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Abstract
In this thesis, we deal with the Hofer–Zehnder capacity of disc subbundles of twisted tan-
gent bundles. While in the literature for most cases only the finiteness of this capacity is
shown, we use symmetries to determine exact values of the capacity. We therefore restrict
ourselves to a class of homogeneous Kähler manifolds, called Hermitian symmetric spaces.
For these, we construct a symplectomorphism that identifies the twisted tangent bundle,
or at least a neighborhood of the zero section that we can specify explicitly, and the Her-
mitian tangent bundle. The advantage of the Hermitian tangent bundle is that the fibers
are symplectic. This makes it easier to study holomorphic curves, which we use to obtain
an upper bound on the Hofer–Zehnder capacity. We get the lower bound by specifying a
Hamiltonian that generates a circle action. The oscillation of such a Hamiltonian always
yields a lower bound.
We also clarify the relationship between the twisted, respectively Hermitian, symplectic
structure to the hyperkähler structure in a neighborhood of the zero section of the tangent
bundle of a Hermitian symmetric space.

For various reasons, it is much harder to determine the Hofer–Zehnder capacity for stan-
dard tangential bundles than it is for the twisted case. Nevertheless, we were able to
compute the Hofer–Zehnder capacity for the disc subbundle of the standard tangent bun-
dle of the complex projective space CPn and the real projective space RPn. To obtain the
lower bound it is for the former sufficient to consider the kinetic Hamiltonian, i.e. geodesic
flow, while in the second case, geodesic billiards must be used. For the upper bound one
uses the symmetries of the spaces to show that the disc subbundle of the tangent bundles
compactify to the product of two complex projective spaces CPn × CPn in the first case
and the complex projective space CPn in the second case. In these compact symplectic
manifolds one can again study holomorphic spheres in order to construct upper bounds. In
fact, we also show in the twisted case that the disc subbundle of the tangent bundle of the
complex projective space compactifies to the product, but now with differently weighted
factors.

Furthermore, this thesis includes the computation of the Hofer–Zehnder capacity of Hermi-
tian symmetric spaces of compact type. This exploits the fact that Hermitian symmetric
spaces can be represented as coadjoint orbits. In this representation it is relatively easy
to specify a Hamiltonian which generates a semi-free circle action and which attains its
minimum at an isolated point. The oscillation of such a Hamiltonian provides both lower
and upper bounds and thus determines the capacity.
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Zusammenfassung
In dieser Arbeit befassen wir uns mit der Hofer–Zehnder Kapazität von Scheiben-Unterbündeln
getwisteter Einheits-Tangentialbündel. Während in der Literatur in den meisten Fällen nur
die Endlichkeit dieser Kapazität gezeigt wird, nutzen wir Symmetrien aus um genaue Werte
der Kapazität zu bestimmen. Wir beschränken uns daher auf eine Klasse von homogenen
Kähler Mannigfaltigkeiten, die Hermitschen symmetrischen Räume. Für diese konstru-
ieren wir einen Symplektomorphismus zwischen dem getwisteten Tangentialbündel, oder
zumindest einer Umgebung des Nullschnitts die wir genau angeben können, und dem Her-
mitschen Tangentialbündel. Der Vorteil des Hermitschen Tangentialbündel ist, dass die
Fasern symplektisch sind. Dies macht es einfacher holomorphe Kurven zu studieren, welche
wir nutzen um eine obere Schranke für die Hofer–Zehnder Kapazität zu bekommen. Die
untere Schranke erhalten wir, in dem wir einen Hamiltonian angeben, der eine S1-Wirkung
generiert. Die Oszillation eines solchen Hamiltonians liefert stets eine untere Schranke.
Wir klären außerdem die Beziehung der getwisteten und der Hermitschen symplektischen
Struktur zu der hyperkähler Struktur in einer Umgebung des Nullschnitts des Tangential-
bündles eines Hermitschen symmetrischen Raums.

Die Berechnung der Hofer–Zehnder Kapazität von standard Tangentialbündeln ist aus ver-
schiedenen Gründen deutlich schwieriger, als für den getwisteten Fall. In dieser Arbeit kon-
nte dennoch die Hofer–Zehnder Kapazität des Scheiben-Unterbündels des standard Tan-
gentialbündels des komplex-projektiven Raums CPn und des reel-projektiven Raums RPn

berechnet werden. Für ersteren genügt es als untere Schranke den kinetischen Hamilto-
nian, also geodätischen Fluss, zu betrachten, während im zweiten Fall geodätische Billards
genutzt werden müssen. Für die obere Schranke nutzt man in beiden Fällen die Symme-
trien der Räume um zu zeigen, dass die Scheiben-Unterbündel des Tangentialbündel zum
Produkt zweier komplex-projektiver Räume CPn × CPn im ersten Fall und zum komplex-
projektiven Raum CPn im zweiten Fall kompaktifizieren. In diesen kompakten Räumen
kann man dann wieder holomorphe Sphären studieren um obere Schranken zu konstru-
ieren. Tatsächlich zeigen wir auch im getwisteten Fall, dass das Scheiben-Unterbündel
des Tangentialbündel des komplex projektiven Raums zum Produkt kompaktifiziert, jetzt
allerdings mit unterschiedlich gewichteten Faktoren.

Desweiteren beinhaltet diese Arbeit die Berechnung der Hofer–Zehnder Kapazität kom-
pakter Hermitscher symmetrischer Räume von kompaktem Typ. Diese nutzt aus, dass
Hermitsche symmetrische Räume als koadjungierte Orbits dargestellt werden können. In
dieser Darstellung lässt sich relativ einfach ein Hamiltonian angeben der eine halb freie
S1-Wirkung generiert und der sein Minimum an einem isolierten Punkt annimmt. Die
Oszillation eines solchen Hamiltonians liefert sowohl untere als auch obere Schranke und
bestimmt somit die Kapazität.
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1. Introduction

(Hofer–Zehnder) capacity:

Symplectic capacities are symplectic invariants that measure the size of a symplectic man-
ifold (W,ω). They arose as obstructions for symplectic embeddings, first discovered by
Gromov in 1985 with his famous non-squeezing theorem [22]. Two examples for symplectic
capacities are the Gromov width cG and the Hofer–Zehnder capacity cHZ . We postpone
their precise definitions to section 3.1, but roughly speaking the first is determined by the
largest open ball (BR(0), ω0) one can symplectically embed into (W,ω) and the second is
the number c so that every Hamiltonian with oscillation bigger than c has a fast1 non-
constant periodic orbit. The Gromov width takes a special position among capacities, as it
is the smallest. In particular it yields a lower bound to all other symplectic capacities. It
is therefore an interesting question to investigate whether other capacities agree with the
Gromov width and when they differ. For example Gromov [22] resp. Hofer–Viterbo [26]
determined

cG(CPn, ωF S) = π resp. cHZ(CPn, ωF S) = π,

while Gromov [22] (also [41, Ex. 12.1.6]) resp. Lu [37] found

cG(CPn × CPn, ωF S ⊕ ωF S) = π resp. cHZ(CPn × CPn, ωF S ⊕ ωF S) = 2π,

where ωF S denotes the Fubini-Study form normalized such that on the generator of
H2(CPn,Z) it takes value π. Note here that capacities are in general very hard to compute
and mainly known in examples, but knowledge of their values yield important information
about the symplectic manifold. For example even finiteness of the Hofer–Zehnder capac-
ity has drastic implications on the Hamiltonian dynamics possible on (W,ω). Indeed as
proven by Hofer, Zehnder [27, Ch. 4.4, Thm.2] (and strengthened by Macarini, Schlenk
[38]) finiteness implies existence of periodic orbits on almost all compact energy hypersur-
faces.

A standard class of examples for symplectic manifolds are cotangent bundles (T ∗M, dλ),
where

λ : T ∗M → R; (q, p) 7→ p(q)

is the canonical one form. This class of symplectic manifolds is of special interest in physics
as it describes the phase space of a constraint system with configuration space M . Fixing
a Riemann metric g on M we can identify cotangent bundle and tangent bundle. We write
DρM := {(x, v) ∈ TM | gx(v, v) < ρ2} for the open disc-subbundle of radius ρ ∈ R>0.
Using the fact that the Hamiltonian vector field of the kinetic energy function

E : TM → R (x, v) 7→ 1
2gx(v, v)

1Fast means of period T < 1.

1



1. Introduction

generates the geodesic flow, one can show that a lower bound for the Hofer–Zehnder ca-
pacity of (D1M,dλ) is the length of the shortest geodesic. An important result by Weber
[49] shows that for closed M and a non-zero class ν ∈ π1(M), the Hofer-Zehnder capac-
ity relative to the zero section cν

HZ(D1M,M,dλ)2 is given by the length of the shortest
geodesic in the class ν ∈ π1(M). For non-aspherical, homogeneous spaces the result was
extended to the class of contractible loops (ν = 0) by Benedetti and Kang [5]. There is no
reason to expect these theorems to hold for the non-relative capacity, as cHZ(D1M,M,dλ)
is computed using Hamiltonians constant along the zero section. Indeed for the flat torus
Tn ∼= Rn/Zn the Hofer–Zehnder capacity is twice the length of the shortest geodesic [27,
Ch.4.4, Prop. 4].

There are some further results concerning finiteness of the Hofer–Zehnder capacity. For
example the Hofer–Zehnder capacity of a standard disc-bundle over a closed manifold is
finite, if the base manifold carries a circle action with non-contractible orbits [29] or if M is
rationally inessential [18] or if M if the Hurewicz map π2(M) → H2(M,Z) is non zero [2].
All these results rely on the observation by Irie [29, Cor. 3.5] that vanishing of symplectic
homology implies finiteness of the Hofer–Zehnder capacity. Viterbo’s isomorphism identi-
fies symplectic homology with the homology of the free loop space. Albers, Frauenfelder
and Oancea showed in [2] that the homology of the free loop spaces vanishes if one uses
coefficients twisted by a not weakly exact, closed two form σ ∈ Ω2(M). Groman and Merry
[21] establish an isomorphism between this homology of the free loop space with twisted
coefficients and symplectic homology of the twisted tangent bundle (TM, dλ− π∗σ) where
π : TM → M denotes the foot point projection. Thus combined with Albers–Frauenfelder–
Oancea and Irie they prove finiteness of the Hofer–Zehnder capacity of all disc-bundles with
symplectic structure twisted by a not weakly exact two form,

c0
HZ(DρM,dλ− π∗σ) < ∞.

Another strategy of bounding the Hofer–Zehnder (or any other) capacity is to study embed-
dings into manifolds where the capacity is known. For example if M sits as a Lagrangian in
a symplectic manifold (W,ω) of finite Hofer–Zehnder capacity, then by Lagrangian neigh-
borhood theorem also a small disc bundle (DεM ; dλ) sits inside (W,ω). As scaling of fiber
only scales the symplectic form finiteness of the capacity follows for all radii. Similarly for
all symplectic submanifolds a neighborhood looks like symplectic normal bundle. Lu [36]
proved, that all symplectic vector bundles (over symplectic manifolds) have finite Hofer–
Zehnder capacity. In particular a neighborhood of the zero section of the symplectically
twisted tangent bundle (TM, dλ−π∗σ) has finite Hofer–Zehnder capacity, but the twist de-
stroys the scaling property, thus not even the finiteness result continues to hold for all radii.

Results of this thesis

The idea of this thesis is to use symmetries of the base manifold to construct such embed-
dings and normal forms explicitly. This will give explicit bounds for the Hofer–Zehnder
capacity. We will consider the case where (M, g, σ) is a (locally) Hermitian symmetric
space. These are homogenous Kähler manifolds, i.e. g is a Riemannian metric and there

2For some class ν ∈ π1(M) one defines cν
HZ by considering only periodic orbits in class ν. In particular

cHZ ≤ cν
HZ for all ν ∈ π1(M). The precise definition is in Section 3.1.

2



exists an integrable complex structure j such that g(j·, ·) = σ(·, ·). Further one can identify
M = G/K for some Lie group G and a compact subgroup K. Both the metric g and the
symplectic form σ are invariant under G. In particular the induced action of G on TM is
preserves the twisted symplectic structure

ωs := dλ− sπ∗σ,

where we included an additional parameter s > 0. We will see that the action is not only
symplectic, but Hamiltonian.

Irreducible Hermitian symmetric spaces come in two types, compact and non-compact.
Hermitian symmetric spaces of compact resp. non-compact type have non-negative resp.
non-positive holomorphic bisectional curvature. Their tangent bundles therefore carry the
structure of negative resp. positive vector bundles. Negative vector bundles globally admit
a symplectic structure with symplectic fibers, that restricted to the zero section agrees
with the symplectic structure of the base. We denote this symplectic structure by

dτ/2 − sπ∗σ.

For positive vector bundles this closed two form is only non-degenerate on the neighborhood
of the zero section

U2sM := {(x, v) ∈ TM | |gx(jRjv,vw,w)| < 2|s|∥w∥2 ∀w ∈ TxM},

where the holomorphic bisectional curvature is uniformly bounded from below by 2|s|.
Observe that a priori this symplectic structure is fairly different from the twisted sym-
plectic structure as the fibers are Lagrangian for ωs. By the symplectic neighborhood
theorem there must be a small neighborhood of the zero section, where the two symplectic
forms dλ − sπ∗σ and dτ/2 − sπ∗σ can be identified. Our main theorem states that this
symplectomorphism actually exists globally.

Theorem A. Let M be an irreducible Hermitian symmetric space of compact type, then
there exists an G-equivariant symplectomorphism

Ψ : (TM, dλ− sπ∗σ) → (TM, dτ/2 − sπ∗σ).

If M is of non-compact type, then there exists an equivariant symplectomorphism

Ψ : (Us2M,dλ− sπ∗σ) → (U2sM, dτ/2 − sπ∗σ).

Further the symplectomorphisms intertwine the moment maps of the Hamiltonian G-actions.

This symplectomorphism can be used to compute the Hofer-Zehnder capacity for suitable
subsets of the the twisted tangent bundle (TM,ωs). Indeed Lu [36] shows, that the Hofer-
Zehnder capacity of disc-subbundle of symplectic vector bundles is given by the symplectic
area of the fiber class. Now our symplectomorphism does not map disc-bundles to disc-
bundles. We can therefore only give bounds for the capacity of (DρM,ωs).

Theorem B. Let (M, g, σ) be isometrically covered by an irreducible Hermitian symmetric
space of rank r, then

2π
κ

(√
s2 + κρ2/r − s

)
≤ cHZ(DρM,ωs) ≤ c0

HZ(DρM,ωs) ≤ 2πr
κ

(
√
s2 + κρ2 − s)

3



1. Introduction

for any constants s, ρ > 0 satisfying s2 + κρ2 > 0. Here, κ denotes the maximal resp.
minimal holomorphic sectional curvature.

Observe that in the rank one case upper and lower bound agree and thus determine the
precise value

cHZ(DρM,ωs) = c0
HZ(DρM,ωs) = 2π

κ
(
√
s2 + κρ2 − s)

as long as s2 + κρ2 > 0.

As discovered independently by Feix [16] and Kaledin [31] there also exists a hyperkäh-
ler structure in a neighborhood of the zero section of any real-analytic Kähler manifold
(M, g, j). A hyperkähler structure on a manifold consists of three symplectic forms com-
patible with the same metric, such that the corresponding complex structures satisfy the
quaternionic commutator relations. In the case of a tangent bundle two of the three sym-
plectic forms are the canonical symplectic structure dλ and its pullback via the complex
structure j∗dλ. For the last symplectic form denoted by ωI , the fibers and the zero sec-
tion of the tangent bundle are symplectic. More precisely restricted to the zero section it
coincides with the Kähler form σ of M . We show that there is also a symplectomorphism
identifying −ωI with dλ− π∗σ.

Theorem C. If M is a Hermitian symmetric space of compact type there are G-equivariant
symplectomorphisms identifying

(TM, dλ− π∗σ) ∼= (TM,−ωI) ∼= (TM, dτ/2 − π∗σ).

If M is a Hermitian symmetric space of non-compact type, then

(Us2M, dλ− π∗σ) ∼= (Us2M,−ωI) ∼= (U2sM,dτ/2 − π∗σ).

In total we relate the following three symplectic structures on the tangent bundle of a
locally Hermitian symmetric space:

1. The symplectically twisted symplectic structure (TM, dλ − π∗σ) below the Mané
critical value.

2. The symplectic structure (TM, dτ/2 − π∗σ) induced by the Hermitian curvature
in a neighborhood of the zero section determined by the holomorphic bisectional
curvature.

3. The hyperkähler structure on a neighborhood of the zero section discovered by Feix
and Kaledin.

Non of these symplectic identifications work if the magnetic twist vanishes. A first step
into the direction of the untwisted case might be the last chapter, where we consider the
space CPn, but potentially one can generalize this to other Hermitian symmetric spaces.
We normalize the Fubini–Study metric so that all geodesics have length 2π. This implies
that the Fubini–Study form takes the value 4π on the generator [CP1] ∈ H2(CPn,Z).

4



Theorem D. There is a symplectomorphism, which is equivariant with respect to the
Hamiltonian SU(n+ 1)-actions,

F : (DρCPn, ωs) → (CPn × CPn \ ∆̄, R1σ ⊖R2σ),

where ∆̄ ⊂ CPn × CPn denotes the anti-diagonal divisor

∆̄ = {(p, q) ∈ CPn × CPn | dist(p, q) maximal}

and R1, R2 are determined by

s = R2 −R1, ρ = 2
√
R1R2.

Further
(D1CPn, dλ− sπ∗σ) ∼= (CPn × CPn \ ∆̄, R1σ ⊖R2σ),

where (D1CPn,dλ− sπ∗σ) denotes the symplectic compactification of the disc-bundle using
a Lerman cut with respect to the Hamiltonian circle action given by the reparametrized
magnetic geodesic flow.

Indeed this symplectomorphism also holds for s = 0 and we can use it to determine the
Hofer–Zehnder capacity.

Corollary A. Equip CPn with the Fubini–Study metric, then

cHZ(D1CPn, dλ) = l,

where l denotes the length of the geodesics.

The case s = 0 of the above symplectomorphism can be interpreted as compact complex-
ification of CPn. On the other hand there is also a real form of CPn namely RPn. In
[1] Adaloglou showed a symplectic version of the fact that the disc subbundle of TRP2

compactifies to CP2. We generalize this to all dimensions.

Theorem E. There is an SO(n+ 1)-equivariant symplectomorphism

F : (D1/2RPn, dλ) → (CPn \Qn−1, σ),

where Qn−1 denotes the quadric

Qn−1 := {[z0 : . . . : zn] | z2
0 + . . .+ z2

n = 0} ⊂ CPn.

Further
(D1/2RPn,dλ) ∼= (CPn, σ),

where (D1/2RPn, dλ) denotes the symplectic compactification of the disc-bundle using a
Lerman cut with respect to the Hamiltonian circle action given by geodesic flow.

As corollary we obtain bounds on the Hofer–Zehnder capacity of the standard unit disc
bundle over RPn.

Theorem F. Equip RPn with the constant curvature metric, then

cHZ(D1RPn,dλ) = 2l,

where l denotes the length of the geodesics.

5



1. Introduction

Corollary A and Theorem F are particularly interesting when comparing them to the re-
sults from Weber [49, Thm A] and Benedetti and Kang [5, Cor. 2.8], where they showed
that the Hofer–Zehnder capacity relative to the zero section is the length of the shortest
geodesic. Observe that this means that for CPn relative and absolute agree, while for RPn

they differ by a factor of two.

In some situations one does not need to exploit all the symmetries of a manifold. Al-
ready the existence of a Hamiltonian circle action yields quite some information about a
symplectic manifold. For symplectic manifolds with Hamiltonian circle action there are
fairly good techniques to bound the Gromov width and the Hofer–Zehnder capacity. This
was already recognised by Hwang and Suh [28], where they compute Gromov-width and
Hofer–Zehnder capacity of closed Fano symplectic manifolds with a semifree Hamiltonian
circle action with isolated maximum. Indeed the oscillation of the moment map ν : M → R
of the circle action yields a lower bound for the Hofer–Zehnder capacity. If in addition the
maximum (or minimum) is isolated, the difference max(ν) − smax(ν) bounds the Gromov
width from below. Here smax(ν) denotes the value of ν at the second highest critical
set. On the other hand Tolman and McDuff studied the theory of pseudoholomorphic
curves in symplectic manifolds with Hamiltonian circle actions intensively. They proved
a localization principle which allows to count only S1-invariant pseudoholomorphic curves
when computing Gromov–Witten invariants. This makes it easier (or possible) to compute
them in some cases we are considering. One can then use the idea of Hofer–Viterbo [26]
that was generalized by Lu [37] to bound the Gromov width and the Hofer–Zehnder ca-
pacity from above by the symplectic area of a homology class A ∈ H2(M,Z) that admits
a non-vanishing 1-point \2-point Gromov–Witten invariant. In this way we compute the
Hofer–Zehnder capacity of all (irreducible) Hermitian symmetric spaces of compact type.

Theorem G. Let (M,σ) be an irreducible Hermitian symmetric space normalized so that
σ(A) = 4π for the generator A ∈ H2(M,Z). Then

cHZ(M,σ) = 4πr.

Similarly we can also determine the Gromov width. This was already done by Loi, Mossa
and Zuddas [35], but our prove only uses a Hamiltonian circle action and no additional
structure.

Outline of this thesis

Chapter 2 introduces notations and concepts needed for the other chapters. We start
by recalling the geometry of tangent bundles. In particular the precise definitions of all
symplectic structures appearing in Theorems B and C are given. Then we present a short
introduction to magnetic systems and the definition of the Mañé’s critical value. Lastly, we
introduce the manifolds we shall work with, Hermitian symmetric spaces. Particularly the
representation of Hermitian symmetric spaces as coadjoint orbits will be extremely helpful
later on.

Chapter 3 introduces the notion of symplectic capacities and especially the Hofer–Zehnder
capacity. In order to find upper bounds to this capacity we will need to work with pseu-
doholomorphic curves. Thus we recap very roughly this theory in order to state a theorem
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by Hofer–Viterbo [26] and a generalization by Lu [37] that yield an upper bound to the
Hofer–Zehnder capacity in terms of non-vanishing Gromov–Witten invariants.

Chapter 4 contains the proofs of Theorem G and a special case of Theorem B. Both
proofs use the existence of a Hamiltonian circle action. Indeed as recalled in the first part
of Chapter 4 a lower bound of the Hofer–Zehnder capacity of such manifolds is often given
by the oscillation of the moment map. Further we state results by McDuff and Tolman
[42] that help computing Gromov-Witten in this setup. In section 4.2 we prove Theo-
rem B for surfaces of constant curvature using the fact that the magnetic geodesic flow
is totally periodic. In particular we do not need to use the symplectomorphism in Theo-
rem A. Sadly this fairly elegant argument is very four dimensional, thus can not be used
for the general case. Section 4.3 contains the proof of Theorem G. The Hamiltonian circle
action is obtained from the presentation of Hermitian symmetric spaces as coadjoint orbits.

Chapter 5 contains the proofs of Theorem A, B and C. The first section is merely an
introduction, but also the proof of Theorem A in the euclidean case. The following three
sections contain different proofs of Theorem A increasing in generality. The first proof is
for surfaces of constant curvature and uses that in dimension four there exists a global
frame of T (TM \ 0T M ). The second proof is for spaces of constant holomorphic sectional
curvature (rank 1 Hermitian symmetric spaces) and uses that in this case one can explicitly
compute the differential of Ψ using Jacobi fields. The last (of the three) section contains
the full proof of Theorem A. It uses strongly the interpretation of Hermitian symmetric
spaces as coadjoint orbits. In section 5.5 we deduce Theorem B from A. Theorem C is then
analogously proven in section 5.6.

Chapter 6 contains the proofs of Theorem E and Theorem D. Both proofs use the pre-
sentation of the complex projective space as coadjoint orbit. The symplectomorphisms
are mostly determined by setting the moment maps of the Hamiltonian U(n + 1)- resp.
SO(n + 1)-actions equal. From Theorems E and D the Corollary A and Theorem F are
deduced.

Chapter 7 contains an outlook and presents some partial results that are not fully proven
yet. In the beginning of the chapter we present a table with precise values of the Hofer–
Zehnder capacity of disc sub bundles of twisted tangent bundles that where determined
in this thesis or where known before. The rest of the chapter gives an outlook on how to
complete the table of values for the Hofer–Zehnder capacity further.
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2. Preliminaries I: Differential geometry

2.1. Geometry of tangent bundles
In this section we recall the elements of [23] that are relevant for our work. Some cal-
culations are adapted as all calculations in [23] were done for the Levi-Civita but work
analogously for other connections. For general connections another source is [14]. Let
(M,σ) be a symplectic manifold and denote by π : TM → M the tangent bundle. The
kernel of the differential dπ : TTM → TM defines a distribution in V ⊂ TTM , called
vertical distribution. Choose a compatible almost complex j on M and denote the associ-
ated metric by g. The almost complex structure is in general not integrable still it turns
the tangent bundle into a complex vector bundle. If we pick as connection the following
modification

∇̃XY := ∇XY − 1
2j(∇Xj)Y

of the Levi-Civita connection ∇, we turn the tangent bundle into a Hermitian vector
bundle. Indeed ∇̃g = 0 and ∇̃j = 0, but the new connection ∇̃ is not torsion free
in general. Its torsion is precisely the Nijenhuis-tensor. This connection determines a
complement H ⊂ TTM called horizontal distribution, i.e.

TTM = H ⊕ V.

Both V(x,v) and H(x,v) are as vector spaces isomorphic to TxM . In particular we can lift
vectors in TxM and also vector fields on TM horizontally and vertically.

Definition 2.1.1 (Horizontal & vertical lift). Let (x, v) ∈ TM . Any tangent vector w ∈
TxM can be lifted horizontally (vertically) to a vector in H(x,v) (V(x,v)). Explicitly the
horizontal lift is defined by

w 7→ wH := d
dt
∣∣∣
t=0

(γ(t), Pγv)

where γ : (−ε, ε) ⊂ R → M is a smooth curve satisfying γ(0) = x and γ̇(0) = w and Pγ

denotes parallel transport along γ. The vertical lift is defined by

w 7→ wV := d
dt
∣∣∣
t=0

(x, v + tw).

The following proposition gives the commutator relations for vertical and horizontal lifts
of vector fields.

Proposition 2.1.2 ([14], Lemma 2).
Let X and Y be vector fields on M , then their lifts satisfy the following commutator rela-
tions

(i) [XV , Y V ] = 0

9



2. Preliminaries I: Differential geometry

(ii) [XH, Y V ] = (∇̃XY )V

(iii) [XH, Y H] = [X,Y ]H − (R(X,Y )v)V

Here R denotes the Riemannian curvature tensor of the Hermitian connection ∇̃.

We can define four vector fields

X(x,v) := vH

H(x,v) := (jv)H

Y(x,v) := vV

V(x,v) := (jv)V

Observe that these are not lifts of vector fields on the base, but locally can be written as
linear combinations of those. For example

X(x,v) = vi∂H
i ,

for some local frame (∂1, . . . , ∂2n) of TM . Using Proposition 2.1.2 one can compute their
commutators.

Proposition 2.1.3.

[V,X] = H, [V,H] = −X, [V, Y ] = 0, [Y,X] = X, [Y,H] = H,

and
[X,H](x,v) = (R(v, jv)v)V .

These vector fields are non-zero and linearly independent outside the zero-section. To
obtain a dual description on the cotangent bundle in terms of dual one forms we need to
choose a metric on TM . For this we pick the Sasaki-metric ĝ. This is the metric that takes
the form g ⊕ g with respect to the splitting H ⊕ V in horizontal and vertical. It turns out
that the one-forms dual to X,Y,H, V are no strangers.

Lemma 2.1.4. The one forms that are via the Sasaki-metric dual to X,H, Y, V respectively
are

• λ the (metric pullback) of the canonical 1-form on T ∗M ,

• j∗λ = the pullback of λ via j : TM → TM ,

• dE where E(x, v) = 1
2gx(v, v) is the kinetic energy.

• dcE = dE ◦ I where I = j ⊖ j is an almost complex structure on TM.

Proof. Clearly
ιX ĝ(·) = ĝ(X, ·) = g(v,dπ·) = λ(·).

Similarly
ιH ĝ(·) = ĝ(H, ·) = g(jv, dπ·) = g(jv, dπdj·) = λ(dj·) = j∗λ(·),

10



2.1. Geometry of tangent bundles

where we used that dπdj = dπ as j is a bundle map lifting the identity. The third one is
maybe the most tricky. First observe that dE vanishes on H as for every w ∈ TxM we find

dE(wH)(x,v) = d
dt
∣∣∣
t=0

E(γ(t), Pγv(t)) = 1
2

d
dt
∣∣∣
t=0

gγ(t)(Pγv(t), Pγv(t)) = 0

because ∇̃g = 0. Further

dE(wV) = d
dt
∣∣∣
t=0

E(x, v + tw) = 1
2

d
dt
∣∣∣
t=0

gx(v + tw, v + tw) = gx(v, w)

and we conclude ĝ(Y, ·) = dE. Finally

ιV ĝ(·) = ĝ(V, ·) = g(jv,PV ·) = −g(v, jPV ·) = g(v,PVI·) = dE ◦ I(·),

where PV denotes projection to the vertical subspace.

We shall call the dual of V the angular form, as it is dual to the vector field that generates
rotation ejt : TxM → TxM in the fibers, and denote it by τ := ιV ĝ. Using the commutator
relations in Proposition 2.1.2 we can compute the exterior derivatives of λ and τ .

Proposition 2.1.5. We write the 2-forms in matrix representation with respect to the
splitting of TTM = H ⊕ V. So the upper left entry eats two horizontal vectors, the upper
right a horizontal and a vertical and so on. In this representation the exterior derivatives
of λ and τ are given as

dλ =
(
g(v, T (·, ·)) −g

g 0

)
, dτ =

(
g(jv,R(·, ·)v) 0

0 2σ

)

Here T and R denote respectively torsion and curvature of ∇̃.

Proof. We first prove two identities that will be useful. Let A,B be any vector fields on
M , then

AV(g(v,B))(x) = d
dt
∣∣∣
t=0

gx(v + tAx, Bx) = gx(Ax, Bx).

Further
AH(g(v,B))(x) = d

dt
∣∣∣
t=0

gx(t)(Pxv(t), Bx(t)) = gx(v, (∇̃AB)x),

where x(t) ∈ M is an integral curve of A, i.e. ẋ = A and Pxv(t) denotes the parallel
transport of v ∈ Tx(0)M along x(t) with respect to the Hermitian connection ∇̃. In total
we find

AV(g(v,B)) = g(A,B), AH(g(v,B)) = g(v, ∇̃AB).

Similarly also

AV(g(jv,B)) = g(jA,B), AH(g(jv,B)) = g(jv, ∇̃AB)

holds. We can now compute dλ using Proposition 2.1.2 and the formula for the differential
of a 1-form

dλ(Â, B̂) = Âλ(B̂)) − B̂(λ(Â)) − λ([Â, B̂])

11
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for any vector fields Â, B̂ on TM . Now

dλ(AV , BV) = AV(λ(BV)) −BV(λ(AV)) − λ([AV , BV ]) = 0
dλ(AV , BH) = AV(λ(BH)) −BH(λ(AV)) − λ([AV , BH]) = AV(g(v,B)) = g(A,B)
dλ(AH, BH) = AH(λ(BH)) −BH(λ(AH)) − λ([AH, BH])

= AH(g(v,B)) −BH(g(v,A)) − λ([A,B]H)
= g(v, ∇̃AB) − g(v, ∇̃BA) − g(v, [A,B]) = g(v, T (A,B)).

Similarly we can also compute dτ

dτ(AV , BV) = AV(τ(BV)) −BV(τ(AV)) − τ([AV , BV ])
= AV(g(jv,B)) −BV(g(jv, A)) = g(jA,B) − g(jB,A) = 2σ(A,B)

dτ(AV , BH) = AV(τ(BH)) −BH(τ(AV)) − τ([AV , BH])
= −BH(g(jv, A)) + τ((∇̃BA)V) = −g(jv, ∇̃BA) + g(jv, ∇̃BA) = 0

dτ(AH, BH) = AH(τ(BH)) −BH(τ(AH)) − τ([AH, BH])
= τ((R(A,B)v)V) = g(jv,R(A,B)v).

Observe that dτ is not symplectic as it is degenerate on the zero-section. But we can add
the pullback of σ to make it non-degenerate at least in a neighborhood of the zero-section.
Lemma 2.1.6. For any real number s > 0 the closed two-form

dτ/2 − sπ∗σ (2.1)

is non-degenerate and thus symplectic in the neighborhood of the zero-section

U2sM := {(x, v) ∈ TM | g(jv,R(w, jw)v) ≤ 2sσ(w, jw) = 2s∥w∥2 ∀w ∈ TxM} (2.2)

determined by the holomorphic bisectional curvature.

2.1.1. Hyperkähler structure
We will now have a closer look at the tangent bundle of Kähler manifolds. Denote by
η := j∗λ. In view of Proposition 2.1.5, we see that on the tangent bundle of a Kähler
manifolds two symplectic structures naturally arise, namely

dλ ≡
(

0 −g
g 0

)
and dη ≡

(
0 σ
σ 0

)
the blocks of the matrices represent the splitting into horizontal and vertical coordinates.
The torsion term vanishes for an integrable almost complex structure. One reasonable
question is, do they belong to a hyperkähler structure?
Definition 2.1.7 ([11] Hyperkähler Structure).
A hyperkähler manifold is a Riemannian manifold (N,G) endowed with three complex
structures I, J and K compatible with G, i.e. the forms ωI(·, ·) := G(I·, ·), ωJ(·, ·) :=
G(J ·, ·) and ωK(·, ·) := G(K·, ·) are closed and thus symplectic. Further I, J and K,
considered as endomorphisms of the real tangent bundle, satisfy the relation I◦J = −J◦I =
K.
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Actually the integrability condition on the almost complex structures I, J and K in the
definition is redundant by the following proposition.

Proposition 2.1.8 ([25], Thm. 2). A Riemannian manifold (N,G) with two almost com-
plex structures satisfying I ◦J = −J ◦I =: K is hyperkähler if and only if the corresponding
forms ωI , ωJ and ωK are closed.

Any hyperkähler (M, I, J,K,G) manifold also admits a holomorphic symplectic structure
ωc := ωJ + iωK ∈ Ω2,0(M,C) with respect to the complex structure I. The converse is not
true in general.

Assume now that dλ and dη belong to a hyperkähler structure. Then there must be a
metric G on TM and two complex structures J and K such that

dλ(·, J ·) = G(·, ·) = dη(·,K·).

It follows that
dλ(·, JK·) = −dη(·, ·)

and thus the third complex structure is implicitly determined to be

I = JK ≡
(

−j 0
0 j

)
.

This is indeed a complex structure! The proof of integrability of I is given in appendix
A.1. It regards the tangent bundle with a canonic holomorphic symplectic structure

ωc := dλ+ idη ∈ Ω2,0(TM,C).

But if there is also a hyperkähler structure what could G be? A first guess might be the
Sasaki-metric, but sadly with this choice it turns out that ωI = G(I·, ·) is not closed unless
the manifold is flat (see appendix A.2). Nevertheless we can ask if there is a different
metric on the tangent bundle turning it into a hyperkähler manifold. Actually the answer
to this question is yes (for real-analytic Kähler manifolds), at least in a neighborhood of
the zero section as shown by B. Feix [16] and D. Kaledin [31] independently.

Theorem 2.1.9. ([16] Thm. A) Let X be a real-analytic Kähler manifold. Then there
exists a hyperkähler metric in a neighbourhood of the zero section of the cotangent bundle
which is compatible with the canonical holomorphic-symplectic structure.
Furthermore, the S1-action (x, v) → (x, ejtv) rotating the fibers is isometric and the re-
striction of the hyperkähler metric to the zero section induces the original Kähler metric.

We shall explore this theorem for Hermitian symmetric spaces in chapter 5 and recover the
hyperkähler structure explicitly.

2.2. Magnetic systems
In this section we will introduce magnetic systems. All definitions and more details can for
example be found in [4]. Let (M, g) be a Riemannian manifold. Additionally pick a closed
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two form σ ∈ Ω2(M). We will refer to the triple (M, g, σ) as magnetic system. Since σ is
closed we can use it to define a twisted symplectic structure on the tangent bundle

ωσ := dλ− π∗σ.

This indeed defines a symplectic form as ωσ is closed

dωσ = d2λ− dπ∗σ = −π∗dσ = 0

and non-degenerate because it takes the form

ωσ =
(
σ −g
g 0

)

with respect to the splitting TTM = H ⊕ V, where we used the Levi-Civita connection to
define the horizontal distribution.

Definition 2.2.1 (Lorentz force).
The Lorentz force is the bundle map F : TM → TM defined via

gx(Fx(v), w) = σx(v, w).

The Lorentz force determines the Hamiltonian vector field for the kinetic energy with
respect to the twisted symplectic form.

Lemma 2.2.2. ([6] Lemma 6.1) Let E(x, v) := 1
2gx(v, v) denote the kinetic energy. The

Hamiltonian vector field XE is given by

(XE)(x,v) = vH + F (v)V .

If σ = 0, the Lorentz force vanishes and XE = vH, i.e. XE generates the geodesic flow.
For σ ̸= 0 the flow is referred to as magnetic geodesic flow.

In the special case where σ is exact (i.e. σ = dθ for some 1-form θ ∈ Ω1(M)) we can
shift the zero-section to see that the twisted symplectic form is equivalent to the standard
symplectic form. Denote A ∈ X(M) the vector field dual to θ defined via g(A, ·) = θ(·).
Consider the map

LA : TM → TM ; (x, v) 7→ (x, v +Ax).

Then

L∗
A(λ)(x,v) = λ(x,v+Ax)(dLA·) = gx(v+Ax,dπdLA·) = gx(v,dπ·)+gx(Ax,dπ·) = λ(x,v)+π∗θ

where we used dπdLA = dπ as LA is a bundle map. We see that this map maps the twisted
symplectic structure to the standard one. Further the kinetic Hamiltonian transforms as

E(LA(x, v)) = 1
2 |v +A|2 ≡ 1

2 |v|2 +A · v + V (x)

which has the form of an electro-magnetic Hamiltonian for a charge moving in a magnetic
field B ≡ rotA. This is why it is called a magnetic system!
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2.2.1. Mañé’s critical value

In the non-twisted case the geodesic flow on different energy hyper surfaces is conjugated,
this is not the case anymore for magnetic systems. Indeed there are values where the
dynamics on the energy hyper surface changes dramatically. We shall in examples see that
this usually happens at the so called Mañé’s critical value. Our main source for this section
is [12].

Definition 2.2.3. Consider (TM,ωσ) for some closed Riemannian manifold (M, g) and
a closed two form σ ∈ Ω2(M). Denote M̂ the universal cover M . Define

c(M, g, σ) := inf
θ

sup
x∈M̂

Ê(x, gθx),

where Ê is the lift of E, the infimum is taken over primitives of σ̂ and gθ denotes the
metric dual of θ. If σ̂ is not exact, then c(M, g, σ) := ∞ by convention.

Remark 2.2.4. One can use different coverings and different Hamiltonians to define other
Mañé critical values, but in this thesis we will restrict to the the universal cover and the
kinetic Hamiltonian as in the definition above.

The Mañé’s critical value can also be defined in terms of the Lagrangian L̂ the Legendre
dual of Ê,

L̂(x, v) = 1
2 |v|2 − θx(v).

On an absolute continuous curve γ : [0, T ] → M̂ define the action of L̂ as

AL̂(γ) =
∫ T

0
L̂(γ(t), γ̇(t))dt.

Proposition 2.2.5 ([13]). The Mañé critical value satisfies

c(M, g, σ) = inf{k ∈ R : AL̂+k(γ) ≥ 0 for any absolutely continuous closed curve γ}.

Denote by Sk the energy hyper surface {E = k}. It is said to be of virtual contact type, if
σ̂|Ŝk

= dα for a contact form α satisfying

sup
x∈Ŝk

|αx| ≤ C < ∞ and inf
x∈Ŝk

|αx| ≥ ε > 0,

where R is a vector field generating the kernel of dλ.

Lemma 2.2.6 (Lemma 5.1 [12]). For any k > c, the hyper surface Sk is virtually contact.

In particular if the hyper surface is not virtually contact, then we obtain a lower bound
for the Mañé critical value, i.e. k ≤ c.
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2.3. Coadjoint orbits
Coadjoint orbits are a pleasant class of examples for homogeneous symplectic manifolds.
We will later see that also Hermitian symmetric spaces can be realized as coadjoint orbits,
but for now let G be a finite dimensional, real, semisimple Lie group and denote by g its
Lie algebra. All proofs and details of this section can be found in Kirillov’s book [33, Ch. 1].

Adjoint representation:
We denote by Cg the conjugation by g ∈ G, i.e.

Cg : G → G; h 7→ ghg−1.

Then the adjoint representation of G on g is given by

Ad : G → GL(g), g 7→ Adg := (dCg)e.

We further denote the induced adjoint representation of the Lie algebra by

ad : g → End(g); X 7→ adX := (dAd)e(X).

In fact,
adX(Y ) = [X,Y ] ∈ g.

Killing form:
The Killing form is defined as the symmetric bilinear form

B : g × g → R; (X,Y ) 7→ tr(adX ◦ adY ).

It is invariant under Lie algebra automorphisms, in particular under the adjoint action,
and thus adX is skew-symmetric with respect to B for any X ∈ g. Moreover, B is in our
cases non-degenerate as g is semisimple.

Coadjoint representation:
The coadjoint representation of G on the dual Lie algebra g∗ is denoted by

Ad∗ : G → Gl(g∗); g 7→ Ad∗
g.

It is the dual of the adjoint representation and thus implicitly defined via

⟨Ad∗
gF,X⟩ = ⟨F,Adg−1X⟩, ∀F ∈ g∗ ∀X ∈ g,

where ⟨·, ·⟩ : g∗ × g → R denotes the natural pairing. We use non-degeneracy of the Killing
form to identify g∗ ∼= g. It intertwines adjoint and coadjoint action as

⟨Ad∗
gF, Y ⟩ := ⟨F,Adg−1Y ⟩ = B(XF ,Adg−1Y ) = B(AdgXF , Y ),

for any Y ∈ g and F ∈ g∗ with dual XF ∈ g. Hence, we will from now on use adjoint and
coadjoint descriptions interchangeably.

Coadjoint orbits:
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The orbit Op := Ad∗
G(p) ⊂ g∗ of a point p ∈ g∗ under the coadjoint action is called coadjoint

orbit. It can be identified with the homogeneous space G/Gp ,where Gp is the stabilizer of
p, via the isomorphism

Ad∗
g(p) 7→ g ·Gp.

For an element of the Lie-algebra a ∈ g, we define the induced vector field at x ∈ Op as

(a)#
x := d

dt
∣∣∣
t=0

Ad∗
exp tax.

As coadjoint action is transitive on Op, we can represent every vector in TxOp in this way
by an element of g. Using the identification of adjoint and coadjoint orbit via the Killing
form, we obtain the following identifications

(a)#
x = d

dt
∣∣∣
t=0

Adexp tax = [a, x] & TxOp
∼= [g, x].

Kirillov-Kostant-Souriau form:
Coadjoint orbits carry a natural G-invariant symplectic structure, called KKS-form1. At
p ∈ Op it is for a, b ∈ g given by

σp(a#
p , b

#
p ) := −⟨p, [a, b]⟩,

where the natural pairing ⟨·, ·⟩ : g∗ × g → R is extended equivariantly to a symplectic form
on Op. Well-definedness of this definition and non-degeneracy follow from the fact that the
kernel of ⟨p, [·, ·]⟩ : g × g → R is precisely gp, the Lie-algebra of Gp, and invariance under
Gp. Closedness follows from the Jacobi identity. Using the Killing form one can push the
symplectic structure to the adjoint orbit, also denoted by σ, e.g.

σx(a#
x , b

#
x ) := −B(x, [a, b]) ∀x ∈ Op ∀a, b ∈ g.

Moment map:
For a symplectic group action Ψ : G → Symp(N, σ); g 7→ Ψg on a general symplectic
manifold (N,ω), a map µ : N → g∗ is called moment map if

d⟨µ, a⟩ = ιa#ω ∀a ∈ g.

We additionally require µ to be equivariant with respect to the coadjoint action, i.e.

µ(Ψg(x)) = Ad∗
g(µ(x)) ∀x ∈ Op, ∀g ∈ G.

A symplectic action that admits a moment map is called Hamiltonian.

Indeed the obvious symplectic action of G on Op is Hamiltonian and the moment map
is given by the inclusion

µ : Op ↪→ g ∼= g∗.

1KKS stands for Kirillov–Kostant–Souriau.
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Proof. Since the pairing is AdG invariant we have

0 = d
dt
∣∣∣
t=0

B(Adexp tξ1x,Adexp tξ1ξ2) = B([ξ1, x], ξ2) +B(x, [ξ1, ξ2])

= d
dt
∣∣∣
t=0

B(µ(Adexp tξ1x), ξ2) − σx([x, ξ1], [x, ξ2]),

for all x ∈ Op and ξ1, ξ2 ∈ g. From here we immediately see

d⟨µ, ξ⟩ = ιξ#σ ∀ξ ∈ g,

since the (co-)adjoint action is transitive on the orbit.

2.4. Hermitian symmetric spaces
In this section we collect some basic material of Hermitian symmetric spaces. The sources
are mainly [24] and [51]. Our focus lies on the description of Hermitian symmetric spaces
as coadjoint orbits.

2.4.1. Symmetric spaces
Definition 2.4.1. A Riemannian symmetric space is a connected Riemannian manifold
(M, g) with the property that the geodesic reflection at any point is an isometry of M .
Explicitly this means for any point p ∈ M there is an isometry sp : M → M that satisfies

sp(p) = p & (dsp)p = −id.

Symmetric spaces are complete as we can use the geodesic symmetry to extend any geodesic
segment to infinite length. Because M is connected, Hopf-Rinow’s theorem implies that
any two points p and q in M can be joined by a geodesic γ : R → M satisfying γ(0) = p
and γ(t) = q for some t ∈ R. It follows that sγ(t/2)(p) = q thus the connected component
of the identity of the isometry group G = Is0(M) acts transitively. We can realize M as
homogeneous space M = G/K by picking a base point o ∈ M and calling the stabilizer
StabG(o) =: K.

Orthogonal symmetric Lie algebras [24, Ch. V.1]:
The involutive isometry so induces an involution on G via g 7→ so ◦g ◦so and its differential
is a so called Cartan involution θ : g → g. As an involution, it has eigenvalues ±1 and we
split g into the eigenspaces of θ, i.e. g = k ⊕ p such that θ|k = 1, θ|p = −1. Moreover, θ
is a Lie algebra automorphism leaving the Killing-form B invariant. The decomposition is
thus orthogonal with respect to B. Further, being a Lie algebra automorphism implies the
commutator relations

[k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k. (2.3)

The Lie subalgebra k can be identified with the Lie algebra of K, thus is compact. Further
the differential of π : G → M has kernel k and thus induces an identification

dπe|p : p ∼−→ ToM.

The pair (g, θ) is what is called an orthogonal symmetric Lie algebra (short OSLA).
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2.4. Hermitian symmetric spaces

Definition 2.4.2. An orthogonal symmetric Lie algebra (OSLA) is a pair (g, θ) where

• g is a real Lie algebra,

• θ ∈ End(g) such that θ2 = id but θ ̸= id,

• k := E1(θ)2 is compact 3.

Irreducibility [24, Ch. VIII.5]:
A symmetric space M is called irreducible if it does not split as a product M = M1 ×M2
of symmetric spaces M1,M2. Irreducibility can also be seen algebraically.

Definition 2.4.3. An OSLA (g, θ) is irreducible if

• g is semisimple,

• k contains no ideal of g,

• the Lie algebra adg(k) acts irreducibly on p.

Indeed if M is irreducible then so is the associated OSLA.

Duality – compact vs. non-compact type [24, Ch. V.2]:
Irreducible Hermitian symmetric spaces fall into two types (compact and non-compact)
according to their OSLA’s.

Definition 2.4.4. An irreducible OSLA is called of compact type if the Killing form is
negative definite. It is called of non-compact type if the Killing form restricted to p × p is
positive definite.

Indeed, one can show that every irreducible OSLA is either of compact or non-compact
type. These types are dual in the following sense. We consider the complexification gC of
g and the natural complexification θC of θ and define

(g∨, θ∨) := (k ⊕ ip, θC|k+ip).

If (g, θ) is an OSLA of compact type then (g∨, θ∨) is an OSLA of non-compact type and
the other way around [24, Prop. 2.1, Ch. V].

Euclidean type:
In principle there is a third type of symmetric spaces, called Euclidean type. This type
occurs if p is an abelian ideal of g. Indeed all symmetric spaces of Euclidean type can be
isometrically identified with an Euclidean space. Furthermore, every symmetric space M
can be decomposed as a product [24, Prop. 4.2, Ch. V]

M = M0 ×M− ×M+,

where M0 is a Euclidean space and M+, M− are symmetric spaces of the compact and
non-compact type, respectively.

2The eigenspace of θ for the eigenvalue 1.
3A Lie algebra is called compact if its Killing form is negative definite.
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Uniqueness of invariant metric:
Irreducibility also ensures that there is (up to scalar multiple) a unique G-invariant metric,
i.e. any invariant metric is induced by ±λ2B|p×p for some real constant λ ̸= 0 and the
sign chosen such that ±B|p×p is positive definite. In particular the G-invariant metric g
we started with is of this form. To see this assume there was another one. This would
define another K-invariant scalar product ⟨·, ·⟩ on p. Now we define a symmetric operator
S : p → p implicitly via

⟨·, ·⟩ = B|p(S·, ·).
As both scalar products are K-invariant S must commute with all elements of K. Now
S is symmetric and therefore diagonalizable over R. All eigenspaces are K-invariant sub-
spaces, but the action of K on p is irreducible so S must be of the form λ2 ·id for some λ ̸= 0.

Curvature of symmetric spaces [24, Ch. IV.4]:
As the sectional curvature is invariant under isometries it is enough to determine sectional
curvature at the base point. At the base point o we can exploit the fact that ToM ∼= p.
We can thus express the curvature tensor R of M at o in terms of the curvature tensor of
G ([24, Thm. 4.2, Ch. IV]), i.e.

R(a, b)c(o) = −[[a, b], c] ∀a, b, c ∈ p ∼= ToM. (2.4)

Recall that the Riemannian metric g on M is induced by +λ2B resp. −λ2B for M of
compact resp. non-compact type and some real constant λ ̸= 0. As

go(a,R(a, b)b) = ∓λ2B(a, [[a, b], b]) = ±λ2B([a, b], [a, b]) ∀a, b ∈ p

and B|t×t > 0, it follows that if M is of compact resp. non-compact type it has non-negative
resp. non-positive sectional curvature. The sectional curvature of spaces of Euclidean type
vanishes identically [24, Thm. 3.1, Ch. V.3].

Totally geodesic subspaces [24, Ch. IV.7]:
A submanifold N ⊂ M is geodesic at p ∈ N if for all v ∈ TpN ⊂ TpM the M -geodesic with
tangent v is contained in N . The submanifold is totally geodesic if it is geodesic at every
point in N . A totally geodesic submanifold of a symmetric space is itself a symmetric space
as the geodesic symmetries restrict to the submanifold. The algebraic characterization of
totally geodesic submanifolds of symmetric spaces leads to the notion of Lie triple systems.
Definition 2.4.5. Let g be a Lie algebra. A Lie triple system is a vector space n ⊂ g such
that

[n, [n, n]] ⊂ n.

Indeed, N ⊂ M is a totally geodesic submanifold containing o if n := dπ−1(ToN) ⊂ p is
a Lie triple system. Conversely, if n ⊂ p is a Lie triple system, then N := expo dπ(n) is a
totally geodesic submanifold [24, Thm. 7.2, Ch. IV].

Maximal flat subspaces [24, Ch. V.6] :
A Riemannian manifold F is flat if all sectional curvatures vanish identically. A maximal
flat F ⊂ M is a flat submanifold that is not contained in a flat submanifold of higher
dimension. Via the exponential map, maximal flats F correspond one-to-one to maximal
abelian subalgebras a ⊂ p [24, Thm. 6.1, Ch. V].
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Theorem 2.4.6 ([24] Thm. 6.2, Ch. V). Let M be a symmetric space of compact/ non-
compact type and a1, a2 ⊂ p maximal abelian subalgebras, then there exists a k ∈ K such
that

Adk(a1) = a2.

The Theorem yields a well-defined notion of the rank of a symmetric space.

Definition 2.4.7. The rank of M is the dimension of maximal flats.

Locally symmetric spaces:
We call a Riemannian manifold (M, g) locally symmetric if it is isometrically covered by
a symmetric space. Locally symmetric spaces can also be characterized by the following
theorem.

Theorem 2.4.8 ([24] Thm. 1.1, Ch. IV). A Riemann manifold (M, g) is locally symmetric
if and only if the Riemannian curvature tensor is parallel, i.e. ∇R = 0 where ∇ denotes
the Levi-Civita connection.

2.4.2. Hermitian symmetric spaces

Until now we did not discuss any relations between symmetric spaces and symplectic
manifolds. We will see that Hermitian symmetric spaces are precisely at the intersection,
i.e. they are symmetric spaces with an G-invariant symplectic form.

Definition 2.4.9. A Hermitian symmetric space is a connected complex manifold with
Hermitian structure (M, g, j), such that the geodesic reflection at any point is a holomorphic
isometry of M . Explicitly this means for any point p ∈ M there is a holomorphic isometry
sp : M → M that satisfies

sp(p) = p & (dsp)p = −id.

All Hermitian symmetric spaces are symmetric spaces, so everything discussed in the pre-
vious section continues to hold. Nevertheless the class of Hermitian symmetric spaces is
much smaller than the class of symmetric space. Indeed irreducible Hermitian symmetric
spaces can be characterized by the following theorem.

Theorem 2.4.10 ([24] Thm. 6.1. Ch. VIII). (i) The compact irreducible Hermitian sym-
metric spaces are exactly the manifolds G/K where G is a connected compact simple
Lie group with center {e} and K has nondiscrete center and is a maximal connected
proper subgroup of G.

(ii) The noncompact irreducible Hermitian symmetric spaces are exactly the manifolds
G∨/K where G∨ is a connected noncompact simple Lie group with center {e} and K
has nondiscrete center and is a maximal compact subgroup of G∨.

The center of K can be described more accurately in both cases compact and noncompact.

Proposition 2.4.11 ([24] Thm. 6.1. Ch. VIII). The center C(K) of the group K in
Theorem 2.4.10 (i) and (ii) is analytically isomorphic to the circle group.
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Uniqueness of invariant complex structure:
By Prop. 2.1.3 we can identify C(K) ∼= S1 and so the Lie algebra of C(K) is identified
with iR. Denote Z ∈ g the element that corresponds to i under this identification. Now
A := adZ is an antisymmetric endomorphism of p which is also AdK-invariant. Thus A2 is
symmetric, negative definite and AdK-invariant. By the same argument (similar to Schur’s
lemma) as in the proof of uniqueness of the invariant metric, this means ad2

Z = −λ2idp

for some λ ∈ R. Finally, λ = 1 because e2πtA has eigenvalue e±2πtiλ and for t = 1 this
eigenvalue must be equal to 1 since e2πA is the identity.

Thus jo = adZ defines a complex structure on ToM ∼= p. Observe that jo is K-invariant as
for all k ∈ k and v ∈ ToM ∼= p we have

adk(jo(v)) = adk([Z, v]) = −[Z, [v, k]] − [v, [k, Z]] = [Z, adkv] = jo(adk(v)).

Therefore we can extend jo equivariantly to a G-invariant almost complex structure j on
M . Now the invariant metric g and the invariant almost complex structure j determine
an invariant Hermitian metric h on TMC. Analogously to the proof of uniqueness of the
Riemannian metric g one shows that G-invariant hermitian metric h on TMC is also unique
up to scalar multiple. To do so observe that j promotes the adjoint representation to a
complex irreducible representation on pC. In particular one can directly apply Schur’s
lemma to obtain uniqueness. As g and h are unique up to scalar multiple, the complex
structure j is unique up to sign. In particular the almost complex structure j must up to
sign coincide with the complex structure we started with. Therefore j must be integrable.
Actually one can also independently show that j must be integrable. We do this by
computing Nijenhuis-tensor Nj at o. This is enough as Nijenhuis-tensor is invariant under
j-biholomorphisms. For all a, b ∈ p ∼= ToM we have

Nj(a, b)(o) :=
(
[a#, b#] + j([j(a#), b#] + [a#, j(b#)]) − [ja#, jb#]

)
(o)

= ([a, b] + [Z, [[Z, a], b] + [a, [Z, b]]] − [[Z, a], [Z, b]])# (o)
= ([a, b] − [[Z, a], [Z, b]])# (o)
= ([a, b] + [Z, [b, [Z, a]]] + [b, [[Z, a], Z]])# (o)
= ([a, b] + [b, a])# (o) = 0,

where the third and fifth equality use [p, p] ⊂ k and Z in the center of k and the fourth uses
the Jacobi-identity. This proves that there are no almost hermitian symmetric spaces.

Intermezzo – Root systems:
Let gC be a semi-simple complex Lie algebra. A Cartan subalgebra hC is a maximal abelian
subalgebra such that, for each h ∈ hC, adh is diagonalizable. In particular, the operators
adh can be diagonalized simultaneously. This leads to the definition of roots and root
spaces.

Definition 2.4.12. A root of (gC, hC) is a non-zero linear form α : hC → C such that the
corresponding root space

gα := {X ∈ gC | adhX = α(h)X ∀ h ∈ hC}

is nonzero. Denote the set of roots by ∆.
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2.4. Hermitian symmetric spaces

The root spaces are simultaneous eigenspaces of adh, for all h ∈ hC, and we get a decom-
position of gC into the direct sum of root spaces

gC = g0 ⊕
⊕
α∈∆

gα

The subspace g0 is the centralizer of hC ⊂ gC. As for example explained in [45, Ch. 3,
Thm. 3], we have that

g0 = hC.

Note that using the Jacobi-identity [gα, gβ] ⊂ gα+β, in particular hα := [gα, g−α] ⊂ hC for
all α, β ∈ ∆. Indeed, one can show ([45, Ch. VI, Thm. 2]) that for all roots α ∈ ∆ the
spaces gα and hα are one-dimensional and that there exists a unique element Hα ∈ hα

determined by α(Hα) = 2. It is then easy to see that for each non-zero element Xα ∈ gα

there exists an element Yα in g−α such that

[Hα, Xα] = 2Xα, [Hα, Yα] = −2Yα and [Xα, Yα] = Hα.

These elements generate a copy of sl(2,C) that we shall denote by g[α].

Polyspheres/ Polydiscs:
We go back to our set up before the intermezzo. Denote by gC the complexification of g.
It decomposes as

gC = kC ⊕ p+ ⊕ p−,

where kC is the complexification of k and p± are the ±i-eigenspaces of the complex linear
extension of j = adZ . Assume without loss of generality that g = k⊕ p is the compact real
form and denote by g∨ = k⊕ ip its non-compact dual. As described in [24, Ch. VIII.7] the
maximal abelian subalgebra h ⊂ k complexifies to a Cartan subalgebra hC of gC. We denote
by ∆ the set of roots of gC with respect to hC. Since [hC, kC] ⊂ kC and [hC, pC] ⊂ pC the
root space gα is either contained in kC or pC. The roots are called compact or non-compact,
respectively. In particular,

kC = hC ⊕
⊕

α

gα, pC =
⊕

β

gβ

where α runs over compact roots and β runs over all non-compact roots. Furthermore
one can partition into positive and negative non-compact roots according to the sign of
−iβ(Z). Indeed, this is compatible with the decomposition pC = p+ ⊕p− and we can write

p+ =
⊕

β

gβ, p− =
⊕

β

g−β,

where β runs over all positive non-compact roots. Two roots α, β ∈ ∆ are called strongly
orthogonal if α ± β /∈ ∆, which implies [gα, gβ] = 0. By [24, Prop. 7.4, Ch. VIII] there
exist strongly orthogonal positive non-compact roots γ1, . . . , γr. Thus, the subspace

r⊕
i=1

gC[γi] ⊂ gC
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is isomorphic to sl(2,C)r. The intersection with g resp. g∨ yield subalgebras of g isomorphic
to the compact real form su(2)r resp. the dual non-compact real form sl(2,R)r. Intersect-
ing these with p resp. ip yield Lie-triple systems in g resp. g∨ and thus realize totally
geodesically embedded polyspheres resp. polydiscs of G/K resp. G∨/K. Indeed Hermitian
symmetric space corresponding to su(2) is (CP1)r, while the Hermitian symmetric space
corresponding to sl(2,R) is (CH1)r. This polysphere resp. polydisc obtained be integrating
the copy su(2)r resp. sl(2,R)r can translated by the adjoint action of G to see that there
is a polysphere resp. polydisc through every point. In total we obtain the polysphere resp.
polydisc theorem.

Theorem 2.4.13 (Polysphere/ polydisc theorem [52], p. 280). Let M be an irreducible
Hermitian symmetric space of rank r. For any point q = (x, v) ∈ TM , there exists a point
p = (x0, v0) ∈ TΣr and a holomorphic totally geodesic embedding

ιp,q : Σr = Σ × . . .× Σ ↪→ M

such that
ιp,q(x0) = x and (dιp,q)x0v0 = v.

Here, Σ = CP1 in the compact case and Σ = CH1 in the non-compact case.

Remark 2.4.14. These embeddings are equivariant in a double sense. We denote by H
either SU(2) in the compact case or SL(2,R) in the non-compact case.

Translation and reparametrization: For all g ∈ G and h ∈ Hr the following dia-
gram commutes

Σr M

Σr M

ιp,q

h g

ιhp,gq

.

Here the action h : Σ → Σ should be interpreted as reparametrization, while the arrow
g : M → M translates a polysphere resp. polydisc through q = (x, v) to a polysphere
resp. polydisc through gq = (g(x), dg(x)). We say a polysphere resp. polydisc goes through
q = (x, v) if it goes through x and v is tangent to it.

Hr-equivariance of ιp,q: As discussed above Theorem 2.4.13 every embedding ιp,q comes
from a Lie algebra monomorphism k : hr ↪→ g. This can be integrated to a monomorphism
of Lie groups we denote by R : Hr ↪→ G. Then ιp,q is also equivariant with respect to R,
i.e. for all h ∈ Hr the following diagram commutes

Σr M

Σr M

ιp,q

h R(h)
ιp,q

.

Remark 2.4.15. From now on we will not need root systems again. One nice thing about
the proofs in this thesis is, that they only use the polysphere/ polydisc theorem and no root
systems explicitly. They were only included to convince the reader that the polysphere/
polydisc theorem holds, but one could equally well just use this theorem as a black box.
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Foliation of the tangent bundle of a Hermitian symmetric space:
The polysphere resp. polydisc theorem tells us that for every point (x, v) ∈ TM there is
a polysphere resp. polydisc through x with v tangent to it. We want to investigate now
if these TΣr, where Σ = CP1 resp. Σ = CH1, form a foliation. It is not hard to see that
through some points (for example points on the zero section) go more than one TΣr. So
our foliation will be singular, but we can characterize an open dense set of points, where
the foliation is not singular.

An element v ∈ p is called regular if its centralizer

Zp(v) := {w ∈ p | [v, w] = 0}

has dimension as small as possible. The smallest dimension possible is equal to r the
rank of M . This is because Zp can be identified with the union of all maximal abelian
subalgebras a ⊂ p containing v, i.e.

Zp(v) = ∪a.

The inclusion ∪a ⊂ Zp(v) is immediate. On the other hand any element w ∈ Zp(v) satisfies
[v, w] = 0 and can thus be extended to a maximal abelian subspace a containing v and w.
In particular regular vectors lie in a unique maximal abelian subspace explicitly given by

av = Zp(v).

One can show that the set of regular vectors is open and dense [45, Prop. 1, Ch.III.2]. We
call a point (x, v) ∈ TM regular if Adgv ∈ p is regular for g ∈ G such that Adg(x) = o. The
set of regular points is denoted by T regM . Observe that picking r vectors, each tangent to
a factor in the polysphere resp. polydisc through x, we obtain a maximal abelian subspace
of Adg−1p. Thus there is up to reparametrization only a unique polysphere resp. polydisc
through a regular point (x, v) ∈ T regM . As all maximal flats are conjugate (see Thm.
2.4.6) the same holds true for their complexifications the polyspheres/ polydiscs.

Theorem 2.4.16. Every polysphere/ polydisc through o can be mapped to any other poly-
sphere/ polydisc through o by an element of K.

In view of Remark 2.4.14 we obtain a smooth foliation of T regM by T regΣr. In particular,
we can define locally on a neighborhood U ⊂ T regM of a regular point (x, v) the projections

πi : U → TΣ

on the i-th factor of the product TΣr. In addition the following quantities are locally
well-defined and smooth

vi := πi(v), ri := |vi|, Xi := (vi)H, Hi := (jvi)H, Yi := (vi)V , Vi := (jvi)V .

There are two distributions on T regM that we will need later, denote

Υ := spanR{Y1, . . . , Yr} ⊂ TT regM and D := {a#|a ∈ g} ⊂ TT regM.

At p = (o, v) ∈ T regM for any v ∈ T reg
o M we can identify the following sub spaces

Υp = spanR{Y1, . . . , Yr}|(o,v) ∼= (av)V and Dp = pH ⊕ [k, v]V .
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Lemma 2.4.17. If v ∈ p is regular, then

a⊥
v = [k, v],

where ⊥ denotes the orthogonal with respect to the Killing form B.

Proof. Take k ∈ k, then for all w ∈ av we have

B([k, v], w) = −B(k, [w, v]) = 0

as [w, v] = 0. Thus [k, v] ∈ a⊥
v . It remains to be shown that a⊥

v ⊂ [k, v]. We show instead
[k, v]⊥ ⊂ av. For this take w ∈ [k, v]⊥, then

B([k, v], w) = 0 ∀k ∈ k ⇒ B(k, [v, w]) = 0 ∀k ∈ k ⇒ [v, w] ∈ k⊥.

On the other hand, [p, p] ⊂ k. Hence, [v, w] = 0 and therefore w ∈ Zp(v). As v is regular
we have Zp(v) = av and the claim follows.

Corollary 2.4.18. At every regular p ∈ TM we have

TpTM = Dp ⊕ Υp.

The next question is, what happens at the non-regular points? Indeed, the foliation be-
comes singular at non-regular points. Through every non-regular point go more than one
polysphere/ polydisc. This is expressed by the fact that the distributions Υ and D become
lower dimensional on singular points.

2.4.3. Hermitian symmetric spaces as coadjoint orbits
As Corollary of Theorem 2.4.10 and Proposition 2.4.11 we can finally deduce the realization
of Hermitian symmetric spaces as coadjoint orbits. The corollary is known to the experts,
but as we could not find a reference the proof is included here.
Corollary 2.4.19. Every Hermitian symmetric space can be realized as (co-)adjoint orbit.

Proof. We prove the compact case, the noncompact case follows by duality. As C(K) is
analytically isomorphic to the circle group there exists an element z ∈ C(K) different from
the unit. Now K is a sub group of the centralizer CG(z) of z in G. As the center of G
is trivial, we have CG(z) ̸= G so K coincides with the identity component of CG(z) by
maximality of K. Denote by Z a generator of C(K). Clearly, on the one hand, K ⊂
StabG(Z) and on the other hand, StabG(Z) ⊂ CG(z). Thus

StabG(Z) = K,

as stabilizers of simple groups are connected and therefore we may identify G/K with the
(co-)adjoint orbit OZ of G at Z ∈ g.

Kähler structure:
The last question that needs to be answered is, whether the KKS symplectic structure σ
of OZ

∼= M complements the hermitian structure (g, j) to a Kähler structure. As σ, g
and j are G-invariant it is enough to check compatibility at Z ∈ OZ ⊂ g, indeed for all
a, b ∈ p ∼= TZOZ

gZ(jZa, b) = −B([Z, a], b) = −B(Z, [a, b]) = σZ(a, b).

By uniqueness of g and j we obtain the following theorem.
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Theorem 2.4.20. The G-invariant triple (g, j, σ), defined on p ∼= TZM as

gZ(·, ·) := −B(·, ·), jZ(·) := [Z, ·] and σZ(·, ·) := −B(Z, [·, ·])

is compatible and equivariantly extends to the up to scalar multiple unique invariant Kähler
structure of M ∼= OZ .

The following Lemma will be useful for future calculations.

Lemma 2.4.21. At any point x ∈ M ∼= OZ ⊂ g the Kähler structure is given by

gx(v, w) := −B(v, w), jx(v) := [x, v] and σx(v, w) := −B(x, [v, w]),

for all v, w ∈ TxM ∼= [x, g] ⊂ g.

Proof. We prove the formulas for the metric and the complex structure, the formula for
the symplectic form follows. Clearly there exists an element g ∈ G such that x = Adg(Z).
Using this we find for the metric

gx(v, w) := gZ(Adg−1v,Adg−1w) = −B(Adg−1v,Adg−1w) = −B(v, w)

as the Killing form is AdG-invariant. For the complex structure we similarly find

jx(v) := Adg

(
jZ
(
Adg−1v

))
= Adg[Z,Adg−1v] = [AdgZ, v] = [x, v].

De Rham cohomolgy:
We will quickly determine the second de Rham cohomology of hermitian symmetric spaces
of compact type. We did not find a proof in the literature, so we present what we learned
from discussions with Maria Beatrice Pozzetti.

Proposition 2.4.22. Let (M, g) be an irreducible hermitian symmetric space of compact
type and denote σ ∈ Ω2(M) the corresponding invariant Kähler form. Then the second de
Rham cohomology group is generated by [σ], i.e.

H2
dR(M,R) ∼= R.

Proof. Denote by Ω2
G(M) the set of G-invariant 2-forms on M . Every ν ∈ Ω2

G(M) is closed.
This can be seen as follows. For any point p ∈ M denote by sp the geodesic symmetry,
then on the one hand

s∗
pν = (−1)2ν = ν

on the other hand
s∗

pdν = (−1)3dν = −dν,

using that G acts transitively and that sp ◦ g ◦ s−1
p ∈ G for all g ∈ G implies that s∗

pν is
also G-invariant. In total this means

dν = −dν = 0.
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Further every de Rham cohomology class α ∈ H2
dR(M) can be represented by an invariant

form. Let µ be a G bi-invariant probability measure on G. We define the G-average of a
2-form η ∈ Ω2(M) with respect to µ as

ν̄p(v, w) :=
∫

G
(g∗ν)p(v, w) dµ(g) for all v, w ∈ TpM.

Then for any closed 2-dimensional submanifold Σ ⊂ M we have

ν̄(Σ) =
∫

Σ
ν̄ =

∫
Σ

(∫
G

(g∗ν)p(∂sΣ, ∂tΣ)dµ(g)
)

dsdt

=
∫

G

(∫
Σ

(g∗ν)p(∂sΣ, ∂tΣ)dsdt
)

dµ(g) =
∫

G
ν(g(Σ))dµ(g)

=
∫

G
ν(Σ)dµ(g) = ν(Σ),

where we think of Σ(s, t) as a parametrization of Σ ⊂ M . All that is left to do is to show
that there is up to scalar multiple only one invariant 2-form. Take some ν ∈ Ω2

G(M), then
there exists a K-invariant symmetric operator A : p → p satisfying ν(A·, ·) = σ(·, ·). Then,
by the same argument as in the proof of uniqueness of the invariant metric g, A must be
a multiple of the identity, because the representation of K on p is irreducible.

Moment maps:
We will later in this thesis study the induced action of G on the tangent bundle of M = OZ .
Actually, the action can also be seen as the restriction of the diagonal adjoint action of G
on g × g to

TM =
{

(x, v) ∈ g × g | x = Adg(Z), v ∈ ann(x)⊥
}
,

where ann(x) = {η ∈ g | [η, x] = 0}. In view of this, we see that evaluated at a point
(x, v) ∈ TM the induced vector field a# takes the form

a#
(x,v) = ([a, x], [a, v]) ∈ g × g.

This representation of a# will be useful for what comes. By construction the 1-forms λ, η
and τ are invariant under isometries and consequently G-invariant. It therefore makes
sense to ask whether there exist moment maps for dλ, dη and dτ .

Theorem 2.4.23. The G-action on TM is Hamiltonian with respect to the three symplec-
tic4 forms dλ, dη and dτ . The moment maps are respectively given by

µλ(x, v) = [x, v], µη(x, v) = v, µτ (x, v) = −[[x, v], v] ∀(x, v) ∈ TM ⊂ g × g,

using the identification of g and g∗ via the Killing form B.

Proof. The maps are clearly equivariant, as commutators are. Further, for any a ∈ g,
(x, v) ∈ TM we have

d(B(µλ(x, v), a)) = d(B([x, v], a)) = d(B(v, [x, a]))
= d(g(v,dπ(a#)) = d(ĝ(X, a#)) = d(λ(a#)) = ιa#dλ

4Actually, dτ is only symplectic outside the zero-section. Still its moment map is globally defined.
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as λ is invariant under the flow of a# and as a consequence La#λ = 0. Analogously we
find

d(B(µη(x, v), a)) = d(B(v, a)) = d(B([x, v], [x, a])) = d(g(H, a#)) = d(η(a#)) = ιa#dη

and

d(B(µτ (x, v), a)) = d(B([[x, v], v], a)) = −d(B([x, v], [v, a]))
= −d(g(V, a#)) = −d(τ(a#)) = −ιa#dτ.

Polyspheres resp. polydiscs as suborbits:
We want to give an explicit description of the polyspheres resp. polydiscs in Theorem 2.4.13
as suborbits. First we fix some notation. We denote by Σi the i-th factor of Σr. Every
factor can be realized as an adjoint orbit in h. Here h denotes either su(2) in the compact
case or sl(2,R) in the non-compact case. Denote Zi the up to sign unique element in the
center of h such that ad2

Zi
= −id. Then Σi

∼= OZi and the standard Kähler structure
coincides with the Kähler structure obtain as in Theorem 2.4.20 up to multiple.

From the discussion above Theorem 2.4.13 we know that every polysphere resp. polydisc

ιp,q : Σr ↪→ M

comes from integrating a subalgebra of g isomorphic to su(2)r resp. sl(2,R)r. In particular
for every embedding ιp,q there is an injective Lie algebra homomorphism

kp,q : hr ↪→ g

such that (dιp,q)x0 = kp,q|Tx0 Σr , where p = (x0, v0) ∈ TΣr. By equivariance of the
embedding (see Remark 2.4.14, translation and reparametrization), we may restrict to
p = (Z0 := ∑

i Zi, v0) for some v0 ∈ TZ0Σ and q = (Z, v) for some v ∈ TZM . We abbrevi-
ate ι := ιp,q and k := kp,q.

Proposition 2.4.24. The affine linear map

K : hr → g; ξ 7→ k(ξ) + Z − k(Z0)

extends ι : Σr → M equivariantly with respect to the adjoint action of Hr ⊂ G. This means
the following diagrams commute

(Extension)
Σr M

hr g

ι

K

, (2.5)

where the vertical arrows are the inclusions as coadjoint orbits and

(Equivariance)
hr g

hr g

K

Adh AdR(h)

K

(2.6)
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for all h ∈ Hr, where R : Hr ↪→ G denotes as is Remark 2.4.14 the monomorphism of Lie
groups that integrates k, i.e. (dR)e = k.

Proof. To prove the Lemma we first need to show that Z−k(Z0) is invariant under R(Hr),
i.e. we need to show that for any ξ ∈ hr the following commutator vanishes

[k(ξ), Z − k(Z0)] = 0. (2.7)

Denote the Cartan decomposition of hr as hr = k0 ⊕ p0. The map k respects the Cartan
decomposition, i.e. k(k0) ⊂ k and k(p0) ⊂ p. To prove Eq. (2.7) we look at two cases ξ ∈ k0
and ξ ∈ p0.

Case ξ ∈ k0: We see that

[k(ξ), Z − k(Z0)] = [k(ξ), Z] − [k(ξ), k(Z0)] = k[ξ, Z0] = 0,

where the second equality uses k(ξ) ∈ k and Z in the center of K and that k is a Lie algebra
homomorphism. The last equality uses that Z0 is in the center of hr.

Case ξ ∈ p0: As ξ ∈ p0 ∼= TZ0Σr we can use k(ξ) = dιZ0(ξ), it follows that

[k(ξ), Z − k(Z0)] = [dιZ0(ξ), Z] − k([ξ, Z0]) = jZdιZ0(ξ) − dιZ0(jZ0ξ) = 0,

where we used again that k is a Lie algebra homomorphism, that jZ = adZ and jZ0 = adZ0

and in the last equation that ι is holomorphic.

Further k : hr ↪→ g is Hr-equivariant as k = (dR)e and R satisfies

R(Adh(h̃)) = R(hh̃h−1) = R(h)R(h̃)R(h)−1 = AdR(h)R(h̄) ∀ h, h̃ ∈ Hr,

as it is a Lie group homomorphism.

Equivariance of k and invariance of Z − k(Z0) imply equivariance of K, i.e. diagram
(2.6). Last we need to check if K extends ι. As K and ι are equivariant and Hr acts
transitively on Σr it is enough to check this at one point p ∈ Σr. We choose p = Z0 and
find

K(Z0) = k(Z0) + Z − k(Z0) = Z = ι(Z0).

This proves diagram (2.5) and thus finishes the proof of the Proposition.
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3.1. Hofer–Zehnder capacity

The Hofer–Zehnder capacity is a certain symplectic invariant. The term capacity refers
to a class of symplectic invariants that measure the size of a symplectic manifold. A first
observation is that every symplectomorphism preserves the volume form. Thus volume is a
global symplectic invariant, but the famous non-squeezing theorem [22] proved by Gromov
in 1985 shows that volume is not a very precise measurement of the size of a symplectic
manifold.

Theorem 3.1.1 (Gromov’s non-squeezing theorem).
Let B(r) and Z(R) be the symplectic submanifolds of (R2n, ω0) given by

B(r) =
{

(x, y) ∈ R2n
∣∣∣ |x|2 + |y|2 < r2

}
, Z(R) =

{
(x, y) ∈ R2n

∣∣∣ x2
1 + y2

1 < R2
}
.

Then we can find a symplectic embedding

(B(r), ω0) ↪→ (Z(R), ω0)

if and only if r ≤ R.

□
This means for R < r we can not find a symplectic embedding, while finding a volume
preserving embedding is not a problem at all. We will now introduce symplectic invariants
that in dimension greater than two differ from volume, called symplectic capacities. The
main reference for this section is the book by H. Hofer and E. Zehnder [27].

Definition 3.1.2 (Symplectic capacity).
Denote by S2n the set of symplectic manifolds of dimension 2n. A symplectic capacity is a
map

S2n → R ∪ {∞}; (M,ω) 7→ c(M,ω)

that satisfies

(1) Monotonicity: c(M,w) ≤ c(N, τ)
if there exists a symplectic embedding φ : (M,ω) → (N, τ).

(2) Conformality: c(M,aω) = |a|c(M,ω)
for all a ∈ R, a ̸= 0.

(3) Nontriviality: c(B(1), ω0) = π = c(Z(1), ω0)
where B(1) and Z(1) are the symplectic ball and the symplectic cylinder.
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In two dimensions the total area c(M,ω) := |
∫

M ω| is a capacity. In higher dimensions the
symplectic invariant (Vol)1/n is no capacity, as the cylinder has infinite volume. The first
examples of symplectic capacities are the Gromov width cG and the cylindrical capacity
cZ .

Definition 3.1.3.

cG(M,ω) := sup
{
πr2

∣∣∣∣ ∃ symplectic embedding ϕ : (B(r), ω0) → (M,ω)
}

cZ(M,ω) := inf
{
πr2

∣∣∣∣ ∃ symplectic embedding ϕ : (M,ω) → (Z(r), ω0)
}

That these actually define capacities follows directly from the non-squeezing. Further any
other symplectic capacity c satisfies

cG(M,ω) ≤ c(M,ω) ≤ cZ(M,ω).

In particular this implies that if Gromov width and cylindrical capacity agree, all capacities
are the same. We shall now introduce a capacity that measures size in terms of the possible
Hamiltonian dynamics. For this denote by H(M,ω) the set of smooth functions H on M ,
that satisfy

(1) there is a compact set K ⊂ M such that K ⊂ M \ ∂M and

H(M \K) = m(H) (a constant),

(2) there is an open set U ⊂ K such that

H(U) = 0,

(3) 0 ≤ H(x) ≤ m(H) for all x ∈ M .

A function H ∈ H(M,ω) will be called admissible if all periodic solutions to ẋ = XH(x)
are either constant or have period T > 1. We write Ha(M,ω) ⊂ H(M,ω) for the subset of
admissible functions.

Definition 3.1.4 (Hofer–Zehnder capacity).
The Hofer–Zehnder capacity is given by

cHZ(M,ω) = sup
{
m(H)

∣∣∣∣ H ∈ Ha(M,ω)
}
.

As the name tells us, the Hofer-Zehnder capacity is indeed a symplectic capacity. The
proof can be found in [27] chapter 3. We see that finding a lower bound to this capacity
might be directly constructed by finding an admissible Hamiltonian. On the other hand
finding upper bounds is much harder and indeed often impossible. For example Usher [46]
shows that even closed symplectic manifolds often have infinite Hofer–Zehnder capacity.
However a finite Hofer–Zehnder capacity actually implies something usually referred to as
almost existence theorem.
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Theorem 3.1.5. ([27] Ch. 4; Thm. 1) Let H : M → R a smooth function and λ ∈ R a
regular value. Fix ε > 0 such that all t ∈ (λ− ϵ, λ+ ϵ) are also regular. If H−1(λ) ⊂ M is
compact and bounds a symplectic submanifold of finite Hofer-Zehnder capacity, then

µ ({t ∈ (λ− ϵ, λ+ ϵ)| there exists a periodic orbit γ s.t. H(γ) = t}) = 2ϵ,

where µ denotes the Lebesgue measure.

Actually Macarini and Schlenk showed that the almost existence still holds if only the
thickening of the energy hyper-surface has finite Hofer–Zehnder capacity [38].

In some cases we will also look at a relative version of the Hofer–Zehnder capacity (defined
by V. Ginzburg and B. Gürel in [20]).

Definition 3.1.6 (relative). For a subset Z ⊂ M that doesn’t touch the boundary, i.e.
cl(Z) ∩ ∂M = ∅, we denote by H(M,Z, ω) the set of smooth functions satisfying

a) H|M\K = m(H) and H|U = 0,

b) 0 ≤ H(x) ≤ m(H) for all x ∈ M ,

for an open neighborhood U ⊃ Z and a compact set K ⊃ U . A function H ∈ H(M,Z, ω)
will be called admissible if all periodic solutions to ẋ = XH(x) are either constant or have
period T > 1. We write Ha(M,Z, ω) ⊂ H(M,ω) for the subset of admissible functions.
The relative Hofer–Zehnder capacity is then defined as

cHZ(M,Z, ω) := sup{maxH | H ∈ Ha(M,Z, ω)}.

Remark 3.1.7. Observe that clearly cHZ(M,Z, ω) ≤ cHZ(M,ω) for any Z ⊂ M .

As for the Hofer–Zehnder capacity there is an almost existence result in case of finite
relative Hofer–Zehnder capacity [20, Thm. 2.14]. It says that if cHZ(M,Z, ω) < ∞ and
H : M → R is a proper smooth function with H|Z = minH, then almost all compact
regular energy levels carry periodic orbits.

Another variation of the Hofer–Zehnder capacity is the π1-sensitive Hofer–Zehnder ca-
pacity

Definition 3.1.8 (π1-sensitive). Fix a class ν ∈ π1(M), then

cν
HZ(M,ω) := sup{maxH | H ∈ Hν

a(M,ω)},

where Hν
a(M,ω) is the subset of H(M,ω) such that all periodic orbits in the homology class

ν are either constant (if ν = 0) or have period T > 1.

3.2. Pseudo-holomorphic curves
One approach to finding upper bounds to the Hofer–Zehnder capacity is an observation by
Hofer–Viterbo [26] that existence of pseudo-holomorphic curves can imply very generally
existence of periodic orbits. This idea was then generalized by Lu [37] and phrased in terms
of non-vanishing Gromov–Witten invariants. In this section we will very roughly introduce
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the theory of pseudo-holomorphic curves to state the theorems by Hofer–Viterbo [26] and
Lu [37] that yield explicit upper bounds for cHZ . For the introduction of the general theory
of pseudo-holomorphic curves we closely follow McDuff–Salamon [43]. Another reference
is Wendl [50].

Almost complex structures:
An almost complex structure J on a smooth manifold M is a smooth bundle map

J : TM → TM

such that J2 = −idT M . It is called ω-compatible if gJ(·, ·) := ω(·, J ·). is a Riemannian
metric. We shall denote

J (M,ω) = {ω-compatible almost complex structures on M}

this is a topological spaces with respect to C∞
loc-topology, e.g. we consider a sequence Jk

to converge if all its derivatives converge uniformly on compact subsets of TM .

Pseudoholomorphic curves:
Fix a closed, connected Riemann surface (Σ, j, dvolΣ). A map u : Σ → M is called pseu-
doholomorphic (or J-holomorphic) if its differential is complex linear, i.e.

du ◦ j = J ◦ du.

Denote by
M(A,Σ; J) := {u ∈ C∞(Σ,M)| J ◦ du = du ◦ j, [u] = A}

the moduli space of holomorphic curves in a fixed homology class A ∈ H2(M ;Z). Further
let B ⊂ C∞(Σ,M) denote the space of all smooth maps u : Σ → M that represent the
homology class A ∈ H2(M.Z). It will be useful to interpret the set of solutions to this
equation as zero-set of a section

S : B → E ; u 7→ (u, ∂̄J(u))

in an infinite dimensional vector bundle E → B. The fiber over u ∈ B is the space

Eu = Ω0,1(Σ, u∗TM)

of smooth J-antilinear 1-forms on Σ with values in u∗TM and

∂̄J(u) := 1
2 (du+ J ◦ du ◦ j) ∈ Eu.

Energy identity:
The energy of a smooth map u : Σ → M is defined as

E(u) := 1
2

∫
Σ

|du|2JdvolΣ,

where the norm of the real linear operator L := duz : TzΣ → Tu(z)M is given by

|L|J := |ζ|−1
√

|L(ζ)|2J + |L(jζ)|2J
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for 0 ̸= ζ ∈ TzΣ. If J is compatible with ω and u is J-holomorphic, then

E(u) =
∫

Σ
u∗ω.

In particular Stoke’s theorem tells us that if [u] = 0 ∈ H2(M,R), then E(u) = 0 and
therefore u must be constant.

Unique continuation:
Assume that u, v : Σ → M are both J-holomorphic and agree at some point z ∈ Σ to
infinite order, then u ≡ v (Cor. 2.3.3 [40]). For holomorphic maps (so integrable complex
structures) this is an immediate consequence of the fact that holomorphic functions are
analytic.

Somewhere injective curves:
A J-holomorphic curve u : Σ → M is said to be somewhere injective if there is a point
z ∈ Σ at which duz : TzΣ → Tu(z)M is injective and u−1(u(z)) = {z}. It is said to be
multiply covered if there exists a closed Riemann surface (Σ′, j′), a J-holomorphic curve
u′ : Σ′ → M and a branched covering φ : Σ → Σ′ such that

u = u′ ◦ φ deg(φ) > 1.

A curve is called simple if it is not multiply covered. Indeed every simple curve is somewhere
injective and the set of non-injective points is at most countable and can only accumulate
at the critical points of u (Prop. 2.5.1 [40]). We will denote the subspace of simple curves
by

M∗(A,Σ; J) := {u ∈ M(A,Σ; J)| u simple}.

Conversely, for closed connected domains, somewhere injective implies simple, thus in our
set up the notions are equivalent [50, Prop. 2.6].

Transversality:
We want to see that for generic almost complex structures the spaces M∗(A,Σ; J) are
smooth finite dimensional manifolds. For this we need to show that S is transverse to the
zero-section. The vertical differential is the composition

Du : TuB = Ω0(Σ, u∗TM) dSu−−→ T(u,0)E = TuB ⊕ Eu
πu−→ Eu = Ω0,1(Σ, u∗TM)

of the differential dSu and the projection πu. Observe that the section S is transverse to
the zero-section if and only if Du is surjective for every u ∈ M∗(A,Σ; J).

Regular almost complex structures:
Fix a closed Riemann surface (Σ, j, dvolΣ) and a homology class A ∈ H2(M,Z). An almost
complex structure J on M is called regular if Du is onto for every u ∈ M∗(A,Σ; J) [40,
Def. 3.1.5]. Denote the set of regular, compatible almost complex structures by Jreg(A,Σ).
Indeed a generic almost complex structure is regular [40, Thm. 3.1.6].
In some situation we will need to work with an explicit (almost) complex structure and
not a generic one. The splitting principle yields a criterion when (integrable) complex
structures are regular. It uses the fact that any holomorphic vector bundle over CP1 can
be decomposed into holomorphic line bundles.
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Lemma 3.2.1 (Lem. 3.3.1 [40]). Let (M,ω, j) be a Kähler manifold and u : CP1 → M a
holomorphic sphere. Decompose u∗TM into holomorphic line bundles, i.e.

u∗TM ∼= L1 ⊕ . . .⊕ Ln.

If every summand Li has Chern number c1(Li) ≥ −1, then Du is onto.
We shall now discuss an example in detail as we will need this example later.
Example 3.2.2. We look at CPn × CPn with complex structure j ⊖ j, where j is the
standard complex structure of CPn. As homology class A ∈ H2(CPn ×CPn,Z) we take the
generator of any of the two factors. Such a holomorphic sphere is of the form

u : CP1 → CPn; z 7→ (v1(z), v2(z)),

where v1, v2 : CPn → CPn are holomorphic spheres in CPn. Let us without loss of generality
assume [u] = [CP1 × pt.] ∈ H2(CPn × CPn,Z), then

deg(v1) = 1 and deg(v2) = 0.

It follows that
u∗T (CPn × CPn) = v∗

1TCPn ⊕ Cn.

In particular half of the Li’s will be trivial and thus have Chern number zero. A holomorphic
sphere v1 : CP1 → CPn of degree one takes in homogeneous coordinates the form

v1([z : w]) = [a0z + b0w : . . . : anz + bnw].

The group of biholomorphisms of CPn can map any two distinct points to arbitrary two
other distinct points. We may therefore assume that v1([1 : 0]) = [1 : 0 : . . . : 0] and
v1([0 : 1]) = [0 : 1 : 0 : . . . : 0]. This implies

v([z, w]) = [z : w : 0 : . . . : 0].

Clearly v∗
1TCPn ∼= TCP1 ⊕ v∗

1NCP1. We therefore need to decompose the normal bundle
of v(CP1) into line bundles. The idea is to find suitable holomorphic sections. For this
observe that v1(CP1) is covered by the two coordinate patches Uz and Uw defined by z ̸= 0
resp. w ̸= 0. In the coordinates on Uw we can define n − 1 holomorphic sections in the
normal bundle as follows

ξi|Uw : ( z
w
, 0, . . . , 0) 7→ d

dt
∣∣∣
t=0

( z
w
, 0, . . . , t, . . . , 0).

It looks like this section doesn’t have any zeros, but changing coordinates to the coordinates
on Uz reveals a zero at [0, 1, 0, . . . , 0]. Indeed applying the coordinate change

(a1, . . . , an) 7→ (a−1
1 , a−1

1 a2, . . . , a
−1
1 an)

yields
ξi|Uz : (w

z
, 0, . . . , 0) 7→ d

dt
∣∣∣
t=0

(w
z
, 0, . . . , w

z
t, . . . , 0)

and thus the section has a simple zero at [0 : 1 : 0 . . . : 0]. As all the sections are linearly
independent, they determine a decomposition of the normal bundle into line bundles Li.
The first Chern number can be determined by the sum of zero’s of a holomorphic section
counted with multiplicity. As explained above the ξ′

is have exactly one simple zero, thus
c1(Li) = 1 ≥ −1 and therefore satisfy Lemma 3.2.1. This shows that j ⊖ j is regular for
the generators of H2(CPn × CPn,Z).
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Fredholm property:
One can extend the previous definition of Du to the case that u : Σ → M is not smooth
but in Sobolev-class W k,p for some integer k ≥ 1 and p > 2. Actually if J is smooth any
u ∈ W k,p(Σ,M) that satisfies ∂̄J(u) = 0 will still be smooth by an elliptic bootstrapping
argument. The spaces of class W k,p are Banach spaces and it can then be shown ([40, Ch.
3.1 & Thm. C.1.10]) that the vertical differential is not only bounded but even a Fredholm
operator with index given by

indDu = n(2 − 2g) + 2c1(u∗TM).

Here 2n is the dimension of M , g is the genus of Σ and c1 denotes the first Chern number,
i.e. the first Chern class evaluated on the fundamental class.

Moduli space:
It follows now from the implicit function theorem for Banach spaces [40, Thm. A.3.3] that
M∗(A,Σ; J) is a smooth finite dimensional manifold. Observe that by surjectivity of Du

the Fredholm index of Du is the same as the dimension of the kernel and thus the dimension
of the moduli space.

Theorem 3.2.3 ([40] Thm. 3.1.6.). If J is regular the space M∗(A,Σ; J) is a smooth
manifold of dimension

dim M∗(A,Σ; J) = n(2 − 2g) + 2c1(A).

It carries a natural orientation.

Further the oriented bordism class of the moduli space M∗(A,Σ; J) does not depend on
the choice of the regular almost complex structure J [40, Thm. 3.1.8]. Even though this
is rather useless if we cannot establish some sort of compactness of the moduli space.

Pointwise constraints:
Fix a finite sequence of pairwise distinct points w = (w1, . . . , wm) ∈ Σm and define the
evaluation map

evw : M∗(A,Σ; J) → Mm; u 7→ (u(w1), . . . , u(wm)).

For a smooth submanifold X ⊂ Mm consider the constrained moduli space

M∗(A,Σ; w, X; J) := {u ∈ M∗(A,Σ; J)| evw(u) ∈ X}.

By [40, Thm. 3.4.1] for generic almost complex structure it is a smooth orientable manifold
of dimension

dim M∗(A,Σ; w, X; J) = dim M∗(A,Σ; J) − codimX.

An almost complex structure is regular for the constrained problem if it is regular in the
unconstrained sense and the evaluation map is transverse to X.

Bubbling:
In this part we shall specialize to the case Σ = CP1 to simplify some arguments, but
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bubbling also works for all other pseudoholomorphic curves [40, ch. 4.2]. A first step
towards compactness is done by investigating limits of sequences of pseudoholomorphic
curves uν : CP1 → M . Indeed by [40, Thm. 4.1.1.], if

sup
ν

∥duν∥L∞ < ∞,

then uν has a sub sequence which converges uniformly with all derivatives to a pseudoholo-
morphic curve u : CP1 → M . Thus compactness can only fail if there exists a sequence
zν ∈ CP1 such that

|duν(zν)| := cν ν→∞−−−→ ∞.

We may assume that |duν(z)| attains its maximum at zν . As CP1 is compact we can
restrict to a sub sequence of zν also denoted by zν that converges to a point z0 ∈ Σ.
Holomorphically identify CP1 = C∪{∞} such that z0 ≡ 0 and define vν := uν ◦ψν : C → M
where ψν(z) := zν + z/cν is a Möbius transformation (with fixpoint ∞). Now

|dvν(0)| = 1 & |dvν(z)| ≤ 1,

thus vν converges to a non-constant pseudoholomorphic map v : C → M . As the energy is
conformally invariant, the map

C \ {0} → M ; z → v(1/z)

has finite energy and by the removal of singularities [40, Thm. 4.1.2.] can be extended to
a pseudoholomorphic sphere. One says the sphere v : S2 → M bubbles off.
Bubbling can only happen at finitely many points Γ ⊂ S2, if one takes these points away
the sequence uν |S2\Γ of punctures J-holomorphic sphere, has a subsequence that converges
locally uniformly to a punctured J-holomorphic sphere u : CP1 \ Γ → M . As u has finite
energy all punctures are removable. This is called convergence modulo bubbling.

Compactness:
Clearly we can not expect M(A,CP1; J) to be compact, as the non-compact group of
PSL(2,C) acts on it by reparametrization through Möbius transformations. In order to
have any hope of compactness one therefore needs to fix this reparametrization symmetry.
This can for example be done by pointwise constraints or taking a quotient by the group
of reparametrizations, as we shall discuss later. As discussed in the previous section apart
from the reparametrization the only other obstruction to compactness is bubbling. In some
situations, for example if the class A is minimal in some sense, bubbling can not occur.
In these situations our moduli space is indeed compact and therefore defines an oriented
bordism class [M].

3.2.1. Hofer–Viterbo’s Theorem

In this section we will discuss a first method to bound the Gromov-width and the Hofer–
Zehnder capacity from above, using pseudoholomorphic spheres.

To find an upper bound of the Hofer–Zehnder capacity, we will use an idea of H. Hofer
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and C. Viterbo [26] that shows existence of periodic orbits in the presence of holomorphic
spheres. They studied the moduli space M of holomorphic spheres u : S2 → M satisfying

u(0) ∈ Σ0,

u(∞) ∈ Σ∞,

[u] = A

1
2ω(A) =

∫
|z|≤1

u∗ω,

(3.1)

for two closed disjoint submanifolds Σ0 and Σ∞ and some A ∈ H2(M,Z). Observe that
these conditions fix the reparametrization symmetry up to an S1 (rotation of the complex
plane). Further they assume A to be minimal, i.e.

ω(A) = inf{ω(B) |B ∈ [S2,M ], ω(B) > 0},

which ensures that bubbling cannot occur. Thus their moduli space is compact and defines
an oriented cobordism class. Since they didn’t fix the S1-symmetry their moduli space
inherits a free S1-action and one considers cobordisms of compact, oriented S1-manifolds.

Theorem 3.2.4 (Hofer–Viterbo ’92). Let (M,ω) be a closed symplectic manifold, A a
minimal free homotopy class in [S2,M ], J a regular ω-compatible almost complex structure
and Σ0,Σ∞ two disjoint nonempty closed submanifolds of M . Suppose H : M → R is a
Hamiltonian such that

H|U(Σ0) = min(H) and H|U(Σ∞) = max(H),

then if the bordism class [M] ̸= 0 the Hamiltonian system ẋ = XH(x) possesses a non
constant contractible T -periodic solution with

0 < T (max(H) − min(H)) < ω(A).

In particular
cHZ(M \ Σ∞,Σ0, ω) ≤ ω(A)

and if Σ0 is a one point set we can conclude

c0
HZ(M \ Σ∞, ω) ≤ ω(A).

The idea of the proof of this theorem is, that turning on a Hamiltonian perturbation of
the Cauchy–Riemann equation yields the parametrized moduli space

C =
{

(λ, u) ∈ [0,∞) × C∞(S2,M) | satisfying (3.1) and (3.2)
}

where (3.2) is the perturbed Cauchy-Riemann equation 1

∂su+ J(∂tu− λXH(u)) = 0 (3.2)

in holomorphic coordinates (s, t) ∈ R × S1 ∼= S2 \ {0,∞}. The parametrized moduli space
is a smooth manifold with boundary. Observe that the boundary at λ = 0 is the moduli

1Also called Floer equation, but in this setup it will be interpreted as a perturbation of the Cauchy–
Riemann equation.
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Figure 3.1.: In red we see a pseudoholomorphic sphere u connecting the two disjoint sub-
manifolds Σ0 and Σ∞. The gray curve represents a solution to the perturbed
Cauchy–Riemann equation for a small enough real parameter λ. Finally the
blue curve depicts a broken Floer trajectory. It is clear from the picture that
the orbit γ, at which the Floer trajectory breaks, can not be constant by mini-
mality of A. Further γ must be contractible as it can be contracted along the
broken Floer trajectory.

space of holomorphic curves M. Roughly, Hofer and Viterbo argue that if the parametrized
moduli space was compact then [M] = 0. The argument is not as direct as one might
think because C is not the bordism to the empty set as it may not be a manifold. One
needs perturb the Fredholm section that has C as zero-set slightly, to obtain transversality.
Conversely this means [M] ̸= 0 implies that C is non-compact. Now positivity of energy

0 ≤ E(uλ) = ω(u) − λ(max(H) − min(H)), ∀uλ ∈ C

implies that there must be another boundary consisting of broken Floer trajectories of
λH for some λ ≤ ω(A)/(max(H) − min(H)). As Floer trajectories break at 1-periodic
orbits, this yields existence of a 1-periodic orbit for λH. As A is minimal the orbit
can not be constant thus H has a non-constant contractible orbit of period less than
ω(A)/(max(H) − min(H)).

Very similarly one can bound the Gromov-width, essentially copying the proof of Gromov’s
non-squeezing theorem [22] considering a parametrized moduli space where the parameter
deforms the almost complex structure.

Theorem 3.2.5 (Gromov). Let (M,ω) be a closed symplectic manifold, A a minimal
free homotopy class in [S2,M ], J a regular ω-compatible almost complex structure and
Σ0 = {p0},Σ∞ two disjoint nonempty closed submanifolds of M . If the bordism class
[M(Σ0,Σ∞, A, J)] ̸= 0, then

cG(M,ω) ≤ ω(A).

The idea of proof is the following. Assume there was a symplectic embedding f : BR(0) ↪→
M . Composing with a Hamiltonian diffeomorphism we may assume f(0) = p0. Let J1
be a regular almost complex structure that pulls back to the standard complex structure
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Figure 3.2.: The figure sketches the intersection of a pseudoholomorphic curve through p
with a symplectic ball of radius ε > 0 centered at p. Gromov’s monotonicity
states that the area of this intersection is at least πε2.

on BR(0), i.e. f∗J1|Im(f) = i. As the space of almost complex is contractible one finds a
path of almost complex structures Jt connecting J = J0 and J1. The parametrized moduli
space

C(Σ0,Σ∞, A, {Jt}) :=
{

(t, u) ∈ [0, 1] × C∞(S2,M)|u ∈ M(Σ0,Σ∞, A, Jt)
}

is a compact, oriented S1-manifold with boundary M(Σ0,Σ∞, A, J) and M(Σ0,Σ∞, A, J1),
i.e. a cobordism. As [M(Σ0,Σ∞, A, J)] ̸= 0 by assumption this implies [M(Σ0,Σ∞, A, J1)] ̸=
0. In particular we have J1-holomorphic spheres through p0. These pull back to holomor-
phic discs through 0 in BR(0). Now Gromov’s monotonicity implies

πR2 ≤ ω(A).

3.2.2. Gromov-Witten invariants

The condition of A being minimal in Theorems 3.2.4 and 3.2.5 is very strong. In order to
remove it one needs to deal with the bubbling phenomenon, as it obstructs compactness
of the moduli spaces and thus prevents defining the cobordism class [M]. The idea is to
compactify the moduli space by adding limits of sequences of pseudoholomorphic curves.
This procedure is called Gromov-compactification. The limits are no longer holomorphic
curves in the previous sense, but so called nodal curves.

Nodal curves:
A nodal J-holomorphic curve with m marked points representing the homology class
A ∈ H2(M,Z) is a tuple

(Σ, j, u, (ζ1, . . . , ζm),∆)

consisting of

• a closed Riemann surface (Σ, j) with connected components Σ1, . . . ,Σp,
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Figure 3.3.: The domain of a nodal curve consisting of four connected components, one
marked point and four nodes.

• a J-holomorphic curve u : (Σ, j) → (M,J), such that [u] := ∑p
i=1 u∗[Σi] = A ∈

H2(M),

• an ordered set of distinct points (ζ1, . . . , ζm) ∈ Σm,

• a set of nodes ∆ = {{ẑ1, ž1}, . . . , {ẑr, žr}} such that ẑ1, ž1, . . . , ẑr, žr, ζ1, . . . , ζm ∈ Σ
are distinct and

u(ẑi) = u(ži) for all i = 1, . . . , r.

We say such a nodal curve is of arithmetic genus g if by replacing all nodal points ẑi, ži

by circles Ĉi, Či and gluing together the circles Ĉi and Či we obtain a closed connected
surface Σ̂ of genus g.

Stable curves:
A nodal curve is called stable if, after removing all the marked points ζ1, . . . , ζm and nodal
points ∆ from Σ to produce a punctured surface Σ̇, every connected component of Σ̇ on
which u is constant has negative Euler characteristic. This means constant spheres need to
have at least three marked points. We call those spheres where u is constant ghost bubbles.
The stability condition is necessary to make the isotropy subgroup of every stable map
finite. Define the space of stable nodal curves as

Mg,m(A; J) :=
{
[(Σ, j, u, (ζ1, . . . , ζm),∆)]

}/
∼

where
[(Σ, j, u, (ζ1, . . . , ζm),∆)] ∼ [(Σ′, j′, u′, (ζ ′

1, . . . , ζ
′
m),∆′]

if there exists a biholomorphic map φ : (Σ, j) → (Σ′, j′) such that u = u′ ◦ φ and φ(ζi) =
ζ ′

i, φ(ẑi) = ẑ′
i, φ(ži) = ži.
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Figure 3.4.: The figure shows how the arithmetic genus of the nodal curve shown in figure
3.3 can be determined by constructing the surface Σ̂. This surface has arith-
metic genus 5.

Figure 3.5.: The figure illustrates the image of the nodal curve in figure 3.3. One can see
that Σ2 is a ghost bubble as u is constant on Σ2. The nodal curve is still stable
as Σ2 has three marked points or nodal points.

Dual graph representation:
Nodal surfaces can be represented by labelled graphs Γ. Let (Σ, (ζ1, . . . , ζm),∆) be a nodal
surface, then the vertices in Γ correspond to the components Σi of Σ and are labeled by
their genus gi. For each pair of nodes, we add an edge, for each marked point ζj ∈ Σi

we attach a half edge to the vertex representing Σi and label it with the index j. For an
example see figure 3.6.

Genus zero:
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Figure 3.6.: Dual graph representation of a stable nodal Riemann surface.

We will from now on restrict to the genus zero case, as on the one hand it simplifies the
following arguments and on the other hand is the only case we will need. Observe that for
a nodal curve

(Σ, j, u, (ζ1, . . . , ζm),∆) ∈ M0,m(A; J)
all connected components of Σ must be spheres S2

α and the dual graph must be a tree
T . On a tree we can make sense of the notion of intervals. For α, β ∈ T the interval
[α, β] ⊂ T is the set of vertices lying on the unique chain connecting α and β. We can then
for α, β ∈ T define the sub tree

Tαβ := {γ| β ∈ [α, γ]}.

An example is shown in figure 3.7. Every vertex α of the tree T corresponds to a pseudo-

Figure 3.7.: The red part of the tree is Tαβ.

holomorphic sphere uα : S2
α → M . Every edge αβ of T corresponds to a node. Denote the

nodal points by zαβ ∈ S2
α and zβα ∈ S2

β. The energy of a nodal curve u ∈ Mg,m(A; J) is
defined as

E(u) :=
∑
α∈T

E(uα)
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and we denote
mαβ(u) :=

∑
γ∈Tαβ

E(uγ).

Gromov-convergence:
We can now say what convergence of a sequence of holomorphic spheres to a nodal curve
means. Let J ∈ J (M,ω) and

(u, z) = ({uα}α∈T , {zαβ}, ξ1, . . . , ξm) ∈ M0,m(A; J)

be a stable nodal map with dual graph T . A sequence of pseudoholomorphic spheres
uν : S2 → M with m distinct marked points ξν

1 , . . . , ξ
ν
m ∈ S2 is said to Gromov converge to

(u, z) if there exists a collection of Möbius transformations {ϕν
α}ν∈N

α∈T such that the following
holds.

(Map): For every α ∈ T the sequence uν
α := uν ◦ ϕν

α : S2 → M converges to uα

uniformly on every compact subset of S2
α \Zα, where Zα is the set of nodal points in

S2
α.

(Energy): For every two vertices α, β ∈ T that are joined by en edge in T ,

mαβ(u) = lim
ϵ→0

lim
ν→∞

E(uν
α, Bϵ(zαβ))

where E(uν
α, Bϵ(zαβ)) denotes the energy of the J-holomorphic curve uν

α|Bϵ(zαβ).

(Rescaling): If α, β ∈ T are joined by an edge in T , then ϕν
αβ := (ϕν

α)−1 ◦ ϕν
β

converges to zαβ uniformly on every compact subset of S2 \ {zβα}.

(Marked Point): ξi = limν→∞(ϕν
αi

)−1(ξν
i ) for i = 1, . . . ,m.

Gromov-compactness:
We can now state Gromov’s compactness Theorem.

Theorem 3.2.6 (Thm. 5.3.1. [40]).
Let (M,ω) be a compact symplectic manifold and J ∈ J (M,ω). Then any sequence of non-
constant holomorphic curves (uν , ξν) ∈ M(A; J) × (S2)m has a subsequence that Gromov
converges to a stable nodal curve in M0,m(A; J). The limit is up to equivalence unique.

The idea is that the only obstruction to the existence of a convergent subsequence is bub-
bling. If one removes the points where bubbling occurs, the holomorphic curves converge.
The bubbles connect and thus form nodes on the limit curve. The total energy is preserved
under the bubbling process and since every bubble takes by [40, Prop. 4.1.4] at least ℏ > 0
of the energy of u there can only be finitely many bubbles.

Pseudo-cycles [40, chpt. 6.5]:
Consider a smooth m-dimensional manifold X. An arbitrary subset B ⊂ X is said to be of
dimension at most d if it is contained in the image of a map g : W → X which is defined on
a manifold W whose components have dimension less than or equal to d. A d-dimensional
pseudocycle in X is a smooth map

f : V → X
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defined on an oriented d-dimensional manifold V such that f(V ) has a compact closure
and

dim Ωf ≤ dimV − 2, Ωf :=
{

lim f(xn)|sequences xn with no limit points in V
}
.

A pseudocycle determines a compact subset f(V ) ⊂ X with boundary of maximal dimen-
sion less than d−2. Thus roughly speaking f(V ) is close to compact submanifolds without
boundary and can therefore be used to determine a (weak representative) of a homology
class. One can define a notion of cobordisms, transversality and intersections similarly as
one does for compact submanifolds without boundary.

Gromov–Witten invariants:
Gromov–Witten invariants are defined as suitable intersection product of pseudocycles
using the fact that the evaluation map defines a pseudocycle.

Theorem 3.2.7 (Thm. 6.6.1 [40]). Let (M,ω) be a closed semipositive symplectic 2n-
manifold and let J ∈ J (M,ω) regular2. Let A ∈ H2(M ;Z) be a spherical homology class
that is not a nontrivial integer multiple of a spherical homology class B with Chern number
c1(B) = 0. Then the evaluation map

ev : M∗
0,k(A; J) → Mk

is a pseudocycle of dimension 2n+ 2c1(A) + 2k − 6. Its cobordism class is independent of
J .

Based on this Theorem one can finally define Gromov–Witten invariants.

Theorem 3.2.8 (Thm. 6.6.1 [40]). Let (M,ω) be a closed semipositive symplectic 2n-
manifold, m be a non-negative integer, and A ∈ H2(M ;Z) be a spherical homology class
that is not a nontrivial integer multiple of a spherical homology class B with Chern number
c1(B) = 0. Then the homomorphism

GWM
A,k : H∗(M)⊗k → Z; GWM

A,k(a1, . . . , ak) := f · evJ ,

is independent of the regular almost complex structure J and the pseudocycle f used to
define it. Here f : U → Mk k is a pseudocycle Poincaré dual to π∗

1a1 ∪ . . . ∪ π∗
kam, and

πi : Mk → M denotes the projection onto the i-th factor.

3.2.3. Lu’s Theorem

We can now state a more general version of Hofer–Viterbo’s theorem 3.2.4 that was proven
by Lu. He removes the condition of A ∈ H2(M,Z) being minimal, that ensures that the
moduli space is compact, by working with the Gromov compactification and Gromov–
Witten invariants. His theorem is stated in terms of so called pseudo symplectic capacities
of Hofer–Zehnder type.

2For nodal curves the definition of regular is a bit more complex. One needs regularity for all components
and something called edge transversality. For the precise definition see [41, Def. 6.2.1].
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Definition 3.2.9. For a connected symplectic manifold (M,ω) of dimension at least 4 and
two nonzero homology classes α0, α∞ ∈ H∗(M,Q), we call a smooth function H : M → R
(α0, α∞)-admissible (resp. (α0, α∞)◦-admissible) if there exist two compact submanifolds
P and Q of M with connected smooth boundaries and of codimension zero such that the
following condition groups (1)(2)(3)(4)(5)(6) (resp. (1)(2)(3)(4)(5)(6)’) hold:

(1) P ⊂ Int(Q) and Q ⊂ Int(M);

(2) H|P = 0 and H|M\Int(Q) = maxH;

(3) 0 ≤ H ≤ maxH;

(4) There exist cycle representatives of α0 and α∞, still denoted by α0, α∞, such that
supp(α0) ⊂ Int(P ) and supp(α∞) ⊂ M \Q;

(5) There are no critical values in (0, ε) ∪ (maxH − ε,maxH) for a small ε = ε(H) > 0;

(6) The Hamiltonian system ẋ = XH(x) on M has no non-constant fast periodic solu-
tions;

(6)’ The Hamiltonian system ẋ = XH(x) on M has no non-constant contractible fast
periodic solutions.

We respectively denote by

Had(M,ω;α0, α∞) and H◦
ad(M,ω;α0, α∞)

the set of all (α0, α∞)-admissible and (α0, α∞)◦-admissible functions. Define the pseudo
symplectic capacities of Hofer–Zehnder type

C
(2)
HZ(M,ω;α0, α∞) := sup{maxH| H ∈ Had(M,ω;α0, α∞)}

and
C

(2◦)
HZ (M,ω;α0, α∞) := sup{maxH| H ∈ H◦

ad(M,ω;α0, α∞)}.

Lu proved that these pseudo symplectic capacities can be bounded from above when suit-
able Gromov–Witten invariants do not vanish.

Theorem 3.2.10 (Thm. 1.10,[37]). Let (M,ω) be a closed symplectic manifold of dimen-
sion dimM ≥ 4 and fix two non-zero homology classes α0, α∞ ∈ H2(M,Q). Suppose there
exists a homology class A ∈ H2(M ;Z) for which the Gromov-Witten invariant3

GW(M,ω)
A,g,k+2(α0, α∞, β1, . . . , βm) ̸= 0

for some homology classes β1, . . . , βm ∈ H∗(M ;Q) and an integer m ≥ 1. Then

C
(2)
HZ(M,ω;α0, α∞) ≤ ω(A)

and if A is a spherical class, i.e. g = 0 then also

C
(2◦)
HZ (M,ω;α0, α∞) ≤ ω(A).

3In principle Gromov–Witten invariants can be defined for arbitrary genus g. This theorem holds for
arbitrary genus, thus the g appears as index.
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As these pseudo capacities are a bit uncommon we rephrased this theorem in terms of
the relative Hofer–Zehnder capacity. Indeed, the following Corollary is weaker than Lu’s
theorem and follows more or less directly from it.

Corollary 3.2.11. Let (M,ω) be a closed symplectic manifold of dimension dimM ≥ 4
and fix two disjoint closed4 connected submanifolds Σ0,Σ∞ ⊂ M of codimension at least
two. Denote by [Σ0], [Σ∞] ∈ H2(M,Q) the induced homology classes. Suppose there exists
a homology class A ∈ H2(M ;Z) for which the Gromov-Witten invariant

GW(M,ω)
A,g,k+2([Σ0], [Σ∞], β1, . . . , βm) ̸= 0

for some homology classes β1, . . . , βm ∈ H∗(M ;Q) and an integer m ≥ 1. Then the relative
Hofer–Zehnder capacity

cHZ(M \ Σ∞,Σ0;ω) ≤ ω(A)
and if A is a spherical class, i.e. g = 0 then also

c◦
HZ(M \ Σ∞,Σ0;ω) ≤ ω(A).

Proof. We need to show that

Had(M \ Σ∞,Σ0;ω) ⊂ Had(M,ω; [Σ0], [Σ∞])

because then
cHZ(M \ Σ∞,Σ0, ω) ≤ C

(2)
HZ(M,ω; [Σ0], [Σ∞]).

Indeed as Σ0,Σ∞ are connected and of codimension at least two, the boundary of any
small closed disc sub bundle DεΣ0, DεΣ∞ of the normal bundle is connected and we can
set P = DεΣ0 and Q = M \Int(DεΣ∞). For ε > 0 small enough condition (1) is satisfied as
Σ0 and Σ∞ are disjoint and compact. Now let H ∈ Had(M \ Σ∞,Σ0;ω), then H vanishes
on an open neighborhood of Σ0 and constantly attains its maximum an a neighborhood
of Σ∞. In particular for ε > 0 small enough H also satisfies condition (2). Conditions
(3) and (6) hold true per definition and (4) per construction. Condition (5) follows as
M is compact, thus critical values can not accumulate. The π1-sensitive claim follows
analogously.

Remark 3.2.12. As finitely many points can be moved by Hamiltonian diffeomorphisms,
i.e. Ham(M,ω) is k-transitive, it follows that 2-point invariants yield upper bounds to the
Hofer–Zehnder capacity of M .

One can also find upper bounds for the Gromov-width using Lu’s Theorem. This also
demonstrates that Lu’s theorem is quite a bit stronger then the Corollary.

Corollary 3.2.13. Let (M,ω) be a closed symplectic manifold of dimension dimM =
2n ≥ 4. Suppose there exists a homology class A ∈ H2(M ;Z) and a homology class
α∞ ∈ Hd(M ;Q), d ≤ 2n− 2 for which the Gromov-Witten invariant

GW(M,ω)
A,g,k+2([pt.], α∞, β1, . . . , βm) ̸= 0

for some homology classes β1, . . . , βm ∈ H∗(M ;Q) and an integer m ≥ 1. Then

cG(M,ω) ≤ ω(A).
4compact with no boundary!
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Proof. Denote Σ∞ := {p0} ⊂ M and Σ∞ ⊂ M a representative of α∞, i.e. [Σ∞] = α∞.
We may pick p0 /∈ Σ∞. Suppose there was a symplectic embedding

φ : (B2n
R (0), ω0) ↪→ (M,ω).

Composing with a Hamiltonian diffeomorphism we can assume φ(0) = p0. As p0 /∈ Σ∞
there is an isotopy Ψt : M → M fixing p0 and pushing Σ∞ out of the embedded ball, i.e.

Ψt(p0) = p0 ∀t & Ψ1(Σ∞) ⊂ M \ φ(B2n
R (0)).

Explicitly Ψt can be realized by pushing forward the radial scaling of the ball and extending
it suitably on M . We conclude that

φ : (B2n
R (0), ω0) ↪→ (M \ Ψ1(Σ∞), ω)

and therefore it follows that

πR2 ≤ cG(M \ Ψ1(Σ∞), ω) ≤ cHZ(M \ Ψ1(Σ∞), ω)

≤ C
(2)
HZ(M, [Ψ1(Σ∞)], [Σ0]) ≤ C

(2)
HZ(M, [Σ∞], [Σ0]) = ω(A).

The second inequality follows as the Gromov width is the smallest capacity, the third
inequality follows from the previous corollary, the equality uses that the pseudo-capacity
only depends on homology classes and the last inequality is Lu’s theorem.
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A Hamiltonian S1-manifold is a symplectic manifold (M,ω) that admits a Hamiltonian
H : M → R such that the associated Hamiltonian flow is 1-periodic. On these manifolds
we have fairly good tools to understand the Gromov-width and the Hofer–Zehnder capacity.
For example a lower bound for the Hofer–Zehnder capacity can often immediately be given
in terms of the Hamiltonian H.

Lemma 4.0.1. Let (M,ω) be a compact symplectic manifold that admits a non-trivial
Hamiltonian circle action with moment map H : M → R. Further assume that H attains
its minimum on the interior and, if M has a boundary, its maximum constantly on the
boundary of M . Then

cHZ(M,ω) ≥ osc(H) = maxH − minH.

Proof. We need to modify the Hamiltonian H generating the circle action slightly so that
it becomes admissible. This can be done with the help of a function f : [a, b] → [0,∞)
satisfying

0 ≤ f ′(x) < 1,
f(x) = 0 near a,

f(x) = b− a− ε near b

with a = minH and b = maxH. Then all solutions to the Hamiltonian system with
Hamiltonian H̃ = f ◦H have period

T = 1
f ′(E) > 1.

Thus H̃ is admissible and we find the estimate

cHZ(M,ω) ≥ osc(H̃) = osc(H) − ε, ∀ε > 0

and the claim follows.

In some cases also a lower bound of the Gromov-width can be obtained.

Proposition 4.0.2 ([32] Prop. 2.8). In addition to the assumptions of Lemma 4.0.1
assume that the Hamiltonian circle action is semi free and that the minimum is isolated,
then

cG(M,ω) ≥ smin(H) − minH,

where smin(H) denotes the second lowest critical value.
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On the other hand we are also in a good position to expect that some 1-point and 2-point
Gromov-Witten invariants in suitable homology classes do not vanish, as we have pseu-
doholomorphic curves going through every point. Indeed we may assume our compatible
almost complex structure J to be S1-invariant1. Now as described in [41, Ex. 5.1.5] the
S1-orbit of a gradient flow line of H is a J-holomorphic sphere u connecting critical points
c± of H and ω(u) = H(c+)−H(c−). Any non-critical point lies on a gradient flow line and
at every critical point we have either incoming or outgoing flow lines. Thus we see that
these gradient spheres go through every point. It is still highly non-trivial to show that
some Gromov–Witten invariant does not vanish as there might be many (nodal or broken)
pseudoholomorphic spheres through every point, so that they cancel in the count.

4.1. Localization and Gromov–Witten invariants
The first important result towards explicit computations of Gromov–Witten invariants in
the context of Hamiltonian S1-manifolds is the localization principle proved by McDuff
and Tolman in [42, sec. 4.2].

Proposition 4.1.1 (Prop. 4.10 [42]). Let (M,ω) be a closed symplectic manifold with
a Hamiltonian S1-action. Fix a S1-invariant, regular, compatible almost complex struc-
ture J and a S1-invariant pseudo-cycle α : Z → Mk that represents a1 × . . . × ak ∈
H2(Mk,Z). Then a connected component of M0,k(M,J,A;Z) makes no contribution to
GWM (a1, . . . , ak;A) unless it contains an S1-invariant element.

In practise this means when counting pseudoholomorphic we may restrict to counting
S1-invariant curves. McDuff [39] found using this localization, a condition for when the
GW-invariant GWM

0,1(pt.;A) does not vanish.

Proposition 4.1.2 ([39]; Prop. 4.3). Suppose that (M,ω) is a Hamiltonian S1-manifold
whose maximal and minimal fixed point sets are divisors. Suppose further that at least one
of the following conditions holds:

(i) the action is semi-free, or

(ii) there is an ω-tame almost complex structure J on Dmax such that the non-constant
J-holomorphic spheres in Dmax do not go through every point.

Then GWM
0,1(pt.;A) ̸= 0, where A ∈ H2(M,Z) is the homology class represented by the

S1-orbit of a gradient flow line connecting minimum and maximum.

Combining this Proposition with Lu’s Theorem or rather its Corollary 3.2.11 we obtain
the following corollary.

Corollary 4.1.3. Let (M,ω) be a closed symplectic manifold and let H : M → R be a
Hamiltonian that induces a semi-free circle action. Denote by Hmax the critical set where
H attains its maximum and by Hmin the critical set where H attains its minimum. Further
assume that Hmin is a divisor, then

cHZ(M \Hmax, ω) = c0
HZ(M \Hmax, ω) = maxH − minH.

1If J is not invariant, we can always average the corresponding metric to be S1-invariant and then redefine
J .
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4.1. Localization and Gromov–Witten invariants

If Hmin is no divisor we can still calculate the relative Hofer-Zehnder capacity

cHZ(M \Hmax, Hmin, ω) = maxH − minH.

Proof. As H is a moment map for a semi-free circle action it is a Morse-Bott function [41,
Lem. 5.5.6]. Thus its critical manifolds are symplectic submanifolds. We can blow up
along Hmax to obtain the blow-up manifold (M̃, ω̃λ) (where λ parametrizes the symplectic
size of the blow-up) and a divisor Dmax ⊂ M̃ . We can choose an almost-complex structure
invariant under the Hamiltonian circle action, thus the Hamiltonian circle action survives
the blow up and we denote its moment map by H̃ : M̃ → R. For the blow-up we needed
to cut out a neighborhood of Hmax and therefore

osc(H̃) = osc(H) − O(λ),

where O(λ) is a term that goes to zero for λ → 0. As H̃ is again Morse-Bott and takes its
maximum on Dmax (at least for λ small enough) and its minimum on Hmin we know that
there must be a gradient flow line of XH̃ from Dmax to Hmin. Denote by A the homology
class of the S1-orbit of this flow line. Then by McDuff 4.1.2 we know that GWM

0,1(pt.;A) ̸= 0
and thus by Lu 3.2.11

c0
HZ(M̃ \Dmax, ω̃λ) ≤ ω̃λ(α) = osc(H̃) = osc(H) − O(λ).

On the other hand by construction of the blow-up we know that (M̃ \ Dmax, ω̃λ) is sym-
plectomorphic to (M \ Nλ(Hmax), ω). Thus

c0
HZ(M \ Nλ(Hmax), ω) ≤ osc(H) − O(λ)

and inner regularity of the Hofer–Zehnder capacity assures that in the limit λ → 0

c0
HZ(M \Hmax, ω) ≤ osc(H).

Since we can modify H close to Hmin and Hmax so that it becomes admissible osc(H)
bounds cHZ(M \Hmax, ω) from below and we obtain

osc(H) ≤ cHZ(M \Hmax, ω) ≤ c0
HZ(M \Hmax, ω) ≤ osc(H).

If Hmin is no divisor we also need to blow up along Hmin and therefore we only compute
the Hofer–Zehnder capacity for the class of admissible Hamiltonians vanishing on Hmin.
This yields the relative Hofer–Zehnder capacity.

We can use this Corollary to immediately compute our first (relative) Hofer–Zehnder ca-
pacity.

Example 4.1.4. Let us consider the standard tangent bundle (TM, dλ) of some Zoll man-
ifold (M, g)2. Denote by l the length of the geodesics. If we remove the zero section the
Hamiltonian

H : TM \ 0T M → R; (x, v) 7→ l|v|
2A metric on M is called Zoll if all geodesics are closed and of same length.
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4. Hamiltonian S1-manifolds

is smooth and generates a free Hamiltonian circle action. We can now do a Lerman-cut
at H = ε and H = l. The resulting manifold (D1M \ 0T M ,dλ) is closed with a semi-free
Hamiltonian circle action. We can now apply Cor. 4.1.3 to obtain

cHZ(D1M,M,dλ) = l,

which confirms the results of [49, Prop. 4.3] and [5, Cor. 2.8] in the special case of Zoll
manifolds.

The same idea of computing Hofer–Zehnder capacities using Lu’s theorem in the context of
Hamiltonian circle actions was also used by Hwang and Suh [28] for closed Fano3 symplectic
manifolds with semi-free Hamiltonian circle action.

Theorem 4.1.5 (Thm. 1.1. [28]). Let (M,ω) be a closed Fano symplectic manifold with
a semifree Hamiltonian circle action. The Gromov width and the Hofer–Zehnder capacity
are estimated as

(a) cG(M,ω) ≤ max(H) − min(H) ≤ cHZ(M,ω).

(b) Further if Hmin is a point, then

cG(M,ω) = smin(H) − min(H), cHZ(M,ω) = max(H) − min(H).

One nice observation from this theorem is that it is compatible with taking products. If
Fano symplectic manifolds (M1, ω1), (M2, ω2) with Hamiltonian circle actions generated
by H1, H2 satisfy the prerequisites of Theorem 4.1.5 (b), then so does (M1 ×M2, aω1 ⊕bω2)
with Hamiltonian aH1 ◦ π1 + bH2 ◦ π2, where π1, π2 are the projections on the first resp.
second factor. In particular

cG(M1 ×M2, aω1 ⊕ bω2) = min{|a|cG(M1, ω1), |b|cG(M2, ω2)}

and
cHZ(M1 ×M2, aω1 ⊕ bω2) = |a|cHZ(M1, ω1) + |b|cHZ(M2, ω2)

while for arbitrary symplectic manifolds only

cG(M1 ×M2, aω1 ⊕ bω2) ≥ min{|a|cG(M1, ω1), |b|cG(M2, ω2)}

and
cHZ(M1 ×M2, aω1 ⊕ bω2) ≥ |a|cHZ(M1, ω1) + |b|cHZ(M2, ω2)

holds.

Corollary 4.1.6. Let (M,ω) be a closed Fano symplectic manifold with a semifree Hamil-
tonian circle action and Hmin a point, then the Hofer–Zehnder capacity of any compact
neighborhood of the zero-section in (T ∗M,dλ) is bounded.

3They call (M, ω) Fano if there exists a compatible S1-invariant almost complex structure such that all
non-constant pseudo holomorphic spheres have positive Chern number. In particular monotone implies
Fano.
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Proof. The zero-section is a Lagrangian diffeomorphic to M . Also the diagonal in (M ×
M,ω ⊖ ω) is such a Lagrangian. By the previous considerations cHZ(M × M,ω ⊖ ω) is
finite. This implies by Lagrangian neighborhood theorem that the Hofer–Zehnder capacity
of some neighborhood of the zero-section must be finite. Scaling the fibers of the disc-
bundle only scales the symplectic form and thus the capacity. We can therefore shrink any
compact subset of T ∗M to fit in the neighborhood of the zero-section.

This corollary is a special case of the main theorem in [2] by Albers, Frauenfelder and
Oancea. Indeed for all such Fano symplectic manifolds the Hurewicz map

π2(M) → H2(M ;Z)

is nonzero, because all gradient spheres represent non-zero elements in H2(M ;Z).

4.2. Magnetic geodesic flow on constant curvature surfaces
In this section we shall see that the magnetic geodesic flow for the symplectically twisted
form on surfaces of constant sectional curvature gives rise to a Hamiltonian circle action.
So let Σ be a geodesically complete, 2-dimensional, smooth manifold and g a Riemannian
metric on Σ of constant curvature κ. Further denote by σ the corresponding area form and
by j the compatible complex structure. The circle action we are going to construct will be
a reparametrization of the magnetic geodesic flow and have contractible orbits. Hence, we
may work on the universal cover, which can be identified with CP1,C1,CH1 depending on
the sign of the curvature. We want to study the Hamiltonian flow for the kinetic energy

E : TΣ → R, (x, v) 7→ 1
2 |v|2x,

with respect to the twisted symplectic structure dλ − sπ∗σ. Using Lemma 2.2.2 we can
determine the Hamiltonian vector field

(XE)(x,v) = (v)H + s(jv)V = X + sV.

We need to look for periodic solutions γ(t) = (x(t), v(t)) to

γ̇ = XE = X + sV. (4.1)

Applying dπ to this equation yields

ẋ = dπγ̇ (4.1)= dπ(X + sV ) = dπLH(v) = v.

Thus our solutions must be of the form γ(t) = (x(t), ẋ(t)). On the other hand applying
the projection P : TTΣ → V on the vertical bundle yields

∇ẋẋ = P(γ̇) (4.1)= P(X + sV ) = sjv.

This means the projection to M of solutions are curves of geodesic curvature κg = | s
v |. If

R denotes the radius (with respect to the Riemannian metric g) of a geodesic circle we
know using normal polar coordinates that its circumference C and the geodesic curvature
κg are
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4. Hamiltonian S1-manifolds

Figure 4.1.: The picture shows families of geodesic circles. The vectors v0 of different length
indicate that the corresponding magnetic geodesic is a parametrized geodesic
circle of geodesic curvature κg = s/|v0|.

C = 2π√
κ

sin(
√
κR) = 2π

√
κ

−1 tan(
√
κR)√

1 + (tan(
√
κR))2

, (4.2)

κg =
√
κ

tan(
√
κR) . (4.3)

Here we use the convention
√

−1 = i and the formulas −i sin(ix) = sinh(x), cos(ix) =
cosh(x). Observe that in the hyperbolic case the geodesic curvature of geodesic circles can
not be less than

√
|κ|. Indeed curves of geodesic curvature less than

√
|κ| do not close up.

We therefore restrict to the regime of strong magnetic field, i.e. s2 + κ|v|2 > 0. See Figure
4.1 for a visualisation. Inserting κg into (4.2) yields

C = 2π
κg

√
1 + κ/κ2

g

= 2π|v|√
s2 + κ|v|2

,

where in the last step we inserted κg = s/|v|. Now, we conclude that the period is given
by

T = C

|v|
= 2π√

s2 + κ|v|2
.

In particular the reparametrization H = h ◦ E with

h : R≥0 → R; h(E) = 2π
κ

(√
s2 + 2κE − |s|

)
induces a Hamiltonian S1-action (of period T = 1). We can now conclude the following
proposition.

Proposition 4.2.1. Let (Σ, g, j) a Riemann surface of constant sectional curvature κ.
Then for constants s ∈ R \ {0} and ρ > 0 satisfying s2 + κρ2 > 0 the Hamiltonian

H : DρM → R; (x, v) 7→ 2π
κ

(√
s2 + κ|v|2 − |s|

)
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4.2. Magnetic geodesic flow on constant curvature surfaces

generates a Hamiltonian circle action on the disc-subbundle (DρM,ωs) of the magnetically
twisted tangent bundle.

Observe that all computations survive the limit κ → 0. For example the Hamiltonian H
is in the case κ = 0 given by H = E/|s|.

If we solve (4.3) for the radius R we obtain

R = 1√
κ

arctan(
√
κ|v/s|).

Based on this we define a function b that will become more important later on.

Definition 4.2.2 (Radial function of geodesic circles). We define the function

b : TM → R≥0; (x, v) 7→
arctan(

√
κ|v|
|s| )

√
κ|v|

.

Geometrically R = |v|b(|v|) is the radius of the geodesic circles that are the trajectories of
XH . Observe that b is smooth and even in |v| and thus b is also smooth on the zero-section.

4.2.1. Hofer–Zehnder capacity for magnetic surfaces
We just found that these twisted tangent bundles are Hamiltonian S1-manifolds. Now we
can use this to determine their Hofer–Zehnder capacity.

Theorem 4.2.3. Let (Σ, gκ) be a closed connected orientable Riemannian surface with
constant curvature κ. Denote by σκ the corresponding area form, by λ the canonical one-
form on TΣ and define the disc bundle DρΣ := {(x, v) ∈ TΣ | |v| < ρ} of radius ρ with
respect to gκ. Then, whenever s2 + κρ2 > 0 for some s ∈ R \ 0, we have

c0
HZ(DρΣ,dλ− sπ∗σκ) = 2π

κ

(√
s2 + κρ2 − |s|

)
.

Proof. Observe that for ρ > 0 satisfying s2 + κρ2 > 0 the Hamiltonian

H : Dρ+εΣ → R; H(x, v) = 2π
κ

(√
s2 + κ|v|2 − |s|

)
is well-defined, smooth and generates a semi-free S1-action. We can use the Lerman-
cut construction at the regular energy surface {|v| = ρ} to compactify (DρΣ, ωs). The
compactification (DρΣ, ωs) is a closed symplectic 4-manifold with semi-free Hamiltonian
circle action. The critical set where the Hamiltonian attains its minimum corresponds to
the zero-section and is thus of codimension two. Now we are precisely in the setup of
Corollary 4.1.3 and its application yields

c0
HZ(DρΣ) \ H̄max, ω̄s) = 2π

κ

(√
s2 + κρ2 − |s|

)
The critical set H̄max where the Hamiltonian H̄ : DρM → R attains its maximum is
precisely the set we glued in to compactify DρΣ, this means

(DρΣ \ H̄max, ω̄s) ∼= (DρΣ, ωs)

and thus the claim follows.
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4. Hamiltonian S1-manifolds

The theorem covers three types of surfaces: spheres (κ > 0), tori (κ = 0) and higher genus
surfaces (κ < 0). The assumption s2 + κρ2 > 0 does not put any additional constraint on
the sphere, for the torus it tells us that the magnetic field does not vanish, i.e. s ̸= 0, and
for higher genus surfaces it tells us to look at strong magnetic fields, i.e. |s| >

√
−κρ.

Remark 4.2.4. While cHZ ≤ c0
HZ always holds, we found in these three cases that actually

c0
HZ(DρΣ,dλ− sπ∗σκ) = cHZ(DρΣ, dλ− sπ∗σκ),

as the lower bound was obtained from a Hamiltonian with no fast periodic orbits, neither
contractible nor not contractible.

4.3. Capacities of Hermitian symmetric spaces
In this section we will compute the Gromov width and the Hofer–Zehnder capacity of
irreducible Hermitian symmetric spaces of compact type. The Gromov width was already
determined by Loi, Mossa and Zuddas [35], but the value for the Hofer–Zehnder capacity
at least to the knowledge of the author was still unknown. We will prove respectively give
an alternative proof of the following two theorems.

Theorem 4.3.1 (Thm. G). Let (M, g) be an irreducible Hermitian symmetric space of
compact type. Denote by r the rank of M and normalize σ such that σ(A) = 4π for A the
homology class of any factor in a poly-sphere. Then the Hofer–Zehnder capacity is given
by

cHZ(M,σ) = 4πr.

For the special case of complex Grassmanians Theorem 4.3.1 was proven by [28, Ex. 4.1].

Theorem 4.3.2 ([35] Thm. 1). Let (M, g) be an irreducible Hermitian symmetric space
of compact type. Normalize σ such that σ(A) = 4π for A the homology class of any factor
in a poly-sphere. Then the Gromov width is given by

cG(M,σ) = 4π.

We shall see that all (irreducible) Hermitian symmetric spaces satisfy the prerequisites
of Theorem 4.1.5 by Hwang and Suh. Indeed Hermitian symmetric spaces are monotone
and thus Fano as shown in [10, Ch. 5, §16]. Further as stated in the following Lemma
the representation of M as adjoint orbit OZ ⊂ g almost immediately yields a Hamiltonian
circle action.

Lemma 4.3.3. Let M be an irreducible Hermitian symmetric space. The Hamiltonian
function

ν : M ∼= OZ → R, x 7→ 2πB(Z, x)
generates a circle action. Here B(·, ·) : g × g → R denotes the Killing form.

Proof. Let us compute the Hamiltonian vector field,

dνx(·) = 2πB(Z, [x, ·]) = −2πB([Z, ·], x) = 2πιZ#σ.

We conclude Xν = 2πZ#, which clearly generates a circle action, as the group generated
by Z is isomorphic to S1. We shall see later that the prefactor is there to ensure that the
period of the circle action is one (see figure 4.2).
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4.3. Capacities of Hermitian symmetric spaces

Figure 4.2.: In order to satisfy ad2
Zi

= −id, the norm of Zi needs to be one. We see that
(Zi, xi) is equal to the height function, which generates a circle action of period
2π. In particular ν generates a circle action of period one.

In order for ν to fulfill the prerequisites of Theorem 4.1.5 we need to show that ν has an
isolated minimum. Clearly Z is a critical point of ν. We claim that the point Z is the
isolated minimum of ν.

Lemma 4.3.4. The Hessian of ν at p = Z is positive definite, thus p = Z is isolated and
the global minimum.

Proof. Take a, b ∈ p ∼= TZM , then

HessZ(ν)(a#
Z , b

#
Z ) = a#

(
b#(ν)

) ∣∣
Z

= a#
(
dν(b#)

) ∣∣
Z

= a# (2πB(Z, [b, p]))
∣∣
p=Z( d

dt
∣∣∣
t=0

2πB(Z, [b,Adeta(p)])
) ∣∣

p=Z
= 2πB(Z, [b, [a, Z]]) = −2πB(a, b).

We conclude that
HessZ = −2πB(·, ·)|p×p.

In particular the Hessian is positive definite as the Killing-form restricted to p is negative
definite in the compact case. This shows that ν is a local minimum. In general any
Hamiltonian generating a circle action is a Morse-Bott function, its critical submanifolds
are symplectic and their indices and coindices are even [41, Lem. 5.5.7]. By [41, Lem.
5.5.5] all level sets of such functions are connected, thus p = Z is the global minimum.

This shows that our moment map ν satisfies the prerequisites of Theorem 4.1.5.

Lemma 4.3.5. The Hamiltonian ν satisfies

max(ν) − min(ν) = 4πr, smin − min(ν) = 4π,

where smin(ν) denotes the second lowest value of ν at a critical point.

Proof. Observe that for any x ∈ M there exists a poly-sphere through x and Z. From
Lemma 2.4.24 we know that the poly-spheres are sub orbits and stay in an affine copy of
(su(2))r. Thus we can decompose Z = ∑

i Zi + c and x = ∑
i xi + c, where c the vector

orthogonal to the affine subspace (see Figure 4.3). Recall that we picked Z ∈ g the unique
generator of the center of K such that [Z, [Z, v]] = −v for all v ∈ p. In particular it follows
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Figure 4.3.: The figure schematically shows how the poly-spheres sits in an affine copy of
su(2)r.

that |Zi| = 1. Indeed, this is equivalent to the above condition as [Zi, [Zi, v]] = −|Zi|2v for
the case su(2). See figure 4.2 for a visualization. We compute

(Z, x) =
r∑

i=1
(Zi, xi) + |c|2 =

r∑
i=1

cos(θi) + |c|2,

where we used that |Zi| = |xi| = 1. Therefore we conclude

max(ν) − min(ν) = 4πr and smin(ν) − min(ν) = 4π.

These three Lemmas together with Theorem 4.1.5 prove Theorem 4.3.1 and 4.3.2.
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5. Symplectically twisted tangent bundle as
Hermitian vector bundle

The goal of this section is to relate the following symplectic structures of the tangent bundle
of locally Hermitian symmetric spaces M .

1. The symplectically twisted symplectic structure (TM, dλ − π∗σ) below the Mané
critical value.

2. The symplectic structure (TM, dτ/2 − π∗σ) in a neighborhood of the zero-section
determined by the holomorphic bisectional curvature.

3. The symplectic form ωI belonging to the hyperkähler structure that exists in a neigh-
borhood of the zero-section.

The identification of the above structures evolved in three steps, generalizing the class of
manifolds. The first construction only works for constant curvature surfaces as it plays
with the fact that in dimension four the vector fields X,H, Y, V form a global frame of
T (TM \ 0T M ). The second construction only works for spaces with constant holomor-
phic sectional curvature and uses that the differential of our symplectomorphism can be
expressed in terms of Jacobi fields, which are particularly easy to determine in the case
of constant holomorphic sectional curvature. The last and most general construction uses
the global symmetries of Hermitian symmetric spaces. Intertwining the moment maps of
the group actions already determines most of the map. Further observe that locally near
the zero-section all three structures must be equivalent by the symplectic neighborhood
theorem. This section is concerned with making things work globally or at least in an
explicit neighborhood of the zero-section. We start the section with an observation for the
easiest case, a flat manifold.

Remark 5.0.1. All our constructions work equally well on quotients by finite subgroups
of the isometry group. We shall therefore always work on the universal cover. For example
flat manifolds are covered by Euclidean space. Only when speaking about capacities we
assume our base manifold to be closed. Further we fix the real parameter s > 0. The
calculations should also go through for s < 0, but changing the sign s → −s one also needs
to change j → −j and τ → −τ , so it gets a little tedious to trace.

5.1. Observation for symplectic vector spaces

As a first example let us look at a symplectic vector space (V, σ). Choose a compatible
complex structure j such that σ(·, j·) =: g defines a metric. The tangent bundle TV will be
identified with V ×V . We can think of the factors as horizontal and vertical. Now we want
to compare three symplectic structures on TV = V × V namely dτ/2 − sπ∗σ, dλ − sπ∗σ
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5. Symplectically twisted tangent bundle as Hermitian vector bundle

and in the case s = 1 also −ωI . The formulas in Proposition (2.1.5) in the introduction
yield in the flat case

dτ/2 − sπ∗σ :=
(

−sσ 0
0 σ

)
where the matrix is decomposed with respect to the identification TV = V × V . We
immediately see that dτ−π∗σ = −ωI in the flat case. The symplectically twisted structure
is given by

dλ− sπ∗σ :=
(

−sσ g
−g 0

)
.

For both symplectic structures the kinetic Hamiltonian E(x, v) = 1
2g(v, v) generates a

circle action. In the Hermitian case the orbits are simply (x, ejtv). For the symplectically
twisted case the orbits are of the form (γ(t), γ̇(t)), where γ parametrizes a circle of radius
|γ̇|/s in the affine plane γ(0) + span{γ̇(0), jγ̇(0)}. We claim that the map that intertwines

Figure 5.1.: The Hamiltonian circle action for the symplectically twisted tangent bundle.

these circle actions

Ψ :
(
TV,

(
−sσ 0

0 σ

))
→
(
TV,

(
−sσ g
−g 0

))
;
(
x
v

)
7→
(
x+ jv/s
v/

√
s

)
=
(

1 j/s
0 1/

√
s

)(
x
v

)
is a symplectomorphism. The proof is one line of matrix multiplication(

1 0
−j/s 1/

√
s

)(
−sσ 0

0 σ

)(
1 j/s
0 1/

√
s

)
=
(

−sσ g
−g 0

)
.

We conclude that all three symplectic structures are equivalent in the flat case. The idea
of this chapter is to generalize the above symplectomorphism to some non-flat Kähler
manifolds. This will be done by replacing the linear maps by flows of the vector fields
Y := (v)V and H := (jv)H. The linear case can also be rephrased in this language. Simply
look at

ΦY
a (x, v) = (x, eav), ΦH

b (x, v) = (x+ bjv, v).
Now we identify

Ψ = ΦY
ln(

√
s

−1) ◦ ΦH
s−1 : TV → TV.
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5.2. Constant curvature surfaces
The results of this sections are also contained in an arXiv article of the author [7]. Rie-
mannian surfaces (Σ, g) of constant curvature κ are our main examples, all further gener-
alizations will be reduced to this case by using the polysphere/ polydisc theorem 2.4.13.
The case of surfaces is special, as it is the only case where the vector fields X,H, Y and V
determine a frame of TTM outside the zero-section. This makes it possible to construct
the symplectomorphism in a more elegant and direct way than in the higher dimensional
cases. Observe that the commutation relations Prop. 2.1.3 for constant curvature simplify
to

[Y,X] = X, [Y,H] = H, [Y, V ] = 0,
[V,X] = H, [V,H] = −X, [X,H] = 2EκV.

These translate into the following formulas for the exterior derivatives of the (metric) dual
frame (λ, η,dE, τ) of 1-forms

dλ = 1
2E (dE ∧ λ+ τ ∧ η)

dη = 1
2E (λ ∧ τ + dE ∧ η)

dτ = κη ∧ λ+ 1
E

dE ∧ τ.

Observe that in particular

d
(
τ

2E

)
= − k

2Eλ ∧ η = −κπ∗σ

and thus

dλ− sπ∗σ = d
(
λ+ s

2Eκτ
)

and dτ/2 − sπ∗σ = 1
2d
(

1 + s

2κE

)
τ

outside the zero section. As indicated in the previous section we will use the flows of our
vector fields H and Y to construct the symplectomorphism. This computation was done
for curvature κ = 1 in [6, Thm. A.1.], we only adopt it to general constant curvature. Let
ξ be some 1-form on TΣ. We want to compute dΦH

t (ξ). For the sake of this we make
use of the fact that λ, η,dE, τ yields a global dual frame outside the zero section, thus
(ΦH

t )∗(ξ) = xλ+ yη + zτ + wdE for some coefficients x, y, z, w depending on t. Thus

0 = d
dt
[
(ΦH

−t)∗(ΦH
t )∗λ

]
= d

dt
[
(ΦH

−t)∗(xλ+ yη + zτ + wdE)
]

= ẋλ+ ẏη + żτ + ẇdE − xLHλ− yLHη − zLHτ − wLHdE
= ẋλ+ ẏη + żτ + ẇdE − xιHdλ− yιHdη − yd(ιHη) − zιHdτ
= ẋλ+ ẏη + żτ + ẇdE + xτ + ydE − 2ydE − 2Eκzλ.

This yields the following system of ODE’s,

ẋ = 2Eκz, ẏ = 0, ż = −x ẇ = y.
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5. Symplectically twisted tangent bundle as Hermitian vector bundle

Denote the initial data by x0, y0, z0, w0 ∈ R, then the system is solved by

x(t) = x0 cos(
√

2Eκt) + z0
√

2κE sin(
√

2Eκt), y(t) = y0,

z(t) = z0 cos(
√

2Eκt) − x0√
2Eκ

sin(
√

2Eκt), w(t) = w0 + y0t.

Plugging in the initial conditions for ξ equal to λ, η, τ,dE we obtain

(ΦH
t )∗λ = cos(

√
2Eκt)λ− 1√

2Eκ
sin(

√
2Eκt)τ,

(dΦH
t )∗η = η, (dΦH

t )∗dE = dE,
(dΦH

t )∗τ = cos(
√

2Eκt)τ +
√

2Eκ sin(
√

2Eκt)λ.

Analogously one gets ODE’s determining the pullback via the flow of Y ,

ẋ = x, ẏ = y, ż = 2z ẇ = 2w

with solutions

x(t) = x0e
t, y(t) = y0e

t, z(t) = z0e
2t, w(t) = w0e

2t.

Thus
(ΦY

t )∗λ = etλ, (ΦY
t )∗η = etη, (ΦY

t )∗τ = e2tτ, (ΦY
t )∗dE = e2tdE.

For the symplectomorphism we will not only need the flows of H,Y for some constant
times, but rather times depending on r := |v|. We make the ansatz

φ := ΦY
a(r) ◦ ΦH

b(r) : DρΣ → DeaρΣ

for some smooth even functions a, b : R → R. The differential of φ is

dφ = ȧ

b
Y ⊗ dr − aḃ

(
dΦY

a H
)

⊗ dr + dΦY
a dΦH

b

and dΦY
a H = eaH, thus τ vanishes on the first two summands. Now we can compute

φ∗
(1

2 + s

κr2

)
τ =

(1
2 + s

κe2ar2

)
e2a(cos(

√
κrb)τ +

√
κr sin(

√
κrb)λ) != α+ s

r2κ
τ.

We conclude that the functions a, b must fulfill the following equations
1√
κr

=
(1

2 + s

κe2ar2

)
e2a sin(

√
κrb),

s

r2κ
=
(1

2 + s

κe2ar2

)
e2a cos(

√
κrb).

They are solved by

b(r) = arctan(
√
κr/s)√

κr
, (5.1)

a(r) = 1
2 ln

( 2
κr2

(√
s2 + κr2 − s

))
. (5.2)

Indeed these are well-defined and smooth as long as κr2 + s2 > 0 and s > 0. Observe that
φ is a symplectomorphism onto its image as the function rea(r) is monotone in r. In total
we have proven the following theorem.
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Theorem 5.2.1. Let (Σ, g) be a surface with constant curvature κ. Then if s > 0, s2 +
κρ2 > 0, there is a symplectomorphism

φ : (DρΣ, λ− sπ∗σ) →
(
Dea(ρ)ρΣ,dτ/2 − sπ∗σ

)
intertwining magnetic geodesic flow and fiberwise rotation. In particular for non-negative
curvature κ ≥ 0 the symplectomorphism extends to the full tangent bundle.

Taking a closer look we may even realize that we already know the functions a, b. Indeed

E ◦ φ = 1
2e

2ar2 = 1
κ

(√
s2 + κr2 − s

)
is the Hamiltonian generating the circle action on the symplectically twisted tangent bundle
and b(r)r gives the radius of the geodesic circles that are the projected magnetic geodesics
(see Def. 4.2.2). So the map φ is indeed just the straight forward generalization of the flat
case. The flow of H is sending a point on the geodesic circle to the circle center, indeed if
we denote by γ(x,v)(t) = expx(tv) the geodesic starting at x in the direction v the flow of
H is given by

ΦH
t (x, v) = (γ(x,jv)(t), (Pγ(x,jv)v)(t)).

So we find
φ(x, v) = (γ(x,jv)(b), ea(Pγ(x,jv)v)(b)).

Remark 5.2.2. Observe that in all formulas we can take the limit κ → 0 and recover the
formulas for vector spaces.

In the case of negative curvature the symplectomorphism is only valid for the regime
s2 + κρ2 > 0. We can use the same ansatz to show another symplectomorphism in the
regime s2 + κρ2 < 0. As this is only relevant for negative curvature we shall set κ = −1.

Theorem 5.2.3. Let (Σ, g) be a surface with constant curvature κ = −1. For a < b we
denoted by Db

aΣ := {(x, v) ∈ TΣ | a < |v|} the annulus subbundle. Then if s < ρ, there is
a symplectomorphism

φ̃ : (Dρ
sΣ, λ− sπ∗σ) →

(
D

√
ρ2−s2

0 Σ,dλ
)

intertwining magnetic geodesic and geodesic flow.

Proof. We use the ansatz φ̃ = ΦY
ã(r) ◦ ΦH

b̃(r) for some functions ã, b̃. Then

φ̃∗λ = eã
(
cosh(rb̃))λ+ sinh(rb̃)/rτ

) != α− s

r
τ.

Thus ã and b̃ must fulfill

−s

r
= sinh(rb̃)eã, 1 = cosh(rb̃)eã,

which is solved by

ã(r) = 1
2 ln

(
r2 − s2

r2

)
, b̃(r) = 1

r
arctanh

(
−s

r

)
.

These are smooth as s < ρ, further reã(r) is monotone in r and therefore φ̃ is a diffeomor-
phism.
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5. Symplectically twisted tangent bundle as Hermitian vector bundle

This symplectomorphism can be used to compute the relative capacity.

Corollary 5.2.4 (Ex. 4.7;[19]). If s2 + κρ2 < 0 the Hofer–Zehnder capacity of (DρΣ, ωs)
relative to D |s|√

−κ

Σ is given by

cν
HZ

(
DρΣ, D |s|√

−κ

Σ, ωs

)
= lν

√
−(κρ2 + s2),

where lν denotes the shortest length of a closed geodesic in the free-homotopy class ν of
loops in Σ.

Proof. J. Weber determined in [49, Thm. 4.3] the value of the BPS-capacity of unit disc-
bundles with canonical symplectic structure relative to the zero section to be

cν
BP S(D1Σ,Σ, ω0) = lν . (5.3)

Ginzburg and Gürel showed in [20] section 2.2 that the relative Hofer–Zehnder capacity
coincides with the BPS-capacity for standard bundles as defined in [49]. Combining this
with the symplectomorphism above yields the corollary.

The value was already given in Ginzburg [19, Ex. 4.7], we wrote down the proof as we
could not find the details in the literature.

5.3. Spaces of constant holomorphic sectional curvature
In this section we will generalize our result from the previous section to higher dimensions.
As it turns out the spaces that are suitable higher dimensional analogues of constant
curvature surfaces are spaces of constant holomorphic sectional curvature.

Definition 5.3.1. The holomorphic sectional curvature of a Kähler manifold (M, g, j) is
defined to be

Hol : TM → R; (x, v) 7→ g(v,R(v, jv)jv)
|v|4

,

where R denotes the Riemannian curvature tensor of M .

Let now (M, g, j) be a Kähler manifold of constant holomorphic sectional curvature κ.
Further denote σ(·, ·) := g(j·, ·) the associated Kähler form on M . Manifolds of constant
holomorphic curvature can be characterized by the following theorem.

Theorem 5.3.2 ([34], Thm. 7.9). The universal cover of a space of constant holomor-
phic sectional curvature κ is holomorphically isometric to the model space of holomorphic
sectional curvature κ, i.e. complex projective space CPn, complex space Cn or complex
hyperbolic space CHn.

Since we will focus on contractible periodic solutions to Hamiltonian systems we can (for
now) pretend that M is one of the model spaces. The model spaces have one striking
property. Take a point (x, v) ∈ TM outside the zero-section, then there is an (up to
isometry) unique totally geodesic copy of CP1, C1 or CH1 through x with v tangent to it.
This means that some geometric and dynamical properties reduce to the study of these in
one complex dimension. We can still not just copy the two dimensional proof as it strongly
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5.3. Spaces of constant holomorphic sectional curvature

relied on the fact that the vector fields X,H, Y, V form a frame of TTΣ outside the zero-
section. Instead we will compute the differential of φ explicitly using Jacobi-fields. This
means we need to solve Jacobi-equations and this is possible since the curvature tensor for
spaces of constant holomorphic sectional curvature is relatively simple. Indeed as shown
in [34, Prop. 7.6] for a space of constant holomorphic sectional curvature κ the curvature
tensor is given by

R(W,Y )Z = κ

4 [g(W,Z)Y − g(Y, Z)W − g(W, jZ)jY + g(Y, jZ)jW − 2g(W, jY )jZ]. (5.4)

Using this formula the last commutator relation of Prop. 2.1.3 again simplifies to

[X,H] = (R(v, jv)v)V = 2κEV

and the exterior derivative of τ is

dτ = −2ωV + κ

2 [λ ∧ η + 2Eπ∗ω].

Theorem 5.3.3. Let (M, g, j) be a Kähler manifold of constant holomorphic sectional
curvature κ and let ρ > 0, s > 0 satisfy s2 + κρ2 > 0. Then

φ := ΦY
a ◦ ΦH

b : (DρM,dλ− sπ∗σ) → (DeaρM, dτ/2 − sπ∗σ)

is a symplectomorphism. Further the Hamiltonian circle action on (DρM,ωs) is intertwined
with the fiberwise rotation e2πjt : TpM → TpM .

The rest of this section contains the proof of this theorem. The strategy is very straight
forward. We compute the differential explicitly using Jacobi fields. Then we plug the
differential into the symplectic form to show that the map is symplectic.

Take a point (x, v) ∈ DρM and consider the curve

γ(t) = expx (−tb(|v|)jv)

We abbreviate ϕ := ΦH
−b = (ΦH

b )−1 and recall that the flow of H for time b is given by
sending x to γ(1) and parallel transporting v along the curve, i.e.

ϕ(x, v) = (γ(1), (Pγv) (1)) .

Since γ is a geodesic and j is parallel (i.e. ∇j = 0 for Kähler manifolds) we can rewrite the
parallel transport to find

ϕ(x, v) =
(
γ(1), b(|v|)−1jγ̇(1)

)
.

To determine the pullback ϕ∗ωs we need to compute the differential dϕ. We start with the
vertical directions. Consider a path (x, v(s)) ⊂ TxM

1 with v(0) = v and d
ds |s=0v(s) = w

1Attention! We ran out of parameters. This s is a time like parameter and has nothing to do with the
magnetic field strength in ωs.
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5. Symplectically twisted tangent bundle as Hermitian vector bundle

for some w ∈ Tv(TxM) = TxM . Then

dϕ(0, w) = d
ds
∣∣∣
s=0

ϕ(x, v(s))

= d
ds
∣∣∣
s=0

(
γs(1), b(|v|)−1jγ̇s(1)

)
=
(
∂sγs(1), ∂s(b(|vs|)−1)jγ̇s(1) + b(|v|)−1∇∂s(jγ̇s(1)

) ∣∣∣
s=0

=
(
∂sγs(1), ∂s(b(|vs|)−1)jγ̇s(1) + b(|v|)−1j∇∂t(∂sγs(1)

) ∣∣∣
s=0

.

Observe that γs is a family of geodesics thus ∂sγs evaluated at s = 0 is the Jacobi field Xw

determined by
Xw(0) = 0 and Ẋw(0) = −j[(∂sb(|vs|))v + b(|v|)w]. (5.5)

This means we can rewrite

dϕ(0, w) =
(
Xw(1), ∂s(b(|v|)−1)jγ̇(1) + b(|v|)−1jẊw(1)

)
.

Lemma 5.3.4. The Jacobi fields Xw along γ determined by the initial conditions (5.5) are
given by

Xv(t) = t

(
b′r + b

b

)
γ̇(t), Xjv(t) = sin(

√
κbrt)√
κbr

jγ̇(t)

and for w orthogonal to v and jv we have

Xw(t) = −2√
κr

sin
(√

κ

2 brt

)
jw(t),

where w(t) denotes the parallel transport of w along γ(t).

Proof. Any Jacobi field X must satisfy the Jacobi equation

Ẍ = R(γ̇, X)γ̇.

Plugging W = Z = γ̇ and Y = X into (5.4) yields

Ẍ = R(γ̇, X)γ̇ = κ

4 [g(X, γ̇)γ̇ − g(γ̇, γ̇)X − 3g(X, jγ̇)jγ̇].

For the calculations to come we will abriviate r := |v| and b = b(r). Lets now first assume
w = v, then we can set v(s) = esv. Thus

Xv(0) = 0 & Ẋv(0) = −j(b′r + b)v.

The solution of the Jacobi equation for this initial condition is

Xv(t) = t

(
b′r + b

b

)
γ̇(t).

This can easily be verified by plugging Xv(t) into the Jacobi equation and using the sim-
plified form of the curvature tensor. Assume secondly that w = jv, then we can set
v(s) = esjv, thus

Xjv(0) = 0 & Ẋjv(0) = bv.
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5.3. Spaces of constant holomorphic sectional curvature

The solution to the Jacobi equation for this initial data is

Xjv(t) = sin(
√
κbrt)√
κbr

jγ̇(t).

Finally assume w orthogonal to v and jv. Further choose vs such that |vs| = |v| then

Xw(0) = 0 & Ẋw(0) = −bjw.

The solution to the Jacobi equation for this initial data is

Xw(t) = −2√
κr

sin
(√

κ

2 brt

)
jw(t),

where w(t) denotes the parallel transport of w along γ(t).

Next we compute the horizontal directions of the differential. For this take a curve x(s) ∈
M with x(0) = x and ẋ(0) = w. Further let v(s) be the parallel vector field along x(s)
with v(0) = v. Similar to before we look at the 1-parameter family of geodesics

γs(t) := expx(s)(−tbjv(s)).

Now the differential in this horizontal direction is

dϕ(w, 0)) = d
ds
∣∣∣
s=0

ϕ(x(s), v(s)) = (∂sγs(1), b−1j∇∂t∂sγs(1))|s=0.

We can rewrite this using that ∂sγs is the Jacobi field X̃w uniquely determined by

X̃w(0) = w and ˙̃Xw(0) = 0 (5.6)

to see that
dϕ(w, 0)) = (X̃w(1), b−1j ˙̃Xw(1)).

Analogous to the vertical case one checks the following Lemma.

Lemma 5.3.5. The Jacobi fields X̃w along γ determined by the initial conditions (5.6) are
given by

X̃v(t) = cos(
√
κbrt)b−1jγ̇(t), X̃jv(t) = −b−1γ̇(t)

and for w orthogonal to v and jv we have

X̃w(t) = cos
(√

κbr

2 t

)
w(t),

where w(t) is the parallel transport of w along γ.

We can now finally compute the pullback ϕ∗ωs.

Lemma 5.3.6. The pullback of ωs via ϕ is given by

ϕ∗ωs =


−h′(E)−1σ∥ 0 0 0

0 −e−2a(r)σ⊥ 0 0
0 0 h′(E)σ∥ 0
0 0 0 e2a(r)σ⊥

 ,
where σ∥ is σ restricted to the subspace spanned by v and jv and σ⊥ is σ restricted to the
orthogonal complement.
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5. Symplectically twisted tangent bundle as Hermitian vector bundle

Remark 5.3.7. The interested reader may check Calabi’s paper [11], to find that this is
precisely the formula he gives for −ωI , the symplectic structure compatible with the complex
structure −I := −(j ⊖ j). Indeed the hyperkähler structure of the tangent bundle of spaces
of constant holomorphic curvature is one of the very first hyperkähler structures discovered.

Proof. First we compute the vertical part using Lemma 5.3.4,

ϕ∗ωs((0, v), (0, jv)) = ωs

((
Xv(1),−b′r

b2 jγ̇(1) + b−1jẊv(1)
)
,

(
Xjv(1), 1

b
Ẋjv(1)

))
= ωs

((
b′r + b

b
γ̇(1), 1

b
jγ̇(1)

)
,

(
h′(E)
b

jγ̇(1),−sh′(E)
b

γ̇(1)
))

= h′(E)
b2 g(jγ̇(1), jγ̇(1)) + sh′(E)(b′r + b)

b2 g(γ̇(1), γ̇(1))

− s
h′(E)(b′r + b)

b2 g(jγ̇(1), jγ̇(1))

= h′(E)|v|2 > 0,

where we used that sin(
√
κbr)/

√
κ = rh′(E) = r/

√
s2 + κr2 and cos(

√
κbr) = sh′(E).

Next we repeat the calculation for w orthogonal to v and jv

ϕ∗ωs((0, w), (0, jw)) = ωs((Xw(1), b−1jẊw(1)), (Xjw(1), b−1Ẋjw(1))
= g(b−1jẊw(1), Xjw(1)) − g(Xw(1), b−1jẊjw(1)) − sg(jXw(1), Xjw(1))

= 4
r
√
κ

cos(
√
κbr/2) sin(

√
κbr/2)|w|2 − 4s

κr2 sin(
√
κbr/2)2|w|2

= 2|w|2

r
√
κ

sin(
√
κbr) − 2s|w|2

κr2 (1 − cos(
√
κbr))

= 2
κr2 (

√
s2 + κr2 − s)|w|2 = e2a(r)|w|2 > 0.

Observe that all other terms vanish as w, jw were assumed to be orthogonal to v and jv.

Next we compute ϕ∗ωs in the horizontal entries using Lemma 5.3.6

ϕ∗ωs((v, 0), (jv, 0)) = ωs(
(
X̃v(1), b−1j ˙̃Xv(1)

)
,
(
X̃jv(1), b−1 ˙̃Xjv(1)

)
)

= ωs(
(
sh′(E)
b

jγ̇(1), κr
2h′(E)
b

γ̇(1)
)
,

(
−1
b
γ̇(1), 0

)
)

= −κr2h′(E)
b2 g(γ̇(1), γ̇(1)) − s

sh′(E)
b2 g(γ̇(1), γ̇(1))

= −
√
s2 + κr2|v|2,
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and

ϕ∗ωs((w, 0), (jw, 0)) = ωs((X̃w(1), b−1j ˙̃Xw(1)), (X̃jw(1), b−1 ˙̃Xjw(1))

= g(b−1j ˙̃Xw(1), X̃jw(1)) − g(X̃w(1), b−1j ˙̃Xjw(1)) − sg(jX̃w(1), X̃jw(1))
= −

√
κr cos(

√
κbr/2) sin(

√
κbr/2)|w|2 − s cos(

√
κbr/2)2|w|2

= −
√
κr|w|2

2 sin(
√
κbr) − s|w|2

2 (1 + cos(
√
κbr))

= 1
2(−κr2h′(E) − s− s2h′(E))|w|2

= −1
2(
√
s2 + κr2 + s)|w|2

= −e−2a(r)|w|2.

Observe that restricted to the zero section this yields −sπ∗σ. To finish the computation
of the pullback we need to look at mixed terms

ϕ∗ω((w1, 0), (0, w2)).

These vanish clearly whenever w1 ⊥ w2, so let us look at the three remaining cases. First,

ϕ∗ωs((v, 0), (0, v)) = ωs(
(
X̃v(1), b−1j ˙̃Xv(1)

)
,

(
Xv(1),−b′r

b2 jγ̇(1) + b−1jẊv(1)
)

)

= ωs(
(
sh′(E)
b

jγ̇(1), κr
2h′(E)
b

γ̇(1)
)
,

(
b′r + b

b
γ̇(1), 1

b
jγ̇(1)

)
)

= κr2h′(E)
b

b′r + b

b
g(γ̇(1), γ̇(1)) − sh′(E)

b2 g(jγ̇(1), jγ̇(1))

+ s
sh′(E)
b

b′r + b

b
g(γ̇(1), γ̇(1))

= ((s2 + κr2)sh′(E)2 − s)h′(E)r2

= 0,

where we used b′r + b = sh′(E)2. Next we look at

ϕ∗ωs((jv, 0), (0, jv)) = ωs(
(
X̃jv(1), b−1j ˙̃Xjv(1)

)
,
(
Xjv(1), b−1jẊjv(1)

)
)

= ωs(
(

−1
b
γ̇(1), 0

)
,

(
h′(E)
b

jγ̇(1),−sh′(E)
b

γ̇(1)
)

)

= −sh′(E)
b2 g(γ̇(1), γ̇(1)) + s

h′(E)
b2 g(jγ̇(1), jγ̇(1))

= 0.
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Finally we compute for a w orthogonal to v and jv

ϕ∗ωs((w, 0), (0, w)) = ωs(
(
X̃w(1), b−1j ˙̃Xw(1)

)
,
(
Xw(1), b−1jẊw(1)

)
)

= g(b−1j ˙̃Xw(1), Xw(1)) − g(X̃w(1), b−1jẊw(1)) − sg(jX̃w(1), Xw(1))

= (sin(
√
κbr/2)2 − cos(

√
κbr/2)2 + 2s√

κr
sin(

√
κbr/2) cos(

√
κbr/2))|w|2

= (− cos(
√
κbr) + s

r
sin(

√
κbr))|w|2

= (−sh′(E) + sh′(E))|w|2

= 0.

Observe that ϕ∗ωs restricted to the fiber is fairly close to the standard symplectic structure
dλv on Cn. Indeed if we consider the scaled Liouville primitive e2a(r)λv, then

d(e2a(r)λv) = 2a′(r)e2a(r)dr ∧ λv + e2a(r)dλv.

Therefore
d(e2a(r)λv)(v, jv) = (a′(r)r + 1)e2a(r)r2 = h′(E)|v|2

and for any w orthogonal to v and jv we have

d(e2a(r)λv)(w, jw) = e2a(r)|w|2.

Thus d(e2a(r)λ) coincides with ϕ∗ωs restricted to the fibers. If we now pullback by m =
(ΦY

a(r))−1 we will obtain the standard symplectic structure on the fibers. A straight forward
calculation shows that (ΦY

a(r))−1 = ΦY
ā(r) with

ā(r) = 1
2 ln

(
1
κr2 (

(
κ

2 r
2 + s

)2
− s2)

)
.

We compute
h′(E(ea(r)r))−1 =

√
s2 + e2a(r)κr2 = κ

2 r
2 + s

and thus the block form after scaling takes the form

m∗ϕ∗ωs =


(κ

2 r
2 + s)σ∥ 0 0 0

0 (κ
4 r

2 + s)σ⊥ 0 0
0 0 σ∥ 0
0 0 0 σ⊥

 .
This symplectic form is not a stranger, actually comparing it to dτ in (5.10) yields

(φ−1)∗ωs = m∗ϕ∗ωs = dτ/2 − sπ∗σ.

This finishes the proof of Theorem 5.3.3.
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5.4. Locally Hermitian symmetric spaces
This section contains the final generalization of the symplectomorphism identifying the two
symplectic structures on the tangent bundle TM of a locally Hermitian symmetric spaces
M . Actually it is fine to assume that M is simply connected, thus globally Hermitian
symmetric as all our constructions are equivariant and thus survive the quotient by a
discrete group action. Further we may assume M to be irreducible, because all Hermitian
symmetric spaces are products of those and Euclidean spaces. Compared to the previous
sections, we change perspective a little. We already observed that the tangent bundle of a
Hermitian symmetric space admits a huge group action. This group action is Hamiltonian
with respect to both symplectic structures (see Thm. 2.4.23). Instead of computing the
differential of the diffeomorphism explicitly, we will now use the moment maps to see that
the diffeomorphism is symplectic in the spirit of the following Proposition.

Proposition 5.4.1. Assume we have a Hamiltonian G-action on (Ni, ωi). If φ : N1 → N2
is an equivariant smooth bijection such that

N1 N2

g

µ1

φ

µ2

commutes and the distribution D ⊂ TN1 tangent to the G-orbits admits a complement Υ
that is isotropic for both symplectic forms ω1 and φ∗ω2, then φ is actually a symplecto-
morphism i.e. φ∗ω2 = ω1.

Proof. We need to show that

φ∗ω2(v, w) = ω1(v, w) ∀v, w ∈ TN1.

By non-degeneracy of ω1 and ω2 it follows then, that also dφ must be non-degenerate hence
a diffeomorphism.
We can decompose the tangent bundle TN1 = D ⊕ Υ. Recall that Dx = {(a#

1 )x :=
d
dt

∣∣∣
t=0

eta(x) | a ∈ g}. In particular dφa#
1 = a#

2 by equivariance. So if either v = a#
1 ∈ D

or w = a#
1 ∈ D we get the equality as follows

ω1(a#
1 , ·) = d(µ1, a) = d(µ2 ◦ φ, a) = ω2(a#

2 ,dφ ·) = ω2(dφ a#
1 , dφ ·) = φ∗ω2(a#

1 , ·).

The second equality holds due to the moment map triangle and the fourth due to equiv-
ariance of φ. If v, w ∈ Υ we get

ω1(v, w) = 0 = ω2(dφ(v),dφ(w))

as Υ is isotropic with respect to both symplectic forms by assumption.

In the previous cases we used for the construction of the equivariant diffeomorphism the fact
that the magnetic geodesic flow is totally periodic. Sadly on general Hermitian symmetric
spaces this is not true anymore. Still the magnetic geodesic flow is (at least for low
energy levels) very nice, indeed it is quasi- periodic. This can be seen in terms of the
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5. Symplectically twisted tangent bundle as Hermitian vector bundle

polysphere resp. polydisc theorem. As the polyspheres resp. polydiscs are totally geodesic
complex submanifolds the magnetic geodesic flow restricts to the magnetic geodesic flow
on products of constant curvature surfaces. Thus it is quasi-periodic. One can even still
find a Hamiltonian H in a neighborhood of the zero-section generating a circle action. Just
reparametrizing the kinetic Hamiltonian is not sufficient anymore. Inspired by [8], we shall
work with spectral functions for the self-adjoint operator

jRjv,v : TxM → TxM ; w 7→ jR(jv, v)w

for some v ∈ TxM . Let

UϖM := {(x, v) ∈ TM | |gx(jRjv,vw,w)| < ϖ∥w∥2 ∀w ∈ TxM}

denote the neighborhood of the zero-section with the absolute value of the holomorphic-
bisectional curvature bounded by ϖ/∥v∥2.

Lemma 5.4.2. For the polysphere resp. polydisc i.e. Σ ∈ {CP1,CH1} we have (DρΣ)r =
U|κ|ρ2Σr, where κ denotes the curvature of Σ.

Proof. We have the following chain of equivalences

(x, v) ∈ (DρΣ)r ⇔ ∥vi∥2 < ρ2 ∀i

⇔ |gx(jRjv,vw,w)| = |κ|
∑

i

∥vi∥2∥wi∥2 ≤ |κ|ρ2∥w∥2 ∀w ∈ TxΣr

⇔ (x, v) ∈ U|κ|ρ2Σr.

Remark 5.4.3. For general irreducible Hermitian symmetric spaces we define κ to be the
maximal resp. minimal holomorphic sectional curvature. This is the same as the curvature
of any of the factors of an embedded polysphere resp. polydisc, which can be seen as follows.
Take any (x, v) ∈ TM , then

gx(jR(jv, v)v, v)
|v|4

=
r∑

i=1

κ|vi|4

|v|4

{
≤ κ for κ positive
≥ κ for κ negative ,

where the splitting is with respect to any polysphere resp. polydisc through (x, v). Indeed
equality is obtained when v points along a factor of the polysphere resp. polydisc.

On a polysphere resp. polydisc the sum

H(x, v) = 2π
κ

r∑
i=1

(√
s2 + κ|vi|2 − s

)
where vi denotes the projection of v to the i-th factor, generates a circle action. The
operator jRjv,v has eigenvalues κ|v|2, we want to use this and spectral functions of jRjv,v

to construct a Hamiltonian that generates a circle action on TM .

Proposition 5.4.4. If s2 + κρ2 > 0, then the Hamiltonian

H : U|κ|ρ2M → R; (x, v) 7→ gx(h(jRjv,v)v, v), where h(y) := 2π
y

(√
s2 + y − s

)
is well-defined, differentiable and generates a circle action.
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5.4. Locally Hermitian symmetric spaces

Proof. It is well defined, because the condition s2+κρ2 > 0 makes sure that the eigenvalues
of jRjv,v are bounded from below by −s2. Further h is smooth, thus the same holds for
H. Next we compute dH using the chain rule. The horizontal part must vanish, as g, j
and R are parallel, thus

dH = (0, g(h̃(jRjv,v)v, ·)) = (h̃(jRjv,v)v, sh̃(jRjv,v)jv)
(

−sσ g
g 0

)
,

where h̃(y) = h′(y)y + h(y). It follows that

XH = (h̃(jRjv,v)v)H + s(h̃(jRjv,v)jv)V .

Observe that in view of Eq. 2.4 the operator jRjv,v : TxM → TxM restricts to the tangent
space of the polysphere resp. polydisc Σr through x tangent to v. As the polyspheres resp.
polydiscs are totally geodesic (h̃(jRjv,v)v)H ∈ TTΣr. The embedding is also complex thus
(h̃(jRjv,v)jv)V ∈ TTΣr. In total we see that XH is tangent to TΣr. Observe that this
means that the diagrams of the form

(DρΣ)r U|κ|ρ2M

g

∑
H◦πi

dι

H

commute. On the polysphere resp. polydisc jRjv,v is diagonal with respect to the product
structure, i.e.

jRjv,v =

κ|v1|2 . . . 0
... . . . ...
0 . . . κ|vr|2


where vi is the projection of v to the ith factor. Now it is easy to see that on the polysphere
resp. polydisc the Hamiltonian is given by

H(x, v) = 2π
κ

r∑
i=1

(√
s2 + κ|vi|2 − s

)
.

In particular it generates the diagonal Hamiltonian circle action on the product.

In the cases of negative constant holomorphic sectional curvature κ the neighborhood of
the zero-section on which the Hermitian symplectic form is well-defined was a disc-bundle
of constant radius

√
−2s/κ. We need to replace the disc bundle with U2sM (see (2.2)).

We can now state our main theorem.
Theorem 5.4.5 (Thm. A). Let M be an irreducible Hermitian symmetric space of compact
type, then there exists an equivariant symplectomorphism

Ψ : (TM, dλ− sπ∗σ) → (TM, dτ/2 − sπ∗σ).

If M is of non-compact type the symplectomorphism exists only on a neighborhood of the
zero-section, namely

Ψ : (Us2M,dλ− sπ∗σ) → (U2sM, dτ/2 − sπ∗σ).

Further the symplectomorphisms intertwines in both cases the moment maps of the Hamil-
tonian G-actions and the Hamiltonians H and 2πE (E(x, v) = 1

2gx(v, v)).
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5. Symplectically twisted tangent bundle as Hermitian vector bundle

The rest of this section contains the proof of this Theorem and is divided into four steps.

(1) Find a candidate Ψ that intertwines the circle actions.

(2) Show that Ψ is an equivariant diffeomorphism.

(3) Show that the moment triangle commutes.
(a) Reduce the general case to the case of polyspheres resp. polydiscs.
(b) Show that the moment triangle commutes for polyspheres resp. polydiscs.

(4) Show that Υ = spanR{Y1, . . . , Yr} (see Cor. 2.4.18) is an isotropic complement of D
for both dλ− sπ∗σ and Ψ∗ (dτ/2 − sπ∗σ) and use Proposition 5.4.1 to conclude the
proof.

Step (1):
Similar to the definition of H we modify our original symplectomorphism φ using spectral
functions of jRjv,v. Recall from Eq. (5.1) that

φ(x, v) =
(
expx(b(κr2)jv), ea(κr2)Pγv(1)

)
,

with functions2

b(y) =
arctan(√y/s)

√
y

and a(y) = 1
2 ln

(2
y

(
√
s2 + y − s)

)
.

In analogy we define Ψ := m ◦ ϕ3, where

ϕ(x, v) := (expx(b(jRjv,v)jv), Pγv(1)) and m(x, v) = (x, ea(jRjv,v)v).

Observe that Ψ is smooth as a and b are. Further it is defined whenever the eigenvalues
of jRjv,v are bounded from below by −s2. For compact type Hermitian symmetric spaces
this holds on the whole tangent bundle TM , for non-compact type Hermitian symmetric
spaces this holds on Us2M ⊂ TM . Let us check that Ψ indeed intertwines the Hamiltonian
circle actions.

Lemma 5.4.6. The map Ψ intertwines H and 2πE, i.e.

H = 2πE ◦ Ψ.

Proof. We compute

2πE(Ψ((x, v)) = πgx(ea(jRjv,v)v, ea(jRjv,v)v) = πgx(e2a(Rjv,v)v, v)
= gx(h(Rjv,v)v, v) = H(x, v).

Step (2):
We want to show that Ψ is an equivariant diffeomorphism. We start with equivariance.

2By slight abuse of notation we changed the argument of the functions from r to y ≡ κr2.
3Compared to the previous section we exchanged m ↔ m−1 and ϕ ↔ ϕ−1. Sorry!
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Lemma 5.4.7. The map Ψ is equivariant under the action of the isometry group.

Proof. All objects, i.e. metric, curvature, exponential map are invariant under the action
of isometries thus also Ψ is. Explicitly let I : M → M be an isometry, then

Ψ(dI(x, v)) =
(
expI(x)(b(jRjdIxv,dIxv)jdIxv), ea(jRjdIxv,dIxv)PγdIxv(1)

)
=
(
expI(x)(dIxb(jRjv,v)jv), dIxe

a(jRjv,v)Pγv(1)
)

=
(
I(expx(b(jRjv,v)jv),dIxe

a(jRjv,v)Pγv(1)
)

= dI(Ψ(x, v)).

Lemma 5.4.8. The map Ψ is a diffeomorphism and Ψ−1 is defined on TM resp. U2sM
in the compact resp. non-compact case.

Proof. Also in analogy to the constant curvature case one can explicitly give an inverse
Ψ−1 = Φ−1 ◦m−1 where

Φ−1(x, v) = (expx(−b(jRjv,v)jv), Pγv(1))

and
m−1(x, v) = (x, eā(jRjv,v)vv),

with

ā(y) = 1
2 ln

(
1
y

((
y

2 + s

)2
− s2

))
.

The inverse is well defined whenever the eigenvalues of jRjv,v are bounded from below by
−4s, i.e. on TM resp. U4sM in the compact resp. non-compact case. In particular it is
well-defined on the image of Ψ namely TM resp. U2sM . The inverse is smooth as ā and b
are smooth.

Step (3):
We need to assure that Ψ intertwines the moment maps, i.e.

µλ − sµσ = (µτ/2 − sµσ) ◦ Ψ.

This is difficult to see if one considers the full hermitian symmetric space, but relatively
easy to prove for polyspheres resp. polydiscs. We will show now that we can actually reduce
the general case to polyspheres resp. polydiscs.

Lemma 5.4.9. The diagrams

(TCP1)r TM

(TCP1)r TM

dι

φ×...×φ Ψ

dι

(5.7)
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in the compact case and

(Ds/
√

−κCH1)r Us2M

(D√
−2s/κ

CH1)r U2sM

dι

φ×...×φ Ψ

dι

(5.8)

in the non-compact case commute. Here φ denotes the map realizing the symplectomor-
phism for surfaces as constructed in the proof of Theorem 5.2.1.

Proof. The self adjoint endomorphism jRjv,v restricts to the tangent spaces of the poly-
spheres/disc. As the embedding is complex totally geodesic it follows that Ψ also restricts
to the copies of TΣr. Further jRjv,v is diagonal with respect to the splitting of TΣr as
product TΣ × . . .× TΣ and therefore the diagram holds.

Next we include the moment maps into the diagrams (5.7) and (5.8). For the compact case
we look at

(TCP1)r TM

k1
k2 su(2)r g k4

k3
(TCP1)r TM

φ×...×φ

dι

∑
(µλi

−sµσi )

Ψ

µλ−sµσ

Ks

∑
(µτi /2−sµσi )

dι

µτ /2−sµσ

(5.9)

and for the non-compact case we look at

(Ds/
√

−κCH1)r Us2M

k1
k2 sl(2,R)r g k4

k3
(D√

−2s/κ
CH1)r U2sM

φ×...×φ

dι

∑
(µλi

−sµσi )

Ψ

µλ−sµσ

Ks

∑
(µτi /2−sµσi )

dι

µτ /2−sµσ

,
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where Ks : hr ↪→ g is an affine embedding we will specify below, µλ & µτ are the moment
maps defined in the introduction 2.4.23 and µσ(x, v) := x. To see that these are the correct
moment maps combine Theorem 2.4.23 and the fact that the inclusion M ∼= OZ ↪→ g is a
moment map for σ. The idea is that commutativity of k4 follows from commutativity ofk1 − k3 . As all maps are equivariant and the embeddings are well behaved under G as ex-
plained in Remark 2.4.14, we may assume ι = ιp,q for p = (Z, v) and q = (Z0 = ∑r

i=1 Zi, v0)
for some elements v ∈ TZM resp. v0 ∈ TZiΣi. Here Zi denotes the up to sign unique ele-
ment in the center of hi such that OZi

∼= Σ and the Kähler structure from Theorem 2.4.20
coincides with the standard Kähler structure. The index indicates the factor in the product.

We are now exactly in the setup of Proposition 2.4.24. We define Ks to be

Ks : hr ↪→ g; h 7→ k(h) − s(Z − k(Z0)).

The affine embedding Ks is a variation of the affine embedding K in Proposition 2.4.24.

Lemma 5.4.10. The sub diagrams k1 and k3 commute with this choice of affine embed-
ding.

Proof. We start with k1 . Take (y, w) ∈ (TCP1)r resp. (y, w) ∈ (Ds/
√

−κCH1)r, then

Ks(µλ(y, w) − sµσ(y, w)) = k(µλ(y, w) − sµσ(y, w)) − s(Z + k(Z0))
= k([y, w]) − sK(y) ∗= [k(y), k(w)] − sK(y)
∗∗= [K(y), k(w)] − sK(y) ∗∗∗= [ι(y),dιy(w)] − sι(y)
= µλ(dι(y, w)) − sµσ(dι(y, w)).

The first two and the last equations are just plugging in definitions. Equation ∗ uses that
k is a Lie algebra homomorphism, ∗∗ uses that [Z − k(Z0), k(w)] = 0 by (2.7) and ∗ ∗ ∗
uses that K extends ι, K|Σr = ι (see Prop. 2.4.24).

Similarly we can compute k3 . Again take (y, w) ∈ (TCP1)r resp. (y, w) ∈ (D√
−2s/κ

CH1)r,
then

Ks((µτ (y, w)/2 − sµσ(y, w)) = k(µτ (y, w)/2 − sµσ(y, w)) − s(Z + k(Z0))
= k([y, [y, w]]/2) − sK(y)
∗= [k(y), [k(y), k(w)]]/2 − sK(y)
∗∗= [K(y), [K(y), k(w)]]/2 − sK(y)
∗∗∗= [ι(y), [ι(y), dιyw]]/2 − sι(y)
= µτ (dι(y, w))/2 − sµσ(dι(y, w)).

The first two and the last equations are just plugging in definitions. Equation ∗ uses that
k is a Lie algebra homomorphism, ∗∗ uses that [Z − k(Z0), k(w)] = 0 by (2.7) and ∗ ∗ ∗
uses that K extends ι, K|Σr = ι (see Prop. 2.4.24).

Observe that if we can now show that the moment map triangle commutes in the two
dimensional case, commutativity of k2 and thus commutativity of k4 follows.
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Step (3b):
We reduced the problem to the 2-dimensional case, thus Σ ∈ {CP1,CH1}. In this case
the isometries act transitively on the unit-sphere subbundle of TΣ, by equivariance it is
therefore enough to show that

µ2(φ(Z0, rv0)) = µ1(Z0, rv0) (5.10)

for some fixed (Z0, v0) ∈ TΣ and arbitrary r ≥ 04. Here we denoted µ1 := µλ − sµσ and
µ2 := 1

2µτ − sµσ the moment maps with respect to dλ− sπ∗σ and dτ/2 −π∗σ respectively.
The geodesic starting at x ∈ M ⊂ g in direction v ∈ TxM ⊂ g is given by

γ(t) = etjvxe−tjv (5.11)

as then
γ̇(0) = [jv, x] = −j2v = v.

All that is left to show is that equation (5.10) is satisfied for a suitable choice of (x0, v0).
We will show this case by case realizing the surfaces explicitly as (co-)adjoint orbits.

The case M = CP1 : Here G = SU(2) and the Lie-algebra is

su(2) =
〈
a1 := 1

2

(
i 0
0 −i

)
, a2 := 1

2

(
0 i
i 0

)
, a3 := 1

2

(
0 1

−1 0

)〉

The generators satisfy

[a1, a2] = −a3, [a3, a1] = −a2, [a3, a2] = a1.

We can identify CP1 as coadjoint orbit of a3, i.e. CP1 ∼= Oa3 . The identification is such
that the Fubini-Study Kähler structure coincides with the KKS-Kähler structure. We need
to show that the composition φ = ΦY

a ◦ ΦH
b is the map that intertwines the moment maps.

Here κ = 1 thus

a(r2) = 1
2 ln

( 2
r2 (
√
s2 + r2 − s)

)
, b(r2) = 1

r
arctan

(
r

s

)
.

In view of Eq. (5.11) we can compute the flow of H := (jv)H as follows

ΦH
b (a3, ra1) = (ebra1a3e

−bra1 , ra1),

where

ebra1 =
(
eibr/2 0

0 e−ibr/2

)
thus

ebra1a3e
−bra1 = 1

2

(
0 eibr

−e−ibr 0

)
.

4Attention! This r has nothing to do with the rank, it is the norm of v0.
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We use Euler’s formula eix = cos(x) + i sin(x) and the identities

cos(tan−1(x)) = 1√
1 + x2

, sin(tan−1(x)) = x√
1 + x2

in order to find the following expression(
0 eibr

−e−ibr 0

)
= cos

(
tan−1

(
r

s

))
a3 + sin

(
tan−1

(
r

s

))
a2 = 1√

r2 + s2
(sa3 + ra2).

So in particular we have that:

µ2(ΦY
a ◦ ΦH

b (a3, ra1)) = µ2( 1√
r2 + s2

(sa3 + ra2), ea(r)ra1)

= e2a(r)r2

2
√
r2 + s2

[[sa3 + ra2, a1], a1] − s√
r2 + s2

(sa3 + ra2)

=
√
s2 + r2 − s√
s2 + r2

(−sa3 − ra2) − s√
r2 + s2

(sa3 + ra2)

= −sa3 − ra2 = r[a3, a1] − sa3

= µ1(a3, ra1).

Which finishes the compact case.

The case M = CH1 : Here G = SU(1, 1) and the Lie-algebra is

su(1, 1) =
〈
a1 := 1

2

(
1 0
0 −1

)
, a2 := 1

2

(
0 1
1 0

)
, a3 := 1

2

(
0 1

−1 0

)〉

The generators satisfy

[a1, a2] = a3, [a3, a1] = −a2, [a3, a2] = a1.

We can identify CH1 as coadjoint orbit of a3, i.e. CH1 ∼= Oa3 . The identification is such
that the standard Kähler structure coincides with the KKS-Kähler structure. We need to
show that the composition φ = ΦY

a ◦ ΦH
b is the map that intertwines the moment maps.

Here κ = −1 thus

a(−r2) = 1
2 ln

(−2
r2 (

√
s2 − r2 − s)

)
, b(−r2) = 1

r
arctanh

(
r

s

)
.

We compute

ΦH
b (a3, ra1) = (ebra1a3e

−bra1 , ra1),

where
ebra1 =

(
ebr/2 0

0 e−br/2

)
thus

ebra1a3e
−bra1 = 1

2

(
0 ebr

−e−br 0

)
.
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We use the identities ex = cosh(x) + sinh(x) and

− cosh(tanh−1(x)) = 1√
1 − x2

, sinh(tanh−1(x)) = x√
1 − x2

in order to find the following expression(
0 ebr

−e−br 0

)
= cosh

(
tanh−1

(
r

s

))
a3 + sinh

(
tanh−1

(
r

s

))
a2 = 1√

s2 − r2
(sa3 + ra2).

So in particular we have that:

µ2(ΦY
a ◦ ΦH

b (a3, ra1)) = µ2( 1√
s2 − r2

(sa3 + ra2), ea(r)ra1)

= e2a(r)r2

2
√
s2 − r2

[[sa3 + ra2, a1], a1] − s√
s2 − r2

(sa3 + ra2)

= s−
√
s2 − r2

√
s2 − r2

(sa3 + ra2) − s√
s2 − r2

(sa3 + ra2)

= −sa3 − ra2 = r[a3, a1] − sa3

= µ1(a3, ra1),

which finishes the proof of the non-compact case.

The case M = C1 : As a fun fact we do the same calculation for the flat case, even
though clearly showing directly that φ = ΦY

a ◦ ΦH
b is a symplectomorphism is much less

stressful. Here G = R2 ⋊ SO(2) and the Lie-algebra is

g =
〈
a1 :=

0 0 0
0 0 0
1 0 0

 , a2 :=

0 0 0
1 0 0
0 0 0

 , a3 :=

0 0 0
0 0 1
0 −1 0

〉

The generators satisfy

[a1, a2] = 0, [a3, a1] = −a2, [a3, a2] = a1.

We can identify C1 as coadjoint orbit of a3, i.e. C1 ∼= Oa3 . The identification is such that
the standard Kähler structure coincides with the KKS-Kähler structure. We need to show
that the composition φ = ΦY

a ◦ ΦH
b is the map that intertwines the moment maps. Here

κ = 0 thus
a = 1

2 ln
(1
s

)
, b = 1

s
.

We compute

ΦH
b (a3, ra1) = (ebra1a3e

−bra1 , ra1),

where

ebra1 =

 1 0 0
0 1 0
r/s 0 1

 ,
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thus

ebra1a3e
−bra1 =

 0 0 0
−r/s 0 1

0 −1 0

 = −r

s
a2 + a3.

In particular we have that:

µ2(ΦY
a ◦ ΦH

b (a3, ra1)) = µ2(−r

s
a2 + a3,

r√
s
a1)

= r2

s
[[−r

s
a2 + a3, a1], a1] + ra2 − sa3

= 0 + ra2 − sa3

= −r[a3, a1] − sa3

= µ1(a3, ra1).

By the previous computations we have proven the following Lemma:
Lemma 5.4.11. The moment map triangles

TM TM

g

µ1

Ψ

µ2

resp.
Us2M U2sM

g

µ1

Ψ

µ2

commute.
Step (4):
The last condition we need to check in order to apply 5.4.1 (and thus finish the proof of
Thm. 5.4.5) is the existence of a complement of D := {a# | a ∈ g} ⊂ TTM that is isotropic
with respect to both symplectic forms ω1 := dλ − sπ∗σ and Ψ∗ω2 := Ψ∗ (dτ/2 − sπ∗σ).
Recall that by Corollary 2.4.18 on the open dense set of regular points Υ = span{Y1, . . . , Yr}
is a complement of D and observe that Υ is clearly isotropic for ω1 as it is contained in
the vertical distribution.
Lemma 5.4.12. Υ is isotropic for Ψ∗ω2.
Proof. In the view of the foliation of TM by tangent spaces of polspheres resp. polydiscs
TΣr (end of section 2.4.2), near a regular point it makes sense to look at the vector fields
Yi. We need to compute dΨ(Yi). As Ψ splits with respect to the product we conclude that
dΨ(Yi) ∈ TΣi. Further also ω2 splits with respect to the product TΣ1 × . . . × TΣr and
therefore TΣi and TΣ2 are ω2-orthogonal for i ̸= j. It follows that

Ψ∗ω2(Yi, Yj) = ω2(dΨYi,dΨYj) = 0 ∀i, j ∈ {1, . . . , r}.

Using Proposition 5.4.1 we find that dΨ is symplectic on the open, dense set of regular
points, but as Ψ is smooth this already implies that dΨ is symplectic everywhere. Thus
this Lemma finishes the proof of Theorem 5.4.5.

83



5. Symplectically twisted tangent bundle as Hermitian vector bundle

5.5. Hofer–Zehnder capacity
The Hofer–Zehnder capacity of disc sub bundles of Hermitian vector bundles was computed
by Lu [36, Thm. 1.3] to be the area of the fibers. We showed in the last section that Ψ
intertwines H and 2πE. In particular Ψ identifies the sub level sets

Ψ
(
H−1(πR2)

)
= E−1

(
R2/2

)
= DRM.

We conclude using [36, Thm. 1.3] that

cHZ(H−1(πR2), ωs) = c0
HZ(H−1(πR2), ωs) = c0

HZ(DRM,dτ/2 − sπ∗σ) = πR2.

The bounds for cHZ(DρM,ωs) are now obtained by asking what is the largest sub level set
of H that lies in DρM and what is the smallest sub level set of H that contains DρM .
Theorem 5.5.1 (Thm. B). Let (M, g, σ) be isometrically covered by an irreducible Her-
mitian symmetric space of rank r, then

2π
κ

(√
s2 + κρ2/r − s

)
≤ cHZ(DρM,ωs) ≤ c0

HZ(DρM,ωs) ≤ 2πr
κ

(
√
s2 + κρ2 − s)

for any constants s, ρ > 0 satisfying s2 + κρ2 > 0. Here, κ denotes the maximal resp.
minimal holomorphic sectional curvature.

Proof. For the lower bound we need to find a suitable sub level set of H that is contained
in DρM . Assume (x, v) ∈

{
H ≤ 2π

κ

(√
s2 + κρ2/r − s

)}
, then we can use that v splits into∑

i vi along a polysphere resp. polydisc and we obtain the following chain of inequalities

H(x, v) = gx(h(jRjv,v)v, v) ≤ 2π
κ

(√
s2 + κρ2/r − s

)
⇒

∑
i

2π
κ

(√
s2 + κ|vi|2 − s

)
≤ 2π

κ

(√
s2 + κρ2/r − s

)
⇒ 1

κ

(√
s2 + κ|vi|2 − s

)
≤ 1
κ

(√
s2 + κρ2/r − s

)
∀ i

⇒ |vi|2 ≤ ρ2/r ∀ i

⇒ |v|2 ≤ ρ2.

This implies that the sub level set
{
H ≤ 2π

κ

(√
s2 + κρ2/r − s

)}
is in DρM and thus the

lower bound holds. For the upper bound of the capacity we have to find a sub level set of
H that contains DρM . For this let (x, v) ∈ DρM , then again considering the splitting of
v into ∑i vi along a polysphere resp. polydisc we find

|v|2 ≤ ρ2 ⇒ |vi| ≤ ρ2 ∀i.

Then by monotonicity of the square root it follows that
1
κ

(√
s2 + κ|vi|2 − s

)
≤ 1
κ

(√
s2 + κρ2 − s

)
∀i

⇒ H(x, v) = gx(h(jRjv,v)v, v) =
∑

i

2π
κ

(√
s2 + κ|vi|2 − s

)
≤ 2πr

κ

(√
s2 + κρ2 − s

)
.

This implies that DρM ⊂ H−1
(

2πr
κ

(√
s2 + κρ2 − s

))
and the upper bound follows, which

finishes the proof.
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5.5. Hofer–Zehnder capacity

Remark 5.5.2. In the preparation of this thesis the author spent quite some time to avoid
using this theorem by Lu for the upper bound. For the non-compact case this is indeed
possible. We can compactify the disc bundle (DρM,ωs) using a Lerman cut with respect to
the Hamiltonian circle action induced by H. The resulting manifold DρM is topologically
a fiber bundle

CPn ↪→ DρM ↠M.

In the case that the universal cover of M is of non-compact type, M is aspherical. In par-
ticular the fiber class [CP1] ∈ H2(DρM,Z) is minimal in the Hofer–Viterbo sense. We can
apply their theorem 3.2.4 to see that ω([CP1]) is the upper bound. If the universal cover of
M is of compact type, M will certainly not be aspherical.

We will see in Theorem 6.1.1 that

(DρCPn, ω̄s) ∼= (CPn × CPn, R1σ ⊖R2σ)

for constants R1, R2 determined by s, ρ. In particular (DρCPn, ω̄s) might not even be
monotone. An alternative for the upper bound could come from filtered symplectic homology.
This issues are addressed in a little more detail in the outlook 7.4, but we did not make
this approach work.

In the case of irreducible Hermitian symmetric spaces M of compact type we can also
say something about the Hofer–Zehnder capacity of non-constant magnetic systems. Let
ν ∈ Ω2(M) be an arbitrary closed 2-form. By Proposition 2.4.22 we know that [ν] = [sσ]
in H2(M,R) for some s ∈ R as H2(M,R) is generated by σ. Thus we find an exact
form dθ such that ν + dθ = sσ. But this means (T ∗M, dλ+ π∗ν) is symplectomorphic to
(T ∗M,dλ+ sπ∗σ) via the map that shifts the zero-section

(x, p) 7→ (x, p+ θ(x)).

Clearly this map does not map disc bundles to disc bundles but we can still get some
inclusions depending on θ ∈ Ω1(M). Denote

θmax = max
x

|θ(x)|,

then
(DρM,ων) ↪→ (Dρ+θmaxM,ωs).

and if θmax < λ we also find

(Dρ−θmaxM,ωs) ↪→ (DρM,ων).

We can therefore deduce upper and sometimes lower bounds of the HZ-capacity for arbi-
trary magnetic systems. There is a freedom of choosing the primitive θ that we can use to
optimize the bound. Simply replace θmax by

inf
θ

max
x

|θ(x)|.

We proved the following Corollary of Theorem 5.5.1.
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5. Symplectically twisted tangent bundle as Hermitian vector bundle

Corollary 5.5.3. Let (M,σ) be a rank r Hermitian symmetric space of compact type. Pick
an arbitrary ν ∈ Ω2(M) representing a non-zero class in H2(M,R). Then

c0
HZ(DρM,ων) ≤ 2πr

κ

(√
s2 + κρ̃2 − |s|

)
,

where
ρ̃ := ρ+ inf

θ
max

x
|θ(x)|

and the infimum is taken over all 1-forms θ ∈ Ω1(M) satisfying ν + dθ = sσ.

5.6. Hyperkähler structure
The hyperkähler structure of cotangent bundles of Hermitian symmetric spaces was de-
scribed explicitly by Biquard and Gauduchon [8]. The case of constant holomorphic sec-
tional curvature5 is one of the very first hyperkähler structures ever described by Calabi
[11].

Theorem 5.6.1 ([8]). Let M be a Hermitian symmetric space, then there is a unique
G-invariant hyperkähler metric on TM resp. Us2M in the compact resp. non-compact type
case, such that the Kähler form compatible with I = j ⊖ j is given by

ωI = π∗σ + ddcν,

with

ν((x, v)) = gx(F (jRjv,v)v, v), F (y) = 1
y

(√
1 + y − 1 − ln 1 +

√
1 + y

2

)
.

If M is of non-compact type the hyperkähler metric is incomplete.

We will now prove that as in the constant holomorphic sectional curvature case, this
symplectic form −ωI sits somewhere ’between’ dλ− π∗σ and dτ/2 − π∗σ.

Theorem 5.6.2 (Thm. C). If M is a Hermitian symmetric space of compact type there
are equivariant symplectomorphisms identifying

(TM, dλ− π∗σ) ∼= (TM,−ωI) ∼= (TM, dτ/2 − π∗σ).

If M is a Hermitian symmetric space of non-compact type, then there are equivariant
symplectomorphisms identifying

(Us2M,dλ− π∗σ) ∼= (Us2M,−ωI) ∼= (U2sM,dτ/2 − π∗σ).

The proof goes mostly analogous to the proof of Theorem 5.4.5. Replacing Ψ = m ◦ ϕ
with ϕ for the first and with m for the second symplectomorphism. To copy the proof
of Theorem 5.4.5 in this situation we need a moment map with respect to ωI . We can
compute

dcν = j∗dν = −g(jF̃ (jRjv,v)v, PV ·), F̃ (y) = F ′(y)y + F (y),
where PV denotes the projection TTM → V on the vertical distribution. We can now
easily deduce a moment map for ωI .

5Constant holomorphic sectional curvature is the same as rank one Hermitian symmetric space.
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5.6. Hyperkähler structure

Theorem 5.6.3. The symplectic action of G on (TM,ωI) resp. (Us2M,ωI) is Hamiltonian
with moment map

µI(x, v) = −[v, jF̃ (jRjv,v)v] + x

Proof. The map µI is equivariant as commutators and jRjv,v are. We check by a direct
computation, that

ιa#(ddcν) = −d(ĝ((jF̃ (jRjv,v)v)V , a#)) = −d(g(jF̃ (jRjv,v)v, PV(a#)))
= d(B(jF̃ (jRjv,v)v, [a, v])) = d(B([v, jF̃ (jRjv,v)v], a)),

where in the first equation we used that La#dcν = 0. Now recall from section 2.3 the
inclusion map is a moment map with respect to the symplectic form σ, thus

ιa#ωI = ιa#ddcν + ιa#π∗σ = dB(−[v, jF̃ (jRjv,v)v] + x, a) = d(µI , a)

follows.

Next we want to include ϕ resp. m in the diagram analogous to (5.9). For this we need to
ensure that the subdiagram k3 resp. k1 commutes for −µI . By equivariance under Hr

and Remark 2.4.14 we may again assume that ι = ιp,q with p = (Z, v) and q = (Z0, v0) for
some v ∈ TZM and some v0 ∈ TZ0Σr.

Lemma 5.6.4. The diagram

(TCP1)r TM

su(2)r g

dιp,q

−
∑

i
µIi

−µI

k−Z+k(Z0)

(5.12)

and respectively

(Ds/
√

−κCH1)r TM

su(1, 1)r g

dιp,q

−
∑

i
µIi

−µI

k−Z+k(Z0)

(5.13)

commutes.

Proof. By equivariance it is enough to show commutativity at the point q = (Z0, v0). There
we have

k(−µI(Z0, v0)) − Z + k(Z0) = k([v0, jF̃ (jRjv0,v0)v0] − Z0) − Z + k(Z0)
= −[dιZ0v0, dιZ0F̃ (jRjv0,v0)v0] − ι(Z0)
= −µI(dι(Z0, v0)),

which finishes the proof.
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5. Symplectically twisted tangent bundle as Hermitian vector bundle

In the case of constant curvature surfaces all eigenvalues of jRjv,v are identically y = κr2.
We compute

F̃ (y) := F ′(y)y + F (y)

=
(

1
y2 ln

(
1 +

√
1 + y

2

)
− 1

2y(
√

1 + y + 1)

)
y − F (y)

= 1√
1 + y + 1 .

Thus µI is in the case of surfaces given by

µI(x, v) = κr2
√

1 + κr2 + 1
x+ x =

(
κr2 + 1 +

√
1 + κr2

√
1 + κr2 + 1

)
x =

√
1 + κr2x.

We want to show that −ϕ∗ωI = dλ− sπ∗σ and m∗(dτ/2 − π∗σ) = −ωI . For this we need
to prove that in the case of constant curvature surfaces we have

µλ − µσ = −µI ◦ ϕ and − µI = (µτ/2 − µσ) ◦m.

We can verify this by the following calculations using the notation at the end of section
5.4,

−µI(ϕ(a3, ra1)) = −µI( 1√
1 + κr2

(a3 + ra2), ra1) = −(a3 + ra2)

= [a3, ra1] − a3 = µ1(a3, ra1).

And similarly

µ2(m(a3, ra1)) = µ2(a3, e
a(r)ra1) = 1

2e
2ar2[[a3, a1], a1] − a3

=
(

−1
2e

2ar2κr2 − 1
)
a3 = −

√
1 + κr2a3

= −µI(a3, ra1).

The last step of copying the proof of Theorem 5.4.5 is to make sure that Υ is isotropic
for ωI , ϕ

∗ωI and m∗(dτ/2 − π∗σ). But this again follows because all symplectic structures
split with respect to the product TΣ × . . .× TΣ. This finishes the proof of Theorem 5.6.2.

5.7. Mañé critical value

This section contains an attempt in determining the Mañé critical value of Hermitian
symmetric spaces (M, g, σ) of non-compact type. The Mañé critical value of Hermitian
symmetric spaces of compact type is always infinite as σ is not weakly exact. For the
non-compact case we give a lower bound, but did not finish the construction of a primitive
to obtain an upper bound.
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5.7. Mañé critical value

Conjecture for the upper bound:
Recall from Section 2.2.1 that the Mañé critical value is defined by

c(M, g, σ) := 1
2 inf

θ
sup
x∈M̂

∥gθx∥2,

where M̂ denotes the universal cover of M , the infimum is taken over primitives of σ and
gθ denotes the metric dual of θ. Thus in order to bound the Mañé critical value from
above we need to find a primitive of σ. It is well known that the Kähler form σ is not
only exact but even admits a Kähler potential. Usually the Kähler potential is determined
using Bergman kernels see for example Wienhard [51, Ch. 3.4].

The idea is to determine a K-invariant Kähler potential in terms of the description as
coadjoint orbit. The corresponding K-invariant primitive of σ should, restricted to any
totally geodesic polydisc, yield the direct sum of the standard contact structure on the
hyperbolic disc. Thus the Mañé critical value of (M, g, σ) should be bounded from above
by r-times the Mañé critical value of CH1, which was computed by [13, section 5.2].

We will first give a detailed description of the two dimensional case. Identify su(1, 1)
with R2,1 via the map

su(1, 1) → R2,1; 1
2

(
x1 x2 + x3

x2 − x3 −x1

)
7→

x1
x2
x3

 .
The Killing form is mapped to the billinear form

(x⃗, y⃗) = x1y1 − x2y2 − x3y3

and the Lie bracket to

x⃗×̃y⃗ =

 x3y2 − x2y3
x1y3 − x3y1

−x2y1 + x1y2

 .
The coadjoint orbit OZ for Z = 1

2

(
0 1

−1 0

)
is the upper half of the two-sheeted hyper-

boloid, parametrized by

x⃗(φ, θ) =

sin(φ) sinh(θ)
cos(φ) sinh(θ)

cosh(θ)

 ,
for φ ∈ [0, 2π) and θ ∈ [0,∞). The invariant Kähler structure is in these coordinates given
by

ds2 = dθ2 + sinh(θ)2dφ2, σ = sinh(θ)dθ ∧ dφ
and

j =
(

0 sinh(θ)
− sinh(θ)−1 0

)
.

In order to construct a Kähler potential we define the function

ν : OZ
∼= CH1 → R; x 7→ (Z, x).

Now, the following Lemma holds.
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5. Symplectically twisted tangent bundle as Hermitian vector bundle

Lemma 5.7.1. The function ln(1+ν) is a Kähler potential for σ in particular the one-form

1
1 + ν

dcν

is a primitive of σ.

Proof. In coordinates we have ν(x) = cosh(θ), thus applying dc to ν yields:

1
1 + ν

dcν = 1
1 + cosh(θ)(d cosh(θ)) ◦ j = sinh(θ)

1 + cosh(θ)dθ ◦ j

= sinh(θ)2

1 + cosh(θ)dφ = sinh(θ)2(1 − cosh(θ))
1 − cosh(θ)2 dφ

= (cosh(θ) − 1)dφ.

Now it is easy to see that

d
( 1

1 + ν
dcν

)
= d ((cosh(θ) − 1)dφ) = sinh(θ)dθ ∧ dφ = σ.

This was a little preparation for the general case. We consider the following map

A : M = OZ → Sym(p); p 7→ Ap, where Ap(v) = [Z, [p, v]].

Indeed Ap(v) ∈ p as p = [Z, g], further Ap is symmetric as

(w,Ap(v)) = (w, [Z, [p, v]]) = ([p, [Z,w]], v) =
− ([Z, [w, p]], v) − ([w, [p, Z]], v)
= (Ap(w), v) + ([p, Z]︸ ︷︷ ︸

∈p

, [w, v]︸ ︷︷ ︸
∈k

) = (Ap(w), v).

Furthermore in the case of M = CH1 we have:

Lemma 5.7.2. For M = CH1 we can identify

Ap(v) = −(Z, p)v = −ν(p)v.

Proof. We may assume Z = e3 and p = p1e1 + p3e3, where e1, e2, e3 denote the standard
orthonormal basis of R2,1. Now a small computation shows

Ap(e1) = −(Z, p)e1 and Ap(e2) = −(Z, p)e2.

The next conjecture states how the Kähler potential might be expressed in terms of A.

Conjecture 5.7.3. Let (M,σ) be a hermitian symmetric space of non-compact type, then
the function tr(ln(12n −A)) is a Kähler potential for σ.
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5.7. Mañé critical value

The conjecture seems reasonable because of the following observation. For every point p
there is a polydisc through Z and p. As shown in Lemma 2.4.24 every polydisc lies in an
affine copy of su(1, 1)r. Therefore we can decompose Z = ∑

Zi +c and p = ∑
pi +c, where

c commutes with su(1, 1)r, i.e. [c, h] = 0 for all h ∈ su(1, 1)r. Assume v ∈ p ∩ su(1, 1)r,
then we can also split v = ∑

i vi with respect to the product. As c commutes with su(1, 1)r

we find
Ap(v) = [Z, [p, v]] =

∑
i

[Zi, [pi, vi]] = −
∑

i

(Zi, pi)vi,

where the last equation follows from the previous Lemma 5.7.2. This means that restricted
to the polydisc our conjecture holds.

Lower bound:
We will now follow the proof of Lemma 6.11 in [12] to find a lower bound. Consider the
family of closed curves γR : [0, T ] → M inside a polydisc of the form (γ1, . . . , γr), where
γi : [0, T ] → CH1 parametrizes a geodesic circle of radius R with speed |γ̇i| =

√
2k/r. We

know that the primitive of σ on M pulls back to the primitive ∑i
dxi
yi

on the polydisc,
where we identified CH1 with the hyperbolic half plane. Now we can compute

AL+k(γ) =
r∑

i=1

∫ T

0

(
1

2y2
i

(ẋ2
i + y2

i ) + ẋi

yi
+ k

r

)
dt

=
r∑

i=0

(∫ T

0

2k
r

dt−
∫

DR

dx ∧ dy
y2

)

= r

√2k
r
l −A

 ,
where we used that T = l

√
r/2k and l denotes the hyperbolic circumference and A the

hyperbolic area of a geodesic disc DR of Radius R. We plug in l = 2π sinh(R) and
A = 2π(cosh(R) − 1) to find

k <
r

2 ⇒ AL+k(γR) → −∞ for R → ∞.

By the alternative description of the Mañé critical value via the action functional (see
Section 2.2.1) we have r/2 ≥ c(M, g, σ) and together with Conjecture 5.7.3 we obtain the
following conjecture.

Conjecture 5.7.4. The Mañé critical value of the magnetic system (M, g, σ) is r
2 .
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6. Symmetries of magnetic CPn

In this chapter we will first prove a magnetic version of the fact that D1CPn sits in the
product CPn × CPn as complement of the anti-diagonal divisor. The symplectomorphism
we build also works in the case of vanishing magnetic field. This situation can be interpreted
as complexification of CPn. The second part of this chapter deals with the (open dense)
symplectic embedding of the disc sub bundle (D1/2RPn,dλ) into (CPn, σ). Observe that
RPn is fixed by an anti-holomorphic involution of CPn, thus it can be seen as a real form
of CPn. We will use these symplectomorphisms to determine the Hofer–Zehnder capacity
of (D1CPn, dλ) and (D1RPn,dλ).

6.1. (Magnetic) complexification
Let us start with a purely topological observation. We consider the open disc-subbundle of
the tangent bundle of the complex projective space, i.e. DCPn ⊂ TCPn. The boundary of
DCPn is a S2n−1-bundle. If we collapse this boundary fiberwise (using the Hopf-fibration)
we obtain a compactification (DCPn) of the disc-bundle.1 The compactification is a CPn-
bundle and topologically the same as the projectivization P(TCPn⊕C) of the Whitney sum
of the tangent bundle with a trivial complex line. Using the Euler-sequence we find that this
is isomorphic to P(L⊕n+1) where L is the tautological line bundle. Since projectivization
does not see tensoring by a line bundle it can be identified with P(Cn+1) which is clearly
CPn × CPn. In total we obtain the following line of identifications

(DCPn) ∼= P(TCPn ⊕ C) ∼= P(L⊕n+1) ∼= P(L⊗ C⊕n+1) ∼= P(Cn+1) ∼= CPn × CPn.

The aim of this section is to prove the following analogous statement in the symplectic
category. We will similarly to Section 5.4 construct the symplectomorphism using the
SU(n+ 1)-symmetries of (D1CPn, dλ− sπ∗σ) and (CPn × CPn, R1σ ⊖R2σ). Recall from
Section 2.3 that we can realize CPn as adjoint orbit of SU(n+1). In particular the inclusion
CPn ↪→ su(n + 1) is a moment map with respect to the invariant Kähler form (for CPn

usually called Fubini-Study form). It follows that the diagonal action on the product
(CPn × CPn, R1σ ⊖ R2σ) is Hamiltonian. Further by Theorem 2.4.23 the induced action
on the tangent bundle is also Hamiltonian.

Theorem 6.1.1 (Thm. D). There is a symplectomorphism, which is equivariant with
respect to the Hamiltonian SU(n+ 1) actions,

F : (DρCPn, ωs) → (CPn × CPn \ ∆̄, R1σ ⊖R2σ),

where ∆̄ ⊂ CPn × CPn denotes the anti-diagonal divisor

∆̄ = {(p, q) ∈ CPn × CPn | dist(p, q) maximal}
1In the symplectic category this will correspond to a Lerman cut.
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and R1, R2 are determined by

s = R2 −R1, ρ = 2
√
R1R2.

Further
(D1CPn, dλ− sπ∗σ) ∼= (CPn × CPn, R1σ ⊖R2σ),

where (D1CPn,dλ− sπ∗σ) denotes the symplectic compactification of the disc-bundle using
a Lerman cut with respect to the Hamiltonian circle action given by the reparametrized
magnetic geodesic flow.

This theorem can be used to compute the Hofer–Zehnder capacity of the twisted disc-
bundle. Observe that this symplectomorphism also works in the case of vanishing magnetic
field i.e. s = 0. We are therefore in addition able to compute the Hofer–Zehnder capacity
of the untwisted tangent bundle.

Corollary 6.1.2 (Cor. A). For any s ∈ R the Hofer–Zehnder capacity of (DρCPn, ωs) is
given by

cHZ(DρCPn, ωs) = c0
HZ(DρCPn, ωs) = 2π

(√
s2 + ρ2 − |s|

)
.

6.1.1. The complex projective space as adjoint orbit
In order to prove Theorem 6.1.1 we will consider CPn as adjoint orbit in su(n + 1). We
follow [15] for the presentation of CPn as adjoint orbit. The complex projective space can
be identified with the homogeneous space

CPn = SU(n+ 1)⧸S(U(n) × U(1)),

where S(U(n) × U(1)) denotes the matrices in U(n) × U(1) of determinant one. Fix

Z := 1
n+ 1

(
−in

ni

)
∈ su(n+ 1).

The stabilizer of Z under the adjoint action is precisely S(U(n) × U(1)), thus CPn can
be realized as the adjoint orbit OZ ⊂ su(n + 1). We can relate this description of CPn

with the standard description of complex lines in Cn+1 by identifying Z with the complex
line corresponding to the last coordinate axis of Cn+1 and extending this identification
equivariantly. The stabilizer group S(U(n) × U(1)) is isomorphic to U(n) via the map

U(n) → S(U(n) × U(1)); A 7→
(
A

detA−1

)
.

On Lie-algebra level the inclusion looks like

u(n) ↪→ su(n+ 1); B 7→
(
B

−trB

)
.

Thus the Lie-algebra splits as
su(n+ 1) = p ⊕ u(n),
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6.1. (Magnetic) complexification

where

p =
{(

0n −z̄
zt 0

) ∣∣∣ z ∈ Cn

}
is the subspace corresponding to the tangent space of CPn at Z. Observe that for any

v =
(

0n −z̄
zt 0

)
∈ TZCPn = p

we have that

jZv := [Z, v] = 1
n+ 1

((
−in

ni

)(
0n −z̄
zt 0

)
−
(

0n −z̄
zt 0

)(
−in

ni

))
=
(

0n −(iz)
(iz)t 0

)

recovers the standard complex structure on CPn. Further the negative of the Killing form

(X,Y ) := −2tr(X · Y )

yields an Ad-invariant scalar product on su(n + 1). Restricted to p it is compatible with
jZ and equivariantly extended it yields the standard invariant Kähler structure of CPn.

6.1.2. Proof of Theorem D

We want to symplectically identify the twisted disc-bundle (DρCPn, ωs) with the split
symplectic manifold (CPn ×CPn \ ∆̄, R1σ⊖R2σ). Recall that the SU(n+ 1)-action on the
twisted tangent bundle is Hamiltonian with moment map

µDρCPn(x, v) = [x, v] − sx,

where we interpret CPn as coadjoint orbit in su(n+1). Also the diagonal SU(n+1) action
on CPn × CPn is Hamiltonian with moment map

µCPn×CPn(N,S) = R1N −R2S.

This action restricts to an action on CPn × CPn \ ∆̄ as it leaves the anti-diagonal divisor
∆̄ ⊂ CPn × CPn invariant. We can now prove Theorem 6.1.1. Observe that scaling the
fibers

Φ− ln(R1)
Y : (DρCPn,dλ− sπ∗σ) →

(
Dρ/R1CPn, R1

(
dλ− s

R1
π∗σ

))
is an equivariant symplectomorphism. Therefore, we can restrict to the case R1 = 1 and
R2 = R. Recall that the vector field X(x,v) := vH generates geodesic flow, i.e. Φt

X :
DρCPn → DρCPn is given by

Φt
X(x, v) = (γ(x,v)(t), γ̇(x,v)(t)),

for γ(x,v)(t) := expx(tv) the geodesic starting at x in direction v. If c : (−ρ, ρ) → (0,∞) is
a smooth even function, we can define the smooth map

φc : DρCPn → CPn; (x, v) 7→ γ(x,v)(c(|v|)),
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6. Symmetries of magnetic CPn

which is the geodesic flow for time c(|v|) projected to CPn. Our claim is now that (for
suitable smooth even functions c1, c2) the map

F : (D2
√

RCPn, ωR−1) → (CPn × CPn \ ∆̄, σ ⊖Rσ); (x, v) 7→ (φ−c1(x, jxv), φc2(x, jxv))

is a symplectomorphism. For the proof we want to use Prop. 5.4.1. Thus we need to show
that the moment map triangle commutes. From the definition of F we see that

F (x, v) = (γ(x,jxv)(−c1), γ(x,jxv)(c2)),

and we will determine c1, c2 imposing the relation of the moment maps

µDρCPn(x, v) = µCPn×CPn(F (x, v)).

Per construction the moment maps and the map F are equivariant. Hence it is enough to
check the moment map triangle at some point

x = Z = 1
n+ 1

−in−1
−i 0
0 ni

 , v = r

2

0n−1
0 −i

−i 0

 ∈ TZCPn, r = |v| > 0,

as the group action is transitive on the sphere subbundle of TCPn. We compute

µDρCPn(x, v) = [x, v] − (R− 1)x = r

2

0n

0 1
−1 0

− R− 1
n+ 1

−in−1
−i 0
0 ni

 .
The geodesic through x in direction jxv is given by

γ(x,jxv)(t) = Adexp(−tv)x = 1
n+ 1

−in−1
−i(cos(rt)2 − n sin(rt)2) (n+ 1) sin(rt) cos(rt)
−(n+ 1) sin(rt) cos(rt) i(n cos(rt)2 − sin(rt)2)

 .
It parametrizes an affine circle in su(n+ 1) since

V (t) := 1
2

(
γ(x,jxv)(t) − γ(x,jxv)(t+ π

2r )
)

= 1
2

0n−1
−i cos(2rt) sin(2rt)
− sin(2rt) i cos(2rt)


satisfies |V |2 = −2tr(V 2) = 1. The circle is centered at

y := 1
2

(
γ(x,jxv)(t) + γ(x,jxv)(t+ π

2r )
)

= 1
n+ 1

−in−1 0 0
0 n−1

2 i 0
0 0 n−1

2 i

 .
Observe that γ(x,jxv)(t) = V (t) + y.

Remark 6.1.3. The image of span(v, jv) under the exponential map yields an embedded
affine sphere. This is the special case of Proposition 2.4.24 for the complex projective space,
a compact Hermitian symmetric space of rank one. As the circle has radius one, the sphere
has area 4π. The Fubini–Study is therefore normalized to have area 4π evaluated on the
generator of H2(CPn,Z).
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6.1. (Magnetic) complexification

Now the second moment map is given by

µCPn×CPn(F (x, v)) = γ(x,jxv)(−c1) −Rγ(x,jxv)(c2) = (1 −R)y + V (−c1) −RV (c2).

Comparing the coefficients of the two matrices yields two equations for c1 and c2:

sin(2c1r) +R sin(2c2r) = r,

cos(2c1r) −R cos(2c2r) = 1 −R.
(6.1)

The moment map triangle commutes if and only if these two equations hold.

Lemma 6.1.4. A solution to (6.1) exists if and only if

r := |v| ≤ 2
√
R =: ρ.

Proof. The proof is elementary geometric and shown in figure 6.1.

Figure 6.1.: The geodesic γ(x,jv) parametrizes a round circle. We draw this circle twice (in
black), one of radius 1 and one of radius R. The moment map jv − (R− 1)x
must be equal to N − RS for two vectors N,S of length 1. If 0 < r :=
|v| < 2

√
R, the grey circle of radius 1 intersects the outer black circle exactly

twice. The vector −RS is the first intersection point counting in the direction
determined by jv from N − RS. If r = 0 there is only one intersection, it
determines −RS.

Lemma 6.1.5. The functions

c1, c2 : (−ρ, ρ) → (0,∞)

implicitly defined via the equation (6.1) are smooth and even.

Proof. Applying the implicit function theorem directly to the equations (6.1) yields smooth-
ness of c1, c2 whenever r ̸= 0. Further, they are even, as the defining equations (6.1) are
invariant under r → −r. For the case r → 0 we rewrite (6.1) in terms of the function

G : (−ρ, ρ) × (0,∞)2 → R2; (r, c1, c2) →
(

2τ(2c1r)c1 + 2Rτ(2c2r)c2 − 1
4σ(2c1r)c2

1 − 4Rσ(2c2r)c2
2

)
,
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6. Symmetries of magnetic CPn

where τ, σ : R → R are the smooth functions given by

τ(x) = sin(x)
x

, σ(x) = 1 − cos(x)
x2 .

The equations (6.1) are now equivalent to G(r, c1, c2) = 0, taking the derivative in c1, c2
yields

dc1,c2G =
(

4rτ ′(2c1r)c1 + 2τ(2c1r) 4Rrτ ′(2c2r)c2 + 2Rτ(2c2r)
8rσ′(2c1r)c2

1 + 8σ(2c1r)c1 −8Rrσ′(2c2r)c2
2 − 8Rσ(2c2r)c2

)
.

Observe that taking the limit r → 0 in (6.1) yields

c1(0) +Rc2(0) = 1/2, c1(0)2 −Rc2(0)2 = 0

thus
2c1(0) = (1 +

√
R)−1, 2c2(0) = (

√
R+R)−1.

Further, τ(0) = 1 = 2σ(0), τ ′(0) = 0 = σ′(0) and therefore

dc1,c2G|r=0 =
(

2 2R
4c1(0) −4Rc2(0)

)
.

We see that
det

(
dG(c1,c2)|r=0

)
= −8R(c1(0) + c2(0)) ̸= 0

and it follows by the implicit function theorem that c1, c2 are smooth at r = 0.

This finishes the construction of the smooth map F : DρCPn → CPn × CPn. But is it
a diffeomorphism? We can explicitly give an inverse. A point (N,S) ∈ CPn × CPn \ ∆̄
defines a unique shortest geodesic γ connecting from N to S. As shown in Figure 6.2
one can geometrically determine c1(r)r and c2(r)r and thus deduce r from the first of the
relations (6.1). Denote by v ∈ TNCPn the vector of length r pointing in the direction of
γ. Now

F−1(N,S) = (expN (c1(r)v), Pv) = Φc1
X (N, v)

is well defined and smooth as geodesic flow and c1 are smooth. Here Pv denotes the parallel
transport along the geodesic starting at N in direction v. Thus F is bijective and smooth
intertwining the moment maps.

Further the codimension of the orbits of SU(n + 1) is one. Thus any complement of
D is 1-dimensional and thus isotropic for both symplectic forms ωs and F ∗(σ ⊖ Rσ). It
follows from Prop. 5.4.1 that F is a symplectomorphism. Observe that as F is symplectic
its differential must be invertible. A smooth, invertible map with invertible differential is
a diffeomorphism.
Remark 6.1.6. A closed almost complex manifold (W,J) is called (compact) complexifi-
cation of a real manifold M if there exists an antiholomorphic involution

I : W → W ; dI ◦ J = −J ◦ dI

such that M is isomorphic to the fixed point set of I. The symplectomorphism constructed
above realizes the complexification of CPn in the case s = 0. The antiholomorphic involu-
tion on (CPn × CPn, j ⊖ j) is given by

I : CPn × CPn → CPn × CPn; (N,S) 7→ (S,N).
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6.1. (Magnetic) complexification

Figure 6.2.: The vector N −RS is given and we need to decompose it into two orthogonal
vectors jv and −(R − 1)x. The second vector must be of length R − 1, thus
possible candidates come from tangent lines to the grey circle of radius R − 1
starting at N − RS. If N ̸= S there are precisely two of those. We pick the
first one rotating N − RS in the direction of γ. The angle between N resp.
−S and the red line is 2c1r resp. 2c2r. If N = S then 2c1r = 2c2r = 0.

6.1.3. Hofer–Zehnder capacity
The symplectomorphism F can also be used to compute the Hofer–Zehnder capacity of
(DρCPn, ωs), in particular for the case s = 0, which was not included previously.
Recall from section 4.2 that the Hamiltonian

H : DρCPn → R; (x, v) 7→ 2π
(√

s2 + |v|2 − |s|
)

is the moment map of a circle action on (DρCPn, ωs). Thus H ◦ F−1 must generate a
Hamiltonian circle action on (CPn × CPn \ ∆̄, R1σ ⊖ R2σ). Denote (x, v) := F−1(N,S).
By construction µ1(x, v) = µ2(N,S) and therefore

|µ1(x, v)|2 = |µ2(N,S)|2 ⇔ |v|2 + (R2 −R1)2 = R2
1 +R2

2 − 2R1R2(N,S)
⇔ |v|2 = 2R1R2(1 − (N,S)).

Thus
H(F−1(N,S)) = 2π

(
|R1N −R2S|2 − |R2 −R1|

)
.

Using a Lerman cut on both sides of the symplectomorphism, we obtain an identification
of (

(DρCPn), ω̄s

)
∼= (CPn × CPn, R1σ ⊖R2σ) ,

as the symplectomorphism is equivariant with respect to the Hamiltonian circle actions on
both sides.

Theorem 6.1.7 (Cor. A). The Hofer–Zehnder capacity of the (magnetically twisted) disc
sub bundle of the tangent bundle is given by

cHZ(DρCPn, ωs) = c0
HZ(DρCPn, ωs) = 2π

(√
s2 + ρ2 − |s|

)
.
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6. Symmetries of magnetic CPn

Proof. For the upper bound we want to use Lu’s theorem 3.2.11. Therefore we need to
compute a non-vanishing Gromov-Witten invariant. Recall from example 3.2.2 that the
standard complex structure j⊖ j is regular for the split symplectic structure of CPn ×CPn

and the homology classes [pt. × CP1], [CP1 × pt.] ∈ H2(CPn × CPn,Z). So take A ∈
{[pt. × CP1], [CP1 × pt.]} ⊂ H2(CPn × CPn,Z). We have a unique holomorphic sphere
through a generic point intersecting the diagonal as there is exactly one holomorphic sphere
connecting two distinct points in CPn. Further the intersection number [A] · [∆̄] = 1 in
H∗(CPn × CPn,Z), as [CP1] · [CPn−1] = 1 in H∗(CPn,Z). In total we find

GWA(pt.,∆, ∆̄) = GWA(pt.,∆)
(
A · [∆̄]

)
= 1.

Applying Lu’s theorem 3.2.11 yields

cHZ(CPn × CPn \ ∆̄, R1σ ⊖R2σ) ≤ σ(CP1) · min{R1, R2} = 4π · 1
2

(√
s2 + ρ2 − |s|

)
.

By theorem 6.1.1 the upper bound follows. This is also a lower bound by Lemma 4.0.1
since it is the oscillation of the Hamiltonian generating the circle action.

Remark 6.1.8. This also implies that

cHZ(D1CPn, dλ) = 2π.

We can compare this to the computation of the Hofer–Zehnder capacity relative to the
zero-section in Example 4.1.4, where we saw that

cHZ(D1CPn,CPn, dλ) = l = 2π.

This is because the Fubini-Study form is normalized such that σ(CP1) = 4π = l2/π. We
see that indeed relative and absolute Hofer-Zehnder capacity agree.

6.2. Real form
It is a well known fact that the complement of the quadric CPn \Qn−1 is diffeomorphic to
TRPn, where in homogeneous coordinates the quadric is given by

Qn−1 := {[z0 : . . . : zn] | z2
0 + . . .+ z2

n = 0} ⊂ CPn.

The symplectic version of this statement in dimension n = 2 was proven by Adaloglou [1].
In this section we give a (different) proof for all dimensions. We will as in the previous
section use the fact that there is a symmetry group essentially determining the symplec-
tomorphism. We equip RPn with the constant curvature metric. Thus the isometry group
is SO(n + 1) and it induces a symplectic action on (D1RPn) in the usual way. Further
SO(n+1) can be identified as subgroup of SU(n+1) restricting to real coefficients. Hence,
SO(n+ 1) acts also symplectically on (CPn, σ), where σ denotes the Fubini-Study form.
Theorem 6.2.1 (Thm. E). There is an SO(n+ 1)-equivariant symplectomorphism

F : (D1/2RPn,dλ) → (CPn \Qn−1, σ).

Further
(D1/2RPn, dλ) ∼= (CPn, σ).

where (D1/2RPn, dλ) denotes the symplectic compactification of the disc-bundle using a
Lerman cut with respect to the Hamiltonian circle action given by geodesic flow.
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Using the description of CPn as adjoint orbit OZ ⊂ su(n + 1) explained in Section 6.1.1,
we can identify RPn as an SO(n+ 1) ⊂ SU(n+ 1) sub orbit

RPn ∼= {Adg(Z)| g ∈ SO(n+ 1)} ⊂ OZ
∼= CPn.

It is fixed under the involution

I : OZ → OZ ; p 7→ pT ,

as can be seen by direct computation

(gZg−1)T = ḡZT gT = gZg−1 ∀g ∈ SO(n+ 1).

The involution I is antiholomorphic, because for all v ∈ p we find

dIZ(jZ(v)) = [Z, v]T = (Zv − vZ)T = −(ZvT − vTZ) = −[Z, vT ] = −jZ(dIZ(v)).

6.2.1. Proof of Theorem E

Analogously to the previous sections we will prove Theorem 6.2.1 by intertwining moment
maps on both sides. Therefore we first need to find out what the moment maps on both
sides are.

Lemma 6.2.2. The SO(n+1)-action on TRPn is Hamiltonian. The moment map is given
by

µ1 : TRPn 7→ so(n+ 1); (x, v) 7→ [x, v].

Proof. The map µ1 is the restriction of the moment map for (TCPn, dλ). We therefore
only need to check that the map actually takes values in so(n + 1). From the description
as suborbit it is only clear that [x, v] ∈ su(n + 1). The action of SO(n + 1) on TRPn is
transitive on the sphere subbundle, thus it is fine to check this at some point

x = 1
n+ 1

−in−1
−i 0
0 ni

 ∈ RPn, v = r

2

0n−1
0 −i

−i 0

 ∈ TxRPn ∼= [x, so(n+ 1)].

Observe that x = Z and r = |v|. Indeed for this choice we see

[x, v] = [x̄, v̄] = [−x,−v] = [x, v]

and therefore [x, v] ∈ so(n+ 1).

Lemma 6.2.3. The SO(n+ 1)-action on CPn is Hamiltonian. The moment map is given
by

µ2 : CPn 7→ so(n+ 1); p 7→ Re(p).

Proof. Equivariance of the map is clear as conjugation with a real matrix commutes with
taking the real part. The rest of the proof is the following straight forward computation.
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6. Symmetries of magnetic CPn

Figure 6.3.: The figure shows a sketch of the map F : D1/2RP1 → CP1. In dimension
n = 1 the quadric is given by the two antipodal points furthest away from RP1.
In particular the image of F coincides with CP1 \Q0.

Any tangent vector v ∈ TxRPn is of the form v = ξ#
x for some ξ ∈ so(n+ 1), thus for every

a ∈ so(n+ 1) we find

0 = d
dt
∣∣∣
t=0

(AdetξRe(x),Adetξa)

= d
dt
∣∣∣
t=0

(AdetξRe(x), a) + (Re(x), [ξ, a])

= d
dt
∣∣∣
t=0

(Re(Adetξx), a) + (x, [ξ, a])

= d(Re, a)x(ξ#) + ωx(ξ#, a#)
= d(Re, a)x(v) + ωx(v, a#).

For the third equality we used that for two real matrices a, b such that a, ib ∈ su(n+ 1) we
know that

(a, ib) = −2tr(a · ib) = −2itr(a · b) ∈ R ⇒ (a, ib) = 0.

We now make the following ansatz for the symplectomorphism realizing Theorem 6.2.1,

F : D1/2RPn → CPn; (x, v) 7→ expx(−f(|v|)jxv) = ef(|v|)vxe−f(|v|)v,

for some function f : [0, 1/2) → R. This can be visualized nicely in dimension n = 1 as
shown in figure 6.3. For the above choice of (x, v) we find

ef(r)v =

1n−1
cos(fr) i sin(fr)
i sin(fr) cos(fr)

 .
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It follows that

ef(r)vxe−f(r)v = 1
n+ 1

−in−1
i(n sin(fr)2 − cos(fr)2) −1

2(n+ 1) sin(2fr)
1
2(n+ 1) sin(2fr) i(n cos(fr)2 − sin(fr)2)


and thus

µ2(F (x, v)) = 1
2

0n−1
0 − sin(2fr)

sin(2fr) 0

 .
On the other hand

µ1(x, v) = [x, v] =

0n−1
0 −r
r 0

 .
Comparing the matrix entries we find that f must satisfy

sin(2fr) = 2r, (6.2)

which is invertible for r ∈ [0, 1/2) so that

f(r) = sin−1(2r)
2r .

As f extends to a smooth even function on (−1/2, 1/2) it follows that F is a smooth map
intertwining the moment maps.

Lemma 6.2.4. The image of F is contained in CPn \Qn−1, i.e. F is well-defined.

Proof. We need to show that F (x, v) ∈ CPn \Qn−1 for all (x, v) ∈ D1/2RPn. As SO(n+ 1)
acts transitively on the unit sphere bundle we may assume that x = [1 : 0 : . . . : 0] in
homogeneous coordinates and v tangent to the copy of RP1 ⊂ {[z : w : 0 : . . . : 0] ∈ CPn}.
We reduced our claim to dimension n = 1. As shown in figure 6.3 in this case it is obvious
that (x, v) /∈ Q0.

Lemma 6.2.5. F : D1/2RPn → CPn \Qn−1 is bijective.

Proof. We can explicitly give an inverse. A point p ∈ CPn \ Qn−1 and its conjugate I(p)
are joined by a unique unit speed geodesic γ : [0, l] → CPn. This can be seen as follows.
If p /∈ RPn, p and I(p) lie in a unique copy of CP1. Now we look at figure 6.3 to see that
there is a unique shortest geodesic joining p and I(p) if and only if p ̸= Qn−1. In view of
equation (6.2) we have

length(γ) := l = sin(2f(|v|)|v|) = 2|v|

thus
F−1(p) = (γ(l/2), l2 γ̇(l/2))

defines the inverse.

We see that F is an equivariant smooth bijection that intertwines the moment maps. Again
any complement of D is one-dimensional and thus isotropic for any symplectic form. Thus
F fulfills the prerequisites of Prop. 5.4.1 and therefore is the symplectomorphism realizing
the symplectic identification in Theorem 6.2.1.
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6.2.2. Hofer–Zehnder capacity

The embedding of (D1RPn, dλ) into (CPn, 2σ) yields an upper bound for the Hofer–Zehnder
capacity.

Corollary 6.2.6. Equip RPn with the constant curvature metric, then the Hofer–Zehnder
capacity of the unit disc sub bundle of TRPn is bounded from above by

cHZ(D1RPn, dλ) ≤ 2l,

where l denotes the length of the geodesics.

Proof. The upper bound follows immediately from the symplectic embedding of (D1RPn, dλ)
into (CPn, 2σ) and the fact that cHZ(CPn, 2σ) = 8π. Our normalization of the Fubini-
Study form is 2σ([CP1]) = 8π = π · 22 and thus l = 2π · 2 = 4π.

Recall from Example 4.1.4 that the relative Hofer–Zehnder capacity for manifolds with
Zoll metric is given by the length of the geodesics. In particular we obtain a lower bound
for the total capacity

4π = l ≤ cHZ(D1RPn).

We claim that this lower bound can be improved.

Theorem 6.2.7 (Thm. F). Equip RPn with the constant curvature metric, then the
Hofer–Zehnder capacity of the unit disc sub bundle of TRPn is given by

cHZ(D1RPn, dλ) = 2l,

where l denotes the length of the geodesics.

Proof. We already showed that the capacity is bounded from above by 2l. All that is left
to do is to find an admissible Hamiltonian with oscillation 2l. The idea is to look at the
dynamics for a family of Hamiltonians

Hε(x, v) =
√

∥v∥2
x + Vε(x)

with potentials Vε : RPn → R that approximate billiard dynamics on a hemisphere as
ε → 0. We may lift the potential to Sn and assume that Vε(−x) = Vε(x) so that the
potential descends to a function Vε on RPn. We fix a point N ∈ Sn. The isotropy
subgroup of SO(n+ 1) that fixes N is isomorphic to SO(n) and leaves the equatorial copy
of Sn−1 invariant. We want the family Vε to be rotation invariant i.e. Vε(R(x)) = Vε(x)
for all R ∈ SO(n). This implies that Vε(x) only depends on the distance of x from N .
In particular the gradient ∇Vε(x) points along the geodesic connecting x and N . The
Hamiltonian vector field for Hε with respect to dλ is given by

(XHε)(x,v) = 1
Hε

(
X(x,v) − (∇Vε(x))V

)
,

were X is the vector field generating geodesic flow. In particular (XHε)(x,v) ∈ TTS2 for
the totally geodesically embedded copy of S2 through x and N tangent to v. We reduced
the problem to the situation in dimension n = 2. Now we introduce coordinates on this
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6.2. Real form

copy of S2 to describe the dynamics explicitly. We use θ ∈ [0, π] and φ ∈ R/2πZ. Where
N corresponds to θ = 0. Set

Vε(x) =
{

1, for θ(x) ∈ [π/2 − ε/2, π/2]
0, for θ(x) ∈ [0, π/2 − ε]

and interpolate smoothly for θ(x) ∈ [π/2 − ε, π/2 − ε/2] so that Vε ≥ 0 and V ′
ε ≥ 0. Now

extend Vϵ according to the required symmetries, i.e. Vε(x) = Vε(−x) and Vε(Rx) = Vε(x)
for all R ∈ SO(n). In this coordinates the Hamiltonian reads

Hε(x, v) =
√
θ̇2 + sin(θ)2φ̇2 + Vϵ(θ),

where by abuse of notation we write φ̇, θ̇ instead of vφ, vθ and Vε(θ) instead of Vϵ(x) as the
potential only depends on θ. Observe that Hε does not depend on φ, this implies imme-
diately that sin(θ)2φ̇ is preserved. We conclude that the maximal angular velocity φ̇max
corresponds to the minimal radius θmin. We want to find upper bounds for the periods of
all orbits for the Hamiltonian Hε as ε tends to zero. Therefore we take an arbitrary orbit
γ(t) = (θ(t), φ(t), θ̇(t), φ̇(t)) with energy Hε(γ) < 1. We split into two cases: θmin ≥ π

2 −
√
ε

and θmin ≤ π
2 −

√
ε.

Case θmin ≥ π
2 −

√
ε : At θ(t) = θmin we have θ̇ = 0, thus

1 > Hε =
√

sin(θmin)2φ̇2
max + Vϵ(θmin) ≥ sin(θmin)φ̇max ⇒ φ̇max ≤ 1

sin(θmin) .

Clearly the period T must satisfy

T >
2π
φ̇max

≥ 2π sin(θmin) ≥ 2π cos(
√
ε) ε−→0−−−−→ 2π.

Case θmin ≤ π
2 −

√
ε : For small ε certainly ε <

√
ε, so θmin ≤ π

2 −
√
ε implies V (θmin) = 0.

In particular segments of the orbit are geodesics parametrized by unit speed. There are
at least two of these segments as by symmetry of the potential the orbit must leave the
region where Vε ̸= 0 with the same angle it enters the region. The length of these segments
is π− 2lε, where lε is the length of the geodesic segment contained in the region π/2 − ε ≤
θ ≤ π/2 where the potential Vε does not vanish as depicted in Figure 6.4. Now we can
bound the period from below as follows

T > 2π−4lε ≥ 2π(1−sin(lε)) = 2π
(

1 − sin(ε)
sin(π/2 − θmin)

)
≥ 2π

(
1 − sin(ε)

sin(
√
ε)

)
ε−→0−−−−→ 2π.

The bound on sin(lε) is obtained using the spherical law of sines

sin(lε)
sin(π/2) = sin(ε)

sin(π/2 − θmin)

as explained in Figure 6.4.

In total we conclude that for small enough ε > 0 the period is bounded by

T > 2π(1 −
√
ε)
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6. Symmetries of magnetic CPn

Figure 6.4.: On the left we see in green undashed a geodesic segment on the hemisphere
centered at N . Indeed it hits the equator with angle π

2 − θmin. On the right we
see in dark green a sketch of how the trajectory might continue when it enters
the region where the potential does not vanish. By conservation of angular
momentum the picture must be symmetric with respect to the grey dotted line.
In particular the trajectory leaves the region with the same angle entering it.
Further we see that the segment of the geodesic lε is the hypotenuse of a right
spherical triangle. The length of the side opposite to π

2 − θmin is ε and thus we
can determine lε using the spherical law of sines.

and therefore the orbits for the scaled Hamiltonian (1 −
√
ε)2πHε have periods T ≥ 1.

Now we can, analogously to the construction in the proof of Lemma 4.0.1, use a function
f : [0, 1] → [0,∞) changing the oscillation arbitrary small so that f ◦Hε is admissible. In
particular

cHZ(D1RPn) ≥ (1 −
√
ε)2πosc(Hε) = (1 −

√
ε)2π ∀ε > 0,

which finishes the proof as 2π = 2l for the normalization we worked with.
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7. Conclusion and outlook

In this section we collect what we learned and knew already about the Hofer–Zehnder
capacity of disc sub bundles (DρM,ωs) of (symplectically twisted) tangent bundles. We
used symmetries to constructed explicit symplectic embeddings, which made it possible to
replace finiteness results of the Hofer–Zehnder capacity by precise bounds and values. The
following table gives an overview of these values. For simplicity we set ρ = 1 and κ = ±1
or κ = 0. The left column denotes the universal cover of M . The length of the shortest
geodesic of M is denoted by l. Observe that κ fixes the normalization of l, for example
if κ = 1 the geodesics on CPn have length 2π. There are some remarks we want to make
looking at the table.

Relative vs. absolute:
For symplectically twisted tangent bundles (s ̸= 0) the Hofer–Zehnder capacity relative
to the zero section cHZ(D1M,M,ωs) coincides (at least in the cases we studied) with the
absolute one. This can be easily seen as the Hamiltonian we used for the lower bound
vanishes identically on the zero-section. On the other hand for the standard tangent bun-
dle (s = 0) of RPn or flat manifolds the absolute is twice the relative capacity. It is
reasonable to expect this also from the point of view of pseudoholomorphic curves, as the
zero-section is Lagrangian it cuts the holomorphic cylinder that parametrizes the tangent
bundle of a closed geodesic into two halves. From this point of view it is surprising and
seems rather coincidental that in some cases as for CPn relative and absolute capacity
coincide. In principle it should be possible to adapt the Hofer-Viterbo argument using
holomorphic curves with boundary mapped to Lagrangian submanifolds in order to com-
pute the Hofer–Zehnder capacity relative to Lagrangians. This phenomenon seems very
related to Biran’s Lagrangian barriers in the sense of [9]. Recently Brendel and Schlenk
demonstrated this impressively computing the Gromov width of CP2 with certain singular
Lagrangians, called pinwheels, removed. If one could establish a version of Hofer–Viterbo’s
Theorem for holomorphic discs with boundary mapped to the Lagrangian, one can prove
the analogous statements for the Hofer–Zehnder capacity. Actually in the case of the
Lagrangian RP2 ⊂ CP2 one gets away without using holomorphic discs.

Example 7.0.1. As an example of Biran’s decomposition of Kähler manifolds [9, Thm.
1.A.] one gets that (CPn\RPn, σ) is symplectomorph to the unit disc subbundle of Boothby–
Wang bundle over the quadric (Qn−1, σ). In particular after a Lerman cut at the boundary
of the disc-bundle we can apply Corollary 4.1.3 to find that

cHZ(CPn \ RPn, σ) = 1
2cHZ(CPn, σ).

This is because the area of the fibers of the Boothby–Wang bundle over Qn have (per con-
struction) half the area of the holomorphic sphere that represent the generator of H2(CPn,Z).
In this case one does not need to use holomorphic discs, because RPn has a Zoll metric,
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7. Conclusion and outlook

we can therefore compactify the complement of RPn by a Lerman cut and thus compactify
the holomorphic discs to holomorphic spheres.

M̂ s κ ≤ cHZ cHZ ≤ cHZ(D1M,M) c0
HZ

CPn > 0 1 2π(
√
s2 + 1 − s) same same same

= 0 1 l = 2π same same same

CHn ≥ 1 −1 2π(s−
√
s2 − 1) same same same

< 1 −1 l
√
ρ2 − s2) for n = 1 ? ? ∞

= 0 −1 l ? l ∞

Cn > 0 0 π/s same same same

= 0 0 2l same l ∞

HSSCT > 0 1 2π(
√
s2 + 1/r − s) 2πr(

√
s2 + 1 − s) same same

= 0 1 l < ∞ l ?

HSSNT > 1 −1 2π(s−
√
s2 − 1/r) 2πr(s−

√
s2 − 1) same same

≤ 1 −1 ? ? ? ∞

= 0 −1 l ? l ∞

RPn = 0 1 2l = 8π same l = 4π ∞

Rn = 0 0 2l same l ∞

MR = 0 ±1 l ? l ?

S2n+1 = 0 1 l = 2π ? l = 2π ?

BW = 0 ±1 l ? l ?

Fiberwise convex subsets of symplectic vector bundles:
The inaccuracy for the bounds of the Hofer–Zehnder capacity of Hermitian symmetric
spaces comes from the fact that the disc-bundle can be identified with a fiberwise convex
neighborhood of the zero-section of a symplectic vector bundle and we only know the value
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for disc sub bundles. Looking at the upper bound one gets the impression that eventually
only the size of the fibers determines the value of the capacity. This could indicate that
the true value of the Hofer–Zehnder capacity is the minimal action of a characteristic on
the boundary of the fibers, i.e.

cHZ(D1M,ωs) = 2π
κ

(
√
s2 − κ− s)

for s2 > −κ, independent of the rank r. An attempt to prove this could go as follows. Let
H : UM → R be an admissible Hamiltonian and UM some fiberwise convex neighborhood
of the zero-section. Denote (x0, v0) ∈ UM a point where H attains its minimum. Then

H|Ux0 M : (Ux0M,ω0) → R

is admissible and has the same oscillation as H. Further Ux0M ⊂ Rn is convex so if the
oscillation of H is larger than the minimal action of a characteristic on the boundary,
H|Ux0 M has a fast periodic orbit. This however doesn’t imply that H has a fast periodic
orbit, as XH|Ux0 M

̸= XH . So the question one needs to answer is the following.

Question 7.0.2. Is it possible to modify H near Ux0M without changing the oscillation
of H too much such that dπ(XH)(x0,v) = 0 for all v ∈ Ux0M?

Flat manifolds:
The values for flat manifolds Tn (Tori) were not derived in this thesis, but will appear
independently in joint work with Gabriele Benedetti and Kai Zehmisch. Roughly speaking
the lower bound comes from playing billiard (see also section 7.2). The upper bound comes
from holomorphic cylinders and the symplectic identification of the tangent bundle of a
torus (TTn, dλ) with the product of complex cylinders (Z× . . .×Z, l1σ0 ⊕ . . .⊕ lnσ0), where
σ0 denotes the standard symplectic form on Z and li are the lengths of the geodesics that
generate π1(Tn).

Claim 7.0.3. Let (Tn, g) be a flat torus. Denote by l the length of the shortest geodesic,
then

cHZ(D1T
n, dλ) = 2l.

Weak and vanishing magnetic strength s:
The difficulty with weak or vanishing magnetic term is that there is no Hamiltonian circle
action we can use for lower and upper bound. We saw in the example of CPn that we
can overcome this problem by considering the embedding of D1CPn into the product
CPn × CPn. In principle this should be possible for all Hermitian symmetric spaces. This
includes the important example of constant curvature surfaces. Note that for this class of
examples even finiteness of the Hofer–Zehnder capacity is not known. Using the Lagrangian
embedding

M ↪→ (M ×M,σ ⊖ σ)

to find upper bounds is explained a little more in section 7.1.

π1-sensitive capacity:
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7. Conclusion and outlook

For simply connected manifolds the π1-sensitive capacity must clearly agree with the full
capacity. If the magnetic field is strong they also agree as the lower bound is constructed
from a Hamiltonian circle action and the upper bound comes from holomorphic spheres,
thus orbits must be contractible. In the non-simply connected scenario with vanishing or
weak magnetic field everything can happen. For example closed hyperbolic manifolds have
infinite π1-sensitive capacity, as there are no contractible geodesics.

Extending the class of manifolds:
Most of the considerations worked explicitly because M is a complex manifold. The only
example of a real manifold we were considering is RPn the real form of CPn. Surely it
should be possible to consider also real forms of the other Hermitian symmetric spaces MR.
This is discussed in some more detail in section 7.1.
Another possible direction will be to consider the total space of Boothby-Wang bundles
over Hermitian symmetric spaces. These are homogenous manifolds for the same group.
An important example is S2n+1. Even though (D1S

n, dλ) is a very classic example of a
symplectic manifold its Hofer–Zehnder capacity is unknown. Some more details are in
section 7.3

7.1. Complexifications & real forms

By the symplectic or Lagrangian neighborhood theorem for small enough ρ the twisted
disc-bundle embeds into the product

(DρM,ωs) ↪→ (M ×M,R1σ ⊖R2σ),

where s = R1 −R2. Intertwining the Hamiltonian group action on both sides it should be
possible to at least extend this to a finite explicit value of ρ. The embedding should be
constructed replacing the functions c1, c2 in the proof of Theorem D by spectral functions
on the operator jRjv,v. To obtain an optimal embedding one will need to replace the
disc-bundle by a suitable convex neighborhood of the zero-section.

The analog strategy should also work for real forms of Hermitian symmetric spaces. Indeed
also on other symmetric spaces there exist antiholomorphic involutions I : M → M (see
for example Jeffrey [30]). Denote by MR the fixed point set of I also called real form of M .
By the results of Jeffrey [30] these are real (thus Lagrangian) totally geodesic subspaces
that are also symmetric spaces. Again the Lagrangian neighborhood theorem asserts that
for small ρ there must be a symplectic embedding

(DρMR,dλ) ↪→ (M,σ).

Using the Hamiltonian group action it should again be possible to construct this embedding
explicitly and therefore find explicit bounds on ρ. Further we know the precise value of the
Gromov width and the Hofer–Zehnder capacity of (M,σ) and therefore we should obtain
explicit bounds on the Gromov width and the Hofer–Zehnder capacity of (D1MR,dλ).
Again it seems likely that the function f must be replaced by a spectral function on
jRjv,v. If it is possible to obtain an optimal embedding one probably also needs to replace
the disc bundle by a more appropriate neighborhood of the zero-section.
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7.2. Billiard dynamics for lower bounds

Example 7.1.1. As an example we reinterpret [27, Ch.4.4, Prop. 4]. We look at M =
Tn := (S1)n = (R/Z)n with flat metric normalized so that the minimal length of geodesics
is one. Its tangent bundle trivializes TTn ∼= Tn × Rn, therefore it is not hard to see that
we can symplectically identify

(TTn, dλ) ∼= (Zn, ω0 ⊕ . . .⊕ ω0)

where Z = S1 × R denotes the cylinder and ω0 denotes the standard symplectic structure
on Z. We can compactify the cylinders to 2-tori quotienting by a Z-action. In particular
we obtain the symplectic embedding

(D1/2T
n,dλ) ↪→ (T 2 × . . .× T 2, ω0 ⊕ . . .⊕ ω0).

Equip (T 2 × . . . × T 2, ω0 ⊕ . . . ⊕ ω0) with the compatible complex structure j ⊕ . . . ⊕ j.
In particular there are holomorphic curves through every point parameterizing each factor.
One would like to conclude that therefore

cHZ(D1T
n, dλ) ≤ 2 = 2l.

but it is not so clear whether these holomorphic curves are stable as the complex structure
is not regular. The bound however is valid by the much simpler argument of [27, Ch.4.4,
Prop. 4]. That this bound is exact is also shown in [27, Ch.4.4, Prop. 4], but one could
also obtain it using billiard dynamics as we will describe briefly in the next section.

7.2. Billiard dynamics for lower bounds
From discussions with Gabriele Benedetti and Kai Zehmisch on the Hofer–Zehnder capacity
of the unit disc subbundle the idea came up that one should be able to improve the lower
bound obtained from geodesic flow using geodesic billiards. Recall that if l denotes the
length of the shortest geodesic of a Riemannian manifold (M, g), then the Hamiltonian
flow for the kinetic energy E(x, v) = 1

2 |v|2 is the geodesic flow. In particular the periodic
orbits project to closed geodesics γ and their period is

T = length(γ)/|v|.

It follows that all closed non-constant orbits of H(x, v) = l|v| have periods bigger or equal
to 1. Modifying H near the zero-section and near the boundary yields an admissible
Hamiltonian and thus

l ≤ cHZ(D1M,dλ).

In order to improve this bound one can try to add a potential, i.e. consider a Hamiltonian
of the form H(x, v) =

√
|v|2 + V (x). Ideally we would like to add a potential of the form

V (x) =
{

0, for x ∈ Bl/2(p)
1, for x ∈ M \Bl/2(p) ,

where Bl/2(p) denotes the geodesic ball centered at some point p of radius half the length
of the shortest geodesic. The sub level set {H < 1} is contained in DρM and the dynamics
of H restricted to this sub level set is simple. Points in the complement of TBl/2(p) are not
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in the sub level set, while orbits starting at points inside the geodesic ball follow geodesic
billiard trajectories. If there are no contractible geodesics, the shortest periodic billiard
orbit should be the radial two bounce orbit through p and thus have length 2l and period
2l.1 In particular if we could modify H so that it becomes admissible without changing
the periods and the oscillations to much, we would obtain

2l ≤ cHZ(D1M,dλ).

Surely there are many things that could go wrong and one would need to set up a nice
family of admissible potentials Vε : M → R approximating V so that all periodic orbits
converge to periodic billiard trajectories, while controlling also the periods. Eventually
one can use the approximation schemes developed in [3] and also [48] to realize this. It
is in general also not at all clear whether two bounce orbits minimize the length. On the
sphere this is not the case as Bl/2(p) contains closed geodesics, so zero bounce orbits! On
the other hand for the real projective space see Theorem 6.2.7 this approach works.

7.3. Boothby–Wang bundles
This is an outlook for joint work with Levin Maier and Steffen Schmidt. We want to
study the Boothby–Wang bundles over Hermitian symmetric spaces. Denote M ∼= G/K
an irreducible Hermitian symmetric space, i.e. G is a simple Lie group with trivial center
and K is the maximal compact proper sub group. Recall that the center C(K) of K is
analytically isomorphic to the circle group S1 and we denoted its generator by Z. We could
identify M with the adjoint orbit OZ ⊂ g at Z. Observe that K̄ := K/C(K) is a group as
the center of a group is normal. Denote k̄ the Lie-algebra, it is not to hard to see that we
can identify

k̄ ∼= ⟨Z⟩⊥ ⊂ k,

where the orthogonal is with respect to the Killing form. As K̄ is compact and connected,
its exponential map k̄ → K̄ is surjective, in particular we may see K̄ as a subgroup of K (or
equivalently K as central extension of K̄). Now it makes sense to look at the homogeneous
space M̄ := G/K̄. Observe that the projection

π : M̄ → M ; g · [K̄] 7→ g · [K]

provides M̄ with the structure of a principle S1-bundle over M . We claim it is not just a S1-
bundle, but the Boothby-Wang (or pre-quantization) bundle for the invariant symplectic
form σ ∈ Ω2(M). Recall that σ was the same as the KKS-symplectic structure when we
describe M as adjoint orbit OZ . Indeed the manifold M̄ carries a contact form α defined
as

αp(a#
p ) = (π(p), a).

We claim that dα = −π∗σ. The definition is G-invariant therefore it is fine to check the
claim at a point p over Z, i.e. π(p) = Z. Observe that α is well-defined as Z is orthogonal
to k̄. Now we compute its differential

dαp(a#, b#) = a#(α(b#)) − b#(α(a#)) − α([a#, b#]) = −(Z, [a, b]) = −π∗ω(a#, b#)
1This is not so clear a priory! Eventually one can assure this with some curvature condition.
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and see that indeed the claim holds. How could this description help computing cHZ(M̄, dλ)?
Let us have a look at the most prominent example, namely the Hopf-fibration

S2n+1 ∼= SU(n+ 1)/SU(n) → CPn ∼= SU(n+ 1)/S(U(n) × U(1)).

Identify (CPn+1, 2σ) with the Lerman cut of the standard ball (B2(0), ω0) at radius 2. We
can now embed the odd dimensional sphere of radius 1 into the product CPn+1 ×CPn via
the map

φ : S2n+1 ↪→ CPn+1 × CPn;x 7→ (x, π(x)).
We claim that this embedding is Lagrangian, i.e.

φ∗(2σ ⊖ σ) = 0.

It follows immediately that the Hofer–Zehnder capacity of (D1S
2n+1, dλ) is finite2. The

hope would be that using the symmetries one can again determine an explicit embedding
and thus explicit bounds of the capacity.

Remark 7.3.1. In general if (L,d(r2α)) denotes the symplectization of the Boothby–Wang
bundle π : M̄ → M over a symplectic manifold (M,σ) and (L̄, ω) denotes the Lerman cut
of L at radius 2, then the embedding

M̄ ↪→ L̄×M ;x 7→ (x, π(x))

is Lagrangian with respect to the symplectic structure ω ⊖ σ. If we knew that cHZ(L̄ ×
M,ω ⊖ σ) was finite the same would hold for (D1M̄, dλ).

7.4. Bounds from symplectic cohomology
A different method for bounding the Hofer–Zehnder capacity avoiding Gromov–Witten
invariants might come from symplectic cohomology. The author spend quite some time
trying to make this approach work, in this section we will present the partial results in this
direction.

If symplectic cohomology of a Liouville domain (W,α) vanishes it follows that the sym-
plectic cohomology capacity

cSH(W, dα) := inf{a > 0 | ιa([M ]) = 0}

is finite, where ιa : H∗(W,∂W ) → SH∗
<a(W ). This capacity is an upper bound for the

Hofer–Zehnder capacity [29].

Observe that for the case we are interested in (symplectically twisted tangent bundles over
Hermitian symmetric spaces of compact type) symplectic homology vanishes by results
from Groman and Merry [21], relying on the fact that the invariant symplectic structure
σ is not weakly exact. In the case of the symplectically twisted tangent bundle over a
Hermitian symmetric space of compact type, vanishing of symplectic cohomology can be
seen more explicitly using the symplectomorphism

(TM, dλ− π∗σ) ∼= (TM, dτ/2 − π∗σ),
2Sn is rationally inessential, thus finiteness also follows from [18].
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constructed in this thesis. Non-negative curvature of M ensures that (TM, dτ/2−π∗σ) is a
negative vector bundle as studied by Ritter [44]. In particular a maximum principle holds
and symplectic homology of (DM, dτ/2 − π∗σ) can be defined using radial Hamiltonians
quadratic in r = |v| of non-integer slope in the complement of DM .

The first Chern class c1(TM, dλ − π∗σ) = c1(TM, dτ/2 − π∗σ) vanishes as the foot point
projection TM → M determines a Lagrangian foliation. This means the index of a 1-
periodic orbit is well-defined, independent of the capping.

Vanishing of symplectic homology now follows from an argument that also appears in
[17] and [47]. For this we look at the Hamiltonian Ha(x, v) := aπ|v|2 + b for some numbers
a ∈ R \ Z and b ∈ R. As π|v|2 generates a circle action on (TM, dτ/2 − sπ∗σ) this Hamil-
tonian has no non-constant 1-periodic orbits and all points on the zero-section are critical,
so constant 1-periodic orbits. We can use an auxiliary Morse-function f on M to modify
Ha near the zero section so that the new Hamiltonian H̃a has only non-degenerate periodic
orbits. All 1-periodic orbits of H̃a are constant and correspond to the critical points of f .
The Conley–Zehnder index is now easily determined from the Robin–Salamon index and
the Morse-index. The Hamiltonian circle action generated by π|v|2 is fiberwise rotation
(x, v) 7→ (x, e2πjtv). Thus the linearized flow at a point (x, 0) on the zero-section is given
by the path of symplectic matrices

Ψ(t) = exp(2πjaA),

for A = 02n ⊕ 12n represented with respect to the splitting T(x,0)(TM) ∼= H(x,0) ⊕ V(x,0).
From there it is easy to see that the corresponding Robin–Salamon index is precisely

RS(γ) = (2k + 1)n

for k the largest integer smaller than a. The Conley–Zehnder index is now

CZ(γ) = RS(γ) + n− M(γ) = 2n(k + 1) − M(γ) ≥ 2nk,

where M(γ) denotes the Morse-index. It follows that FH∗(H̃a) is supported in degree larger
than 2nk and taking the direct limit (k → ∞) we see that symplectic cohomology vanishes.

Further the maximum principle prevents Floer trajectories of H̃a from leaving the zero-
section thus Floer-cohomology coincides with quantum homology shifted in degree, i.e.

FH∗(H̃a) ∼= QH∗−2kn(M).

In order to use the vanishing of symplectic cohomology for some quantitative bound of the
Hofer–Zehnder capacity we would need to find a filtration of symplectic homology that we
can use. Considering action filtration directly is difficult, as (M,σ) is not aspherical.
An idea was to work with radial Hamiltonians and a universal choice for the capping, even
though it might be possible to define a Floer complex using only orbits with this universal
choice of capping, it is not clear at all if and how this ’smaller’ complex relates to the full
complex.
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A. Appendix

This Appendix contains two computations. The first shows that the almost complex struc-
ture j ⊖ j on the tangent bundle of a Kähler manifold (M, g, j) is always integrable. The
second shows that the Sasaki-metric is not the hyperkähler metric compatible with dλ and
dη unless the Kähler manifold (M, g, j) is flat.

A.1. Canonical holomorphic symplectic structure
To check that I := j ⊖ j is integrable we compute the Nijenhuis-tensor, i.e. we need to
show that

NI(Â, B̂) = [Â, B̂] + I
(
[IÂ, B] + [Â, IB̂]

)
− [IÂ, IB̂] = 0

for all vector field Â, B̂ on TM . We show this going through all possible combinations of
vertical and horizontal lifts of vector fields A,B on M . Observe that

I(AV) = (−jA)V and I(AH) = (jA)H.

Therefore we find

NI(AV , BV) = [AV , BV ] + I
(
[(−jA)V , BV ] + [AV , (−jB)V ]

)
− [(−jA)V , (−jB)V ] = 0,

using (i) of Proposition 2.1.2. Next we compute

NI(AH, BV) = [AH, BV ] + I
(
[(−jA)H, BV ] + [AH, (−jB)V ]

)
− [(−jA)H, (−jB)V ]

= (∇AB)V + (j∇jAB)V + (j∇AjB)V − (∇jAjB)V = 0,

using (ii) of Proposition 2.1.2 and the fact that for Kähler manifolds ∇jAB = ∇AjB =
j∇AB as can be easily verified using holomorphic coordinates. Last we look at two hori-
zontal entries and find

NI(AH, BH) = [AH, BH] + I
(
[(−jA)H, BH] + [AH, (−jB)H]

)
− [(−jA)H, (−jB)H]

= Nj(A,B)H − (R(A,B)v)V − (jR(jA,B)v)V − (jR(A, jB)v)V

+R(jA, jB)v)V = 0,

using that j is integrable and that R is j-linear as (M, g, j) is Kähler.

A.2. Not a hyperkähler metric
We want to see why the Sasaki-metric G = g⊖ g is not the hyperkähler metric compatible
with dλ and dη unless the Kähler manifold (M, g, j) is flat. We do this by showing that

dωI ̸= 0 for ωI(·, ·) := G(I·, ·).
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A. Appendix

Recall that the exterior derivative of a 2-form can be computed with the identity

dωI(Â, B̂, Ĉ) = Â(ωI(B̂, Ĉ)) − B̂(ωI(Â, Ĉ)) + Ĉ(ωI(Â, B̂))
− ωI([Â, B̂], Ĉ) + ωI([Â, Ĉ], B̂) − ωI([B̂, Ĉ], Â)

for arbitrary vector fields Â, B̂, Ĉ on TM . Using this we find

dωI(AV , BV , CV) = AV(ωI(BV , CV) −BV(AV , CV)) + CV(ωI(AV , CV))
= AV(σ(B,C)) −BV(σ(A,C)) + CV(σ(A,B)) = 0,

dωI(AV , BV , CH) = CH(ωI(AV , BV)) + ωI([AV , CH], BV) − ωI([BV , CH], AV)
= CH(σ(A,B)) − ωI((∇CA)V , BV) + ωI((∇CB)V , AV)
= σ(∇CA,B) + σ(A,∇CB) − σ(∇CA,B) + σ(∇CB,A) = 0,

dωI(AV , BH, CH) = AV(ωI(BH, CH) − ωI([BH, CH], AV)
= −AV(σ(B,C) + ωI((R(B,C)v)V , AV) = σ(R(B,C)v,A),

dωI(AH, BH, CH) = AH(ωI(BH, CH)) −BH(ωI(AH, CH)) + CH(ωI(AH, BH))
− ωI([AH, BH], CH) + ωI([AH, CH], BH) − ωI([BH, CH], AH)
= AH(σ(B,C)) −BH(σ(A,C)) + CH(σ(A,B))
− ωI([A,B]H, CH) + ωI([A,C]H, BH) − ωI([B,C]H, AH)
= σ(∇AB,C) − σ(∇BA,C) + σ(∇CA,B)
+ σ(B,∇AC) − σ(A,∇BC) + σ(A,∇CB)
− σ([A,B], C) + σ([A,C], B) − σ([B,C], A)
= σ(A, T (C,B)) + σ(B, T (A,C)) + σ(C, T (B,A)) = 0.

We used ∇σ = 0 and integrability of j for the last identity as then torsion vanishes. Note
that the red coloured term indeed only vanishes if (M, g) is flat!
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