppC′

•
(vφj ).

Proof. We start by showing that colsV φ is a filtration compatible basis for C ′
•: We have

pivot vφj = j since V φ is full-rank and upper-triangular. It follows that vφj has the same
support in C ′

• as the jth element of C′. Thus, colsV φ is a filtration compatible basis for C ′
•

by Lemma 6.1.3.
Next, note that (∂(v))v∈colsV φ\ker ∂ = colsFRφ is linearly independent since Rφ is reduced

and F has full rank. Thus, we can apply Lemma 6.1.6 to the map of filtrations ∂• : C ′
• → C ′

•
and the filtration compatible basis colsV φ to obtain that colsFRφ is a filtration compatible
basis for B∗(C ′

•) = im ∂•. The assertion on the supports also follows from the support
formula in Lemma 6.1.6.

Now that we have a filtration compatible basis for B∗(C ′
•), we want to extend it to a

filtration compatible basis for φ•(Z∗(C•)).

Lemma 6.2.3. Let

X = colsRφ ∪ {vj | j /∈ pivotsRφ} and X′ = X ∩ ker ∂.

Then X is a filtration compatible basis for C•, Z = FX′ is a filtration compatible basis for
φ•(Z∗(C•)), and for all x ∈ X′ we have

suppφ•(Z∗(C•))(Fx) = suppC•(x).

Proof. We start by showing that X is a filtration compatible basis for C•. The same
argument as in the beginning of the proof of Lemma 6.2.2 yields that colsV is a filtration
compatible basis for C•. Next, note that X is linearly independent since all elements have
unique pivots: Rφ is reduced and we only consider those vj with pivot vj = j /∈ pivotsRφ.
Moreover, we have a bijection X→ colsV given by mapping vj to itself and mapping rφj to
vpivot rφ

j
. Now, pivot rφj = pivot vpivot rφ

j
implies

suppC•

(︂
rφj

)︂
= suppC•

(︂
vpivot rφ

j

)︂
.

Since colsV is a filtration compatible basis for C•, Lemma 6.1.3 now implies that X is also
a filtration compatible basis for C•.

Next, we can apply Lemma 6.1.6 to the boundary operator ∂• : C• → C• and the filtration
compatible basis X since (∂(v))v∈X\X′ ⊆ colsR is linearly independent by reducedness of R.
We obtain that X′ = F−1Z is a filtration compatible basis for ker ∂• = Z∗(C•) with
suppZ∗(C•)(x) = suppC•(x) for all x ∈ X′. The claim now follows from the fact that φ• is
mono, so that its restriction is an isomorphism Z∗(C•)→ φ•(Z∗(C•)) represented by F .

Having extended the filtration compatible basis for B∗(C ′
•) to one for φ•(Z∗(C•)), we

also obtain one for φ•(Z∗(C•)) ∩B∗(C ′
•).
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Lemma 6.2.4. The family B is a filtration compatible basis for φ•(Z∗(C•))∩B∗(C ′
•), and

for all j with rφj ̸= 0 we have

suppφ•(Z∗(C•))∩B∗(C′
•)(Fr

φ
j ) = suppC•(rφj ) ∩ suppC′

•
(vφj ).

Proof. Recall that B is a filtration compatible basis for B∗(C ′
•), and Z extends B to one for

φ•(Z∗(C•)). Now Corollary 6.1.5 together with the support equalities from Lemmas 6.2.2
and 6.2.3 yield the claim.

We prove a final lemma.

Lemma 6.2.5. pivotsR = pivotsRφ.

Proof. The matrices D and Dφ = DF−1 have the same column space. Matrix reduction
does not change column spaces, so R and Rφ also have the same column space. In particular,
every non-zero column of R is a non-trivial linear combination of non-zero columns of Rφ
and vice versa. The pivot of a linear combination of a reduced set of column vectors must be
the same as the pivot of one of these vectors, so we indeed obtain pivotsR = pivotsRφ.

We are now prepared to prove the main result of this section.

Proof of Theorem 6.2.1. By definition of the induced map in homology, we have

imH∗(φ•) ∼=
φ•(Z∗(C•))

φ•(Z∗(C•)) ∩B∗(C ′
•) .

The claim follows by applying Proposition 6.1.2 to the inclusion φ•(Z∗(C•)) ∩ B∗(C ′
•) ⊆

φ•(Z∗(C•)) with the filtration compatible bases B ⊆ Z, with supports as previously
determined in Lemmas 6.2.3 and 6.2.4. Note that in the basis Z we choose columns Fvi
with i /∈ pivotsRφ, while the formula in Theorem 6.2.1 requires i /∈ pivotsR. But these
conditions are equivalent by Lemma 6.2.5.

6.2.2. Clearing for image persistence
Before discussing clearing in the image setting, we first note that the clearing procedure as
reviewed in §1.2.3 not only works for simplicial complexes, but also for the algebraic setting
of chain complexes we are considering presently. That is, if D is a filtration boundary matrix
for C• and R = DV is a reduction, then if rj ̸= 0 we must have ri = 0 for i = pivot rj . Now,
assume that the matrix D represents the boundary operator with respect to a filtration
compatible basis C that is compatible with the homological grading of C• in the sense that
the restriction of this basis to each grading summand is again a basis of that summand.
Then we can again perform the reduction of D degree-wise and clear columns in lower
degrees using pivot information from higher degrees. Note that these considerations also
work for cohomological grading, where the reduction is then performed in ascending rather
than descending degrees. Thus, we can also use clearing in the setting of relative cohomology
of filtrations of simplicial complexes.

Returning to the algebraic image setting, we now assume that the bases C and C′ as well
as the map φ• : C• → C ′

• are compatible with the grading in the sense as above. Here, there
is no direct analogue to the procedure outlined above: the mixed basis boundary matrix
Dφ fails to admit the property described above, i.e., it may happen that rφj ̸= 0 but rφi ≠ 0
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6. Efficient computation of barcodes for images in persistent homology

for i = pivot rφj . In order to obtain a useful condition for columns of Rφ to be zero, we need
to additionally consider the boundary matrix D′ = FDφ, which represents the boundary
operator on C ′

• with respect to C′, and assume we have a reduction R′ = D′V ′.

Proposition 6.2.6. Let R′ = D′V ′ and Rφ = DφV φ be reduced. For all indices j we have
rφj = 0 if and only if r′

j = 0.

Proof. First, note that rφj = 0 if and only if Frφj = 0 because F is invertible. Moreover,
FRφ and R′ have the same column space, since FRφ = R′(V ′)−1V φ. Thus, the number of
zero columns of Rφ is the same as the number of zero columns of R′ since their ranks are
equal and their non-zero columns are linearly independent. Now, it suffices to show that
rφj = 0 implies r′

j = 0, so assume rφj = 0. Then Frφj = 0, but Frφj is also the same as the
j-th column of R′(V ′)−1V φ. This is a linear combination of columns of R′ with non-zero
coefficient for r′

j since (V ′)−1V φ is full-rank and upper-triangular. Non-zero columns of R′

are linearly independent, so this linear combination can only be zero if r′
j = 0.

In order to apply clearing to the reduction of Dφ, one can now reduce D′ with clearing
as usual, and clear the columns with the same indices in Dφ. Even more than that, one can
not only clear the columns of Dφ whose index appears as a pivot in R′, but rather every
column with the same index as a 0 column in R′, meaning also those that have been reduced
to 0 via column operations on D′. With this optimization, there are no more columns that
have to be reduced to 0 in the reduction of Dφ even before any column operations on Dφ

have been performed. The only reduction steps that are left to be performed are those that
make pivots unique among the non-zero columns.

Corollary 6.2.7. If D′ has already been reduced to R′, one can set rφj = 0 for all j with
r′
j = 0 before reducing Dφ, and no further columns of Rφ will be reduced to 0.

6.2.3. Assembling barcodes from (co)homology computations

Given a morphism of filtrations of chain complexes φ• : C• → C ′
• as before, we have now

seen how to compute the barcode of imH∗(φ) via reductions of the filtration boundary
matrix D and the mixed basis boundary matrix Dφ in Theorem 6.2.1. The matrix D can
be reduced using the standard clearing procedure as we recalled it in § 1.2.3. The matrix
Dφ can not be straightforwardly reduced with clearing, but we can clear columns in it
according to Corollary 6.2.7 if we simultaneously also reduce the filtration boundary matrix
D′ corresponding to the domain C ′

• of φ•.
Recalling our concrete setting of simplicial complexes and their persistent homology,

assume that we are given filtrations L• and K• of two isomorphic simplicial complexes
L ∼= K and a monomorphism f• : L• → K• inducing an isomorphism f : L → K. Let
DL and DK be filtration boundary matrices for the respective filtrations and let Df

be the corresponding mixed basis boundary matrix. Applying the previous results with
φ• = C∗(f•), we see that the barcode of imH∗(f•) can be determined via reductions of DL

and Df and that the reduction of Df may be performed with clearing if DK has previously
been reduced.

From relative cohomology to absolute homology As is also known from the single
filtration case, clearing needs to be initialized by performing a full persistence computation
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in the first homological degree for which persistence is computed. Because persistence
computations are often only feasible in low dimensions and practitioners are often only
interested in barcodes in low degrees, it is much more powerful to apply clearing for
cohomological grading, allowing for the initialization to be performed in degree 0; see also
[Bau21] for a more detailed discussion on why clearing and cohomology work particularly
well together. Thus, our goal is to perform cohomological computations and still recover
the image imH∗(f•) in homology. However, the persistent cochain complex giving rise
to persistent cohomology is not a filtration, so the basic matrix reduction algorithm
does not directly apply there. Thus, we instead perform computations in the relative
cohomology setting given by the map H∗(f, f•), coming from the filtrations C∗(K,K•) and
C∗(L,L•). The image of the relative cohomology map no longer has the same barcode
as imH∗(f•), but we can translate between the two barcodes with Corollary 5.3.5. In
particular, Corollary 5.3.5 implies that in order to determine the barcode of imH∗(f•), it
suffices to compute B(H∗(L,L•))−∞ and B(imH∗(f, f•))†,∗. Following the discussion in
§ 6.2.1 on special cases of our general theorem, we observe that B(H∗(L,L•))−∞ may be
determined from a reduction of the coboundary matrix (DL)⊥ and that B(imH∗(f, f•))†,∗
may be determined from a reduction of the coboundary matrix (Df )⊥. In the relative
cohomology setting, the matrices (DL)⊥ and (Df )⊥ play the roles of D′ and Dφ in the
general setting, so by Corollary 6.2.7 we can simultaneously reduce these matrices with
clearing. In total, we can hence obtain the barcode of imH∗(f•) via two boundary matrix
reductions, both performed with clearing in cohomological grading, i.e., ascending dimension
of simplices.

The final algorithm We summarize the discussion in the following theorem. To simplify
notation, we will assume that we are given funtions k and l on K ∼= L that induce the
filtrations K• and L•, respectively, via their sublevel set filtrations. For example, the
functions l and k would be given by the diameter functions if K• and L• are Vietoris–Rips
filtrations for different metrics on the same set of points. Moreover, recall that if A is a
matrix, we write aj for its jth column. To determine barcodes from reductions of boundary
matrices, recall that the column and row indices of the matrices DL, (DL)⊥, Df , (Df )⊥,
etc., correspond to the simplices of K ∼= L (in different orders). In particular, the pivot
index of a column vector c will in this context always correspond to a unique simplex, which
we denote by psimp c. The support of the chain represented by c in the respective filtration
C∗(K•) or C∗(L• (depending on with respect to which filtration order compatible basis c
is a coordinate vector) can then be determined as supp(c) = [a(psimp c),∞), where a is
a placeholder for either k or l (with the same dependence as before) and where [t,∞), as
usual, denotes the interval extending from t to the largest index in our index set set T .
Combining Theorem 6.2.1 and Corollaries 5.3.5 and 6.2.7, we now get the following.

Corollary 6.2.8. The matrices (DL)⊥ and (Df )⊥ can be reduced with clearing, and given
reductions S = (Df )⊥W and R = (DL)⊥V , the barcode of imH∗(f•) can be determined as
the multiset

{[l(psimpwj), k(psimp sj)) ̸= ∅ | sj ̸= 0} ∪ {[l(psimp vi),∞) | ri = 0 and i /∈ pivotsR} .

Recall that the column and row indices of the coboundary matrices indicated by (−)⊥

correspond to the simplices of K ∼= L in reverse filtration order. Hence, the pivot simplex
of a column vector appearing in the theorem will be the first simplex appearing in the
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simplicial filtration among those that correspond to a non-zero entry of the column, while
for the usual boundary matrices DL, DK , etc., the pivot simplex of a column would be the
one that appears last in the filtration among those simplices that correspond to a non-zero
entry.

For the convenience of the reader, we summarize the algorithm resulting from Corol-
lary 6.2.8 in pseudo-code in §6.2.3, keeping the notation from before. As mentioned in §2.1.3,
an implementation of this method based on Ripser [Bau21] is publicly available [BS21b].
Our software works under the assumption that L• = Rips•(X, d) and K• = Rips•(X, d′)
are filtrations of Vietoris–Rips complexes corresponding to two metrics d and d′ on a finite
set X that satisfy d(x, y) ≥ d′(x, y) for all x, y ∈ X with the maps ft : Lt → Kt being given
by inclusion. Note that Lt = Ripst(X, d) being a subcomplex of Kt = Ripst(X, d′) for all t
is ensured by the inequality d ≥ d′. The implementation also makes use of a version of the
emergent and apparent pairs optimizations [Bau21], which we do not discuss here, referring
to [BS22] instead. It also uses some more technical optimizations such as sparse matrix
representations and implicit storage of certain matrices. In particular, neither the boundary
nor coboundary matrices or their reductions are explicitly stored, but rather (re-)computed
as needed from the sparse matrices V , W and the distance matrices for d and d′. The
computation is also not initialized by performing matrix reduction in dimension 0, but
rather by performing an efficient algorithm for finding minimum spanning trees. These
optimizations do not differ from the case of a single filtration and are discussed in [Bau21].
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Algorithm 6.2.9 Algorithm to compute image persistence via two matrix reductions with
clearing in cohomological grading
Input: Filtration boundary matrix DL with n columns, mixed basis boundary matrix Df

Output: Barcode of imH∗(f)
R← (DL)⊥

V ← In
S ← (Df )⊥

W ← In
B ← ∅
for m = 0, . . . ,dimL− 1 do

while ∃i < j with ri ̸= 0, pivot ri = pivot rj , and dim psimp ri = m+ 1 do
rj ← rj − pentry rj

pentry ri
ri

vj ← vj − pentry rj

pentry ri
vi

end while
for j with rj ̸= 0 and dim psimp rj = m+ 1 do
rpivot rj ← 0
vpivot rj ← rj

end for
end for
for j with rj = 0 do
sj ← 0
wj ← vj
if j /∈ pivotsR then
B ← B ⊔ {[l(psimp vj),∞)}

end if
end for
while ∃i < j with si ̸= 0 and pivot si = pivot sj do
sj ← sj − pentry sj

pentry si
si

wj ← wj − pentry sj

pentry si
wi

end while
for j with sj ̸= 0 do

if l(psimpwj) < k(psimp sj) then
B ← B ⊔ {[l(psimpwj), k(psimp sj))}

end if
end for
return B
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Part III.

Q-tameness, Čech homology, and
Morse theory for minimal surfaces
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7. Morse inequalities in terms of persistence
and minimal surfaces

In this chapter, we prove the results related to Morse’s theory of functional topology
presented in § 2.2.1. We start with our approach to Morse inequalities via persistence
diagrams in Section 7.1. Afterwards, we discuss the proof of the unstable minimal surface
theorem by Morse and Tompkins in Section 7.2.

In this chapter, we only consider persistent homology of sublevel set filtrations of real-
valued functions, so we consider persistence modules indexed by T = R. As usual, all
homology groups are understood to be taken with field coefficients.

7.1. Morse inequalities in terms of persistence diagrams

We will now present our approach to Morse inequalities for persistence modules. In § 7.1.1,
we consider the cap numbers of a q-tame persistence module and show that they satisfy
Morse inequalities. We then discuss a condition for the finiteness of these numbers in §7.1.2.

7.1.1. Morse inequalities for cap numbers

Classical Morse theory Recall that for a Morse function f on a closed smooth manifold
X, the classical Morse inequalities [Mor96] state that for any non-negative integer n the
following holds:

n∑︂
d=0

(−1)n−d(︁cd(f)− βd(X)
)︁
≥ 0, (7.1.1)

where c(f) is the number of critical points of f with index d and βd(X) is the dth Betti
number of X.

If no two critical points of f have the same value, the sets of critical points and values are
naturally in one-to-one correspondence, which, in turn, are in one-to-one correspondence
with the homological changes in the sublevel set filtration of f , i.e., the endpoints of the
intervals appearing in the barcode of the persistent homology of f≤•. More precisely, an
index d critical point may either kill an existing homology class, in which case it corresponds
to the right endpoint of an interval in the barcode of Hd−1(f≤•), or it may give rise to a
new homology class, in which case it corresponds to the left endpoint of an interval in the
barcode of Hd(f≤•).

The Betti numbers of X may also be expressed in terms of barcodes because they agree
with the number of intervals that extend to +∞. Thus, the Morse inequalities above can
be expressed entirely in terms of the barcode (or persistence diagram) of the persistent
homology of the sublevel set filtration of the function, which encodes the homological
changes in the filtration.

79



7. Morse inequalities in terms of persistence and minimal surfaces

Birth, death, and cap numbers The approach of counting homological changes instead
of critical points described above is also what Morse used in the non-smooth setting of
functional topology. To keep track of the number of d-dimensional homological events at
filtration value t that persist for at least time ϵ > 0 but not indefinitely, Morse [Mor40]
defined the (d, t, ϵ)-cap numbers of a filtration. The definition given by Morse is specific to
Vietoris homology and implicitly relies on the fact that the resulting persistence module is
continuous from above. In terms of persistence barcodes, the (d, t, ϵ)-cap number correspond
to the number of bars in the dth barcode with left endpoint t and length greater than ϵ,
plus the number of bars in the (d− 1)th barcode with right endpoint t and length greater
than ϵ. In the compact smooth setting, for sufficiently small ϵ, the (d, t, ϵ)-cap number
equals the number of critical points of index d and value t, which either create homology in
degree d or destroy homology in degree (d− 1). In [Mor40, Corollary 12.3], Morse proves a
version of his eponymous inequalities using cap numbers as a replacement for numbers of
critical points with the stated goal of making the inequalities applicable in settings where
the function may not be smooth or the number of critical points may not be finite.

We now take a more general persistence-based approach that allows us to go beyond the
setting of Vietoris homology. Working entirely in the algebraic setting, we will fix a graded
q-tame persistence module M . Of course, one may think of M as the persistent homology
of a q-tame filtration for any choice of homology theory, but M could for example also arise
as the filtered Floer homology of some Hamiltonian on a symplectic manifold. Since M is
q-tame, it has a persistence diagram in every degree d with multiplicity function denoted
md : E → N. In analogy to Morse’s definitions, we may define, for an integer d and real
numbers t and ϵ > 0, the (d, t, ϵ)-cap number of our graded q-tame persistence module M
in terms of its persistence diagram as

cϵd(t) = αϵd(t) + ωϵd−1(t),

where

αϵd(t) =
∑︂

q∈R∪{∞}
q−t>ϵ

md(t, q), ωϵd(t) =
∑︂

p∈R∪{−∞}
t−p>ϵ

md(p, t)

are the number of births and the number of deaths, respectively, in degree d, at parameter
t, and with persistence greater than ϵ. Note that finiteness of these quantities is ensured
by the q-tameness of M and the use of a non-zero ϵ bounding below the persistence of
the considered features. To see the necessity of this second condition, consider the q-tame
persistence module given by the infinite product

∏︁
n∈N>0 C([0, 1/n)) whose cap numbers

cϵ(0) tend to ∞ as ϵ tends to 0.

Definition 7.1.1. Let M be a graded q-tame persistence module with persistence diagram
given by m. Whenever the sums below are well-defined, we define the (d, ϵ)-cap numbers

cϵd =
∑︂
t

cϵd(t) = αϵd + ωϵd−1,

where

αϵd =
∑︂
t∈R

αϵd(t) =
∑︂

(p,q)∈E
q−p>ϵ
p ̸=−∞

md(p, q), ωϵd =
∑︂
t∈R

ωϵd(t) =
∑︂

(p,q)∈E
q−p>ϵ
q ̸=∞

md(p, q)
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are the total number of births and the total number of deaths, respectively, in degree d and
with persistence greater than ϵ.

In the language of lifespan functors from Chapter 4, αϵd is the number of bars longer than
ϵ in the barcode of the nascent part of the radical of the degree d part of M . Similarly, ωϵd
is the number of bars longer than ϵ in the barcode of the mortal part of the radical of the
degree d part of M .

Morse inequalities for cap numbers Comparing to the classical Morse inequalities, the
cap numbers in dimension d act like the number of critical points with index d. As an
analogue to the Betti numbers of the manifold appearing in the usual Morse inequalities,
Morse defines quantities pd referred to as essential dimensions, which, under the same
assumptions as before, can be expressed in the language of persistence diagrams as

pd =
∑︂

p∈R∪{−∞}
md(p,∞),

which is also the dimension of the colimit of the degree d part of M .

Theorem 7.1.2. Let ϵ > 0, and let M be a graded q-tame persistence module with finite
cap numbers cϵd and finite essential dimensions pd for all d. If md(−∞, p) = 0 for all
p ∈ R ∪ {∞} and all d, then we have Morse inequalities

n∑︂
d=0

(−1)n−d(cϵd − pd) ≥ 0 (7.1.2)

for any dimension n.

Proof. Recall that the dth ϵ-cap number is defined as

cϵd = αϵd + ωϵd−1.

Since we assume md(−∞, p) = 0 for all p, we have

pd = αϵd − ωϵd

The difference of the two numbers, which appears in the Morse inequalities to be shown, is
thus

cϵd − pd = ωϵd−1 + ωϵd,

and their sum is
n∑︂
d=0

(−1)n−d(cϵd − pd) = ωϵn ≥ 0

as claimed.

Given the assertion that the persistence module M has a persistence diagram, one can
interpret the previous proof as saying that the Morse inequalities simply express the (trivial)
fact that the number of right endpoints in the persistence diagram is nonnegative. The
simplicity of this observation illustrates the usefulness of interpreting fundamental facts in
Morse theory through the lens of persistence theory.
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As we will show in Theorem 7.1.5, the finiteness assumptions are satisfied if M is initially
and eventually constant. Hence, as a special case, the theorem yields generalized Morse
inequalities for any bounded real-valued function whose sublevel set filtration has q-tame
persistent homology, including classical Morse functions f on closed smooth manifolds X. As
outlined in our motivation for the definition of cap numbers, in this setting our inequalities
(7.1.2) agree with the classical inequalities (7.1.1), as βd(X) = pd and cϵd = # critd(f) for
ϵ > 0 smaller than the minimal difference between any two critical values of f . Morse
inequalities for unbounded functions can still be obtained by restricting the function to an
arbitrary sublevel set. Using Čech homology and considering bounded q-tame functions,
our cap numbers and essential dimensions agree with the corresponding historical notions
from [Mor40], so in this case our inequalities (7.1.2) also agree with the inequalities [Mor40,
Corollary 12.3].

To apply our inequalities, one needs q-tameness, and we will give topological conditions
that ensure q-tameness (Theorem 8.1.4). These conditions are in particular satisfied by the
Douglas functional (Proposition 8.2.5), which we will review later on, and which motivated
the developments in [Mor40].

Remark 7.1.3. In addition to the formulation of the inequalities in terms of cap numbers,
Morse also proposed a generalized version of critical points, which he called homotopically
critical, and which formalizes the idea of criticality of a point in terms of topological changes
in the sublevel set filtration. This notion was employed by Morse and Tompkins in their
study of minimal surfaces [MT39], which we will partly review in Section 7.2 and for which
a thorough historical account may be found in [Str88, Section II.6].

The usefulness of this notion might however be limited in some cases of interest. In Floer
theory, for example, critical points of the action functional corresponding to a Hamiltonian
usually do not have a finite index and thus do not lead to a change in the homotopy type of
sublevel sets. In this setting, our approach of formulating the inequalities purely in algebraic
terms might be more suitable: while these critical points are not topologically visible, they
do correspond to features in the persistence diagram of the filtered Floer homology.

7.1.2. Finiteness of cap numbers

The results in this subsection have previously appeared in the authors master’s thesis. We
repeat them for completeness, but do not claim any novelty.

An important setting where all cap numbers are well-defined is when M is the persistent
homology of the sublevel set filtration of a bounded function. A more general statement
can be made using the following notion.

Definition 7.1.4. A persistence module M is said to be initially constant if there is s ∈ R
such that Mr,s is an isomorphism for all r ≤ s. Similarly, it is said to be eventually constant
if there is u ∈ R such that Mu,v is an isomorphism for all u ≤ v.

Theorem 7.1.5. Let M be a q-tame persistence module that is both initially and eventually
constant. If m is the multiplicity function of the persistence diagram of N , then for each
ϵ > 0, ∑︂

(p,q)∈E
q−p>ϵ

m(p, q) <∞.
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Proof. Let s, u ∈ R be as in Definition 7.1.4. We split the sum whose finiteness we want to
show in two parts ∑︂

(p,q)∈E
q−p>ϵ

m(p, q) =
∑︂

(p,q)∈E\T
q−p>ϵ

m(p, q) +
∑︂

(p,q)∈T
q−p>ϵ

m(p, q)

where T denotes the triangle

T = {(p, q) ∈ E | s ≤ p < q ≤ u}.

For the first summand, observe that, because M is constant below s and constant above
u, we have m(p, q) = 0 whenever one of −∞ < p < s or q < s or p > u or u < q <∞ holds.
This implies ∑︂

(p,q)∈E\T
q−p>ϵ

m(p, q) =
∑︂

s<q<u

m(−∞, q) +
∑︂

s<p<u

m(p,∞)

which is clearly finite because M is q-tame.
For the second summand, note that∑︂

(p,q)∈T
q−p>ϵ

m(p, q) ≤
∑︂

(p,q)∈T ϵ

m(p, q),

where T ϵ is the smaller triangle

T ϵ = {(p, q) ∈ T | q − p ≥ ϵ}.

Thus, in order to prove the theorem, it suffices to show that we have∑︂
(p,q)∈T ϵ

m(p, q) < ∞.

To do this, we consider open quadrants

Q(x, y) = {(p, q) ∈ R2 | p < x and y < q}.

Covering the compact set T ϵ by the open quadrants Q
(︁
x, x+ ϵ

2
)︁

for x ∈ R, we may choose
a finite subcover given by, say, x1, . . . , xn. We obtain∑︂

(p,q)∈T ϵ

m(p, q) ≤
n∑︂
i=1

∑︂
(p,q)∈

Q(xi,xi+ ϵ
2 )

m(p, q).

Each of the sums
∑︁

(p,q)∈Q(xi,xi+ ϵ
2 ) m(p, q) over the quadrants Q

(︁
xi, xi + ϵ

2
)︁

is finite since
M is q-tame (which is where the name q-tame or quadrant-tame comes from, see [Cha+16,
Section 3.8]).

Of course, the persistent homology of a function, and even a bounded one, will generally
not be bounded as a persistence module. For bounded functions, the persistent homology of
the sublevel set filtration will be eventually constant with the homology of the domain of the
function as value. If this homology of the domain is finite-dimensional, Theorem 7.1.5 can
still be applied to obtain finiteness of cap numbers: one can split the persistent homology
into its mortal and immortal part (see Chapter 4), apply Theorem 7.1.5 to the mortal part,
and observe that the cap numbers of the immortal part are finite because the homology of
the domain is finite-dimensional.
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7. Morse inequalities in terms of persistence and minimal surfaces

7.2. Persistence for minimal surfaces

Next, we present our approach to minimal surfaces via the persistent homology of the
Douglas functional. Concretely, we will prove a mountain pass theorem for homotopically
critical points of functionals in § 7.2.1. Our version of this theorem has slightly different
assumptions and conclusions than the historical version by Morse and Tompkins that they
used to prove the unstable minimal surface theorem, and we will discuss some of these
differences in § 7.2.2. To finish, we deduce the unstable minimal surface theorem from our
mountain pass theorem in § 7.2.3, barring the fact that the Douglas functional has q-tame
persistent Čech homology, which we discuss in § 8.2.2.

7.2.1. A mountain pass theorem for homotopically critical points

Homotopically critical points As alluded to in Remark 7.1.3, Morse and Tompkins
consider a homotopical notion of critical point for a general function F : M → R on a metric
space [MT39, p. 445], see also [Mor43]. Their goal was to apply this general theory to the
Douglas functional to study minimal surfaces. As mentioned, we will discuss this in more
detail Section 7.2.

Definition 7.2.1 ([Str88, Definition II.6.1-II.6.2], [MT39, p. 445, 466]). Consider a real-
valued function F on a metric space (M,d). A point p ∈M is called homotopically regular
if there exists a neighborhood U of p in F≤F (p) and a continuous map φ : U × [0, 1]→M ,
which satisfies φ(·, 0) = idU and φ(p, 1) ̸= p, such that for every compact subset V ⊆ U
there exists a continuous displacement function δ : R≥0 → R≥0. That is, a continuous
function δ with δ(e) = 0 if and only if e = 0 and

F (φ(x, s))− F (φ(x, t)) ≥ δ(d(φ(x, s), φ(x, t)))

for all x ∈ V and 0 ≤ s ≤ t ≤ 1. A point that is not homotopically regular is called
homotopically critical. Function values of homotopically critical points will be called critical
values and all other values will be called regular values. A critical set S is a closed and
open subset of the subspace of all homotopically critical points with a given function value.
It is said to be of minimum type if there exists a neighborhood N of the closure S of S,
taken in M , such that the function values on N \ S strictly exceed the function value on S.

Note that, in particular, an isolated local minimum constitutes a critical set of minimum
type. Similarly, a critical submanifold of a Morse-Bott function on which the function
values are locally minimized is also a critical set of minimum type.

A mountain pass theorem

Definition 7.2.2 ([MT39, p. 445]). Let F : M → R be a function on a metric space. We say
that the sublevel set filtration of F is compact if all sublevel sets of F are compact. We say
that F is weakly upper-reducible if for all p ∈M and all c > F (p) there exists a neighborhood
U of p in F≤c, a positive constant η > 0, and a continuous map φ : U × [0, 1] → M ,
which satisfies φ(·, 0) = idU and φ(U, 1) ⊆ F≤c−η, such that on every compact subset
V ⊆ U ∩ F≥c−η there exists a displacement function for φ as in Definition 7.2.1.
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In [Mor38, p. 36], the stronger notion of upper-reducibility, without the prefix weakly,
is defined analogously to Definition 7.2.2 with the slight difference that the existence of
a displacement function is not only demanded for compact V ⊆ U ∩ F≥c−η, but for all
compact V ⊆ U .

Morse and Tompkins state the following mountain pass theorem under slightly different
assumptions, and with a slightly different conclusion.

Theorem 7.2.3 (Mountain pass theorem, [MT39, Corollary 7.1]). Let F : M → R be a
weakly upper-reducible function on a non-empty connected metric space with compact sublevel
set filtration. Assume that the natural map colim Ȟ0(F≤•)→ Ȟ0(M) is an isomorphism,
and that the sublevel set filtration of F is LHS with respect to Čech homology. If M contains
two distinct critical sets of F of minimum type, then it also contains a critical set not of
minimum type.

What it means for the sublevel set filtration of F to be LHS will be defined in Defini-
tion 8.1.2. This condition on F is used to ensure that Ȟ0(F≤•) is q-tame (Theorem 8.1.4).

We note that, under the conditions on F from Theorem 7.2.3, the Morse inequalities
(7.1.2) apply to Ȟ∗(F≤•), which can be checked with the help of Theorems 7.1.5 and 8.1.4
and Lemma 7.2.10 and the fact that F must be bounded below if its sublevel sets are
compact. Using Morse inequalities is also the approach of Morse and Tompkins to the
mountain pass theorem: they relate homotopically critical points to cap numbers and then
interpret the mountain pass theorem as a version of the Morse inequalities (7.1.2) for n = 1.
Our approach will be similar, but in the formulation of Theorem 7.2.3, the mountain pass
theorem is actually a stronger statement than the Morse inequalities for n = 1. We will
comment on this in more detail at the end of § 7.2.2.

It is also worth noting that the details in [MT39] are incomplete, with some crucial
theorems such as [MT39, Theorems 7.3 and 7.4, Corollary 7.1] being stated without proof,
and with a citation to a paper in preparation that has never been published under the given
name (we suppose that this paper is [Mor40]). Moreover, there is a gap in [Mor40], because
[Mor40, Theorem 6.3], which establishes q-tameness in the setting of Morse–Tompkins, is
incorrect as we will show in Corollary 8.2.3. The assumptions we choose for our version of the
mountain pass theorem are adapted from the original assumptions to the modern language
of persistence theory, and they fix the problem with q-tameness. Still, our assumptions can
be established for the Douglas functional from the results of Morse and Tompkins [MT39].
We provide more detailed comments regarding the differences between these assumptions
and the conclusions of the mountain pass theorem in Subsections 7.2.2 and 8.2.1.
Remark 7.2.4. We mention that more general homology theories can be considered in
Theorem 7.2.3. The precise hypotheses on the homology theory H are that it is additive,
taking non-zero values on non-empty sets in dimension 0, and such that H(F≤•) is continuous
from above, i.e., H(F≤t)→ limu>tH(F≤u) is an isomorphism for all t ∈ R. One may also
replace the topological conditions of M being connected, the natural map colimH0(F≤•)→
H0(M) being an isomorphism, and F being LHS by the algebraic conditions that p0 = 1
and H(F≤•) be q-tame.

Towards a proof of the mountain pass theorem The primary application that Morse
and Tompkins had in mind for the mountain pass theorem is the unstable minimal surface
theorem that we review in § 7.2.3. While more efficient and more general proofs for the
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existence of an unstable minimal surface have subsequently been established [DHS10;
Str88], including less restrictive assumptions on the boundary curve, the original approach
of Morse and Tompkins is notable for its close connection to persistent homology and
the generality in which it is applicable in principle. As an illustration, we will now give
a proof of Theorem 7.2.3 following Morse and Tompkins [MT39] using the previously
developed language of persistence, filling in some gaps left by Morse and Tompkins. As
a first step towards proving Theorem 7.2.3, we give general formulas for numbers of
births α(t) =

∑︁
q∈(t,∞] m(t, q) and numbers of deaths ω(t) =

∑︁
p∈[−∞,t) m(p, t) in a q-tame

persistence module M with persistence diagrams given by the multiplicity function m.

Lemma 7.2.5. Let M be a q-tame persistence module. For each t ∈ R we either have

α(t) = dim coker
(︃

colim
s<t

Ms → lim
u>t

Mu

)︃
or both quantities are infinite. Similarly, we either have

ω(t) = dim ker
(︃

colim
s<t

Ms → lim
u>t

Mu

)︃
or both quantities are infinite.

Proof. The internal colimits colims<tMs and limits limu>tMu are invariant under weak
isomorphisms by Lemmas 10.1.9 and 10.1.10, and the same is true for the numbers of
births and deaths α(t) and ω(t) because they are defined through persistence diagrams,
which themselves are invariant under weak isomorphisms. Hence, using the fact that the
inclusion radM ↪→ M is a weak isomorphism, we conclude that none of the quantities
appearing in the statement of the lemma change if we replace M by its radical. This radical
admits a barcode decomposition and the claims follow from an explicit computation on the
corresponding barcode module M ′ :=

⨁︁
λ∈ΛC(Iλ):

First, note that we have

dim lim
u>t

M ′
u = ♯ {λ ∈ Λ | inf Iλ ≤ t, sup Iλ > t}

if one side of the equation is finite, and we also have

dim colim
s<t

M ′
s = ♯ {λ ∈ Λ | inf Iλ < t, sup Iλ ≥ t} ,

as well as

dim im
(︃

colim
s<t

M ′
s → lim

u>t
M ′
u

)︃
= ♯ {λ ∈ Λ | inf Iλ < t, sup Iλ > t} .

From this, if again one side of the equation is finite, we obtain

α(t) =
∑︂

q∈(t,∞]
m(t, q)

= ♯ {λ ∈ Λ | inf Iλ = t, sup Iλ > t}
= ♯ {λ ∈ Λ | inf Iλ ≤ t, sup Iλ > t} − ♯ {λ ∈ Λ | inf Iλ < t, sup Iλ > t}

= dim lim
u>t

M ′
u − dim im

(︃
colim
s<t

M ′
s → lim

u>t
M ′
u

)︃
= dim coker

(︃
colim
s<t

M ′
s → lim

u>t
M ′
u

)︃
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and we also obtain

ω(t) =
∑︂

p∈[−∞,t)
m(p, t)

= ♯ {λ ∈ Λ | inf Iλ < t, sup Iλ = t}
= ♯ {λ ∈ Λ | inf Iλ < t, sup Iλ ≥ t} − ♯ {λ ∈ Λ | inf Iλ < t, sup Iλ > t}

= dim colim
s<t

M ′
s − dim im

(︃
colim
s<t

M ′
s → lim

u>t
M ′
u

)︃
= dim ker

(︃
colim
s<t

M ′
s → lim

u>t
M ′
u

)︃
.

If M is continuous from below or above (see Definition 10.1.1), then the colimits and
limits appearing in the formulas above may simply be replaced by the constituent vector
spaces of M . As a special case, this yields the following corollary.

Corollary 7.2.6. Let M be a q-tame persistence module. If M is continuous from above
and below at t, we have

α(t) = ω(t) = 0.

Topological evolution at regular values We now return to the setting of functions F on
metric spaces and prove some more lemmas. To emphasize which persistence-theoretic
notions are relevant, we will work with a general homology theory H such that H(F≤•)
has certain properties, stated in the lemmas. In fact, beyond these properties, H need
not actually be a homology theory in the usual sense of the word, but can be any graded
vector space valued homotopy invariant functor. In all cases, Čech homology as used in
Theorem 7.2.3 satisfies the necessary conditions. We start with a first result stating that,
as in the case of smooth Morse theory, the homotopy type of sublevel sets does not change
leading up to regular values. A weaker version of Lemma 7.2.7 is stated in [Mor38, Lemma
8.1], under the slightly stronger assumption of upper-reducibility. In [MT39], Morse and
Tompkins introduce and use weak upper-reducibility, noting that the results and arguments
from [Mor38, Sections 7 and 8] still apply. For convenience of the reader, we revisit the
relevant arguments using our setting, loosely following the exposition by Struwe [Str88,
Remark II.6.3] (who is working under yet another slightly different set of assumptions).

Lemma 7.2.7. Let F : M → R be a weakly upper-reducible function a metric space with
compact sublevel set filtration. If t ∈ R is a regular value of F , then there exists ϵ > 0 such
that the inclusion F≤s ↪→ F≤t is a homotopy equivalence for all s ∈ (t− ϵ, t].

Proof. Let t ∈ R be a regular value of F . For each p ∈ F≤t we can find a number δp > 0
and a continuous map φp : Bδp(p)× [0, 1]→M , where Bδp(p) is the open metric ball around
p in F≤t with radius δp, such that

1. φp(·, 0) = id,

2. for all compact V ⊆ Bδp(p) there exists ϵ(p, V ) > 0 with
a) φp(V ∩ F≤s × [0, 1]) ⊆ F≤s for all s ∈ (t− ϵ(p, V ), t], and
b) φ(V, 1) ⊆ F≤t−ϵ(p,V ).
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For p with F (p) < t the existence of such δp and φp is guaranteed by the assumption that
F is weakly upper-reducible. For p with F (p) = t it follows from the assumption that t is a
regular value and hence p is homotopically regular, by the following argument.

If p is homotopically regular, there exists a neighborhood U of p in F≤t and a continuous
map φ : U × [0, 1] → M such that φ(·, 0) = idU , φ(p, 1) ̸= p, and such that on every
compact set V ⊆ U there exists a displacement function for φ and F . It is clear that
φ(V ∩F≤s× [0, 1]) ⊆ F≤s for all s ≤ t and V ⊆ U compact since there exists a displacement
function and hence the values of F can not increase along trajectories of φ. It remains
to be checked that we can shrink U enough such that for all compact V ⊆ U there is
ϵ(p, V ) with φ(V, 1) ⊆ F≤t−ϵ(p,V ). Assume for a contradiction that for all neighborhoods
W ⊆ U there exists a compact V ⊆ W such that for all ϵ > 0 there is some q ∈ V with
t ≥ F (q) ≥ F (φ(q, 1)) > t − ϵ, where we note that F (q) ≥ F (φ(q, 1)) is a consequence
of the existence of a displacement function on V . It follows that there exists a sequence
(qn)n in F≤t with F (qn)→ t and qn → p for n→∞. Since φ is continuous we have that
φ(qn, 1) converges to φ(p, 1), which is different from p by the choice of φ, so there can
be no infinite subsequence of (qn)n consisting of fixed points for φ(·, 1). Without loss of
generality, we can thus assume that φ(qn, 1) ̸= qn for all n. Now consider the compact
set K = {qn | n ∈ N} ∪ {p}. By assumption, we can choose a continuous displacement
function δ on K. Since K is compact, φ is continuous, δ is continuous, and φ(·, 1) has
no fixed points in K, the function x ↦→ δ(d(x, φ(x, 1))) attains a minimum ϵ > 0 on K.
We get F (x) − t ≥ F (x) − F (φ(x, 1)) ≥ ϵ > 0 for all x ∈ K, which contradicts the fact
that F (qn) → t for n → ∞. This proves the existence of the required δp and φp for p
homotopically regular with F (p) = t.

Because F≤t is compact, we can now choose finitely many points p1, . . . , pn such that
F≤t is covered by (B δpi

3
(pi))i, and we set

ϵ := max
i=1,...,n

ϵ

(︃
pi, B δpi

3
(pi)

)︃
.

We extend the corresponding homotopies φpi from Bδpi
(pi) to all of F≤t, not changing them

on B δpi
3

(pi), and being the identity on F≤t \Bδpi
(pi): Let ψ : [0, 1]→ [0, 1] be the continous

map given by

ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ [0, 1

3),
−3x+ 2 if x ∈ [1

3 ,
2
3),

0 if x ∈ [2
3 , 1].

We define φ̃i : F≤t × [0, 1]→ F≤t by

φ̃i(x, r) =

⎧⎨⎩φpi

(︂
x, ψ

(︂
d(x,pi)
δpi

)︂
· r
)︂

if x ∈ Bδpi
(pi),

x otherwise.

Finally, we define φ : F≤t× [0, 1]→ F≤t as the concatenation of the maps φ̃i, i.e., φ(x, 0) = x

and φ(x, r) = φi (x, n · r − i) for r ∈
(︂
i
n ,

i+1
n

]︂
. From the properties of the maps φpi chosen

in the beginning and the construction of the maps φ̃i, we obtain that

1. φ(·, 0) = id,

2. φ(F≤s × [0, 1]) ⊆ F≤s for all s ∈ (t− ϵ, t], and
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3. φ(F≤t, 1) ⊆ F≤t−ϵ.

This shows that, indeed, for s ∈ (t−ϵ, t] the inclusion F≤s ↪→ F≤t is a homotopy equivalence,
with homotopy inverse given by φ.

Topological evolution at critical values We proceed by showing that function values with
non-vanishing cap numbers cd(t) := αd(t) + ωd−1(t), for any d, are indeed critical values.
This corresponds to [Mor38, Theorem 8.1]. Note that the definition of cap numbers used
by Morse is phrased in terms of relative homology, differing from our definition in terms of
absolute homology. The equivalence of both definitions is shown in Proposition 7.2.12.

Lemma 7.2.8. Let F : M → R be a weakly upper-reducible function on a metric space
with compact sublevel set filtration. Assume that H(F≤•) is q-tame and continuous from
above, and consider t ∈ R and its birth and death numbers αd(t) and ωd−1(t). If αd(t) > 0
or ωd−1(t) > 0 for some degree d, then t is a critical value of F .

Proof. Following Lemma 7.2.7, we know that if t is a regular value, there exists ϵ > 0
such that the inclusion F≤s ↪→ F≤t is a homotopy equivalence for all s ∈ (t− ϵ, t]. Thus,
H(F≤•) is continuous from below at every regular value. However, we assume H(F≤•) to
be also continuous from above at every value, and in particular at regular values. Hence,
Corollary 7.2.6 implies that αd(t) = ωd−1(t) = 0 for all d whenever t is regular, which
proves the claim.

Next, we will analyze how the homology of sublevel sets changes at function values of
critical sets of minimum type.

Lemma 7.2.9. Let F : M → R be a weakly upper-reducible function on a metric space
with compact sublevel set filtration and let S be a critical set of minimum type with value t.
Assume that H is additive and that H(F≤•) is q-tame and continuous from above.

1. The number of births at t satisfies αd(t) ≥ dimHd(S) for all d.

2. If there are no homotopically critical points with value t outside S, then the number
of deaths at t satisfies ωd(t) = 0 for all d.

Proof. We start by showing that S is a topological summand of F≤t in the sense that F≤t
is homeomorphic to the disjoint union S ⊔ (F≤t \ S). It suffices to show that S is open
and closed in F≤t. By definition, there exists a neighborhood N of S in M such that the
function values of F on N \ S exceed t. In particular, we have F≤t ∩N = S, showing that
S is open in F≤t. Because N contains S, we also obtain F≤t ∩ S = S, showing that S is
closed in F≤t.

Using additivity of H and Lemma 7.2.5, we now obtain

αd(t) = dim coker
(︁

colim
s<t

Hd(F≤s)→ lim
u>t

Hd(F≤u)
)︁

= dim coker
(︁

colim
s<t

Hd(F≤s)→ Hd(F≤t)
)︁

= dim coker
(︁

colim
s<t

Hd(F≤s)→ Hd(F≤t \ S)⊕Hd(S)
)︁

≥ dimHd(S),
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where we have used the assumption that H(F≤•) is continuous from above for the second
equality and the fact that F≤s ⊆ (F≤t \ S) for all s < t for the final inequality.

Now, assume that S is the set of all homotopically critical points of F with value t and
consider the restriction of F to F≤t \ S, denoted by G. The set F≤t \ S is compact because
F≤t is compact and S is open in F≤t, so the sublevel set filtration of G is compact. G is
also weakly upper-reducible because the same is true for F . Moreover, any homotopically
critical point of G is a homotopically critical point of F , so our assumption that S is
the set of all homotopically critical points with value t of F implies that t is a regular
value for G. By Lemma 7.2.7, this implies that there exists ϵ > 0 such that the inclusion
F≤s = G≤s ↪→ G≤t = (F≤t \ S) is a homotopy equivalence for for all s ∈ (t − ϵ, t] Hence,
again using additivity of H, continuity from above, and Lemma 7.2.5, we obtain that

ωd(t) = dim ker
(︁

colim
s<t

Hd(F≤s)→ lim
u>t

Hd(F≤u)
)︁

= dim ker
(︁

colim
s<t

Hd(F≤s)→ Hd(F≤t)
)︁

= dim ker
(︁

colim
s<t

Hd(F≤s)→ colim
s<t

Hd(F≤s)⊕Hd(S)
)︁

= 0

as claimed.

Final arguments As the last preparatory result, we will show that connectedness of M
together with the condition on the colimit of the persistent homology of F in the setting of
Theorem 7.2.3 imply that the 0-th essential dimension is trivial for Čech homology.

Lemma 7.2.10. Let F : M → R be a function on a connected non-empty metric space with
compact sublevel set filtration such that the natural map colim Ȟ0(F≤•) → Ȟ0(M) is an
isomorphism and Ȟ0(F≤•) is q-tame. Then the essential dimension of Ȟ0(F≤•) satisfies
p̌0 = 1.

Proof. Since M is connected and non-empty, we have dimH0(M) = 1 for singular homology,
and since M is non-empty we have dim Ȟ0(M) ≥ 1. Now the natural map from singular to
Čech homology is always surjective for compact metric spaces in dimension 0 [EK00], so
the morphism H0(F≤•)→ Ȟ0(F≤•) is epi. Taking direct limits of vector spaces is exact, so
the natural map colimH0(F≤•)→ colim Ȟ0(F≤•) is still epi. We assume colim Ȟ0(F≤•)→
Ȟ0(M) to be an isomorphism, so the composition colimH0(F≤•) → Ȟ0(M) is still epi.
But this map factors through H0(M), which has dimension 1, so we get dim Ȟ0(M) =
1. Together with our assumption on the colimit, we obtain p̌0 = dim colim Ȟ0(F≤•) =
dim Ȟ0(M) = 1.

Remark 7.2.11. Note that p̌0 = 1 does not already follow from just M being connected, i.e.,
the assumption colim Ȟ0(F≤•)→ Ȟ0(M) is non-vacuous: For the lower semi-continuous
function F : [0, 1]→ R defined as F (0) = 0 and F (t) = 1

t for t > 0, we have for t > 0 that
F≤t = {0}∪ [1

t , 1]. Hence, we get p̌0 = dim colim Ȟ0(F≤•) = 2 despite M being contractible
and the sublevel sets of F being compact.

We are now ready to give a proof of the mountain pass theorem.
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Proof of Theorem 7.2.3. First, we note that Ȟ∗(F≤•) is q-tame by Theorem 8.1.4 because
we assume that F≤• is LHS for Čech homology. As a consequence, Ȟ∗(F≤•) has a well-
defined persistence diagram, and thus we can consider cap numbers, births, deaths, etc.
We write čd, α̌d, ω̌d, and p̌d for the cap numbers, births, deaths, and essential dimensions
of Ȟd(F≤•), respectively. The sublevel set filtration of F≤• is also assumed to be compact,
M is assumed to be connected and non-empty, colim Ȟ0(F≤•)→ Ȟ0(M) is assumed to be
an isomorphism, and F is assumed to be weakly upper-reducible, so the previous lemmas
are all applicable.

Now assume that F has two distinct critical sets S1 and S2 of minimum type with
values t1 and t2, respectively. Since both critical sets are non-empty, we have Ȟ0(Si) ̸= 0,
and thus the first assertion of Lemma 7.2.9 implies α̌0(ti) ≥ dim Ȟ0(Si) ≥ 1 for i = 1, 2,
indicating the existence of at least one feature for each i = 1, 2 with birth ti and some
positive persistence ϵi > 0 in the persistence diagram of Ȟ0(F≤•). Choosing 0 < ϵ < mini ϵi,
this implies that α̌ϵ0(ti) ≥ 1 for i = 1, 2, and thus čϵ0 ≥ α̌ϵ0(t1) + α̌ϵ0(t2) ≥ 1 + 1 = 2. Now,
from Lemma 7.2.10 we obtain that p̌0 = 1, which yields ω̌ϵ0 = čϵ0 − p̌0 ≥ 2− 1 = 1. Thus,
there must be some t ∈ R with ω̌0(t) ≥ ω̌ϵ0)(t) > 0, so that we may apply Lemma 7.2.8 to
obtain that the set S of homotopically critical points at value t is non-empty. If S were
of minimum type, then we would have ω̌0(t) = 0 by the second assertion of Lemma 7.2.9,
contradicting the choice of t. Hence, S cannot be of minimum type, which finishes the
proof.

7.2.2. Some historical comparisons
Equivalence of definitions of cap numbers We will now discuss some differences and
equivalences between our approach and that of Morse and Tompkins. As a starting point for
the comparison of the notion of cap number, we observe that the basic use of the homotopy
lemma Lemma 7.2.7 is to show that if t is an endpoint of a feature in the persistence
diagram associated to our function F , i.e., if c(t) > 0, then there must be a homotopically
critical point with value t. To achieve this, we assume that F is weakly upper-reducible
and its sublevel set filtration is compact. A very similar statement appears in [Mor38,
Theorem 8.1], which says that if t is a cap limit, then there must be a homotopically critical
point with value t. There are two slight differences to our approach: First, in [Mor38,
Theorem 8.1] it is assumed that F is not only weakly upper-reducible but upper-reducible.
Second, t is not required to satisfy c(t) > 0, but required to be a cap limit, meaning that
colims:s<t Ȟ(F≤t, F≤s) ̸= 0 [Mor38, p. 12]. We have already discussed the first point when
introducing Lemma 7.2.7. Regarding the second point, we now show that our cap numbers
are non-zero for some t if and only if t is a cap limit.

Proposition 7.2.12. Let F : M → R be a weakly upper-reducible function on a metric
space with compact sublevel set filtration and fix t ∈ R. Assume that H has long exact
sequences for pairs of compact spaces, and that H∗(F≤•) is q-tame and continuous from
above. Then dim colims:s<tHd(F≤t, F≤s) = cd(t) or both quantities are infinite.

Proof. First, note that we have a splitting

colim
s:s<t

Hd(F≤t, F≤s) ∼= im
(︃
Hd(F≤t)→ colim

s:s<t
H∗(F≤t, F≤s)

)︃
⊕ coker

(︃
Hd(F≤t)→ colim

s:s<t
Hd(F≤t, F≤s)

)︃
.
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Computing with the long exact sequences of pairs in homology, we have

αd(t) = dim coker
(︃

colim
s:s<t

Hd(F≤s ↪→ F≤t)
)︃

= dim colim
s:s<t

coker (Hd(F≤s ↪→ F≤t))

= dim colim
s:s<t

im (Hd(F≤t)→ Hd(F≤t, F≤s))

= dim im
(︃
Hd(F≤t)→ colim

s:s<t
Hd(F≤t, F≤s)

)︃
,

and

ωd−1(t) = dim ker
(︃

colim
s:s<t

Hd−1(F≤s ↪→ F≤t)
)︃

= dim colim
s:s<t

ker (Hd−1(F≤s ↪→ F≤t))

= dim colim
s:s<t

coker (Hd(F≤t)→ Hd(F≤t, F≤s))

= dim coker
(︃
Hd(F≤t)→ colim

s:s<t
Hd(F≤t, F≤s)

)︃
,

where we have in both cases used the fact that taking filtered colimits of vector spaces
is exact, and where the first equalities hold in case both sides of the equation are finite
because of Lemma 7.2.5 and the fact that H(F≤•) is continuous from above. Since
cd(t) = αd(t) + ωd−1(t), this finishes the proof.

Remark 7.2.13. Proposition 7.2.12 only references cap limits, i.e., levels t for which the
cap space colims:s<tHd(F≤t, F≤s) is non-zero. However, Morse not only considers these
cap spaces on their own, but he also defines the span of a cap, and considers the space
of caps with span greater than some ϵ > 0, see for example [Mor40, Section 11]. Using
slight generalizations of the arguments proving Proposition 7.2.12 and Lemma 7.2.5, one
can show that the dimensions of these spaces agree with cϵd(t). We already mentioned this
when talking about Morse inequalities, which Morse originally formulated for dimensions of
such cap spaces.

Note that the assumptions of Proposition 7.2.12 are in particular satisfied for Čech
homology with field coefficients and a function F whose sublevel set filtration is LHS with
respect to this homology theory. To continue the comparison between our approach to the
mountain pass theorem and the one by Morse and Tompkins, we will now discuss several
differences between the requisite definitions and the respective assumptions and conclusions.

Continuity of displacement functions Our Definition 7.2.1 of homotopically regular point
differs slightly from that of Morse [Mor38, p. 30] and Morse and Tompkins [MT39, p. 444–
445] as their displacement functions are not explicitly assumed to be continuous. As used in
the proof of Lemma 7.2.7, we require this property to establish that a homotopically regular
point with value t admits a neighborhood U and a homotopy φ as in Definition 7.2.1 such
that for any compact V ⊆ U there is ϵ > 0 with φ(V, 1) ⊆ F≤t−ϵ. That such neighborhoods

92



7.2. Persistence for minimal surfaces

exist is claimed by Morse in the proof of [Mor38, Lemma 8.1], where continuity of the
displacement functions is not mentioned explicitly. It is not clear to us whether the claim
actually holds without continuity, or whether the assumption of continuity was made
implicitly. Regardless, all displacement functions considered by Morse and Tompkins
[MT39] and used for the purposes of this work are indeed continuous.

Critical sets of minimum type Our Definition 7.2.1 of a critical set S of minimum type
also differs slightly from that of Morse and Tompkins [MT39, p. 466], who do not require
the neighborhood N of S on which the function values exceed those on S to contain the
closure of S. Without this additional assumption, however, Theorem 7.2.3 does not hold,
as shown by the example F : [0, 1]→ R with F (0) = F (1) = 0 and F (t) = 1 for 0 < t < 1:
F has the four critical sets {0}, {1}, {0} ∪ {1} and (0, 1), which all satisfy the minimum
type condition if the neighborhood N need not contain their closure, but then there is no
critical set that is not of minimum type.

Assumptions of the mountain pass theorem In [MT39, Corollary 7.1], the assumptions
that Morse and Tompkins use for F and M are that the sublevel set filtration is compact,
weakly upper-reducible, “regular at infinity”, and that M is “locally F -connected”. Compact-
ness is also required for our version, as is weak upper-reducibility. Local F -connectedness
is replaced by the LHS condition (this point will be discussed in more detail in § 8.2.1).
Regularity at infinity roughly corresponds to our assumption that M is connected and the
natural map colim Ȟ0(F≤•)→ Ȟ0(M) is an isomorphism (see [MT39, p. 444] and our proof
of Theorem 7.2.14). This assumption may also be replaced by the assumption that p̌0 = 1,
which we deduce from our assumptions in Lemma 7.2.10.

Conclusions of the mountain pass theorem The precise statement of [MT39, Corollary
7.1] postulates the existence of a homotopic critical point such that every critical set
containing it has a positive first type number. This corresponds to our statement in so far
as the existence of a critical set not of minimum type implies that there are ϵ and t such
that cϵ1(t) > 0 (see Lemma 7.2.8 and the proof of Theorem 7.2.3). Note, however, that the
existence of a positive cap number cϵ1(t) > 0 does not conversely imply the existence of a
critical set not of minimum type: Consider the parabola P = {(x, x2) ∈ R2 | x ∈ R}, let
M = S1 × P and let F : M → R be the Morse–Bott function given by the projection to
the second coordinate in P . There is a single critical set C = S1 × {(0, 0)}, which is of
minimum type, but we still have cϵ1(0) > 0 for any ϵ > 0 if H is a homology theory such
that H1(C) ̸= 0, e.g., singular or Čech homology. To establish the existence of a critical
set not of minimum type in the proof of Theorem 7.2.3, we show that not only cϵ1(t) > 0,
but that we indeed have ωϵ0(t) > 0, i.e., that the positive cap number is created by the
death of a feature. This also illustrates that our version of the mountain pass theorem is
stronger than the Morse inequalities (7.1.2) for n = 1, which merely imply cϵ1(t) > 0. In
particular, we have mentioned before that the Morse inequalities are equivalent to the fact
that numbers of deaths are non-negative, but we need one of them to be positive for our
mountain pass theorem to hold.
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7.2.3. The unstable minimal surface theorem
The Douglas functional Morse and Tompkins [MT39] considered the following setting
introduced by Douglas. Let g : R → Rn be a 2π-periodic function representing a simple
closed curve such that g is differentiable with Lipschitz derivative. Let ˜︁Ω be the space
of continuous non-decreasing functions φ : R → R with φ(t + 2π) = φ(t) + 2π for all t
and φ(αi) = αi for three fixed distinct points αi ∈ [0, 2π). The Douglas functional on ˜︁Ω
associated to the curve g is defined [Dou31] as

Ag(φ) = 1
16π

∫︂ 2π

0

∫︂ 2π

0

⃦⃦⃦⃦
⃦g(φ(α))− g(φ(β))

sin α−β
2

⃦⃦⃦⃦
⃦

2

2
dα dβ.

The Douglas functional evaluated at φ is equal to the Dirichlet energy of the unique
harmonic extension of the reparametrized curve g ◦ φ to a parametrized surface. The
Dirichlet energy is an upper bound for the area, with equality if the parametrization is
conformal. Let Ωg = {φ ∈ ˜︁Ω | Ag(φ) < ∞}, equipped with the C0 metric. The set Ωg

is non-empty because g is continuously differentiable and hence rectifiable, which implies
Ag(idR) <∞ [Dou31, p. 267-268]. Moreover, the sublevel sets of Ag are compact [MT39,
p. 448]. Since Ag is bounded below by 0, this implies that Ag attains a global minimum.
The corresponding surface is then a solution of Plateau’s problem, which asks for a surface
homeomorphic to a disk with boundary g and minimum area.

The unstable minimal surface theorem Morse and Tompkins show [MT39, Theorem 6.2]
that each homotopically critical point of the Douglas functional Ag indeed corresponds to a
minimal surface – a surface with vanishing mean curvature – and using this correspondence
the following result, also reviewed in [Str88, Theorem II.6.10], can be deduced from
Theorem 7.2.3.
Theorem 7.2.14 (Unstable minimal surface theorem [MT39, p. 472]). If the space Ωg

contains two minimal surfaces contained in distinct critical sets of minimum type of the
functional Ag, then it also contains an unstable minimal surface, i.e., a minimal surface
contained in a critical set that is not of minimum type.
Proof. The Douglas functional Ag is weakly upper-reducible by [MT39, Theorem 5.1], its
sublevel set filtration is compact according to [MT39, p. 448], and as previously mentioned
Ωg is non-empty by [Dou31, p. 267-268] because g is rectifiable. Moreover, Ωg is contractible
and hence connected by [MT39, Theorem 4.3]. The sublevel set filtration of Ag is also LHS
for Čech homology according to Proposition 8.2.5. Finally, we have that colim Ȟ0((Ag)•)→
Ȟ0(Ωg) is an isomorphism according to [MT39, p. 444] because Ag satisfies the regularity at
infinity condition by [MT39, Theorem 4.3]. In total, Theorem 7.2.3 applies to Ag. Since any
homotopically critical point of Ag corresponds to a minimal surface spanned by g [MT39,
Theorem 6.2], this implies the claim.

In [MT39, Section 8], Morse and Tompkins provide an example of a curve g for which Ωg

indeed contains two distinct critical sets of minimum type, so that g then also spans an
unstable minimal surface.

What is left to complete our discussion of the mountain pass theorem and the unstable
minimal surface theorem is why the LHS condition implies q-tameness (Theorem 8.1.4, why
the Douglas functional is q-tame for Čech homology (Proposition 8.2.5), and what the issue
with Morse’s approach to q-tameness in [Mor40, Theorem 6.3] is (Corollary 8.2.3).
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filtrations

In this chapter, we prove the main result on q-tameness for locally connected filtrations from
§ 2.2.2 and discuss the issues with Morse’s local connectedness conditions. The proof of our
result that a locally homologically small filtration is q-tame is presented in Section 8.1. We
then discuss the shortcomings of Morse’s approach in Section 8.2, where we also comment
on the q-tameness of the Douglas functional, which is the last missing ingredient in the
proof of the unstable minimal surface theorem discussed in Section 7.2.

All results are formulated in terms of sublevel set filtrations of real-valued functions, so
we consider persistence modules indexed by T = R. However, all statements in § 8.1.1, and
in particular Theorem 8.1.4 naturally generalize to filtrations indexed by arbitrary totally
ordered sets with identical proofs. As usual, all homology groups are understood to be
taken with field coefficients, but Theorem 8.1.4 can also be generalized to more general
coefficient groups. Note that, the homology theories appearing this chapter need not strictly
be homology theories in the usual sense; what we mean precisely by homology in the present
context is made precise in § 8.1.1. For some parts, we will also consider only Čech homology.

8.1. Persistence diagrams for locally homologically small
filtrations

In this section, we present our findings on topological conditions guaranteeing q-tameness.
We start by discussing that locally homologically small filtrations are q-tame in § 8.1.1. For
sublevel set filtrations induced by continuous maps, a slightly weaker condition suffices,
which we discuss in § 8.1.2.

8.1.1. Local connectedness and q-tameness

We have seen that q-tame functions admit persistence diagrams, which can be used
to formulate Morse inequalities and to prove a mountain pass theorem as discussed in
Chapter 7. With q-tameness being a rather abstract algebraic property, we now establish
concrete topological conditions that ensure the q-tameness of a function. Our definitions
are motivated by similar conditions considered by Morse in his work on functional topology.
We present a historical account in Section 8.2.

Mayer-Vietoris property Whether a function is q-tame or not depends on the functor that
is used to pass from the sublevel set filtration of the function to a persistence module. The
general idea that we want to employ is to deduce global finiteness properties like q-tameness
from local ones. Thus, the functors we consider should have a certain property allowing us
to do so.
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Definition 8.1.1. Let H = (Hd)d∈Z : Top→ Vect be a fixed graded homotopy invariant
functor, which we call a homology theory. A triple of spaces X1, X2 ⊆ X is said to have a
Mayer–Vietoris sequence for H if the inclusion-induced maps can be completed to a long
exact sequence

· · · Hn+1(X)

Hn(X1 ∩X2) Hn(X1)⊕Hn(X2) Hn(X)

Hn−1(X1 ∩X2) · · · .

We say that H has the open (resp. compact) Mayer–Vietoris property if there are natural
Mayer–Vietoris sequences for all triples X1, X2 ⊆ X with X = X1 ∪X2 and Xi ⊆ X open
(resp. compact Hausdorff).

For the rest of this section, we will assume that H is a homology theory that has either
the open or the compact Mayer–Vietoris property and for which there is n0 such that Hn is
0 for all n ≤ n0. We will also assume that Hn takes finite-dimensional values on one-point
spaces. Note that this includes singular homology with field coefficients, which has the open
Mayer–Vietoris property (like any homology theory in the sense of the Eilenberg–Steenrod
axioms [ES52, Section I]), and it also includes Čech homology with field coefficients, which
has the compact Mayer–Vietoris property (see § 1.4.1).

Locally homologically small filtrations

Definition 8.1.2. The sublevel set filtration of a function f : X → R is called locally
homologically small or LHS with respect to a homology theory H if for any x ∈ X, any
neighborhood V of x, and any pair of indices s, t with f(x) < s < t there is a neighborhood
U of x with U ⊆ V such that the inclusion f≤s ∩ U → f≤t ∩ V is homologically small or
HS, i.e., has finite rank in every degree after applying H.

Definition 8.1.3. We say that a sublevel set filtration is compact if all sublevel sets are
compact Hausdorff spaces.

If f≤t is compact for all t, then the function f is necessarily lower-semicontinuous and
bounded from below (see [MT39, p. 444] or [Str88, Theorem 3.1]).

Our main result, proven in the remainder of this subsection, is that for compact sublevel
set filtrations the LHS condition implies q-tameness, and consequently also the existence of
a persistence diagram.

Theorem 8.1.4. If the sublevel set filtration of a function f : X → R is compact and LHS,
then it is also q-tame. In particular, f has a persistence diagram.

The general proof strategy is inspired by the proof of Wilder’s Finiteness Theorem [Wil49,
p. 325] as presented by Bredon [Bre97, Section II.17]. We collect the main ideas in several
lemmas.
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Lemma 8.1.5. Given a commutative diagram of modules over a principal ideal domain

A1,1 A1,2

A2,1 A2,2 A2,3

A3,2 A3,3

where the middle row is exact and both A2,1 → A1,1 and A3,3 → A2,3 have finitely generated
images, then so does A3,2 → A1,2.

Proof. This is proven via a straightforward diagram chase. For more details see [Bre97,
Lemma II.17.3].

Lemma 8.1.6. Let X be a locally compact Hausdorff space. For any compact subset K
and open set U with K ⊆ U there exists a compact set K ′ such that

K ⊆ int(K ′) ⊆ K ′ ⊆ U.

Proof. For any x ∈ K choose a compact neighborhood C(x) ⊆ U . We have

K ⊆
⋃︂
x∈K

int(C(x)).

Since K is compact, there is a finite subset {x1, . . . , xm} of elements in K so that

K ⊆
m⋃︂
i=1

int(C(xi)) ⊆ int
(︄
m⋃︂
i=1

C(xi)
)︄
⊆

m⋃︂
i=1

C(xi) ⊆ U

Defining K ′ =
⋃︁m
i=1C(xi) finishes the proof.

We want to use Lemma 8.1.6 on the domain of the function whose sublevel set filtration
we consider. However, we do not want to assume the domain to be locally compact for
Theorem 8.1.4. To circumvent this, we will work in one of the sublevel sets, which are
assumed to be compact Hausdorff and hence locally compact. This requires the use of a
slight weakening of the LHS condition.

Definition 8.1.7. For u ∈ R, the sublevel set filtration of a function f : X → R is called
LHS below u if, for any x ∈ X, any neighborhood V of x, and any pair of indices s, t with
f(x) < s < t < u, there is a neighborhood U of x with U ⊆ V such that the inclusion
f≤s ∩ U ↪→ f≤t ∩ V is HS.

Lemma 8.1.8. Let f : X → R be a function whose sublevel set filtration is LHS. Fix u ∈ R
and let g : Y → R be the restriction of f to the sublevel set Y = f≤u. Then the sublevel set
filtration defined by g is LHS below u.

Proof. Let x ∈ Y , let V be a neighborhood of x in Y , and consider indices s, t with
g(x) < s < t < u. We need to find a neighborhood U ⊆ V of x such that the inclusion
g≤s ∩ U ↪→ g≤t ∩ V is HS.
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Since Y ⊆ X carries the subspace topology, we may choose a neighborhood V ′ of x in X
such that V = V ′ ∩ Y . The sublevel set filtration of f is assumed to be LHS, so there is a
neighborhood U ′ ⊆ V ′ of x in X such that the inclusion f≤s ∩U ′ ↪→ f≤t ∩ V ′ is HS. We set
U = U ′ ∩ Y , which defines a neighborhood of x in Y .

Now s < t < u implies that g≤s = f≤s and g≤t = f≤t. Moreover, we have f≤s∩Y = f≤s∩
f≤u = f≤s and f≤t∩Y = f≤t∩f≤u = f≤t. Thus, we obtain g≤s∩U = f≤s∩Y ∩U ′ = f≤s∩U ′

and g≤t ∩ V = f≤t ∩ Y ∩ V ′ = f≤t ∩ V ′. This implies that the inclusion g≤s ∩U ↪→ g≤t ∩ V
is HS because it agrees with the inclusion f≤s ∩U ′ ↪→ f≤t ∩ V ′, which is HS by assumption.
This finishes the proof.

Lemma 8.1.9. Let f : Y → R be a function on a locally compact Hausdorff space Y whose
sublevel set filtration is compact and LHS below u ∈ R, and consider subsets C ⊆ L ⊆ Y
with C compact and L open. For any s < t < u the inclusion C ∩ f≤s ↪→ L ∩ f≤t is HS.

Proof. Recall our assumption that the underlying homology theory H has either the open
or the compact Mayer–Vietoris property and that there is some n0 such that Hn is zero for
all n ≤ n0. The statement of the lemma holds for HSn in place of HS for any n ≤ n0 since
Hn induces the zero map. We will proceed by induction on n ≥ n0 assuming the statement
for HSn−1.

We define Σs,t to be the collection of all open subsets V ⊆ Y whose closure V is compact,
contained in L, and has an open neighborhood U with V ⊆ U ⊆ L for which there exists
s′ ∈ (s, t) such that the inclusion U ∩ f≤s′ ↪→ L ∩ f≤t is HSn. We will show that Σs,t has
the following two properties:

1. Any point x ∈ L ∩ f≤s has a neighborhood Vx ∈ Σs,t.

2. If V1, V2 ∈ Σs,t then V1 ∪ V2 ∈ Σs,t.

Assuming them for the moment, the first property allows us to cover C ∩ f≤s by sets
Vx ∈ Σs,t, x ∈ C ∩ f≤s. Because both C and f≤s are compact, C ∩ f≤s is again compact,
and hence the cover can be chosen finite, represented by say x1, . . . , xm. By the second
property, we have

V :=
m⋃︂
i=1

Vxi ∈ Σs,t.

Thus, there exists an open neighborhood U of V in L and s′ ∈ (s, t) such that the inclusion
U ∩ f≤s′ ↪→ L ∩ f≤t is HSn. The inclusion C ∩ f≤s ↪→ L ∩ f≤t factors through the previous
one, so it is HSn as well. What is left to do is to show that Σs,t has the two claimed
properties.

Next, we will show using the LHS property that Σs,t has the first required property, i.e.,
that any point x ∈ L ∩ f≤s has a neighborhood in Σs,t. Choose an arbitrary s′ ∈ (s, t).
Since the sublevel set filtration of f is LHS below u and we have f(x) ≤ s < s′ < t < u,
there is an open neighborhood Ux ⊆ L such that the inclusion Ux ∩ f≤s′ ↪→ L ∩ f≤t is HS,
so in particular HSn. By local compactness of Y we can choose a compact neighborhood
Kx of x contained in Ux. Now Vx = int(Kx) is a neighborhood of x with Vx ∈ Σs,t.

Finally, using the Mayer–Vietoris property and the induction hypothesis we will show
that Σs,t has the second required property, i.e., that it is closed under finite unions. So for
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i ∈ {1, 2} let Vi ∈ Σs,t with Ui and s′
i ∈ (s, t) such that Vi ⊆ Ui ⊆ L and Ui∩f≤s′

i
↪→ L∩f≤t

is HSn. Writing Ki = Vi, we use Lemma 8.1.6 to construct compact sets K ′
i such that

Vi ⊆ Ki ⊆ V ′
i ⊆ K ′

i ⊆ Ui ⊆ L

where V ′
i = int(K ′

i). The union V1 ∪ V2 ⊆ L is open, its closure V1 ∪ V2 is compact, and
V1 ∪ V2 ⊆ V ′

1 ∪ V ′
2 ⊆ L. Thus, we obtain V1 ∪ V2 ∈ Σs,t if we can show that there is an

s′ ∈ (s, t) such that the inclusion (V ′
1 ∪ V ′

2) ∩ f≤s′ ↪→ L ∩ f≤t is HSn. To do so, we set
s′′ = mini s′

i and choose s′ ∈ (s, s′′). For proving that (V ′
1 ∪ V ′

2)∩ f≤s′ ↪→ L∩ f≤t is HSn we
now distinguish the two cases where H has either the open or the compact Mayer–Vietoris
property.

For the open Mayer–Vietoris property, note that for both i ∈ {1, 2} the inclusions
Ui ∩ f≤s′′ ↪→ L ∩ f≤t are HSn. Moreover, the inclusion V ′

1 ∩ V ′
2 ∩ f≤s′ ↪→ U1 ∩ U2 ∩ f≤s′′ is

HSn−1 because it factors through the inclusion K ′
1 ∩K ′

2 ∩ f≤s′ ↪→ U1 ∩ U2 ∩ f≤s′′ , which is
HSn−1 by the induction hypothesis. Because the Vi and V ′

i are open and because H has
the open Mayer–Vietoris property, we obtain the following commutative diagram satisfying
the assumptions of Lemma 8.1.5:

Hn(L ∩ f≤t)⊕Hn(L ∩ f≤t) Hn(L ∩ f≤t)

Hn(U1 ∩ f≤s′′)⊕Hn(U2 ∩ f≤s′′) Hn((U1 ∪ U2) ∩ f≤s′′) Hn−1(U1 ∩ U2 ∩ f≤s′′)

Hn((V ′
1 ∪ V ′

2) ∩ f≤s′) Hn−1(V ′
1 ∩ V ′

2 ∩ f≤s′).

We conclude that the inclusion (V ′
1 ∪ V ′

2) ∩ f≤s′ ↪→ L ∩ f≤t is HSn, which finishes this part
of the proof.

For the compact Mayer–Vietoris property, we apply Lemma 8.1.6 once more to obtain
compact sets K ′′

i such that

Vi ⊆ Ki ⊆ V ′
i ⊆ K ′

i ⊆ V ′′
i ⊆ K ′′

i ⊆ Ui ⊆ L

where V ′′
i = int(K ′′

i ). The rest of the proof is then analogous to the previous case: We
have that for both i ∈ {1, 2} the inclusion K ′′

i ∩ f≤s′′ ↪→ L ∩ f≤t is HSn because it factors
through Ui ∩ f≤s′′ ↪→ L ∩ f≤t. Moreover, the inclusion K ′

1 ∩K ′
2 ∩ f≤s′ ↪→ K ′′

1 ∩K ′′
2 ∩ f≤s′′

is HSn−1 because it factors through the inclusion K ′
1 ∩K ′

2 ∩ f≤s′ ↪→ V ′′
1 ∩ V ′′

2 ∩ f≤s′′ , which
is HSn−1 by the induction hypothesis. Because the K ′

i and K ′′
i as well as the sublevel sets

of f are all compact and because H has the compact Mayer–Vietoris property, we obtain
the following commutative diagram satisfying the assumptions of Lemma 8.1.5:

Hn(L ∩ f≤t)⊕Hn(L ∩ f≤t) Hn(L ∩ f≤t)

Hn(K ′′
1 ∩ f≤s′′)⊕Hn(K ′′

2 ∩ f≤s′′) Hn((K ′′
1 ∪K ′′

2 ) ∩ f≤s′′) Hn−1(K ′′
1 ∩K ′′

2 ∩ f≤s′′)

Hn((K ′
1 ∪K ′

2) ∩ f≤s′) Hn−1(K ′
1 ∩K ′

2 ∩ f≤s′).

We conclude that the inclusion (K ′
1 ∪K ′

2)∩ f≤s′ ↪→ L∩ f≤t is HSn, and so the same is true
for the inclusion (V ′

1 ∪ V ′
2) ∩ f≤s′ ↪→ L ∩ f≤t as it factors through the previous one.
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We can now complete the proof of the claim stating that for compact sublevel set
filtrations, LHS implies q-tameness.

Proof of Theorem 8.1.4. By definition, the sublevel set filtration of f is q-tame if and only
if the inclusion f≤s ↪→ f≤t is HS for all pairs s < t. Choose u ∈ R with u > t and let
g : Y → R be the restriction of f to the sublevel set Y = f≤u. Since we assume f to induce
a LHS sublevel set filtration, by Lemma 8.1.8 the sublevel set filtration of g is LHS below u.
Clearly, the sublevel set filtration of g is also compact, and its domain Y is locally compact
being a compact Hausdorff space by assumption. Thus, we can apply Lemma 8.1.9 to the
filtration g≤• with C = L = Y to obtain that the inclusion f≤s = C ∩ g≤s ↪→ L ∩ g≤t = f≤t
is HS.

8.1.2. The case of a continuous function
We now describe a weaker version of the LHS property that implies q-tameness for sublevel
set filtration induced by continuous functions.

Definition 8.1.10. The sublevel set filtration of a function f : X → R is said to be weakly
locally homologically small or weakly LHS if for any x ∈ X, any neighborhood V of x, and
any index t > f(x), there is an index s with f(x) < s < t and a neighborhood U of x with
U ⊆ V such that the inclusion f≤s ∩ U → f≤t ∩ V is HS.

Clearly, any LHS sublevel set filtration is also weakly LHS: while the weak LHS property
merely requires the existence of an index s ∈ (f(x), t) satisfying the HS condition, the LHS
property requires the HS condition to hold for any s ∈ (f(x), t). If the filtration is induced
by a continuous function, the converse also holds as the following theorem shows.

Lemma 8.1.11. If the sublevel set filtration of a continuous function f : X → R is weakly
LHS, then it is also LHS.

Proof. Fix x ∈ X, a neighborhood V of x and indices f(x) < s < t. We need to show that
there is a neighborhood U ⊆ V of x such that the inclusion f≤s ∩ U → f≤t ∩ V is HS.

To do so, we start by using the weak LHS property to choose a neighborhood U ′ ⊆ V of
x and an index s′ ∈ (f(x), t) such that the inclusion f≤s′ ∩ U ′ → f≤t ∩ V is HS. Now, we
choose U = f<s′ ∩ U ′, where f<s′ = f−1(−∞, s′). Note that this choice of U still defines a
neighborhood of x because f is assumed to be continuous, so that f<s′ is an open subset
of X.

We obtain that f≤s ∩ U ⊆ f≤s′ ∩ U ′, so that the inclusion f≤s ∩ U → f≤t ∩ V factors
through the inclusion f≤s′ ∩ U ′ → f≤t ∩ V . This second map is HS by construction. Any
map that factors through an HS map is also HS, so the proof is complete.

The following result is deduced directly from Lemma 8.1.11 and Theorem 8.1.4. The
existence of a result of this kind has been suggested by Weinberger [Wei11], and a mul-
tiparameter version has been shown by Cagliari and Landi [CL11] with slightly stronger
assumptions on the domain of the function.

Corollary 8.1.12. If the sublevel set filtration of a continuous function f : X → R is
compact and weakly LHS, then it is also q-tame.

As the following example illustrates, the continuity assumption in the above theorem is
crucial.
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8.2. Local connectedness in functional topology

Figure 8.1.: A closeup of the Hawaiian earring H1.

Example 8.1.13. Consider the d-dimensional Hawaiian earring

Hd =
⋃︂
n∈N

{︄
(x0, . . . , xd) ∈ Rd+1

⃓⃓⃓⃓
⃓
(︃
x0 −

1
n

)︃2
+ x2

1 + · · ·+ x2
d =

(︃ 1
n

)︃2
}︄
,

which is a compact subspace of Rd+1. The function f : Hd → R whose value at the origin is
0 and is 1 everywhere else defines a compact and weakly LHS sublevel set filtration that is
not q-tame with respect to H if Hn(Hd) is infinite-dimensional for some n.

To verify that f has compact sublevel sets we notice that all sublevel sets are either the
empty set, the singleton containing the origin, or Hd itself, all compact Hausdorff spaces.

In order to verify that the sublevel set filtration of f is weakly LHS, we consider x ∈ Hd,
V a neighborhood of x in Hd and t > f(x). We need to find a neighborhood U ⊆ V of x
and s ∈ (f(x), t) such that the inclusion f≤s ∩ U → f≤t ∩ V is HS. Since we assume that
Hn is homotopy invariant and takes singletons to finite-dimensional spaces, it suffices to
find U as above such that f≤s ∩ U → f≤t ∩ V is homotopic to a constant map.

If x is the origin, we have f(x) = 0 and choose s ∈ (0,min{t, 1}). Then f≤s = {x}, so
with U = V the inclusion f≤s ∩ U → f≤t ∩ V is the inclusion of {x} into f≤t ∩ V , which is
a constant map, so the weak LHS condition is trivially satisfied.

For x not the origin we have f(x) = 1 and choose s ∈ (1, t) arbitrarily, so that f≤s =
f≤t = Hd. Note that since x is not the origin, there is a unique d-sphere in Hd that contains
x. Clearly, we may choose δ > 0 so small that Bδ(x) = {y ∈ Rd+1 | ∥x − y∥ < δ} ∩ Hd

is a topological ball contained in this sphere and contained in V . The ball Bδ(x) can be
contracted to {x} in V , so choosing U = Bδ(x), we obtain that the inclusion f≤s ∩ U →
f≤t ∩ V is homotopic to the constant map with value x.

It remains to be shown that f≤• is not q-tame for H. This follows directly from our
assumption that Hn(Hd) is not finite-dimensional for some n, as f≤t is constant with value
Hd for t ≥ 1.

8.2. Local connectedness in functional topology

After having established our own results on q-tameness, we will now come back to the
motivating problems in Morse’s functional topology and the applications to minimal surfaces.
We will compare the local connectedness conditions that Morse historically wanted to use
to ensure q-tameness to our own, and highlight a gap in his treatment in § 8.2.1. To finish
this chapter, we discuss that our previous results can be used to circumvent this gap in the
main application of functional topology to the Douglas functional in § 8.2.2.
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8. Q-tameness for locally connected filtrations

8.2.1. Morse’s local connectedness conditions
We have mentioned in §2.2.2 that Morse used different local connectedness conditions in his
work on functional topology to ensure q-tameness, for example the local F -connectedness
condition from [Mor38; Mor40] that we quoted in § 2.2.2. Using similar language to the
one used for our LHS condition, local F -connectedness is equivalent to the following notion
applicable to general topological spaces.

Definition 8.2.1. The sublevel set filtration of a function f : X → R is said to be weakly
locally connected of all orders, or weakly πLC, if for any x ∈ X, V a neighborhood of x,
and any index t > f(x), there is an index s with f(x) < s < t and a neighborhood U of x
with U ⊆ V such that the inclusion f≤s ∩ U → f≤t ∩ V induces trivial maps on homotopy
groups.

Morse claims in [Mor38, Theorem 6.1] and [Mor40, Theorem 6.3, p. 432] that the persistent
Čech homology of this sublevel set filtration is q-tame, provided that F is bounded from
below and satisfies the assumptions of local F -connectedness and compactness of sublevel
sets. Unfortunately, this claim does not hold in general, as exemplified by the sublevel set
filtration from Example 8.1.13. To elaborate on this, we consider a stronger version of weak
local connectedness.

Definition 8.2.2. The sublevel set filtration of a function f : X → R is said to be weakly
locally contractible, or weakly LC, if for any x ∈ X, V a neighborhood of x, and any index
t > f(x), there is an index s with f(x) < s < t and a neighborhood U of x with U ⊆ V
such that the inclusion f≤s ∩ U → f≤t ∩ V is homotopic to a constant map.

Clearly, being weakly LC implies being weakly πLC and, if the homology H takes finite-
dimensional values on one-point spaces, also weakly LHS. Observe that Example 8.1.13
actually establishes that the filtration given there is weakly LC, so not even the weak LC
condition is sufficient to ensure the q-tameness of compact sublevel set filtrations that are
induced by non-continuous functions in general. In particular, our construction invalidates
Morse’s claim quoted before that weak πLC implies q-tameness for Čech homology because
Čech homology satisfies the assumptions on the homology theory made in Example 8.1.13.

Specifically, using the fact that Čech homology of compact Hausdorff spaces commutes
with inverse limits, it is straightforward to verify that the Čech homology in degree d of the
d-dimensional Hawaiian earring Hd is isomorphic to

∏︁
n∈N F, which is infinite-dimensional

over F. Moreover, the singular homology of Hd is also infinite-dimensional, as proven in
[BM62]. In summary, we have the following result contradicting [Mor40, Theorem 6.3,
p. 432].

Corollary 8.2.3. The function f : Hd → R with value 0 at the origin and 1 elsewhere
defines a weakly LC compact sublevel set filtration that is not q-tame with respect to either
singular or Čech homology.

8.2.2. Local connectedness of the Douglas functional
Corollary 8.2.3 highlights a gap in the argument of Morse and Tompkins on minimal
surfaces, as the sublevel set filtration of the Douglas functional Ag is not actually shown
to be q-tame. Luckily, this gap can be readily fixed by applying Theorem 8.1.4. This is
because the proof given in [MT39, Theorem 7.2, p.464] for the local connectedness of the
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8.2. Local connectedness in functional topology

sublevel set filtration induced by Ag can actually be seen to establish a stronger property,
described next.

Definition 8.2.4. The sublevel set filtration of a function f : X → R is said to be locally
contractible or LC if for any x ∈ X, any neighborhood V of x and any pair of indices
f(x) < s < t there is a neighborhood U ⊆ V of x such that the map f≤s ∩ U → f≤t ∩ V is
homotopic to a constant map.

Proposition 8.2.5 ([MT39, p.464]). The Douglas functional Ag : Ωg → R induces an LC
sublevel set filtration. In particular, it is LHS and hence q-tame for Čech homology.

Morse introduced another condition that he also called local F -connectedness in an earlier
article. It roughly corresponds to being πLC with a certain added uniformity property. In
the original it reads:

The space M will be said to be locally F -connected for the order n if corre-
sponding to n, an arbitrary point p on M , and an arbitrary positive constant
e, there exists a positive constant δ with the following property. For c ≥ F (p)
any singular n-sphere on F ≤ c (the continuous image on F ≤ c of an ordinary
n-sphere) on the δ-neighborhood pδ of p is the boundary of a singular (n+1)-cell
on F ≤ c+ e and on pe. [Mor37, p.421–422]

Morse also claims in the given reference that this condition is sufficient for q-tameness,
but without providing a proof. Whether this statement is true or not is not covered by
our analysis, because the πLC and LHS conditions generally do not imply each other. We
expect the quoted claim to be true, but do not investigate it further.
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9. Comparison of singular and Čech
homology in locally connected filtrations

In this chapter, we prove the comparison results for singular and Čech homology presented
in § 2.2.3. We start the proofs by constructing maps from singular to Čech homology and
back in Section 9.1. We then construct certain chain homotopies on singular and Čech
complexes in Section 9.2, showing that the previously defined maps are in some sense
inverses to each other. Finally, we put these results together to prove our main theorems
in Section 9.3, including the short proof that the local connectedness shift of a function is
2-Lipschitz.

Throughout the chapter, we fix an abelian group G and use G as a coefficient group for
all chain complexes and homology groups that appear while dropping it from the notation
most of the time. Note that, in contrast to the rest of this thesis, this coefficient group
does not need to be a field here. This means that the persistent homologies appearing in
this chapter are not persistence modules in the sense that we have considered before, but
rather diagrams of abelian groups indexed by our index set T . In this context, there is no
structure theory of persistence modules as in the case of vector spaces, but the concepts of
interleaving distance and weak isomorphisms still make sense. This is all that we need in the
present context. We consider persistent homology of sublevel set filtrations of real-valued
functions here, so we have T = R.

9.1. Constructing maps from singular to Čech homology and
back

We start our discussion of the comparison between singular and Čech homology by con-
structing some chain maps. In § 9.1.1, we review the standard construction of the map from
singular to Čech homology, or, more precisely, to Vietoris homology. We then construct
approximate inverses to this map for certain filtrations in § 9.1.2.

9.1.1. The map from singular to Čech homology
We recall the natural map from singular to Čech homology, defined in terms of Vietoris
complexes. For a review of the definition of Vietoris complexes and the isomorphism between
Čech and Vietoris homology see Section 1.4. To do so, we need a description of singular
homology depending on covers of spaces. Denoting by C∗(X) the singular chain complex
of a topological space X, we define C∗(α) for some cover α of X to be the subcomplex of
C∗(X) generated by those singular simplices whose image is contained in some set U ∈ α.
The union of all images of singular simplices making up a singular chain is called the support
of the chain. With this terminology, C∗(α) is the subcomplex of C∗(X) consisting of all
chains whose support is contained in some U ∈ α. If α refines β there is an inclusion of
chain complexes η : C∗(α) → C∗(β). The inclusion C∗(α) → C∗({X}) = C∗(X) can be
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9. Comparison of singular and Čech homology in locally connected filtrations

shown to induce an isomorphism in homology for all α ∈ Cov(X) [ES52, Theorem VI.8.2],
with inverse given by a subdivision construction [Mar58]. In particular, we get a description
of the singular homology of X, denoted H∗(X) throughout the chapter, as the inverse limit

H(X) ∼= lim
α∈Cov(X)

H(C∗(α)).

We write V∗(α) for the simplicial chain complex of Vtr(α) and V d
∗ (α) for the simplicial

chain complex of the d-skeleton Vtrd(α) of Vtr(α). Simplices in Vtr(α) given by distinct
points v0, . . . , vn ∈ U ∈ α are denoted by {v0, . . . , vn}, and oriented simplices in V∗(α)
by [v0, . . . , vn]. Now, let e0, . . . , en be the vertices of the standard n-simplex. For any
α ∈ Cov(X), we obtain a chain map µ : C∗(α)→ V∗(α) by sending a singular n-simplex σ
to the oriented Vietoris simplex [σ(e0), . . . , σ(en)] if the σ(ei) are all distinct and to 0 else.
These chain maps are natural with respect to refinement, so they give rise to a map

φ = limH(µ) : H∗(X) ∼= lim
α∈Cov(X)

H(C∗(α))→ lim
α∈Cov(X)

H(V∗(α)) ∼= Ȟ∗(X),

which is natural in the argument X. Recall that the last isomorphism is provided by
Dowker’s theorem as reviewed in § 1.4.3. Thus, we obtain a map

φ : H∗(f≤•)→ Ȟ∗(f≤•)

from the persistent singular to the persistent Čech homology of the sublevel set filtration of
a real-valued function f .

9.1.2. A map from Čech to singular homology
Admissible covers and chain maps We will now show how covers satisfying certain local
triviality assumptions can be used to construct maps from Čech homology to singular
homology in filtrations of spaces.

If α is a cover of a topological space X and U ∈ α, we define the star of U with respect
to α as

Stα U =
⋃︂
U ′∈α

U∩U ′ ̸=∅

U ′ ⊆ X.

A cover α is called a star refinement of another cover β if for all U ∈ α there exists V ∈ β
with Stα U ⊆ V . We say that the star refinement is HLC with respect to a homology theory
H̃ if V can be chosen such that the inclusion Stα U → V becomes trivial after applying H̃.

Definition 9.1.1. Let A0 ⊆ A1 ⊆ · · · ⊆ Ad ⊆ X be topological spaces. A sequence of
covers αi of Ai is called admissible if αi is an HLC star refinement of αi+1 with respect to
reduced singular homology for all i. Given an admissible sequence of subspace covers, a
chain map λ : V d

∗ (α0)→ C∗(αd) is called admissible if

• for any 0-simplex [v], λ([v]) is a singular 0-simplex taking the value v and if

• for any oriented n-simplex ρ in V d
∗ (α0) there exists V ∈ αn such that the support of

the singular n-chain λ(ρ) and all vertices of ρ are contained in V .

For our later application to the sublevel set filtration of a function f : X → R, one may
think of the sets Ai in the definition above as sublevel sets of f .

106



9.1. Constructing maps from singular to Čech homology and back

Lemma 9.1.2. Let A0 ⊆ A1 ⊆ · · · ⊆ Ad ⊆ X be topological spaces and let (αi)i be
an admissible sequence of covers. Then there exists an associated admissible chain map
λ : V d

∗ (α0)→ C∗(αd).

Proof. We define the desired map λ on oriented Vietoris simplices and extend linearly. We
also proceed inductively in the dimension of the simplices.

For a 0-simplex [v], we set λ([v]) to be the singular simplex with value v. For an
oriented 1-simplex [v0, v1] ∈ V d

∗ (α0), we choose U ∈ α0 with v0, v1 ∈ U . The cover
α0 is an HLC star refinement of α1, so we may choose V ∈ α1 such that the inclusion
U ⊆ V is trivial in singular homology. This means that the augmented singular 0-cycle
c = λ(∂([v0, v1])) = λ([v0]) − λ([v1]) ∈ C∗(U) becomes a boundary when considered as a
chain in V , so there exists a 1-chain c′ ∈ C∗(V ) ⊆ C∗(α1) such that ∂(c′) = c. We set
λ([v0, v1]) = c′.

Now, inductively, assume that λ has been defined for oriented (n−1)-simplices and consider
an oriented n-simplex ρ = [v0, . . . , vn], where 2 ≤ n ≤ d. Let ρi = [v0, . . . , vî, . . . , vn] be the
i-th boundary component of ρ. By our inductive assumption, we have singular (n−1)-chains
λ(ρi) ∈ C∗(αd), and using admissibility we may choose sets Ui ∈ αn−1 such that the support
of λ(ρi), as well as the points vj for j ̸= i are contained in Ui. Because we assume n ≥ 2
we can for all i choose j /∈ {0, i} to obtain vj ∈ U0 ∩ Ui, so we must have U0 ∩ Ui ̸= ∅ for
all i. It follows that Ui ⊆ Stαn−1 U0 so that the support of λ(ρi) is contained in Stαn−1 U0
for all i. Since αn−1 is an HLC star refinement of αn we may choose V ∈ αn such that
Stαn−1 U0 ⊆ V and the corresponding inclusion map is trivial in singular homology. Hence,
the (n− 1)-cycle c = λ(∂(ρ)) =

∑︁
i(−1)iλ(ρi) ∈ C∗(Stαn−1 U0) becomes a boundary when

considered as a chain in V , i.e., there exists a singular n-chain c′ ∈ C∗(V ) ⊆ C∗(αn) such
that ∂(c′) = c. Setting λ(ρ) = c′ yields a chain map as desired.

Independence of choices for admissible covers and chain maps Given a filtration of
spaces as in Lemma 9.1.2 and Definition 9.1.1, there might be many choices of admissible
subspace covers, and for each such choice there might again be many choices of admissible
chain maps. We will now show that the result in homology is in some sense independent of
these choices. To state the result, recall that η and π are the maps induced by refinement
of covers on singular and Vietoris complexes, respectively.

Lemma 9.1.3. Let A0 ⊆ A1 ⊆ · · · ⊆ Ad ⊆ X and A′
0 ⊆ A′

1 ⊆ · · · ⊆ A′
d ⊆ X be topological

spaces with Ai ⊆ A′
i for all i and assume we are given admissible sequences of subspace

covers αi of Ai and α′
i of A′

i in X such that αi refines α′
i for all i. Further, assume we are

given admissible chain maps λ and λ′ associated to the sequences αi and α′
i, respectively.

Then the diagram
H≤d−1(C∗(αd)) H≤d−1(C∗(α′

d))

H≤d−1(V d
∗ (α0)) H≤d−1(V d

∗ (α′
0))

H(η)

H(π)

H(λ) H(λ′)

commutes.

Proof. We prove the claim by constructing a suitable chain homotopy for the diagram above,
i.e., a map D : V d−1

∗ (α0)→ C∗(α′
d) such that D ◦ ∂ + ∂ ◦D = η ◦ λ− λ′ ◦ π. Note that it

suffices to construct D on the (d− 1)-skeleton because we only want to show commutativity
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of the diagram in homology up to dimension d− 1. In particular, the existence of D on the
(d− 1)-skeleton already implies that η ◦ λ− λ′ ◦ π maps (d− 1)-cycles to (d− 1)-boundaries.

As for the construction of admissible chain maps in the proof of Lemma 9.1.2, we will
perform the construction of D only on oriented simplices and proceed inductively on their
dimension. As part of our induction hypothesis, and similarly to the admissibility condition
for chain maps from Definition 9.1.1, we will require that for any oriented n-simplex ρ of
V d−1

∗ (α0) there exists U ∈ α′
n+1 such that the support of the singular (n+ 1)-chain D(ρ),

as well as the vertices of ρ are contained in U .
For a 0-simplex [v], we set D([v]) = 0, which clearly satisfies the required conditions

because λ([v]) and λ′([v]) are both singular 0-simplices that take value v. Now consider an
oriented 1-simplex [v0, v1] ∈ V d−1

∗ (α0). Because λ and λ′ are admissible, there exist U ∈ α1
and U ′ ∈ α′

1 such that U contains the support of η(λ([v0, v1])), U ′ contains the support of
λ′(π([v0, v1])), and v0, v1 ∈ U ∩ U ′. Since α1 refines α′

1, we can choose U ′′ ∈ α′
1 such that

U ⊆ U ′′. In particular, we then have U ′′ ∩ U ′ ̸= ∅, so U ′′ ∪ U ′ ⊆ Stα′
1
U ′. By assumption,

α′
1 is an HLC star refinement of α′

2, so we may choose V ∈ α′
2 such that Stα′

1
U ′ ⊆ V and

the inclusion map is trivial in singular homology. Since c = η(λ([v0, v1]))− λ′(π([v0, v1]))
is a singular 1-cycle supported in U ′′ ∪ U ′ ⊆ Stα′

1
U ′, this implies that there is a singular

2-chain c′ ∈ C∗(V ) ⊆ C∗(α′
2) such that ∂(c′) = c. Setting D([v0, v1]) = c′ then satisfies the

above requirements. In particular, we can calculate

∂(D([v0, v1])) +D(∂([v0, v1])) = ∂(c′) + 0 = c = η(λ([v0, v1]))− λ′(π([v0, v1])).

Next, assume that D has been defined for oriented (n − 1)-simplices and consider an
oriented n-simplex ρ = [v0, . . . , vn] ∈ V d−1

∗ (α0), where 2 ≤ n, with boundary components
ρi. As before, we may use the admissibility of λ and λ′ to choose U ∈ αn and U ′ ∈ α′

n such
that U contains the support of η(λ(ρ)), U ′ contains the support of λ′(π(ρ)), and both U and
U ′ contain the vertices of ρ. Again, we choose some U ′′ ∈ α′

n such that U ⊆ U ′′. Using the
induction hypothesis, we may also choose Ui ∈ α′

n such that the support of D(ρi) and all of
the vertices of ρi are contained in Ui for all i. Because we assume n ≥ 2 we can for all i
choose j /∈ {0, i} to obtain vj ∈ U0∩Ui, so we must have U0∩Ui ̸= ∅ for all i. It follows that
Ui ⊆ Stα′

n
U0. We also have that vn ∈ U ′′∩U0 and vn ∈ U ′∩U0, so we get U ′′, U ′ ⊆ Stα′

n
U0,

too. In total, we obtain that the singular n-cycle c = η(λ(ρ)) − λ′(π(ρ)) − D(∂(ρ)) has
support in U ′′∪U ′∪

⋃︁
i Ui Stα′

n
U0. Since α′

n is an HLC star refinement of α′
n+1 we may now

choose V ∈ α′
n+1 such that Stα′

n
U0 ⊆ V and the corresponding inclusion map is trivial in

singular homology. Thus, there is some (n+ 1)-chain c′ ∈ C∗(V ) ⊆ C∗(α′
n+1) with ∂(c′) = c.

Setting D(ρ) = c′, we calculate

∂(D(ρ)) +D(∂(ρ)) = ∂(c′) +D(∂(ρ)) = c+ η(λ(ρ))− λ′(π(ρ))− c = η(λ(ρ))− λ′(π(ρ)),

which finishes the proof.

Note that Lemma 9.1.3 can in particular be applied in the case where Ai = A′
i and

αi = α′
i, which implies that the maps η and π are identities and hence two choices of

associated chain maps λ and λ′ for the same sequence of covers yield identical maps in
homology up to dimension d− 1.

Admissible maps in locally connected sublevel set filtrations Coming back to our setting
of functions f : X → R and their sublevel set filtrations, we define the following.

108



9.1. Constructing maps from singular to Čech homology and back

Definition 9.1.4. Let f : X → R be a function on a topological space. For δ ≥ 0, we
say that the sublevel set filtration f≤• induced by f is δ homologically locally connected
(δ −HLC) with respect to the homology theory H if for any x ∈ X, any neighborhood V
of x, and any pair of indices s, t with f(x) < s ≤ s+ δ < t there is a neighborhood U of x
with U ⊆ V such that the inclusion f≤s ∩ U → f≤t ∩ V is taken to the trivial map by H.
We define the local connectedness shift of f with respect to H as

lcsH(f) = inf{δ > 0 | f is δ −HLC}.

We now consider a dimension d and indices s < t satisfying t − s > d · lcssingular(f) to
define

Is,t,d = {(t0, . . . , td, α0, . . . , αd) |ti ∈ R, t0 = s, td = t,

ti+1 − ti > lcssingular(f) for all i,
(αi)i admissible covers for f≤t0 ⊆ · · · ⊆ f≤td ⊆ X}.

We define an order ≤ on Is,t,d by saying that (t0, . . . , αd) ≤ (t′0, . . . , α′
d) if and only if

ti ≤ t′i – so that in particular f≤ti ⊆ f≤t′i – and αi refines α′
i for all i.

Lemma 9.1.5. Let f : X → R be a function whose sublevel sets are paracompact Hausdorff
spaces, and consider a dimension d and indices s < t satisfying t − s > d · lcssingular(f).
Then (Is,t,d,≤) is a non-empty directed set.

Proof. It is clear that the relation ≤ defines a preorder because the refinement order for
covers of a single space defines a preorder.

For non-emptyness, we proceed inductively. Start with an arbitrary choice of ti with
t0 = s, td = t, ti+1 − ti > lcssingular(f), and an arbitrary choice of αd ∈ Cov(f≤t). Next,
given αi+1, choose α′

i as a cover of f≤ti such that for every U ′ ∈ α′
i there exists V ∈ αi+1

with U ′ ⊆ V with the inclusion f≤ti ∩ U ′ → f≤ti+1 ∩ V being trivial for H̃. This choice is
possible since ti+1 − ti > lcssingular(f). Next, choose a star refinement αi of α′

i, which is
possible because f≤ti is assumed to be a paracompact Hausdorff space [Eng89, Theorem
5.1.12]. Clearly, αi is then an HLC star refinement of αi+1.

To show directedness, we consider elements (t0, . . . , αd) and (t′0, . . . , α′
d) in Is,t,d and

construct a common lower bound (t′′0, . . . , α′′
d) for them as follows. First, we set t′′i =

min{ti, t′i}, which satisfies t′′i+1 − t′′i > lcssingular(f) so that f is (ti+1 − ti)− HLC for all i.
Next, we choose α′′

d ∈ Cov(f≤t′′
d
) as an arbitrary common refinement of αd and α′

d. Finally,
we inductively define α′′

i ∈ Cov(f≤t′′i ) by constructing an HLC star refinement βi of α′′
i+1 as

above, and then choosing α′′
i as a common refinement of βi, αi, and α′

i.

We can now define an inverse system of maps indexed by the non-empty directed set
Is,t,d by mapping (t0, . . . , td, α0, . . . , αd) to

H≤d−1(V d
∗ (α0)) H≤d−1(C∗(αd)),

H(λ)

where λ is some choice of admissible chain map associated to the covers αi. The connecting
maps corresponding to the relations on Is,t,d are given by pairs (H(π), H(η)), which is
well-defined by Lemma 9.1.3.
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Next, we want to define a map ψs,t : Ȟ≤d−1(f≤s)→ H≤d−1(f≤t) playing the role of an
approximate inverse to φ as the inverse limit of the above maps H(λ) over the set Is,t,d. To
do so, what remains to be shown is that the limit of the domains of the H(λ) is Ȟ≤d−1(f≤s)
and that the limit of the codomains is H≤d−1(f≤t). We define

Cs,t,d = {α ∈ Cov(f≤s) | there exists (t0, . . . , td, α0, . . . , αd) ∈ Is,t,d with α0 = α},
C′
s,t,d = {α ∈ Cov(f≤t) | there exists (t0, . . . , td, α0, . . . , αd) ∈ Is,t,d with αd = α}.

Both sets will be considered as preordered sets with the refinement relation.
Lemma 9.1.6. Let f : X → R be a function whose sublevel sets are paracompact Hausdorff
spaces, and consider a dimension d and indices s < t satisfying t − s > d · lcssingular(f).
Then the subsets Cs,t,d ⊆ Cov(f≤s) and C′

s,t,d ⊆ Cov(f≤t) are coinitial.
Proof. First, note that the part of the proof of Lemma 9.1.5 where non-emptyness of Is,t,d
is shown actually establishes that αd can be chosen arbitrarily, so that C′

s,t,d = Cov(f≤t).
For the other assertion, let α ∈ Cov(f≤s) be an arbitrary cover. We choose some element
(t0, . . . , td, α0, . . . , αd) ∈ Is,t,d, which is possible because the set is non-empty. If α′

0 is a
common refinement of α and α0, then α′

0 is clearly still an HLC star refinement of α1, so
that (t0, . . . , td, α′

0, α1 . . . , αd) is an element of Is,t,d. Hence, we have α′
0 ∈ Cs,t,d and α′

0
refines α, so Cs,t,d ⊆ Cov(f≤s) is indeed coinitial.

As a consequence of Lemma 9.1.6, we get that the domain of limIs,t,d
H(λ) is

lim
(t0,...,td,α0,...,αd)∈Is,t,d

H≤d−1(V d
∗ (α0)) ∼= lim

α∈Cs,t,d

H≤d−1(V d
∗ (α))

∼= lim
α∈Cov(f≤s)

H≤d−1(V∗(α))

∼= Ȟ≤d−1(f≤s),

where we have made use of the fact that for any simplicial complex K, its d-skeleton
determines its homology up to degree d− 1, i.e., H≤d−1(K) ∼= H≤d−1(Kd). Similarly, we
obtain that the codomain of limIs,t,d

H(λ) is

lim
(t0,...,td,α0,...,αd)∈Is,t,d

H≤d−1(C∗(αd)) ∼= lim
α∈C′

s,t,d

H≤d−1(C∗(α))

∼= lim
α∈Cov(f≤t)

H≤d−1(C∗(α))

∼= H≤d−1(f≤t).

Hence, we indeed get a well-defined map

ψs,t = lim
Is,t,d

H(λ) : Ȟ≤d−1(f≤s)→ H≤d−1(f≤t)

whenever t− s > d · lcssingular(f). From this, we obtain a diagram

H≤d−1(f≤s;G) H≤d−1(f≤t;G)

Ȟ≤d−1(f≤s;G) Ȟ≤d−1(f≤t;G)

φs φt
ψs,t (9.1.1)

whose commutativity we want to show next. We will also show that the maps ψs,t
are compatible across different choices of s and t. Together with the commutativity of
Diagram (9.1.1), this will imply our main comparison results.
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9.2. Constructing homotopies on singular and Čech complexes

The goal of this section is to show commutativity of Diagram (9.1.1). For this purpose, we
construct chain homotopies on singular complexes in § 9.2.1, and chain homotopies on Čech
complexes in § 9.2.2.

9.2.1. A homotopy on singular chain complexes

We now prove that the triangle in Diagram (9.1.1) involving the inclusion-induced map in
singular homology commutes.

Proposition 9.2.1. Let f : X → R be a function whose sublevel sets are paracompact
Hausdorff spaces and consider a dimension d, as well as δ > d · lcssingular(f). Then for all
s ∈ R the diagram

H≤d−1(f≤s) H≤d−1(f≤s+δ)

Ȟ≤d−1(f≤s)

φs
ψs,s+δ

(9.2.1)

commutes.

We start with a lemma. It is analogous to [Mar59, Lemma 8].

Lemma 9.2.2. Let A0 ⊆ A1 ⊆ · · · ⊆ Ad ⊆ X be topological spaces with an admissible
sequence of covers αi and an admissible chain map λ. Then the diagram

H≤d−1(C∗(α0)) H≤d−1(C∗(αd))

H≤d−1(V d
∗ (α0))

H(η)

H(µ)
H(λ)

(9.2.2)

commutes.

Proof. We follow the general outline of the proof of Lemma 9.1.3 and construct a chain
homotopy D : C∗(α0)→ C∗(αd) for the above diagram, i.e., a map such that D ◦∂+∂ ◦D =
λ ◦µ− η. Again, it suffices to define D for simplices up to dimension d− 1, and to do so we
proceed inductively on the dimension. As part of the induction hypothesis, we will again
assume that for any n-simplex σ of C∗(α0) with n ≤ d− 1 there exists U ∈ α′

n+1 such that
the singular (n+ 1)-chain D(σ) and the singular simplex σ are supported in U .

On 0-simplices, we set D to be 0. For a 1-simplex σ, we distinguish two cases: either
µ(σ) ̸= 0 or µ(σ) = 0. If µ(σ) is not 0, it is an oriented 1-simplex in V∗(α0). Because
λ is admissible, we may hence choose U ∈ α1 such that the support of λ(µ(σ)) and the
vertices of µ(σ) are contained in U . We have σ ∈ C∗(α0) and α0 refines α1, so we may
also choose U ′ ∈ α1 such that U ′ contains the support of σ. Note that the support of σ
contains the vertices of µ(σ), so we have U ∩ U ′ ≠ ∅. Hence, the 1-cycle λ(µ(σ))− η(σ) is
supported in Stα1 U . Since the covers αi are admissible, we may now choose V ∈ α2 such
that Stα1 U ⊆ V and the inclusion map is trivial in singular homology. It follows that there
exists a 2-chain c′ ∈ C∗(V ) ⊆ C∗(α2) with ∂(c′) = c. We set D(σ) = c′.
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If µ(σ) = 0, we choose U ∈ α0 such that the image of σ is contained in U . Since α0 is an
HLC star refinement of α2, we may pick V ∈ α2 such that U ⊆ V and the inclusion map
is trivial in singular homology. Note that µ(σ) = 0 implies that the two vertices of σ are
mapped to the same point in U . In particular, this implies that c = σ is a 1-cycle in C∗(U),
so there exists a 2-chain c′ ∈ C∗(V ) ⊆ C∗(α2) with ∂(c′) = c. We set D(σ) = c′.

Now, assume that D has been defined as required for simplices up to dimension n− 1
and let σ be an n-simplex in C∗(α0), where 2 ≤ n ≤ d− 1. Again, we distinguish between
the cases where either µ(σ) ̸= 0 or µ(σ) = 0. If µ(σ) is not 0, it is an oriented n-simplex
of V∗(α0). Using admissibility of λ, we may consequently choose U ∈ αn such that the
support of λ(µ(σ)) and the vertices of µ(σ) are contained in U . We may also choose
U ′ ∈ αn such that the support of σ is contained in U ′. With the induction hypothesis
on D, it is also possible to choose Ui ∈ αn for all boundary simplices σi of σ such that
Ui contains the supports of D(σi) and σi. Writing v0, . . . , vn for the vertices of µ(σ), we
obtain vn ∈ U ∩ U ′ ∩ U0 and vj ∈ Ui ∩ U0 for j /∈ {0, i}. Hence, the singular n-cycle
c = λ(µ(σ))− η(σ)−D(∂(σ)) is supported in Stαn(U0). Using admissibility of the αi, we
can now choose V ∈ αn+1 such that Stαn(U0) ⊆ V and the inclusion map is homologically
trivial. Thus, there exists c′ ∈ C∗(V ) ⊆ C∗(αn+1) such that ∂(c′) = c and we set D(σ) = c′.

If µ(σ) = 0, we start by choosing U ∈ αn such that contains the support of σ, which is
possible because σ ∈ C∗(α0) and α0 refines αn. For every boundary simplex σi of σ we use
the induction hypothesis to choose Ui ∈ αn such that Ui contains the supports of σi and
D(σi). A routine argument again implies that U ∩ U0 ̸= ∅ and Ui ∩ U0 ̸= ∅ for all i, so the
n-cycle c = λ(µ(σ))− η(σ)−D(∂(σ)) = −η(σ)−D(∂(σ)) is supported in Stαn(U0). Since
the αi are admissible we may choose V ∈ αn+1 such that Stαn(U0) includes homologically
trivially into V . This implies that there is an (n + 1)-chain c′ ∈ C∗(V ) ⊆ C∗(αn+1 such
that ∂(c′) = c. Setting D(σ) = c′ finishes the construction. We omit the straightforward
verification that D indeed has all required properties.

Proof of Proposition 9.2.1. Using Lemma 9.1.3, we may consider an inverse system indexed
by Is,s+δ,d, mapping (t0, . . . , αd) to the Diagram (9.2.2), which commutes by Lemma 9.2.2.
The connecting maps in this inverse system corresponding to relations in Is,s+δ,d are given
by (H(η), H(η), H(π)). Taking the inverse limit of this system yields the commutative
Diagram (9.2.1) as claimed.

9.2.2. A homotopy on Čech complexes
We now prove that the triangle in Diagram (9.1.1) involving the inclusion-induced map in
Čech homology commutes.

Proposition 9.2.3. Let f : X → R be a function whose sublevel sets are paracompact
Hausdorff spaces and consider a dimension d, as well as δ > d · lcssingular(f). Then for all
s ∈ R the diagram

H≤d−1(f≤s+δ)

Ȟ≤d−1(f≤s) Ȟ≤d−1(f≤s+δ)

φs+δ
ψs,s+δ (9.2.3)

commutes.

We start with some terminology and intermediate results.
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Definition 9.2.4. Let X be a topological space and α ∈ Cov(X). If ρ = [v0, . . . , vn] ∈ V∗(α)
is an oriented Vietoris n-simplex with U ∈ α such that vi ∈ U for all i, and x ∈ U is any
point, we define the join x ∨ ρ as the oriented Vietoris (n+ 1)-simplex [x, v0, . . . , vn]. By
convention, we understand this to mean that x ∨ ρ = 0 if there is some j with x = vj . If∑︁
i aiρi ∈ V∗(α) is a Vietoris n-chain with simplices ρi, coefficients ai, sets Ui ∈ α such that

the vertices of ρi are in Ui, and x ∈
⋂︁
i Ui is any point, we define the join x∨

∑︁
i aiρi as the

(n+ 1)-chain
∑︁
i ai(x ∨ ρi).

Lemma 9.2.5. Let X be a topological space and α ∈ Cov(X). Let c =
∑︁
i aiρi ∈ V∗(α) be

an n-chain with n ≥ 1 and choose sets Ui ∈ α such that the vertices of ρi are contained in
Ui. Let x ∈

⋂︁
i Ui be any point. Then ∂(x ∨ c) + x ∨ ∂(c) = c.

Proof. Writing ρi = [vi,0, . . . , vi,n] for the simplices of c, we can write the boundary of ρi as
∂(ρi) =

∑︁n
k=0(−1)k[vi,0, . . . ,ˆ︃vi,k, . . . , vi,n], where ˆ︃vi,k means that vi,k is excluded from the

given list. Note that this requires our assumption that n ≥ 1. Denoting c′ = ∂(x∨c)+x∨∂(c),
we calculate

c′ =
∑︂
i

ai (∂(x ∨ ρi) + (x ∨ ∂(ρi)))

=
∑︂
i

ai

(︄
∂([x, vi,0, . . . , vi,n]) +

(︄
x ∨

n∑︂
k=0

(−1)k[vi,0, . . . ,ˆ︃vi,k, . . . , vi,n]
)︄)︄

=
∑︂
i

ai

(︄
[vi,0, . . . , vi,n] +

n∑︂
k=0

(︂(︂
(−1)k+1 + (−1)k

)︂
[x, vi,0, . . . ,ˆ︃vi,k, . . . , vi,n]

)︂)︄
=
∑︂
i

ai[vi,0, . . . , vi,n]

= c.

The following lemma is analogous to [Mar59, Lemma 9].

Lemma 9.2.6. Let A0 ⊆ A1 ⊆ · · · ⊆ Ad ⊆ X be topological spaces with an admissible
sequence of covers αi and an admissible chain map λ. Then the diagram

H≤d−1(C∗(αd))

H≤d−1(V d
∗ (α0)) H≤d−1(V d

∗ (αd))

H(µ)

H(π)

H(λ) (9.2.4)

commutes.

Proof. We prove the claim by constructing a suitable chain homotopy for the diagram
above, i.e., a map D : V d

∗ (α0) → V d
∗ (αd) such that D ◦ ∂ + ∂ ◦D = µ ◦ λ − π. It suffices

to define D on simplices and extend it linearly. For 0-simplices ρ = [v], we set D(ρ) = 0,
which satisfies the above equation because we have µ(λ(ρ)) = [v] = π(ρ) since λ(ρ) takes
value v. If ρ is an oriented n-simplex with n ≥ 1, we choose U ∈ αn such that the support
of λ(ρ) and the vertices of ρ are contained in U , which is possible since λ is admissible.
Next, we choose an arbitrary point x ∈ U and define D(ρ) = x∨ (µ(λ(ρ))− π(ρ)). We have
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n ≥ 1, so it follows from the Lemma 9.2.5 that

D(∂(ρ)) + ∂(D(ρ)) = x ∨ (µ(λ(∂(ρ)))− π(∂(ρ))) + ∂ (x ∨ (µ(λ(ρ)− π(ρ)))
= ∂(x ∨ (µ(λ(ρ))− π(ρ))) + ∂ (x ∨ (µ(λ(ρ)− π(ρ)))
= µ(λ(ρ))− π(ρ).

Proof of Proposition 9.2.3. Using Lemma 9.1.3, we may consider an inverse system indexed
by Is,s+δ,d, mapping (t0, . . . , αd) to the Diagram (9.2.4), which commutes by Lemma 9.2.6.
The connecting maps in this inverse system corresponding to relations in Is,s+δ,d are given
by (H(η), H(π), H(π)). Taking the inverse limit of this system yields the commutative
Diagram (9.2.3) as claimed.

9.3. Final proofs
We are now ready to give proofs of the main theorems stated in § 2.2.3, which we do in
§ 9.3.1. To finish the chapter, we show that the local connectedness shift is 2-Lipschitz for
the supremum norm in § 9.3.2.

9.3.1. Proofs of the singular to Čech comparison results
As a last preparatory result, we show that the construction of the maps ψs,t is in some
sense consistent among different choices for the indices s and t.

Proposition 9.3.1. Let f : X → R be a function whose sublevel sets are paracompact
Hausdorff spaces, and consider a dimension d, an index s ∈ R, and δ > d · lcssingular(f).
Then the diagram

H≤d−1(f≤s+δ) H≤d−1(f≤s+2δ)

Ȟ≤d−1(f≤s) Ȟ≤d−1(f≤s+δ)

ψs,s+δ ψs+δ,s+2δ (9.3.1)

commutes.

Proof. We write s′ = s+δ and s′′ = s+2δ. Now, define a map τ : Is′,s′′,d → Is,s′,d as follows.
Starting with an element (t′0, . . . , t′d, α′

0, . . . , α
′
d) ∈ Is′,s′′,d, we set ti = t′i− δ. We also choose

αd ∈ Cov(f≤td) as an arbitrary refinement of α′
d. Then, similar to the construction of

common refinements in the proof of Lemma 9.1.5, we inductively choose βi ∈ Cov(f≤ti) as
an HLC star refinement of αi+1 ∈ Cov(f≤ti+1), and then choose αi as a common refinement
of βi and α′

i. This process is possible because ti+1 − ti = t′i+1 − t′i > lcssingular(f). By
construction, (t0, . . . , αd) is an element of Is,s′,d, so we may set τ(t′0, . . . , t′d, α′

0, . . . , α
′
d) =

(τ(t0), . . . , τ(td), τ(α0), . . . , τ(αd)) = (t0, . . . , td, α0, . . . , αd).
Since we have fτ(t′i) ⊆ ft′i and τ(α′

i) refines α′
i for all i, we can apply Lemma 9.1.3 to

obtain a commutative diagram

H≤d−1(C∗(τ(α′
d))) H≤d−1(C∗(α′

d))

H≤d−1(V d
∗ (τ(α′

0))) H≤d−1(V d
∗ (α′

0))

H(η)

H(π)

H(λ) H(λ′)

114



9.3. Final proofs

for any element (t′0, . . . , t′d, α′
0, . . . , α

′
d) ∈ Is′,s′′,d, where λ and λ′ are choices of admissible

chain maps. In other words, we obtain a morphism between the inverse systems of admissible
maps H(λ) and H(λ′), which by a standard procedure gives rise to a map between their
limits. That is, we obtain the claimed commutative Diagram (9.3.1). That the limits of
the maps H(π) and H(η) yield the inclusion-induced maps is an immediate consequence of
their definitions.

We summarize the results from Propositions 9.2.1, 9.2.3 and 9.3.1 in the following
corollary.
Corollary 9.3.2. Let f : X → R be a function whose sublevel sets are paracompact Haus-
dorff spaces and consider a dimension d, as well as δ > d · lcssingular(f). Then for all s ∈ R
there are maps ψs,s+δ : Ȟd−1(f≤s)→ H∗(f≤s+δ) such that the diagram

H≤d−1(f≤s) H≤d−1(f≤s+δ) H≤d−1(f≤s+2δ)

Ȟ≤d−1(f≤s) Ȟ≤d−1(f≤s+δ) Ȟ≤d−1(f≤s+2δ)

φs φs+δ φs+2δ
ψs,s+δ ψs+δ,s+2δ

(9.3.2)

commutes.
To state the first of our two main theorems, we emphasize the notion of being 0-HLC

with some shorthand terminology.
Definition 9.3.3. Let f : X → R be a function on a topological space. We say that
the sublevel set filtration f≤• induced by f is homologically locally connected (HLC) with
respect to the homology theory H if for any x ∈ X, any neighborhood V of x, and any pair
of indices s, t with f(x) < s < t there is a neighborhood U of x with U ⊆ V such that the
inclusion f≤s ∩ U → f≤t ∩ V is taken to the trivial map by H.

Clearly, being HLC is equivalent to being 0-HLC in the sense of Definition 9.1.4. Moreover,
any filtration that is HLC is also LHS in the sense of Definition 8.1.2. As our main result
for HLC filtrations, we have the following.
Theorem 9.3.4. If f : X → R induces a filtration of paracompact Hausdorff spaces that is
HLC with respect to singular homology with coefficients in an abelian group G, then the
natural map φ : H∗(f≤•;G)→ Ȟ∗(f≤•;G) from its persistent singular to its persistent Čech
homology is a weak isomorphism.
Proof. We fix a dimension d and indices s < t and have to show that for s < t the
natural maps kerφs → kerφt and cokerφs → cokerφt are 0. Note that lcssingular(f) = 0
because we assume the filtration of f to be HLC. Thus, for δ = t − s, we have δ > 0 =
(d+ 1) · lcssingular(f). So by Corollary 9.3.2 there exists a map ψs,t : Ȟ≤d(f≤s)→ H≤d(f≤t)
such that Diagram (9.3.2) commutes. Let is,t denote the inclusion f≤s → f≤t. Given the
above diagram, we see that for any h ∈ kerφs, we have

H≤d(is,t)(h) = ψs,t(φs(h)) = 0,

so that the natural map kerφs → kerφt must be 0. Similarly, we obtain that for any
h ∈ Ȟ≤d(f≤s), we have

Ȟ≤d(is,t)(h) = φt(ψs,t(h)) ∈ imφt,

so that the natural map cokerφs → cokerφt must be 0.
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Note that the compatibility part of Corollary 9.3.2 is not necessary for the proof above,
i.e., for the proof above it suffices to have established Propositions 9.2.1 and 9.2.3, and
Proposition 9.3.1 is not needed. It is needed, however, for the following quantitative result.

Theorem 9.3.5. If f : X → R induces a filtration of paracompact Hausdorff spaces and G
is an abelian group, then

dI
(︁
H≤d−1(f≤•;G), Ȟ≤d−1(f≤•;G)

)︁
≤ d · lcs(f)

for all d, where lcs(f) is the local connectedness shift of f with respect to singular homology
with coefficients in G.

Proof. We fix a dimension d. To show that the claimed inequality holds, it suffices to
show that H≤d−1(f≤•) and Ȟ≤d−1(f≤•) are δ-interleaved for any δ > d · lcssingular(f). For
such δ, we get maps ψs,s+δ : Ȟ≤d(f≤s)→ H≤d(f≤s+δ) for every s ∈ R from Corollary 9.3.2
such that Diagram (9.3.2) commutes. It follows that the maps ψs,s+δ form a δ-interleaving
together with the maps φ̃s,s+δ : H≤d(f≤s)→ Ȟ≤d(f≤s+δ) given by composing φs with the
structure map Ȟ≤d(f≤s)→ Ȟ≤d(f≤s+δ). This finishes the proof.

As an immediate corollary, we obtain the following.

Corollary 9.3.6. If f : X → R induces a filtration of paracompact Hausdorff spaces that
is locally connected with respect to singular homology with coefficients in an abelian group
G, then

dI
(︁
H∗(f≤•;G), Ȟ∗(f≤•;G)

)︁
= 0.

9.3.2. Lipschitz-continuity of the local connectedness shift
We finish by proving that the local connectedness shift is a Lipschitz map with respect to
the supremum norm.

Proposition 9.3.7. Let X be a topological space and H a functor from topological spaces
to a category with a 0 object. Then for any functions f, g : X → R we have

| lcsH(f)− lcsH(g)| ≤ 2 · ∥f − g∥∞.

Proof. We set e = ∥f − g∥∞. It suffices to show that if f≤• is δ-HLC for some δ ≥ 0, then
g≤• is (δ + 2e)-HLC. So let x ∈ X and consider indices s, t with f(x) < s ≤ s+ δ + 2e < t,
as well as a neighborhood V of x in X. If f is δ-HLC, then we can choose a neighborhood
U of x such that U ⊆ V and the inclusion f≤s+e ∩ U → f≤s+e+δ ∩ V is taken to 0 by H.
Now, note that we have g≤s ⊆ f≤s+e and f≤s+e+δ ⊆ g≤s+2e+δ because e = ∥f − g∥∞. It
follows that we have a commutative diagram

f≤s+e ∩ U f≤s+e+δ ∩ V

g≤s ∩ U g≤s+2e+δ ∩ V

consisting of inclusion maps. In particular, g≤s ∩ U → g≤s+2e+δ ∩ V factors through
f≤s+e ∩ U → f≤s+e+δ ∩ V . The second map is taken to 0 by H, so the same is true for the
first one. Hence, the sublevel set filtration of g is indeed (δ + 2e)-HLC if the sublevel set
filtratiton of f is δ-HLC, which proves the claim.
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persistence modules

In this chapter, we prove the structural results for persistence modules presented § 2.2.4.
We start with some preparatory lemmas on semi-continuous interval modules and internal
limits and colimits in Section 10.1. In Section 10.2, we then prove our main structure
theorems for semi-continuous q-tame persistence modules.

At various points in the chapter, we will need to make some assumptions on the index
set T , which are always explicitly stated in the respective results.

10.1. Basic results on semi-continuity
We start our discussion of semi-continuity by proving some preliminary results. First, we
recall some terminology and consider some examples of semi-continuous persistence modules
in § 10.1.1. In § 10.1.2, we then characterize semi-continuous interval modules. Finally, we
show that weak isomorphisms are taken to isomorphisms by internal limits and colimits in
§ 10.1.3.

10.1.1. Semi-continuous persistence modules

Let us begin by introducing and recalling some terminology, partly taken from [CCdS16].
Recall that our index set T is dense if for all s, u ∈ T with s < u there exists t ∈ T with
s < t < u. If N ⊆ I ⊆ T are subsets, N is said to be coinitial in I if for all t ∈ I there
exists s ∈ N with s ≤ t. N is said to be cofinal in I if for all t ∈ I there exists s ∈ N with
t ≤ s.

Definition 10.1.1. If M is a persistence module, we define a persistence module M by

M t = lim
s>t

Ms

with the obvious structure maps. The canonical maps Mt → lims>tMs form a morphism
M →M , and we say that M is upper semi-continuous (u.s.c.) or continuous from above if
this morphism is an isomorphism. We also define a persistence module M by

M t = colim
s<t

Ms,

again with the obvious structure maps. The canonical maps colims<tMs → Mt form a
morphism M → M , and we say that M is lower semi-continuous (l.s.c.) or continuous
from below if this morphism is an isomorphism.

The constructions defined in Definition 10.1.1 clearly extend to endofunctors on the
category of persistence modules. We have already mentioned in § 1.3.2 that the radical of a
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10. Structure of semi-continuous q-tame persistence modules

persistence module M may be seen as the image of the canonical map M →M , and that
under some assumptions on the index set, the radical of a q-tame persistence module has a
barcode. We record.

Theorem 10.1.2. [CCdS16, Corollary 3.6.] Let T be a dense totally ordered set such that
every interval in T has a countable coinitial subset. If M is a q-tame persistence module
indexed by T , its radical radM has a barcode.

Semi-continuous persistence modules appear naturally in many different contexts. Some
authors, especially within symplectic topology, even go as far as to consider almost exclusively
semi-continuous persistence modules, e.g., Buhovsky et al. [Buh+22] and Polterovich and
Shelukhin [PS16].

Example 10.1.3. • One of the standard examples of a q-tame persistence module
indexed by R that does not have a barcode in the usual sense is

∏︂
n∈N

C
(︂[︂

0, n−1
)︂)︂
.

It is upper semi-continuous by the previous two lemmas, so it has a multiplicative
barcode by Theorem 10.2.4. Clearly, this is given by ([0, n−1))n∈N. In particular, this
persistence module has a multiplicative barcode but no additive barcode.

• Consider the R-indexed persistence module

⨁︂
n∈N

C
(︂(︂
−n−1, 0

]︂)︂
.

It is lower semi-continuous by the previous two lemmas and also q-tame. It has an
additive barcode but no multiplicative barcode.

• Let X : T→ Top be a diagram of topological spaces. If Xt is a compact Hausdorff
space for all t ∈ T and X is upper semi-continuous, i.e., Xt → lims>tXs is an
isomorphism for all t ∈ T , then the persistent Čech homology Ȟ∗(X) is upper semi-
continuous by [ES52, Theorem X.3.1.]. This is also what we have considered before
in the functional topology setting, where X was the sublevel set filtration of some
function.

• Let X be a topological space and f : X → R a continuous map. Write f<t for the
open sublevel set of f at t. Since f is continuous, we have f<t = colims<t f<s for all t,
where the colimit is taken in the category of topological spaces. Using the fact that the
interval (−∞, t) has a countable cofinal subset, the main theorem in [May99, Section
14.6.] implies that the sublevel set persistence H(f<•) is lower semi-continuous. Here,
H is any generalized homology theory with values in VecF.

• For any persistence module M indexed by T, we get a dual persistence module (∨M)
indexed by Top defined by composing the functor M : T→ Vec with the contravariant
functor HomVec(−,F) : Vec→ Vec. We have reviewed this in more detail in § 3.2.2.
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10.1. Basic results on semi-continuity

If M is lower semi-continuous, then M∨ is upper semi-continuous:

M∨
t = lim

s<t
Hom(Ms,F)

= Hom(colim
s<t

Ms,F)

= Hom(Mt,F)
= M∨

t ,

where equality should be interpreted as ’canonically isomorphic’.
However, if M is upper semi-continuous, M∨ need not be lower semi-continuous:
Consider M =

∏︁
n∈NC

(︁[︁
0, n−1)︁)︁ as in the first example. An easy calculation shows

that
M∨0 ∼=

⨁︂
n∈N

F,

but we also have

M∨
0 = Hom

⎛⎝∏︂
n∈N

F,F

⎞⎠ ,
which is isomorphic to the double dual space of

⨁︁
n∈N F. Since no infinite-dimensional

vector space is isomorphic to its double dual, we obtain that M∨ is not lower semi-
continuous at 0.

10.1.2. Semi-continuous interval modules
As the next step, we analyze how the functors defined in Definition 10.1.1 behave for interval
modules.
Definition 10.1.4. For t ∈ T , we write

↑ t = {s ∈ T | s > t},
↓ t = {s ∈ T | s < t},

for the strict upset and the strict downset of t. If I ⊆ T is an interval, we define

I = {t ∈ T | I∩ ↑ t is non-empty and coinitial in ↑ t} ,
I = {t ∈ T | I∩ ↓ t is non-empty and cofinal in ↓ t} ,

rad I = I ∩ I.

Lemma 10.1.5. Let I ⊆ T be an interval. Then the sets I, I and rad I are again intervals
in T if they are non-empty.
Proof. We only show the claim for I, the other ones can be shown similarly. Let s, u ∈ I
and t ∈ T with s < t < u. We need to show that t ∈ I, i.e., for a ∈↑ t we need to find
b ∈ I∩ ↑ t with b ≤ a.

First, we show that u ∈ I: Since u ∈ I, there exists some v ∈ I∩ ↑ u. Since u ∈↑ s and
s ∈ I, there exists c ∈ I∩ ↑ s with c ≤ u. We have c ≤ u < v and c, v ∈ I. Since I is an
interval, we get u ∈ I. In particular, we have u ∈ I∩ ↑ t, so this set is non-empty.

Now consider a ∈↑ t again. We have u ∈ I∩ ↑ t, so if u ≤ a, we can set b = u and are
done. If a < u, pick c ∈ I∩ ↑ s with c ≤ a. This is possible since a ∈↑ t ⊆↑ s and s ∈ I.
Then, we have c ≤ a < u and c, u ∈ I, which implies a ∈ I. So in this case, we can simply
set b = a and the proof is finished.
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10. Structure of semi-continuous q-tame persistence modules

Recall that for an interval I, we denote the corresponding interval module as defined in
§ 1.1.2 by C(I). While we do not consider the empty set to be an interval, we set C(∅) = 0.
Then, the lemma below still holds true if the involved sets are empty.

Lemma 10.1.6. For any interval I ⊆ T we have

C(I) ∼= C(I),

C(I) ∼= C(I),
radC(I) ∼= C(rad I).

Proof. Again, we only show the first isomorphism and the others can be shown analogously.
For all t ∈ I, we have

C(I)
t

= lim
s∈↑t

C(I)s = lim
s∈I∩↑t

C(I)s = lim
s∈I∩↑t

F = F.

For t /∈ I, we have that I∩ ↑ t is empty or that there exists t0 ∈↑ t such that there is no
s ∈ I∩ ↑ t with s ≤ t0. In the first case, we have

C(I)
t

= lim
s∈↑t

C(I)s = lim
s∈↑t

0 = 0.

In the second case, we have

C(I)
t

= lim
s∈↑t

C(I)s = lim
t<s≤t0

C(I)s = lim
t<s≤t0

0 = 0.

Thus, C(I) and C(I) agree pointwise. Clearly, their structure maps also agree and we
obtain the claim.

Semi-continuity is now easy to characterize for interval modules.

Lemma 10.1.7. Let I ⊆ T be an interval.

1. C(I) is l.s.c. if and only if I = I.

2. C(I) is u.s.c. if and only if I = I.

Proof. Both claims follow immediately from Lemma 10.1.6 and the fact that for any two
interval modules C(J) and C(J ′) we have C(J) ∼= C(J ′) if and only if J = J ′.

As an illustration, observe that a real interval I ⊆ R satisfies I = I if and only if I = R
or I = [a, b) for some a ∈ R and b ∈ R ∪ {∞}. Analogously, we have I = I if and only if
I = R or I = (a, b] for some a ∈ R ∪ {−∞} and b ∈ R.

For the proof of our main theorem, we will need the following.

Lemma 10.1.8. Let T be a dense totally ordered set and I ⊆ T an interval. If I = I, then
rad I is non-empty and rad I = I.

Proof. First, note that I = I implies that I is non-empty. In other words, there exists
t ∈ T such that I∩ ↑ t ̸= ∅ is coinitial in ↑ t. We will show that I∩ ↑ t = rad I∩ ↑ t.
This immediately implies that rad I is non-empty. It also shows that I ⊆ rad I. The other
inclusion obviously also holds, so in total we get rad I = I = I as claimed.
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It is clear that I∩ ↑ t ⊇ rad I∩ ↑ t. To see the other inclusion, consider s ∈ I∩ ↑ t. We
need to show that s ∈ rad I = I ∩ I, so it is enough to check that s ∈ I. So let a ∈↓ s. We
need to find b ∈ I∩ ↓ s with b ≥ a.

If a > t, we have a ∈ I: Since I∩ ↑ t is coinitial in ↑ t, we may choose s′ ∈ I∩ ↑ t with
s′ ≤ a. Now s′ ≤ a < s and s, s′ ∈ I, so a ∈ I because I is an interval. In this case, we can
set b = a and are done.

If a ≤ t, we use the fact that T is dense to choose c ∈ T with t < c < s. By the same
argument as before, we get c ∈ I and can set b = c. This finishes the proof.

10.1.3. Internal limits and colimits
As the next step, we will analyze how the internal limit and colimit functors in Defini-
tion 10.1.1 behave with respect to weak isomorphisms.

Lemma 10.1.9. Let φ : M → N be a weak isomorphism of persistence modules. Then φ
induces an isomorphism

φ : M → N.

Proof. Since taking direct limits of vector spaces is exact, the same is true for the functor
(−). Thus, this functor commutes with kernels and cokernels, so we get

kerφ ∼= kerφ

and
cokerφ ∼= cokerφ

Since kerφ and cokerφ are ephemeral by assumption, we get that in both cases the
right-hand side vanishes. So φ has trivial kernel and cokernel, which proves the claim.

Lemma 10.1.10. Assume that every interval in T has a countable coinitial subset. Let
φ : M → N be a weak isomorphism of persistence modules. Then φ induces an isomorphism

φ : M → N.

Proof. Consider the epi-mono-factorization of φ as

M imφ N.
p i

In order to show that φ is an isomorphism, it suffices to prove that p and i are isomorphisms.
First, consider the short exact sequence

0 imφ N cokerφ 0.i

Since taking inverse limits of vector spaces is left-exact, the functor (−) is also left-exact.
Thus, we get an exact sequence

0 imφ N cokerφ.i

By assumption, cokerφ is ephemeral, so we have cokerφ = 0, which implies that i is an
isomorphism. Next, consider the short exact sequence

0 kerφ M imφ 0.p
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For each t ∈ T , the interval {s ∈ T | s > t} has a countable coinitial subset by assumption.
Since kerφ is ephemeral, the inverse system (kerφs)s>t satisfies the Mittag-Leffler property
for all t ∈ T . Thus, by [Gro61, Proposition 13.2.2.] the sequence

0 lim
s>t

kerφs lim
s>t

Ms lim
s>t

imφs 0

is exact for all t ∈ T . Consequently, the sequence

0 kerφ M imφ 0
p

is also exact. We have kerφ = 0 since kerφ is assumed to be ephemeral. Hence, p is an
isomorphism and the proof is finished.

Remark 10.1.11. The previous lemma also holds if we replace the assumption on T by the
assumption that T be a dense order. In this case, the lemma is a consequence of the fact
that (−) defines a functor on the observable category of persistence modules and that weak
isomorphisms turn to isomorphisms when mapped to the observable category ([CCdS16,
Remark 2.12., Theorem 2.9.]).

10.2. Decompositions of semi-continuous persistence modules
We are now ready to give proofs of our main structure theorems. We provide some results
on q-tame and semi-continuous direct sums and products of persistence modules in § 10.2.1.
These are applied, together with the results from Section 10.1, to prove our structural
results on semi-continuous q-tame persistence modules in § 10.2.2.

10.2.1. Sums and products of persistence modules
Before proceeding to our main theorems about additive and multiplicative barcodes of
persistence modules, i.e., decompositions into direct sums and products of persistence
modules, we record two more facts about these constructions.

Semi-continuity for sums and products
Lemma 10.2.1. Let (Mα)α∈A be a collection of persistence modules.

1.
⨁︁

α∈AMα is l.s.c. if and only if all Mα are l.s.c.

2.
∏︁
α∈AMα is u.s.c. if and only if all Mα are u.s.c.

Proof. It is easy to check that taking direct sums of persistence modules is conservative, so
the canonical map

⨁︁
α∈AMα →

⨁︁
α∈AMα is an isomorphism if and only if all Mα are l.s.c.

Colimits commute with each other, so we also have a canonical isomorphism⨁︂
α∈A

Mα
∼=
⨁︂
α∈A

Mα.

This implies the first claim. The second claim follows analogously because taking products
of persistence modules is also conservative and limits commute with each other.

In particular, we obtain that if an l.s.c. persistence module has an additive barcode, then
all intervals I appearing in this barcode satisfy I = I. Similarly, if a u.s.c. persistence
module has a multiplicative barcode, then all intervals I in this barcode satisfy I = I.
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Weak isomorphism from sum to product As the last preparatory results, we have the
following.

Proposition 10.2.2. Let (Mα)α∈A be a collection of persistence modules such that their
product

∏︁
α∈AMα is q-tame. Then the canonical map⨁︂

α∈A
Mα →

∏︂
α∈A

Mα

is a weak isomorphism.

Proof. Denote the map above by φ. Clearly, φ has trivial kernel. Thus, it suffices to show
that cokerφ is ephemeral. So let s, t ∈ T with s < t and consider the diagram(︄ ⨁︁

α∈A
Mα

)︄
t

(︄ ∏︁
α∈A

Mα

)︄
t

cokerφt

(︄ ⨁︁
α∈A

Mα

)︄
s

(︄ ∏︁
α∈A

Mα

)︄
s

cokerφs,

φt pt

φs

σs,t

ps

πs,t γs,t

where we added some shorthand notation for the structure maps of the persistence modules
we consider. We need to check that γs,t = 0. Since ps is epi, it is enough to show γs,t ◦ps = 0.
Commutativity of the above diagram implies that

γs,t ◦ ps = pt ◦ πs,t.

Note that pt ◦ φt = 0, so we are done if we can show that πs,t factors through φt. To see
that this is the case, we factor σs,t and πs,t through their images to obtain a diagram

(︄ ⨁︁
α∈A

Mα

)︄
t

(︄ ∏︁
α∈A

Mα

)︄
t

im σs,t im πs,t

(︄ ⨁︁
α∈A

Mα

)︄
s

(︄ ∏︁
α∈A

Mα

)︄
s

.

φt

ψs,t

φs

We can canonically identify
im σs,t ∼=

⨁︂
α∈A

im(Mα)s,t

and
im πs,t ∼=

∏︂
α∈A

im(Mα)s,t.

From commutativity of the previous diagram, it is easy to see that under this identification
ψs,t is simply the canonical inclusion of the direct sum into the product. But here, this
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map is an isomorphism since im πs,t is finite-dimensional by our q-tameness assumption.
Thus, we can invert ψs,t, yielding a factorization of πs,t as(︄ ∏︁

α∈A
Mα

)︄
s

im πs,t im σs,t

(︄ ⨁︁
α∈A

Mα

)︄
t

(︄ ∏︁
α∈A

Mα

)︄
t

.
ψ−1

s,t φt

As explained above, this finishes the proof.

10.2.2. Structural results for semi-continuous q-tame persistence modules
We are now ready to prove the main results of this chapter. While not explicitly stated
by Chazal et al., the next result is an immediate corollary of the fact that radicals of
q-tame persistence modules have barcodes under appropriate assumptions on the index set.
[CCdS16, Corollary 3.6.].

Theorem 10.2.3. Let T be a dense totally ordered set such that every interval in T has
a countable coinitial subset. Then every q-tame lower semi-continuous persistence module
indexed by T has a barcode.

Proof. By definition, a persistence module M is lower semi-continuous if the canonical
morphism M →M is an isomorphism. In particular, a lower semi-continuous persistence
module is isomorphic to its radical. Thus, the claim is an immediate consequence of
Theorem 10.1.2.

Our main contribution of this chapter is the following.

Theorem 10.2.4. Let T be a dense totally ordered set such that every interval in T has a
countable coinitial subset. Then for every q-tame upper semi-continuous persistence module
M indexed by T there exists a collection of intervals (Iα)α∈A, unique up to reordering, such
that

M ∼=
∏︂
α∈A

C(Iα).

Proof. Under our assumptions, radM has a barcode by Theorem 10.1.2, say (Iα)α∈A. We
claim that M is isomorphic to the product over the interval modules C(Iα).

First, we have
M ∼= M

since we assume M to be u.s.c. Since the canonical map radM →M is a weak isomorphism
(as a consequence of [CCdS16, Proposition 2.11.]), Lemma 10.1.10 implies

M ∼= radM.

Recall that (−) is a functor, so

radM ∼=
⨁︂
α∈A

C(Iα)

because the barcode of radM is given by the Iα. The inclusion of the direct sum into the
product is a weak isomorphism in the q-tame case (Proposition 10.2.2), so Lemma 10.1.10
implies ⨁︂

α∈A
C(Iα) ∼=

∏︂
α∈A

C(Iα).
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Since limits commute with products we also get∏︂
α∈A

C(Iα) ∼=
∏︂
α∈A

C(Iα).

We have C(Iα) ∼= C(Iα) by Lemma 10.1.6, so that∏︂
α∈A

C(Iα) ∼=
∏︂
α∈A

C(Iα).

Putting everything together yields that M is indeed isomorphic to the product over the
C(Iα).

The uniqueness part of the statement essentially follows by reversing the above argument.
Suppose (Jβ)β∈B are also intervals such that

M ∼=
∏︂
β∈B

C(Jβ).

We want to prove that (Jβ)β∈B and (Iα)α∈A agree up to reordering. Note that this in
particular implies that each Iα is non-empty. Since M ∼=

∏︁
β C(Jβ) is u.s.c. each factor

C(Jβ) must be u.s.c. as well by Lemma 10.2.1. Together with Lemma 10.1.7 this yields

Jβ = Jβ.

Thus, by Lemma 10.1.8 we get that rad Jβ is non-empty and consequently an interval for
all β. Next, we will show that (rad Jβ)β∈B is a barcode for radM : Consider

radM ∼= rad
∏︂
β∈B

C(Jβ) = im

⎛⎝∏︂
β∈B

C(Jβ)→
∏︂
β∈B

C(Jβ)

⎞⎠ .
Recall that the inclusion of the direct sum into the product is a weak isomorphism in our
case, so together with Lemma 10.1.9 we obtain that

im

⎛⎝∏︂
β∈B

C(Jβ)→
∏︂
β∈B

C(Jβ)

⎞⎠ ∼= im

⎛⎝⨁︂
β∈B

C(Jβ)→
∏︂
β∈B

C(Jβ)

⎞⎠ ,
where the map on the right is equal to the composition of the natural map⨁︂

β∈B
C(Jβ)→

⨁︂
β∈B

C(Jβ)

and the inclusion
⨁︁

β∈B C(Jβ)→
∏︁
β∈B C(Jβ). Since this inclusion is mono, we get

im

⎛⎝⨁︂
β∈B

C(Jβ)→
∏︂
β∈B

C(Jβ)

⎞⎠ ∼= im

⎛⎝⨁︂
β∈B

C(Jβ)→
⨁︂
β∈B

C(Jβ)

⎞⎠ .
Direct sums and the functor (−) commute. The same is true for direct sums and images,
so we get

im

⎛⎝⨁︂
β∈B

C(Jβ)→
⨁︂
β∈B

C(Jβ)

⎞⎠ ∼= ⨁︂
β∈B

im(C(Jβ)→ C(Jβ)) =
⨁︂
β∈B

radC(Jβ).
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We have radC(Jβ) ∼= C(rad Jβ) by Lemma 10.1.6, so we get⨁︂
β∈B

radC(Jβ) ∼=
⨁︂
β∈B

C(rad Jβ).

In total, we have shown that (rad Jβ)β∈B is indeed a barcode for radM .
Using the Krull–Remak–Schmidt–Azumaya Theorem, we obtain that the two barcodes

(Iα)α∈A and (rad Jβ)β∈B agree up to reordering. This implies that also (Iα)α∈A and
(rad Jβ)β∈B agree up to reordering. Now recall that we have Jβ = Jβ for all β because M
is u.s.c. By Lemma 10.1.8, we get that (rad Jβ)β∈B = (Jβ)β. Thus, (Iα)α∈A and (Jβ)β∈B
agree up to reordering. This finishes the proof.
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