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Zusammenfassung

Die Darstellungstheorie hyperbolischer Gruppen in Lie-Gruppen héheren Ranges ist
in den letzten Jahren ein aktives Forschungsthema gewesen. Insbesondere die Charak-
tervarietdt, die mit einer Flachengruppe fiir einige halbeinfache Lie-Gruppen nicht-
kompakten Typs assoziiert ist, weist bemerkenswerte Zusammenhéingskomponenten
auf, die nur diskrete und treue Darstellungen enthalten. Eine Vereinigung solcher
zusammenhédngender Komponenten wird als Teichmiiller-Raum héheren Rangs beze-
ichnet. In allen bekannten Féllen erfiillen die Darstellungen in diesen Komponenten
alle eine Anosov-Eigenschaft, welche eine dynamische Eigenschaft ist, die stiarker als
diskret und treu ist. Einige dieser Rd4ume kénnen als Rdume geometrischer Strukturen
interpretiert werden: beispielsweise als konvexe projektive Strukturen auf Flachen oder
als gefaserte Photonstrukturen.

In dieser Dissertation leisten wir originelle Beitrdge zu diesem Bereich, wobei wir
uns insbesondere auf den lokal symmetrischen Raum und parabolische Strukturen
konzentrieren, die mit Anosov-Darstellungen zusammenhéngen sind. Der erste Teil
dieser Dissertation ist eher allgemein und diskutiert parabolische Strukturen, die unter
Verwendung eines Diskontinuititsbereichs konstruiert wurden, sowie deren Beziehung
zum lokal symmetrischen Raum fiir bestimmte Anosov-Darstellungen. Wir unter-
suchen genauer die Diskontinuitédtsbereiche, die als Bereiche geeigneter Busemann-
Funktionen interpretiert werden kénnen.

Der zweite Teil konzentriert sich auf maximale Darstellungen in Sp(2n,R), eine
besondere Klasse von Teichmiiller-Rdumen hoheren Ranges. Wir charakterisieren
maximale Darstellungen, im Hinblick auf geometrische Strukturen, die eine spezielle
Faserung zulassen. SchliefSlich untersuchen wir maximale Darstellungen, die auch Borel
Anosov sind, und zeigen insbesondere, dass in Sp(4,R) diese Darstellungen Hitchin
sind, was eine Frage von Canary beantwortet.

Diese Dissertation umfasst die Ergebnisse der Arxiv-Preprints Nearly geodesic im-
mersions and domains of discontinuity [Dav23] und Finite-sided Dirichlet domains
for Anosov subgroups [DR24] , eines zukiinftigen Preprints Geometric structures for
mazimal representations and pencils , und schliellich des Artikels Maximal und Borel
Anosov Darstellungen in Sp(2n,R) [Dav24]. Der Preprint [DR24] ist eine gemeinsame
Arbeit mit Max Riestenberg.



Abstract

Representations of hyperbolic groups into higher rank Lie groups has been an
active topic of study in recent years. In particular the character variety associ-
ated with a surface group for some semi-simple Lie group of non-compact type
admits remarkable connected components containing only discrete and faithful
representations. A union of such connected components is called a higher rank
Teichmiiller space. In all the known cases, the representations in these compo-
nents all satisfy an Anosov property, which is a dynamical property stronger
than being discrete and faithful. Some of these spaces can be interpreted as
spaces of geometric structures: as for instance convex projective structures on
surfaces, or fibered photon structures.

In this thesis, we bring original contributions to this area, focusing in par-
ticular on the locally symmetric space and parabolic structures associated to
Anosov representations. The first part of this thesis is rather general, and dis-
cuss parabolic structures constructed using a domain of discontinuity as well
as their relation with the locally symmetric space for certain Anosov repre-
sentations. We study more precisely the domains of discontinuity that can be
interpreted as domains of proper Busemann functions.

The second part focuses on maximal representations in Sp(2n, R), a particu-
lar class of higher rank Teichmiiller spaces. We characterize maximal represen-
tations in terms of geometric structures that admit a special fibration. Finally
we study maximal representations that are also Borel Anosov, and show in par-
ticular that in Sp(4,R) these representations are Hitchin, answering a question
from Canary.

This thesis encompasses the results of the arxiv preprints Nearly geodesic
immersions and domains of discontinuity [Dav23] and Finite-sided Dirichlet
domains for Anosov subgroups [DR24] , a future preprint Geometric structures
for mazimal representations and pencils , and finally the article Mazimal and
Borel Anosov representations in Sp(2n, R) [Dav24]. The preprint [DR24] is joint
work with Max Riestenberg
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Chapter 1

Introduction

We begin this introduction with a section that reviews the notions of Fuchsian
representations, Higher rank Teichmiiller spaces and Anosov representations,
with some historical background.

We then consider geometric structures for Anosov representations. We first
discuss Klein geometries in some generality and in particular locally symmet-
ric spaces. We then discuss parabolic structures and how Guichard-Wienhard
[GW12] and Kapovich-Leeb-Porti [KLP17] construct such structures using do-
mains of discontinuity for Anosov representations.

We then begin to introduce the results of the thesis. We introduce the
notion of w-undistorded subgroups and their associated domain of proper Buse-
mann functions. We then present the results from Chapter [2|on nearly geodesic
immersions and their application to construct fibrations of domains of discon-
tinuity, and more precisely of domains of proper Busemann functions. Finally
we present the results form Chapter [3] a joint work with Max Riestenberg, on
the finite-sidedness of Dirichlet domains for Anosov representations, and more
precisely for w-undistorded representations.

The last part of this introduction focuses on maximal representations in
Sp(2n,R). We first present the results of Chapter [4{ which characterize maximal
representations by the existence of an equivariant surface of pencils of quadrics
fibering the domain of discontinuity in projective space. Finally we present
the results from Chapter [5| on Borel Anosov and maximal representations into
Sp(2n, R).

1.1 Fuchsian representations and beyond
In recent years, a lot of focus have been put on the study of spaces of repre-

sentations that generalize Fuchsian representations for higher rank Lie groups.
These spaces are called higher rank Teichmiiller spaces.



1.1.1 Fuchsian representations

Let S, be a closed oriented surface of genus at least 2. Let I' be the fundamental
group of Sq. A Fuchsian representation p : I'y — PSL(2,R) is a representation
that is discrete and faithful, i.e. a group homomorphism that is injective and
whose image is a discrete subgroup.

The space of Fuchsian representations has the remarkable property that it
forms a union of connected components for the compact-open topology of the
representation variety Hom (I'g, PSL(2,R)), which are in turn path connected
components since the representation variety is locally an algebraic variety. In
other words no deformation of a Fuchsian representation can degenerate to a
non-discrete or non-faithful representation. Goldman [Gol80] showed that the
connected components of Hom(I'y, PSL(2,R)) are completely determined by an
invariant called the Fuler number:

e : Hom(T'y, PSL(2,R)) — [—2¢ + 2,29 — 2].

The union of the two connected components corresponding to the extremal
values of the Euler number e~ ({—2g + 2,2¢g — 2}) is exactly the set of Fuchsian
representations. Representations with even Euler number are exactly the rep-
resentations that can be lifted to representations p : I'y — SL(2,R), therefore
Fuchsian representations can be lifted.

The character variety of representations of a surface group I'y into a Lie
group G is the quotient of the representation variety by the action of G by
conjugation. The two connected components of the character variety associated
with the space of Fuchsian representations are smooth manifolds, that are dif-
feomorphic to R% 6, Each of these components of the character variety can be
identified with the Fricke space and the Teichmiiller space. The Fricke space
is the space of marked hyperbolic structures on Sy, and the Teichmiiller space
is the space of marked Riemann surface structures on Sy, in both cases the
structures are considered up to isotopy.

These identifications are obtained the following way. Let p : Iy — PSL(2, R).
Since it is discrete, faithful, and since I, is torsion free the action of p(T'y) on H?
is properly discontinuous and free. The classification of surfaces implies that the
quotient H?/p(T,) is diffeomorphic to S,. Moreover there exits a unique such
diffeomorphism up to isotopy that preserves the marking on the fundamental
group of S;. This quotient is naturally endowed with an oriented hyperbolic
structure, and a Riemann surface structure.

Conversely given an oriented hyperbolic structure on a surface or a Riemann
surface structure the universal cover is naturally diffeomorphic to a disk by the
Cartan-Hadamard theorem or respectively is biholomorphic to the unit disk H?
by the uniformization theorem. To these structures one can therefore associate a
holonomy which is a repesentation of I, into the group PSL(2,R) of orientation
preserving isometries of H? which is also the group of biholomorphism of H?Z.



Fuchsian representation p satisfy a strong dynamical property: they are
quasi-isometric embeddings which mean that for every base point o in the hy-
perbolic plane, the orbit map v € I' — ~-0 € H? is a quasi isometric embedding.
This means that for one and hence any finite generating system F' of I'y, if dr
denotes the induced word distance on I'y, there exist constants C, D > 0 such
that for all 71,72 € I'y one has:

Cldr(71,72) = D < d(v1 - 0,72 - 0) < Cdr(71,72) + D.

This property also implies that p admits a boundary map &, : 0Ty — OH?
that is a p-equivariant map from the Gromov boundary of I'y into the visual
boundary of H2, which can be identified with RP'. This map is characterized
by the property of being dynamics preserving, i.e. the image of the attracting
fixed point z € 0I'y of an element « € I' is mapped to the attracting fixed point
of p(v) in H2.

An important feature of H?, and more generally of Gromov hyperbolic spaces
and in particular rank one symmetric spaces is that the space of quasi-isometric
embedding is open in the space of representations Hom (I'y, PSL(2,R)). This
does not hold for higher rank symmetric spaces.

1.1.2 Higher rank Teichmiiller spaces

A way to construct interesting representations of a surface group into a more
general Lie group G is to compose Fuchsian representations by a Lie group
embedding of PSL(2,R) or SL(2,R) into G.

For instance if we compose a Fuchsian representation with the natural in-
clusion PSL(2,R) < PSL(2,C) we get a discrete and faithful representation
po : 'y = SL(2,C) that admits a totally geodesic equivariant map h : §; — H3.
A representation p : I'y — PSL(2,C) is called quasi-Fuchsian if it is a quasi-
isometric embedding, or equivalently if it is convex cocompact. The space of
quasi-Fuchsian representations is not a connected component of the representa-
tion variety: it is open but not closed. The representations in the boundary of
the quasi-Fuchsian locus are still discrete and faithful, but they can be contin-
uously deformed into non-discrete representations.

An interesting phenomenon arises in higher rank Lie groups. For some simple
Lie groups G one can find a union of connected components of representations
of I'y into G that contains only discrete and faithful representations. A union
of such connected connected components is called a Higher rank Teichmiiller
space [Wiel§]|, as it generalizes one of the remarkable properties of the space of
Fuchsian representations.

Hitchin [Hit92] discovered an exceptional component in the representation
variety Hom(I'y, G) for any split simple Lie group G. He noticed in particular
that the corresponding connected component of the character variety was diffeo-
morphic to RI™(G)(29-2)  He noticed that this property was a generalization of
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a property of Teichmiiller space. He asked if one can understand the geometric
significance of such representations.

Labourie showed that Hitchin representations are all discrete and faithful
[Lab06]. He introduced the notion of Anosov representations, which is a gen-
eralization to higher rank Lie groups of the property of being a quasi-isometric
embedding. He showed that Hitchin representations are all Borel Anosov. In
particular these representations admit a boundary curve in the space of full
flags. Later Guichard-Wienhard defined the notion of ©-Anosov representation
of word hyperbolic groups, where O is a set of simple roots [GW12]. Anosov
representations can be characterized as uniformly regular undistorted represen-
tations, due to a result of Kapovich-Leeb-Porti [KLPI8b] and Bochi-Potrie-
Sambarino [BPS19]. To a ©-Anosov representation one can associate a bound-
ary map 5? : 0I' - Fo into the flag manifold of G associated with ©. Such
boundary maps can be characterized as in the Fuchsian case by the property of
being dynamics preserving.

Other higher rank Teichmiiller spaces can be constructed for Lie groups G
of Hermitian type and tube type. To a representation p : I'y — G one can
associate an invariant T'(p) called the Toledo number that generalizes the Euler
number. This invariant satisfies a generalization of the Milnor-Wood inequality
[Mil58],[WooT1]:

IT(p)] < rank(G) (29 — 2).

Representations with maximal Toledo number are called mazimal representation
they form a union of connected components of the space of representations.
Maximal representation can be characterized by the existaence of a maximal
equivariant map from the circle 0I'y into the Shilov boundary [BIW03]. Burger-
Tozzi-Labourie-Wienhard showed that maximal representations are Anosov with
respect to the longest simple root [BILWO05]. In particular these representations
are all discrete and faithful and therefore form higher rank Teichmiiller spaces.

Guichard-Wienhard introduced the notion of ©-positive representation for
some pairs (G,0) of a simple Lie group together with a set of simple roots
[GW22]. For each such pair they construct a special union of connected com-
ponent of the space of triples of transverse flags in the flag manifold Fg. These
triples are called positive triples. A representation is called ©-positive if it ad-
mits a continuous and equivaraint map £ : 0I' — Fg such that for all distinct
z,y, z € O, the triple (£°(x),£9(y),£9(2)) forms a positive triple. Hitchin rep-
resentations, as well are representation with maximal or minimal Toledo number
can be characterized as ©-positive representations for a suitable choice of ©.

Guichard-Labourie-Wienhard showed that ©-positive representations are al-
ways ©-Anosov and that for every notion of ©-positivity there is at least one
connected component consisting only of ©-positive representations [GLW21].

One can generalise Hitchin’s question as follows:

Question 1.1.1. Can the spaces of Hitchin representations, maximal represen-
tations, or even more generally ©-positive representations be characterized as a
space of geometric structures ?

11



1.2 Geometric structures

In this section we discuss geometric structures in the sense of Klein, or (G, X)-
structures. To a discrete representation into a higher rank Lie group one can
associate a locally symmetric space on a manifold M, but this manifold will not
be compact in general. One can also associate to some discrete representations
a parabolic structure on a compact manifold, i.e. a geometric structure modeled
on a flag manifold.

1.2.1 Geometric structures in the sense of Klein

There are several notions of geometric structures. Klein introduced a general
notion of (G, X) structures, which are in some sense rigid geometries, modeled
on a space with a finite dimensional space of symmetries [KIe93]. A modern
overview of this notion can be found in [Gol22].

Let G be a Lie group acting analytically, transitively and faithfully on a space
X. Let M be a manifold of the same dimensions as X. A (G, X)-structure on
M describes a way to model M on X with transitions in G, i.e. it is the data of
a maximal atlas of charts between open sets of M into X such that the domains
of definition of the charts cover M and the transition between any two charts is
locally equal to the action of some element on G.

The manifold X admits a natural (G, X)-structure. We say that a map
between manifolds equipped with (G, X)-structures is a local isomorphism if
locally in the charts it is equal to the action of an element of G.

Given such a structure on M, one can define a pair (dev,hol) where hol :
w1 (M) — G is th holonomy representation and dev : M — X is the developing
map which is a hol-equivariant local diffeomorphism that preserves the (G, X)-
structure. This pair is unique up to the action of G, acting by conjugation on
the holonomy and acting on the left on the developing map.

A particularly nice situation is when the developing map is a covering map.
However this is not always the case, as for instance it can fail to be surjective.
When G preserves a Riemannian metric on X, one can define the notion of
a complete (G, X) structure on M. Indeed such a (G, X)-structure induces a
Riemannian metric on M and we say that the structure is complete if this metric
is complete. Any such (G, X)-structure on a closed manifold M is complete.
The developing map of such a complete (G, X)-structure is a covering map.

If G is a semi-simple Lie group of non-compact type, every manifold X that
admits a transitive action of G preserving a Riemannian metric fibers equivari-
antly over the symmetric space X associated to G, which is a simply connected
non-positively curved Riemannian manifold on which G acts transitively.

Discrete subgroups I' © G up to conjugation correspond exactly to manifolds
with a complete locally symmetric structure modeled on X, i.e. a complete
(G, X) structure, up to isometry.

12



However if one is interested in the case when I' is a surface subgroup and G
is not locally isomorphic to PSL(2, R), then the locally symmetric space cannot
be compact. One can study compactifications of this locally symmetric space.
These compactifications can be related in some cases to a parabolic structure
on a compact manifold with the same holonomy.

1.2.2 Parabolic structures

A (G, X) structure is parabolic if X is a flag manifold associated to G with its
standard action, i.e. if X = G/P where P is a parabolic subgroup of G. If G
is a semi-simple Lie group of non-compact type, then the flag manifolds never
admit an invariant Riemannian metric.

Every flag manifold can be interpreted geometrically as the G-orbits of a
point in the visual boundary of the symmetric space associated to X. One
can also interpret each flag manifold as special points of some horofunction
compactification of the symmetric space.

In the following two examples of rank 2 Lie groups, one can identify a higher
rank Teichmiiller space with a space of parabolic structures.

Choi-Goldman [CGO05] showed that the component of the character variety
corresponding to Hitchin representations into PSL(3,R) can be identified with
the space of convex projective structures on the associated surface up to isotopy,
i.e. (PSL(2,R),RP?)-structures such that the image of the developing map is a
properly convex set.

Collier-Tholozan-Toulisse [CTT19] showed that every maximal representa-
tion in the Hermitian Lie group of tube type SO,(2,n + 1) is the holonomy of a
photon structure on a fiber bundle M over the surface S;. A photon structure
is a (SO,(2,n + 1), Pho(R?"+1)) structure where Pho(R?"*1) is the space of
isotropic planes in R%"*! ~ R"*+3 equipped with a bilinear form of signature
(2,n+1). The structures arising this way are exactly the structures that admit a
fibration over S, whose fiber are mapped via the developing map into a translate
by SO,(2,n + 1) of the codimension 2 subset Pho(R?") < Pho(R?>"+1).

In both of these cases, the structures are obtained by taking the quotient of
a domain ) in the flag manifold and taking its quotient by the action of p(T').
We say that a domain 2 with an action of a discrete group I' is a cocompact
domain of discontinuity if I' acts properly discontinuously and with compact
quotient on €.

Guichard-Wienhard and Kapovitch-Leeb-Porti constructed cocompact do-
mains of discontinuity in flag manifolds for Anosov representations [GW12],
IKLP18a]. Guichard-Wienhard used these domain to show in particular that
the space of Hitchin representations p : I'y — PSL(2n, R) can be identified with
a connected component of the space of projective structures on a fiber bun-
dle M over S;. The fiber of this bundle is diffeomorphic to a Stiefel manifold
[ADL21], which is diffeomorphic to the projective tangent bundle of the projec-
tive space RP" 1. In general, for representations that can be deformed in the
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space of Anosov representations from a Fuchsian representation in a subgroup
of G locally isomorphic to PSL(2,R), the quotient of any of the domains of
discontinuity constructed by Kapovich-Leeb-Porti is a fiber bundle M over S,
which was showed by Alessandrini-Maloni-Tholozan-Wienhard [AMTW?23].

These results leave two questions open, which are the main focus our work:
¢ How can one describe the fiber bundle M7

e« How can one characterize the geometric structures that are obtained by
this procedure for representations in a higher rank Teichmiiller space?

1.3 Fibered geometric structures

We now introduce the results of the thesis. We begin by discussing the notions
of domains of proper Busemann functions and w-undistorted representations.
These are the domains of discontinuity and Anosov representations for which
we will apply geometric methods to describe the associated geometric structures.

1.3.1 Domains of proper Busemann functions

Our construction depends on the choice of a linear form w € a* on the restricted
Cartan subalgebra of the semi-simple Lie group G, up to the action of the Weyl
group and up to multiplication by a positive scalar. We fix such a choice of w
throughout the section.

We denote by 7 € a the element corresponding to w via the Killing bilinear
form, and up to acting by the Weyl group we assume that its belongs to the
positive Weyl chamber. A G-orbit in the visual boundary of the symmetric
space X is naturally associated with 7. We denote it by F,,, and it consists of
the classes of geodesic rays such that the Cartan projection of their derivative is
equal to 7. This G-orbit is diffeomorphic to a flag manifold whose type depends
on the set of walls of the Weyl chamber containing 7.

We consider representations satisfying the following condition, that we intro-
duce with Max Riestenberg, and which is closely related to the Anosov property.

Definition 1.3.1. A representation of a finitely generated group I' into G is
w-undistorted if for some A, B > 0 and some word metric on I', the Cartan
projection () € a of any v € ' satisfies for all w in the Weyl group:

| w(w - p(v)) = Aly| = B.

In other words I' is w-undistorded if it is a quasi isometric embedding and
its limit cone (Definition [2.2.1)) avoids the hyperplane w - Ker(w) c a for all w
in the Weyl group.

Representations that are w-undistorted and are not virtually infinite cyclic
always satisfy some Anosov condition, see Lemma When w is in the
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Weyl group orbit of a positive multiple of a root «, then a representation is
w-undistorted if and only if it is ©-Anosov where © is the set of simple roots
in the Weyl group orbit of . For each simple Lie group, the set of simple
roots intersects one or two Weyl group orbits, see Figure 2:4] Coincidentally,
every notion of ©-positivity corresponds to a set of simple roots © that inter-
sects a single Weyl group orbit, or intersects two orbits and © = A. Since
©-positive representations are ©-Anosov [GLW21], ©-positive representations
are w-undistorted for one or two Weyl group orbit of roots w € a*.

An w-undistorted representation p : I' — G always admit a cocompact
domain of discontinuity in the flag manifold F,, that is a domain of proper
Busemann functions. More precisely, to a point in the visual boundary of X
and in particular to a point a € F, and a basepoint o € X one can associate a
Busemann function b, , : X — R based at o as the limit of d(-, ) — d(-,0) for =
in a geodesic ray converging to the point a € d,;sX. A change of the basepoint
only changes the Busemann function by an additive constant.

Theorem 1.3.2 (Proposition . Let p be an w-undiostorded representation.
The domain Qf,, < Fuo of flags whose associated Busemann functions are
bounded from below on one and hence any p(T')-orbit in X is a cocompact domain
of discontinuity for the action of p(T).

Moreover in this case all the Busemann functions corresponding to points
outside of the domain are not bounded from below on any p(T')-orbit in X.

Remark 1.3.3. This domain always coincide with some domain constructed by
Kapovich-Leeb-Porti in [KLP18a] using Tits-Bruuhat ideal, and in particular
associated to an ideal constructed as a metric thickening. This domain is still
defined and is still a cocompact domain of discontinuity if we deform p so that
it is no longer w-undistorted as long as it still satisfies the adequate Anosov
property. However the domain cannot always be characterized as the domain
of Busemann functions that are proper and bounded from below in this case.

Flag manifolds appear in other compactifications of the symmetric space. If
G is not simple, we require from now on that the Weyl groups orbit of w spans
a*, and we make this assumption from now on. To w € a* we can associate the
Finsler distance d,, on the symmetric space X whose unit ball in the model flat
identified with a is a polygon whose sides are described by the equation w-w =1
for w in the Weyl group. Figure illustrates in a few rank 2 examples the
unit ball for the distance d,, in the model flat identified with a. Note that in
general the associated Finsler distance fails to be symmetric.

Using this metric one can embed X in the space of convex and 1-Lipshitz
functions defined up to an additive constant on X. The closure of the image of
this embedding is called the horofunction compactification of X with respect to
d,,. The flag manifold F, can be viewed as a subset of this compactification,
since the associated Busemann functions are horofunction for d,. In general
horofunctions for the Finsler distance d, were described by Kapovich-Leeb-
Porti [KL18].
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Figure 1.1: The unit ball in a of the metric d,, in 3 examples.

Theorem 1.3.4 (Proposition [3.5.5). For an w-undistorted representation p, the
domain Q5. of horofunctions that are proper and bounded from below is a

cocompact domain of discontinuity.

Note that the domain of proper Busemann functions flag correspond to
the intersection of the domain of proper horofunctions with the image of the
embedding of F,,.

Remark 1.3.5. Kapovich-Leeb-Porti [KLP18a] constructed cocompact domains
of discontinuity in this horofunction compactification for Anosov representa-
tions. The domain € = for an w-undistorted representation is a special in-
stance of their construction. The fact that for w-undistorted the domain can be
characterized as a domain of proper horofunctions makes it easier to prove the

properness and compactness of the action.

Let us assume now that w is the highest restricted weight of an irreducible
linear representations V' of G. The horofunction compactification associated
with the distance d, can be identified with a generalized Satake compactifi-
cation, due to a work of Haettel-Schilling-Walsh-Wienhard [HSWW18]. The
symmetric space X can be embedded in the symmetric space of SL(V) which
itself can be embedded as a properly convex domain in P(S2V), where S? is the
space of symmetric tensors in V ® V. The Satake compactification of X is the
closure in P(S?V) of the image of this embedding.

In this case we define an invariant on pairs of points X that is at bounded
distance from the Finsler distance d,,: the restricted Selberg invariant, see Sec-
tion [3.6] The horofunction compactification of X obtained using invariant can
naturally be identified with the horofunction compactification for the Finsler
metric. Moreover we show the following.

Theorem 1.3.6 (Theorem [3.6.3). Let p : I’ > G be an w-undistorted represen-
tation of a torsion-free group T'. The horofunction compactification of X/p(T')
for the restricted Selberg invariant is naturally identifed with the quotient of the

Y w
domain X U Q%

In particular for w-undistorted representations the associated parabolic struc-
ture and locally symmetric structure are related as follows: the compact man-
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ifold with a parabolic structure g, ./p(I') can naturally be identified with a
subset of the horofunction compactification of the associated locally symmetric

space X/p(T") for the restricted Selberg invariant.

1.3.2 Nearly geodesic immersions

We now introduce the results from Chapter 2] which is an adaptation of [Dav23).
We once again fix some non-zero linear form w € a* on the model restricted
Cartan subalgebra of a semi-simple Lie group G. In order to study the topology
of the quotient of the domains of discontinuity €2 of proper Busemann functions,
or the locally symmetric space X/p(T"), we construct for some representations a
fibration of these quotients onto a compact manifold N such that w1 (N) =T.

We introduce and study a generalization of the condition of having principal
curvature in (—1, 1) for an embedding in H™ in the setting of symmetric spaces
X associated to higher rank semi-simple Lie groups of non-compact type G.

Definition 1.3.7 (Definition 2.4.1). Let w € a* be a non-zero linear form. An
immersion u : M — X is called w-nearly geodesic if for all a € F, u F_,, the
function bg,, 0u : M — R has positive Hessian in any critical direction v € T'M,
for the metric on M induced by the immersion.

This notion depends on w only up to the action of the Weyl group and up
to scaling by a positive number.

Remark 1.3.8. In Chapter [2] we consider the element 7 € a corresponding to w
via the Killing pairing, and we write F. for F, and 7-nearly geodesic immersion
for w-nearly geodesic immersion. Up to scaling by a positive number and acting
by the Weyl group we assume that this element has norm one and is in the
positive Weyl chamber, i.e. 7€ Sa™.

This property is satisfied for totally geodesic immersions whose tangent vec-
tors are w-regular, namely whose Cartan projection does not lie in w - Ker(w)
for any w in the Weyl group. It is equivalent to an open bound on the second
fundamental form that depends on the Cartan projection of the image of the
differential of the immersion (see Proposition [2.4.3). When G = PSL(2,C) an
w-nearly geodesic immersion for the only w € Sa* is exactly an immersion with
principal curvature in (—1,1) in X = H? (see Proposition .

If the immersion is complete and uniformly w-nearly geodesic, namely if the
Hessian of Busemann functions in critical directions are uniformly bounded from
below, we show moreover that it is an w-regular embedding, a quasi isometric
embedding (see Proposition and that the nearest point projection is well
defined for the Finsler distance d,, (see Proposition [2.4.18).

When w is a root, we also prove a sufficient condition for a surface to be
w-nearly geodesic. Let © be the set of simple roots in the Weyl group orbit of
w.

17



Theorem 1.3.9 (Theorem [2.4.24). Let u : S — X be an immersion that satisfies
forallveTS and a € ©:

M (v, V)| < coa (g (du(v)))? . (1.1)
Then u is an w-nearly geodesic immersion.

Here p : TX — a* denotes the Cartan projection. The constant ce depends
on the scaling of the metric chosen on X, and on ©.

In Section 2.5 we introduce and study pencils of tangent vectors, or d-pencils,
which are vector subspaces P < T, X of dimension d for some z € X. When
G = PSL(n,R) these can be thought of as pencils of quadrics with zero trace
with respect to some scalar product (see Proposition . To a pencil we
associate a subset of the flag manifold F, that we call its base, which is a
smooth submanifold if the pencil is w-regular, i.e. if all non-zero vectors v € P
are w-regular, see Lemma When G = PSL(n,R) and F,, ~ RP""! the
base of the pencil corresponds to the intersection of all the quadric hypersurfaces
defined by the elements of the corresponding pencil of quadrics.

To a complete and uniformly w-nearly geodesic immersion u : M — X,
we associate an open domain ¥ < F, of proper Busemann functions, i.e.
consisting of points a € F,, for which b, , o u is proper and bounded from below
for one and hence any base-point 0 € X. We define a projection =, : Q% — M
that associates to a € Q¥ the point in M at which b4, o u is minimal. This
point will be unique because b, , o u is convex and strictly convex in critical
directions.

Theorem 1.3.10 (Theorem . Let u: M — X be a complete and uniformly
w-nearly geodesic immersion. The map m, : QY — M is a fibration. The fiber
7, Y(z) at a point x € M is the base B, (Ps) of the w-regqular pencil of tangent
vectors Py = du(T, M).

Let N be a compact manifold with fundamental group I', and let us consider
immersions from N that are equivariant with respect to some representation
p:I'—G.

Theorem 1.3.11 (Theorem [2.4.23)). If a representation p : I' — G is equiv-
ariant with respect to an w-nearly geodesic immersion u : N — X, then p is
w-undistorded.

In this case the domain €2} := 7 is the domain of proper Busemann func-
tions. The fibration m, from Theorem is p-equivariant so the quotient of
Qe fibers over N.

We prove in Section [2.6.4] that the diffeomorphism type of the domains of dis-
continuity obtained by Tits-Bruhat ideals is invariant under deformation in the
space of Anosov representations. We therefore understand the topology of some
domains of discontinuity for all representations in some connected component
of ©-Anosov representation.
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As an application for instance let G Lie group with a notion of ©-positivity.
Let w € a* be an element in the Weyl group orbit of a root in ©.

We say that a representation is generalized Fuchsian if it stabilizes and acts
cocompactly on a totally geodesic copy of H? in the symmetric space X. For
every notion of ©-positivity there exist O-positive representations that are gen-
eralized Fuchsian [GW22].

Corollary 1.3.12 (Corollary . If p: T — G is in a connected component of
O-positive representations that contains a generalized Fuchsian representation,
the quotient SX; is a non-empty fiber bundle over Sy whose fiber is the base in
Fu of a pencil of tangent vectors in TX.

1.3.3 Finite-sided Dirichlet domains.

We now introduce the results from Chapter [3] which is a joint work with Max
Riestenberg.

To any group I' acting properly on a metric space (X, d) by isometries one
can associate a fundamental domain for the action called the Dirichlet domain
for each base point 0 € X defined as :

ﬂ’H(o,’y-o) = ﬂ{x6X|d(x7o) <d(z,v-0)}.

~yel' ~el’

If X = H", these domains are hyperbolic polyhedra which are finite sided for
geometrically finite subgroups of the isometry groups. Moreover if the subgroup
is convex-cocompact these polyhedra are finite sided in a stronger sense, which
we call properly finite-sided: there exist a neighborhood U of the closure Dr(o)
of this domain in the compactification H” of H" such that for all but finitely
many v € I one has U © H(o,7 - 0).

For semi-simple Lie groups of non-compact type G one can still consider
Dirichlet domains for any G-invariant metrics on the corresponding symmetric
space X. For instance given w € a* one can use the previously defined metric
d,, and consider the following domain:

ﬂ H“ (0,7 0) = ﬂ{oj € X | du(z,0) < dy(x,7v-0)}.

vyell ~yel’

This domain can be naturally extended to a domain D{ (o) in the horofunc-
tion compactification of X for the metric d,, containing the horofunctions [h]
such that for all v € T, h(o) < h(y - 0). The closure of the Dirichlet domain in
the horofunction compactification is equal to this domain D (o).

Theorem 1.3.13 (Theorem [3.5.2)). Let w € a* and let p : T' — G be an w-
undistorted representation. For any point o € X, the Dirichlet-Selberg domain
Dr(o) for the Finsler metric d,, is properly finite-sided.
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Figure 1.2: Illustration of the disjoint half space property.

The compact set Dr(o) is a compact fundamental domain for the action of
p(T') on the union X u Q. where Q% is the domain of discontinuity in the

horofunction compactification of X defined previously

Representation that are w-undistorted can be characterized by a property
that is more restrictive than having a properly finite-sided Dirichlet domain: one
can check the w-undistorted condition by verifying that finitely many half-spaces
in F, are disjoint.

Given 01,09 € X we define H*¥(01,02) to be the set of elements a € F,, such
that the associated Busemann function satisfy b, ,(01) < bg(02) for one and
hence any o € X.

We fix a point 0 € X and a word metric on I'. We say that a representation
p: ' > G satisfies the disjoint half space property for w if and only if for some
integer D for every pair (z,y) at distance D from the identity e and such that
(z,e,y) lie in a geodesic in this order, H(x - 0,0) and H(y - 0,0) are disjoint, as

in Figure [T.2]

Theorem 1.3.14 (Theorem [3.5.12f and [3.5.11). A representation p : I’ — G is
w-undistorted if and only if is satisfies the disjoint half space property for w and
—w.

This result is a discrete analog of Theorem [1.3.11] As a corollary, the space
of w-undistorted representations is open.

In general the bisectors for these metrics, i.e. the set of points x € X for given
points o1, 02 € X such that d(o1,z) = d(oq,x) , are not totally geodesic, nor are
they linear hyperplane in some suitable projective model for the symmetric space
P(S2V>Y). For G = SL(n,R) Selberg introduced a Dirichlet-Selberg domain,
which is a polyhedral fundamental domain on X for a discrete and faithful
representation p: ' - G.

In order to define these domain one needs to introduce the Selberg invariant
s : P(S?2V>9%)2 — R where S?V is the space of positive symmetric tensors in
V ®V. For a pair (0,z) € P(S?V>Y)? with representatives O, X : V* — V such
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that det(O71X) = 1:

s(o,z) = log Tr(0~'X).

1
dim (V)
This invariant is linear in the second argument, hence for oy, 05 € P(S?V>?) the

bisector {z € P(S?V>9)|s(01,2) = 5(02, )} is the intersection of P(S?V>0) with
a linear hyperplane.

When o, z are close, this distance is close to the Riemannian distance. When
they are far, this distance has a bounded difference with the Finsler distance d,,, ,
where w; € a* is the first fundamental weight, which is the highest restricted
weight of the standard representation on SL(V').

Let p : I' - G be a discrete and faithful representation. The Dirichlet-
Selberg domain associated to a basepoint o € P(S?V>?) is the domain :

{x e P(S*V=°) | VyeT, s(o,2) <s(y-o0,2)}.
We denote by DSt (0) the closure of this domain in P(S2V=>?).

Theorem 1.3.15 (Corollary [3.5.4). If p: T' — SL(V) is wy-undistorted, then for
all 0 € P(S2V>0) the Dirichlet-Selberg domain DSr (o) is properly finite sided.

It turns out that w;-undistorted representations exist only in even dimen-
sion,except if I is virtually cyclic. Actually we show :

Theorem 1.3.16 (Theorem|3.1.5). There exist Borel Anosov subgroups of SL(3, R)
that admit infinite-sided Dirichlet-Selberg domains.

For subgroups of SL(V') that are not wi-undistorted, we can sometimes prove
that the intersection of the domain DSr(o) with a I'-invariant convex set in
P(S%V) is properly finite sided. In particular we consider a representation with
finite kernel G — SL(V) of a semi-simple Lie group G, whose highest restricted
weight is w. We consider representations p that factor through this representa-
tion.

Theorem 1.3.17 (Theorem [3.7.14). There exist a non-empty G-invariant com-
pact convex subset C < P(S?V=") such that the intersection of the Dirichlet-
Selberg domain and C is properly finite-sided in C' for all w-undistorted repre-
sentations p: I' = G.

We describe explicitly the set C' as the convex hull of a set of rank one points.
One can apply this for instance to non-elementary A-Anosov subgroups I' ¢ G
for the adjoint representation V = g. Let n c P(g) be the space of nilpotent
elements in the Lie algebra g of G and let S?n c P (529) be the corresponding
space of rank one tensors.

Theorem 1.3.18 (Corollary . Suppose that T' € G is A-Anosov. Then
every Dirichlet-Selberg domain DST(0) in P(S%g) obtained via the adjoint rep-
resentation of G intersected with Hull(S*n) < P(S2V>9) is properly finite sided
in Hull(S?n).
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1.4 Maximal representations in Sp(2n, R)

We now turn our attention to maximal representations into Sp(2n, R).

We first study the projective structures associated with maximal represen-
tations, which is an instance of a domain of proper Busemann functions, and
characterize these structures by the existence of a fibration described by pencils
of quadrics.

We then study a different question: we consider Borel Anosov representa-
tions in Sp(2n,R) that are also maximal, and prove in particular that for n = 2
these representations are necessarily Hitchin.

1.4.1 Fibration by pencils of quadrics

We characterize maximal representations by describing the associated projective
structure using pencils of quadrics. This characterization builds on the notion
of fitting maps of pencils, which are maps that define locally a fibration of
projective space, as well as the symmetric space of SL(2n,R).

We begin by a digression on quasi-Fuchsian representations in SL(2,C) to
illustrate the notion of fitting maps.

Let p : T'y — SL(2,C) be the composition of a Fuchsian representation and
the inclusion SL(2,R) < SL(2,C). The locally symmetric space H?/p(T,) is a
fiber bundle over S, with geodesics fibers. One can construct such a fibration
by taking the geodesics orthogonal to the totally geodesic copy of H? in H?
preserved by the action of SL(2,R). This fibration extends to a fibration of an
open domain in H? u JH?.

Such a fibration is described by p-equivariant map u : g; — G where G is

the space of geodesics in H?. We say that an immersion w : §; — @G is fitting if
the corresponding geodesics locally define a smooth fibration of H? U ¢H3.

If p: Ty — SL(2,C) is nearly Fuchsian, i.e. if it admits an equivariant im-
mersion h : S; — H? with principal curvature in (—1,1), the locally symmetric
space H?/p(T'y) admits a fibration described by the fitting immersion Gh that

associates to z € S, the geodesic orthogonal to h(S,) at h(x). This was shown
by Epstein [Eps86]. We say that Gh is the Gauss map of h.

Nearly Fuchsian representations are quasi Fuchsian, i.e. are quasi-isometric
embeddings [Eps86]. We generalize it to any representation that admits an
equivariant fitting immersion.

Theorem 1.4.1. Let p : 'y — SL(2,C) be a representation that admits an equiv-

ariant fitting immersion u : :S’; — G. The representation p is quasi-Fuchsian.

This theorem is a consequence of Theorem [£:4.4] There may a priori exist
representations with equivariant fitting maps that are not nearly Fuchsian, see

Remark However Theorem does not provide a characterization of
quasi Fuchsian representations in general because of the following result.
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Theorem 1.4.2 (Theorem 4.4.6)). For a genus g large enough, there exist quasi
Fuchsian representations p : I'y — Sy that admit no equivariant fitting immer-

sions u: Sy — G.

Maximal representations in Sp(2n,R) satisfy a property that is not satisfied
by quasi-Fuchsian representations : they form connected components of discrete
and faithful representations. This raises the following question:

Question 1.4.3. Can maximal representations can be characterized by the exis-
tence of some fibration of the associated locally symmetric space?

We provide some affirmative answer to this question. In order to study the
symmetric space for Sp(2n, R) we embed it into some projective space.

Let V = R?". The symmetric space X associated to Sp(2n,R) can be iden-
tified with a submanifold of the projectivization P(S2V >?) of the space S2V of
symmetric tensors on V' that are positive, i.e. that define a positive bilinear
forms on V'*.

A codimension 2 subspace of S?V corresponds to a dimension 2 subspace
of its dual @ = S?V*, the space of quadrics on V. A plane in Q is a pen-
cil of quadrics. We denote by Gra(Q) the space of such planes. We denote by
Gry"™(Q) the set of pencils P that do not contain any positive element, or equiv-
alently such that the corresponding codimension 2 subset P° < S2V intersects
S2y =0,

In this setting we say that an immersion w : :9\; — Gry"™(Q) is fitting is the
corresponding codimension two subsets define locally a smooth fibration of the
convex set P(S2V=0).

Let Gr5 (Q) be the set of pencils P such that every non-zero g € P is positive
on some Lagrangian and negative on some Lagrangian of R?”. We show that
the projectivization of the corresponding codimension 2 subspace P° of S?V in-
tersects transversely the symmetric space X associated to Sp(2n,R) (see Lemma
[£.7.4). The set Gr5'(Q) is open in Grz(Q) , but we show that it is disconnected.

max

We select a special union of connected components that we denote by Gry**(Q)
and we show the following:

Theorem 1.4.4 (Theorem[4.5.5). Let p: 'y — G be a representation. If it admits

max

a p-equivariant fitting immersion u : 5; — Gry**(Q) it is mazimal for some
orientation of Sg.

For n = 2 using results of [CTT19] we show that this is a characterization of
maximal representations. For n = 3 we prove a weaker converse to this theorem.
We construct equivariant maps u : S, — Gry"**(Q) for maximal representations

that locally define a fibration of P(S2V>9) but are only continuous.

These continuous maps of pencils admit a flow on an associated circle bundle
over the surface with additional properties, that we call a fitting flow.

Let € be the tautological rank 2 vector bundle over Gry(Q), with a projection
m:&— Q. Given u : :S’\; — Gr2(Q) we consider the induced circle bundle u*SE
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over SNQ which is the quotient of u*€ by the action of positive scalars. A fitting
flow is a flow ® on u*SE such that for all [¢] € u*SE and all ¢ > 0 one can find
a representative of [¢'] = ®;([¢]) such that 7(¢’) — w(q) is positive.

Equivariant continuous maps u : :S’\; — Gry"*(Q) that admits an equivariant
fitting flow also define locally a continuous fibration of P(S2V=?). Equivariant
fitting immersions u : fS’; — Gry(Q) always admit a fitting flow (see Proposition
1.3.9).

We obtain the following characterization of maximal representations of closed
surface groups in Sp(2n,R).

Theorem 1.4.5 (Theorem [4.5.5). A representation p : I'y — Sp(2n,R) is maz-
imal if and only if it admits a p-equivariant continuous map of pencils that
admits an equivariant fitting flow:

u: Sy — Gri™(Q).

We also show that the quasi-Fuchsian representations from Theorem [[.4:2]
do not admit continuous maps with an equivariant fitting flow.

A continuous map equivariant map u : S, — Gry?*(Q) for a representation
g 2

p: Ty = Sp(2n,R) with a fitting flow defines a fibration of the symmetric
space X < P(S2V>0) as X intersects the fibers transversely. Thus it defines a
fibration of the locally symmetric space X/p(I'y). Moreover the intersection of
the quadrics in a pencil of in Gry™*(Q) defines a codimension 2 subset of P(V)
that is the intersection all the of the corresponding quadric hypersurfaces. A
continuous map of pencils with a fitting flow defines a fibration of a domain in
projective space, that is equal to the domain of discontinuity in projective space
constructed by Guichard-Wienhard [GW12] when the map and the flow are
equivariant with respect to a n-Anosov representation. Theorem [1.4.5] implies
the following characterization of the contact projective structures corresponding
to maximal representations.

Corollary 1.4.6. A contact projective structure on a fiber bundle M with fiber
F over S, corresponds to a maximal representations by the construction of
Guichard-Wienhard if and only if, up to homeomorphisms of M that stabilize
T (F) and act trivially on m (M)/mi(F) ~ Ty, the fibers are mapped via the
developing map onto the bases of mazimal pencils of quadrics parametrized by a
continuous map that admits an equivariant fitting flow.

More generally we define fitting immersions and continous maps with fit-
ting flows for representations of the fundamental groups of closed d-manifolds
in SL(2n,R). We show that the existance of such a map implies that the repre-
sentation is n-Anosov property, see Theorem @

In Sectionwe discuss the case of Sp(4, R) and construct fitting immersions
by using the maximal spacelike immersions from [CTT19]. Finally in Section
we briefly discuss how to decompose these projective structures into smaller
pieces which are polygons of quadric hypersurfaces.
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Figure 1.3: The second boundary map for a Hitchin representation, and the
main argument of the proof of Theorem [5.6.5]

1.4.2 Maximal and Borel Anosov representations

Maximal representations p : I' — Sp(2n,R) are always Anosov with respect
to the longest root. The space of maximal representations p : I' — Sp(2n,R)
contains several connected components. One of them is the Hitchin component,
whose existence is due to the fact that Sp(2n,R) is split. Representations in
the Hitchin component are Borel Anosov, i.e. Anosov with respect to all roots,
which is stronger than being Anosov with respect to a single root. In general
Hitchin representations are the only known representations of a closed surface
group in SL(2n,R) that are Borel Anosov.

We prove that among representation into Sp(2n,R) that are {n — 1,n}-
Anosov, the ones that are maximal can be characterized by hyperconvexity.

Theorem 1.4.7. Let p : I'y — Sp(2n,R) be a {n — 1,n}-Anosov representation.
It is mazximal if and only if it satisfies the hyperconvexisty condition H,, i.e. if
for all distinct x,y, z € 0T the following sum is direct:

(@) ng R @ (W ng () @g ™ (2).

This result is a new link between positivity for maximal representations and
hyperconvexity of boundary maps, for {n — 1,n}-Anosov representations. On
the one hand we see that maximality forces property H,. On the other hand we
show that property H, implies positivity of the n-th boundary map combining
the characterization of the tangents to the boundary maps together
with the observation that a C! curve whose derivative stays in a cone must also
lie in a the cone.

Hyperconvexity conditions were studied extensively by Pozzetti-Sambarino-
Wienhard [PSW21] and they showed in particular that hyperconvexity H,, im-
plies that the £ has C Limage with derivative given by 52_1 and §;L+1. Using
this we show the following in the case n = 2.
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Theorem 1.4.8. Representations p : T'y : Sp(4,R) that are mazimal and Borel
Anosov are Hitchin.

In order to prove Theorem [1.4.8| we use Theorem [[.4.7] and prove in Section
that Borel Anosov representations p : I'y — Sp(4,R) which satisfy property
H, also satisfy property Hi.

For that we project the boundary map onto the parallel tube in the symmet-
ric space between two Lagrangians in the boundary curve. Concretely given 3
points (z,y, z) in the Gromov boundary of I'; we consider their full flags asso-
ciated via the boundary map (mé, x,%, xi), (y;7 yg, yg)7 (z;, zﬁ, 22) and construct
4 points in the circle P(¢2) by projecting the lines x}, y, and intersecting the
hyperplanes 22 and yi, yielding 4 points on the boundary of a copy of the hyper-
bolic plane. The Lagrangian yﬁ defines a point in the interior of this hyperbolic
plane, see Figure (1.3

We distinguish two possible configurations of these projections, one of which
implies property Hi. To rule out the other configuration, we use again that the
second boundary map has C' image to show that the projection of the second
boundary map must stay in a smaller convex cone, colored in the picture.

This leads to a contradiction as the point corresponding to yﬁ must lie in the
geodesic joining the ideal points corresponding to y; and y27 since y; c yi c yz.
This geodesic is disjoint from the convex if the four points are ordered as in the
picture.

In Section [5.6] we recall results from Labourie and Guichard to prove that
a Borel Anosov representation in Sp(4,R) that satisfies property Hy and Hs is
Hitchin.

‘We hope that such geometric argument will be useful to rule out the existence
of other kinds of Anosov representations.

Let us say that a representation p : I'y — G into a split lie group G is
homotopy Hitchin if it is Borel Anosov and if its boundary map in G/B where
B is the Borel subgroup is freely homotopic to the boundary map of a fixed
Hitchin representation, up to an orientation reversing homeomorphism of oI'.

A consequence of Theoremis that a representation p : 'y — Sp(4, R) is
Hitchin if and only if it is homotopy Hitchin. Indeed, because of Theorem [1.1.5]
a homotopy Hitchin representation in Sp(4,R) is maximal for some orientation
of oT'y,.

One could therefore ask the following :

Question 1.4.9. Are all homotopy Hitchin representations p : I'y — G Hitchin?

A Borel-Anosov representation in SL(3,R) having a trivial boundary map
in RP? must preserve a properly convex domain, and hence be Hitchin due to
[CGO5]. Therefore the answer to this question is affirmative for G = SL(3, R).

1.5 Organisation of the thesis

This document is divided into 4 chapters that are mostly independent.
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In Chapter [2] we introduce and discuss the notion of nearly geodesic im-
mersions. Section and review some definitions and properties of
symmetric spaces, Anosov representations, and Busemann functions. In Sec-
tion [2:4) we define and study the properties of nearly geodesic immersions. In
Section [2.5] we study pencils of tangent vectors in the symmetric space, which
determine the fibers of the fibrations associated to nearly geodesic immersions.
In Section we construct these fibrations. Finally we apply these results to
construct fibration of parabolic structures associated to some representations in
Section This chapter is an adaptation of the preprint [Dav23].

In Chapter [3] we consider Dirichlet domains for Anosov subgroups of a semi-
simple Lie group. In Section we explain Selberg’s construction of a fun-
damental domain of discrete subgroups of SL(n,R), and discuss an example
of such a domain that is infinite sided. In Section we recall the necessary
background on Anosov representations and symmetric spaces and we define the
notion of w-undistorted subgroup. In Section[3.3|we define the Finsler metric d,,
and the horofunction compactification of the symmetric space. In Section
we describe the domains of proper horofunctions for w-undistorted subgroups.
In Section [B.5] we discuss the finite-sidedness of Dirichlet-Finsler domains. In
Section [3.7] we consider the restriction of Selberg’s domain to smaller invariant
convex sets, and provide a sufficient condition for the Dirichlet-Selberg domain
to be finite sided in this convex set. In Section [3.6] we compare the horofunction
compactification of the locally symmetric space for an w-undistorted subgroup
with the compactification of the symmetric space. Finally in Section we
show that the limit cone of any discrete subgroup of G that is not virtually
cyclic is connected. This chapter is an adaptation of the preprint [DR24], which
is a joint work with Max Riestenberg.

In Chapter [4 we study fitting maps of pencils of quadrics in order to char-
acterize maximal representations by their geometric structures. In Section
we recall the definition of maximal and Anosov representations. In Section [£:2]
we define pencils of quadrics, fitting pairs and directions, and finally fitting im-
mersions of pencils of quadrics, that define fibrations of a convex domain in the
symmetric power of R?". In Section we define fitting flows. In Section
we show that the existence of an equivariant map of pencils with a fitting flow
implies the Anosov property. In Section we show that maximal representa-
tions can be characterized by the existence of such a fibration. In Section [£.6] we
show that photon structures provide such fibrations for maximal representations
in Sp(4,R). Finally in Section we briefly describe how one can decompose
the projective structure associated to maximal representations into polygons of
quadric hypersurfaces.

In Chapter |5 we study maximal representations in Sp(2n,R) that satisfy
additional Anosov properties. We first recall in Section [5.1] the definition of
Anosov representations in Sp(2n,R) and fix some notations. In Section we
describe a special chart of the space of Lagrangians. In Section we discuss
the link between hyperconvexity and smooth properties of the boundary maps.
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In Sectionwe characterize maximal representations among {n—1, n}-Anosov
representations by the hyperconvexity property H,. In Section and [5.6] we
prove that maximal and Borel Anosov representations are Hitchin. This chapter

is an adaptation of .
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Chapter 2

Nearly geodesic immersions

In this chapter we introduce and discuss the notion of nearly geodesic immer-
sions, and apply it to construct fibrations of certain domains of discontinuity,
that can be interpreted as domains of proper Busemann functions, for some
Anosov representations.

Section and [2.3| review some definitions and properties of symmetric
spaces, Anosov representations, and Busemann functions. In Section we
define and study the properties of nearly geodesic immersions.

In Section we study pencils of tangent vectors in the symmetric space,
which determine the fibers of the fibrations associated to nearly geodesic immer-
sions. In Section[2.6)we construct these fibrations. Finally we apply these results
to construct fibration of parabolic structures associated to some representations
in Section 2.7

This chapter is an adaptation of the preprint [Dav23].

2.1 Symmetric spaces of non-compact type.

In this section we recall the general theory of symmetric spaces of non compact
type and fix some notations. References for the results mentioned can be found
in [Hel78] and [Ebe96]. We then illustrate some of these notions for some families
of Lie groups. Finally we introduce the notion of Weyl orbit of simple roots.

2.1.1 Symmetric space associated to a semi-simple Lie group.

Let G be a connected, semi-simple Lie group with finite center and no compact
factors, i.e. of non-compact type.

Let g be the Lie algebra of G, and let B be the Killing form on g. Since
g is semi-simple it admits a Cartan involution i.e. an involutive automorphism
0 : g — g such that (v,w) —» —B(v,0(w)) is a scalar product on g. Any two
Cartan involutions are conjugated by Ad, for some g € G.

29



Let X be the space of Cartan involutions of g. For any x € X we will write
the corresponding Cartan involution 6, : ¢ — g. This involution determines a
B-orthogonal decomposition g = t, @ p,, where t, is the +1 eigenspace of 6,
and by p, the —1 eigenspace.

For z € X, define K, to be the group of elements k € G such that Ady
commutes with 6. This subgroup is a maximal compact subgroup of G. Given
any z € X, one can identify X with the homogeneous space G/K,. The Lie
subalgebra t, is the Lie algebra of the compact K, and thus the space p, is
naturally identified with T, X.

Let {-,-), be the scalar product defined for v,w € g as :

v, Wy, = B(v,0:(w)). (2.1)

This scalar product restricted to p, ~ T, X defines a Riemannian metric gx
on X. We will denote by dx the induced Riemannian distance on X. With this
metric the space X is a symmetric space in the sense that for all x € X there is
an isometry o, of X such that d,o = —Id.

The symmetric space X is of non-compact type. It is simply connected and
has non-positive sectional curvature. In particular it is a Hadamard manifold.

Remark 2.1.1. We only consider symmetric spaces X associated to semi-simple
Lie groups G, having their Riemannian metric defined via the Killing form.

2.1.2 Reduced root systems.

Fix a base point 0 € X. Let a be a choice of a mazimal abelian subalgebra of p,,.
These maximal abelian subalgebras are all conjugated by elements of K,. The
dimension rank(X) of a will be called the rank of X.

Remark 2.1.2. In general rank(X) < rank(G), where rank(G) is the dimension
of any Cartan subalgebra in g.

Let a € a* be a linear form. Let g, be the set of elements v € g such that
for all 7 € a:
ad,(v) = a(r)v.

The reduced root system X is the set of linear forms « € a* such that g, # {0}.
An element 7 € a is regular if for all a € ¥\{0}, a(7) # 0.

Let us choose a regular element 75 € a. Let ¥ be the associated set positive
roots, i.e. the set of @ € X such that a(mp) > 0. There exists a unique set A of
linearly independent roots in ¥ such that any root if ¥ can be written as a
linear combination of roots in A. The roots in A are called simple roots.

Let the Weyl group W be quotient of the subgroup of elements in K, whose
adjoint action stabilizes a by the subgroup of elements who fix a point-wise.

For any root o € ¥\{0} there is an element o, € W such that its action on a
is the orthogonal symmetry with respect to Ker(«) in a. The Weyl group acts
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linearly on a, and it is generated by the elements (04 )aea. The model Weyl
chamber a™ is the cone {7 € alVa € A, a(r) = 0}. For any 79 € a there is a
unique 7 € at such that for some w € W, w-79 = 7. An element 7 € a* is
O-regular for © c A if for all « € O, a(7) # 0.

We denote by Sa and Sat reprectively the unit sphere in a and the unit
sphere intersected with the model Weyl chamber a™, for the metric (2.1]).

Let wg € W be the only element such that wg - a™ = —a™. This element is
called the longest element of the Weyl group. Let ¢ : a* — a™ be the involution
such that for 7 € Sa™, (1) = —wp - 7. An element 7 € Sat is called symmetric
if o(7) =T.

Given a set of simple roots ® ¢ A, we say that the model ©-facet is the
set of elements 7 € Sa* such that for all « € A\O, a(r) = 0. The open model
O-facet is the set of elements 7 € Sat such that for all & € A\®, a(7) =0, and
for all @ € ©, a(7) > 0. For an element 7 € Sa™ we will write ©(7) the unique
set of simple roots such that « lies in the open model ©(7)-facet.

2.1.3 Maximal Flats, visual boundary and parabolic subgroups.

A flat in X is a complete totally geodesic subspace of X on which the sectional
curvature completely vanishes. A flat F' is maximal if dim(F') = rank(X). Flats
passing through a point x € X are in one to one correspondence with abelian
subalgebras of p,, and maximal flats correspond to maximal subalgebras. As
a consequence the action of G on the space of maximal flats is transitive. The
maximal flat corresponding to a will be called the model flat. Moreover for any
rz € X and v € T, X, there is a maximal flat ' such that x € F and ve T, F.

We say that two geodesic rays parametrized with unit length 71,72 : Ryo —
X are asymptotic if there exist a positive constant C' such that for all ¢ > 0,
dx(71(t),v2(t)) < C. This defines an equivalence relation on the space of rays.

The visual boundary 0yisX of the symmetric space X is the space of classes
of asymptotic geodesic rays parametrized with unit speed. The group G acts
by isometries on X, hence it acts on 0yisX.

A unit vector v € T, X at a point z € X points towards a € 0,isX if the
geodesic ray v such that y(0) = z, 7/(0) = v is in the class corresponding to a.
Since X is a Hadamard manifold, for any x € X and a € 0,;sX there is a unique
unit vector that points towards a. We will denote this vector by v, , throughout
the paper. There exist a unique topology on 0yisX such that for any = € X the
map ¢z : @+ Vg, is an homeomorphism between 0yisX and T}X

The visual boundary of the model flat can be identified with Sa, and is
included in the visual boundary of X. The G-orbit of a point 7 € Sa™ will be
denoted by F,. A O-facet is a subset of 0,;sX that is the image of the model
O-facet by the action of an element of G. We define similarly the notion of open
O-facet. The stabilizer of the open model ©-facet will be denoted by Pg, and we
will denote by Fe the associated flag manifolds, i.e. the quotient G/Pg. Since
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Ppg is also the stabilizer of any point in the open ©-facet, there exist a natural
G-equivariant diffeomorphism between the G-homogeneous spaces Fg and F,
for any 7 in the open model ©-facet.

Example 2.1.3. Let us consider the case when G = PSL(n, R) to illustrate these
notions. A parabolic subgroup is this case is the stabilizer of a partial flag
f- Any point in 0,;sX belongs to a unique open facet, which corresponds to a
partial flag. The type of the partial flag, i.e. the dimensions of the subspaces
that form the flag, determine a set of roots © ;. The points in 0y X are in 1 to 1
correspondence with partial flags decorated with a point in the open © y-model
facet. This decoration can be interpreted as a collection of weights associated
to the subspaces of the partial flag.

Given any two points a, a’ € 0yisX, one can define their Tits angle ZTis(a, a’)
as the minimum of Z(vg 4, Ve ;) for € X. This minimum is obtained when
z € X lies in a common flat with @ and o'

2.1.4 Cartan and Iwasawa decomposition.

The Cartan projection p : TX — at is the function that maps any vector
w € T,X to the unique element p(w) € at of the model Weyl Chamber such
that for some g € G, g-w = pu(w).

The generalised distance dq(x,y) based at x € X of a point y € X is the
Cartan projection p(w) of the unique vector w € T, X ~ p, such that exp(w)-x =
y. This generalized distance is 1-Lipshitz in the following sense:

Lemma 2.1.4. Let z,y,z € X:
|da(.'177 Z) - da(l',y)| < dx(y, Z)

A proof of this lemma can be found for instance in [Rie21], Corollary 3.8.
Here | - | means the norm induced by the metric (2.1)).

We say that a vector v € TX is ©O-reqular for a set of simple root © if it’s
Cartan projection is O-regular, i.e. it avoids the walls of the Weyl chamber
associated with elements of ©. We will later introduce a similar notion of a
T-regular vector in Definition [2.4.7]

Let Ty, 5 : P, — G be the map that associates to g € G, the limit :
li —
Jim exp(—tvy)gexp(tvy)

It is a well defined continuous morphism. Let N, , be the kernel of T, .,
and n, , its Lie algebra. The generalised Iwasawa decomposition is useful to
compute Busemann functions.

Theorem 2.1.5 (Generalized Iwasawa decomposition). Let x € X and a € 0,isX.
then the following map:

Noz xexp(agq) x K — G
(n,exp(v), k) — nexp(v)k
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is a diffeomorphism. In particular for every x € X and a € 0,isX there is a
splitting :
g= na,w (‘B aa,w @EL

The sum 0y o @ g5 s orthogonal with respect to -, -),.

In this Theorem, a, . C p, is the centralizer of v, ;.

2.1.5 Examples.

In this subsection we consider the case when the semi-simple Lie group G is equal
to PSL(n,R), PSL(n,C), PSp(2n,R) or PSO(p, q). The notations introduced
here will be used in the examples throughout the paper.

Let G = PSL(n,R) and let us fix a volume form on R™. Let S, for n > 2 be
the space of all scalar products on R™ having volume one. The group PSL(n, R)
acts transitively on S,, by changing the basis, i.e for g € PSL(n,R), ¢ € X and
v,we R™ g-q(v,w) = q(g (v),g ' (w)). For any g € S,, the space S,, can be
identified with the quotient PSL(n,R)/PSO(q) = PSL(n,R)/PSO(n, R).

Let 6, at a point ¢ € X be the involutive automorphism of sl(n,R) defined
by u — —u” where u” is the transpose of u with respect to the scalar product
q. This is a Cartan involution. The space S,, is the symmetric space of non-
compact type associated to G = PSL(n, R).

The space p, is the space of symmetric endomorphsisms with respect to g,
and t, is the space of antisymmetric endomorphsisms with respect to q. The
scalar product {-,-), at a point ¢ € S,, is equal to (u,v), = 2nTr(u"v) for
u, v € sl(n,R).

We choose the standard scalar product g € S,, on R™ to be our base point of
S,,. A maximal abelian subalgebra a  p,  sl(n,R) is equal to the algrbra of
diagonal matrices:

a= {Diag(al,--- s On)|o1, -+ son ER",ZUZ- = O}.
i=1

A choice of simple root is A = {ay, -+ ,a,_1} where forany 1 <i<n—1
and any 7 = Diag(oy,--- ,0p,) € a, (7)) = 05 — 0j41.

The Weyl chamber associated to this choice is :
n
at = {Diag(al,--- yop)|or = = op eR",EUi = 0}_
i=1

The Weyl group W is isomorphic to &,,. It acts on a by permuting the
entries.
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Figure 2.1: The model restricted Cartan algebra a and its Weyl chamber a™ for
PSL(3,R).

Sa*

A
Ker(ag)

Figure 2.2: The projectivization of the Weyl chamber Sa™ for G = PSL(4,R)
in an affine chart.

Let G = PSL(n,C) The space H,, of all definite positive Hermitian bilinear
forms of C™ having volume one can identified with PSL(n,C)/PSU(n,C). Tt
can be given in a similar way a Riemannian metric that makes it a symmetric
space of non-compact type associated to G = PSL(n,C).

The subalgebra a c sl(n,R) < sl(n, C) defined previously is still a maximal
abelian subalgebra of p,. One has rank(S,) = rank(#,) = rank(PSL(n,R)) =
n — 1, but rank(PSL(n,C)) = 2n — 2.

Let G = PSp(2n,R) Let w be a symplectic form on R?". Let X, be the space
of endomorphisms J on R?" such that J? = —Id and (v,w) = w(v, J(w)) is a
scalar product on R?”. The semi-simple Lie group PSp(2n,R) acts on X,, by
conjugation. The space X, can be identified with PSp(2n,R)/PSU(n,R). This
is one of the models for the Siegel space, see for instance [BP17].
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For J € X, let us write 8; = Ad;. This is Cartan involution of sp(2n,R).
The Siegel space is the symmetric space of non-compact type associated with

G =PSp(2n,R).
Let w and J € X, be such that for x = (21, -+ ,22,) and y = (y1,*** ,Y2n) :

n 2n
w(x,y) = Z TiYon—i — Z TiYon—i,
i=1

i=n+1
J(QS) = (_IQVH U T 41, Tyt axl)'
A maximal abelian subalgebra a  p, < sp(2n,R) is:
a= {Diag(glv tt,O0ny, —0n,t _0'1)|0'1a T, 0p € Rn} .

A choice of simple roots is A = {ay, -+ ,a,} where o;(1) = 0; — 0441 for

1<i<n—1and a,(7) = 20,.
The Weyl chamber associated to this choice is :

c,—o1)|or = - =0, 20€R"}.

at = {Diag(oy, -+ ,0n, —0n, -
The Weyl group W is isomorphic to the subgroup of elements in Sq,, that
commutes with the involution ¢ : ¢ — 2n + 1 — 4. It acts on a by permuting the

entries.

Figure 2.3: The model restricted Cartan algebra a and its Weyl chamber a™ for
PSp(4,R).

Let G = SO(p,q) with p < q. Let RPY be the vector space RPTY equipped
with a symmetric bilinear form {:,-) of signature (p, ¢) defined in the standard
basis by:

p pP—q
<X, Y> = Z (xiyp+q—i + xp-&-q—iyi) - Z Tp+ilp+i-
i=1

i1=1
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A model for the associated symmetric space X is the space of spacelike
subspaces U < RP+?, i.e. subspaces on which {:,-) is definite positive.
A maximal abelian subalgebra a ¢ py < so(p, q) is the algebra :

a= {Diag(o'l’... 70'17?07”. ’O’_o'p’... 7_Ul)|017"‘ 70'p}.

A choice of simple roots is A = {ay, -+, ap} where a;(7) = 0, — 0,41 for
1<i<p—1,and ap(71) = 0p.
The Weyl chamber associated to this choice is :

Cl+ :{Diag(ala'“ 7Upa07"' 707_Up7"' 7_Ul)|01 = ZO-pZO}

The Weyl group W is isomorphic to the subgroup of elements in &5, that
commutes with the involution ¢ : i +— 2p + 1 — 4. It acts on a by permuting the
first and last p entries.

2.1.6 Weyl orbits of simple roots.

In this subsection we introduce Weyl orbits of simple roots, which are special
sets of simple roots. To a Weyl orbits of simple roots © one can associate a unit
vector in the Weyl chamber 7¢ € Sa™ which is colinear to a coroot.

We consider the restricted root system > associated with the semi-simple
Lie group G, with a choice of a set of positive roots 3+ and of simple roots A.
Two simple roots o and 8 are conjugates if there is an element w in the Weyl
group W such that a =w -8 = Bow™?.

Definition 2.1.6. A set of simple roots ©® < A is called a Weyl orbit of simple
roots if it is an equivalence class for the conjugation relation on the set of simple
roots A.

Proposition 2.1.7. Let © be a Weyl orbit of simple roots. There exists a unique
unit vector T € Sat such that for any o € © there is some w € W such that
w-Te is orthogonal to ker(a). The vector ¢ € Sat will be called the normalized
coroot associated to ©.

The normalized coroot associated to © is colinear to a coroot which is itself
conjugate via the Weyl group to the corroot associated to any « € ©.

Proof. Let « € ©. Let 79 € Sa be a unit vector orthogonal to ker(a). Since
every orbit for the action of the Weyl group on Sa™ intersects exactly once the
model Weyl chamber, there exist a unique vector 7¢ € Sa* such that 7¢ = w- 7
for some w e W.

This definition does not depend of the choice of a € O, because if 3 € © then
for some wg € W, wq - f = o and hence any vector 7(, orthogonal to ker(3) can
be written 7 = wq - T or 7, = (woog) - 7o, and hence W -1y = W - 7. Therefore
W-tgnSat =W -7, nSat = {10} O

Note that in particular 7g is symmetric.
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Remark 2.1.8. If © is a Weyl orbit of simple roots, F,, is not in general the
same flag manifold as Fg = G/Po.

The Dynkin diagram associated to the restricted root system ¥ is the graph
with vertex set A such that for all a, 8 € A distinct roots there is a link between
o and f of multiplicity depending of the order k of 04,03 or 0304, where 04,03 €
W are the symmetries associated with the roots a, 5. If k = 2 we consider that
there is no link, there is a simple link if £k = 3, a double link if £ = 4 and a
triple link if £ = 6. These are the only cases that occur for spherical Dynkin
diagrams. If two roots have different norms, we orient the edge towards the root
with largest norm.

Proposition 2.1.9. Consider the Dynkin diagram associated with the reduced root
system %, and remove all the double or triple edges. A set © < A is a Weyl
orbit of simple roots if and only if it is a connected component of this graph.

Proof. Let «, 8 be two simple roots such that o, = waﬁw’l for some w € W.
Then the simple root o and w- 3 are proportional, hence « = w-f or a« = —w- .
In any case « and § are conjugated. Reciprocally if o and 8 are conjugates,
then o, and og are conjugated.

The system (W, (0a)aca) is a Coxeter system. Generators of a Coxeter sys-
tem are conjugated to one another if and only if there is a path of single edges
between the corresponding vertices in the Dynkin diagram ([Gal05] Proposi-
tion 2.1). Hence Weyl orbits of simple roots correspond exactly to connected
components for the modified Dynkin diagram. O

We can now describe the Weyl orbits of simple roots in A for the restricted
system of roots associated to a simple group G. For this we use the classification
of the Dynkin diagrams that occur as reduced root system for a symmetric space
X associated to G.

Corollary 2.1.10. If the restricted root system % is of type A,, D, forn =2 or
Eg, Er, Eg, then the only Weyl orbit of simple roots in A is A.

If the root system % is of type B,,Cy for n = 2 or Fy,Ga, then A can be
partitioned into its only two Weyl orbits of simple roots .

Example 2.1.11. We keep notations from Section If G = PSL(n,R), with
previous notations A is the only Weyl orbit of simple roots and:

1
AT oUn

The flag manifold F,, can be identified with :

Diag(1,0,---,0,—1).

Fin—1={{(,H)|f{ c HcR",dim({) = 1,dim(H) = n — 1}.

If G = Sp(2n,R), with previous notations ©' = {aj,as, -+ ,a,_ 1} and
O = {«a,,} are the two Weyl orbits of simple roots of A. One has :

1
— —~ Diag(1,0,---,0,—1).
Te 2\/5 lag(7a s Uy )

37



A (C) To O(71e)

1
An —o— oo ﬁ (el — €n+1) *—o——0—e
BCy &0 el o
T
o= ﬁ(el +€2) =0
B,,n=3 0—0——0—0-® el &0 —0—030
T
oo —0—e>0 ﬁ (el + 62) O—e——0—0=0
Cn, n 2 3 O0—0——0—0=%0 €1 &—0——0—0=0
oo —0—e<0 (el + 62) O—e——0—0=%0

(e1 + e2) %{
(e1 +e2) o—e %—<

FEs o—o—I—o—o \V2e o—o—l—o—o

o
A
S| 5k B

E7 H—I—Q—O—. % (68 — 67) o—o—i—o—o—o
Eg .—O—I—O—O—H \% (61 — 69) o—o—i—o—o—o—o
Fy *—e=0—0 % (61 + 62) —0=0—0
o—0=0—e €1 0—0==0—e
GQ [ ==¢] . % (61 — 63) [ ==
== 7 (2e1 —ex —e3) ==

Figure 2.4: Weyl orbits of simple roots, and their associated normalized coroots.

1
» = ——Diag(1,1,0,--- ,0,—1,—1).
To 2\/(5 lag( s Ly Yy s Uy ) )
The flag manifold F-, can be identified with RP?" 1 and Fre, can be iden-
tified with the Grassmannian of planes P in R?" that are isotropic for w, i.e.
such that wjp = 0.

In general, the Weyl orbits of simple roots for any root system are summa-
rized in Figure The table also includes an illustration of the set of roots
O(1e) such that Fo(r,) =~ Fro. The sets of roots are illustrated in the diagram
as the set of filled vertices. Using notations from [OV90, Table 1, page 293], the
basis (e;) is an orthonormal basis such that e = ¢; for B, Cy, D,, F, and
e/ — n%rl Zi% ey = ¢ for A,, E7, Eg and Ga. For Eg, we write e = €.

The table can be checked as follows: for each Weyl orbit of simple root one
can check that the vector 7g is orthogonal to the kernel of a root conjugate
to a root in O, and lies in the model Weyl chamber. Then one an check that
the simple roots that do not vanish on 7g are the one in ©(7g), as depicted in

Figure
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2.2 Representations of hyperbolic groups.

2.2.1 Gromov hyperbolic groups.

Let T' be a finitely generated group. Let F' be any finite generating system for
', that is symmetric, i.e. such that s™' € F for all s € F. We can define the
norm of an element v € I'y as:

|7|F = min{n|n = s1s2---sp, s; € S}.

This norm defines the word distance on T'y by taking dr(v1,72) = |77 '72lF
for y1,72 € I'y.

A map f:Y — X between two metric spaces X, Y is called a quasi-isometric
embedding if there exist C, D such that for all x1, x4 € X:

1
ng(xl,l‘z) — D < dx(f(z1), f(z2)) < Cdy (21,22) + D.

By extension, we say that a representation p is a quasi-isometric embedding
if some and hence any p-equivariant map ug : I' = X is a quasi-isometry, where
I' acts on itself by left multiplication.

This notion does not depend on the choice of F: indeed if F’ is an other
finite generating system, the identity map (I, dr) — (T, dp+) is a quasi-isometric
embedding.

The group T is called hyperbolic if as a metric space it is hyperbolic in the

sense of Gromov. We denote by 0" the Gromov boundary of an hyperbolic
group T, that we equip with the usual topology [Gro&1].

Given a discrete representation, we will need to consider the limit cone of
the Cartan projections of elements of the group.

Definition 2.2.1. The limit cone of a discrete representation p : I' — G is the
closed subset

¢, = () [dalo.p() )], Pl = 0} =

neN neN

{da(ov p(v)-0)

e = n} c Sat.
dxlo.p(1) o)’

Recall that the generalized distance d, was defined in Section [2.1] This
definition does not depend on the choice of the base point o € X.

2.2.2 Anosov representations.

The Anosov properties are more restrictive for a representation than the prop-
erty of being a quasi-isometric embedding. These notions are interesting in high
rank because the Anosov properties hold for an open set of representations,
whereas the property of being a quasi-isometric embedding is not necessarily
open in Hom(T'y, G) when the rank of X is at least 2.
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Definition 2.2.2 ([BPS19], Section 4). Let © < A be a non-empty set of simple
roots. A representation p : I' —» G is ©-Anosov if for every root a € © there
exists some constants b, ¢ > 0 such that for every v e I':

a(da(o, p(7) - 0)) = b|y|F —c.

This definition does not depend on the choice of the generating set F' and
the base-point o.

A A-Anosov representation in the case when G is a split real simple Lie
group is be called a Borel-Anosov representation.

Remark 2.2.3. A representation is P-Anosov for a parabolic subgroup P if it is
O-Anosov for the corresponding set of simple roots © c A.

Let « € A and 19 € Sa be orthogonal to Ker(a). The evaluation of « to
d.(z,y) satisfies:

a(da(2,y)) = alro)dx(z,y) cos (£(da(2, y), 70)) -

Anosov representations are necessarily quasi-isometric embeddings. Recip-
rocally a quasi-isometric embedding is {a}-Anosov if and only if the angle
{dq (o, p(7) - 0), 7o) is not too small in absolute value for v € Ty large enough.

In particular we have the following characterization of Anosov representa-
tions:

Theorem 2.2.4 ([KLP17]). A representation p:T'y — G is ©-Anosov for ©® c A
if and only if it is a quasi-isometric embedding and if Ker(a) nC, = & for all
a€ 0.

Representations that are ©-Anosov admit a natural continuous and equiv-
ariant map {? : 'y = Fo = G/Pr,, where 0Ty is the Gromov boundary of

r,.

In the proof of Theorem we will use the following results about the
boundary maps of Anosov representations. For two points o,z € X let £(o,x) €
OvisX be the class of the unique geodesic ray with unit speed starting from o
and passing through z.

Theorem 2.2.5 ([BPS19], Section 4). Let p:T'y — G be a ©-Anosov representa-
tion for a non-empty set © c A. There exist a unique p-equivariant continuous
and dynamic preserving map §p@ 1 0l'g — Fo. This map is such that for any
o € X and any sequence (Yn)nen of elements of I'y converging to ¢ € Ty, the A-
facet containing any limit point of the sequence (£(0, p(Vn) - 0))nen also contains

the ©-facet f?({).

For instance, when G = PSL(n,R) and if © = {as}, one can associate a
partial flag to any point in d,;sX. If the the representation p is {ay}-Anosov,
the partial flag associated to any limit point of (£(0, p(Vs) - 0))nen contains the
same k-dimensional plane, that will be denoted by 55(( ).
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Kapovich, Leeb and Porti also proved a generalization of the Morse lemma.
Here is a version of this result. Let us fix any metric on I' quasi-isometric to a
word metric.

Theorem 2.2.6 ([JKLP18b|, Theorem 1.3). Let p : T' — G be a ©-Anosov repre-
sentation. Let o € X be a base-point. There exist a constant D > 0 such that
for every v € ', there exist a geodesic ray n : R~g — X at distance at most D
from p(v) - o with n(0) = o, whose class [n] € 0yisX lies in a common A-facet
with f?((w). Here ¢, € 0T is the endpoint of any geodesicray in I' starting at
the identity and going through .

2.3 Busemann functions on symmetric spaces.

Busemann functions are natural functions on Hadamard manifolds associated
to points in the visual boundary. These functions will play a key role in the
definition of T7-nearly geodesic immersions, and in the fibration of domains of dis-
continuity. In this section we prove the main properties of Busemann functions
and compute their Hessian.

2.3.1 Main properties of Busemann functions.

Busemann functions can be interpreted as the distance of a point = € X to a
point a in the visual boundary relative to a base-point o € X.

Definition 2.3.1. The Busemann function associated to a € 0,isX and based at
o € X is the map b,, : X — R that associates to x € X the limit :

lim dx(z,v(t)) — dx(o,7(1)),

t—+w0
for any geodesic ray v : Rt — X in the class of a.

This definition makes sense because X is a Hadamard manifold [Ebe96]. The
definition implies that for any z,0,0" € X and a € 0,isX, the Busemann cocycle
holds:

ba,o! (T) = ba,o(T) + ba,or (0). (2.2)

For symmetric spaces, this function can be computed using the generalized
Iwasawa decomposition. First we prove that unipotent elements preserve the
level lines of Busemann functions.

Lemma 2.3.2. Let x,0 € X and a € 04X be two points. Let n be an element of
the unipotent subgroup N, , of G:

ba,o(n - ) = by o).
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Proof. The Busemann cocycle implies that bg o(n - ) — bgo(z) = bgz(n - x).
This is by definition the limit when ¢ — oo of the difference:

dx (n-x,exp(tve,s) - ) — dx (,exp(tveq) - )
= dx (3:, ntexp(tva.) - JU) —dx (z,exp(tveq) - )

< dx (n_1 exp(tva,s) - T, exp(tvy ) - T) .

But since n € Ny, exp(—tvge z)nexp(tv,,,) converges to the identity when

t — 400, so this distance converges to 0. Hence b, (n - ) = 0.
O

Recall that v, , is the unit vector in T,X pointing towards a € 0,;sX. To
compute a Busemann function one needs to understand it on maximal flats. Let
x = exp(w) - o for w € p,. Suppose that a, o,z lie in the same flat subspace, i.e.
[W,Vq,0] = 0. The Busemann function on this Euclidean space is equal to:

ba,o(z) = —dx(x,0) cos(Ly(a,x)) = {—Vq,z, W)z

Using these facts we can write Busemann functions in the symmetric space
X explicitely. Let 0,2 € X be a base point and a € 0yisX.

Corollary 2.3.3. Let 0,2 € X and a € 0,ixX. The Busemann function can be
computed as :
ba,o(x) = <_Va,07w>o~

Where w € a,,, s given by the generalized Iwasawa decomposition, i.e. is
the unique element such that one can write v = nexp(w)k - o with n € Ng, and
ke K,.

Since G acts by isometries on X, Busemann functions are G-equivariant in
the following sense.

Corollary 2.3.4. Let 0 € X and a € 04isX. For any g € G, and any z € X,
bg-a,g-o(g - T) = ba,o(T).

The gradient of Busemann functions is characterized as follows.

Proposition 2.3.5. The gradient of the Busemann function based at any point
o € X associated to a € 0yisX is the vector field (—vqz)zex of unit vectors
pointing towards a.

Proof. The differential d;b, , of b, , at x associates to an element w € p, the
value {w', —vg , ), where w’ is the projection of w to a,, with respect to the
decomposition g = n,, @ a,,, ®E,. Note that n,, and £ are orthogonal to
Va,o € g, With respect to {-,-);. Hence w = w’ so the gradient of b, , at z is
~Va,z- O

Busemann functions vary smoothly when the base flag varies in a flag man-
ifold.
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Lemma 2.3.6. For any o € X, and 7 € Sa*. The map Fr x X —> R, (a,z) —
ba,o(x) is smooth.

Proof. Let P be the stabilizer of an element a € F,. By Corollary for
g€ G and 2,y € X, byag.o(¥) = bag.o(g7" - Y) — bag,o(g7" - 0).

Hence the map G x X — R, (g,2) = bg.qy,0(2) is smooth, and defines a
smooth map from the quotient G/P x X ~ F, x X.
O

Example 2.3.7. Let X = S, or H,, the symmetric space associated with PSL,,(K)
with K = R or C, as in Section Let (e1,+-,e,) be a basis of K.
The projective space P(K™) can be identified with the G-orbit F,, of the point
a € 0yisX corresponding to the limit point where ¢ goes to +00 of the geodesic
ray:

e tn=1) 0
R 0 et 0
0 0 et

The point a € F, ~ RP"! is identified with the first basis vector since the
stabilizer of both points by the respective actions of PSL,,(K) on are equal.

The Busemann function by, 4, where go € X and [v] € P(K") associates to

n—1
n

q € X the value
qo(v,v) = 1.

log(g(v,v)) where v is a representative of [v] such that

The asymptotic behavior of Busemann functions along geodesic rays is de-
termined by the Tits angle between the endpoints.

Lemma 2.3.8. Let a € 0,isX and x € X. Let n be a geodesic ray converging to
b e 0yisX. Then there exists a constant C' > 0 such that for allt e R :

|ba,z (n(£)) + tcos(Lpus(a, b)) < C

Proof. There exist some element g € G such that g-a and g - b belong to 0yis F
with F' the model flat in X. Moreover there exist a geodesic ray i’ at bounded
distance from g - n that belongs to the flat F. On the flat subspace F, the
Busemann function can be computed:

ba,n’(O) (’I]/(t)) = —t COS(LTits(g *a,g- b))

This proves the lemma. O
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2.3.2 Computation of the Hessian.

We compute here the Hessian of Busemann functions in the symmetric space
X. This computation will be used in the proof of Theorem [2:4:24]

Lemma 2.3.9. Let a € 0,isX, and x,0 € X. The Hessian of the Busemann
function b, , at a point x € X is given by the following quadratic form on T,X:

Vi <1/ad\2,a,x (v), V>I . (2.3)

Here 4 /ad\%a , is the only root of the endomorphism ady, , oadvaqz‘p” CPy —
P that is symmetric and semi-positive for the scalar product {-,-;.

This quadratic form is semi-positive, and vanishes exactly on 3(vez) N Py.
For v e (3(vaz) N pa)t, it satisfies:

Hess, (v.v) 2 vl min  Ja(u(ve.0)l (2.4)

Recall that 3(v) for v € g is the centralizer in g of v.

Remark 2.3.10. The Hessian of a Busemann function is related to the sec-
tional curvature of the symmetric space. When measured along a tangent plane
spanned by two orthogonal unit vectors v,w € T,X ~ p, < g the sectional
curvature of X is equal to:

Ryv,ow = _<[Va [Va W]]7W>O = _<ad\2/(w)7w>0'

This Lemma implies that Busemann functions are strictly convex except on
flats. This is a more general fact about Hadamard manifolds, see [Ebe96].

Proof. The Busemann function with respect to two different base points differ
only by a constant. Hence we can assume here without any loss of generality
that x = o.

Let v € T,X be a vector. The generalized Iwasawa decomposition, and the
fact that the exponential map is a local diffeomorphism on Lie group implies
that there exists a neighborhood I of 0 in R such that for all t € I:

exp(tv) = exp(n;) exp(wy) exp(ky). (2.5)

Here n; € g0, Wy € 04, and k; € t,, and so that the map ¢t — (0, wy, ky) is
smooth. Let us denote by (n, w,k) and (ii, w, k) the first and second derivative
of this map at ¢t = 0.

The limited development at order 2 at ¢ = 0 of (2.5) yields:

. . . l‘é
exp(tv) = exp (flt + ;t2> exp <v'vt + \72vt2> exp (kt + 2t2> + o(t?).
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But the Baker—Campbell-Hausdorff formula [Hel78| implies that the right
hand of this equality is equal to the exponential of:

nt + wt + kt + th + th + §t2 +3 ([ﬁ,W] + [0, k] + [v‘v,k]) t2 + o(t?).

Hence we get the following two equalities:
v=n+w+k,

i w k 1/, . .o .
0=54‘5"‘5"‘5([n7w]+[nak]+[w7k])
However since v, w € p;, then 6,(n + k) = —ii — k. Hence k = _%'

This let us simplify the last part of the previous equation :

[, ] i, K]+ K] = [, ] — 5[ 6. 00)] = 3 3,1+ 0.(0)

The metric on X can be written {-, -, = B(-,0,(-)) on p, with B the Killing
form, defined on g.

Since v, . is orthogonal to n,, and t, then B(vg g, 1) = B(vavm,l.é) =0
Moreover [0, W] € 14,0 SO:

B(vaz, [W,n + 0,(01)]) = B(Vaa, [, W]) = 0.

In particular one gets:
1
Hessy (ba,0) (v, V) = (Vg 0, Wy = §B (—Va,z, [0,0;(0)]),

Hessy (bq,0)(v,v) = %B ([=Va,z,1], (1)) .

Let ¥, < ¥ be the set of roots o such that a(p(a)) # 0. The Lie algebra
decomposes into root spaces:

g = 3(VCL,$) @ @ gg,w7
a€X,

where Ady(gg ) = g the model root spaces with g € G any element such
that ¢-vee = 1(va,q)-

The restriction of ady, , on gg , is an homothety of ratio a(u(va)). The
vector v can be decomposed in this direct sum.

v=v"+ Z ve.

aEX,

The endomorphism 4 /3d3a , associates to v the vector :

Y lalp(vaw) v € pa.

aEX,
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Let X7 be the set of roots « such that a(u(vq ) > 0. The vector n can be
expressed as :

n=2 Z ve.

anj

Hence, we get as desired:

SB[ Vo 1] 02(1) = 2 D) alilvn)) B 0 (v™)

aEEg

(2.6)
= 2 lalu(va)) v v, = (yad?,  (7).v)
Q€
This is equal to zero if and only if v = v°. O

2.4 Nearly geodesic immersions.

In this section we introduce a local condition for an immersion into the sym-
metric space of non-compact type X that generalizes the notion an immersion
with principal curvature in (—1, 1) inside H".

2.4.1 Curvature bound and Busemann functions.

We introduce the key definition of a nearly geodesic immersion, which relies on
Busemann functions (see Section . Let M be a smooth connected manifold,
u : M — X be an immersion, o € X a base point and let 7 € Sa™ be a unit
vector in the model Weyl chamber.

Definition 2.4.1. An immersion u : M — X is called 7-nearly geodesic if for all
a€ Fr U F,ry and v e TM such that d(bs,, o u)(v) = 0, the function b, , o u
has positive Hessian in the direction v.

Remark 2.4.2. To a 7 € a we can associate its dual w € a*. We say that an
imemrsion is w-nearly geodesic if it is 7-nearly geodesic.

The Hessian considered in this definition is computed with the induced met-
ric u*gx on M. Recall that F, ;) is the opposite flag manifold to . for 7 € Sa®.

We will first show that the nearly geodesic condition can be written as a
bound on the fundamental form I, depending on the Cartan projection of the
surface tangent vectors.

Since the Hessian of a Busemann function b, , on X does not depend on o,
we will denote it by Hess;,. Recall that v, , is the unit vector in 7,X pointing
towards a € 0,isX. The second fundamental form I, for x € M of the immersion
w is the difference u*VX — VM where VX is the Levi-Civita connection on
TX associated to gx and VM is the Levi-Civita connection on TM < u*TX
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associated to the metric u*gx. The second fundamental form is a symmetric
2-tensor with values in u*N when N < TX is the normal tangent bundle to

Proposition 2.4.3. An immersion u: M — X is T-nearly geodesic if and only if
forally e M, foralla € FrUF, ) andv € T,M such that {du(V), Va,u(y) uly) =
0:

Hessp, (du(v), du(v)) + <]Iu(V, V), Va7u(y)>u(y) > 0. (27)

We will prove a sufficient condition that has a simpler form in Theorem
[2:4:24 when T = 7g for a Weyl orbit of simple roots ©.

Proof. Let y € M and a € F. U F (). The function b, , o u is critical at y in
the direction v € T}, M if and only if {du(v), Va,u(y))u(y) = 0-

Let v : R — M be a geodesic for the metric u*gx on M such that v(0) = y
and 7/(0) = v. The Hessian of by, o u on M is equal to the derivative at ¢ = 0
of the differential of the Busemann function, i.e. :

t = oy, Au(y (1) Dugy)

The first term, <V§u(v Va,u(v()) Au(Y (1)) u(y), is equal to Hessy, (du(v), du(v)).
The second term can be written:

Viuw du(y) = ux Vi du(y') + Ly (v, v)

But v is a geodesic so VMdu(v') = 0, therefore the Hessian of b, , o u on M in
the direction v is equal to :

Hessy, (du(v), du(v)) + {ILu(v, V), Va,u(y)Du(y) > 0
O

A consequence of Proposition 2.4.3] is that the property of being 7-nearly
geodesic is locally an open property for the C2-topology, which is the topology
associated with the uniform convergence over any compact set of the first two
differentials.

Corollary 2.4.4. Let ug : M — X be a T-nearly geodesic map for some 7 € Sa*.
For all compact K © M, there exists a neighborhood U of ug for the C2-topology
in the space of C? maps from M to X and a neighborhood V of T in Sat such that
for all 7" € V and u € U, u satisfies the 7'-nearly geodesic immersion condition

on K.

Let G be the isometry group of the n-dimensional hyperbolic space H™ for
some n € N with its usual metric with sectional curvature equal to —1. We
prove that the notion of 7-nearly geodesic immersion generalizes the notion of
immersion with principal curvatures in (—1,1) in H". Principal curvatures are
only defined for hypersurfaces, but the following definition allows to generalize
the notion of having bounded principal curvature.
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Definition 2.4.5. An immersion v : M — H" has principal curvature in (—1,1)
if and only if for all ve TM, ||du(v)|? > |[|L.(v, V).

Since H" is a rank one symmetric space, Sat contains a single element.

Proposition 2.4.6. An immersion u : M — H"™ is nearly geodesic for the only
element T € Sa™ if and only u has principal curvature in (—1,1).

Proof. Let x € X = H" and a € F; = Fy(r) = CP' = §H". For any w € T,X,
Hessy, (W, w) = A||wt||> where w' is the orthogonal projection of w onto the
orthogonal in T, X of v, , by Proposition 2.3.9) with some constant A\ which is
equal to 1 for the metric of sectional curvature equal to —1 on H" (see Remark

EE10).

If w is 7-nearly geodesic, then it is an immersion and for every y € M
and v € T, M there exist a € 0H" such that Va,u(y) 18 positively collinear with
—1I, (du(v), du(v)). By Proposition and since v L v, ,(,) one has:

[du(¥)|* = [Lu(v, v)[| > 0.

Therefore the principal curvature of w is in (—1,1).

Conversely if u is an immersion with principal curvatures in (—1,1), let
a e dH", ye M and veT,M be such that bg, o u is critical in the direction

v. Hence v, () is perpendicular to du(v) so Hessy, (du(v, du(v)) = [[du(v)]>.
Therefore the fact that u has principal curvature in (—1,1) implies that the
hypothesis of Proposition [2:4.3] hold, so u is 7-nearly geodesic. O

In general, the property of being 7-nearly geodesic implies that the surface
is regular in the following sense.

Definition 2.4.7. A tangent vector v € TX is called 7-regular if its Cartan

projection p(v) does not belong to |J, e (w - 7)%.

We say that an immersion v : M — X is 7 regular if for all ve TM, du(v)
is T-regular.

Being regular, namely having the Cartan projection in the interior of a¥,
and being T-regular is in general unrelated. However when 7 = 7¢ for a Weyl
orbit of simple roots ©, a T-regular vector v € TX is exactly a O-regular vector,
namely such that for all « € ©, a(u(v)) # 0.

Proposition 2.4.8. Let 7 € Sat. If u is a T-nearly geodesic immersion, the
tangent vectors du(v) for ve TM are T-regular.

Proof. Let v e T,M for some y € M. Assume that du(v) is not 7-regular, so its
Cartan projection is orthogonal to w - 7 for some w € W. Therefore there is a
unit vector which lies in a common maximal flat with du(v), and whose Cartan
projection is equal to 7. This vector is equal to v, () for some a € Fr U F ().

Since V4 () and du(v) are in a common flat, Hessy, (du(v),du(v)) = 0.
One can assume that {IL,(V,V), Ve u(y))u@) < 0 up to exchanging a with its
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symmetric with respect to u(y) which is still in 7 u F,(;). Moreover since
Vau(y), (V) u(y) = 0, this is a contradiction with the criterion from Proposi-
tion [2.:4.3] so the immersion u cannot be T-nearly geodesic. O

The property of being 7-nearly geodesic is not necessarily satisfied for totally
geodesic immersions, but it is satisfied for T-regular totally geodesic immersions.

Proposition 2.4.9. A totally geodesic immersion is T-nearly geodesic if and only
if it is T-reqular.

Proof. An immersion w is totally geodesic if and only if II,, = 0. If u is a 7-nearly
geodesic immersion that is totally geodesic, for every y € M, v € T,,M and every
a € Fr,y€ M and v e T,M Proposition 2.4.3] implies that :

Hessy, (du(v), du(v)) > 0.

The implies that for no a € . the vector v, () lies in a common flat with
du(v) by Lemma[2.3.9 Hence the Cartan projection of du(v) is not orthogonal
to w e 7 for any we W.

Conversely if the totally geodesic immersion is T-regular, the following Hes-
sian Hessy, (du(v), du(v)) is never equal to 0 for any y € M, ve T,M and a € F-
such that v ,(y) is orthogonal to v. Since Hessp, is non-negative, Proposition
[2:4:3] implies that u is T-nearly geodesic. O

Proof. Consider yop € M. The function y € M — exp (Ad%(u(y), u(yo))) is
strictly convex for some A > 0 and admits a minimum at y = yo. The com-
pleteness of the metric u*(gx) implies that there is a geodesic joining any two
points. Hence the minimum of any strictly convex function is unique, so u is
injective: it is an embedding. O

2.4.2 Uniformly nearly geodesic immersions.

If the nearly geodesic condition for an immersion is satisfied uniformly, one can
prove that the exponential of some multiple of Busemann functions are strictly
convex on the image of the immersion.

Definition 2.4.10. Let 7 € Sa™. An immersion u : M — X is uniformly T-nearly
geodesic if there exist € > 0 such that for all v.e T'M such that ||du(v)| = 1 one
has for all a € F; satisfying v, , L v:

Hessy, (du(v), du(v)) + (L, (v, ¥), Va0 = €.
Remark 2.4.11. When X = H" being uniformly nearly geodesic is equivalent to
having principal curvature in (=, A) for some A < 1.

Suppose that M = N is the universal cover of a compact smooth manifold V.
Let T be the fundamental group of N. A p-equivariant immersion v : M — X
for some representation p : I' — G which is 7-nearly geodesic is necessarily
uniformly 7-nearly geodesic since T*N is compact.
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If we consider a uniformly 7-nearly geodesic immersion u, not only are Buse-
mann functions convex in critical directions, but for some A > 0, e*Pao°¥ ig
strictly convex on M.

Lemma 2.4.12. Let 7 € Sa™. Letwu : M — X be a uniformly T-nearly geodesic im-
mersion. For some A > 0, for all a € F; the function exp (Aby,, o u) has positive
Hessian for the metric u*(gx). Moreover there exists some € > 0 such that for
any a € F; and any geodesic 1 : R — M the functions f, = exp (Abg,0 0 uon)
satisfy f" = €f.

Recall that the metric on M that we consider to define geodesics is the
induced metric u*(gx).

Proof. Let o € X and let US be the compact set of pairs (v,1) € T'X, x T,X
such that for all a € F; satisfying v, 1 v:

Hessp, (v, v) + (I, vg,000 = €.
Let us consider :

o= inp e (V) + <M Vas)o
aeF,,(v,.I)eUs <Va,ov V>?)

This infimum is the infimum of a continuous function taking values in R u
{400} on a compact set. Indeed the numerator must be strictly positive when-
ever the denominator vanishes, and the denominator is always positive. Hence
CeRuy {+mw}.

Let A be any real number greater than max(1— C,0). Let n be any geodesic
in M. Let us write g = b, , o uon. Note that g¢” > C(g’)? by definition of C.
Therefore:

(e/\g)” Jer = Ng" + \? (g')2 > (CA+)\?) (g')2 +(A=0C)¢" =\ (g')2 > 0.
Note also that (ekg)” /e = \g". Consider the following quantity:
M = inf max (Hessy, (v, v) + (I, Va,2)0, Va,o, V)2) -

aeF-,(v,I)eUs

Note that M < max (g”, (¢')°

positive as it is an infimum taken on a compact set of a positive function.
Hence the function f = e*9 is strictly convex and satisfies f” > AM f. O

Since K < U,, this quantity is strictly

2.4.3 Convexity of a Finsler distance.

When X = H"”, and given y € H", for any nearly geodesic immersion v : M —
H"™ the function & — exp (dg~ (u(z),y)) is strictly convex. However for a general
symmetric space of higher rank the 7-nearly geodesic condition doesn’t imply
the convexity for the Riemannian metric at critical points.
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Figure 2.5: The unit ball in a of |- |, and |- |, for G = SL(3,R) and |-
for G = Sp(4,R).

|T{02}

This leads us to consider a Finsler pseudo distance dy on X associated to an
element 7 € Sa™. We show in this section that this pseudo distance satisfies a
similar convexity property for any 7-nearly geodesic immersion. This pseudo-
distance is symmetric when 7 is symmetric and it is equal to the Riemannian
distance when rank(X) = 1. The convexity of this distance allows us to prove
the injectivity and properness of complete T-nearly geodesic immersions. This
Finsler pseudo distance is studied in [KL18|, Section 5].

Let us define for 7 € a:
[rol- = maxCu - 7,70

The map 79 — |79|+ is non-negative, homogeneous and subadditive, thus we
call it in general a pseudo-norm.

This pseudo-norm is not necessarily symmetric: |7g|; = | — 7o[,(). In par-
ticular it is symmetric if and only if 7 is symmetric. Figure 2.5 illustrates the
unit ball of this norm in a for two examples of semi-simple Lie groups whose
associated symmetric space has rank 2: on the left G = SL(3,R) and 7 = 74,
in the middle G = SL(3,R) and 7 = 7; (such that F,, ~ RP?) and on the right
G =Sp(4,R) and 7 = 7} with the notations from Section m

This pseudo-norm isn’t necessarily positive on non-zero vectors. However if
a non-zero vector v € a has zero norm, the Weyl group does not act irreducibly
on a since the W-orbit of 7 is orthogonal to v, which means that the underlying
Lie group G is not simple.
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Example 2.4.13. Let n > 2 be an integer and G = PSL(2,R)", X = (]HIQ)TL. A
model flat in X is the product of a geodesic in each of the n copies of H?. Let
T be the tangent vector to the geodesic on the k-th copy of HZ, the pseudo-
distance on X defined by the pseudo-norm |-|,, is the distance in H? of the k-th
components, which is not a distance on X.

However if G is simple and 7 is symmetric |- |, is a norm. This norm is W-
invariant and hence it defines a G-invariant not necessarily symmetric Finsler
metric on X such that for v e TX, ||v||; = |u(v)|r , where p is the Cartan
projection ([Pla95] Theorem 6.2.1).

For any semi-simple Lie group G, we denote by d% : X x X — Ry the
corresponding pseudo-distance on X, i.e. dx(z,y) is the infimum for all piece-
wise C'-path 1 from z to y of:

Jirt = 1w

This distance can be characterized in terms of Busemann functions.

Proposition 2.4.14. Let x,y € X be two points. The pseudo distance di between
these two points satisfies:

dg—{(ma y) = Inax ba,z(y)'

aceF,

Proof. Let o€ X, veT,X and a € F-. As usual v, , is the unit vector based at
o pointing towards a. The maximum for a € F; of {v,v,,) is reached when v
and v, , are in a common flat (JEbe96] Proposition 24).

If we assume that v and v, , are in a common flat, the maximum is equal
to | u(v)|,. Given two points z,y € X, any piece-wise C! curve n such that
n(0) = x,n(1) = y satisfies for all a € F;:

(ba © 77)/ = <Va,n(t)a77/(t)>77(t) < ||"7/H7"

Hence:

boa(y) < f 171

Moreover equality is reached for the Riemannian geodesic such that n(0) =
x,71(1) = y. Indeed there is a point a € F that lies in a common flat with z and y
such that [7'(t)|; = {0'(t), Vo) )ne) for all t € [0,1]. Hence by . (y) = di(z,y).
Note that the curve reaching this minimum is not unique in general. O

This pseudo distance satisfies the desired convexity condition.

Proposition 2.4.15. Let u : M — X be a uniformly T-nearly geodesic immersion.
There exist A > 0 such that for all z € X the following function is strictly convex
for the metric u*gx:

frye M exp(Mdg(z,u(y))) -
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A continuous function is strictly convex on the manifold M for the metric
u*(gx) if it is strictly convex on any geodesic.

Proof. By the Lemma there exist A > 0 such that for any a € F,, the
function exp (Abg, © u) is strictly convex on M. One can then write f as :

f(y) = exp (Adi (2, u(y))) = Sup exp (ba, © u(y)) -
acs -
Hence f is the supremum of a family of convex functions, so it is convex.
Moreover the supremum is taken over a compact family of strictly convex func-
tions, so it is strictly convex.

O

A consequence of the convexity of this Finsler distance is that the immersion
u is injective, which is an interesting property of 7-nearly geodesic surface. We
say that u is complete if M is complete for the induced metric u*(gx).

Proposition 2.4.16. Let u : M — X be a complete uniformly T-nearly geodesic
immersion. Then u is an embedding.

Proof. Consider yop € M. The function y € M — exp (Ad%(u(y), u(yo))) is
strictly convex for some A > 0 and admits a minimum at y = yg. The com-
pleteness of the metric u*(gx) implies that there is a geodesic joining any two
points. Hence the minimum of any strictly convex function is unique, so u is
injective: it is an embedding. O

Moreover the immersion u cannot be too distorded: the metric induced by
u is quasi-isometric to the ambient metric on X. The notion of quasi-isometric
embedding was recalled in Section [2.2

Proposition 2.4.17. Let u : M — X be a complete uniformly T-nearly geodesic
immersion. Then u is a quasi-isometric embedding for the induced metric u*gx
on M. In particular u is proper.

Proof. Let yo € M and let 0 = u(yg). Let € > 0 and A > 0 be the constants
provided by Lemma 2412} Let v : Rsg — M be a geodesic ray parametrized
with unit speed in M for the metric u*gx with v(0) = yo.

Let a € F; be such that by, (uo~y(1)) = df (o,uo~v(1)). Consider the
function:

f it € Rz exp ()‘ba,uo'y(t) (u o rY(t))) :
It is strictly convex and satisfies f(1) = f(0) so f’(1) = 0. Moreover f” > ef

SO f(t) Z COSh (E(t _ 1)) > 66(;71

. In particular:

di (0,u07(t)) = ba,o (uor(1)) =
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For all y € M there exist a geodesic ray = passing through y. If d, is the
Riemannian distance on M induced by u*gx:

log(2)
-

5 (u(wo), u(@)) > 5 (du (2,y) = 1)

This Finsler metric is equivalent to the Riemannian metric gx if G is simple,
and in general it is dominated by the Riemannian metric. Moreover u is 1-
Lipshitz with respect to the induced metric, so u is a quasi-isometric embedding.

O

Using the convexity of this Finsler pseudo-distance one can define a contin-
uous projection from the whole symmetric X to M. This projection will not
be used in what follows, but the fibration of the domains in F, constructed in
Section 2.6] is an extension of it.

Proposition 2.4.18. Let u : M — X be a complete uniformly T-nearly geodesic
immersion. For every x € X, there exist a unique point 7} (x) € M that mini-
mizes:

y €M — di(z,u(y)).

The function @], : X — M is continuous, and 7} (u(y)) =y forye M.

Proof. Let A, e be the two constants provided by the Lemma [2.4.12| and let
x € X. The following function is strictly convex on M:

y — exp (Adx(z, u(y))) -

It is moreover proper since u is proper by Proposition [2.4.17] Hence it has
a unique minimum, so 7, is well defined.

If we consider a sequence (x,,) € X of points that converge to z € X, then
the sequence (77 (x,)) is bounded since p is discrete. Moreover any of its limit
points is a minimum of d%(z,u(y)), so the sequence converges to w7 (z). The
function 7], is hence continuous. O

2.4.4 Anosov property for nearly Fuchsian representations.

Let N be a compact manifold with fundamental group I'. We call a repre-
sentation p : I' — G that admits a 7-nearly geodesic equivariant immersion
u: N — X a 7-nearly Fuchsian representation.

Proposition 2.4.19. The set of T-nearly Fuchsian representations is open in the
space of representations p : I' — G, for the compact-open topology.

Proof. One can continuously deform any p-equivariant immersion u : N > X
to a p’-equivariant smooth map v’ : N — X for p’ close to p. Indeed fix a
Riemannian metric on N let p : R™ — R™ be a smooth function that is positive
on [0, R] for R large enough and vanishes on [R’, 400) for some R’ > R. One
can define u/(y) for y € N as the barycenter of the points Ty = oy culy-y)

o4



with weight \Y = n(d(y,y-y)) for v € . Concretely this means that we consider
the unique local minimum of the convex function :

D:zeXm > Nd(x,2Y)?.
vyell
Note that p'(v0) - 24 = xz‘;f’l and \Y = /\:YY(;'E’I for 7o € I'. Therefore u' is
0 0

p'-equivariant. Since X is a Hadamard manifold D is strictly convex so the
barycenter map is well-defined and smooth. Therefore for p’ close enough to
p, u' is an immersion which is close to u for the C2-topology on any compact
fundamental domain of the action of I' on N. In particular v’ is a T-nearly
geodesic immersion for p close enough to p'. O

The condition that u is 7-nearly geodesic is local, but it will imply some
coarse property on u and therefore on p. Recall that the limit cone C, was
defined in Section (Definition . Due to flats Busemann functions are
not strictly convex in critical directions on X. However Busemann functions are

~

strictly convex in critical directions on u(N'). We deduce that 7-nearly geodesic
surfaces must coarsely avoid these flats, which in turn can be interpreted as a
property of the limit cone C, (see Definition [2.2.1]).

Proposition 2.4.20. Let p: ' = G be a T-nearly Fuchsian representation :

Con U (w-7)t =g. (2.8)

weW

In other words p is w-undistorded for the linear form w € a* associated to
T € a, see Definition [1.3.1].

Recall that W is the Weyl group associated to G.

Proof. Let zg,x € N and o0 = u(xp). Let w € W, there exist two points a € F,
and a’ € F,(;) that are opposite from o, i.e. V4,0 = —Va,0, and such that :

ba,o(u(z)) = {da(o, u(x)), w - 1),
bar o(u(x)) = (da(0, u()), —w - 7).
This holds for a,a’ that lie in a maximal flat containing o and u(x).

Let 1 be a geodesic parametrized with unit length in N for u* (gx) such that
~v(0) = x¢ and v(d,(zg,2)) = x. Let A\, e > 0 be the constants given by Lemma
24192l Consider the function:

fitexp(Abgoouon(t)).

Since vq,0 = —Vg,0, Up to exchanging a and a’ we can assume that f'(0) > 0.
By Lemma [2.4.12] one has f” > ¢f. Together with the fact that f(0) = 1, this
implies that for all ¢ € [0, dy(xo, z)]:

f(t) = cosh(et).
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Hence {dq(0,u(x)),w - p) = $du(xo, ) — %. Since u is a quasi-isometric
embedding, there exist ¢, D > 0 such that for all z € N the distance for the
induced metric u*(gx) between x and x¢ is at least:

cdx (o, u(z)) — D.

In conclusion:

A Mdx(o,u(z))

Any element of C,, has therefore a scalar product at least §¢ > 0 with w-7, for

any w € W. This implies that the limit cone cannot intersect UweW(w-T)J—. O

The set Sat\|J,ew (w - 7)* contains a single connected component if and
only if (w-7)" is always a wall of the Weyl chamber decomposition of a, i.e.
when 7 = 7o for a Weyl orbit of simple roots ©® ¢ A (this notion was defined

Section [2.1.6)). In this case:
Sat\ | J (w-7e)t =Sa™\ | ] Ker(a).

weW ac®

Hence we get the following.

Theorem 2.4.21. Let © < A be a Weyl orbit of simple roots. A To-nearly
Fuchsian representation p : I'y — G is ©-Anosov.

If 7 € Sa™ does not correspond to a Weyl orbit of simple roots, let us assume
that T is a finitely generated group that is not virtually cyclic, so that the limit
cone of T is connected, (see Proposition [3.8.2)).

To a 7-nearly Fuchsian representation p : I' — G one can associate the
connected component oy in which C, lies inside:

Sa*\ U (w- 1)t
wew

To a connected component of this space one can associate a non-empty set
O(o}) of simple roots. Recall that for 7o € Sa™, ©(7) © A is the set of simple
roots a such that a(7p) # 0.

Lemma 2.4.22. Let 7 € Sat and let o < Sa™ be a connected component of :

Sa*\ U (w-7)*. (2.9)

weWw

Let O(o) < A be the set of simple roots o such that o n Ker(a) = . This
set is non-empty, and there exist some 19 € o such that O(1y) = ©(0).
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Figure 2.6: Tlustration for G = PSL(4,R) of a connected component o of
Sa™\ Upew (w+ 7)F in an affine chart.

In other words there is 79 € o such that for any simple root « € A, a(7) # 0
if and only if for all 7y’ € o, a(m’) # 0. Figure illustrates the lines in Sa*
corresponding to J,ep (w - 7)1 for some 7 € Sa*, as well as some connected
component of the complement o. In this example ©(c) contains only one root.

Proof. Let Wy < W be the subgroup of the Weyl group generated by symmetries
associated to « € A\O(o). Let § < Sa be the connected component of o in:

Sa\ | J (w-m)*.
weWw
This connected component & is stabilized by Wy. Indeed let a be in A\O(0).
By definition there is some v € ¢ such that a(v) = 0, and hence that is fixed
by the symmetry associated to a. Thus the connected component of v in Sa is
stabilized by this symmetry, and hence by the group Wj.

Let 79 € o be any element and let 7o’ € Sa™ be the element that up to the
action of W is positively colinear to:

Z w*T0-

weWy

This sum does not vanish since {7,w - 1) has constant sign for w € Wy. This
element 7y’ is Wy-invariant, hence for all @ € A\O(0), a(1y’) = 0.

Moreover, since the Lie group considered G is semi-simple, the action of

W has no global fixed point on Sa, and hence Wy # W, which proves that
O(o) # J. O

If T is a finitely generated group that is not virtually infinite cyclic the limit
cone of any discrete representation p : I' - G is connected by Proposition [3.8.2]
If p is T-nearly Fuchsian then this limit cones lies to a connected component o7,
of:

Sa\ U (w-7)*.

weW
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Theorem 2.4.23. A 7-nearly Fuchsian representation p: I'y — G from a finitely
generated group T that is not virtually cyclic is @(a;)-Anosov.

In particular only hyperbolic groups admit 7-nearly Fuchsian representations
(see [BPS19, Theorem 3.2]).
Note that ©(o}) # &, because of Lemma [2.4.22

Proof. We use the characterization of Anosov representations from Theorem
224 We already proved that 7-nearly Fuchsian representations are quasi-
isometric embeddings in Proposition [2.4.17]

Moreover the limit cone C, lies inside o7, which avoids Ker(a) for a € ©(a7).
Hence p is ©(o} )-Anosov. O

The assumption that v is not virtually cyclic is necessary: indeed the fol-
lowing representation p : Z — SL(3,R) is not Anosov for any set of roots:

4 0 0
n— |0 27" 0
0 0o 2=

However this representation preserves a geodesic which is 7-regular for al-
most every 7 € Sa™.

2.4.5 A sufficient bound for an immersion to be nearly geodesic.

Let ©® be a Weyl orbit of simple roots as in Section Let a € © be any
root. We define the following constant:
1B(7e)

co = min . 2.10
© = pexlbimyzo [al? (2.10)

Here ||| for oo € © denotes the maximum of |a(7)| for 7 € Sa a unit vector.
This quantity is the same for any « € ©, since © is a Weyl orbit of simple roots.

A sufficient condition for the immersion u to be a Tg-nearly geodesic surface
is the following.

Theorem 2.4.24. Let u : S — X be an immersion that satisfies for all ve TS
and o € ©:
2
(v, v)llze < coa (u(du(v)))”. (2.11)

Then u is a To-nearly geodesic immersion.

Note that |||/, < ||-|| so having Inequality (2.11)) with the Riemannian
metric in the left hand side instead of the Finsler pseudo-distance from Section
248 is also a sufficient condition.

This property is a generalization of the property of having principal cur-
vature in (—1,1), where the norm of the tangent vector is replaced by the
evaluation of roots of the Cartan projection.
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Proof. Let us show that (2.11)) implies the condition of Proposition m

Hessp, (du(v), du(v)) 4+ Tu(V, V), Va,u(y)u(y) > 0-

Let = u(y). Let us write du(v) = wo + wb where wg € 3(va.) N Pz and
wt € (3(Vaz) N Pz)T. Because of Lemma [2.3.9] one has :
Hess,, (du(v), du(v)) = [|w*? min T0)|. 2.12
b () du) > [P min (5G)l. (22
Lemma [2.1.4] implies that for any o € :

a(p(wo)) + [l x [[w| = a(p(du(v))).

We assumed that (v, ,,du(v)), = 0. Since v4, € 3(Vaz) N Py, one has
therefore (v, 4, wbd, = 0 and hence Va,z, Woyz = 0. Moreover v, , and wq are
in a common flat. Since p(v, ) = 7o, this implies that a(p(wg)) = 0 for some
root a € ©. Therefore for this root a:

lwh | = llall ™ a(u(du(v))). (2.13)

Recall that for any w € T, X and a € Frg, {W, Ve 2z < ||W|lr, as a conse-
quence of [Ebe96l Proposition 24].

Equation (2.12)) and (2.13]) imply together the following inequality, with cg
defined in (2.10):

HeSSba (dU(V), du(v)) + <Hu(v7v)ava,u(y)>u(y) = C@)a(p’(du(v)))Q - ||]Iu(vvv)”7'e'

The rightmost term is strictly positive because of the condition (2.11f). This
concludes the proof. O

Example 2.4.25. Let G = PSL(n,R). We chose the standard metric on X that
comes from the Killing form. In particular the Euclidean metric on a is given
by:

<Diag()‘17 e 7)‘71)’ Diag(/’[’h e 7/J"I’L)> =2n Z )‘l,U/z
i=1
In this case 7o = Diag(ﬁ, 0,---,0, —ﬁ) The minimum non-zero value

of B(1e) for § € ¥ is reached for the root a; : Diag(A1, -+, A\n) — A1 — A2, and

isequaltoﬁifnZSandﬁifan.

The norm of any root « is equal to the norm of ay. But |1 (7)] < |A1]+]|A2] <
V2402 + 22 < ﬁHTH with equality for some 7 € Sa. Hence |la;|| = ﬁ, so if

n = 3t
cA = 2+4/n.

And ep = /2 if n = 2. Note that if we rescale the metric on X = H? so that
the sectional curvature is equal to —1, Equation (2.11) is exactly the condition
of having principal curvature in (—1,1).
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2.5 Pencils of tangent vectors.

In this section we recall the classical notion of a pencil of quadrics, then we
generalize it to the notion of a pencil of tangent vectors in a symmetric space
of non compact type and its base in a flag manifold. Bases of pencils appear as
the fibers of the fibration that will be constructed in Section [2.0l

2.5.1 Pencils of quadrics.

Some references for the notion of pencil of quadrics can be found in [FMS21].
Let V be a finite dimensional vector space over K = R or C.

Definition 2.5.1. A pencil of quadrics, or more precisely a d-pencil of quadm’csﬂ
on V is a linear subspace P of dimension d in the space S(V) of symmetric
bilinear forms on V if K = R, or in the space H (V') of Hermitian forms on V' if
K=_C.

The base b(P) of a d-pencil P is the set of points [v] € P(V') such that for
all g e P, q(v,v) =0.

The following is a criterion for a pencil of quadrics to have a smooth base.

Lemma 2.5.2. Let P be a pencil of quadrics such that all non-zero q € P are
non-degenerate bilinear forms. The map p : V. — P*, v — (¢ q(v,v)) is a
submersion at every v € V\{0} such that [v] € b(P). In particular b(P) is a
smooth manifold of codimension d.

Proof. Let (q1,- - ,qq) be a basis of P. Let us consider some v € V\{0} such that
q1(v,v) = -+- = gq(v,v) = 0. The kernel of the differential of p is the intersection
of the orthogonal spaces [v]*e with respect to ¢; of the line generated by v for
1 < i < d. Since the forms ¢; are non-degenerate, these are hyperplanes.

Suppose that their intersection has not codimension d. In particular the
linear forms ¢;(v,-) for 1 < ¢ < d are not linearly independent, so there exist
a linear combination of the bilinear forms that is degenerate, but is a non-zero
element of P, contadicting our assumption.

Hence the the kernel of p has codimension d, so p is a submersion at v.
O

The base of a pencil of quadric is smooth and has codimension d around
each of it’s points which are non-singular, meaning that they are not degenerate
points for any quadric in the pencil. We generalize this notion of singular points
in the next section.

'Tn the literature, for instance in [FMS21], the term pencil of quadrics is often used only
for 2-pencils of quadrics.
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2.5.2 Pencils of tangent vectors in symmetric spaces.

In this subsection we consider pencils of tangent vectors in a symmetric space
X of non compact type, which are related to pencils of quadrics when G =
PSL(n, R).

Definition 2.5.3. A pencil of tangent vectors at x € X, or more precisely a d-
pencil, is a vector subspace P < T, X of dimension d for some point z € X.

To a pencil one can associate some subsets of any G-orbit in the visual
boundary. Recall that for a € 04isX and = € X, the unit vector v, , € T X is the
unit vector pointing towards a. Let 7 € Sa*.

Definition 2.5.4. The 7-base of the pencil P, whose base-point is = € X, is the
set B(P) of elements a € F; such that v, , is orthogonal to P.

When G = PSL(n,R) and X = §,,, a pencil at ¢ € S,, corresponds to a
subspace P’ of symmetric bilinear forms on R™, i.e. a pencil of quadrics, that
is compatible with ¢ in the sense that the trace of the associated g-symmetric
matrices vanishes.

Proposition 2.5.5. Let 7 € Sa® be such that F, ~ RP""'. The t-base of the
pencil P is identified via this identification with the base of the pencil of quadrics
P

Proof. The 7-base of P is the space of lines [C] where C' € R™ is a column
vector satisfying Tr(CC+aM) = 0 for all M € P’, since CC*4 is colinear to
V[c],q- Hence the 7-base of the pencil is also the set of lines [C] such that

CtaMC =0, i.e. the base of the pencil of quadrics P’.
O

We now generalize Lemma [2.5.2] to general pencils of tangent vectors.

Definition 2.5.6. A point a € F;, in the base B.(P) of a pencil P at x € X is
called singular if for some w € P one has [w, vy 5] = 0.

We denote by B*(P) c B,(P) the set of non-singular points, that we will
also call the regular base.

Lemma 2.5.7. Let P be a pencil of tangent vectors at x in X. The function
which associates to a € F, the linear form v — (V4 4, V)s on P is a submersion
at a € B-(P) if and only if a € BX(P). In particular BX(P) is always a smooth
codimention d submanifold of F..

Proof. Let ¢ : F, — P* be the map that associates to a € F, the linear form
Vi Vo gs Vg

Suppose that a € B.(P)\B*(P). Then there exist some w € P such that
[W,Vqz] = 0. The map ¢ : k € K, — k-a € F, is a submersion, so for every
tangent vector in T, F, the differential of a — v, , in this direction is adk (v, 4)
for some k € ¢,. The differential of a + (v, 4, W), in this direction is equal to
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(adk(va,z), Wyg = —B(adk(veq), w) = —B(k, [Va,z, W]) = 0. Hence the image of
the differential of ¢ is not surjective: it is not a submersion.

Suppose that a € B*(P). Let v € P be any non-zero vector and con-
sider [vqs,v] = k € ¢,. The differential of a — {v4z, V), in the corre-
sponding tangent direction is equal to {adx(vee), V) = —B(adk(ves),v) =
—B([Va, V], [Va,z,v]) # 0. Since for all v € P there is a direction in which
the differential of @ — (v, V), does not vanish, the map ¢ is therefore a
submersion at a. O

A pencil of tangent vectors P at x € X is called 7-regular if all its non-zero
vectors are 7-regular as in Definition[2:4.7] In particular a T-regular pencil satis-
fies BX(P) = B,(P), so the T-base of a T-regular vector is a smooth codimension
d submanifold of F,.

Because of Lemma the topology of the base of a regular pencil is not
varying if the pencil is deformed continuously.

Corollary 2.5.8. Let Py and P1 be two pencils at x € X in the same connected
component of the space of T-reqular pencils at x. Then B.(P1) and B.(Pz) are
diffeomorphic.

Proof. Since the space of regular pencils is open is the Grassmanian of planes
in T, X, there exist a smooth path (P¢)e[o,1] of regular pencils between Py and
Pi. Because of Lemma [2.5.7] the set {(a,t)|a € F;,t € [0,1]} is a submanifold
with boundary of F, x [0, 1] that comes with a natural submersion (a,t) — t.
Since this manifold is compact all the fibers are diffeomorphic by the Ehresmann
fibration theorem. O

Example 2.5.9. Let G = PSL(3,R), X = S3. We identify the tangent space
T,,S3 at the point gy corresponding to the standard scalar product on R3 with
the space of 3 by 3 symmetric matrices with real coefficients and zero trace.
Consider the following two pencils:

01 0\ /2 0 0 001\ /1 0 0
Po=<{[1 0 1],{0 0 0] Pea=<¢|0 0 0}, [0 0 0 .
010/ \o 0o -2 100/ \oo —1

Let 71 € Sa* be such that Fp, is diffeomorphic in a PSL(3, R)-equivariant
way to RP"!, and let 74 be the normalized coroot associated to the Weyl orbit
of simple roots A. It satisfies F,, =~ Fi o the space of complete flags in R3.

The pencils Piy and Preq are not 7i-regular: B, (Pyy) is the disjoint union
of a point and a line where B (Pi) contains only the point. In this particular
case the regular base is a connected component of the base, so it is a smooth
compact codimension 2 submanifold. The set B, (Preq) is a single point that is
singular for the pencil. Here we see that a singular point can still be a point
around which the base is a smooth codimension 2 submanifold.

Both pencils are 7o-regular, but their 7ao-bases are different.
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A flag (¢, H) = ([x], [y]*}) with x = (21, 22, 23) and y = (y1, Y2, ¥y3) non-zero
vectors such that z% + 23 +2% = y} +y3 +v3 and z1y1 + 22y +23y3 = 0 belongs
to B, (Prea) if and only if:

2 2 2 2
Ty — T3 = Y1 —Ys,

2x173 = 2Y1Y3.

Up to replacing y by —y, these equations are equivalent to x1 = y1, T2 = —y2,
T3 = y3, ¥7 + 23 = 22. The corresponding flags (¢, H) in the affine chart
(z,y) — [z,1,y] of RP? are the tangent point and tangent lines to the the circle

of radius 1 centered at the origin.

A flag (¢, H) = ([x], [y]*}) with x = (21, 22, 23) and y = (y1, Y2, ¥y3) non-zero
vectors such that z% + 23 + 2% = y} +y3 +v35 and z1y1 + 22y +23y3 = 0 belongs
to Br, (Piry) if and only if:

237? — 23:% = 2yf — 2y32)7

2x12T2 + 22213 = 2y1y2 + 2Y2Y3.

Let 4o = <(1,0,1)) and Hy = {(1,0,—1),(0,1,0)). The corresponding flags
(¢, H) belong to one of the three circles in F7 o defined by :

- { = {y, H any plane through ¢,
- H = Hy, £ any line in H,
-lc Ho, EQ cC H.

Indeed one can check that these flags satisfy the equations. In order to
check that these are the only solutions, one can see that these are the fibers of
a fibration over the surface with 3 connected components, see Section [2.7.3.2

The 7a-base B, (Pred) is a circle whereas B, (Piy) is the union of 3 cir-
cles. Hence Corollary implies that they must lie in different connected
components of the space of To-regular pencils.

Since the pencils will be the fibers of the domains of discontinuity that we will
construct, proving that the domain is non-empty will be equivalent to having
non-empty pencils. We present here a topological argument to prove that some
pencils are non-empty.

Proposition 2.5.10. Let 7 € Sa™ and P be a T-reqular pencil of tangent vectors
based at x € X of dimension d. If the T-base of P is empty, then F, fibers over
the sphere S4=1.

If moreover d = 2 it implies that the fundamental group of F, is infinite.

Proof. To a € F, we associate my(a) € P the orthogonal projection of v, , € T, X
onto P < T,X. Since the 7-base of P is empty, one can define a map w : F, —

SP into the unit sphere of P where 7(a) = n:ﬁgzgw This map is a submersion.
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Indeed let a € F,, let Py < P be the orthogonal to 7(a) in P. Lemma
applied to Py implies that 7 is a submersion at a.

This submersion is proper since JF, is compact, hence it is a fibration. If
d = 2, this fibration induces a long exact sequence, where F' is the fiber.

-—>m (Fr) > 1 (SP) > 7w (F) — - -+

Since F' is compact, mo (F') is finite and 71 (SP) ~ Z, so m (F;) is infinite.
O

We conclude this section by the following remark that regular pencils cannot
be tangent to flats.

Proposition 2.5.11. If a 2-pencil is tangent to a flat, then it is not T-reqular for
any T € Sat.

Proof. Up to the action of G one can identify P with a plane in a. But for any
7 € Sat, the orthogonal of 7 intersects this plane. Hence there is an element
of P whose Cartan projection is orthogonal to w - 7 for some w in the Weyl
group. O

2.6 Fibered domains in flag manifolds.

In this section we associate an open domain 2], ¢ F; to any complete uniformly
7-nearly geodesic immersion u : M — X with 7 € Sa*, and show that this
domain is a smooth fiber bundle over M where the fibers are 7T-bases of the
pencils that are the tangent planes to the surface. This is the construction is
the analog of the Gauss map for hypersurfaces in H". We also mention what
happens with our construction for totally geodesic immersions that are not 7-
regular.

If M = N for some compact manifold N with torsion-free fundamental group
I', and if u is equivariant with respect to a representation p, we show that the
domain €7 is a co-compact domain of discontinuity for the action of p and its
quotient fibers over N. This domain always coincides with some domain of
discontinuity associated to Tits Bruhat ideals constructed by Kapovich-Leeb-
Porti [KLP18a]. Finally we prove the invariance of the topology of the quotients
of these domains of discontinuity.

2.6.1 A domain associated to a nearly geodesic immersion.

Let 7 € Sa™ be any unit vector and v : M — X be a complete uniformly 7-nearly
geodesic immersion.

We consider a particular domain of the flag manifold F., defined for any
nearly geodesic immersion v : M — X using Busemann functions. For this we
fix a base-point o € X, but the definition will dot depend on this choice.
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Definition 2.6.1. Let Q] be the set of elements a € F, such that the function
ba,0 © u is proper and bounded from below.

We have additional properties if u is a complete uniformly 7-nearly geodesic
immersion.

Lemma 2.6.2. Let a € F,. There exist a critical point x € M for the function
ba,o o u if and only if a € 7,. In this case this point is unique, and the Hessian
of ba,o 0 u at this point is positive. The domain 2, is open.

Proof. Let a € F,. Suppose that b, ,owu is critical at y € M. Since u is T-nearly
geodesic the Hessian of b, , o u at y is positive. Moreover, due to Lemma
there exist A > 0 such that exp (Aby, o u) has positive Hessian everywhere on
M.

A convex function with positive Hessian on a complete connected Rieman-
nian manifold has a unique minimum, and is proper. In particular the function
exp (Abg,o 0 u), and hence the function b, , o u are hence proper and have a
unique minimum. In particular a € 7.

Conversely if a € (2], by, 0 u is proper so it admits a global minimum, which
is a critical point.

If a function has a critical point with positive Hessian, every small deforma-
tion of the function for the C%-topology still admits a local minimum, and hence
a critical point. Therefore {27 is open. O

We thus can define the projection m, : ], - M associated to v as the map
that associates to a € Q, the unique critical point 7, (a) € M of by, ou. This is
an extension at infinity of the nearest point projection from Proposition [2.4.18]

Theorem 2.6.3. Let u: M — X be a complete and uniformly T-nearly geodesic
immersion. The map , : Q7 — M is a fibration. The fiber m, 1 (x) at a point

x € M is the base B-(Py) of the T-regular pencil P, = du(T,M).

Figure illustrates this construction in the rank one case G = PSL(2,C),
for a totally geodesic immersion u. The associated symmetric space H? is de-
picted with Poincaré’s ball model. Since H? has rank 1, its visual boundary
contains a single orbit F, ~ CP!. The image of u is the disk bounded by the
equator. The pencil P is depicted as a parallelogram. its 7-base is a fiber of the
fibration, and is the co-dimension 2 submanifold B.(P) = {a,a’}.

Remark 2.6.4. Note that if some element g € G preserves u(M), then the map
7, © u commutes with the action of g. In particular if M = N for a compact
manifold NV with fundamental group I' and if u is p-equivariant for some p : I' —
G, then 7, is p-equivariant, and hence defines a fibration 7, : 7, /p(I') — N.

The two important steps in the proof of Theorem [2:6.3] are to check that
the fibers are distinct and far enough from one another using Lemma [2.6.2] and
that these fibers are smooth manifolds using Lemma [2.5.
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Figure 2.7: Fibration of the domain €], in the rank one case, G = PSL(2,C).

Proof of Theorem[2.6.3 Consider the set:
E={(a,z) € Q) x M|dy(bg,,0u) =0}

Because of Proposition [2.6.2]the Hessian of b, , o u is non-degenerate at crit-
ical points, hence F is locally the zero set of a submersion so it is a codimension
2 submanifold of Q7 x M.

Let my : Q7 x M — €7, and 7 : Q] x M — M be respectively the projections
onto the first and second factor.

Lemma [2:6.2] implies that m; restricted to E is a bijection. Moreover, again
because of the non-degeneracy of the Hessian of b, , o u, the tangent space
Tian)E at (a,z) € E intersects trivially T, M < T, 4) (§2], x M). Hence m;
restricted to E is a local diffeomorphism, and therefore a diffeomorphism.

Let (a,r) € E. By definition dq(ba,o o u) : v+ {du(V), Va,u(z))u(z) Vanishes,
SO Vau(z) L du(Tp M) = P,. Hence a belongs to the 7-base of P,. Because
of Proposition [2:4.8 this pencil is 7-regular and hence its 7-base contains no
singular points. Lemma :2.5. implies that the tangent space T(, ,)F at (a,v) €
E intersects trivially T, € T(q,q) (82, x M). The map 7 restricted to E is
therefore a submersion at (a,x).

As a conclusion, 7, = m o 77 ! is a smooth submersion. The 7-base of the
pencil P, is compact in F,, and it is included in €], because of Lemma @
Hence 7, is a proper submersion over a connected manifold: by the Ehresmann
fibration theorem it is a fibration. O
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2.6.2 Totally geodesic immersions that are not nearly geodesic.

In this subsection, let v : M — X be a complete totally geodesic immersion.
Let 7 € Sat. We don’t assume in this subsection that u is 7-regular, and hence
T-nearly geodesic.

One can still define €7, as the set of a € F; such that b, , o u is proper and
bounded from below, but we can’t always expect the domain to have compact
fibers in this case. Lemma [2.6.2] can be adapted as follows:

Lemma 2.6.5. A point a € F; belongs to 2, if and only if the function by, o u
admits a critical point m,(a) € M at which the Hessian is positive. In this case
the critical point is unique and is a global minimum of b, , ou. The domain 2},
s open.

Proof. Let a € 2}, and let y € M a point at which b, ,ou has a global minimum.
The function b, ,ou is convex, but not necessarily strictly convex. Assume that
the Hessian of b, , in the direction du(v) vanishes for some v € T, M.

There must exist a flat that contains a and du(v) by Lemma Let n be
the geodesic ray starting at du(v) in X. The function b, , is linear on 7 since a
and 7 belong to a common flat. However the derivative of b, , along 1 vanishes
at u(y), so by, is constant along . Moreover u is totally geodesic and the whole
geodesic ray starting at du(v) in X belongs to the image of u, s0 by, 0 u is not
proper.

For all a € Q; the functions b, , o u are convex and strictly convex at the
critical point, which is therefore unique. The rest of the proof goes as in Lemma
2.6.2 O

We define a map m, : ], = M, using Lemma We show that this map
is a fibration. Recall that the regular base B*(P) defined in Section is a
subset of the base B, (P) that is always a smooth codimension d submanifold.

Theorem 2.6.6. Let a € €17, the function by, o u admits a unique critical point
denoted by m,(a) € M. The map m, : QI — M is a smooth fibration, and the
fiber of this map at y € M is the reqular base B¥(Tu(T,M)).

Proof. By the same argument as for Theorem [2.6.3] , is a smooth submersion.

However we need to proceed differently to prove that this map is a fibration,
since the fiber is not necessarily compact. Let g € G be an element that stabilizes
u(M) < X. The map m, is equivariant with respect to g, i.e. for all a € Q7:

Tu(g - a) = g - mu(a).

Let y € M. Recall that the exponential map for the Lie group G defines a
map exp : Ty X = Py © g — G. Moreover since u(M) is totally geodesic
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any element of exp (du(T, M)) is a transvection on this totally geodesic subspace
hence it stabilizes u(M). We consider the following map :

¢ TyM x BX(Tu(T,M)) — €,
(v,a) — exp (du(v)) - a

This map is an immersion, between spaces of equal dimension. Moreover it
is a bijection, hence it is a diffeomorphism. Through the identification exp :
T,M — M, this gives €27, the structure of a fibration with projection . O

Since the regular base is open, it is compact if and only if the regular points
form a union of connected component of B, (P). This is for instance the case if
G =PSL(3,R) and P = Py, as in Example

Example 2.6.7. Let G = SL(3,R), and p be a representation of the form p =
tirr © po for some Fuchsian representation py : I'y — SO(1,2) ~ PSL(2,R) of
a surface group and the natural inclusion ¢y, : SO(1,2) — SL(3,R). This

~

representation admits a p-equivariant totally geodesic map u : S, — X (see

Section m for more details). The pencil P = Tu(TySNQ) for any y € SNQ is up
to the action of G equal to the pencil P, defined in Example [2.5.9]

This pencil is not 71 regular, so u is not 71-nearly geodesic. However because
of Theorem the domain Q7! fibers over S, with base B (Pi.), which is a
point in Fr, ~ RP?. This domain is the disk of positive vectors for the chosen
bilinear form of signature (1,2) on R3. In this example the regular points of
B, (Piry) form a connected component so the fibration is proper. If we consider
a point ¢ € RP? outside of the closure of this disk, the associated Busemann

function is minimal in u(Sy) on a full geodesic line. If £ is in the boundary of the

disk, the associated Busemann function is not bounded from below on u(Sy).

2.6.3 Comparison with metric thickenings.

In this section we consider the case when M = N for some compact manifold N
with fundamental group I" and wu is equivariant with respect to a representation
p: ' — G. In other words p is a T-nearly Fuchsian representation, as we defined

in Section B.4.4]

We show that if we have a 7-nearly Fuchsian p-equivariant map v : N > X
for a representation p : I' — G the domain (27, coincides with a domain of
discontinuity associated to Anosov representations constructed by Kapovich,
Leeb, Porti [KLP18al.

The domain Q7 := (2], depends on 7 and p but not on u. Indeed a 1-Lipshitz
function on X is proper on the image of  if and only if it is proper on any p(I")
orbit in X.

Even though this will be a consequence of Theorem [2.6.11] one can easily
check that the existence of the fibration of Q7 implies that it is a cocompact
domain of discontinuity.
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Theorem 2.6.8. Let p: I' — G be a representation that admits an equivariant T-
nearly geodesic immersion u: N — X. The action of I'y on QF via p is properly
discontinuous and co-compact.

Proof. Let m, be the fibration from Theorem [2.6.3] Let A be a compact subset
of Q7. Tts image m,(A) € N is compact on N. Since I' acts properly on N, all
but finitely many ~ € T" satisfy 7, (A4) n ymy(A) = &. Hence for all but finitely
many ¥y € I' : A np(y)A = &. The action of T' via p is therefore properly
discontinuous.

Let D be a compact fundamental domain for the action of I on N ,le a
compact set that satisfies: N
Jp=n.

~el’

The set 7, (D) is a fundamental domain for the action of I on Q7 by p by
the equivariance of m,. It is closed in €. Moreover m Y(D) is closed in F;.
Indeed if we consider a sequence (a,,) of elements of Q] that converge to a € F
such that m,(a,) always belong to D, one can assume that m,(a,) converges to
Yo € D up to taking a subsequence. In the limit, one has b, o 0u(yo) < ba,00u(y)

for all y € N. Hence Yo is a critical point for b, , 0 u so by Lemma [2.6.2]a € Q7.

Hence Q7 admits a compact fundamental domain for the action of I' via p,

therefore this action is co-compact.
O

We consider the domains of discontinuity constructed by metric thickenings,
which are particular instances of the domains of discontinuity associated with
a Tits-Bruhat ideal defined in [KLP18al.

Let (7,79) be a pair of elements in Sat. This pair will be called balanced if
To is T-regular i.e. :
To ¢ U (w-7)*.
weW

Note that this is equivalent to 7 being mp-regular. Using the Tits angle
Lrits © 0visX2 — [0, 7], see Section we associate to any b € 0yisX a thickening
K, c F. defined as:

}ﬂz{a&EMmmegg}

Recall that the Tits angle was defined in Section[2.1] and is defined for points
in 6ViSX.

Lemma 2.6.9. Let by, by belong to a common maximal facet in 0yisX, and suppose
that their Cartan projections lie in the same connected component of:

Sat\ U (w- 1)t

weWw

Then Kb1 = Kb2.
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Proof. Let f € Fa be a maximal facet that contains b, and by. Let a € F,
there exist a maximal flat of X such that f and a belong to its visual boundary.
This flat can be identified with a so that f corresponds to dyisa™.

Hence as long as b lies in the visual boundary of this flat, Z1is(a, b) is equal
to the Euclidean angle in the flat, so the sign of its cosine does not vary as long
as the Cartan projection of b does not lie in (w - 7)* for any w € W. Therefore
if the Cartan projections of b; and by are in the same connected component of
the complement, Kj, = Kj,. U

Recall that the manifold F,, is G-equivariantly diffeomorphic to the flag
manifold Fg(r,) = G/Pe(r,) where O(7) is the set of simple root that do not
vanish on 79. Hence given a flag f € Fg(s,) one can define K}“ = K, c F, for
the unique b € F,, corresponding to f.

Given a pair (7, 79) and a O(7p)-Anosov representation (see Definition [2.2.2)),
Kapovich, Leeb and Porti define a domain of discontinuity in F.

Theorem 2.6.10 (JKLP18a], Theorem 1.10). Let (7,70) be a pair of elements of
Sat. Let p : Ty — G be a O(19)-Anosov representation. The following is a
domain of discontinuity for p:

(TvT ) — 7o
o™ = FA\ | K2
¢eal’y
Moreover if (7,7) is balanced, then the action of Ty via p on ng’m) is
co-compact.

This theorem is a particular case of their result concerning Tits-Bruhat ide-
als. In [KLP18a] it is explained how a pair (7,79) yields a Tits-Bruhat ideal,
defined via a metric thickening. This ideal is balanced if and only if the pair is
balanced in our sense.

For a 7-nearly Fuchsian representation, the domain 7 is always equal to
some domain obtained by metric thickening. More precisely:

Theorem 2.6.11. Let p be a T-nearly Fuchsian representation of a hyperbolic
group that is non-elementary. Recall that o], and ©(07) were defined in Section
2.4.4. Let T € o}, be any element such that ©(o) = ©(0}), whose existence is

P
provided by Lemma[2.4.23
Q7 =l

The Theorem [2.6.10 from [KLP18a] is a domain of discontinuity since p is
G)(J;)—Anosov by Theorem [2.4.23] and this domain is cocompact since the pair
(1, 70) is balanced.

Proof. Let us write © = 0(0}) = O(79). Let a € F-\Q] and let (yn)nen be a
diverging sequence of points in M such that (be,o(u(yn))),,cy is bounded from
above. Up to taking a subsequence let us assume that it converges to a point
¢ € o' ~ dN. We consider the geodesic segments [0, u(y,)] < X for n € N.
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Since p is T-nearly Fuchsian it is a quasi isometric embedding by Proposition
so in particular the length of these segments goes to +00. Up to taking a
subsequence, we can assume that these geodesic segments converge to a geodesic
ray 7 : Ry — X with n(0) = o. Let [n] € 0yisX be the point corresponding to
the class of 7.

Busemann functions are convex so the function b, , is bounded from above
on all the geodesic segments [0, u(yy,)] for n € N and hence b, , o 7 is bounded
from above. Therefore Zrit(a,b) < 5 by Lemma soa€ Kp,. Let be Fry
be an element such that b and [n] belong to a common maximal facet and whose

Cartan projection lies in o7. Lemma @ implies that K},; = K. Theorem
2.2.5 implies that K; = Kgg@. Therefore if a € F;\Q] then a € ]:T\QE,T’TO).

Conversely let a € Q7 and let ¢ € JI'. Consider a geodesic ray n: R-o — N
for the metric u*(gx) converging to (. Theorem implies that there exist
D > 0 such that for all ¢ > 0, there exist a geodesic ray n: : R.¢y — X such
that 7¢(0) = u o n(0), n:(t) is at distance at most D of w o n(t) and [n:] € 0yisX
belongs to a common maximal facet with 5? (¢). Since C, < o}, for all ¢ large
enough, K|, = K&?"(C)'

The Busemann function b, , is proper on 7 hence for ¢ large enough b, , o
ne(t) > ba,o © n(0). Since by, is convex, this implies that by, is growing at
least linearly on 7, so a ¢ Kp,,; by Lemma Therefore a € Qg’m): this
concludes the proof. O

2.6.4 Invariance of the topology.

In this section we prove that the topology of the quotient of the domains of
discontinuity considered by Kapovith-Leeb-Porti is not varying when the repre-
sentation is deformed continuously. Guichard and Wienhard proved this already
for the domains of discontinuity that they consider in [GW12].

Let T' be a torsion-free finitely generated group and F a G-homogeneous
space. Let (pt)se[o,1] @ smooth family of representations from I' to G. Consider
for every t € [0,1] an open p;(I')-invariant domain ©, c F .

Lemma 2.6.12. Suppose that these domains are uniformly co-compact domains
of discontinuity for (pt), i.e. the domain Q = {(t,a)|la € %} < [0,1] x F is
open and the action of I' via p is properly discontinuous and co-compact where
p(7)-(t,a) = (t, pi(y) -a). The quotient Qo/po(T") is diffeomorphic to Q1/p1(T).

Proof. The projection onto the first factor in [0, 1] x F descends to a submersion
p: Q/p(') - R. Since Q/p(T') is compact and the base is connected, Ehres-
mann’s fibration theorem implies that the proper submersion p is a fibration.
Hence p~1(0) and p~!(1) are diffeomorphic. O

Remarks 2.6.13. A concrete way to construct this diffeomorphism is to pick a
Riemannian metric on ©/p(T"), and consider the flow of the gradient of p. If we
consider two different Riemannian metrics, the diffeomorphisms obtained are
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isotopic, since the space of Riemannian metrics is path connected. Hence this
operation constructs a unique diffeomorphism up to isotopy.

Note that a family of cocomact domains of discontinuity could be non-
uniformly cocompact, for instance a family of representations so that p; : Z —
PSL(2,R) is hyperbolic for 0 < ¢ < 1 and parabolic for ¢ = 1. These represen-
tations admit a unique maximal domain of discontinuity in RP' with two con-
nected components for t < 1 and one for ¢ = 1. The quotient of the correspond-
ing domain ) is homeomorphic to the non compact space S* x [0,1] 1St x [0, 1).

In order to apply Lemma [2.6.12] we need a slight adaptation of Theorem
from [KLPI18a]. Let I' be any Gromov-hyperbolic group. We check that
the domains constructed by Kapovich, Leeb and Porti are uniformly cocompact
domains of discontinuiy for any smooth path of Anosov representations.

Proposition 2.6.14 (Adaptation of [KLP18al, Theorem 1.10). Let (7,79) be a
balanced pair as in Section [2.6.3 Let p : [0,1] — Hom(I',G), t — p; be a
continuous path such that the family (pi)iweo,1] consists only of ©(7o)-Anosov
representations.

The family of domains 0y = QE,I’TO) for t € [0,1] are uniformly co-compact
domains of discontinuity for the family of representations p.

We check that the arguments from Kapovich, Leeb and Porti are uniform on
neighborhoods of Anosov representations. The same proof holds if one considers
more generally domains of discontinuity constructed with balanced Tits-Bruhat
ideals as in [KLP18a).

Proof. The domain € is the complement in [0, 1] x F; of:

K,= |J {t} x Ky,

te[0,1]
Koo = K& oy
zeel )

Since the boundary maps 5? are continuous and vary continuously when
p varies continuously in the space of ©-Anosov representations (see [BPS19,

Section 6]), and since KE(Q(T;)) is compact, K, is compact so Q = {(t,a)|a €
P

O:} < [0,1] x F is open.

Let us fix a Riemannian distance d on F;. Let A = {(t,a)|t € [0,1],a €
A; € Q} be a compact set and let (7,) € T be a diverging sequence. [KLP18a)
Corollary 6.8] implies that given t € [0, 1], for any € > 0 for all n large enough if
d(a,K, ) = €, then d(p:(yn) - a, K, +) < €, where the minimal value of n needed
depends on the constants b, ¢ that come into play in the definition of Anosov
representations (Definition .

Since we consider a compact set of Anosov representations, and since these
constants can be chosen locally uniformly around a given Anosov representation
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(see [KLP17, Theorem 7.18]), these constants can be chosen uniformly for all
representations (Pt)te[0,1]~ Moreover the compact sets A; are at uniform distance
from K, ; Therefore, for all n € N large enough, for allt € R p;(v,) - A:n Ay = &,
so for all n large enough p(7v,) - An A = &. We have proven that the action of
p on £ is properly discontinuous.

In order to prove the cocompactness of the action on €2, we will check that
the transverse expansion holds uniformly. It follows from [KLP18al, Proposition
7.7] that for every t € [0, 1], the action of p; is transversely expanding at the
limit set of p; as in [KLP18al Definition 5.21], i.e. for all x € JI', there exist
~v € I', an open neighborhood U of Kg,% (@) in . and a constant A > 1 such that

for all a € U and y € ;I that satisfy/Kgg @ © U one has:
Pt

d (pt(’Y) “a, pi(7) 'Kg,g%t(y)) = Ad (a’KET,‘% (y)) ’

Let ge G, f e Fo A > 1 and U < F, be an open set. We say that g is
exapnding at K}O over U with factor A if for all a € U:

d (g “a,g- K;") > pd (a, K}“) .
This property is open in the following sense: if g is expanding at K ;" over U
with factor X, then for any 1 < X < X and any open subset E such that E c U

there exist a neighborhood U, of ¢ in G and Uy of f in Fg such that for all
g' €Uy and f' € Uy, ¢ is is expanding at K77 over £ with factor X',
This implies that the action of p on F, x [0, 1] satisfies the transverse ex-

pansion property where K, is considered as a bundle over [0,1] x K, i.e. for

all t € [0,1], « € OT, there exist v € T, an open neighborhood Uy of Kgg () I
Pt

Fr % [0,1] and a constant A’ > 1 such that for all a € U and y € dT" that satisfy

Kg%t () X {t} < Uy one has:

T ! T
d (p(v) 10, p(7)  Kgs () % {t}) > Nd (a, Ko (y) % {t}) ~

Therefore by [KLPI18al Proposition 5.26] the action of p is cocompact on
Q. O

From Proposition 2:6.14] and Lemma [2.6.12] we get the following corollary.

Corollary 2.6.15. Assume that T is torsion-free. Let C ¢ Hom(T',G) be an
open and connected set consisting only of ©-Anosov representations for some
© c A. Let (1,79) be a balanced pair such that Yoo € A\O, a(mg) = 0. The

diffeomorphism type of QE,T’TO)/,O(F) is independent of p € C

If moreover C is simply connected, the diffeomorphism provided by Lemma
between Qg’m)/pl(l“) and Q(pZ’TO)/pQ(F) for p1, p2 € C is uniquely deter-
mined up to isotopy.

An open set in Hom(T', G) is connected by paths that are piece-wise smooth
if and only if it is connected since Hom(T', G) is locally a real algebraic variety.
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2.7 Applications.

In this section we apply our results to prove that all representations in some
connected components of Anosov representations are the restricted holonomy
of a geometric structure on a fiber bundle over a manifold. For these applica-
tions we only consider nearly geodesic surfaces that are totally geodesic. We
will mostly focus on surface groups, but in Section [2.7.5] we also describe two
applications for representations of fundamental groups of higher dimensional
compact hyperbolic manifolds.

2.7.1 Totally geodesic immersions.

Totally geodesic surfaces provide examples of 7-nearly geodesic surfaces if these
surfaces are T-regular (Proposition. The study of totally geodesic surfaces
in X is related to the study of representation of semi-simple Lie algebras in g.
We recall here a classical fact.

Proposition 2.7.1. Let h < g be a semi-simple Lie subalgebra of mon-compact
type. Let H be the closed Lie subgroup of G with Lie algebra b and Y it’s
associated symmetric space of non-compact type. There exist a H -equivariant
and totally geodesic embedding uy : Y — X. The image of this embedding is
unique up to the action of the centralizer:

Calh) = {g € GIVh € b, Ady(h) = h}.

Ify € Y, let K < G be the stabilizer of uy(y) in G. Every element in
Cx () of b in G fizes up(Y) pointwise. If the centralizer Cc(h) in G is compact,
then Cr (h) = Ca(h) so the totally geodesic submanifold uy(Y) < X is uniquely
determined.

Proof. Let h = t+p be a Cartan decomposition of  associated with the Cartan
involution 6, for y € Y. Let h = t 4 ip be the associated compact real form of
h® C. Since 6 is the Lie algebra of a semi-simple compact Lie group, it is the
Lie algebra of a compact Lie subgroup of G. In particular there exist a Cartan
involution 6% of g ® C. such that §€(v) = v for all v € b.

Let 6C be the Cartan involution conjugate to #€ in g @ C. Let 6 be the
Cartan involution of g ® C corresponding to the midpoint in the symmetric
space associated with g ® C of € and 6C. Tt is invariant by conjugation, so
it descends to a Cartan involution on g, associated with a point € X. There
exist a transvection along the geodesic between 6C and 6 in the symmetric space
associated to g ® C that induces a unique inner automorphism ¢ of g ® C such
that p8Cp~1 = 0, p>0C¢p~2 = #C. Moreover ¢ is symmetric positive with respect
to B© (-, 0(5(-)), where BC is the Killing form on g ® C and the transvection ¢*
is equal to a composition of symmetries #CAC. The transvection ¢* stabilizes
h®C, so ¢ also stabilizes h ® C. Therefore § = p#C¢p~" stabilizes h ® C. But
is a real Cartan involution as it is preserved by conjugation, so it stabilizes b.
Let « € X be the point corresponding to 6 in X.
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The map uy : Y — X such that for all h € H, up(h-y) = h-x is well defined
since t C t; so the image of the stabilizer of y € Y by H lies in the stabilizer of
x € X. Moreover it is totally geodesic, since n(p) < p, (see [Hel78] Ch 4, Section
7). This map is by definition H-equivariant.

Suppose that there is an other H-equivaiant and totally geodesic embedding
uy, such that uy(y) = 2’. Let 6" be the corresponding Cartan involution of g,
then 6’086 is the identity on b and is equal to the adjoint action of exp(z) for some
z € ;. Therefore z is in the centralizer of b in g. Hence g = exp(5) € Cq(h)
satisfies Ad, ou = up. Conversely let ¢’ € Ck (b), then g’ fixes up(y) € X and it
fixes b so it fixes duy(T,Y). Therefore it preserves and acts trivially on uy(Y).

Now assume that Cg(h) is compact: there cannot be any element z € p, in
the centralizer of h in g, so the totally geodesic and H-equivariant embedding
up is unique and Cx (h) = Cq(h). O

Remark 2.7.2. A totally geodesic embedding u : Y — X can only be a 7-nearly
geodesic immersions if rank(Y) = 1, because otherwise it cannot be 7-regular
for any 7 € Sa* (see Proposition . When rank(Y) = 1, all the unit
tangent vectors to this embedded surface have the same Cartan projection,
so the embedding is 7-regular for all 7 in the complement in Sa* of a finite
collection of hyperplanes.

We illustrate Proposition in the following example for some special sl,
Lie subalgebras in sl, (R).

Example 2.7.3. In this example we construct representations ¢ from SL(2,R)
into SL(n,K) that stabilize some totally geodesic hyperbolic planes inside the
symmetric space X = §,, associated with G = SL(n,K) for K = R or C.

Let K =R or C. Let V,(K) be the space of homogeneous polynomial with
coefficients in K of degree n — 1 in two variables X and Y. To an element
g € SLy(R) one can associate an element ti,;(g) € SL(V,,(K)) that acts by a
change of variable on V,,(K) i.e that associates to P € V,,(K) the polynomial
Pog™!. Let b be the corresponding sl,-Lie subalgebra of sl,(R), note that
Liry = Lh'

Let ¢ the Euclidean or Hermitian metric on V,,(K) such that for all 0 <
a,b<n-—1:

("N ifa=b,

a

q (Xay’nflfa’benflfb) — ]
0 otherwise.

Consider the following basis of the lie algebra sl3(R) :

n=(h 2= (0 0)e= ()

which satisfies [g,h] = —2f, [h,f] = 2g, [f,g] = 2h. Fix the following
orthonormal basis for g :
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For 0 <a<n-—1onehas:

deire(£)(€a) = (2a —n + 1)e,

1 1
— 1 2 . 1 3
deirr(€)(eq) = aX% lynoa (n ) —(n—1- a)Xa+lyn72fa (” )
a a

dLirr(e)(ea) = a’(n - a))eafl - \/(a + 1)(” —1- a)eaJrl

and moreover g = %[f ,h]. In particular du;,,(f) and dey,(g) are symmetric

or Hermitian and dij,(h) is anti-symmetric or anti-Hermitian with respect to
q.
Hence as in the proof of Propostion there is a totally geodesic map

up : H?> — S, such that the image of the Cartan involution M + —M? is equal
to the point in §,, corresponding to g.

This representation i, is the unique irreducible representation of SL(2,R)
into SL(n,R) up to conjugation by elements of GL(n,R). The image of ¢;,, lies
in the subgroup Sp(2k,R) for some symplectic form on R?** when n = 2k is
even, and in SO(k, k + 1) for some quadratic form on R?**! when n = 2k + 1 is
odd.

One can construct other totally geodesic hyperbolic planes in S,, by con-
sidering representations of SL(2,R) that can be decomposed into a direct sum
of irreducible representations. Equivalently one can consider other reducible
sly-subalgebras of sl, (R).

For instance one can define tyeq : SL(2,R) — SL(2n, R) that associates to a
matrix M € SL(2,R) the block diagonal matrix:

M
Lred(M) =
M

The image of i;eq lies in Sp(2n, R) for some symplectic form w on R?".

2.7.2 Geometric structures on fiber bundles.

Using the projection defined by Busemann functions from Theorem [2.6.3 one
can show that Anosov deformations of representation that admit an equivariant
nearly geodesic immersion are holonomies of (G, X) structures on a fiber bundle
over Sy.

76



A (G, X)-structure on a manifold N, for a Lie group G and a G-homogeneous
space X on which G acts faithfully, is a maximal atlas of charts of M valued in
X whose transition functions are the restriction of the action of some elements
in G. A more developed introduction to this notion can be found in [Alel9].

To a (G, X)-structure, one can associate a developing map dev : N — X,
that is a local diffeomorphism compatible with the atlas defining the (G, X)-
structure on N, and a holonomy hol : m1(IN) — G so that dev is hol-equivariant.
This pair is unique up to the action of G by conjugation of the holonomy and
post-composition of the developing map.

Let N be a manifold and I'" its fundamental group In what follows, we say
that a (G, X)-structure on a fiber bundle F' over N is a (G, X)-structure on F'
for which the fundamental group of the fibers is included in the kernel of the
holonomy. Hence one can define the restricted holonomy of the structure as the
quotient map p : 1 (N) — G induced by the holonomy.

Constructing domains of discontinuity allows us to construct geometric struc-
tures.

Proposition 2.7.4. Let p : ' —» G be a representation and € X a co-compact
non-empty domain of discontinuity which fibers p-equivariantly over N. Any
connected component of the quotient Q/p(T') inherits a (G, X)-structure on a
fiber bundle, with restricted holonomy p.

Note that even if § is disconnected, the quotient Q/p(I") can be connected.

From now on, we assume that G is center-free, so it acts faithfully on its
flag manifolds. Let N be a compact manifold whose fundamental group I" is
Gromov hyperbolic and torsion-free. Let 7 € Sat.

Theorem 2.7.5. Let po : I' — G be a representation that admils an equivariant
T-nearly geodesic surface u : N — X such that Q] # . Let C be the con-
nected component of the space of ©(07, )-Anosov representations in Hom(T', G)
containing po. Every representation in C is the restricted holonomy of a (G, F,)-
structure on a fiber bundle F' over N.

Proof. Theorem implies that the domains (2], admits a pp-equivariant fi-
bration over N. The domain Q;O coincides with a domain obtained as a metric

thickening QSJ’T") for some 79 € Sat such that @(TO) = O(0},). Let F be a

connected component of Q27 /po(I'), Corollary [2. implies that for every rep-
resentation p € C, a connected component F), of {2, 7o) /p(T) is diffeomorphic to
F, which is a fiber bundle over M. The covering map Q5™ — Q™) /5(T) in-

duces the covering F; — F, ~ F associated to the subgroup of the fundamental
group of F' corresponding to the fundamental group of the fiber of F' over M.

Note that F' is assumed to be non-empty. The (G, F;)-structure on F, ~ F
is such that the holonomy of the fundamental group of each fiber is tr1v1al
Indeed the developing map dev : F — F, descends to the inclusion F - Fr,
so the fundamental group of the ﬁber belongs to the kernel of the holonomy O
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Let M = S, be a closed orientable surface of genus g and I' = I'y be its
fundamental group. We apply Theorem [2.7.5]in cases when the nearly geodesic
surface is totally geodesic and we describe the fibration that is obtained.

Let h g be a sly Lie subalgebra, i.e. a Lie subalgebra isomorphic to sl (R).
Note that if G is a quotient of its adjoint form, which is the case since we
assumed that G is center-free, the corresponding Lie group H is isomorphic to
SL(2,R) or PSL(2,R). We write ¢j : SL(2,R) — G the corresponding Lie group
representation, and uy : H? — X a corresponding equivariant totally geodesic
embedding.

Definition 2.7.6. We say that a representation p : I'y — G is b-generalized
Fuchsian if it preserves and acts cocompactly on uy (]HIQ).

If G is center-free and, a h-generalized Fuchsian representation can be written
v = tp(po(y)) x x(7) for some Fuchsian representation py : I'y — SL(2,R) and
some associated character x : T'g — Cx ().

Let y € H? be a base-point, and let K be the stabilizer in G of uy(y). We
write B7(h) for the 7-base of the pencil of tangent vectors dug(7,H?). Note
that this pencil is stabilized by 5 (SO(2,R)) x Cx ().

The quotient map SL(2,R) — SL(2,R)/SO(2,R) ~ H? defines a princi-
pal SO(2,R)-bundle P over H2. Let Pg, be its quotient via some Fuchsian
representation. Given a character x : I'y — Ck(h), let Ps, , — S, be the
SO(2,R) x Ck(h)-principal bundle obtained as the product of Ps, and the flat
Cxk (h)-bundle associated to x.

Theorem 2.7.7. Suppose that by is T-regular, i.e. uy is T-regular, and that th #
. Let p: Ty — G be a h-generalized Fuchsian representation with associated
character x and let 7 € Sat.

Let C be the connected component of the space of @(U;)-ATLOSOU representa-
tions that contains p. Every representations in C is the restricted holonomy of
a (G, F;)-structure on a fiber bundle F' over S,.

The fiber bundle F' is a connected component of the reduction of the principal
bundle Ps, . with structure group SO(2,R) x Cx(h) over Sy via the action of
ty (SO(2,R)) x Ck (h) on B7(b).

Note that when © < A is a Weyl orbit of simple roots and 7 = 7¢, a
To-regular immersion is just a ©-regular immersion and @(a;) = 0.

Remark 2.7.8. 1f we replace G and F by finite covers G and j—'; so that G acts
faithfully on F,, Theorem still applies. In this case one should replace
B7(h) by its pre-image B7(h) by the covering map F, — F-.

The only part of Theorem that is not already contained in is the
description of the fibration.
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Proof. The embedding uy is totally geodesic. Moreover it is assumed to be 7-
regular. Hence uy is 7-nearly geodesic, so one can apply Theorem It only
remains to describe the fibration.

The fibration 7 : €2}, — H? is ¢ (SL(2, R))-equivariant. The corresponding
fiber bundle can be identified in a SL(2,R)-equivariant way as the reduction
of the SO(2,R)-principal bundle P by the action of 1y (SO(2,R)) on the fiber
B7(h). The quotient of this fiber bundle by any Fuchsian representation pqg :
I'y — SL(2,R) is hence the bundle induced by the principal bundle Pg,. Once
we quotient (7, by p = tpopg x x the quotient becomes the twisted fiber bundle
induced by Pg, . O

2.7.3 Higher rank Teichmiiller spaces.

In this section we apply Theorem to Hitchin representations in PSL(n, R)
and to maximal representations in Sp(2n,R). Then we explain how in general
one can apply it to the connected components of ©-positive representations
containing at least one generalized Fuchsian representation associated to a ©-
principal sly-Lie subalgebra.

2.7.3.1 Positive representations.

Let G be a connected simple Lie group of non-compact type with trivial center
and © a set of its simple roots such that the pair (G,0) admits a notion of
©-positivity in the sense of [GW22]. We moreover assume that G is not locally
isomorphic to PSL(2,R). This means that either :

(i) G is split real and © = A,
(ii) G is Hermitian of tube type,
(iii) G is locally isomorphic to SO(p,q) and © = {as, - , @}
)

(iv) G is a real form of the complex Lie group with Dynkin diagram Fy, Eg,
E7 or Eg with restricted Dynkin diagram Fy and © consists of the 2 larger
roots.

For any of these pairs, Guichard and Wienhard [GW22] constructed a con-
nected component U in the space and transverse triples of elements in G/Ps.
They call such triples positive triples, and a representation p : I'y — G is called
O-positive if it admits a continuous and p-equivariant map £ : 0I' - G/Pg so
that for all distinct triple of points (z,y, 2) € IT'®), (&(x),£(y), &(2)) € U. They
prove in particular that such representations are ©-Anosov. Moreover the space
of ©-positive representation is closed in the space of representation that do not
virtually factor through a parabolic subgroup, by a work of Guichard, Labourie
and Wienhard [GLW21].

A O-principal Lie subalgebra hg for a pair (G,©) that admits a notion of
O-positivity is a principal subalgebra of the split Lie subalgebra go c g gener-
ated by all the rootspaces associated to ©, see [GW22]. These Lie subalgebra
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were introduced by Bradlow, Collier Gothen and Garci-Prada as magical triples
in [BCGP™21]. They proved the following. Let ho be a O-principal sly Lie
subalgebra of g.

Theorem 2.7.9. [BCGP* 21, Theorem 8.8] The exist a union of connected com-
ponents of p : I' = G, the Cayley components, consisting only of representations
that do not factor through any parabolic subgroup. All hg-generalized Fuchsian
representations with respect to the principal slo Lie subalgebra hg lie in some
Cayley component.

Cayley components are conjectured to be all the connected components of
©-positive representations [BCGP*21], but there exist components consisting
of positive representations that do not contain hg-generalized representations,
for instance the Gothen components for G = Sp(4, R). The results of Guichard,
Labourie implies the following [GLW21].

Corollary 2.7.10. Every connected component of representations p : I'y — G
containing a he-generalized Fuchsian representation consist only of ©-positive
representations.

The sets of simple roots ® ¢ A that admit a notion of ©-positivity aways
admit one or two subset which are Weyl orbits of simple roots, see Figure [2.4]
Let ©' © © be a Weyl orbit of simple roots. Let G # PSL(2,R), Theorem m
implies:

Corollary 2.7.11. Let p: 'y — G be a representation in a connected component
of ©-positive representations containing a Heo-generalized Fuchsian representa-
tion. It is the restricted holonomy of a (G, Fr,,)-structure on a fiber bundle F
over Sy.

Let x be the character associated to one of the hg-generalized Fuchsian rep-
resentations in the Cayley component. This fiber bundle is diffeomorphic to the
reduction of the SO(2,R) x Cx (h)-bundle Ps,  via its action on the base BT (h)
of the pencil of tangent vectors associated to b.

The proof of the fact that the associated domains are non empty as soon as
G is not isomorphic to PSL(2,R) is delayed to Section [2.7.4]

2.7.3.2 Hitchin representations in PSL(n, R).

Let b be a principal sly Lie sugalgebra in sl,,(R). The associated representation
tp is the representation ¢, from Example

Definition 2.7.12. A representation p : I'y — PSL(n,R) is Hitchin if it is a
deformation in Hom(T'y, G) of a h-generalized Fuchsian representaton.

The centralizer of h in PSL(n,R) is trivial, so h-generalized Fuchsian repre-
sentations can be written ¢y © pg.
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Hitchin proved that the quotient of the space of Hitchin representations by
conjugation in PGL(n, R) is a ball of dimention (2g—2)(n?—1) [Hit92]. Labourie
proved that Hitchin representations are Borel Anosov, i.e. A-Anosov [Lab06].

The unique Weyl orbit of simple roots for G = PSL(n,R) is A. The flag
manifold F-, can be identified with the flag manifold F; ,_; consisting of pairs

of subspaces (¢, H) where { ¢ H < R?, dim(¢ = 1), dim(H) = n — 1. The sly
Lie subalgebra b is A-regular. Theorem implies the following;:

Corollary 2.7.13. Let n > 3, every Hitchin representation p : I'y — PSL(n,R)
is the restricted holonomy of a (PSL(n,R), F1 ,_1)-structure on a fiber bundle
over Sy.

When n = 3, the boundary map of any h-generalized Fuhsian representation
is an ellipsoid & ¢ RP?. The domain 72 < Fi,2 admits 3 connected compo-
nents: the set of (¢, H) € F1 o with £ in the inside of the ellipsoid &, with H
completely outside of the ellipsoid, and finally with ¢ outside the ellipsoid and
H crossing the ellipsoid in two points. One can see that the quotient of this
domain is the union of three copies of the projectivization of the tangent bundle
of Sy. If we apply Theorem @ to uy, we obtain a fibration where the model
fiber B7(h) is the union of 3 circles described in Example[2.5.9] Also when n = 3
one can get a domain in projective space, as described in Example that is
the interior of an ellipse.

When n is even, Hitchin representations arTe also the holonomy of projective
structures. his domain was shown in [ADL21] to fiber over Sy, and Theorem
2777 gives a new proof of this Fact.

In general for any split simple Lie group G, Fock and Goncharov proved that
all A-positive representations can be deformed into a ha-generalized Fuchsian
representation [FGO06], i.e. lie in a Hitchin component, so our method always
applies.

2.7.3.3 Maximal representations in PSp(2n, R).

Given an orientation of the surface S,;, one can define the Toledo invariant
Tol : Hom(T'y, PSp(2n,R)) — Z. This continuous map can de defined as the
pullback by p of an element of the continous group cohomology H?(G,Z) of G
by p [BIWO03|. Reversing the orientation of S, reverses the sign of the Toledo
invariant.

A representation p : I'y — PSp(2n,R) is called mazimal if its Toledo invari-
ant is maximal among all representations, i.e. if Tol(p) = n(2g — 2). A way to
construct maximal representation is to use the representation tyeq : PSL(2,R) —
PSp(2n,R). Burger, lozzi, Labourie and Wienhard proved that maximal repre-
sentations are {ay, }-Anosov [BILW05].

Let b be the sly Lie subalgebra of sp,, (R) which is the image of diy. Every
h-generalized representation is maximal for one of the two orientations of the
surface Sj.
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Theorem 2.7.14 ([GW10]). If n > 3, every maximal representation p : T'y —
PSp(2n,R) can be deformed into a by, ,-generalized Fuchsian representation in

the sense of Definition [2.7.0
Theorem [2.7.7) implies :

Corollary 2.7.15. Let n > 2, every mazimal representation p : I'y — PSp(2n,R)
is the holonomy of a contact projective structure i.e. a (PSp(Qn,R),RPQn*l)—
structure on a fiber bundle .

Indeed one can consider the Weyl orbit of simple roots ©® = {«,}. The
corresponding flag manifold F7, | can be identified with RP?"!. The Lie
subalgebra b is {a, }-regular, so one can apply Theorem [2.7.7]

It is not clear if our method applies to the Gothen components of repre-
sentations p : I'y — PSp(4,R) that contain only Zariski-dense representations
IBGPG12|]. However since PSp(4,R) ~ SO,(2,3), the case n = 2 of Corollary
is a consequence of the work of Collier, Tholozan, Toulisse [CTT19].

The fiber obtained for Hitchin representations, that are also {«,}-positive,
is a union of connected components of BTan}(ha) and for maximal represen-
tations one gets a union of connected components of BTten}(hg). These two
submanifolds of RP?" ! are diffeomorphic to the same Stiefel manifold, which
is connected if n = 3.

2.7.3.4 Positive representations in PSO(p, q).

Let G = PSO(p, q) with ¢ > p and © = A\{w,}. This pair admits a notion of
O-positivity. The corresponding flag manifold F,, can be identified with the
Grassmanian of isotropic planes in RP:9.

Representations satisfying the ©-positive property were studied by Beyer
and Pozzetti [BP21]. In particular they show that all ©-positive representations
p: Ty — PSO(p,q) can be deformed to a he-generalized Fuchsian representa-
tion when ¢ > p + 1, so in this case Corollary 2.7.11] applies to all ©-positive
representations. However when ¢ = p + 1, there are connected components of
O-positive representations that are conjectured to contain only Zariski-dense
representations, it is not clear if our techniques can be applied to these compo-
nents.

2.7.4 Non-empty domains.

In order to get a geometric structure associated to a domain of discontinuity, one
need to ensure that the domain is non-empty. Kapovich, Leeb and Porti have a
condition that ensures that there exist a thickening such that the domain is not
empty [KLP18al, and Guichard and Wienhard proved that the domains they
considered were not empty by computing the dimension of their complement.

We will use the following criterion to prove that some domains of disconti-
nuity for surface groups are non-empty. Remember that the groups I'y that we
consider here are surface groups.
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Lemma 2.7.16. Let p : T'y — G be a ©-Anosov representation and (1,79) be a
balanced type pair of elements in Sa™, i.e. such that 1o is T-reqular, satisfying
O(r9) = ©. Suppose that F. has finite fundamental group. The domain of
discontinuity Q(pT’TO) s mon-empty.

Note that it is however not a necessary condition to have a non-empty do-
main, as we see later for SO(2,3). This lemma is very similar to Proposition

2510

Proof. If the domain is empty, it means that the flag manifold F, can be written

as the union for = € dI'y of the thickenings Kgg (@) This uniojn is disjoint
P

since the limit map is transverse. Moreover the limit map 5;(? is continuous, see
[BPS19] for instance, which implies that F fibers over the circle with a compact
base. As in Proposition [2.5.10] this implies that F, has infinite fundamental
group. O

We prove that some domains of discontinuity are non-empty for represen-
tations of a surface group I'y. Let (G,0) be a pair that admits a notion of
positivity and let © < © be a Weyl orbit of simple roots.

Proposition 2.7.17. The flag manifold F;_, has finite fundamental group, except
if G is locally isomorphic to PSL(2,R) or if G is locally isomorphic to SO, (2, 3),

O =A, and O = {az}.

If G is locally isomorphic to SO,(2,3), © = A, and ©' = {«a2} we work
by hand using the notations from Section The domain of discontinuity
associated to a {as}-Anosov representation p : I'y — SO,(2,3) obtained by
metric thickening for any {as}-regular 79 € Sa™ is:

Q;T(az}’m) = Ein(R>%)\ U P (ﬁﬁ(ﬂf)l)'

zeol'y

For any z € 0T'y, The submanifold P (¢2(x)*) has dimension 1 in Ein(R*?)

which has dimension 3. Therefore the domain QE,T{O““}’TO) is non-empty.

Lemma [2.7.16] together with Proposition [2.7.17] implies the following.
Corollary 2.7.18. If G is not locally isomorphic to PSL(2,R), the domain of
discontinuity obtained by metric thickening QE)T@"TO) C Fro, for any ©'-regular
vector 7o € Sat and any ©-Anosov representation p : 'y — G is non-empty.

The proof of Proposition [2.7.17] relies on a description of the fundamental
groups of flag manifolds associated to real Lie groups.

Let us write Ag < A the set of roots whose associated root-space is a line.
Let o, 3 € A. We define €(a, ) = (—=1)(®F") ie. e(a,) = 1 if a and § are
linked by no edge or if they are liked by two edges and « is the longest root,
and else €(a, ) = —1.
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Theorem 2.7.19. [Wig98, Theorem 1.1] Let A c A be a set of simple roots. The
fundamental group of Fa = G/Pa is the group generated by (to)acr,, defined
by the relations tgte = to (tg)e(a’ﬂ) for a,8 € Ag and o # B, and t, = e if
o€ Ao\A

The following lemma will deal with most cases.

Lemma 2.7.20. If the Dynkin Diagram restricted to Ay of the restricted root
system of G has no connected component of type C,, or Ay, every flag manifold
of G has finite fundamental group.

Proof. Let A c A. Using the relations, one write any element of m1(F4) as a
product of powers of generators so that each generator appears at most once.
Therefore 71 (F4) is a finite group if and only if for every « € A, t, has finite
order.

If no connected component of the Dynkin Diagram restricted to Ag is of
type C,, or Aj, then every o € Aqg belongs to a sub-diagram inside the Dynkin
diagram of Ag of type As, G4 or Bs. In each of this cases the relations between
the generators imply that they have finite order: indeed the flag manifold asso-
ciated to the Borel subgroup of SL(2,R), SO(3,4) and the real split Lie group
associated to G have finite fundamental group, see [Wig9§]. O

We now prove Proposition

Proof. If G is a split Lie group Ay = A. If G is locally isomorphic to SO(p, q)
with p > 3 and ¢ > p+ 1, the Dynkin diagram restricted to Ay is of type A,_;.
Finally if G is the real forms of the complex Lie group associated to Eg, E7 or
Es whose restricted root system is of type Fy, the Dynkin diagram restricted to
Ay is of type Ay. This follows from [OV90, Table 9].

Therefore if (G, 0) is a pair that admits a notion of ©-positivity Lemma
[2.77:20] applies and every flag manifold associated to G has finite fundamental
group except in the following two cases: if G is of Hermitian type and of tube
type with © consisting of only the longest simple root, or if G is split of type
Aior C, and © = A.

If G is of Hermitian type the Dynkin diagram of the associated root system is
Cn, n = 2. Suppose that ©" = {3}, then F,, = F3,; as in Figure Either
B1 ¢ Ap in which case Fygy is trivial, or G is split, by [OV90, Table 9]. If G
is split, B1, B2 € Ay, so the generator tg, of m;(F) satisfies the relation tg,tg, =
tg, (ts,) "', and tg, = e so t3, = e. Therefore F,_, has finite fundamental group.

——e—=—»
B B2 Bn—2 Bn-1  Bn
It remains to consider the case where G is split with root system C,, for
n>=3,0=Aand © = {ag, - ,a,}. Butin this case Fr, is the flag manifold
associated to the root B3, as shown in Figure [2.4L The root (s belongs to a
subdiagram of type As, so the fundamental group of Fg is finite. O

84



2.7.5 Other applications.

Theorem can also be applied to Gromov hyperbolic groups that are not
surface groups. In this subsection we consider representations of fundamental
groups of hyperbolic manifolds.

For instance one can consider a compact hyperbolic 3-manifold M with fun-
damental group I' and holonomy pg : T' — PSL(2,C). Let n > 3 and let
tirr : PSL(2,C) — PSL(n,C) be the irreducible representation as in Example
and let h = deiy (s12(C)). As for the real case, b is A-regular, so in partic-
ular ¢y 0 pg is A-Anosov. Here A is the only Weyl orbit of simple roots, and
the corresponding flag manifold F,, can be identified with the space -Fic,nq of
pairs (¢, H) where { ¢ H ¢ C", { is a line and H a hyperplane.

The domain of discontinuity associated to a A-Anosov representation p for
one and hence any balanced pair of the form (74, 79) is the following, where the
limit map of p decomposes as 5? = ( ;7 - ,{gil):

Froo\ JH{EMPL <k <n—1st Ll c HY.
xzecl

The topological dimension of the thickening K} < f-fn_l for any flag f €
G/Pa is the maximum for 1 < k < n — 1 of the real dimension of {(¢,H) €
f§n71|£ c FE c H} for some E < C" of dimension k. The dimension of the
thickening equals 2n — 4 and the dimension of the flag manifold equals 4n — 6
so for n > 3 the domain is non-empty. Theorem [2.7.5] implies therefore the
following:

Corollary 2.7.21. The representation iy o po : I' = PSL(n,C) is the restricted
holonomy of a (PSL(n,C), F{,,_,)-structure on a fiber bundle over M.

One can also consider a hyperbolic n-manifold M for n > 2 with fundamental
group I'" and holonomy pg : I' = SO,(1,n). Let ¢ : SO(1,n) — SO(p,np) be
the diagonal representation for n > 1 and let § be the image of di. Here b
is {ap}-regular, so in particular ¢, o po is {cy,}-Anosov. Note that {c,} is a
Weyl orbit of simple roots, and the corresponding flag manifold ‘FT{aP} can be
identified with the set of isotropic lines Z < P (RP'"P).

The domain of discontinuity associated to a {cy,}-Anosov representation p
for one and hence any balanced pair of the form (7(,,},70) is the following:

7\ | e c gl (@)
zedT
The dimension of the complement equals (p — 1) + n — 1 and the dimension
of the flag manifold equals n(p + 1) — 2 so for n > 2 and p > 2 the domain is
non-empty. Theorem implies therefore the following:

Corollary 2.7.22. Let C be the connected component of v o py in the space of
{ap}-Anosov representations p : I' — PSL(n,C). Every representation in C is
the restricted holonomy of a (SO(p,pn),T)-structure on a fiber bundle over M.
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The fibers of this fiber bundle can be described as the set of isotropic lines
in the intersection of p quadrics in RP-P™,

The centralizer of ¢ (SO(1,n — 1)) in SO(p, pn) has a larger dimension than
the centralizer of + (SO(1,n)). Indeed let E ¢ RP"™ be the p-dimensional sub-
space preserved by ¢ (SO(1,n — 1)). Any element g € SO(p, pn) acting trivially
on E7 centralizes ¢ (SO(1,n — 1)) but only finitely many such elements central-
ize ¢ (SO(1,n)). Hence if the hyperbolic manifold contains a totally geodesic
embedded hypersurface, there exist non-trivial deformations of ¢ o p that one
can construct using bending.
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Chapter 3

Dirichlet-Selberg and Finsler
fundamental domains

In this chapter we consider Dirichlet domains for Anosov subgroups of a semi-
simple Lie group. In Section we explain Selberg’s construction of a fun-
damental domain of discrete subgroups of SL(n,R), and discuss an example of
such a domain that is infinite sided.

In Section [3.2] we recall the necessary background on Anosov representations
and symmetric spaces and we define the notion of w-undistorted subgroup. In
Section we define the Finsler metric d,, and the horofunction compactifica-
tion of the symmetric space. In Section we describe the domains of proper
horofunctions for w-undistorted subgroups.

In Section 3.5 we discuss the finite-sidedness of Dirichlet-Finsler domains. In
Section we consider the restriction of Selberg’s domain to smaller invariant
convex sets, and provide a sufficient condition for the Dirichlet-Selberg domain
to be finite sided in this convex set.

In Section we compare the horofunction compactification of the locally
symmetric space for an w-undistorted subgroup with the compactification of the
symmetric space. Finally in Section [3.4.4] we show that the limit cone of any
discrete subgroup of G that is not virtually cyclic is connected.

This chapter is an adaptation of the preprint [DR24], and is a joint work
with Max Riestenberg.

3.1 Dirichlet-Selberg domains

3.1.1 Selberg’s construction

Let V be a d-dimensional real vector space. Let S2V be the space of symmetric
bilinear tensors Q : V* — V. We consider the subspace X = X (V) = P(S2V>0)
of P(S2V) consisting of positive symmetric 2-tensors, i.e. positive definite sym-
metric bilinear forms on V*. The Lie group SL(V) ~ SL(d,R) acts naturally
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on S?V so that for Q € S?V and g € SL(V):
9:-Q=goQog"

Hence PSL(V) acts on P(S2V), and preserves X. This action is moreover tran-
sitive on X, and the stabilizer of an element [Q] € X is equal to the subgroup
PSO(Q) ~ PSO(d,R) of PSL(V) ~ PSL(d,R). Hence X can be identified with
the symmetric space X = PSL(d,R)/PSO(d,R) associated to PSL(d,R). The
space X is called the projective model for this symmetric space.

Given x1, x5 € X, we choose any representatives Q1, Q2 € S?V of the corre-
sponding lines so that det(Q7'Q2) = 1. The Selberg invariant is given by:

s(z1, z2) = log (cll Tr(Qf1Q2)> .
It is asymmetric and fails the triangle inequality, but has other good prop-
erties in common with metrics.
Proposition 3.1.1. Let 1,22 € X and g € PSL(V):
- s(x1,22) = 0 if and only if x1 = xa.
- s(x1,22) 2 0.
- 5(gx1, gr2) = 5(z1,22).

- §(xq1,z2) = log (é Z?=1 e)‘i), where QTQy : V — V is conjugate to:

e

The closure of the properly convex domain X in P(S?V) is called the Satake
compactification of X, denoted by X with boundary 0X. For he X = 0X u X
and o,z € X one can not always define s(x,h) but one can make sense of
the difference s(x, h) — s(0, h). Indeed let S, Qp, @ be representatives of h, o, x
respectively such that det(Q,'Q) = 1:

1 1
50(x,h) :=log (d Tr(QIS)> —log (d Tr(QalS)> .
Note that this definition does not depend on the chosen representatives, and
that it satisfies the cocycle condition s,(z, h) = s, (x, h) + 5,(0', h) for o' € X.

The main advantage of the Selberg invariant over the invariant Riemannian
metric of X is that the bisectors (resp. half-spaces) of s are projective hyper-
planes (resp. half-spaces) intersected with X.
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For x1 # x5 be in Xiwe let H(z1,22) denote the closed half-space in X,
defined as the set of y € X such that:

Tr (X7 = X7HY) >0

where X7 and X are positive definite representatives of x1 and x5 respectively
such that det(X; X5 1) =1 and Y is a positive semidefinite representative of y.
It is easy to check that the half-space is also given by

H(z1,22) = {x € X | 50(71,7) < 50(22,7)},

and note that this is independent of the basepoint 0 € X. For xz,y € X, the
Selberg bisector is the set

Bis(x,y) = {z € X | 50(z,2) = 5,(y, 2)},
and can also be written as the subset consisting of all z € X’ satisfying
(X '2)=Tr(Y ' 2)

where XY, Z are representatives of z,y, z respectively with det(X 1Y) = 1.

Given a discrete subgroup I' of PSL(V) we may consider a variation of the
Dirichlet domain associated to the Selberg invariant. Let o € X', and define the
Dirichlet-Selberg domain based at o by:

DSr(0) :=={x € X |Vy €T, 5,(0,2) < 5(7-0,2)} = ﬂ H(o,7 - 0).
~el\I',

This domain is in general a compact convex subset of X < P(S?V).

Definition 3.1.2. We call a Dirichlet-Selberg domain DSr (o) properly finite-sided
if there exists a neighborhood U of DSr(0) in X and a finite set F' < T such
that for all v € T\F', U < H(o,7 - 0).

In particular if a Dirichlet-Selberg domain is properly finite-sided then there
exists a finite set F'  I" such that

DSr(o) = ﬂ H(o, - 0).

YEF

These definitions can be related to purely geometric notions of convex subsets
of X. We adapt the definitions of Ratcliffe [Rat19] for real hyperbolic space to
X. A side of a convex subset C' of X' is a nonempty maximal convex subset of
0C c X. A convex polyhedron in X is a nonempty closed convex subset of X
such that the collection of its sides is locally finite in X.

Proposition 3.1.3 ([Kap23]). For any discrete ' < PSL(V), the Dirichlet-Selberg
domain DSr(0) n X is a convex polyhedron in X.
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The proof follows from the fact that the Selberg invariant is comparable with
the Riemannian metric or any G-invariant Finsler metric on the symmetric space
X, see Lemma Proposition [3.1.3] may also be deduced from a result of
Jaejeong Lee [Lee08] which applies to more general properly convex domains,
see also [Mar(9, Section 2.5].

Proposition 3.1.4. The domain DSr(0) n X has finitely many sides if and only
if there exists a finite subset F c I' such that:

DSr(o) = ﬂ H(o, - 0).

~yEF

Proof. A convex polyhedron in X has finitely many sides if and only if it is
the intersection of X with finitely many closed half-spaces. This is proved by
Ratcliffe for hyperbolic space, see [Rat19, Theorems 6.3.2], but the proof goes
through for properly convex domains in general. In particular if a Dirichlet-
Selberg domain may be represented as a finite intersection of closed half-spaces,
then its intersection with X has finitely many sides.

On the other hand, suppose that DSr(0) n X has finitely many sides. Each
of its sides spans a bisector Bis(o, - 0), by the same proof as [Rat1l9, Theorem
6.7.4(1)]. Moreover, distinct sides span distinct bisectors by convexity. It follows
that there is a finite set F' < I' such that

DSr(o) n X = ﬂ H(o,7y-0) N X. (3.1)
~yeF

In general, if Y is a closed convex subset of X and Y contains a point in X,
then Y =Y n X. So by taking closures in (3.1)) we can conclude the proof. [

3.1.2 Infinitely-sided Dirichlet Selberg domains.

In this subsection we study Dirichlet-Selberg domains for lattices I' in the sub-
group SO(1,n) < SL(n + 1,R) of elements that preserve a symmetric bilinear
form (-,-) of signature (1,n). We show that the Dirichlet-Selberg domain is
infinitely-sided for some specific basepoints o € X.

Let ¢ be the symmetric bilinear form of signature (1, n) preserved by SO(1,n).
The subgroup SO(1,n) < SL(n + 1,R) preserves a totally geodesic copy H
Xny1 = X(R™H1) of the hyperbolic space H". Indeed H" can be seen as the
space of lines on which the symmetric bilinear form ¢ is positive. To such a line
¢ whose orthogonal for ¢ is ¢+, we associate the inverse z, = q[l :VE SV of
the symmetric bilinear form ¢, : V' — V* for which ¢ and ¢+ are orthogonal,
and such that ¢ = g on £ and g, = —q on /1.

Theorem 3.1.5. Let T’ be a lattice in SO(1,n) and let o € H. The Dirichlet-
Selberg domain DSr(o) n X has infinitely many sides.
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In particular, uniform lattices in SO(1,n) are projective Anosov subgroups
of SL(n + 1,R), and these admit Dirichlet-Selberg domains in X, 11 = SL(n +
1,R)/SO(n + 1) with infinitely many sides. When n = 2, a uniform lattice in
SO(1,2) includes as a Borel Anosov subgroup of SL(3,R).

The main ingredient of the proof is to understand the intersection of RP™
with the Selberg bisector between z, and xz, for £ # ¢ € H". Recall that
the subset consisting of rank one symmetric tensors in X, is in one-to-one
correspondence with RP"™. We identify these two spaces in all this subsection.
When z,y € S2(R"*!) are positive of the same determinant, the intersection of
the Selberg bisector Bis([z], [y]) with RP" is the zero set of the quadratic form
e y_l.

We can make the following two observations:

Lemma 3.1.6. For every £ # {' € H™, the intersection of the half-space H(xp, xy)
and P({+)  RP" is the hyperplane P ((*+ ~ (¢')*).

If 0 is fized and €' converges to u € 0H™ < RP", the bisectors Bis(zg, xp) N
RP" converge for the Hausdorff topology to P(u').

Proof. In the present case, the intersection of Bis(gs, g) and RP" is equal to
the quadratic form g, — g¢. This bilinear form vanishes on ¢+ n (¢)* but
restricts to a form of signature (1,1) on £@® ¢'. Hence this symmetric bilinear
form has signature (1,1,n — 1), and the zero locus of the corresponding quadric
is the intersection of two distinct projective hyperplanes whose intersection is
¢+ A (£')*. Moreover neither £ nor ¢ belongs to the intersection of Bis(qy, qe)
and RP".

The intersection of the half-space H(z¢,z,) and P(¢+) < RP" is therefore
the set of lines on which g > ¢¢, but g = —g on ¢*. Since g» > —q, it means

that P(¢4) only intersects this half-space for lines on which ¢y = —¢, i.e. on
P (¢~ (0)1).

The two hyperplanes that form Bis(ge, qi) are the hyperplanes H* and H~
which are generated by ¢+ n ¢’ and respectively v + w and v — w where v € £
and w € ¢ satisfy q(v,v) = ¢(w,w) = 1. When ¢ converges to v € JH", the
intersection ¢+ n 'L converges to £+ A ut and the lines generated by v 4+ w and
v —w both converge to u ¢ u-\¢*+. Hence H* and H~ both converge to u™, so
Bis(qr, qer) converges for the Hausdorff topology to P(ut).

O

Figure illustrates the intersection of Bis(qy, ¢o) and RP™ for n = 2. The
circle represents the isotropic lines for q. The two projective lines represent the
intersection with Bis(gr, gr). They intersect the line at infinity ¢+ at £+~ (¢/)*.
If ¢/ converges to u on the circle, then Lemma tells us that the two blue
lines converge to the tangent of the circle at u.

We can now prove Theorem [3.1.5
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Figure 3.1: Tllustration of the intersection of a Selberg bisector and RP?.

Proof. Suppose for the sake of contradiction that the Dirichlet-Selberg domain
has finitely many sides. By Proposition there is a finite set F' < I' such
that
DSr(o) = ﬂ H(o, - 0).
YEF

The interior of DSy (o) intersected with P(¢+) = RP" is the complement in P(¢+)
of the union of H(x,.¢, z¢) for all v € F. This is a finite union of hyperplanes
by Lemma [3.1.6] hence this intersection is non-empty.

Choose a line w < ¢+ in this intersection. Let u € H™ be an isotropic line
such that w < ut. Since the limit set of T is all of JH", there exist a sequence
(vr) in T" such that (v, -£) converges to u. The bisectors Bis(o,v,,0) converge to
u by Lemma In particular, these bisectors eventually meet the interior
of the Dirichlet-Selberg domain. Then, since the bisectors have empty interior
in RP", the complements of H(o0, v, -0) eventually intersect the Dirichlet-Selberg
domain, yielding a contradiction. O

Remark 3.1.7. It is not clear if such groups admit finite-sided Dirichlet-Selberg
domains for other basepoints o € X.

3.2 Background on symmetric spaces and Anosov sub-
groups

In this section we introduce the notion of an w-undistorted subgroup of G. First

we review some important properties of the visual boundary of a symmetric

space of non-compact type, and fix some notation. We then recall the relevant
properties of Anosov subgroups.
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3.2.1 The visual boundary of a symmetric space of non-compact
type

Let G be a connected semisimple Lie group with finite center and let X be
the associated symmetric space of non-compact type. The symmetric space
X is a Hadamard manifold. Its wisual boundary, denoted 0,isX, is the set of
asymptote classes of geodesic rays. The visual boundary of a symmetric space
has the structure of a thick spherical building, see [KLP17, [Eps86| for further
discussion.

Let a be a maximal abelian subspace of p where g = €@ p is a Cartan de-
composition of the Lie algebra g of G. Let ¥ < a* be the associated (restricted)
root system, and A be a choice of simple roots. This choice defines a positive
(Euclidean) Weyl chamber a* = {vea|Vae A, a(v) = 0}.

For z,y € X, there is an isometry g € G conjugating the transvection from
x to y into exp(at). The corresponding element of a™ is called the the vector-
valued distance, and denoted by (f(x, Y).

The projecitivization Sa™ is naturally identified with a subset of d,;sX called
a (spherical) Weyl chamber. Tt is a fundamental domain for the natural action
of G on 0,isX. In particular, d,;sX is a union of Weyl chambers o, and each
is naturally identified with a model Weyl chamber 0,,,q- Every element of the
visual boundary has a type in the model Weyl chamber:

T: 6V13X — Omod-

Non-empty faces 704 0f 0moqg are in one-to one correspondence with non-
empty subsets © of A. To such a face/subset of simple roots one can associate
a flag manifold Fo = Flag(Tmoeq) defined as the set of faces 7 < 0,isX of type
Tmod- It can also be written as Fo = G/Pg where Pg is the standard parabolic
subgroup associated to ©. The star of a simplex 7 in 0,isX is the union of
chambers containing 7, and denoted st(7) c dyisX.

We often fix a subset C of 0,,,4; which can be for instance the limit cone of
some discrete subgroup, see belowE| The C-star of 7 is the subset of the star of
T with types in C:

ste(7) = st(t) n 7 H(C).

We further consider certain subsets of X which appear as cones on subsets
of 0yisX. For z € X and A ¢ 0,isX, we let V(x, A) denote the union of points on
geodesic rays from z to A. In particular, we will consider later the Weyl cone
V(z,ste(T)) of a simplex 7 in 0Oy X.

To w € a*, one can associate its orthogonal vector w® € a for the Killing

form. Up to the action of the Weyl group W, we may assume that w® € a*.
We let F,, denote the flag manifold

Fo = Tﬁl(wj_) =G- [Cwi] C OvisX (32)

IIn [KLP17], C would be denoted ©, but we reserve that notation for a collection of simple
roots.
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where c,,1 is a geodesic ray determined by w'. The flag manifold F,, is naturally
identified with F= for the subset of simple roots = = {a € A | a(wt) # 0}.

Remark 3.2.1. In the following sections, we will consider ©-Anosov subgroups
which have limit maps with values in Fg and domains of discontinuity in the
flag manifold F, = F=. We emphasize that = is typically not equal to © in this
setup.

3.2.2 The w-undistorted condition.
Let I' be a discrete subgroup of G. The limit cone Cr of I is given by:

Cr := m{ ( )|'y€F d(o, )Zn}camod. (3.3)

neN ( )

This definition does not depend of the base-point 0 € X. The limit cone is non-
empty when I' is unbounded and is compact in general. Note that for a fixed

-

o€ X, the map p: G — a™ given by u(g) == d(o, g - 0) is often called the Cartan
projection.

Before introducing the w-undistorted notion, we recall a similar condition
that characterizes the Anosov property.

Definition 3.2.2 (JKLP17, Definition 5.17]). Let © < A be a set of simple roots.
A finitely generated subgroup I' is ©-Anosov if and only if for one (and hence
any) word metric |-| on I, there exist €, C' > 0 such that for alla € © and y e I":

a (dlo,7-0)) = ehl -

Equivalently, T' is ©-Anosov if it is quasi-isometrically embedded and the
limit cone Cr avoids Ker(a) for all o € ©.

We introduce a similar notion.

Definition 3.2.3. Let w € a* be nonzero. We say that a finitely generated
subgroup I' < G is w-undistorted if for one (and hence any) word metric | - | on
I, there exist €, C' > 0 such that for all w in the Weyl group and v e I':

‘w (w ~d(0,7 - 0))‘ = ely| - C. (3.4)

Equivalently T" is w-undistorted if and only if it is quasi-isometrically em-
bedded in G and if its limit cone Cr avoids w - Ker(w) for all w in the Weyl

group.
Remark 3.2.4. Note that if G = SL(n, R , the logarithm of each singular value
o; of v for 1 < i < nis equal to wy ( ) for some w € W. It follows

that an wl—undlbtorted subgroup of G is exactly a subgroup which is |log ;|-
undistorted for all i.
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If w is a simple root this exactly means that I' is Anosov with respect to the
set of simple roots © = {wow|w € W} nA. Recall that an elementary subgroup
is a subgroup that is virtually cyclic.

Proposition 3.2.5. Let I' be a non-elementary w-undistorted subgroup of G, and
let or be the connected component of omod\|Jyen w - Ker(w) containing Cr. Let
O(or) € A be the set of simple roots whose associated walls do not intersect or.
The set ©(or) is nonempty and I' is ©(or)-Anosov.

Proof. The limit cone Cr is connected, see Proposition [3.8:2 The fact that
O(or) # O is exactly [Dav23, Lemma 5.20]. Finally, since Cr < or, the limit
cone Cr avoids the walls associated to the simple roots in O(or), and I" is quasi-
isometrically embedded, so I' is ©(or)-Anosov. O

Note that the connected component o must be invariant by the opposition

involution ¢ : 0med — Omod, Since the limit cone is itself invariant. Hence for
w =wp and G = SL(d,R):

Proposition 3.2.6. If d = 2n, then any non-elementary wy-undistorted sub-
group of SL(d,R) is n-Anosov. If d is odd, there exist no non-elementary w-
undistorted subgroups of SL(d,R).

Proof. For 1 < k < d, let ¢, denote the set of tuples (A1, A2, -+, Ag) such that
AMZXd =2 >0> X y1 = -+ = Ag. These are exactly the connected
components of a+\UweWw - Ker(wy). The opposition involution maps ¢ to
Cd—k-

For d odd there are no invariant connected components. For d = 2n there is

only one invariant component, and this component avoids the wall A,, = A, 41.
Hence ©(or) = {A\n, — At} O

Remark 3.2.7. One could define and study other conditions for a subgroup by
requiring for some fixed finite set of functionals w € a* the inequality:

v (dlo,7-0))| = eyl = €

In this framework one could view the Anosov condition as the special case where
one considers a collection of simple roots. In the present paper, we are mainly
interested in the case where that set is a Weyl group orbit.

3.2.3 Illustration of the w-undistorted condition.

In this subsection we consider a few examples to illustrate the w-undistorted
condition, and its relation to the Anosov properties.

3.2.3.1 Let G = PSL(d,R).

Consider the following:

wy : Diag(oy,- - ,04) — 01.

95



If I' < PSL(d,R) is a subgroup |log o;|-undistorted for all 4, or w;-undistorted.
Figure illustrates the intersection of the model Weyl chamber o,,,,q with the
hyperplanes w - Ker(w;) as dotted lines. Since the limit cone Cr is connected
and invariant by the opposition involution, it is contained in the gray region.

Now consider the following;:
wa : Diag(oy,-++ ,04) — 01 — 04.

An wa-undistorted subroup I' < PSL(d,R) is exactly a A-Anosov subgroup of
PSL(d,R), also called Borel Anosov.

Figure 3.2: An illustration of wy for SL(4, R).

3.2.3.2 Let G = Sp(6,R).

We consider representations of convex cocompact subgroups I' © SL(2, R) that
factor through a representation f: SL(2,R) — Sp(6,R). Given a partition
7 = {1, T2, - T} with repetition such that 71 +- - -+7; = 6 and each odd integer
appears an even number of times, we can define a representation f,: SL(2,R) —
Sp(6,R) as the direct sum of irreducible representations SL(2,R) — SL(7;, R).
Let j: T' — SL(2,R) be a Fuchsian representation of the fundamental group of
a closed surface. The representations p, = f, o j are discrete and faithful for
7#{1,1,1,1,1,1} and their limit cone is a single point {v,}.

The positive Weyl chamber at can be identified as the space of triples
(A1, A2, Ag) with Ay = A2 = A3 > 0. The generators of the Weyl group are
the involutions (o ()\1,)\2,)\3) = ()\2,)\1,)\3), g9 ! (/\1,)\2,)\3) = ()\1,)\3,)\2)
and o3 ()\1, /\2,/\3) = (/\1,/\2, —)\3).

Let wy = A1 denote the first fundamental weight, which is an element of
a* in the same Weyl group orbit as half of the root ag = 2A3. The second

fundamental weight is wy = A1 + Ao, which is in the same Weyl group orbit
as the roots a; = A\ — Ao and as = Ao — A3. The third fundamental weight
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w3 = A1 + A2 + Az is not in the Weyl group orbit of a simple root, even up to
rescaling.

We illustrate some of these points in Figure [3.3] in the projective chart
defined by A\; = 1. In this picture, the red line correspond to the union of
Ker(w - wy) for w € W, the blue lines show the same union for wy and the gray
line shows this union for ws.

Vi2,22}
p

o= A A

1= A2

Vig2} Vi6}
°
Vi4.1,1}
Vi2,1,1,1,1} A3 =0 Vi2,2,1,1} = V{3,3}

Figure 3.3: An illustration of the positive Weyl chamber P(a®) = 0,,0q4 for
Sp(6,R).

In this picture, we see that the following are w;-undistorted, which is equiv-
alent to being {«as}-Anosov:

P{6}> P{2,2,2}> P{4,1,1}+

We also see that pggy and py4 1,1y are wa- An wa-undistorted, which is equivalent
to being {a1,az}-Anosov. Finally we see that teh representations pgsy, py4,2},
P2,1,1,1,1}s Pi4a,1,1) and pgo o9y are wz-undistorted. There are two connected
components of a™ minus the gray line. The first one contains Vy2,2,2}, and having
a limit cone in this component implies being {cs}-Anosov. Representations
whose limit cone lies in the other component are all {a;}-Anosov.

3.2.4 Boundary maps and the Morse property.

An important feature of Anosov subgroups is the existence of a boundary map,
which can be characterized in the following way. Let © be a non-empty set of
simple roots.
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Theorem 3.2.8 ([KLP17,[BPS19]). Let T be ©-Anosov subgroup of G. The group
I' is hyperbolic, with Gromov boundary 0U'. There exist a unique continuous I'-
equivariant map o : O — Fo such that for all o € X and every geodesic ray
() in T converging to ¢ € dT', every limit point of (7, - 0) belongs to a Weyl
chamber that contains £o((), i.e. every limit point belongs to st (£o(C)) € OvisX.

The map £g: 0I' > Fg is called the boundary map of T'.

Symmetric spaces of rank one satisfy the Morse Lemma: quasi-geodesics
stay close to geodesics. That property fails in higher rank, but a suitable gen-
eralization holds: uniformly regular quasigeodesics stay close to Weyl cones.

Theorem 3.2.9 ([KLP17, KLP18b, BPS19]). Let I' be ©-Anosov subgroup of G.
Let 0 € X, and let us a fix a word metric |-| on T'. There exist D = 0 such that
if v € T lies on a geodesic ray from e € T to € 0T then the distance from ~y - o
to the Weyl cone V (0,st(€e(())) is at most D.

We observe that the orbit also stays close to Weyl cones on C-stars. This
has important consequences throughout the paper.

Lemma 3.2.10. Let ' be a ©-Anosov subgroup of G. Let C be any compact
neighborhood of the limit cone Cr, let o € X and fix some word metric |-| on T.
There exists D = 0 such that:

1. If (Yn)nen s a geodesic ray in T' converging to ¢ € T with o = e, then
for all n € N, the distance from 7y, - o to the Weyl cone V (o,stc (£o(()))
is at most D),

2. For all v € T, there exists ( € OI' such that the distance from - o to the
Weyl cone V (o, stc (€o(())) is at most D.

Proof. We first remark that since I" is hyperbolic, there exist D’ > 0 such that
every v € I' is at distance at most D’ from some element +' that belongs to an
infinite geodesic ray starting from e € I'. Hence, since Anosov subgroups are
quasi-isometrically embedded, (2) follows from (1).

Now let « lie on a geodesic ray (7,) in I' with ¢ = e. By Theorem
we know that there exist a point z € V (o,st ({o(())) for some ¢ € JI' that is
at distance at most D from 7 - 0. Since C contains a neighborhood of Cr, it

-

contains d(o,~ - 0) for all v large enough. Moreover since d(o,~ - 0) goes to 400,

C must contain d(o,z) if v is large enough. Hence there exist D" such that
either d(o,v-0) < D" or x € V (o,st¢ (§o(¢))). This concludes the proof. O

Example 3.2.11 (Taking a neighborhood of Cr is necessary). We discuss an
example where I' orbits fail to stay at uniform distance from Weyl cones on Cr.
Indeed, let v be an isometry of H? x H? which is hyperbolic on the first factor
and unipotent on the second. Then I' = {v) is Anosov with respect to the first
factor. Let o = (01,02) be a basepoint in H? x H2. The fixed points of 7 on
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OH? x 0H? are (ff—L, &); let 7 be the simplex in 0,is(H? x H?) corresponding to
&', While the (forward) orbits of v uniformly fellow travel the Weyl cone

V(o,5t(7)) = {(p,q) € H* x H? | o1p(+0) = &},
they drift logarithmically away from
V(o,ster (1)) = V(o,7) = {(p, 02) € H* x H? | o1p(+00) = & }.

On the other hand, for any neighborhood C of Cr, the orbits of v uniformly
fellow travel

V(o,ste(r)) = {(p,q) € H® x H? | o1p(+0) = &, d(02,9) < Cd(01,p)}

where C' is a constant depending on C.

3.3 Finsler metrics and horofunction compactifications

In this section we review a class of G-invariant Finsler metrics on the symmet-
ric space X as well as their horofunction compactifications, which were previ-
ously studied by Kapovich-Leeb [KL18]. In the sequel we will study Dirichlet
domains for these Finsler metrics by considering their closure in the horofunc-

tion compactification, which are closely related to Satake compactifications, see
[HSWW1§].

3.3.1 A family of Finsler metrics on the symmetric space

To a non-zero element w € a* one can associate a seminorm |||, on the model
Cartan subalgebra for v € a by:

Vil = maxw(w - v).

The seminorm only depends on the Weyl group orbit W - w, and is symmetric
if and only if W-w =W - (—w).
When W - w spans a*, |||, is moreover definite. This is always the case
when G is simple. We will assume from now on that w is chosen in such a way.
The seminorm on a defines a G-invariant Finsler metric ||-||,, on X, that can
be characterized for v € T,X by:

vl = max —dba,o(v).

Here for o,z,y € X and a € F,, bgo : X — R is the Busemann function
associated to a and based at o and F, denotes the G orbit of an ideal point
dual to w, see (3.2).

This defines a Finsler distance on X, characterized for z,y € X by:

d., ) = J ) w = b .
(2,1) = Iz, )l = maxb, (=)
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Remark 3.3.1. Let G = PSL(2,R)", and let w: a — R be the linear form coming
from the projection onto the first factor. For this functional W -w does not span
a* and the seminorm |||, is not definite. Indeed, the degenerate pseudo-metric
d,, on (H2)n is the composition of projection onto the first coordinate with the
distance in H2. In general, we only consider those functionals w which lead to
nondegenerate metrics, so this example is ruled out.

3.3.2 Horofunction compactification

We review the construction of a horofunction compactification for an asymmetric
metric, see [Wall4l [KLI8| [HSWW18] for further details. Let ) be the space
of 1-Lipschitz functions f : X — R for a G-invariant Riemannian metric on X,
modding out the line of constant functions. This space is endowed with the
compact open topology: a basis of neighborhoods of [f] € ) is defined by the
open sets of the form:

UK7€ = {[g] | Vr € K, (g_ f)(ﬂf) < 6}7

for K < X compact and € > 0.

One can define a topological embedding ¢ : X — Y by setting ¢(zg) : x €
X dy(z, x0) for zg € X. Since Y is compact Hausdorff, the closure of ¢(X) in
Y is compact Hausdorff and we denote it by 9,X = ¢(X)\¢(X). The functions
representing points in 0,X are called horofunctions.

3.3.3 Satake compactification

Let G be a semisimple real Lie group and V' an irreducible real representation
of G with finite kernel, and let p : g — gl(V) be the induced Lie algebra
representation.

We define as previously the space S2V of symmetric bilinear tensors Q :
V* — V, and the subset X = X (V) < P(S?V) of projectivizations of positive
definite elements, see Section The space X is the projective model for the
symmetric space of SL(V). The symmetric space X associated to G can be
identified with a unique totally geodesic submanifold of the symmetric space of
SL(V), hence it can be seen as a subset X ¢ X' [Kar53 [Mos55]. Note that this
subspace is not in general a linear subspace.

Definition 3.3.2. The Satake compactification of X associated to p is the closure
of X ¢ X inside the compact space P(S?V).

Let a € p be a maximal abelian subspace of p where g = ¢t ® p is a Cartan
decomposition. Given A € a*, let V), = {z | Yh € a, p(h) - © = A(h)z}. The
restricted weight system associated to p is the set ®, < a* of elements A such
that V) # {0}. We have the following weight space decomposition:

V=@ V.

Aed,
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The highest weight w € ®, of the representation p is the unique element such
that for any A\e ®,, w—A>0ona™.

Since p: g — sl(V) is injective, the kernel of w cannot contain a simple factor
of g, so the Finsler metric d,, on X is nondegenerate. In this case the Satake com-
pactification associated to p coincides with the horofunction compactification of
X with respect to d,,.

Theorem 3.3.3 ([HSWWIS8| Theorem 5.5]). The Satake compactification of X
associated to the representation p is G-equivariantly homeomorphic to the horo-
function compactification X u 0,X.

See also [HSWW18| Remark 5.6]. Note that [HSWW18, Theorem 5.5] also
applies in the more general case of generalized Satake compactifications of re-
ducible representations. In the present paper we restrict attention to the ir-
reducible case, since the Finsler metrics we want to consider are defined by a
single weight.

3.3.4 Description of horofunctions

Horofunctions for the polygonal Finsler metric d,, can be constructed from Buse-
mann functions associated to elements in F,.

Recall that a flag of v of any type corresponds to a simplex in the visual
boundary.

Definition 3.3.4 (Incidence). We say that ¢ € 0,isX and a simplex v < 0,;sX are
incident, denoted ¢ ~ v, if there exists a chamber o c 0,isX such that ¢ € o
and v < 0. We let I < F,, denote the set of ( € F,, incident to v.

Note that I can also be written as st(v) n F,,.

Proposition 3.3.5 ([KL18, Section 5]). Ewvery horofunction of (X,d,) is of the
Jorm by, for some flag v of any type and some point o € X:

by, = max {bc, | (€ I}.

Example 3.3.6. Let G = PSL(d,R) and w = w1, so that F,,, ~ RP*"!. A flag 7
of any type corresponds to a tuple (E't, B, ... | E*) of subspaces of R? such
that E4 C E® C --- C E% and dim(E%) = i, for all 1 < £ < k. A line
e Fu C 0visX satisfies £ ~ 7 if and only if £ ¢ Er. Indeed this is equivalent
to the existence of a full flag (F*, F2,---, F?1) in R? such that F' = ¢ and
Fie = Ee forall 1 <4 <k.

Let G = PSL(d,R) and w = wa, so that F, ~ Fq 4-1. A flag 7 of any type
as before and a pair (¢, H) € F,, C 0yisX satisfies (¢, H) ~ 7 if and only if
¢ c E% and E'* c H. Indeed this is equivalent to the existence of a full flag
(F1,F?,-.. [ F?1) in R? such that F!' = ¢, F4~! = H and F* = E% for all
1<l<k.
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3.4 Domain of proper horofunctions

In this section we consider an w-undistorted subgroup I' of G and study two
related domains of discontinuity: Q%,,, in the flag manifold F,, and €2}, , in the
horoboundary 0,X. We show that when I' is w-undistorted, these are cocom-
pact domains of proper discontinuity for I'. In fact, the domains are constructed
from a balanced metric thickening naturally associated to w and the limit cone
Cr. The proper discontinuity and cocompactness of the domains can be de-
duced from [KLP18al [KL.1§|, but we give a simpler proof in the present case.
For w-undistorted subgroups, the domains can be characterized as a space of

horofunctions which are proper and bounded below on I'-orbits, see Proposition

348

3.4.1 Thickenings in flag manifolds and horoboundaries

Recall that we have fixed an w € a*, which defines a flag manifold F,, < 0,isX
and a definite Finsler metric d,, on X.

Definition 3.4.1 ([KLMO09, [KL06]). The asymptotic slope of a convex Lipschitz
function f is

t
slope;: 0yisX — R, slope(n) == lim M_

t—0 t

This limit always exists for convex Lipschitz functions and is independent of the
basepoint of the geodesic ray c,,.

For a Riemannian Busemann function associated to £ € 0,isX, the asymptotic
slope is given by the Tits angle:
slopey,, (1) = — cos Zies(&,1)-

()
v,0

Lemma 3.4.2. The slope of a mized Busemann function b%  is given by
slopebﬁo(n) = max {—cos Lmus(&,m) | £ € [} .
Here I c F,, refers to the set of £ € F,, incident to v, see Definition

Proof. Since by, and b¢ , for § € F, are convex, we can replace the limits by a
supremum in the definition of the slope. Therefore:

b‘;,O © Co,n b07€ O Co,n bov‘f ©Com
slopey. () = sup ———— = supmax —=——> = maxsup —>——",
0 t=0 t t=0 E€IY t eIy 120 t

bo,g © Cop
sup 282 — lope,, () = —cos Lyl 1)
= :
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To a point £ € 0.isX such that w(w-7(£)) # 0 for all w € W, one can
associate its thickening in F:

Th* (&) == {a | Lrits(a,§) < 7/2}  Fo.
Similarly we can define a thickening in the horoboundary:

Thhoro( ) = {[h] | Slopeh( ) < O)} < ahoro .
Note that the intersection of Thy, (&) with F, in 0,,X coincides with Th*(&).

Lemma 3.4.3. Let £1,&5 € o be two points in an ideal Weyl chamber whose
types belong to the same connected component of opmod\|Jyen w - Ker(w). The
associated thickenings coincide:

Th* (&) = Th*(&2),

horo(él) Thﬁoro (52)

Proof. The fact that 7(£;) and 7(&2) lie in the same connected component of
Tmod\Upew w - Ker(w) implies that the segment c¢ between & and & in o
contains only elements whose types do not belong to w - Ker(w) for any w e W.

The Tits angle with a point a € 0,;sX is a function on 0,;sX that is continuous
on any ideal Weyl chamber: indeed given a Weyl chamber of 0,;sX, there exist
a flat containing it as well as a in its boundary. On this flat the Tits angle is
just the standard Euclidean angle.

Now let a € Th¥(&1): on the segment ¢ the Tits angle Z1its(a,£) is never

equal to 7, and it varies continuously, so a € Th*({2), and vice versa. Hence

Th* (&) = Th¥(&). The set Thy . (&) can be characterized as the set of
mixed Busemann functions by, such that I/ = Th*(¢;) for i = 1,2. Hence also

horo (51) horo (52) O

Let C be a subset of a connected component of 004\ e w - Ker(w), and
let © < A be the set of roots which do not vanish on C. Given a flag 7 € Fgo
we define therefore its thickenings:

Thw(T,C) = {77 | LTits(ThC) < 7T/2} c Fo.

Thi, .o (7,C) := {[h] | slope,,({) < 0)} < 05y 0 X.

For this definition we chose some ¢ € st¢(7) € 0yisX. The definition does not
depend of this choice because of Lemma[3.4.3] In particular one has the follow-
ing:

Th*(1,C) = {n | V€ € stc(1), Lrus(&,n) < w/2} € F,

Thio(7,C) = {[b7,] | I}’ = Th*(, C)} < G X

These thickenings are closely related to the metric thickenings considered by
Kapovich-Leeb-Porti, see [KL18| Section 8.3] and Remark
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Note that the thickenings Th*(r,C) and Thy, . (7,C) depend only on 7 and
on the connected component of opoq\|Jyen w - Ker(w) in which C lies. In
practice we will apply this to the case when I' is w-undistorted and C is an
auxiliary neighborhood of the limit cone Cr in the same connected component.

Remark 3.4.4. In the present paper we directly define thickenings as subsets
of flag manifolds and horoboundaries. Kapovich-Leeb-Porti [KLP18a] define
thickenings to be subsets of the Weyl group W and use such subsets to con-
struct thickenings in flag manifolds and horoboundaries. When w = w; and
G = SL(2n,R), we have W = Sy, and the thickening is the subset of Ss,, taking
1e{1,...,2n} into {1,...n}. This thickening is balanced, left-invariant for the
subgroup of W stabilizing the subset {1,...,n} (equivalently, the vertex of o 04
corresponding to Gr(n, 2n)), and right-invariant for the subgroup of W stabiliz-
ing {1} (equivalently, the vertex of o,,,q corresponding to Gr(1,2n) = RP?"™1).
In general, the thickening is the metric thickening Th¢ /2 of [KLP18a] where
w is the W-translate of the dual to w in 0,,,¢ and ( is a point in the simplex
Tmod corresponding to ©(or), see Proposition

3.4.2 Behaviour of horofunctions along geodesic rays

For a semi-simple Lie groups of real rank at least 2, for every geodesic in the sym-
metric space there exist a Busemann function that is constant on this geodesic.
However if we restrict to some types of geodesics and if we consider only Buse-
mann functions associated to points in F,, we can rule out this phenomenon. In
this section we prove that the behavior of a Busemann function associated to a
point a € F,,, and more generally the behavior of a horofunction in 9,X along
the orbits of I' are subject to a dichotomy.

Let C < a* be a closed subset that avoids w - Ker(w) for all w e W. Let

Ce.w =inf{|w(w.v) |V€C,wEVV}7
Ivlllwll

which is a positive constant.
For 0 € X and 1 € 04X we let ¢, ,: [0,00) — X denote the geodesic ray
emanating from o asymptotic to 7.

Lemma 3.4.5. Let [h] € 0,X be a horofunction, let o € X be a basepoint and let
f € Fo. Exactly one of the following holds:

(1) [h] € Thy,.o(f,C) and for every n € ste(f) the geodesic ray c,,, satisfies

h(Con(t)) = h(0) < ~Ce.ut.

(ii) [h] ¢ Thy.,.o(f,C) and for all € > 0 there exist A > 0 such that for every

horo

n € ste(f) the geodesic ray c,,, satisfies

h(Cou(t)) — h(0) = (Couw — €)t — A.
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We emphasize that A depends on o, [h], and f.

Proof. By Propositionwe may write h = by, for some simplex v, i.e. some
flag of any type, and some z € X. Let ¢ = ¢o4: Rzo — X be a geodesic ray
based at o, corresponding to a point 7 € 0yisX.

Suppose that [h] € Thy, . (f,C) and 7 € ste(f), ie. I¥ < Th*(f,C) by the
discussion after Lemma [3.4.3] This means that every £ € F, incident to v
satisfies Zmits(§, 1) < m/2. The slope of b, ¢ along 7 is then —cos Zris(€,n),
which is at most —C¢ ,. So each b, ¢ o ¢, is bounded above by —C¢ .,t, and the

. . . S
same applies to their maximum, h = b ,.

Suppose now that [h] ¢ Thy . (f,C) , i.e. there exists some & € F,, incident

horo
to v and 7 € ste(f) such that Zris(€,7) > 5. The asymptotic slope of the
convex function h o ¢, is greater than or equal to C¢ ,; in particular there
exist E > 0 such that h(c(E)) — h(c(0)) = (Cen — €)E. The constant E can
be chosen uniformly for all geodesic rays ¢, , since h is continuous and the set
of geodesic rays based at o with 7 € ste(f) is compact. Since h o ¢ is convex,
h(c(t)) —h(o) = (Ce —€)t for t > E. Since h is 1-Lipshitz one has in particular
h(c(t)) — h(o) = (Ce,, — €)t — E for all t = 0, which concludes the proof. O

Example 3.4.6. For G = SL(d,R), the Busemann functions b, ¢ with { = Rw €

Fur = RP? ! are given by
|wl
boc(a) = log () .

jwl,

A maximal flat containing o corresponds to a line decomposition which is or-
thogonal with respect to 0. Rw is in the boundary of this flat if and only if it is
one of these lines. If it is, then the Busemann function along a ray in this flat
is linear.

3.4.3 Characterization of the domain of discontinuity

In this section we consider a non-elementary w-undistorted subgroup I' of G. In
particular T" is Anosov for a set of roots © = ©(or) by Proposition

The limit map &: 0I' —> Fg and the thickenings from the previous section
provide the data to define domains in F,, and 0,,X, following [KLP18al [KL1§].

Recall that ©® < A is the set of simple roots determined by w and Crp such
that T' is ©-Anosov, and that C c a™ is a compact neighborhood of Cr that
avoids w - Ker(w) for all w e W.

Definition 3.4.7. Let us define the following domains:
e = o\ | Th*(o(),0),

zedT
L}:)oro = a}";)or0§§\ U Th‘ﬁoro(&@(‘r)vc)'
zell
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They can be characterized as domains of Busemann (resp. horofunctions)
that are proper bounded from below on any/every I'-orbit.

Proposition 3.4.8. A point n € F,, belongs to Q. if and only if the associated
Busemann function b, , restricted to the I'-orbit of o is bounded from below.
An element [h] € 0%, . X belongs to Q. if and only if h restricted to the

I-orbit of o is bounded from below. In this case, the horofunction is proper on
any [-orbit.

Proof. Since F,, includes into 0}, X, the first statement follows from the sec-
ond.
Let [h] € 0¢,,,X be a horofunction. If [h] € d¢ X is not in QY . then

it belongs to Thy...(e(2),C) for some z € oI'. If (v,) is a geodesic ray in
I' converging to z, Lemma [3.2.10] implies that there exist a constant D > 0
such that for all n > 0, 7, - o is at distance at most D from a point z,, €
V(o,stc(€e(2)))-

Lemma implies that h(z,) — h(o) < —C¢ d(0,x,). Since h is 1-
Lipshitz, this implies that h(y, - 0) goes to —o0, so h is unbounded from below.

To conclude the proof, we need to show that if A is unbounded from below
or fails to be proper on a I'-orbit, then h does not belong to Q% . In either
case, there is a diverging sequence of elements (7, )nen of T' such that h(y, - o)
is bounded from above by a constant D > h(o). The sequence of geodesic
segments ([o, vy - 0]) converges up to subsequence to a geodesic ray [o,7n) with
N € OvisX. Since I' is ©-Anosov with limit cone inside C one has 7 € st¢(£o(2))
for some z € ' by Lemma [3.2.10]

Note that since h is convex, it is bounded from above by D on all the geodesic
segments ([0, - 0]) and hence also on the geodesic ray [0,7). Lemma [3.4.5
therefore implies that h € Thy, (£e(¢),C), so [h] does not belong to O O

horo-

We show that the horofunctions belonging to X u .. are not only proper

and bounded from below on I'-orbits, but are moreover locally uniformly proper.
More precisely, the constant A from Lemma [3.4.5 can be chosen to be uniform
on a neighborhood of [A].

Lemma 3.4.9. Let [ho] € XU Q. ., and let 0 € X. There exists a neighborhood
UcXudy

X of [ho] and a constant A > 0 such that for [h] € U and y€T':
h(7y-0) = h(o) = C¢ wd(0,7 - 0) — A.
We check that this result still holds for elementary groups I' in [3.4.4]

Proof. Let C’' be a compact neighborhood of Cr that lies in the interior of C. Note
that C¢r o, > C¢ .. We consider the following subset of the visual boundary:

E= U ster (6o (C))-

ceor
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Applying Lemma for the subset C’ implies that for every £ € E there
exist to > 0 large enough that any point z on the geodesic ray [o, ) at distance
t > to from o satisfies:

ho(z) — ho(o)

t

Moreover the same property holds for every &' close enough to £ and for [h]
close enough to [hg]. Since E is compact, there exist a real number ¢; and a
neighborhood U of [hg] such that for all [A] € U and £ € E the point = on the
geodesic ray [0, &) at distance t; from 0 satisfies:

> Cc)w.

h(zx) = h(o)

> Cey.
t C,w

Lemma[3.2.10]implies that for some D > 0, for every v € I', v-0 is at distance
at most D from some point y € [0, &) for some £ € E. Let [h] € U; the function
h—h(o) is convex on the geodesic ray [o, &) and greater than C¢ .,t; at the point
x € [0,&) such that d(o,z) = t;. Moreover it is 1-Lipshitz, which implies that
for all y € [0,&), h(y) — h(0) = d(0,y)Cec — t1Cc o — t1. Using again the fact
that h is 1-Lipshitz we get:

h(7y-0) = h(o) = C¢ wd(o,7 - 0) — (t1Cc 0, + t1 + D).

3.4.4 Elementary subgroups.

In the previous subsection we required the group I' to be non-elementary, i.e. not
virtually cyclic. The fact that nonelementary w-undistorted groups are Anosov,
Proposition [3.2.5] relies on proving that the limit cone Cr is connected, which
often fails for virtually cyclic groups. For instance the following subgroup of
SL(3,R) has disconnected limit cone and is not Anosov, but is w;-undistorted:

477,
2 n nez
27774

In this subsection we adapt the previous results for elementary subgroups.
Note that the only non-trivial case is the case of infinite virtually cyclic groups.

Let I' € G be an infinite virtually cyclic group that is quasi-isometrically
embedded, and {v) € T be a finite index infinite cyclic subgroup. The element
v € G admits a Jordan decomposition into y;7v.v, where 7; is a transvection, 7,
is elliptic, and -, is unipotent, and the factors commute [Ebe96].

The element 7; is nontrivial since I' is quasi-isometrically embedded, so
7¢ is the transvection corresponding to an oriented geodesic axis ¢c: R — X
parametrized with speed one with endpoints 7+ € 0yisX. Let my denote the
translation length of g € G.
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Lemma 3.4.10. Let o € X and v € G with v non-trivial. There exists a constant
C depending on o,y such that: For allmn € Z

d(y" - 0,¢(nmy)) < 2log(n) + C.

Proof. Let v = vyy7e be the Jordan decomposition. Let p be a fixed point of
Ye. Then

d(y" - 0,c(nmy)) < d(o,p) + d(vy; - p,p) + d(p, c(0)).
By the proof of [GGKWI17al Claim 2.28], there exists C’ depending only on -,
and p such that d(y - p,p) < 2log(n) + C'. We may set C' = C' + d(o,p) +
d(p, c(0)) to see the desired result. O

Lemma [3.4.10| is weaker than the Morse Lemma, but it will be sufficient to
generalize our results to cyclic groups.

Now let w € a*, and let us assume that for all w € W, 7(ny) and 7(n—) do
not belong to Ker(w - w). This property is the equivalent to the w-undistorted
condition, since the limit cone Cr consist of the two points 7(n) and 7(n-).

In the virtually cyclic case we adapt our definitions as follows:

" T T
flag = Fw\ {5 € Fu | Lris(&ny) < 5 Or Zrits(§,m-) < 5}’

Qoro = Thore X\ {[] € Fu, | slopey(ny) <0 or slopey(n-) < 0}.

We now adapt the following results.

Proposition 3.4.11 (Analog of Proposition [3.4.8). An element [h] € 0., X be-
longs to Q. if and only if h restricted to the I'-orbit of o is bounded from

below. In this case, the horofunction is proper on any I'-orbit.

Proof. Let [h] € d¢.,,X be a horofunction. Let (v, )nen be a diverging sequence
of elements of T such that h(y, - 0) is bounded from above. In our case one
can assume that v, = ", or y~". We consider the first case, as the other one
is identical. By Lemma ~™ - 0 is at logarithmic distance from c(nmy).
Hence h grows t most logarithmically on ¢, but then Lemma [3.4.5( implies that
h has non-positive slope, and hence negative slope on ¢, hence h does not belong
to

horo-

The other part of the proof works as in Proposition [3.4.8] O
Lemma 3.4.12 (Analog of Lemma [3.4.9). Let [ho] € X U Q. .,, and let 0 € X.

horo’
There exists a neighborhood U < X u 65 X of [ho] and a constant A > 0 such
that for [h] € U and n € Z:
h(v™ - 0) — h(o) = Ccp wd(0,v" - 0) — A.

Proof. Here again we replace the Morse property by Lemma Let C be
a neighborhood of Cr avoiding w - ker(w) for all w € W. We obtain for some
D, .E7 to > 0:

h(y™ - 0) — h(o) = Ce n,d(0,4™ - 0) — (t¢Ce ., + Dlog(n) + E).
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This is still enough to get the desired result for A large enough since C¢,, >
Cepw and d(o,y™ - 0) grows linearly in n. O

Remark 3.4.13. Du proves in [Du23| that the group generated by
A

has a finite-sided Dirichlet-Selberg domain at o € &3 if and only if o is in the
axis of v, i.e. is diagonal. But even for such points o € X, the domain is not
properly finite-sided. One can deduce from this that an elementary subgroup
of SL(3,R) admits a properly finite-sided Dirichlet-Selberg domain if and only
if it is wp-undistorted, in which case every Dirichlet-Selberg domain is properly
finite-sided.

3.5 Dirichlet domains for Finsler metrics

In this section, we consider Dirichlet domains associated to Finsler metrics.
Using the results of the previous section, we show in Theorem that such
Dirichlet domains with respect to d,, are properly finite-sided for w-undistorted
subgroups. Moreover we deduce Theorem [[.3.15]in Corollary [3.:5.4] In the rest
of the section we demonstrate some partial converse results. In Theorem [3.5.7]
we show that any discrete group admitting a properly finite-sided Dirichlet
domain is quasi-isometrically embedded in X. In Section we show that
the w-undistorted condition is equivalent to the disjoint half-space property, see
Definition

Recall that we assume throughout the paper that w € a* defines a definite
Finsler metric d,, on X.

3.5.1 w-undistorted implies properly finite-sided
For =,y € X, the Finsler half-space is
H (2, y) = {[h] € X U 030, X | h(x) < h(y)}.

It is the closure in X U 0%,
du (Y, 2).

Let T' be a discrete subgroup of G.

X of the set of points z € X satistying d, (z, z) <

Definition 3.5.1. The Dirichlet domain associated to I' based at o with respect
to the Finsler distance d,, is given by:

Dg(0) == {[A] | V7 €T, h(0) S h(y-0)} = []| H“(0,7-0) © XU 85y, X

~vel\I',
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We call a Dirichlet domain Dy (o) properly finite-sided if there exists a neigh-
borhood U of D¢ (o) in X u 08¢, X and a finite set F < T such that for all
’}/EF\F, Uc Hw(Oa’Y'O)-

Theorem 3.5.2. If " is w-undistorted then for all o € X, the Dirichlet domain
Dy (o) is properly finite-sided.

Moreover for any A > 0 one can find a finite set S ¢ I' and a neighborhood
U of D¢ (o) such that for all [h] € U and v € T\S, h(y - 0) > h(o) + A.

Proof. Every horofunction in D{ (o) is bounded from below on the I'-orbit of o.
Hence if T" is w-undistorted one has D¥(0) ¢ X u Q¢ by Proposition m (or
Proposition [3.4.11] in the elementary case). Let K ¢ X u Q¥ _ be a compact

horo

neighborhood of D{(0). By considering an open cover of K, Lemma (or
Lemma|3.4.12)) implies the existence of constants B, C' > 0 such that for [h] € K
and ye I

h(vy-0) —h(y) = Cd(o,7 - 0) — B.

Hence for all v € T" such that d(o,v-0) > ‘”TB, one has h(vy-0) — h(y) > A.

In particular the half-space H“ (0,7 - 0) contains K for all but finitely many
~v €T, so D¥(o) is properly finite-sided. O

When G = SL(d, R), the Selberg invariant is close to the Riemannian metric
for points that are close, but it also always stays at bounded distance from the
Finsler distance d,,,. The identification X ~ X induces a continuous identifica-
tion X U 05, X >~ X U 0X, see Theorem [3.3.3]

horo

Lemma 3.5.3. Let 1,20 € X ~ X
dy, (1, x2) — log(d) < s(z1,22) < dy, (21, T2).
Moreover for [h] e X v ¢, . X~X v dX ando,z e X ~ X :
h(x) = h(o) —log(d) < so(, [h]) < h(x) = h(o) + log(d).

Proof. Let A1,---, Ag be the eigenvalues of xl_lgcg. Applying Proposition
we see that:

dy, (21, x2) = log (max |)\Z|> < log ( Z |)\Z|> = s(x1,x2) + log(d).

1<i<d -
1<i<d

1
dur (21, 22) = log (gggdl&o > log (d > |/\i|> = s(21,22).

1<i<d

In particular one gets for z,y,0€ X ~ X:

duw, (2,y) — du, (0,y) —log(d) < s,(2,y) < do, (2, y) — dw, (0,y) + log(d).

By passing to the limit as y goes to [h], we get the desired result. O
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We may now deduce Theorem [1.3.15] from Theorem

Corollary 3.5.4. LetI" < SL(2n,R) be an wy -undistorted subgroup. The Dirichlet-
Selberg domain DSr (o) is properly finite-sided.

Proof. Let 0o € X be any basepoint. Let U be a neighborhood of D¥(0) in
X v 0¥,.,X provided by Theorem for A = log(d). There exists a finite
set F' < T" such that for all [h] € U and v € T'\F', h(y-0) — h(o) > A. Hence
$,(0,7-0) > 0 by Lemma so U is contained in each of the projective half-

spaces H(o,7 - 0) with v € I'\F. Therefore DSr(0) is properly finite-sided. [

We will give a second proof of Theorem [1.3.15|using Theorem[3.7.3]in Section
B1

For w-undistorted subgroups, we can also give a direct proof that the domains

Q‘ﬁ’ag and €} are properly discontinuous and cocompact.

Proposition 3.5.5. The action of an w-undistorted subgroup I' on ¥, and Q7
is properly discontinuous and cocompact.

The idea is that these domain coarsely fiber over I', via the map that asso-
ciates to a horofunction its minimum on the I'-orbit of 0 € X.

Proof. To a horofunction [h] € O, we associate the non-empty finite set of
minima M) < T of elements o such that h(vp-0) = min,er h(vy-0). This set is
well defined and finite since h is proper and bounded from below by Proposition

Moreover this association is equivariant, i.e. M) = M) for all vy € T
Let K < Q. ., be a compact set. For each [hy] € K, by Lemma
there is a neighborhood U of [ho] and a finite set M < T' such that for all
[h] € U, Mp,; = M. Since K is compact, one can therefore find a finite set
Mp such that for all [h] € K, M) © Mg. All but finitely many vy € I' satisfy
v Mg n Mg = . Therefore for all such yeI', v- K n K = . Hence I' acts

properly on Q.

A horofunction [h] € Q. belongs to the Dirichlet domain Dy (o) if (and
only if) the neutral element e € I' belongs to MVL]. For every [h'] € QY .,
there exists some 7' € M, and one has (y')™" - [h'] € Df(0). Therefore
DE(0) N o = DE(0) n 0y, X is a fundamental domain for the action of T
Moreover it is closed in the metrizable compact df X, hence it is compact. So
this is a compact fundamental domain for the action of I' on Qf ., and the
action is cocompact. O

Remark 3.5.6. The fact that %, is a cocompact domain of proper disconti-
nuity is a special case of a result due to Kapovich-Leeb-Porti [KLP18a], and
Guichard-Wienhard [GW12| for w;-undistorted subgroups of PSL(2n,R). The
construction of €%  from a thickening is similar to a construction due to
Kapovich-Leeb [KL18], where they consider the case when w is dual to a regular
point of 0,,,4. They prove proper discontinuity and cocompactness when I' is an

arbitrary Anosov subgroup. Since their Finsler compactification is the maximal
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Satake compactification, it dominates the compactification we consider here,
and the proper discontinuity and cocompactness follows. In fact, it follows from
Proposition [3.4.8 and their Theorem that the Dirichlet domains we consider are
properly finite-sided for w-undistorted subgroups, without the use of Lemma
.49

3.5.2 Properly finite-sided implies undistorted

We now prove the following necessary condition for a group to admit a properly
finite-sided Dirichlet domain.

Theorem 3.5.7. Let I' be a discrete subgroup of G and suppose that a Dirichlet
domain Dg (o) is properly finite-sided. The orbit map I' — X is a quasi-isometric
embedding.

This result is an adaptation of the Milnor-Schwarz Lemma, replacing the
cocompactness of the action by the fact that the Dirichlet domain is tame at
infinity.

Lemma 3.5.8. Let I' be a group acting by isometries on a geodesic metric space
X. Suppose that there exists a subset D c X such that:

xX=Jvr-D.
~yel’

Suppose moreover that there exist a finite subset F < I" and € > 0 such that the
e-neighborhood D of D satisfies for allT € T\F':

v-DnD.=g.
For any o€ X the orbit map ye€ ' — v-0€ X is a quasi-isometric embedding.

Proof. We consider the word metric on I' defined for v € I by:
|v] = min{n|y = s152- - sy, s; € F}.

Any other word metric with respect to a finite generating set is quasi-isometric
to this one. Let 0 € X. Let A = maxgep d(o, s - 0).

Let v € T' be any element. First note that d(o,v -0) < Aly|. Now let
n = [M] We consider a sequence xg, 1, - , T, of points on a geodesic in
X between o and 7 - 0o with g = 0, x,, = 7 - 0 and such that d(x;, ;1) < € for
0 <i<n. Since X = U'yEF v+ D, there exist for all 1 < i < n an element v; € T’
such that x; € v; - D. We set 79 = e and 7, = 7.

By the definition of F' we know that for all 1 < i < n, 'Yi_l’}/i_t'_l € F. Indeed
Tit1 € Vix1 - D n ;- D. and hence ’yi_l - Tii1 € 'yi_l’yiﬂ - D n D.. Therefore ~
can be written as the product of n elements of F, so |y| < n. Hence:

elyl —e < d(o,7-0) < Alyl.

This concludes the proof. O
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Figure 3.4: Illustration of the disjoint half-space property.

Proof of Theorem[3.5.7. Let U be an open neighborhood of D¥(0) ¢ X u 0,X
such that there exist only finitely many « € T' such that v - Dg(o) n U # .
In order to apply Lemma it suffices to prove that for some ¢ > 0, the
intersection U n X contains the e-neighborhood of D{(0) n X. Let U° be the
complement of U in X u 9,X, which is a compact set.

Suppose the contrary; then there exists a sequence () of points in D{ (0) "X
and a sequence (y,) of points in U¢ n X such that d(x,,y,) converges to zero
(note that we consider here the Riemannian metric). Up to taking a sub-
sequence, one can assume that the sequences converge to z, in Dy¥(o) and
to Yy in UC respectively. But since d(z,,y,) converges to zero, the function
z€X - dy,(x,z,)—dy(x,y,) also converges to zero, uniformly on X. Therefore
Top = Yo, which is not possible since D (o) < U. O

3.5.3 Disjoint half-spaces and the w-undistorted condition

In this section, we show that w-undistorted subgroups can be characterized by
having sufficiently disjoint half-spaces for the Finsler distance d,,.

Definition 3.5.9. We say that a finitely generated subgroup I' satisfies the w-
disjoint half-space property if for some o € X, some word metric on I' and some
integer D > 0, for all triples (z,y,z) in I’ that lie in this order on a geodesic
such that dr(z,y) = dr(y,z) = D, the half-space H“(x - 0,y - 0) is disjoint from
HY(z -0,y - 0).

We say that I' satisfies the w-flag disjoint half-space property if for some
o € X, some word metric on I" and some integer D > 0, for all triples (z,y, 2)
in I' that lie in this order on a geodesic such that dr(z,y) = dr(y, z) = D, the
intersection of F, with the half-space H*(z-0, y-0) is disjoint from H*(z-0,y-0).

Recall that the half-spaces are closed subsets of X u 0,X. A priori the flag

property is weaker, but we see later that when w is symmetric, the two are
equivalent.
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Remark 3.5.10. If the (flag) disjoint half-space property holds for all triples
(z,id, z) in T with x, z of word length D then it holds for all triples in T'. Hence
the (flag) disjoint half-space property can be verified on a finite subset of triples
in I

When G = SL(d,R), and w = wy, the (flag) disjoint half-space property can
be rephrased in terms of Selberg bisectors and yields another characterization
of subgroups [log o;|-undistorted for all i. Indeed, the intersection of a Selberg
bisector with F,,, = RP?"! equals the intersection of the corresponding Finsler
bisector with F,,,, and two Selberg bisectors are disjoint if and only if their in-
tersection with F,,, are disjoint. Note that the intersection of a Selberg bisector
with RP?~! is the zero set of a quadratic form.

Theorem 3.5.11. Let I' be an w-undistorted subgroup. It satisfies the w-disjoint
half-space property and the (—w)-disjoint half-space property.

Proof. Let G be the space of bi-infinite geodesic n : Z — T" such that n(0) = e.
This is a compact set for the standard compact-open topology.

Let n € G. We denote by n* and n~ respectively the endpoints in oT' of

the geodesic ray when n goes respectively to 400 and —oo. The thickenings
Th‘fljoro(g@ (77+)’CF) and Th{fl)oro(E@ (77_),01“) are diSjOil’lt since the ﬂags g@ (77+)
and g (n~) are transverse.
Let U € X v d%,,,X be an open set containing Thy, (£e(n™),Cr) whose
closure is disjoint from Thy (£e(n7),Cr). Lemma implies that all [h]
in the complement of U go to +o locally uniformly along n(n), and all [h] in
U go to +o0 locally uniformly along n(—n). If T' is elementary we can apply
Lemma instead. Since U and U¢ are compact, the local uniform behavior
is global. Hence there exists ng € N such that for all n = ng, H*(n(n)-0,0) c U
and U is contained in the complement of H* (n(—n) - 0,0).

We write V;,,, © G for the open and closed set of geodesics ' : Z — T
such that nl’ [=m,m] = M=m,m] for the compact open topology. The collection
of neighborhoods {V,, ,,, | 7 € G} covers G, so it admits a finite subcover. Hence
there exists mg € N such that for all 5 € G, the half-spaces H“ (1(my) - 0,0) and
H(n(—myp) - 0,0) are disjoint. Therefore I" satisfies the w-disjoint half-space
property. Since T' is also (—w)-undistorted, I' also satisfies the (—w)-disjoint
half-space property. O

The following result can be seen as a coarse analogue of Proposition [2:4:20]
and has a similar proof.

Theorem 3.5.12. Let I" be a finitely generated subgroup of G. If I satisfies the
w-flag disjoint half-space property and the (—w)-flag disjoint half-space property,
it is w-undistorted.

To prove this theorem, we first relate the disjoint half-space property to the
convexity of Busemann functions. Let ¢ > 0. We say that a sequence (s, )nez

is e-convex at critical points if for all n € Z such that s, 11 — s, = —e one has
Sni2 — Spy1 = €. If for such a sequence one has s 1 < sg, then for all n € N:

Sp = €n + sg.
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Lemma 3.5.13. Suppose that for some o € X, I satisfies the flag disjoint half-
space property. Then there exist D € N and € > 0 such that for every geodesic
sequence (Yn)nez i I' and every [be] € Fo, € 0%,,,X, the sequence (be(Ypn - 0))
s e-convex at critical points.

Proof. We assume that D{(o) satisfies the flag disjoint half-space property and
let D be the constant from the definition. Suppose to the contrary that there
exist sequences (2,), (y») and (z,) in I' and a sequence [b,] € F, < 0. X
such that for all n € N, d(zy, yn) = d(yn, 2n) = D while also lim inf b, (y,, - 0) —
bp(xy - 0) = 0 and limsup by, (2, - 0) — by (yn - 0) < 0.

Up to acting by T', one can assume that the sequence (y,) is constant and
equal to the identity element of I'. Up to taking a subsequence one can assume
that the sequences (z,,) and (z,,) are constant and equal to x and z respectively.

By the flag disjoint half-space property, F., n H¥(x - 0, 0) is disjoint from

H*(z-0,0) ={[h] | h(z - 0) — h(0) < 0}.

In particular, the function [b] — b(0) —b(z - 0) is continuous and positive on the
compact set F, N H“(x - 0,0), so has a positive minimum 7. Hence if any [b] in
F., satisfies b(o) — b(x - 0) < 0, then b(z - 0) — b(0) < —n. This contradicts the
assumptions on (z,), (y,) and (z,). O

In order to handle the disjoint half-space property at two different base-
points, we need to improve the constant € by coarsifying the sequence.

Lemma 3.5.14. Suppose the sequence (x,,) is e-convez at critical points. For any
positive integer N, the sequence (xz,n) is (Ne€)-convex at critical points.

Proof. If x(, 1 1)N —TnN = —Ne then there exists an integer nN < k < (n+1)N
such that zp 1 —xr = —e. For an e-convex sequence, if there exists k such that
Tpp1 — Tk = —¢, then for all K > k' > k, it holds that xpr — xp = (K" — K)e.
In particular, z(,12)8 — T(ny1)n = Ne. O

Proof of Theorem[3.5.12 Let I be a finitely generated subgroup of G satisfying
the w-flag disjoint half-space property for the basepoint o and the (—w)-flag
disjoint half-space property for another basepoint o'.

We first show that one can assume o’ = o, up to replacing D by some D’ > 0.
By Lemma there exists D such that for every [b] € F_,, and geodesic
(vn) the sequence (b(vy,p - 0')) is e-convex at critical points. By Lemma
for any positive integer N, the sequence (b(y,pn - 0')) is eN-convex at critical
points. If eN — 2d(o,0’) = ¢, then the sequence (b(v,pn - 0)) is also e-convex at
critical points, since Busemann functions are 1-Lipschitz. We set D’ = DN.

Now let v € T and let e = 7,71, - , 7§ = ¥ be a geodesic sequence. We
consider a maximal flat passing through o and ~ - 0. In the visual boundary of
this flat there exist &; € F,, and & € F_,, such that the associated Busemann
functions [be, ] and [be,] satisfy:

-

w(d(ov v 0) = bfl (,Y : 0) - b{l (0)7
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_w(d(07 v 0) = b§2 (’7 : 0) - bf2 (0)
Note also that & +— be, (z) — be, (0) + be, (z) — be, (0) is nonnegative on X, since
it is a convex function that vanishes at o and whose gradient also vanishes at o.
Hence up to exchanging w and —w, one can assume that:

be, (Ypr - 0) = bg, (0) = 0.

N

Letting n be the integer part of 4;, we have that

bey (YD - 0) = b, (0) = €e(n — 1).

Let E > 0 be the maximum distance between o and g - o for 7y € I' at distance
at most D’ from the identity. Then:

w (d(0,7+0)) = b, (7 0) = be, (0) = be, (yupr - 0) = by (0) = E > en— E—e.

Hence I' is w-undistorted. O

3.6 Locally symmetric spaces

In this section we consider any locally symmetric space X/I" where I is an w-
undistorted subgroup of G. The Finsler distance d,, on X descends to a natural
metric on the quotient. We show that the horofunction compactification agrees
with the quotient (Xud%, . X)/T. As a consequence, we recover that such locally
symmetric spaces are topologically tame, a special case of [GKW15, Theorem

1.4].

Recall that the symmetric space of SL(V) embeds in P(S?V) as the space
X of positive tensors. The embedding G < SL(V') induces a totally geodesic
embedding between the corresponding symmetric spaces, X ¢ X < P(S?V).
Given any x,y € X X one can define the restricted Selberg invariant. For
this we chose representatives X,Y : V* — V of x,y such that det(X~'Y) =1,
and we set:
sV (z,y) = log Tr(X 1Y),

This restricted Selberg invariant has the following formula:
Proposition 3.6.1. Let x,y € X, the restricted Selberg invariant is equal to:
sv(x, y) = log Z n(a)e“(‘f(l’y)).
aEE

In this expression, = C a* is the weight system associated to the representation
V', and for a € E, n(a) is the dimension of the associated weight space.

Proof. The restricted Selberg invariant sV is the restriction to the totally geodesic
symmetric space X of the Selberg invariant defined for the symmetric space of
SL(V). The eigenvalues of the element of SL(V) corresponding to exp(v) for
v € a are equal to e*(*) for a € Z. Hence this formula follows from O
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This definition can be extended for any semi-positive y € P(S?V). If y €
P(S?V) is semi-positive and if o € X one can extend the Selberg invariant by
taking representatives O, X,Y of o, z,y such that det(X~10) = 1:

sV (z,y) = log Tr(X™'Y) — log Tr(O~'Y).

Proposition 3.6.2. The embedding y € X — [5V(-,y)] € V(X) induces a horo-
Junction compactification of X, which is naturally identified with the generalized
Satake compactification X of X c X.

Proof. Indeed the map y € X — [5Y(-,y)] € Y(X) is an embedding from a com-

pact space with dense image, hence it is a homeomorphism onto the horofunction
compactification of X. O

If T c G is a discrete subgroup, one can define the Selberg invariant on X/T’
to be:
sV([-2,T-y) =mins" (z,7 - y).
~yel’
Note that this minimum is reached because the action of I on X is proper.
This maps also defines an embedding y € X/T" + 5V (-,y) € Y(X/T), from which
one can define a horofunction compactification of X/T".

Theorem 3.6.3. Let V' be an irreducible representation of G with highest re-
stricted weight w. Let T' be a torsion-free w-undistorted subgroup of G. The
horofunction compactification X/T' of X/T' for the restricted Selberg invariant is
naturally identified with (X v Q) /T.

horo

In other words the compactification of X/T is equal to the quotient by T" of
a domain of discontinuity in the compactification of X.

Proof. Let ¢ : X U Q¢ . — Y(X/T) be the map that associates to a class of
functions [h : X — R] the class of functions [min,cr~y - h], where v - h(z) =
h(y~! - z). Since every horofunction in X u Q¥__ is proper and bounded from
below on one and hence any I'-orbit, (5 is well defined. Moreover on every open
set U ¢ X u Qy ., there exist a finite set S < I' such that on U one has
miner 7y -h = min,es 7y - h, see Lemma Hence 5 is continuous. Moreover

the image of X by ¢ lies in X/T', so the image of ¢ lies in X/T.
The map QNS is also I'-invariant by definition, so it induces a map:

¢ (XuQ )/ T —XT.

horo

The restriction of this map to X/T" is the identity: indeed the restricted Selberg
invariant between I'-x and I'-y is equal to min~er s(x, v-y). Since 5 is continuous,
so is ¢ and because (X u Q) /T is compact, its image is compact. Hence ¢ is
surjective.

It remains to show that ¢ is injective. Let [h1],[h2] € X U Q¥ be such

that @([h1]) = &([hs]). Since hy and hy are proper and bounded from below,
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given any compact set K there exist a finite set S < I' such that for i = 1,2,
minyer v+ by = minyeg, v - h; on K.

This implies that K is covered by the closed sets K., ,, = {z € K | 71 -
hi(x) = v2 - ho(x)} for 71,72 € Sk. If we take a compact set K with non-empty
interior, then one of these sets K., ,, must have non-empty interior for some
Y1,72 € Sk . Hence 71 -hy; = 72-hs on an open set on X. Note that hy and ho are
analytic as the restriction of the log of a linear map to an analytic submanifold.
This implies that [h1] = [y; '72 - h2] and hence the two points must correspond
to the same element in (X v Q¢ ) /T.

horo

In conclusion ¢ is injective, so we have proven that it induces an homeomor-
phism. O

Remark 3.6.4. If we try to apply the same argument for the horofunction com-
patification of X/T" using the Finsler distance, the proof of the injectivity does
not immediately apply since horofunctions are not analytic. However the map
¢ is still well-defined and surjective.

A consequence of this result is that the locally symmetric space X/T" is topo-
logically tame. A manifold is topologically tame if it is the interior of a compact
manifold with boundary.

Proposition 3.6.5 ([GGKW17hb| Proposition 6.1]). Let X be a real semi-algebraic
set and I' a torsion-free discrete group acting on X by real algebraic homeomor-
phisms. Suppose I' acts properly discontinuously and cocompactly on some open
subset Q of X. Let U be a I'-invariant real semi-algebraic subset of X contained
in Q. If U is a manifold and U < Q, then U/T is topologically tame.

We can apply this to semi-algebraic compactifications of X. Note that the
Tarski principle implies that semi-algebraic set are closed under projection.
Hence any orbit of the algebraic action of an algebraic group on a finite di-
mensional vector space is semi-algebraic. For instance, given an irreducible
representation V' of the semi-simple group G with highest restricted weight w,
the totally geodesic embedding X < X is algebraic. Note also that the closure
of a semi-algebraic set is semi-algebraic.

In particular we get the following result for every w that is the highest
restricted weight of a representation:

Corollary 3.6.6. Let I' be a torsion-free w-undistorted subgroup of G. The locally
symmetric space X/T" is topologically tame.

This recovers a particular case of [GKW15, Theorem 1.4] since w-undistorted
representations are Anosov. Note that the set of w € a up to positive scalar
and the action of the Weyl group that are the highest restricted wieght of a
representation is dense. Therefore any w-undistorted representation for w € a is
w’-undistorted for such an w’, and hence the Theorem applies.
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3.7 Restriction of Selberg’s construction.

In this section we consider a discrete subgroup I' © SL(V) that is not s necessarily
[log o;]-undistorted for all ¢, and we try to find a smaller domain of X on which
the Dirichlet-Selberg domain is properly finite-sided.

3.7.1 The general statement

We first introduce a general but technical statement that we will then apply to
more specific situations.

Let G be a semisimple real Lie group and V a finite-dimensional linear real
representation of G. Recall from Section the associated restricted weight

space decomposition:
V=@
Aed
with ® denoting the set of restricted weights.

More precisely for every pair of transverse full flags f, g € Fa for G, one has
an identification of the model maximal abelian subspace a < p with another
arg C g. For each such choice we get a restricted weight decomposition:

V=@V
Aed

Given a closed subset C C 0,04 = Sa™, and a subset © c A of simple roots
of G, we define the following subsets of the space of restricted weights:

0o ={Ae®|X>0o0nWeC},
Dzo={Ae®|X<0onWe-C},

‘I)?:,e = O\ (‘I’g,e v ‘I’E,@) :

Here Wy is the subgroup of the Weyl group generated by the involutions s,
associated to the simple roots v € A\© and Wg - C < Sa.

Lemma 3.7.1. Let us fix some C C Oypoq and © € A, and let £ € Fo. The
following subspaces are independent of the choice of transverse flags f,g € Fa
such that the simplex corresponding to & is included in the simplex corresponding

to f:
Vf = @ V/\f’g7 Vé = P V{’g.

+ + 0
Ae@c,@ )‘e(bc,(—)quc‘(—)

Proof. Note that A = q)ér’@ or CI%’@ V] @27@ are ideals for the order relation of
®: for all Ae A, if X € ® satisfies ' — X = 0 on a* then X € A.

If ¢’ is an other full flag transverse to f, then ¢’ = u - g for some unipotent
element of G fixing f, which in turn is the exponential of an element u € g
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that belongs to the sum ua of all positive root spaces g9 for a a positive root.
However if u € g9 and v € V/\f Y in the root space associated to the root «
satisfies [u,v] € V)\ffa. Since A is an ideal, A € A implies that A + a € A.

The fact that this is independent of the choice of f is due to the fact that A
is Weg-invariant.
O

Let F < P(V) be a compact I-invariant subset. We define S2F < P(S?V)
to be the corresponding set of rank one tensors. We call Hull(S2F) c X(V) =
P(S2VZ?) the convex hull of these points. We denote by Hull(S2F)* the open
dual convex domain, i.e. the set of linear form that do not vanish on S2F. This
space contains the space X(V)* of projectivizations of positive definite bilinear
forms on V. We note that there is a natural identification of X with X'* given
by [X: V* 5> V] [X71: V- V*].

Given [0] = o € Hull(S2F)*, we define DS (0) to be the set of elements
[X] € Hull(S%F) such that for all v e I':
Tr (X(O—-~-0)) =0.

Here we chose the signs of the representatives of X and O so that Tr(XO) >
0. When o € X* ~ X, this domain coincides with DSr(0~t) n Hull(S%F).

Definition 3.7.2. Let [O] = o € Hull(S2F)*. We say that DS} (0) is prop-
erly finite-sided in Hull(S?F) if there exists a neighborhood U of DS (0) in
Hull(S2F) and a finite set F' < I such that for all o not in F, U is contained in
the set

Hr(o,7-0) = {[X] € Hull(S*F) | Tr (X (O — v 0)) > 0},
with representatives of X and O chosen so that Tr(XO) > 0.

Theorem 3.7.3. Let I be a ©-Anosov subgroup of G, and let C = Cr. Let'V be a
representation of G, and let F < P(V') be a T'-invariant compact subset. Suppose

that F is disjoint from V§\V+g for all &€ = £o(x) for x € 0T (see Lemma .
Then DSY. (0) is properly finite-sided in Hull(S2F) for all o € Hull(S2F)*.

Remark 3.7.4. One can consider Fiax the largest subset of P(V) that avoids
V§\Vf for all & = £g(x) for = € JI'. This subset is not always closed, so one can
only apply our result to compact I'-invariant subsets F € Fiax-

The proof of Theorem [3.7.3] will be done in Section [3.7.2]

3.7.2 The general argument.

Throughout Section we assume that I' and F satisfy the assumptions of
Theorem Namely, we assume that I is ©-Anosov and take F to be a
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compact [-invariant subset of P(V') disjoint from V§\Vf for all £ = £o(x) for
x € 0" with respect to Cr.
For every closed subset C C 0moq = Sa we define C¢ o to be the infimum

of BWL for 4 € a such that [v] € C and X € @g’@ U ®; o. We will consider

ll]]

sufficiently small neighborhoods C of Cr so that the sets of weights q)g’@ etc. are
unchanged.

We will first focus on the case when the basepoint o~! belongs to a totally
geodesic X ¢ X corresponding to the symmetric space of G, and then we will
see that the result still holds for other basepoints.

Each line ¢ € X (V') defines a function hy: X — R, up to an additive constant,
by setting:

hiry([X]) = log (; Tr(XlL)> ,

for representatives X satisfying det(X ~1O) = 1 where O is a positive definite
representative of a basepoint o € X. Here d is the dimension of V. Each such
line is a convex combination of some rank 1 lines in SV i.e. for each L there
exists v; € V,i € I such that L = Y v; ® v;. The corresponding functions are
then related by

1 xT)— o
hipy(z) = log(gZeh“i( )=hoi(0)y, (3.5)

At rank 1 points, these functions are exactly the Busemann functions on X
centered at the minimal flag manifold P(V'). The rest of the projective boundary
0X can be interpreted as a sort of horoboundary with respect to the Selberg
invariant. Note that these horofunctions are hence equal to, for some functions
fi that are convex and 1-Lipshitz with respect to the Riemannian metric on X':

1
h = log (d Zef")

i=1
Therefore these functions are also 1-Lipschitz and convex.

If we fix £ € Fo, and we take a line £ € P(S?V) exactly one of the three
possibilities occur:

(a) ¢ € Hull (S%P(VY))
(b) £ € Hull (S?JP(VZ§ )) and £ ¢ Hull (S?P(Vf)),
(¢) ¢ Hull (521@(@)).
The hypothesis that we put on F in the statement of Theorem [3.7.3] implies

that case (b) never occurs for [v] € S2F. The subset that will play the role of
the thickening here will be

Th(¢) := Hull (SZP(VE)) A Hull(S2F).
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We obtain the following dichotomy:

Lemma 3.7.5. Let { € Hull(S®F) < P(S?V), with F as in Theorem . Let
0 € X be a basepoint and let T € Fo. Exactly one of the following holds.

(i) L€ Th(T) and for every n € ste(T) the geodesic ray c,, satisfies
he(con(t)) — h(o) < =Ce ut.

(i) € ¢ Th(T) and for all € > 0 there exist A > 0 such that for every n € ste(T)
the geodesic ray c,., satisfies

he(Com(t)) = h(0) = (Cow — )t — A.

Proof. We first consider the case when ¢ € S?F. We want to compute the
asymptotic slope for hy and 7 € st¢(7), as defined in Section Let us fix
two opposite full flags f, g € Fa such that such that 1 belongs to the ideal Weyl
chamber associated to f; note that 7 belongs to this chamber as well. Let ¢ be
the projection of 1) to omeq = Sat. Let v®v € £ be non-zero, we can decompose
v for some vy € V)\f’g as

vV = Z V.

Acd

The basepoint 0 € X € X determines a norm ||-|| on R™, and one has:

e ) ~ Ztog (I}

Aed
Since ¢ € C, the behavior of this quantity depends on the same case distinc-
tion as before:

hi(co,n(t)) — h(o) log <

(a) if v € Hull (521P>(v§)) for all £ > 0, he(co.y(t)) — h(0) < —Cout ,
(b) if v € Hull (S?P(Vg )) but v ¢ Hull (S?]P(Vf )), the situation is unclear,

(c) if v ¢ Hull (52 (V. )) for all € > 0 there exist A > 0 such that for all

t>0
he(con(t)) —h(o) = (Ce —e)t — A.

Here case (b) cannot occur by the hypothesis that was put on F. Note that
case (a) means exactly that £ € Th(7). Hence we got the desired result for
¢ € Hull(S%F).

We now consider an arbitrary ¢ = [v] € Hull(S?F). Then v can be written
as a convex combination of extremal points of Hull(S2F). The way we defined
the associated function on X was taking the log of a linear expression, so the
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associated function can be written for some p; € F, A\; > 0 and o; € X for 1 € I
as:
1 1
he(z) = - IOg(Z Agehei @ =hpi(0)y — y log(Z elri (@) =hpi (00)y

el el

If ¢ € Th(7), one can choose (p;)ier such that for all i € I one has p; € V.
Therefore for all t > 0, by, o(Con(t)) — bp,.0(0) < —Ce ot. Hence hy(co,(t)) —
h(O) < —Cc’cpt.

Suppose now that £ ¢ Th(7), then one can choose (p;)icr such that p;, ¢ VT
for some ig € I, and hence p;, ¢ VI. Therefore there exists A > 0 such that the
geodesic ray ¢, , satisfies hy, (coy(t)) — hy, (0) = (Cc,e — €)t — A. Hence:

Be(con()) = h(0) > (Ce.a — )t — A+ log(As,).
O

Remark 3.7.6. A consequence of this argument is that the thickening can also
be described as follows: let p € Hull(S2F), we consider the exposed face F,, of
the compact Hull(S?F) containing p, i.e. the intersection of Hull(S?F) with all
support hyperplanes passing through p. The point p belongs to Th(7) if and
only if the extremal points of F), are all in V7.

Definition 3.7.7. Let us define the following domain:
Q= Hull(S*F)\ | ] Th(ée(x)).

zedl

The following statements are the analog in this setting of Proposition [3.4.8]
Lemma [3.4.9] Proposition[3.5.5|and Theorem [3.5.2)respectively. The exact same
proofs apply, by replacing X u é¢. X by Hull(S2F), Th{,,, by Th, D% (o) by
DSY (0) and Q... U X by Q.

horo
Proposition 3.7.8 (Analog of Proposition [3.4.8)). An element ¢ € Hull(S%F)
belongs to Q2 if and only if hy restricted to the I'-orbit of o € X is bounded from

below. In this case, hy is proper on any I'-orbit. In particular DS‘;(O) c Q for
all o € X.

Lemma 3.7.9 (Analog of Lemma [3.4.9). Let ¢y € Q, and let o € X. There exists
a neighborhood U < Q of €y and a constant A > 0 such that for € U and ye T':

he(y - 0) — he(0) = Ce,ad(0,v - 0) — A.

Theorem 3.7.10 (Analog of Theorem . For all 0 € X and for any A > 0
one can find a finite set S < T' and a neighborhood U of DSIJJ-(O) such that for
all 0 e U and yeT\S, he(y-0) > he(o) + A.

Note that in this theorem we use the fact that DSy (o) is compact as the
intersection of closed spaces in a compact space. Hence we need here to have F
closed.

We can now prove Theorem [3.7.3]
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Proof of Theorem[3.7.3 Let o € X and o' € Hull(F)*, and fix two representa-
tives O~t and O": V — V* of 0! and o’. The following quantity is well-defined
and continuous in z = [X] on the compact set Hull(F) < P(S?V=>Y), since
o1, 0" € Hull(F)*:

|log| Tr(XO™1)| — log|Tr(X O")||.

We denote by B the supremum of this quantity.

Now we apply Theorem for o€ X and A = 2B, and we get that there
exist a finite set S < I' and a neighborhood U of DS (0) such that for all
e U and v € T\S, he(y-0) > he(o) + 2B. This implies that the half-space
Hr(0',~ - 0') contains U for all but finitely many v € T', so DS (o) is properly
finite-sided. O

3.7.3 Dirichlet-Selberg domains.

In the remainder of Section [3.7] we present applications of Theorem [3.7.3] We
first deduce Theorem [1.3.15] for a second time.

Corollary 3.7.11. Let T be a subgroup of SL(2n,R) which is |log o;|-undistorted
for alli. Then for any o € X, the Dirichlet-Selberg domain DSr(0) is properly
finite-sided.

Proof. As observed in Proposition[3.2.6] I is n-Anosov. We set 7 = P(V'), which
is clearly compact and I-invariant. The condition of being |log o;|-undistorted
for all i guarantees that ®° is empty. Therefore we may apply Theorem
Since X = Hull(S2F), DSr(0) = DSL (0™ 1). O

3.7.4 Projective Anosov subgroups.

We give two applications of the previous theorem for projective Anosov repre-
sentations. In these examples the set F will depend on the representation.

Theorem 3.7.12. Let T be a projective Anosov subgroup of SL(d,R). Let A be
the projective limit set, i.e., A = {€L(x)|x € AT} < P(R?). The domain DS (o)
is properly finite-sided in Hull(S?A) c P(S?R?) for all o € Hull(S?A)*.

Proof. We apply Theorem [3.7.3] Given a partial flag & = (¢!,€"~!) in R”

consisting of a line and a hyperplane, the corresponding set Vf is equal to ¢!

and Vﬁ is equal to "~ 1. The transversality of the boundary map &r implies
that A satisfies the hypothesis of Theorem [3.7.3] O

If T is convex-cocompact in the sense of [DGKI18§| or [Zim21], we can choose
F to be larger.

Theorem 3.7.13. Let I" = SL(d, R) be a projective Anosov subgroup that is convex
cocompact, i.e. that preserves a properly conver domain Q and acts cocompactly
on a convex set C < Q. Let A = {€k(z)|x € dT}. The domain DSE(0) is
properly finite-sided in Hull (52 (C U A)) < P(S?R?) for all 0 € Hull(S?A)*.
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Note that following from [DGK18| [Zim21], every projective Anosov subgroup
that preserves a convex domain admits such a non-empty convex set C.

Proof. We can again apply Theorem [3.7.3] As previously it suffices to verify
that if 2 € 0T, then C U A does not intersect &1~ (2)\¢f(2). Since Q is a proper
convex domain preserved by the projective Anosov subgroup I', the hyperplane

1’f_l(sv) is disjoint from (2 for all « € dI". Moreover since I' acts cocompactly on
C < Q, one has C = C u A. Complete details for the proofs of the previous two

sentences can be found in [DGK18| Section 8§]. O

3.7.5 w-undistorted subgroups through a representation.

We consider a semisimple Lie group G and an irreducible finite dimensional
representation V. We construct a subset F that satisfies the hypothesis of
Theorem for w-undistorted subgroups.

Let I < ® be an ideal and write VIf =@Dyes VAf for f e Fa. Set
Fri={[o] lve V/\[0}, f e Fa} < B(V).

Theorem 3.7.14. Let I' € G be an w-undistorted subgroup for all w € I. The
domain DS?I (0) is properly finite-sided in Hull(S2F;) for all o € Hull(S%F)*.

An example of an ideal can always be obtained by taking the highest re-
stricted weight {w} < ®. In this case, for G = SL(d,R) with the standard
representation on R¢, we recover Theorem [1.3.15

Proof. Note that F is closed. For each A € I, we get a set ©y < A such that T’
is ©-Anosov. We fix © to be the union of all these sets.

Let [v] € F and let x € JI'. For some full flag f € Fa, one has v € VIf.
One can find an opposite full flag g € Fa such that the flat determined by f, g
contains &r(z). For all w € W, either w-w > 0 on Wg-C or w-w < 0 on Wg -C.

Hence v does not belong to Vé\Vf, so F satisfies the hypothesis of Theorem
B.7.3 O

One can apply Proposition to the quotient of this convex hull.

Corollary 3.7.15. Let I be a torsion-free subgroup of G that is w-undistorted for
allw € I. The quotient by T' of the relative interior of Hull(S?F;) is topologically
tame.

Indeed S?F; is the orbit of an algebraic set by an algebraic group and
hence it is semi-algebraic. Moreover the convex hull in a finite dimensional vec-
tor space of a semi-algebraic set is also semi-algebraic: given a semi-algebraic
set A < R"™ we consider the subset B < (R")"*! x R?"*! x R™ of elements
((zoy .-, 2n),(Aos- -+, An),x) such that zg,...,z, € A, Xo,...,An = 0, Ag +
o Ap=1and z = Agxg + -+ + Az, By Carathéodory’s theorem, projecting
B to the last copy of R™ yields the convex hull.
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Let T" now be an wa-undistorted subgroup of G = SL(d,R), equivalently
a A-Anosov subgroup, or sometimes called a Borel Anosov subgroup. Recall
that wa is the highest root, i.e. the highest weight of the adjoint representation
V = sl(d,R). The highest weight space is given by the span of the unit matrix
Ey.4. The set Fy,,, can be identified with the flag manifold F,,, which is the
partial flag manifold of lines in hyperplanes in R%. The identification is given
by ([v],[a]) > [v® a] € P(s(d, R)).

Therefore Theorem [3.7.14] implies that one can obtain a properly finite sided
domain in the convex hull of S?Fy,,y < P(5?sl(n,R)) for every Borel Anosov
subgroup of SL(d, R).

However one can apply this theorem to a larger ideal, and for any semi-
simple Lie group G with its adjoint representation V = g. We consider I = X+
the set of positive roots. The set n = F; < P(g) is the closed set of nilpotent
elements in the Lie algebra g of G.

Corollary 3.7.16. IfT' c G is A-Anosov, the Dirichlet-Selberg domain DST(0)
is properly finite-sided in Hull(S?*n) c P(S%g) for all o € Hull(S?n)*.

3.8 Connected limit cone.

We show that the limit cone of a discrete finitely generated subgroup of G that
is not virtually cyclic is connected. When T is a Zariski dense subgroup of G,
Benoist proved that its limit cone is convex [Ben97], hence connected.

To deal with the general case we use the fact that I" acts topologically tran-
sitively on its space of ends. First we recall the definition of the space of ends
and its topology.

Let I" be a finitely generated group with finite symmetric generating system
S, and let C(T") be the associated Cayley graph. Let K,, © C(T') be the ball
of radius n around the identity e € I" for the word metric associated to S. The
space of ends & is the space of senquences (U;);en such that for i e N, U; € U1
and U; is a connected component of C(I')\K;, where two such sequences are
considered equal if they are eventually equal.

The space C(T") U &€ is equipped with the topology generated by the open
sets Viy = V u {[(U;)] | U, < V} for open sets V < C(I')\K,. This topology
makes it a compact space.

Proposition 3.8.1. Let I' be a torsion free finitely generated group that is not
virtually cyclic. Then the action of I' on the space of ends admits a dense orbit.

Proof. Stalling’s theorem implies that such a group has either one end or in-
finitely many ends. If there are infinitely many ends the group can be written
as a non-trivial free product of infinite groups A # B |[Loh17, Theorem 8.2.14].

We fix some symmetric generating sets S4 and Sp for respectively A and
B. Fix a € S4 and b € S, and consider the diverging sequence xa, = (ab)™ and
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Zont+1 = (ab)™a. This sequence is a path in the Cayley graph of A # B that is
diverging. Therefore it determines an end of A * B and we show that the orbit
of this end is dense.

Let V' be an infinite connected component of C(I')\K,, for some n € N.
We want to prove that for some v € I'" the end associated with the sequence
(7 n)nen is included in V. Let w = aibiashs - - - apby be a reduced expression
for some element v € V where a; € A and b; € B are non-trivial, except maybe
a1 and by.

We consider v = w if by is not the trivial element and v = wb otherwise.
Then the words representating vz, obtained by concatenating the words defin-
ing v and z,, are reduced. Therefore for all n € N, vx,, does not belong to K.
This implies that the left action of v on the end determined by (z,) belongs
to the open set determined by V. We have therefore proven that there exist a
dense orbit in the boundary. O

Proposition 3.8.2. Let G be a connected semisimple Lie group with finite center
and letI' < G be a finitely generated, discrete, and not virtually cyclic subgroup.
Then its limit cone Cr is connected.

Proof. Since G is connected and semisimple with finite center, the adjoint rep-
resentation has finite kernel. The image of I' under the adjoint representation
admits a finite index torsion-free subgroup IV by Selberg’s Lemma. The limit
cone of IV is the same as the limit cone of T', so without loss of generality we
may assume that I" is torsion-free.

Let n € N. We say that two elements 7/,7” in T'\K,, are K, -connected if
one can construct a finite sequence (7;) of elements of I'\K,, such that for all
1 <4< Nyyip1 = a;yb; for some a;, b, € S U {e}, with v/ = 79 and 7" = yn.

Let [(U;)] in €. Using only right translations, i.e. a; = e, any two points
in U,, are K,-connected, since by definition U,, is a connected component of
C(DO\K,.

Using left translations, we see that for all ends [(U;)] and v € T', there is a
point in U,, and a point in v - U, that are K,-connected. Hence for any end
[(U;)], any two points in the following union are K,-connected:

X = Ufy-Un.
vyel

Since I" admits a dense orbit in £, up to choosing a specific point [(U;)] one
can assume that X € is a neighborhood of £ in C(I') U&. Hence its complement
is a closed subset of the Hausdorff space C(T"), hence it is compact. Therefore
there exist a cobounded subset of C(T") such that every pair of elements in this
set is K,,-connected.

We define the distance d on Sa, as d([x], [y]) = |‘—§‘ - ﬁ| for x,y € a.

Assume that there exists a partition A U B of C, into two open and closed
sets. These sets are compact and hence are at uniform distance ¢ > 0. Let F

127



be a finite symmetric generating set for I'. Let M be the maximum for v € F
of dx (o, p(7) - 0). For some integer n € N, the ball K,, in C(I") contains all the
elements « € I" such that either dx(o, p(y) - 0) < 2 or:

€

([ da(o. () 0)].C) > 5.

Indeed since p is discrete and by the definition of C,, the set of such elements
is finite.

Since A, B # &, the definition of the limit cone allows us to pick two large
enough elements +/,v” € T'\K,, such that :

d([da(oa p(FyI) ' 0)] 7A) <

9

Wl o

d([da(0, p(+") - )], B) <

One can assume that 7/, 7" are K,-connected by taking them large enough.
Therefore there exist v € I'\K,, and a,b € F such that:

Wl ™

d([dao.p(v) -0)] . 4) < 3.

d([du(07 p(a’yb) ’ O)] 7B) <
Using Lemma one gets that :

Wl o

|da(0, p(7)-0) =da(0, p(ard)-0)| < |da(0; p(7)-0) =da(0; p(ay)-0)[+dx(0, p(b)-0).

[da(p(7) 7" - 0,0) = dal(p(y) " pla)~" - 0,0)| < dx(p(a) " - 0,0).

And therefore:
da(0,p(7)-0) da(o,p(ayd)-0)| €
dx(0,p(v) -0)  dx(o,playb)-0)| ~ 3’

This contradicts the fact that A and B are at distance €, so C, is connected.
O

<
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Chapter 4

Fibration by pencils of quadrics

This chapter begins with a recall of some facts about maximal and Anosov
representations in Section

The main definitions of the chapter are introduced in Section where
fibrations of a projective convex set by projective subspaces are discussed, more
precisely fibrations of the projective model for the symmetric space of SL(2n, R).
In Section [£.3] we introduce the notion of fitting flows. Section discusses how
the existence of an equivariant continuous map with a fitting flow implies the
Anosov property and a fibration of a domain of discontinuity in projective space.

In Section we focus on representations into Sp(2n,R) and prove our
main result, which is the characterization of maximal representations by the
existence of a locally fitting map of maximal pencils of quadrics that admits a
fitting flow. In section we show how spacelike surfaces in H*? with a bound
on their principal curvatures define a fitting immersion of pencils. In Section
.7 we prove two independent propositions. Finally in Section we briefly
discuss a decomposition of the projective structure associated to a maximal
representation into hexagons of quadric hypersurfaces.

4.1 Maximal and Anosov representations.

4.1.1 Maximal representations.

Let us fix a symplectic from w on R?", i.e. a non-degenerated bilinear antisym-
metric pairing. A symplectic basis of R®" is a basis (z1, -+ ,Zn, Y1, * ,¥n) in

which :
n
_ * *
w = 2 xF Ayl
i=1

We define Gr,,(R?") as the space of n-dimensional subspaces of R*" A La-
grangian in (R?", w) is an element ¢ € Gr, (R?>") such that w restricted to ¢ is
equal to zero. We denote by £,, the space of Lagrangians in (R?",w). We say
that two Lagrangians are transverse if their intersection is trivial.
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Let Sp(2n,R) be the subgroup of elements in SL(2n,R) that preserves w.
This groups acts transitively on £,,, as well as on the space of pairs of transverse
Lagrangians. Given a triple (1,02, ¢3) of transverse Lagrangians, one can find
a symplectic basis such that for some (¢;) € {1, —1}:

gl = <£L’1,$2, o 'I'n>,

by ={x1 + €1y1,Ta + €2y, - - Ty + €xYn),

Z3 = <y1ay27 o yn>

The sum of the (¢;) is an invariant of the triple of flags that is called the
Maslov index M ({1, 02,¢3). The group Sp(2n,R) acts transitively on the space
of triples of transverse Lagrangians with a given Maslov index. We say that
(€1, 02, 03) is maximal if the Maslov index of the triple in equal to n.

The Lie group Sp(2n, R) is of Hermitian type and tube type. Hence it admits
a special class in its continuous cohomology group [7] € H2(Sp(2n,R),Z). Let
Sy be a closed oriented surface of genus g > 2. The fundamental class of S,
defines a cohomology class [S,] € H%(m1(S,),Z) ~ Z. Given a representation
p : m(Sq) — Sp(2n,R) one can consider the pullback of this class p*[7] =
T(p)[Sq]. the integer T'(p) is called the Toledo number of p.

The Toledo number can take only finitely many values as the space of repre-
sentations can only have finitely many connected components. More precisely:

Lemma 4.1.1 ([BIW1I]). Let p: m1(Sy) — Sp(2n,R), the Toledo number satis-

fies :
(=29 +2)n <T(p) < (29 — 2)n.

Such a representation is called maximal if its Toledo number is equal to
(29 — 2)n.

4.1.2 Anosov representations.

Let T" be a finitely generated group. Anosov representations are representations
with some exponential gaps between singular values.

Fix a word metric || on I' and a scalar product on R?" allowing us to
define the singular values (o1(g) = 02(g) = -+ = 02,(g) of g € SL(2n,R) as the
eigenvalues of 4/¢gtg. The following definition is independent of these choices.

Definition 4.1.2 ([BPS19]). We say that a representation p : I' — SL(2n,R) is
{n}-Anosov if there exist A, B > 0 such that for all v € I":

an(p(7)) > ¢AbI+B
UnJrl(/O(’Y)) - ’

If a group admits an Anosov representation, it must be Gromov hyperbolic
[BPS19]. We denote by 0T its Gromov boundary. Anosov representations come
with boundary maps.
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Theorem 4.1.3. Let p : I' — SL(2n,R) be {n}-Anosov. There exist a unique
p-equivariant continuous map & : oI' — Gry, (R2") such that:

o for all distinct x,y € 0T, &) (x) ® ) (y) = R*™ (transverse),

e for all y € T that admit an attracting fived point v+ € o', £(y*) is the
attracting fized of the action of p(vy) on Gr,(R?") (dynamic preserving),

If moreover p(I') € Sp(2n, R), then &) (x) is a Lagrangian for all x € T
Maximal representations have been characterized in [BILWO05], [BIW03]:

Theorem 4.1.4. A representation p : m1(Sg) — PSp(2n,R) is mazimal if and
only if it is {n}-Anosov and for one and hence any positively oriented triple
(z,y,2) € 0m1(S) the triple (£ (z),&,(y), €, (2)) is a mazimal triple of Lagra-
gians.

One can also characterize maximal representations among {n}-Anosov rep-
resentations by looking at the homotopy type of their boundary map. The
fundamental group of the space of Lagrangians £,, is isomorphic to Z [Wig98]
where a generator is :

0 0
7:0eS'— (cos <2> 1 + sin <2> Y1, T2, Ty € L.
Theorem 4.1.5. A representation p : m1(Sy) — Sp(2n,R) is mazimal if and only

if it is {n}-Anosov and the free homotopy type of the curve £ is equal to n[r].

Proof. Let p: m(S,) = PSp(2n,R) be {n}-Anosov. Let (x,y, z) be a positively
oriented triple in dm1(Sy). Up to changing the symplectic basis, we can assume
that for some (¢;) € {—1,1}:

g:}(x) = <$17 €T, .’En>,
£y (y) = (x1 + e1y1, T2 + €2y2,  Tn + €nYn),

5::(2) = <y17y27 o yn>

Here the Maslov index of the triple (£} (), £ (y), €, () is equal to the sum
of the (¢;).

Consider the following curve:

0 — {co b + €7 si b cos b + €y, si 4 >
10— s | = in | — e = in{— .
70 S 2 1 T €1 B Yt , 5 Tn T €n 9 Yn

This loop is homotopic to the concatenation of the loops 7; for 1 < i < n:

0 0
7i 0 — {x1,29, -+ ,COS (2) ; + €; sin (2) Yis "ty Ty

These loops are homotopic to 7 or its inverse depending on the sign of ;.
The homotopy type of g is hence equal to (€1 + €2 + -+ + €,)[7]. Moreover
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the set of Lagrangians tranverse to a given Lagrangian is contractible, so one
can homotope 7 on the intervals [0, 5], [§, 7] and [, 27] to coincide with &}
Hence the free homotopy class of £} is equal to the one of 79, which is equal to
M(&) (), &) (y), &) (2))[T]. We therefore deduce that p is maximal if and only if

it is n-Anosov and [ ] = n[7]. O

4.2 An invariant convex domain and its fibrations

In this section we define globally fitting maps and fitting immersions, which
are maps that parametrize fibrations of the projective model for the symmetric
space of SL(2n,R) by projective subspaces of codimension d.

4.2.1 Pencils of quadrics

Let V be a finite even-dimensional vector space. Let S?V be the space of
symmetric bilinear tensors on V', which we interpret as maps V* — V. The
dual space Q@ = S2V* is the space of symmetric bilinear forms on V, or the
space of quadrics on V', that we interpret as maps V — V*.

We denote by S2V =0 and S?V >0 respectively the space of semi-positive and
positive symmetric tensors, i.e. elements p € 52V such that p~! is respectively
a semi-positive and positive bilinear form. The Lie group SL(V) acts on S?V,
and preserves the properly convex set P(S2V=?). The convex domain P(S2V>0)
is a projective model for the symmetric space associated to SL(V').

The Grassmanian of d-dimensional linear subspaces of Q will be denoted by
Grg(Q). An element of Gry(Q) is usually called a pencil of quadrics on V. We
will here also call elements of Grg(Q) pencils of quadrics.

To an element P € Gry(Q) one can associate its annihilator codimension d
subspace P° c S?V. This dual space can be described as the space of symmetric
tensors p on which one has ¢(p) = Tr(qg op) = 0 for all ¢ € P. Note that the
projectivization P(P°) also has codimension d in P(S2V).

This subspace does not necessarily intersect the convex P(S2V>0).

Definition 4.2.1. We say that a pencil P € Gry(Q) is mized if P° contains a
positive element, i.e. if P°n S2V=0 5 {0}. We call the set of mixed pencils
Gr7=(Q).

Equivalently P is mixed if and only if it does not contain any semi-positive
quadric 0 # ¢ € P. Indeed the dual of the cone of positive elements S2V>0 is
the cone of semi-positive bilinear forms in Q.

4.2.2 Fitting pairs.

To a pencil P € Gry(Q) we associate the codimension d subspace P(P° n S2V=0)
in the convex set P(S?V=?).
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We say that two elements Py, Py € Grg(Q) form a fitting pair if the associated
subspaces P(PP n S2V>%) and P(Py n S?V=Y) are disjoint.

The structure of the convex set P(S?V>Y) is involved, but the set of its
extremal points S?P(V) is the projectivization of the set of rank one tensors
S2P(V), which is in one-to-one correspondence with P(V). We show that the
condition of being a fitting pair can be checked by looking only at P(V).

Given a symmetric bilinear form ¢ € Q, we will write respectively {q = 0},
{g > 0} and {¢q = 0} < P(V) the set of lines that are respectively null, positive
and non-negative for q.

Proposition 4.2.2. Let u : M — Gr"™(Q) be continuous, the following are
equivalent:

(i) (P1,P2) form a fitting pair,
(ii) there exist ¢ € Py and g2 € Py such that go — q1 is positive,
(iii) there exist g1 € Py and q2 € Py such that {g1 = 0} < {¢g2 > 0}.

In order to prove this, note that the convex set P(S2V>°) does not have
any segment as a facet, i.e. the intersection of the convex with a supporting
hyperplane. Hence it satisfies the following lemma.

The set {g = 0} is identified via the identification P(V) ~ S?P(V) c P(S?V)
with the intersection {g)° n S?P(V).

Lemma 4.2.3. For all linear hyperplane H in SV the extremal points of P(H N
S2V=9) are also extremal points of P(S?V=0). In particular:

P(H n 5*V=%) = Hull (H n S*P(V)).
Furthermore if H = {q)° for qe Q, H n S?V = 5%{q = 0}.

Proof. Let f be a facet of P(S?V=Y). It is the intersection of this convex with
a projective hyperplane corresponding to [¢] € P(S?V*) = P(Q). The fact that
this is a supporting hyperplanes implies that ¢ € Q is a semi-positive element.
Let W < V be the vector subspace of isotropic vectors for q. The corresponding
facet is equal to P(S?W=0).

Hence facets of P(S?V>?) are of the form P(S?W=°) for W < V a linear
subspace. This has dimension 0 or at least 2, and therefore no facet is a segment.

Suppose that for some general projective hyperplane, some extremal point
p of P(H n S?2V>Y) is not an extremal point of P(S?V=?), then it belongs to
the interior of a facet of P(S?V>Y), that has dimension at least 2 as stated
previously. The intersection of this face with H contains therefore a segment,
so p is not an extremal point of H n P(S?V=9). O

Proof of Proposition[{.2.9. Let us prove that (i) implies (ii). The set Py n Py
is disjoint from P(S2V=?) if and only if there exist an element in P; + P, that
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belongs to the dual of P(S?2V=>Y), i.e. if there exist a positive bilinear form
q € P + P,. This form can be written as ¢ = ¢; — g2 with ¢; € P; and g5 € Ps,
therefore (¢) implies (i7).

Moreover (i¢) implies (i7¢). Indeed, if go — ¢1 is positive then {¢; > 0} c
{g2 > 0}.
It only remains to show that (i¢) implies (). Lemma implies that:

P({q1)° n S*VZ>0) = Hull(S%*{q; = 0}).

Hence g2 € P, € Q = S?V* is positive on the cone {(g;)° n S?V=Y ¢ S2V
and therefore P(P5) does not intersect P({(q1)° n S2V=9). O

4.2.3 Fitting directions.

The space Grq(Q) inherits the structure of a smooth manifold. A chart around a
point P € Gry(Q) can be constructed given a subspace @ such that P@Q = V.
We denote by Ug < Gry(Q) the open set of elements transverse to Q. Every
element of Ug can be written uniquely as the graph {z + u(x)|x € P} for some
linear map u : P — Q. Hence Uy can be identified with the vector space
Hom(P, Q).

The tangent space Tp Grg(Q) can be naturally identified with Hom(P, Q/P),
so that for each chart Ug containing P, the tangent space identifies with the
tangent space in the chart via the identification Hom (P, @) ~ Hom(P, Q/P).

Let v € Tp Grg(Q), that we see as an element of Hom(P, @/P). One can
interpret Ker(v) as the set of vectors in P which remains at first order in the
dimension d linear subspace when the subspace moves in the direction v. More
precisely the lines ¢ in the kernel are exactly the one such that for any Rie-
mannian metric on P(V) and every curve v in Grp(V) with v(0) = P and
~'(0) = v one has d(P(y(t)),¢) = o(t) at t = 0. Because of the identifica-
tion Tp Grg(Q) ~ Tpo Gry_q(Q*) where N = dim(Q), to such an element v
corresponds an element:

v°® € Hom (P°, 5?V/P°).

We will call fitting directions in the Grassmanian Gry(Q) the tangent di-
rections such that if (P;) € Gry(Q) moves in this direction, the corresponding
codimension d subspaces P (Pto N SZV>O) are disjoint from P (Pg’ N SQV>0), at
order one, see Proposition |4.2.5

Definition 4.2.4. We say that a vector v € Tp Gry(Q) is fitting if one of the
following equivalent statements holds:

o Ker(v°) c P° intersects trivially S?V =0,

e Im(v) € Q/P contains [¢] where ¢ is a positive element.
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Proof. We check that these two statements are indeed equivalent. We first show
that Ker(v®) = Im(v)®, where we use the natural identification (Q/P)* ~ P°.
We prove this by writing an equation that relates v and v°. By definition,

Tr(gp) = 0 for g € P and p € P°. Let us choose some representatives v(p) € SV
and v°(q) € Q for v(p) € S?V/P° and v°(q) € Q/P. Let us fix ¢ € P and
p € P°. If (P,) is a smooth curve with Py = P and with derivative v at ¢t = 0,

p+tve(p) + o(t?) € P, and ¢ + tv(q) + o(t?) € P?. Hence we get:

Tr (qv"(p) + (Q)P) = 0.
An element p € P° satisfies p € Ker(v®) if and only if Tr(v(q)p) = 0 for all
q € Q, hence if and only if the corresponding linear form on @/P belongs to
Tm(v)°.

Now we prove the equivalence of the two definitions. If there exist [¢] € Im(v)
with ¢ positive, then for any p € Ker(v®), Tr(pg) = 0. Hence p is not a positive
tensor. Therefore Ker(v®) ¢ P° intersects trivially S2V=°.

Conversely if Ker(v®) intersects trivially S?V>Y there exist ¢ € Q that do
not vanish on S2V=9 i.e. ¢ is positive. The class [¢] € Q/P belongs to Im(v).
O

Fitting directions are related to fitting pairs. More precisely:

Proposition 4.2.5. A vector v € Tp Gry(Q) is fitting if and only if for every C*
curve 7y : [0,1] = Grq(Q) with vo = P and v = v, (v,7%) is a fitting pair for
all t > 0 small enough.

Moreover in this case for any Riemannian metric on P(S?V') there exists an

€ > 0 such that for any t > 0 small enough the Riemannian distance between
P(v§ n S2VZ20) and P(vp n S2V=0) is greater that et.

Proof. Let us fix a complement H of P° in S?V. Let N = dim(Q) = w
We identify a neighborhood of P° ¢ Gry_4(Q) with Hom(P°, H). If there exist
a non-zero element p € Ker(v°®) n S2V = one can consider the curve where ~;
corresponds to

q € P° — tv(q).

The non-zero element p € S?V=° belongs to P° = 7§ and 47 hence the pair
(Y0,7¢) is not fitting for any ¢ > 0.

In general the element corresponding to ~; is equal for ¢ close to 0 to the
element of Gry_4(Q) which is the graph of the map P° — H:

a — tv(q) + oft).

The pair (7o, ;) is fitting if and only if Ker(v) n S?2V=? = {0}, hence if v is
fitting.

In this case the distance between P(y§ n S2V =) and P(79 n S?2V=9) grows
at least linearly in ¢ for ¢ close to 0. O
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Fitting vectors can be thought of analogs of spacelike vectors in a pseudo-
Riemannian manifold of signature (d, N) for some N > 0. For instance the
set of spacelike vectors is the union of a family of cones parametrized by S,
and so is the set of fitting vectors, as shown in the following proposition. This
analogy is also emphasized by Remark [£.2.8 and Theorem [4.6.1]

For a vector space W we write SW = (W\{0})/R~¢

Proposition 4.2.6. The set of fitting vectors in Tp Gry(Q) is equal to the union:

Clq-
[a]lesEp

Here Cpq is the conver open cone of elements v € Tp Grqa(Q) such that there
exist a positive element in the class v(q) € Q/P.

Recall that we use the identification v € Tp Grq(Q) ~ Hom(P, Q/P).

Proof. As in the third item of Proposition a vector is well-fitting if and
only if it belongs to Cf, for some [g] € SEp. We just check that the sets Ciq
are indeed open convex cones.
Let us fix a complement H of P in Q to identify Tp Gry(Q) with Hom(P, H).
If v, vz lie in Cpgp and if A, 1 € R, then for some g1, g2 € P one has vi(q) + ¢1
and vo(q) + g2 positive. Therefore (Avy + uva)(q) + A\g1 + pge is positive so
Avy + pvo belongs to C[q].
O

4.2.4 The space of geodesics in H3.

In this section we fix V = C? and restrict ourselves to pencils of Hermitian
quadrics. The result and notations of this Section are only used again in Remark
and Section but they serve as an illustration of the previously
introduced notions of fitting pairs and fitting directions.

Let H c Q be the subset of Hermitian bilinear forms on V. = C2. A
Hermitian form g € H that is not semi-positive or semi-negative is of Hermitian
signature (1,1), and hence its zero set in CP*' is a circle.

Let S?V = S?V @ S2V be the eigenspace decomposition for the operator
J ® J where J is the complex conjugation. Here S7V is the 4-dimensional
eigenspace associated to 1 and S2V = H°, the 6-dimensional space associated
to —1. The intersection of P(S2V) with the space of positive tensors is the
projective Klein model for H?3.

The annihilator of a pencil P € Gry**(H) is equal to P° = H° @ H where
H is a plane in S7V, which in turns corresponds to a geodesic in H? in the
projective Klein model.

mix

A pencil of quadrics P € Gry"™(#H) vanishes completely on two points in
CP', as in Figure where the zero set of three elements of the pencil are
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Figure 4.1: Three Hermitian quadrics in a pencil and the corresponding geodesic
in H3.

depicted. The space of mixed pencils in H can be identified with the space G of
unoriented geodesics in H?.

Two pencils in ‘H form a fitting pair if and only if we can find a circle in
each of the pencils that are disjoint. This is possible if and only if the two
corresponding geodesics in H? are disjoint, with disjoint endpoints. A fitting
pair of pencils is illustrated in Figure [£.2]

The space G of unoriented geodesics in H? admits a pseudo-Riemannian
metric of signature (2,2) : we now compare the notion of fitting vectors with
the notion of spacelike vectors. The tangent space at a geodesic with endpoints
(z,y) € CP' can be identified with T,CP' x T,CP'. The choice of a point in
the geodesic provides an identification ¢ : T,CP' — Ty(CIP’1 and a metric gy on
T y(CIF’l. Taking a different point in the geodesic means replacing ¢ by A¢ and
qo by A 1qo for some X € R-g.

Hence we can consider the pseudo Riemannian metric that is invariant by
the action of the isometry group of H?>:

q: (T,CP' x T,CP")? - R

(v1,w1), (v2, w2) = qo(P(v1), wa) + qo(B(v2), w1).

For this metric a vector (v,w) € T,CP! x Ty(CIP’1 is spacelike if and only if
(JO(¢(U)7U)) > 0.

Proposition 4.2.7. A pair of geodesics is a fitting pair if and only if the corre-
sponding geodesics are disjoint.

A tangent vector (v,w) to G ~ Gra(H) is fitting if and only if ¢(v) and w are
not positively anti-colinear, i.e there are no \, u € R=% such that A\é(v) = —pw.
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Figure 4.2: Two disjoint geodesics in H? and disjoint circles in CP' between
their endpoints.

Remark 4.2.8. In particular spacelike vectors are fitting, but not all fitting vec-
tors are spacelike.

Proof. Let Py, P, € Gry™(#). One has P(S2V) n P(5?V>") = . Hence the
subsets P(Py n S?2VZY) and P(Ps n S?2V=9) for Py, P, € Gry"™(H) are disjoint
if and only if the corresponding geodesics are disjoint.

Let (v, w) be a tangent vector to v € G and let 44 be a curve in G with this
derivative at ¢t = 0. If ¢(v) and w are not non-positively colinear, the distance
between v = v and ~; is greater that et for some € > 0 and ¢ small enough.
Indeed there exist z € T,CP' such that qo(¢(2), #(x)), go(¢(2), w) = 0, and the
totally geodesic disk in H?® through z, y normal to z at x contains ~ while being
at distance et to ;.

Hence the distance between the subsets P(P§ n S?V =) and P(P? n S?V=0)
is also greater than €'t for some ¢ > 0 and all ¢ small enough. Therefore by
Proposition this direction is fitting.

Conversely if If ¢(v) and w are non-positively colinear, then there is such
a curve ; such that the corresponding geodesics all have a common point.
Therefore by Proposition [£.2.5] this direction is not fitting.

O

4.2.5 Fibration of a convex set and globally fitting maps.

We consider continuous and smooth fibrations of the SL(V')-invariant convex
set P(S2V=0) by projective codimension d subspaces. Let M be a connected
manifold of dimension d. We are interested in continuous injective maps, or
smooth immersions u : M — Gry(Q).

138



We write u°(z) = (u(x))°. The map u determines a collection of projective
subsets of codimension d:

(P (u(z) N S2V20))IGM . (4.1)

If the image of v contains only mixed elements, then all the submanifolds in

(4.1)) are non-empty.

Definition 4.2.9. We call a continuous map u : M — Gr"™(Q) a globally fitting
map if the subsets in the collection (4.1]) are disjoint.

mix

A continuous map u : M — Gry"™*(Q) is a locally fitting map if for all z € M
there is a neighborhood U © M of x such that u;; is a globally fitting map.

Since dim(M) = d, the invariance of domain implies that the sets (4.1]
for a globally fitting map form a fibration for all x € M of a neighborhood in
P(52V=0) of P (u®(x) n S2V>0).

We now consider immersions from a manifold M of dimension d whose tan-
gent directions are all fitting.

Definition 4.2.10. A smooth immersion u : M — Gr’}**(Q) is a fitting immersion
if du(v) is fitting for all v e TM.

Because of proposition [£.2.5] fitting immersions are locally fitting maps.

The following proposition is the infinitesimal equivalent of Proposition [4.2.2
We write the statement in a way to emphasize this analogy.

Consider the tautological rank d vector bundle p : €& — Grg(Q), which
admits a tautological projection 7 : £ — Q.

Proposition 4.2.11. Given an immersion u : M — Gr'3"(Q), let zo € M. The
following are equivalent:

(i) the manifolds (P(u°(x))),cps define locally a smooth fibration of an open
neighborhood of P (uo(;z;o) A 52‘/20)7

(ii) for all v e Ty M, du(v) is fitting,

(iii) for allv € Ty, M there exist w € TE such that dp(w) = du(v) and dn(w) €
TQ is positive.

Note that that an element in T'Q is a pair (g, ¢) and we say that it is positive
if the tangent vector ¢ € Q is positive.

Proof. Note that since M has dimension d and u°(z() has codimension d, the
statement (i) is equivalent to having for any Riemannian distance dr on P(S?V)
and dps on M, for some ¢ > 0 when z is close to xq:

dr (P (u(z) n S?VZY) P (u®(20) N S?VZ0)) = edp(, o).
Proposition shows that the fitting condition is equivalent to having this

distance growing linearly, hence the statements (i) and (i) are equivalent.
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A pair (P,qp) € Grg(Q) x Q correspond to an element in £ if and only if
p € P. A pair (v,q) € Tp Gra(Q) x T,Q can be written as (dp(w),dn(w)) for
some w € T¢ if and only if ¢ belongs to the class defined by v(qo)-

Let us show this last claim. Let H be a complement of P in Q let u : [0,1] —
Hom(P, H) and ¢ : [0,1] — Q be smooth curves with derivative v and ¢ at ¢ = 0
and such that ¢(t) belongs the the graph of u(¢) for t € [0, 1]. For some smooth
curve G : [0,1] — P with G(0) = go and all ¢ € [0, 1]:

q(t) = q(t) +u(t)(q()).

Differentiating this at ¢ = 0 and we get exactly v(qo) + ¢'(0) = ¢, so ¢ belongs
to the class defined by v(qp), since ¢’'(0) € P. Reciprocally if this holds, one can
construct such a curve ¢, so the pair corresponds to an element of TE.

We conclude that (ii¢) is equivalent to the second characterization of fitting
vectors in Definition one can find such a positive lift w if and only if one
can find a class in Im(v) that contains a positive element.

O

In Proposition[4.7.1] we show how to construct some examples of fitting maps
from a totally geodesic immersion in the symmetric space.

Remark 4.2.12. If S is a surface in H?® with principal curvature in (—1, 1), then
the set of normal geodesics forms spacelike surface, for the pseudo-Riemannian
structure on the space of geodesics described in Section The correspond-
ing map Gu : S — G is called the Gauss map. Nearly Fuchsian representations
are representations of a closed surface group I'y admitting an equivariant surface
with principal curvature in (—1,1). They are a priori a larger class of represen-
tations than almost Fuchsian representations, for which the equivariant surface
with principal curvature in (—1, 1) is required to be minimal.

The space G also admits a special SLy(C)-invariant symplectic structure.
An immersion in G is locally the Gauss map of an immersion with principal
curvature in (—1,1) if and only if it is spacelike and Lagrangian for this sym-
plectic structure [ES22]. Therefore if the fitting immersion is not Lagrangian,
it does not come as the Gauss map of a surface in H®. Hence there could be
representations admitting fitting immersions that are not nearly Fuchsian.

Remark 4.2.13. The definition of a fitting immersion and the previous two
propositions can be generalized to the more general setup when S2?V is replaced
by a vector space W and S?VZ>? is replaced by a closed proper convex cone C
in W. In this setup positive quadrics should be replaced by elements in the dual
cone of C' in W*.

4.3 Fitting flows.

In this section we define the notion of a fitting flow, and study the consequence
of the existence of such a flow. We show next that such flows always exist for
fitting immersions. In this section let us fix a map u: M — Gry(Q).
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4.3.1 Definition and application of fitting flows.

The pullback u*E of the tautological bundle p : £ — Gry(Q) defines a rank d
vector bundle over M. We define the sphere bundle Su*& as the quotient of the
vector bundle ©u*& by the action of positive scalars.

Recall that M has dimension d. We consider flows on Su*& so that some
form of contraction occurs along the flow lines. We denote also by p the bundle
maps u*E - M, Su*E — M, with a slight abuse of notations.

The fiber at P € Grq(Q) of the bundle £ is identified with the vector subspace
P c Q. Since all the fibers are naturally identified with subsets of Q, there is a
natural projection 7 : £ —» Q. We still denote by 7 : u*E — Q the corresponding
projection with a slight abuse of notations.

Definition 4.3.1. A fitting flow for a continuous map u : M — Grg(Q) is a
continuous flow (®;)er on Su*E such that one can choose a representative ¢’ of
[¢'] = ®+(q) such that 7(q¢") — 7w(q) € Q is positive.

Note that the last condition is equivalent to asking that {m(q) = 0} c
{r(¢") > 0} in RP*"~!. Along such flows, the associated quadric hypersur-
faces are nested into one another. In particular if u admits a fitting flow it is
locally a fitting map.

Lemma 4.3.2. Let u: M — Grilni_x(Q) be a continuous map that admits a fit-
ting flow. The projection to Gry™™(Q) of the flow lines of the fitting flow are
embedded.

Proof. Assume by contradiction that for some ¢y > 0 and ¢ € Su*€ one has
u(z) = p(q) = p(P+,(q)). The fact that the flow is fitting implies that for some
A >0, Am(Py,(q)) —m(q) € Q is positive. This positive quadric belongs to u(x),
contradicting the fact that u(z) € Grl}™(Q).

O

Some fitting flows can be constructed by taking a geodesic flow on M for
some Riemannian metric and identifying v*€£ with the tangent bundle to M.
In general the projections of the flow lines of a fitting flow satisfy the following
topological property, which is clearly satisfied for geodesic flows.

Lemma 4.3.3. Let u : M — Gr7™(Q) be a continuous map equipped with a
fitting flow ® in a neighborhood of x € M. For t small enough the sphere
St : [q] € Su*E |, = po®y([q]) € M is homotopic to a generator of the homology
of U\{z} for any open neighborhood U of x in M that is diffeomorphic to RY.

The proof relies on the fact the dimension of M is equal to d, and hence the
manifolds P(u®(x) n S2V=?) locally define a fibration of P(S2V=?).

Proof. Let P = u(x). Let pg € P° SQV be a positive tensor, which exists since
the pencil P is assumed to be in Grj"™(Q). Let P’ € Gry(S?V) be a supplement
of P°. Since u is continuous for all y close enough to = the vector subspace
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u®(y) is transverse to P’, therefore there exist a unique vector ¢(y) € P’ such
that:
po+ ¢(y) € (po + P') nu’(y)  S*V=0.

This defines a continuous map ¢ from a neighborhood U of x € M to P’.

Let [q] € Su*&,. For all ¢ such that po ®,(q) € U, the linear form 7 (P:(q)) €
Q = S?V* vanishes on ¢ (p o ®;(q)) € S?V since this point belongs to u°(p o
®,(q)). Moreover 7 (®:(q)) — m(q) is a positive bilinear form since ® is a fitting
flow.

In particular m(q) € @ = S?V* is always negative on ¢ (po ®;(q)) € S?V.
Hence for ¢ small enough [¢ o S;] : Su*E, — SP’ has the same degree as [7] :
Su*E, — SP™* ~ SP which associates to [¢] € Su*E, the class [r(q)] € SP. The
map [r] is a diffeomorphism, so in particular 1 = | deg([x])| = | deg(¢) deg(S:)|.
Hence S; is a generator of the homotopy group of U\{z}.

0

Remark 4.3.4. In particular for an immersion u : M — Gr"™(Q) that admits a
fitting flow, choosing continuously an orientation of the pencils u(x) for z € M
is equivalent to choosing an orientation of M.

When M = N where N is compact and I' = 71 (M), the quotient Su*&/p(T)
is compact. Hence any Riemannian metric on Su*E/p(I") is quasi-isometric
to I' via any orbit map. When a fitting flow exists, the flow lines project to
quasi-geodesics in N.

Proposition 4.3.5. Let u : N — Gr™™(Q) be a p-equivariant continuous map
that admits a p-equivariant fitting flow ®. There exist C, D > 0 such that the
projection to N of the flow lines of ® are (C, D)-quasi geodeszcs Moreover for
every (z,y) € N2 there ezist a flow line whose projection to N starts at x and
ends at y.

Remark 4.3.6. Note that since there exist a flow line between any pair of points
in N, the map w is necessarily a globally fitting map.

In this proof we will use the Hilbert distance dg on the properly convex
domain P(S?V>0). It is defined which is defined using the cross ratio as
d([p1], [p2]) = log (cr ([p~], [p1]: [p2], [p7])) where [p1], [p2] € P(S?V>?) and
[p~], [pT] are the intersection of the projective line through [p;] and [ps] with
the boundary of the domain P(S?V>?). If the closure in P(S?V) of two sets
A, B c P(8?V>?) are disjoint, then the two sets are at positive distance for
the Hilbert distance. Indeed for every Riemannian metric ds on the compact
manifold P(S?V), the Hilbert distance between any two points in P(S2V>9) is
bounded from below by some uniform multiple of ds.

Proof. For all [q] € Su*E we consider the convex P({(r(q))° n S2V>0).
We choose a continuous and p-equivariant map s : Su*& — P(S?V>0) with
the property that s[q] € P((m(q))° n S?V>Y) for all [¢] € Su*&.
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We fix a I-invariant Riemannian metric g on Su*& with associated distance
dy. We set C; to be the supremum of dg (s([q1]), s([g2])) for all [¢1],[q2] €
Su*E such that dy([g1],[g2]) < 1, which exists since I' acts cocompactly on
N. The following inequality follows for all [¢1], [¢2] € Su*E from the triangular
inequality:

dp (s([q1]); 5([92])) < Crdy([ar]; [g2]) + Ci-

Indeed for some integer n < dg4([¢q1],[¢g2]) + 1 one can find elements z¢ =
[¢1], 21, , T = [g2] in Su*E such that for all 1 <4 < n one has dg(x;—1,2;) <
1. The triangular inequality for the Hilbert distance implies that:

da (s([a1]), 5([g2])) < nCh.

We now set Cy to be the supremum of dg (s([¢1]), s(P:([¢]))) for all [¢1] €
Su*€ and 0 < t < 1. Similarly we get the following inequality for all [¢] € Su*E
and t = 0O:

dg (s([q]), s(®:([q]))) < Cat + Cs.

Let K be a compact fundamental domain for the action of I' on Su*&
and let € be the infimum of the Hilbert distance for any [¢] € K between
P ((m(q))° n S?V=0) and P ({m(P1(q)))° n S?V>0). Since the flow is fitting,
the closures of these two sets in P(S?V) are disjoint for any [¢], and hence their
Hilbert distance is positive. Since K is compact, the infimum € is also positive.

The Hilbert distance between s(q) and s(®¢(q)) for t > 0 and ¢ € Su*€ is
greater than e(t — 1). Indeed for all integer 0 < n < ¢ the projective segment
between s(q) and s(®(g)), which is a geodesic for the Hilbert distance, intersects
P({m(®,(q)))° n S?V>0 in exactly one point x,. Moreover the Hilbert distance
between x,, and x, 1 for 0 <n <t —1is at least e.

Putting all of these inequalities together we get that for all ¢ > 0 and [q] €
Su*€:
€

a(t — 1) =1 <dy(s([a]), s(®:([a]))) < Ca(t + 1)

Hence the flow lines are quasi-isometric embeddings.

We now check that flow lines exist between any pair of points. Let x € M.
Given t € R we consider the d-sphere S; : ¢ € Su*&|, — ®¢(q) € u*E. Suppose
that some y € M, avoids the sphere S; for all ¢ > 0. Consider a curve 7 between
2 and y. The homological intersection between this segment and the spheres S;
in M\{z,y} is constant, and is equal to zero for ¢ large enough since the spheres
S; are then uniformly far from x. However for ¢ small enough, the homotopy
class of S; is the one of any small sphere encircling « by Lemma [£.3.3] This
leads to a contradiction since such a sphere will have homological intersection
equal to 1 or —1 with the curve 7. Hence there exists a flow line joining any
pair of points.

O
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As a consequence, we get the following.

Corollary 4.3.7. Let u: N — Gr™>(Q) be a p-equivariant continuous map that
admits an equivariant fitting flow, then it is an embedding. In particular it is a
globally fitting map. Moreover p: ' — G is a quasi-isometric embedding.

Proof. Since there are flow lines between any pair of points in N , for every
x #y € M one can find ¢ € u(x) and ¢’ € u(y) such that ¢ — ¢’ is positive. Since
the pencils u(x) and u(y) are mixed, one cannot have ¢ — ¢’ € u(x) = u(y) so
u(z) # u(y). Furthermore the pair (u(z), u(y)) is a fitting pair for all x # y € M,
hence u is a globally fitting map by Proposition

For any I'-invariant Riemannian metric g on SE, the map s from the proof of
Proposition [A.3.5]is a quasi-isometric embedding. Indeed let § be the maximum
of dg(z,z') or du(s(x),s(z’)) for any z,2’ in the same fiber of p : S€ — N. For
every x,y € SE one can find 2,9y’ in the same fibers respectively as x,y and in
the same flow line for ®. Hence for the constants C, D from Proposition

1 2
adg(x, y) — D — (5 +2)0 < du(s(x),s(y)) < Cdg(z,y) + D + (2C + 2)4.
Hence p is a quasi-isometric embedding. O

4.3.2 Existence of fitting flows

We now prove that the existence of a fitting flow is guaranteed on compacts for
fitting immersions. It is not clear if it is the case in general for locally fitting
maps.

Proposition 4.3.8. Let M be a manifold of dimension d.
(i) A fitting immersion u : M — Grq(Q) admits a fitting flow.

(ii) An equivariant fitting immersion u : M — Gry(Q) for a representation
p: T — SL(V), and a proper action of T on M admits a p-equivariant
fitting flow.

Recall that p : £ — Gry(Q) is the bundle map and 7 : £€ — Q is the
tautological map.

In order to construct the fitting flow we construct the vector field W on Su*€&
that generates the flow. This first step of the proof uses crucially the hypothesis
that dim(M) = d.

Lemma 4.3.9. Let u : M — Grg(Q) be a fitting immersion with dim(M) = d.
For every x € M and any q € u(x), there exists a lift w € T(y(q),qu*E such that
dn(w) € TQ is positive.
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We say that an element (g, ¢) € T'Q is positive if ¢ € Q is positive. Given any
quadric in the pencil u(z), we want to find an infinitesimal direction in which
to move this quadric as well as the pencil containing it inside the image of u so
that the derivative of the quadrics is positive.

This lemma is an inverse of point (ii¢) of Proposition here we fix an
element ¢ € u(xz) whereas before we were fixing a v € T M. In order to construct
this inverse we will use the fact that a continuous odd map between spheres of
equal dimensions is surjective.

Proof. Let us fix z € M. We construct a continuous map :
¢ T, M\{0} — u™E\{0}.

We require that this map satisfies A¢(v) = ¢(Av) for all v € T, M\{0} and
A € R. Note that in particular ¢ defines an odd map:

¢ ST, M — Su*&,.
We furthermore construct a lift:
¥ T, M\{0} - Tu*E.

In other words we assume that 1 (v) € Ty, (u*E) for v e T, M\{0}. We
require that ¥(Av) = A(dmy)(¢(v)) for all v € T, M\{0} and A € R where
my : u*E — u*€ is the multiplication by A. We require dn(¢(v)) € TQ to be
positive for all v € T,, M\{0}.

Finally we will make this construction so that in addition dp (¢(v)) = v for
v € T, M\{0}, but this property will be only used during the construction.

The following diagram illustrates the situation.

d’n’L)\

Tu*E —4"5 79

Y

—————— > utE —— Q

\pf»m

M

If we can construct such continuous maps, the fact that ¢ is an odd map
between two spheres of the same dimension implies that it is homotopically
non-trivial and therefore surjective. In particular for all [q] € SE, ;) ~ Su(x)
there exist a v € T,, M such that ¢(v) = ¢q. The element w = ¢ (v) then satisfies
the required conditions, so this finishes the proof.
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Now let us construct the maps ¢ and ¥. We first show that for all v €
T, M\{0} we can define ¢(v) and ¥ (v), and then we explain how to glue these
maps together to get a continuous map.

Since w is a fitting immersion, the point (ii¢) of Proposition implies
that given vy € T, M one can find ¢(vo) € u*E, an Y(vo) € Ty(y,)u™E such that
dr(¢(vg)) is positive and dp (1(vo)) = vo.

Note that the condition that dm((v)) is positive is an open condition and
the condition that dp (¥(v)) = v requires that 1 is a section of an affine sub-
bundle. Hence for every v € T,, M\{0} we can find a small neighborhood S in a
sphere in T,,M containing vy on which we can define ¢ and a lift ¢ such that
dm(1(v)) is positive and dp (¢(v)) = v for all v € S. We take S small enough so
that it does not contain any antipodal pair of points.

We define U to be the set of non-zero elements Aw for all A€ R and w € S,
and we extend ¢ and 9 to U in a homogeneous way. We define ¢ on U so that
@i(Av) = Ag;(v) for all A € R non-zero and v € S. We set ¢(Av) = A(dmy)y;(v)
for A € R, where m is the multiplication by A on u*&,. Note that dr (¢;(\v)) =
A2d7 (3 (v)) is positive and dp (1;(Av)) = M for all Av € U. Indeed momy = Ar
so dmodmy = Adw and pomy = p so dp odm)y = dp.

We therefore can construct an open cover {U;};er of T, M and continuous
maps ¢; : U; = Su*E < u*E, and lifts ¢; : U; — Tu*E such that dn(y;(v)) is
positive and dp (¢;(v)) = v for any i € I and v € U;. The U; can be assumed
invariant by scalar multiplication, and ¢ and 1 satisfy the aforementioned ho-
mogeneity conditions.

We now glue these maps together. Let y; : U; — [0, 1] for ¢ € I be a family
of functions that forms a locally finite partition of the unit. We define :

¢:veST,M in(v)qi)i(v) € (u*),.

i€l

Let us check that ¢(v) is always non-zero. This is where we use that
dp (v;(v)) = v for i € I, and we also use that the fitting immersion u is defining
a smooth fibration of the cone S2V>°. Let v : R — M be a curve such that
7(0) = z and 7/(0) = v. For all ¢t € R the intersection u°(y(t)) n S2V>0 is a
non-empty convex set, so we can construct a section s : t € R+ S2V>0 of the
fibration, i.e. such that for all t € R, s(t) € u®(v(t)).

Let us fix ¢ € I. Let ¢ : R — Su*& be such that ¢'(0) = ¢ (v), which
implies that po¢(t) is equal to v(t) at the first order around ¢ = 0 since v'(0) =
dp (¢(v)) = v. Since s(t) € u®(y(t)), one has w(q(t)) - s(t) = 0 at the first order
around ¢t = 0. Taking the first derivative at ¢ = 0 of this equation we get:

m(¢i(v)) - 8'(0) + dm(1)i(v)) - 5(0) = 0.
Since dm(w;(v)) is positive and s(0) is a positive tensor:

dr(v;(v)) - s(0) > 0.
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Hence for all i € I, 7(¢;(v)) - s'(0) < 0 and therefore 7(¢(v)) - s'(0) < 0. In
particular ¢(v) does not vanish.

In order to glue the 1; we need to be careful since the vectors ¥;(v) do not
belong to the same fiber of the tangent bundle Tu*E. Let X be the following
map:

S (qi)ier € (UE)y > g € (u*E), .
iel

Given v € ST, M we set:

P(v) = dE ((x:()9i(v)) i) -
This combination still satisfies that dm () is positive, indeed:

= > xi(v)dm (¢ (v)).

el

Note that we also get the following:

= xi(v)dp(ei(v (Zx ) =

el iel

This concludes the construction of ¢ and 1, and hence this concludes the

proof.
O

To prove Proposition [£.3.8 we use the directions w from Lemma [£.3.9]and we
glue these vectors into a vector field using a partition of the unit. We construct
the vector field W : Su*E — TSu*E in a similar manner as ¢ : STM — TSu*E.
Morally "W = 1 o0 ¢~!'", but the map ¢ constructed previously is not a priori
bijective.

Proof of Proposition[{.3.8 We construct a continuous vector field W over u*&,
except the zero section, such that for all # € M and non zero ¢ € u(z), Wyq =
d(mx)W, for A € R7% where m, is the multiplication by A on €. Such a vector
field defines a vector field W on Su*€. We require moreover that dm(W) is
always positive.

Given any non-zero qg € u*€, Lemma [4.3.9| provides the existence of some
W € Tiu(z),q€ such that dp(w) € du(T,M) and dr(w) is positive. The first
propertles 1mphes that w defines a vector in T, 4,u*E. For each such gy one can
find a neighborhood U of ¢ in u*& that is invariant by the R>%-action, and on
which one can define a map W satisfiying the required properties.

Using a partition of the unit as in Lemma we construct the desired
vector field on u*E. This vector field generates a flow that is a fitting flow.

Finally note that the collection U; as well as the partition of the unity can
be chosen to be p-equivariant, so that the vector field W is also p-equivariant,
and hence also the fitting flow ®.

O

147



4.4 The Anosov property and fibrations.

In this section we show that the existence of an equivariant map of pencils that
admits a fitting flow implies that the representation is Anosov. Moreover we
describe the domain that is fibered in RP?*"~!. Finally we apply this to show
that some quasi-Fuchsian representations do not admit equivariant maps that
admit a fitting flow.

4.4.1 The Anosov property

In order to show that a uniform contraction is taking place along the flow
lines of the fitting flow, we define a way to measure the distance between two
quadric hypersurfaces nested into one another. The characterization of Anosov
representations that we use is similar to the characterization in terms of inclusion
of multicones from [BPS19].

Let SO™* be the set of quadrics that are not semi-positive or semi-negative
up to a positive scalar.

Definition 4.4.1. Let ¢1, g2 € SO™* be such that for some choice of represen-
tatives, the difference go — g1 is positive. We define the cross ratio distance
cr([gz], [q1]) between [¢2] and [g1] as the minimum of [¢1, ¢a, 05, ¢]] € [1, 0] for
every quadruple £1,fo, 05, ¢} € P(V) of points in this order on a projective line
L such that the zeros of ¢; on L with multiplicity are ¢; and ¢} and the zeros
of g on L are {5 and 0.

If we fix an affine chart of L so that ¢1,¢s, 0, ¢7 correspond to the real
numbers xf < z}] < 1 < 9, the cross ratio [¢1,fa, €5, ¢1] is defined as:

! 7
[Ehe?a /275/1] = il Ill x 2o I/Z
To—xh X1 — )

Note that this quantity is greater than 1, and is infinite if and only if ¢; = ¢}
or lo = l,. However if ¢; and g are not mixed, there exist a projective line
L between a point on which ¢, is positive and a point on which ¢; is negative.
Therefore on this line ¢1 # ¢ and ¢o # £}, so cr([qz], [¢1]) is finite.

The logarithm of this quantity satisfies a triangular inequality.

Proposition 4.4.2. Let [q1], [q2], [q3] € SQ™™ be such that g3 — go and g2 — q1
are positive. Then :

er(lgs]: [a1]) = er(las]; [a2]) er(laz], [a1])-

We illustrate this proposition and its proof in Figure This figure
illustrates 3 quadrics of signature (1,2) in RP?. In these pictures the quadrics
are positive on the inside of the ellipse they define.
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g3 =10

Figure 4.3: Hlustration of Proposition [4.4.2

Proof. Pick any projective line that crosses the zeroes of the quadric ¢; and gs.
Let (41, la, U3, U5, 05, £)) be the intersections of L with the zeroes of g1, g2 and g3
respectively, counted with multiplicity and cyclically ordered. We fix an affine
chart for L such that this tuple corresponds to the tuple a% < 2 < 2] < 1 <
29 < x3 of real numbers. This yields the following :

/ /

T3 — X ry —

i 1 3
[zlae?n 37£1] X

Ty —ah  xp—ah

/ / / /

xr3 — & 1 — T r3 — T r1 — T

!l 1 2 2 3
[61,63, 3,(1] = < X > X ( X )

r3—xh  x—) T3 —Th Tl — T

Moreover one has:

/ / ! !

To—ah) i —ah  w3—x] x—ah

c < [0y, b, 05, 01] = x < X .
rllee] [a]) < [0, 62, 65, 41] Ty—ah  mp—ay)  wz—ah x—a)

X3 —xh X3 —xh T3 —mh T —Th
< [ly, 5,05, 05] = x < X )
ex(fas. aa]) < [fa, b, (5] = 200« B < B
Hence one has [¢y, 03,05, 0] = cr([qz], [¢1])cr([gs], [g2]) for every such pro-
jective line L.

Therefore cr([gs], [q1]) = cr([gs], [g2])er([gz], [a1])- O

A sequence of quadrics such that the cross ratio distance between the first
and last quadric goes to +oo satisfies that the intersection of all half-spaces
determined by the quadrics is a projective subspace.

Proposition 4.4.3. Let (qn)nen be a sequence of quadrics such that q,+1 — qn s
positive for alln € N and cr([q,), [q0]) goes to +00. Then (), cnian <0} < P(V)
s a projective subspace.

This proposition is proven in [BG09]. We write a version of the argument
here for the sake of completeness. We illustrate this proposition with quadrics
of signature (1,2) in RP? in Figure
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Figure 4.4: Hlustration of Proposition [4.4.3]

Proof. The intersection I = (), ;n{gn < 0} is a compact non-empty subset. Let
x # y € I and let L be the projective line from x to y. Suppose that there
exist z € L such that z ¢ I. Without any loss of generality one can assume that
the open interval S ¢ L bounded by x,y and containing z does not intersect

I. Indeed one can otherwise replace x,y by the points on L n I closest to z on
both sides.

Since z ¢ I there exist ng € N such that g,, is positive on z. For n >
ng, let z1,z9 be the two intersections of L with the zeroes of ¢, so that the
points (z, 2, , 2, 2,7, y) are cyclically ordered. The sequences (z;,) and (z;7) are
monotonic in S and must converge to z and y since S n I = ¢&. The value of
cr([gno], [4n]) is bounded from above by the cross ratio [z} , 2}, 2, 2. ], which
is turns converges to the cross ratio [z} ,z,y,2,,] < oo when n goes to +o0.
This contradicts the fact that cr([g,], [¢0]) goes to +oo. Hence for every pair of
points in I, the associated projective line is contained in I. In particular I is a

vector subspace. O

We now apply these results to prove that representations that admit an
equivariant fitting immersion, and more generally a fitting map with a fitting
flow, are Anosov.

Theorem 4.4.4. Letu: N — Gr((jn’n)(Q) be a continuous p-equivariant map that
admits an equivariant fitting flow. The representation p is {n}-Anosov, and for
any q € Su*E, the limit map at the limit ¢ € OT' of the the flow line (P(q)) can
be characterized as:

P (7(0) = [){m(®:(q)) < O}.

t=0

Note that the flow lines of an equivariant fitting flow are quasi-geodesics by
Proposition hence the limit point  is well-defined.

Proof. The flat V-bundle over Su*E associated with p admits a continuous split-
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fatooon L —

Figure 4.5: Illustration of the proof of Theorem [£.4.4]

ting E @ F where for q € Su*E&:

P(Ey) = [ {n(®_i(q)) =0},

t=0

P(Fy) = [ ){m(@:(q)) < 0}.
=0
This defines transverse vector subspaces by Proposition since cr(®.(q), )
and cr(—®_4(q), —q) go to +oo when ¢ goes to +00. Moreover the quadrics in
the pencils in the image of u are of signature (n,n), one must have dim(E,) =
dim(F,) = n so this splitting is well-defined. This splitting is preserved by .

We now construct a metric h on this flat V-bundle over Su*E. Given g €
Su*E we define the symmetric bilinear form hg on V = E, @ F;, so that this sum
is orthogonal and h, is equal to 7(¢) € Q on E, and —7(¢q) € Q on F,. Note
that by definition of E; and Fj, hy is positive.

We also introduce an auxiliary symmetric bilinear form k' of signature (n,n)
on this flat V-bundle over Su*& so that the sum E, @ F; is orthogonal and h'q
is equal to 7(q) € Q on E, and on Fj,.

Our first step is to compare the quadric hy with 7(g). Let L be a projective
line intersecting P(E,) at some e and P(F;) at some f. In Figure [4.4.1} we
illustrate some RP? ¢ RP*"~! containing the projective line L. Let f1, ¢, be
the zeroes of m(q) on L and {3, ¢, be the zeroes of hy on L, so that £y, {5 lie in
the same connected component of L\{e, f}. Since N is compact, there exist a
maximum § < oo for all ¢ € Su*E and all such projective line L of the following
quantity:

| log ([6, by, L, f]) |

Now we turn our attention to the contraction properties of ®. Let ¢t > 0 be
a real number and let ¢ € Su*E. Let v € B, and w € F,. We are interested in

151



the following ratio :
_ hay(g)(0)hg(w)

ha, () (w)hq(v)
Let e, f be the lines generated by v, w and L be the projective line joining them.
Let /1, ¢} be the zeroes of m(q) on L, £2, (5 the zeroes of hi on L, £3,{3 be the
zeroes of w(®4(g)) on L and finally 4, £} the zeroes of hg, gy on L. We assume
that ¢, 05, 03,44 all lie on the same component of L\{e, f}.

The cross ratio [e,{q, /4, f] is equal to Rz. Indeed (5 is generated by

R

hq% (w)v—i—hé (v)w and ¢4 is generated by hgt(q)(w)v+hit(q) (v)w, up to changing
4; by £ for 1 < i < 4. Hence:

h2 (w)v + % (V)w) Av h%(w)v + hi (Vw) Aw )
le, 2,0y, [] = ( 2@ 2ele) ) x( ’ ql ) — R2.

(hgt(q) (w)v + hgt(q)(v)w) AW (hg (w)v + hé (U)w) AV

However due to our comparison of 7(q) and h;, one has:

675 < [6,€1,£25f]7[67€3a€4;f] < 65'

Therefore [e, o, 4y, f1/[e, 1,3, f] = e72%. Hence R% > e~ e, {1, 03, f]. This
last cross ratio is larger than:

[€1, 41,83, €3] > cr (m(De(q)), 7(q), ) -

Since @ is a fitting flow and since N is compact, there exist o > 0 such that
cr (m(®1(q)),m(q),) = e for all ¢ € Su*E. Hence by the triangular inequality
from Proposition for all t > 0:

cr (W((I)t(Q))v W(Q)a ) > ea(til)'
Hence we get the following estimate:

ha,(q)(w)hg(v)

This implies that the splitting V = E, @ F;, is {n}-contracting in the sense
of [BPSI19] with respect to the flow ® for the metric h. Moreover I" acts co-
compactly on Su*E and every geodesic in I' is at uniform distance from a flow
line of ®. The domination of this splitting implies an exponential gap for the
singular values [BPS19] Theorem 2.2], which implies that p is {n}-Anosov. The
vector subspace £ (¢) is the contracted subspace Fy.

O

4.4.2 Fibered domain of discontinuity

Such an equivariant map into the space of pencils that admits a fitting flow
induces a fibration of the Guichard-Wienhard domain of discontinuity.
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Proposition 4.4.5. Let N be a compact manifold of dimension d with fundamen-
tal group T. Let p: T — SL(V) and u : N — Gr&n’n)(Q) be a p-equivariant
continuous map that admits an equivariant fitting flow ® on Su*E. The union
of P(u®(x) n S2V=Y) for z € N cover all of P(S?V>?), and the closure of this
union intersects the space of rank one points P(V) ~ S?P(V) < P(S?V=0) ex-
actly at the domain of discontinuity for {n}-Anosov representations considered
by Guichard-Wienhard [GW12]:

Q=PV)\ (J PE Q). (4.2)
¢eer
The intersection of P(u°(x) n S2V>0) with the set of rank one points for
x € N defines a fibration over N of §2.

In this argument we will use the Hilbert distance on P(S?V>?) already in-
troduced for the proof of Proposition m For a subset A ¢ P(V) we write
S2A c P(S?V) the corresponding set of rank one lines.

Proving first that P(S?V>?) is fully covered first helps us proving that the
Guichard -Wienhard domain is also fully covered.

Proof. Let us fist prove that all of P(S2V>?) is covered by the union of P(u°(z) n
S2V=9) for z € N. We fix a Riemanian metric on N that defines a Riemannian
metric g on N , with associated distance dy. Since u is globally fitting, see
Remark for all z € N there exist a neighborhood U of P(u°(z) n S2V>0)
in P(S2V=9) that is covered by the manifolds P(u°(y) n S?V=Y) for y in the ball
for dg of radius 1 centered at 0. This neighborhood contains an e-neighborhood
of P(u®(z) n S2V>9) for the Hilbert metric on P(S2V>?) for some € > 0. Since
N is compact, this € > 0 can be chosen independently of x.

Now let us fix some g € N and some [po] € P(u°(z0) n S2V>0). Given
any [p'] € P(S?V>?) one can find a finite sequence pg,p1,- -+ ,pr = p’ in S2V>0
so that the Hilbert distance between [p;] and [p;+1] is less than e for all 0 <
i < k. By induction, and since the Riemannian metric d4 is complete, one can
construct for all 1 < i < k a point x; € N such that [p;] € P(u®(z;) n §2V>0)
and dg(z;—1,2;) < 1. Therefore the manifolds P(u°(z) n S2V>?) cover all of
P(S2V>0).

Now let us consider the fibered domain in projective space. Consider a rank
one line [p] € S*P(£}(x)) for some ¢ € OT. Suppose that p belongs to u°(()

for some x € N. There exist a flow line (®;([¢]))i=0 starting at p([¢]) = = and
converging to ¢ € 0I' ~ dN by Proposition Theorem implies that
7(g) € @ must be negative on £2(¢) and hence p cannot belong to u®(x).

Conversely fix a point x € N and take any rank one point [p] € S?Q in the
Guichard-Wienhard domain of discontinuity. There exist a sequence (x,) such
that [p] belongs to the limit of P(u°®(z,) n S?V=?), since these manifolds cover
P(S?V>0). We consider some [q,] € SE, such that ®;([g,]) € SE,, for some
t, > 0, which exist by Proposition If t,, diverges when n varies, then
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the set P(u®(z,) n S*P(V)) becomes arbitrarily close to S*P(£2(,)) where C,
is the limit when ¢ goes to +o0 of ®:([g,]). This would contradict the fact
that [p] € S*Q, as in this case [p] € P(£}(¢)) where ¢ is a limit point of (¢,).
Hence the sequence (x,,) is bounded and therefore converges up to subsequence
to some 2., € N, and [p] € P(u®(z.)).

O

4.4.3 A quasi-Fuchsian representation with no fitting immersions.

Having a representation that is Anosov is not sufficient to ensure that there
exist an equivariant fitting immersion. We show that there are quasi-Fuchsian
representations that admit no such immersions of Hermitian pencils of quadrics.
We use here the notations from Section [£2.4l

Theorem 4.4.6. There exist a quasi-Fuchsian representation p : I'y — SL(2,C)
for some genus g large enough that admits no p-equivariant fitting immersion
u: S, — Gry"™(H) = G.

Moreover it also admits no continuous map u : :5'\; — Gry"™(H) = G that
admits a p-equivariant fitting flow.

Here V = C? and if p : T'y — SL(2,C) < Sp(4,R), the Guichard-Wienhard
domain of discontinuity corresponds to the pullback in RP? of the complement
in CP! of the limit set of p. Since I'y is a surface group, this domain in cp!
is the union of two topological disks, and hence for each = € :S‘\; the geodesic
corresponding to u(z) has one endpoint in each of these discs.

An other ingredient of the proof of Theorem [£.4.6]is the following.

Proposition 4.4.7 ([HW15] Corollary 3.5]). Given any C* embedded circle v in
CP', and any € > 0, there exist a quasi-Fuchsian representation p: Iy —
SL(2,C) for some genus g large enough whose limit set has Haussdorf distance
at most € with ~.

Proof of Theorem[}.4.6 We consider the Jordan curve v from Figure Let
x,y, z be as in the figure. We consider a quasi-Fuchsian representation of I'y for
a genus large enough such that its limit set A contains z, z and is close enough
to 7 using Proposition [£.4.7] More precisely let s, and s, be the open arcs of
the circle of CP! passing through z,v, z respectively between z,y and vy, z and
let I be the interior of the Jordan curve A. We require that the union U, of
all the connected component of I'\s, whose closure contain z is disjoint from
the union U, of all the connected component of I'\s, whose closure contain z.
These two disjoint sets are illustrated for the curve  as the two gray regions.

Let p: T'y — SL(2, C) then be such a quasi-Fuchsian representation. Suppose

that it admits an equivariant continuous map u : SNQ — Gry™(H) with an
equivariant fitting flow ® on Su*&. By Proposition there exist a flow line
(®+(q))ter such that its projection v : R — S, is a quasi-geodesic between the
points of dI" corresponding to x and z in the limit set.
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For all t € R, let z; € CP! be the endpoint of the geodesic corresponding to
u(y(t)) that belongs to the interior of the Jordan curve A. When ¢ goes to 400,
x¢ converges to z and it converges to x for ¢t going to —oo. Moreover x; always
belong to the circle determined by ®;(q).

There exist a to € R such that y belongs to the circle ®4,(q). Note that this
great circle splits CP! in two parts, one containing = and s, and one containing
z and s,. In particular (z:)i>¢, must lie in U, and (xt):<s, must lie in Uy,
leading to a contradiction. Hence no such map u can exist.

Figure 4.6: A Jordan curve in CP*

4.5 Fitting maps and maximal representations.

Let us consider representations p : I' — Sp(2n,R). We prove our main result,
which is the characterization of maximal representations in terms of maps of
pencils. The first part introduces w-regular pencils, as well as a connected
component of the space of w-regular pencils. We then state the characterization,
and then present the construction of a map of pencils with a fitting flow for any
maximal representation. This construction relies to a map from the space of
pairs of Lagragians to the space of quadrics. We briefly discuss how one can
also use this map to decompose the projective structure into polygons of quadric
hypersurfaces in Section

Throughout this section we set d = 2, and consider the case when N = S,
is a surface.
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4.5.1 Definition of maximal pencils.

We say that a quadric ¢ in (RQ",w) is w-regular if it is positive on some La-
grangian ¢; and negative on some Lagrangian ¢5. We call Gry (Q) the space
of w-regular pencils. These pencils have in particular the property that the
corresponding subsets of P(S?V) intersect transversely the symmetric space of
Sp(2n,R), see Lemma

Remark 4.5.1. If a locally fitting map u : S, — Gr{™™(Q) admits a fitting flow
which is equivariant with respect to a representation p : I' — Sp(2n,R), the
image of u must lie in Gr (Q) as p is {n}-Anosov and its limit map takes values
in the space of Lagrangians.

There are non-maximal representations admitting equivariant fitting immer-
sions, for instance almost-Fuchsian representations in SL(2,C) < Sp(4,R). In
order to obtain the maximality property, we need to restrict ourselves to the
correct union of connected component of Gr§ (Q).

Let P € Gry(Q) be a pencil, and fix an orientation for P. Recall that L,
in the space of Lagrangians in R?”. We construct a "boundary map' for an
w-regular pencil of quadrics, defined up to homotopy. Before defining this map,
note the following;:

Lemma 4.5.2. Let g € Q be an w-regular element. The set of Lagrangians £ such
that q is positive on £ is an open ball.

Proof. There exist some ¢, € L, on which ¢ is positive. Moreover there exist
some ¢_ € L,, on which ¢ is negative.

Every Lagrangian ¢ on which g is positive must be transverse to /_, hence it
can be written as the graph {z +u(z) | z € ¢4} of some linear map v : {1 — (_,
and one has for all v € £7:

q(v,v) + q(u(v),u(v)) + 2q(v,u(v)) = q(v + u(v),v + u(v)) > 0.
Since ¢(v,v) > 0 and q(u(v),u(v)) <0, for all 0 < A < 1:
g(v + Mu(v), v + Au(v)) = g(v,v) + Ag(u(v),u(v)) + 2Agq(v, u(v)) > 0.

We can identify the elements of £, transverse to £_ as the vector subspace
of the space of maps u : ¢4 — ¢_. We just proved that in this chart the set
of elements on which ¢ is positive is open and star-shaped, hence it is a open
ball. O

We now define the "boundary map" of the pencil.

Proposition 4.5.3. Let P € Gr5(Q). There exist a continuous map Ep : SP — L,
such that for all [q] € SP, ¢ > 0 on £p([q]). Moreover any two such maps are
homotopic, so the free homotopy type [£p] is well defined.
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Proof. A map &p is exactly a section of the bundle {([q],¢) | ¢ > 0} — SP,
which is a fiber bundle whose fibers are open balls. Such sections always exist

and are unique up to homotopy.
O

We say that a pencil is mazimal for some orientation if [{p] = n[7], where [7]
is the generator of 71(L,) introduced in Section We denote by Gry'**(Q)
the space of pencils that are maximal for some orientation. This is a union of
connected components of Gry (Q) as the homotopy type [£p] is locally invariant
for P € Gr5(Q).

Remark 4.5.4. The previous discussion allow us to distinguish several connected
components of the open subspace Gry (Q) by looking at the homotopy type of
the boundary map &p.

As a recal we have the following inclusions:
G (Q) c Gr%(Q) < Gri™™(Q) < GrI™(Q) < Gry(Q).

All these inclusions are open, and the inclusion Gry?**(Q) c Gry(Q) is a
union of connected components.

4.5.2 Statement of the characterization.

We obtain the following characterization of maximal representations in terms
of the existence of locally fitting maps that admit a fitting flow.

Theorem 4.5.5. A representation p : I'y — Sp(2n,R) admits a p-equivariant
locally fitting map u : Sy — Gry**(Q) that admits a p-invariant fitting flow if
and only if it is mazimal for some orientation of Sg.

In this case the orientation of S, for which p is maximal is induced by the
orientation of the maximal pencils u(x) for « € Sy and Lemma

In particular if a representation p admits an equivariant fitting immersion
u Sy — Gry™*(Q) then it is maximal because of Proposition This
theorem leaves the following question open:
Question 4.5.6. Given a maximal representation p : I'y — Sp(2n,R), is there
always an equivariant fitting immersion u : Sy — Gry™*(Q) ?

We show in Section that this is true for Sp(4,R), and in this case there
exist a fitting immersion whose image lies in a single special Sp(4, R)-orbit of

G (Q).
The following Lemma shows one direction of Theorem the other di-
rection is proven by Lemma

Lemma 4.5.7. Let p:T'y — Sp(2n,R) be a representation that admits an equiv-

ariant continuous map u : 3; — Gry"™*(Q) that admits an equivariant fitting

flow. Then p is mazimal for some orientation of S,.
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Proof. We first apply Theorem which shows that p is {n}-Anosov. Let
x € g; , we prove that the homotopy type of the boundary curve £ is the same
as the homotopy type [§u(x)] from Proposition [4.5.3] We consider the map (.
that associates to [¢] € Su*&,, the limit of ®4([¢]) in . This map is homotopic

in :9\; U d'\{z} to the map (; that associates the projection p(®;). Hence by
Lemma ¢1 defines a diffeomorphism of degree 1 between the circle Su(z)
with its maximal orientation and the boundary oT" for the induced orientation.

The map £ 0(, has the homotopy type [£,(x)] associated to u(x): it defines

a boundary map as in Proposition The fact that p is maximal is then a

consequence of the characterization of maximal representations from Theorem

Indeed u(x) € Gry"**(Q) implies that [, ()] = n[7], and we already know
that the degree of (., is equal to the degree of (; which is equal to 1.

O

4.5.3 Construction of a fitting flow

In this section we study special quadrics in R2™ associated to pairs of trans-
verse Lagrangians. These objects will allow us to construct fitting continuous
embeddings of pencils.

Definition 4.5.8. Let ¢1, {5 be two transverse Lagrangians in R?”. We define
e, ¢, to be the symmetric bilinear form on R2" such that if 7y, m are the
projections on /1, {5 associated to the direct sum ¢; @y = V:

ey 05 (0, 0) = w(m (v), m2(v)).
Note that Qa0 = —qey 05
Remark 4.5.9. In particular gy, ¢, is characterized by the fact that ¢, and > are

isotropic and for all v € ¢1,w € {5:
qey e, (U7 ’U)) = w(’Ua w)
Maximal triples of Lagrangians can be characterized as follows:

Lemma 4.5.10. A triple of Lagrangians ({1,402, ls) is mazimal if and only if qe, ¢,
s positive on {s.

Proof. Let us write ¢1, {3, {3 as in Section for some symplectic basis :
fl = <;[;1’ ZTo, - xn>7
lo = (x1 + €1Y1, T2 + €2y, ** T + €nYn ),

3 =<y1,y2,++ Yn)-
The form g, ¢, can be written in this basis as:

1 n
ey 05 = 521’2‘@1/7 +y Q.
i=1

This form is positive on ¢, if and only if all of the ¢; are positive, and hence
if the triple is maximal. U
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These quadrics have also the following remarkable properties for maximal
quadruples of Lagrangians.

Lemma 4.5.11. Let (¢1,02,03,04) be a mazimal quadruple of Lagrangians, i.e.
such that each cyclic oriented subtriple is maximal. The bilinear form qe, ¢, —
e, ¢, 15 positive. In particular the zero set of these quadrics define two disjoint
quadric hypersurfaces in P(R?").

Note that a triple of Lagrangians (¢1,{s,¢3) is maximal if and only if cor-
responding linear map u € Hom(¢1,¢3) whose graph is equal to ¢ is such that
w(+,u(+)) is positive on ¢;.

Proof. Let us prove the first part of the statement. Since (¢4, ¢1,¢3) is a maximal
triple of Lagrangians, ¢; can be written as the graph of some linear map u; :
£y — {3 such that w(-,u1(+)) is a positive bilinear form on ¢4. Similarly since
(€4, 02, 03) is a maximal triple of Lagrangians, ¢5 can be written as the graph of
some linear map usg : £4 — 3 such that w (-, us(+)) is a positive bilinear form on
ly.

Let v € R?", it can be decomposed uniquely as v = v; + vy with v € ¢ and
vy € f5. Moreover there exist some unique x,y € £4 such that v; = z+wuq(x) and
vy =y +us(y). The vector v decomposes therefore as v = x +y + uy (z) + ua(y).
One computes that :

Qea,05(0,0) = Qo 0, (0,0) = W (2 + Y, ua () + ua(y)) —w (& +w(2),y + ua(y)) ,
= w (7, u1(2)) +w (y, u2(y)) + 2w (y, ua (2)) -

Finally the fact that (¢, ¢3, £3) forms a maximal triple implies that the bilin-
ear form w (-, (ug — u1)(+)) is positive. Therefore the previous expression, for y #
0, is strictly greater than w (x, u1(z)) +w (y, v1(y)) + 2w (y, u1 (x)), which is non-
negative since w (-, u1(+)) is positive. In the case when y = 0, this last inequality
is strict for « # 0. Otherwise the previous inequality w (y, (u2 — u1)(y)) > 0 is
strict. Therefore for v # 0, q¢, ¢, (v,v) — gy 2, (v, v) > 0. O

We now state an infinitesimal version of Lemma [.5.11] that we will use in
Section

Lemma 4.5.12. Let (T, ¢~ : [0,1] — L,, be smooth and such that {; = ¢(0)
and €y = £=(0) are transverse and the linear maps 4+ € Hom(¢g ,¢,) and 4~ €
Hom(¢§ ,£8) corresponding to (¢7)'(0) and (€7)'(0) are such that w(-, 4™ (-)) and
w(u=(+),-) are positive respectively on €3 and ¢y. The derivative at t = 0 of
Qe+ (1),6- (1) 18 positive.

Proof. The proof is similar to the previous one. Let u*(t) € Hom(¢F, (5 ) and
u~ (t) € Hom(¢y , £3) be the linear maps whose graph is equal to ¢*(¢) and £~ ()
respectively. Let v € R?". The derivative of the evaluation of ¢, = Qe+ (t),0- (t)
to v can be written in term of the derivative v,", ¥, of the vectors v;} € £, (),
v; € {_(t) such that v = v;” + v} :

do(v,v) = wlvd, vy ) + w(Bg , vy ).
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One has 9 = —0; since v = v;" + v;” does not vary with ¢. The fact that
v €4, (t) for all t implies that 0 can be written wt + 4% (vy) with w € £} .
Similarly 0, can be written w™+4~ (v] ) with w™ € £;. Note that w(vg,w™) =
0 as they belong to the same Lagrangian £§ . Similarly w(vy,w™) = 0 and hence:

do = 2w(vg , 4™ (vg)) + 2w(@ (vg), vg)-

This is positive by our assumption.
O

We now construct an equivariant continuous map that admits a well-fitting
flow.

Proposition 4.5.13. Let p: Ty — Sp(2n,R) be a mazimal representation. There

exist a continuous map u : Sg — Gry**(Q) that admits a fitting flow.

We prove this lemma using some averaging argument, where the basic build-
ing blocks are the quadrics associated to pairs of Lagrangians in the limit curve.
This construction is not unique, as we start by fixing a hyperbolic metric.

Proof. Fix a hyperbolic metric on S,. Since Sy is oriented it admits an associ-

ated complex structure J. For v € Tjg_; write £, = £7(¢,) where (, € oI is the
limit point of the geodesic with initial derivative v. We furthermore define:

(o]
Qy = Qlyyl_yy-

These quadrics for a fixed z € SNQ do not in general define a pencil of quadrics.
We therefore define the following quadric associated to v € TS, :

Qv = J <”U, w>(ﬁud)‘
wETjg

Here we take the integral for the measure A on T} S induced by the hyperbolic
metric. For each z € S, we consider the pencil u(z) = {g,|v € TSy} € Gra(Q)
which is well defined since ¢, depends linearly on v € T,.S.

(n,n)

First we check that these pencils are in Gry "’ (Q), by proving that they are
actually w-regular. N N

Let v € T)1.S, be non-zero for some x € X. For all w € T,.S, if {w,v) > 0, the
triple (¢ jw, Cv, Cyw) is positively oriented and hence (¢_ s, £y, £ 1) is maximal
and hence ¢, is negative on £,. If (w,v) < 0, the triple (£, Ly, {— i) is
maximal and hence ¢, is positive on ¢,. Hence g, is negative on ¢,, and by a
similar argument ¢, is positive on ¢_,,, which are Lagrangians. In particular g,
is w-regular for all v € T;:S‘\;, and so u(x) is w-regular.

We consider the geodesic flow on uS€ ~ Tlg; , and we prove that this flow
is fitting. Let ¢t > 0, z € S, and v € T} S,. Let (y,v') be the image of (z,v) by
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CJp(w)

C— Jw

Figure 4.7: Proof of Lemma

the geodesic flow at time ¢, and let ¢ : T;:S'\; - Tyl:S'\; be the identification given
by the parallel transport along the geodesic between x and y.

Let w e Tjg be such that {w,v) > 0. The following quadruple is positive
(G C—J(w)s CIe(w ,CJw) due to the negative curvature of the metric we put
on :9\;, see Figure ﬁ Hence the corresponding quadruple of Lagrangians is
maximal. Therefore q;(w) — q5, is positive by Lemma [4.5.11] When {w, v) < 0,

the following quadruple is positive ((_jg(w) (= Jw;> CIw, Cip(w)) and therefore
q;(w) — ¢,, is negative. Hence :

Qv — Qv = L (v, w) (q;(w) - qfv) dX > 0.

eTLS
We therefore have proven that the geodesic flow for the fixed hyperbolic
metric is a fitting flow on 715, ~ Suf.
Finally as in the proof of Lemma the homotopy type of £ is equal to

the homotopy type of &) for all x € S;. Hence these pencils are in Gry"*(Q).
O

Remark 4.5.14. These pencils always lie in the same connected component of
Gr5(Q). Indeed on can construct such a pencil u(z) € Gry (Q) given any max-
imal continuous map & from 6:9\; into the space of Lagrangians. The space of
such maximal continuous maps being path connected, any two such pencils can
be joined by a path in Gry(Q). It is not clear if Gry***(Q) only contains this
connected component.
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4.6 Fitting immersions and spacelike immersions for
PSp(4,R)

In this section we explain how the data of a maximal immersion into the Pseudo-
Riemannian space H?? with principal curvature in (—1,1) induces a fitting
immersion. Combining this with a result from Collier-Tholozan-Toulisse we
show that our characterization of maximal representations can be improved in
Sp(4,R).

Note first that one has the following exceptional isomorphism:
PSp(4,R) ~ SO,(2, 3).

This isomorphism comes form the fact that PSp(4, R) preserves a subspace
of dimension 5 of A2R*, as well as a symmetric bilinear form of signature (2, 3)
on this subspace. Hence PSp(4,R) acts naturally on the pseudo-Riemannian
symmetric space with constant negative sectional curvature H?2, which consists
of vectors of norm —1 in R%3. The space of Lagrangians £ in R* is naturally
identified with the space of isotropic lines dH?? in R%3,

To a pointed totally geodesic spacelike plane (p, P) in H?? one can associate
an element in a special G-orbit of Gry'®*(Q). For every geodesic in this plane
passing though the base point, we consider the endpoints ¢,y € £ ~ JH??,
and the space generated by all such quadrics g, ¢, forms a plane which is a
an element of Gr(Q). Indeed for some symplectic basis (1, 22,y1,y2) the
Lagrangians corresponding to the boundary of the spacelike plane P are for
0 € [0,2x]:

10 = o (2) s (2 o (2) s (2)

The corresponding quadric gy (gy,¢ry for @ = 0 in the basis (z1,y1,72,¥2) is
equal to:

01 00
1.0 0 0
0 0 01
0 010

Let Ry be the following rotation matrix:

(S50 o))

The corresponding quadric gy(g),¢(9+) in the basis (21, y1, 22, y2) is equal to:

Rg 0 R_ 0
0 R% qe(O),@(‘n’) 0 R_ .
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Hence gy(9),e(0+7) is equal to:

sin(f)  cos(0) 0 0
cos(f) —sin(0) 0 0
0 0 sin(f)  cos(6)
0 0 cos(f) —sin(6)

These quadrics span a plane in @ when 6 varies, and these quadrics are
w-regular so this plane is in Gr5 (Q).

We define the Gauss map Gu : S — Gry'®*(Q) of a spacelike immersion
u: S — H?? the map that associates to = € S the pencils corresponding to the
pointed totally geodesic spacelike plane (u(z), P) where T, P = du(T,S).

Theorem 4.6.1. Let v : S — H?2 be a spacelike immersion such that for all
v e TS, |[I,v,v)|] < ||v|l. The Gauss map Gu : S — Gry"**(Q) is a fitting
mmersion.

Let S be a spacelike surface in H?™. Let 7 : [0,1] — S be a geodesic for the
induced metric on S parametrized with unit speed an let V' : [0,1] — T'S be the
unit orthogonal vector field to v/ in S along 7. We denote by V* V= :[0,1] —
0H?? the endpoints of the geodesic rays starting respectively at V and —V. Up
to changing the sign of V one can assume that (V*,4%, V") is a maximal triple
where vt is the endpoint of the geodesic ray srarting at +'.

Lemma 4.6.2. Suppose that |I,(V,y")| <1, then the curves VY, V~ :[0,1] —
OH?"™ are spacelike.

Note that in this lemma I,,(V,~') is timelike, so its norm is the timelike
norm that we see as a positive number.

Proof. We fix a orthogonal basis (e;) of R*" such that e; and ey have norm 1
and e; for 4 = 3 have norm —1. Without any loss of generality we suppose that
7(0) = e3, 7'(0) = e; and V(0) = e3. Let d be the flat connection on R*™ and
let V be the Levi-civita connection on u(.S) for the induced spacelike metric. For
t close to 0, V(t) = V(0)+tdV(0) and dV = VV + Iz (V,v') + I,,(V,~'). Here
the second fundamental form of H?" inside R%*"*! is equal to Iyz.n(vy,ve) =
{v1,v2yvg for vi,ve € TDOHZ’". Note also that since v is a geodesic and V a
orthogonal unit vector field along v, VV = 0.

Hence V(t) = V(0) + tI,(V,v") + o(t). Since V has norm 1, we can write a
representative of the isotropic line V' (t) as v*(¢) = V(¢) + v(¢). Therefore:

v (t) = vt (0) + ¢ (Lu(V,7') + e2) + o(t).

This curve is spacelike since ey is spacelike of norm 1 and the (timelike) norm
of I,(V,~') is strictly less than 1. The same holds for V. O
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Proof of Theorem[{.6.1 The Gauss map Gu : S — Gry**(Q) comes with an
identification between u*& and T'S. We consider the geodesic flow ® on ST'S for
the metric induced by w. Lemma implies that the Lagrangians £*, ¢~ in R*
corresponding to the isotropic lines V* and V~ in R?3 satisfy the hypothesis
of the second part of Lemma [£.5.12] Hence the derivative of the associated
quadrics along this flow is positive so @ is a fitting flow. Since u admits a fitting

flow it is in particular a well-fitting immersion.
O

The existence of a maximal spacelike immersion was proven by Collier-
Tholozan-Toulisse and a bound of its second fundamental form is a consequence
of a result from Cheng.

Theorem 4.6.3 ([CTT19],[Che93]). Every mazimal representation p : I'y —

S0,(2,3) admits a unique p-equivariant mazimal spacelike immersion u : Sg —
H?22. Moreover it is an embedding and for all v e T'S, ||I,(v,v)| < ||v].

The bound on the second fundamental from is a consequence of a maximal
principle, see [LT22, Corollary 5.2]. Note that this reference it is written that
the square norm of I, is at most 2, but since u is maximal it implies that the
principal values are at most equal to 1.

Putting together Theorem [£.6.1] Theorem [£.6.3] and Theorem [£.5.5 we ob-
tain:

Corollary 4.6.4. Every mazimal representation p : T'y — Sp(4,R) admits a

p-equivariant fitting immersion u : Sy — Gry**(Q). This characterizes repre-
sentations which are mazimal for some orientation of Sy.

4.7 Geometry of the symmetric space.

In this section we prove Proposition and Lemma [£.7.4) which are two facts
independent from the main results of the chapter. We show how to construct
fitting immersions of pencils using totally geodesic surfaces in the symmetric
space P(S?V>Y). Then we prove that the codimension d submanifolds corre-
sponding to pencils in Gry(Q) intersect transversely the symmetric space of

Sp(2n, R) embedded in P(S2V>9).

Given an immersion h : M — P(S?V>?) from a manifold M of dimension d
we define its Gauss map Gh : M — Grg(Q), that associates to x € M the pencil
P associated with the codimension d projective subspace of Gry(Q) orthogonal
to u(h) at h(z), for the SL(V)-invariant Riemannian metric on P(S?V).

The invariant Riemannian metric of the symmetric space associated to SL(V)
can be described by a natural identification between P(S2V>Y9) and its dual cone
P(S?(V*)>%). We therefore reformulate the definition of Gh as follows.

We first identify P(S2V>0) with P(S%(V*)>?) via the map [X] — [X71].
Note as once again we view elements of S?V and S?(V*) = Q respectively
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as maps V* — V and V — V*. An immersion h : M — P(S?V>?) hence
defines a dual immersion h* : M — P(S?(V*)>%). Fixing a volume form on
V and V* allows us to lift this map to a map 7* into the space of elements
in $2(V*)>% whose corresponding map V — V* has determinant 1. We define
Gh(z) = dh™ (T, M) < S?V* = Q.

Proposition 4.7.1. Let h : M — P(S?V>0) be a totally geodesic immersion. Sup-
pose that the image of the Gauss map Gh : M — Gry(Q) contains only regular
pencils, i.e. pencils containing only non-degenerate quadrics. The immersion
Gh is then a fitting immersion. If h is complete it is a globally fitting map.

Remark 4.7.2. The fibration of a domain of P(V') induced by the fitting map in
this proposition is a particular case of Theorem from Chapter

Note that if d > 2, the signature (a,b) of the quadrics of a regular pencil
must satisfy a = b since S~ is connected. Hence a regular pencil for d > 2 is
just an element of Grfin’n)(Q) where dim(V) = 2n.

As a corollary on can construct fitting immersions for some representations
that factor through SL(2,R). Indeed if one has a representation ¢ : SL(2,R) —
SL(V) there exist a t-equivariant totally geodesic map h : H? — SL(V), see

Section 2.7.11

Proof. Let v : R — M be a geodesic for the metric induced by h. We write
the representative of h(y(0)) with determinant 1 in a basis (e;)ser such that for
some M\’ € R, for all ¢ € R:

h(v(t)) = Z eie; ®e;.
iel
The dual immersion can be written as:

R (1) = Dle Mef @et.

el

The element q; € Q corresponding to (E* o~)(t) is the symmetric bilinear
form:
q = 2 —Nie” e @ek.
iel

The derivative of (g;) at t = 0 equals:

Z Me ik @ef.
iel
This is a positive bilinear form if and only if all the \; are non-zero, which is
the case if and only if the bilinear forms ¢; are non-degenerate, i.e. if the image
of Gh contains only regular pencils. In this case, the positivity of the derivative
of (¢q¢) implies that the geodesic flow on ST M induces a fitting flow on Gh*SE,
so Gh is a fitting immersion.
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If moreover h is complete, it is p-equivariant for the discrete and faithful
action of some closed surface group I'. Hence Corollary implies that h is
a globally fitting map. U

Let us fix a symplectic form w on V = R?". Let Xg, be the subset of
P(S2V>9) consisting of tensors [¢~!] that are compatible with w, i.e. such that
for some complex structure .JJ on R?", ¢ +iw is a hermitian metric on V. Recall
that ¢ : V — V* is a bilinear form, and ¢~ ! : V* — V is a tensor.

The space Xgp, is a copy of the symmetric space associated to Sp(2n,R),
which is a totally geodesic subspace of the symmetric space associated to the
Lie group SL(2n,R) whose model is P(S?V>?). However it is not a projective
subset : the closure of the projective convex hull of Xg;, in P(S?V>9) is equal to
P(S?V>?) since it contains all the extremal points of P(S?V>?), i.e. the rank
one elements S2P(R?").

The intersection of Xg, with a general linear subspace is not necessarily
transverse. However it is the case for some special subspaces.

Definition 4.7.3. We say that an element ¢ € Q is w-regular if for some La-
grangians £, £~ the bilinear form ¢ is positive on £* and negative on £~ .

We denote by Grf(Q) the set of pencils whose non-zero elements are w-
regular.

In particular an w-regular pencil ¢ has signature (n,n).

Lemma 4.7.4. Let P € Gry(Q) be an w-regular pencil, i.e. such that all its
non-zero elements are w-reqular. The space P(P°) intersects transversely the
manifold X, in a codimension 2 submanifold.

Proof. Let ¢ € Q be w-regular, and let € Xg, n P({¢)°) be an intersection
point. Up to acting by Sp(2n,R), one can assume that x = [X '] € P(S?V)
where X is the bilinear form whose associated matrix in some symplectic basis

1S:
I, 0
0 I,)"

The annihilator of the tangent space to Xg;, at this point can be identified
with the space of following symmetric matrices where A is symmetric and B is

antisymmetric:
A B
—-B A)°

Suppose that the intersection is not transverse, i.e. that ¢ can be written
in this form. Let £* and £~ be Lagrangians on which ¢ is respectively positive
and negative. Since the maximal compact U(n) acts transitively on the space
of Lagrangians one can assume that T = (&1, ,x,). Let £7 = (@1, , T, ).
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The Lagrangian ¢~ is transverse to £+ so for some symmetric matrix U, one can
write this Lagrangian as the image of :

(1)

The fact that ¢ is positive on £* implies that A is positive. The fact that ¢
is negative on £~ implies that the following is negative:

UAU +A—-BU +UB.

But A and UAU are both positive and the bracket [B, U] has trace zero so it
cannot be negative. Hence the intersection must be transverse. O

Proposition 4.7.5. A tangent vector in TXg, < TP(S?(V*)>?) is w-regular if
and only if the corresponding element of Q is non-degenerate.

Proof. Given v € TXg, one can write the corresponding element g € Q for some
symplectic basis (1, Zp, Y1, Yn) as:

n

DN @af —yf @u).

=1

This bilinear form is regular if and only if all the \; are non-zero. If this is
the case that it is positive on the Lagrangians {x1,- - - ,z,) and negative on the
Lagrangian {y1,- - , Yn)- O

4.8 Polygons of quadric hypersurfaces

We briefly discuss in this section how the quadrics associated to pairs of La-
grangians defined previously can be used in an other way to decompose the
geometric structures associated to maximal representations into hexagons of
quadric hypersurfaces. This decomposition is a generalisation of the work
Burelle-Treib for Schotty subgroups [BT17].

Let us cut the surface Sy by closed curves that intersect transversely so that
no three curves intersect at a single point and all the complementary regions
are hexagons.

Once such a topological decomposition is fixed, one can put a hyperbolic
metric Sy so that the curves are geodesics, by making all complementary regions
regular right-angled hexagons. Conversely by gluing right-angled hyperbolic
hexagons one can construct such a decomposition. This defines a tiling of Sy
into hexagons indexed by a set I.

Fach hexagon h € I is described by its cyclically ordered oriented sides
(1,725,773, ¥4, 75, V6). Note that non-adjacent sides are parallel for any hyper-
bolic metric on S,.

Let p : Ty — Sp(2n,R) be a maximal representation, and let ¢, be the
associated limit map. Let h = (v1,7v2,73, 74,75, 76) be the positively ordered
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Figure 4.8: An hexagon in :S’; and its oriented sides.

sides of an hexagon in the decomposition of g; that we fixed. To each of these
oriented geodesic v with ordered endpoints (y*,v~) we associate the quadric
¢y = qu+ - where (T = £2(yF), €7 = £)(y7). The intersection of the sets
{gy; = 0} defines a compact set that we call a hezagon of quadric hypersurfaces.

Proposition 4.8.1. The hexagons of quadric hypersurfaces associated to all of the
hexagons h € I define a tiling of the Guichard-Wienhard domain of disontinuity

[E2).

Proof. We first see that the hexagons of quadric hypersurfaces have disjoint
interior. Indeed, given two distinct hexagons hi,hs € I, there exist a side v
of h; that separates hy and he. Every side of hy is either parallel (or equal) to
71, or is orthogonal to ;. In the first case there are one or two sides o that
separate y; and hs. In the second case let v5 be the side of ho intersecting 7,
one of its two adjacent sides v, of hy separates hy from ;.

The fact that v; and 5 are parallel or equal with opposite orientations and
the fact that £ is maximal implies that {g,, > 0} is disjoint from {g,, > 0},
see Lemma Hence h; and hs have disjoint interior.

We now show that every hexagon in I of quadric hypersurfaces lies in the
Guichard-Wienhard domain of discontinuity. Let us fix ¢ € dI'y. For every
hexagon h € I there is a side = of h separating h from (. The maximality of the
boundary map £ implies that P (5?(()) is disjoint from {¢, > 0} by Lemma
lem:Triples of Lagrangians quadric. Hence the union of all the hexagons of
quadric hypersurfaces do not intersect P (f,’}(( )) for any (.

Finally note that p(I'y) preserves and acts cocompactly on the union of
all the hexagons of quadric hypersurfaces as there are finitely such hexagons
and they are compact. Moreover this union is open: indeed if x is a point in
projective space in the boundary of the hexagon of quadrics associated to h € I,
there is exactly one or two adjacent sides v of h such that g, vanishes on z. In
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Figure 4.9: A hexagon in :S‘g and two views on the corresponding hexagon of
quadric hypersurfaces in RP”.

this case x belongs to the interior of the union of the respectively two or four
hexagon of quadrics corresponding to h; and its neighbors for the sides 7y such
that g, vanishes on x

The Guichard-Wienhard cocompact domain of discontinuity contains this
non-empty cocompact domain of discontinuity, Therefore this this domain must
be equal to a union of connected components of the Guichard-Wienhard domain.
For n = 3 this domain is connected [GW12]. For n = 2 the domain has two
connected components, but so does also the hexagons of quadric hypersurfaces
as illustrated in Figure [1.9] Hence the hexagons of quadric hypersurfaces form
a tiling of the Guichard-Wienhard domain of discontinuity. O

Figure [£.9] illustrates a hyperbolic hexagon and the corresponding hexagon
of quadric hypersurfaces in the case n = 2 for a maximal representation con-
structed as the composition of a Fuchsian representation and the diagonal em-
bedding of SL(2, R) into Sp(2n,R). The hexagon is the complement of the inside
of the six ruled hyperboloids in the picture.

This hexagon of quadric hypersurfaces is a fiber bundle over an hyperbolic
hexagon with fiber the union of two cricles. It is disconnected and the two views
in Figure put an emphasis on the two connected components.

In this Figure, Lemma is illustrated by the fact that the quadric
hypergurfaces corresponding to non-intersecting geodesics in H? do not intersect
in RP°.
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Remark 4.8.2. To a hexagon h € I with sides (7;)1<i<6 We can associate a
subset of the convex set P(S?V>?) and in the symmetric space Xg, c P(S2V>0)
associated wit Sp(4, R) as the set of classes [p] such that p € S?V>" and ¢, -p =
Tr(gy, op) = 0. The hexagon of quadric hypersurfaces arises as the intersection
of the closure of this set of the set of rank one points P(V) ~ S?P(V) < P(S?V).
One can similarly show that these subsets for h € I define a tiling of P(S2V>?),
which restricts to a tiling of Xgp.
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Chapter 5

Maximal and Borel Anosov
representations

In this chapter we study maximal representations in Sp(2n,R) that satisfy ad-
ditional Anosov properties.

We first recall in Section the definition of Anosov representations in
Sp(2n,R) and fix some notations. In Section we describe a special chart of
the space of Lagrangians. In Section we discuss the link between hypercon-
vexity and smooth properties of the boundary maps.

In Section we characterize maximal representations among {n — 1,n}-
Anosov representations by the hyperconvexity property H,. In Section
and we prove that maximal and Borel Anosov representations are Hitchin.

This chapter is an adaptation of the article [Dav24].

5.1 Anosov representations.

Let T'y denote the fundamental group of a closed orientable surface of genus
g = 2. This is an hyperbolic group in the sense of Gromov, and we will denote
by 0I'y its Gromov boundary, which is a topological circle.

Let N > 2 be an integer. Let us fix some Euclidean structure on RV, and
for every element M € SL(N,R) denote by o1(M) = 02(M) = -+ = on(M) the
singular values of M in non-decreasing order. Given 7y € I'; we will denote by
|7]w the word length of v with respect to some fixed finite generating set of I'y.

The following definition is not the original one, but a characterization due
to Kapovich-Leeb-Porti [KLP17]:

Definition 5.1.1 ([BPS19, Section 4]). A representation p of I'y into SL(N,R)
is ©-Anosov with © < {1,--- , N} if there exists some constants C,«a > 0 such
that for all y e I'y and k€ © :

Ok+1 (p(r)/)) €7a|'y|w
ool SCCTT
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If a representation is Anosov with respect to A = {1,--- N}, then it is
called Borel Anosov.

Remark 5.1.2. If a representation is ©-Anosov then it is automatically ©'-
Anosov for all ©' c ©.

For a general semi-simple Lie group G, the Anosov property depends on a
subset of the set of simple roots, or equivalently of a conjugacy class of parabolic
subgroups. Here we identified the set A of simple roots of the simple Lie group
SL(N,R) with the set {1,--- , N —1}.

Boundary maps are important objects naturally associated to an Anosov
representation.

Theorem 5.1.3 ([GW12],[BPS19]). Let p:T'y — SL(N,R) be a {k}-Anosov rep-
resentation. Let Gr(k, N) be the Grassmannian of k-dimensional subspaces in
RN. There exists a unique continuous p-equivariant map flg : 0Ty — Gr(k,N)
that is dynamic preserving, i.e for all element v € T'y if v is the unique at-
tracting fized point of v in 0I'y then f’; (v1) is the unique attracting fized point
of p(y) in Gr(k,N).

The property of being dynamic preserving determines §§, since the set of
attracting fixed point of elements of I' is dense in OI'.

Notation 5.1.4. For any {k}-Anosov representation and any x € 0I'y we will
write x’; = {’;(x) as in [PSW2I] to make expressions involving boundary maps
lighter. We will still keep the notation ff,f to denote the boundary map itself.
As a convention z) = {0} and 2} = R for any = € dT',.

Boundary maps satisfy additional properties: they are transverse and com-
patible.

Proposition 5.1.5 ([GW12|,[BPS19]). Let p : I'y — SL(N,R) be a {k}-Anosov
representation. The representation p is also {N — k}-Anosov, and for every pair
x,y € 0Ly of distinct points, x’; and yéV*k are transverse (transversality). If p
is {k, €}-Anosov with k < £ then x’; c xf, for all x € T, (compatibility).

As a consequence the image of boundary maps at two different point are in
general position.

Corollary 5.1.6. Let k,0 > 1. Let x,y € 0I'y be distinct points :
dim (x’; N yﬁ) =max(k + £ — N,0).

Let us assume now that N = 2n is even and let us fix a symplectic form w on
R?", Consider the subgroup Sp(2n,R) < SL(2n,R) consisting of elements which
preserve w: representations into Sp(2n,R) can be seen as particular examples of
representations into SL(2n,R). The boundary maps of Anosov representations
whose images lie in Sp(2n,R) have some additional properties.
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Lemma 5.1.7. Let p: 'y — Sp(2n,R) be a {k}-Anosov representation. For any

1L 1. .
xzedly, (x’;) = xf)”*k, where (:r’;) is the orthogonal of x’; with respect to w.

In particular if k < n the space xif

1S 1sotropic.
Proof. The orthogonality condition holds for a closed I'j-equivariant subset of
0I'y. Since the action of I'y is minimal on 0I'y ([KB02] Proposition 4.2), it is
sufficient to check it for a single point. Let x be the attracting fixed point of
an element v € I'y, so 33]; is the unique attracting fixed k-dimensional subspace
of p(vy) and 1’ka the unique attracting fixed (2n — k)-dimensional subspace of
p(7)-

Since v € Sp(2n,R), it maps any subspace V1 for V < R?" to (y- V) .

Hence (x”f)L is an attracting fixed point for the action of vy on the space of

(2n — k)-dimensional subspaces. Therefore (ac’;')l = xz”_k. If £ < n, then
2=k < (az:’;)l and hence x’;

p is isotropic.

O

5.2 Charts of the space of Lagrangians and maximal-
ity.

Recall that we fixed a symplectic structure w on R?". Let £, be the space of

Lagrangians in R?", i.e. the space of n-dimensional subspaces of R?" on which

w vanishes. Let P,Q € L, be two transverse Lagrangians, i.e. with trivial
intersection.

Definition 5.2.1. A linear map u between P and @Q is symmetric (with respect
to w) if for all v,w e P:

w (v, u(w)) = w (w,u(v)).
The space of symmetric linear maps u from P to @ will be denoted by
SymP7Q

For Q € L,, let Ug be the set of Lagrangians transverse to (). The open sets
(Ug)gec, form an open covering of £,,. Given a Lagrangian P transverse to
the Lagrangian @, we get an identification of Ug with the vector space Symp .
This provides a family of linear charts of £,,.

Proposition 5.2.2. The graph of an element w € Symp  is an element of Ugq.
This defines an identification of Symp ¢ with Ug < L,,.

Proof. Recall that the graph of a linear map u : P — @ is the vector subspace
of elements v + u(v) for v e P. It is a Lagrangian if and only if for all v,w € P:

w((v+uv),w+u(w)) =0.
Since P, (@ are Lagrangians this is equivalent to having for all v,w € P:

w (v,u(w)) —w (w,u(v)) = 0.
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Hence the graph of u is a Lagrangian if and only if u € Symp .
O

Notation 5.2.3. Let P,Q be transverse Lagrangians and R be a Lagrangian
transverse to @, i.e. in Ug. We denote by ug,Q the corresponding element in
Symp ¢-

Bilinear symmetric forms can be degenerate: they can have singular spaces.

For any vector space V let Q(V) be the space of symmetric bilinear forms on
V.

Definition 5.2.4. A subspace U of a vector space V is singular for a symmetric
bilinear form ¢ in Q(V) if for all ve V,w e U, on has ¢(v,w) = 0.

Let P, @ be two transverse Lagrangians in £,,.

Proposition 5.2.5. An element u € Symp, determines a symmetric bilinear

form q € Q(P) defined for v,w e P as:
q(v,w) = w(v,u(w)).

This defines an identification of Symp o and Q(P). Moreover Ker(u) is
singular for q.

This identification also defines linear charts Ug ~ Q(P).

Definition 5.2.6. For R € Uy, define qﬁ,Q € Q(P) as the following symmetric
bilinear form on P:

qg,Q(Vv W) =w (Vv qu(W)) :

An invariant that classifies orbit of triples of pairwise transverse Lagrangians
up to the action of Sp(2n,R) is called the Maslov index [BILW05]. We will be
only interested by triples with maximal Maslov index, so we will only define
the notion of maximal triples of Lagrangians. For a vector space V', let Q1 (V)
denote the open cone of scalar products in the space of symmetric bilinear forms

Q(V).

Definition 5.2.7. Let (P, R, Q) be three pairwise transverse Lagrangians in R?".
This triple is called mazimal if the symmetric bilinear form quQ isin Q(P)",
i.e. is a scalar product.

A triple (P, R, Q) is maximal in this sense if and only if its Maslov index is
maximal, i.e. if its Maslov index is equal to n (see for instance [BP17, Lemma
2.10]).

Remark 5.2.8. The signature of qﬁQ is locally constant on the space of triples
of pairwise transverse Lagrangians in R?”. Hence the space of maximal triples
of Lagrangians (P, R, Q) forms a connected component of this space.
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Let us fix an orientation of dI'y, i.e. a connected component of the space
of distinct triples in 0I'y that we will call positive triples. The Toledo invariant
of a representation p : I'y — Sp(2n,R) of a surface group I'y is an integer 7,
that depends only on the connected component of Hom(I'y, Sp(2n,R)) in which
p lies. This invariant satisfies |T,| < n(2¢g —2). A representation has mazimal
Toledo invariant when 7, = n(2g —2) [BILWO05]. The following characterization
will be taken as a definition for the rest of the paper.

Definition 5.2.9. Given an orientation of dI'y, we say that a representation p :
I'y — Sp(2n,R) is mazimal if it is {n}-Anosov and for every positive triple of
distinct points z,y, z in 0I'y, the triple (x;‘,yg, z7) is maximal, in the sense of

P
Definition £.2.7

Maximal representations in this sense are exactly representations with max-
imal Toledo invariant: any representation p with maximal Toledo invariant is
{n}-Anosov ([BILWO05], Theorem 6.1), and its boundary map sends positive
triples to maximal triples ([BILWO05], Theorem 7.6). Conversely any represen-
tation that admits a continuous equivariant map from 0I'y to £, which sends
positive triples to maximal triples has maximal Toledo invariant ([BIW03], The-
orem 8) and in particular is {n}-Anosov.

An example of the boundary curve 5/%0 of a maximal representation pg :
I'y — Sp(4,R) is given Figure The boundary curve which is represented
is a part of the Veronese curve, which is the boundary curve of a 4-Fuchsian
representation pg, i.e. the composition of a fuchsian representation and the irre-
ducible representation SL(2,R) — Sp(4,R). The triple (z,y, z) for this picture
is a positive triple in dT'y. In the picture the point zio is "at infinity".

5.3 Differentiability properties of the boundary maps.

The k-th boundary map of an Anosov representation p of a surface group I'y
has smooth image if p satisfies the hyperconvexity property H}, which we now
define. Recall that we use Notation [5.1.4] for the boundary maps of an Anosov
representation.

Definition 5.3.1. Let N > 2 and 1 < kK < N — 1 be integers. Let p : I'; —
SL(N,R) be a {k — 1,k, k + 1}-Anosov representation. We say that p satisfies
property Hy, if for all triples of distinct points z,y, 2z € dI'y, the following sum
is direct :

(m’; N zf)VJ’l_k) + (y’; N zé\”’l_k) + z,ﬁv_l_k. (5.1)

If p satisfies property Hy for all 1 < kK < N — 1, we say that p satisfies
property H.

These properties can be also written as follows.

Lemma 5.3.2. For a triple of distinct points x,y, z € L'y, the sum (.1)) defining
property Hy, is direct if and only if the following sum is direct:

xl; + (yﬁ A ziVH*k) + zévflfk. (5.2)
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Figure 5.1: The Veronese curve £ (0Ty) in the chart Q(z ) ~ U.2 < L2 with
the cone Q*F (22 ).
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Proof. The transversality of the boundary maps stated in Proposition [5.1.5
implies that the sum (y’pc N zévﬂ_k) @ z,év_l_k is necessarily direct. If a vector
in x’; belongs to this sum, it also belongs to x’; ) zfy“*k. Hence if (5.1)) is direct

‘o b ; ; k o  N+1—k k
then (5.2) is direct. The converse is immediate since x; N 2, c zp. O

For a {k —1,k,k + 1}-Anosov representation p : I'y — Sp(2n,R), some of
these properties are equivalent.

Proposition 5.3.3. Let p : I'y — Sp(2n,R) be a {k — 1,k,k + 1}-Anosov repre-
sentation. It satisfies property Hy if and only if it satisfies property Hop_.

Proof. Let x,y,z € 0I'y be distinct points. Let us assume that the sum (5.2) is
direct. Hence :
k k. 2nt+l1—k 2n—1—k
Tp O ((yp n an+ ) ®z," ) =1{0}.

By considering the orthogonal of this set with respect to the bilinear form w,
and because of Lemma one has:

B b (@) 0 2H) = R

Since z’p’“1 c z’;“, then (yﬁ"”c @z’;’l) N z’p““ = (yﬁ”*k N z’;“) @ z’p“’l.
The following sum is equal to R?” and the sum of the dimensions on the sum-
mands is equal to 2n, so it is direct:
2n—k 2n—k k+1 k—1) _ m2
"+ ((ypn nZzp )®Zp ) = R™.

This means that this sum is direct for all distinct z, y, z, and hence property
Hs,,_}, is satisfied. The converse implication is immediate by setting k' = 2n —
k. O

For any z,y,z € 0Ty distinct and any {n,n — 1}-Anosov representation p :
I'y — Sp(2n, R), the following subspace is a hyperplane in z}:
n—1 n n
(y, " ®2,) Nz},
Indeed y;}’l @z, is an hyperplane of R2™ that cannot contain x, since x,; @z, =
R2". This hyperplane can be seen as the image of y;‘_l by the linear projection

onto acg in R?" associated with the direct sum R?" = x:j ® z;}.

The transversality of boundary maps and property H,, imply the following
transversality properties. These properties will be used in the case n = 2 to

prove Lemma [5.5.4] and Theorem [5.5.5]

Lemma 5.3.4. Let p : T'y — Sp(2n,R) be a {n — 1,n}-Anosov representation.
Let x,y,z € L'y be three distinct points. Then :

n
p
(it) x}~" and yitt nx} are transverse;

Land 221 A g

o p ore transverse;
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(iii) (yp~' @2]) nap and 2}t A xl) are transverse;

(iv) if moreover p satisfies property Hy, then (y,~ 1 ®z,) Ny and y"+1 Ny
are transverse.

Proof. The transversality of the boundary maps between z and z implies that

xﬁ‘l and Z;LH have trivial intersection so :r:p_ and 271 A x:j_l intersect triv-
ially. The same argument shows that, xy Land y”Jrl Nz, are disjoint.

The transversality of the boundary maps between y and z implies that y;— 1
and zp+1 have trivial intersection. In particular let v € (y, 1o zp) Ny and
w € z, be such that v + w € (. L. Suppose that moreover v E z;”rl. Then
v+w eyt n it since 2 < 2t Hence v +w = 0, 50 v € 2 N 2.

Therefore v = 0. As a conclusion (y) ' @ z}) n z} and 2™ n 27} are disjoint.

Finally property H,, implies that if we replace (z,y, z) by (z,z,y) in (5.2)),
the sum is direct, and hence x? o N y”Jrl intersects trivially zj; @y,’;_l. Therefore
(yp~ ' ®z)) naly and yi Tt A 2 are disjoint. O

The main tool that we are going to use in Sections[5.4]and [5.5is the following
result from Pozzetti, Sambarino and Wienhard [PSW2I].

Theorem 5.3.5 ([PSW21], Theorem 4.2). Let p:T'y — SL(N,R) be a {k—1,k, k+
1}-Anosov representation. If p satisfies property Hy then the map 5’; P T x’;
has C! image, i.e. g’;(arg) c Gr(k,N) is a 1-dimensional C' submanifold.

At the point x’; this 1-dimensional submanifold of Gr(k, N) is tangent to the

curve consisting of spaces containing x’;’l and contained in x’;H.

We will be interested in the regularity of the boundary curve {7, whose
image lies in the space of Lagrangians £,, when p(I'y) < Sp(2n,R). Once an
{n}-Anosov representation p has been fixed, given 3 points z,vy, 2 € o'y with
x,y # z we will write for simplicity :

vy

y’ﬂ
Y [ — n
SyInm, - Symm" z" ’ um,z - U p z" € Sym ) qz,z - qx%,z;‘ € Q(xp)

Let us rephrase Theorem in the charts Ug ~ Sym
Lagrangians £,,.

of the space of

T,z

Lemma 5.3.6. Let p : Ty — Sp(2n,R) be an {n — 1,n}-Anosov representation
that satisfies property Hy. Let x,z € 0'y be distinct points. For y # z, the
tangent space at u} , to the image of the map:

w e dl\{z} — Uy

is the affine line of Sym,, , passing through v , and directed by the vector line of
elements u € Sym,, , such that one of the followmg equivalent statements holds:

(i) ( 1@an ) Nzl < Ker(u),

(i) Tm(d) y;‘“ g

178



In particular such an element u € Sym, , must have rank 1.

z

Proof. Because of Theorem the image of the boundary map &) is C',
and tangent at yj to the one dimensional submanifold ¢ of £, consisting of
Lagrangians P satisfying the condition :

n—1 n+1
y, cPcy;".
Since y}}’l is orthogonal to y}}“ with respect to w, and since P is a Lagrangian,

n—1

this is equivalent to y;

< P which is equivalent to P < y;’“.

An element u’ € Sym, , corresponds to a Lagrangian P satisfying y;}’l cP
if and only if for all v € 7 such that v 4+ u¥ _(v) € y3~" one has w + u'(w) =
v +uf . (v) for some w € 2} that must be equal to v since v—w € 2}y n z}. But
v4uy (v) ey, if and only if v e (y) ! @ 2)}) Nz}, Hence y) ' < P if and
only if :

(v ' @z)) nal < Ker(u' —ufl ).

Similarly an element u’ € Sym,, , corresponds to a Lagrangian P satisfying
P c y"*!if and only if for all v € z7, v +u/(v) € yi*!. However v +uY (v) €
yp < yp . Hence P c y}’}“ if and only if for all v e z7}, u'(v) —u¥ (v) € y;”“,
or in other words:

Im(u' —uf ) Cypt nzl.

Therefore the image ¢’ of the submanifold ¢ in the chart Sym p,g s the affine
line directed by symmetric endomorphisms @ satisfying (y3~' @ 2}) n z} C
Ker(a), or equivalently Im(u) < y*! A 2}, Such a non-zero element must have

rank 1.
O

Theorem can be also rephrased in the chart Ug ~ Q(x}) of £,,. Recall
that singular subspaces for a symmetic bilinear form were defined in Definition

b2

Lemma 5.3.7. Let p : T'y — Sp(2n,R) be a {n—1,n}-Anosov representation that
satisfies property H,. Let x,z € 'y be distinct points. For y # z, the tangent
space at g , to the image of the map

we dlg\{z} = q; .

is the affine line of Q(a:;‘) passing through qj , and directed by the vector line of
elements ¢ € Sym,, , such that the hyperplane (y:j_l @zg) N xy is singular for
q. In particular such an element g € Q(x}) must have signature (1,0) or (0,1).

Proof. Let ' be the affine line in Sym,, , defined in the proof of Lemma part
(i). The affine line 7 in Q(x}) corresponding to ¢ via the linear identification
Sym, , =~ Q(z}) is directed by the elements ¢ € Q(x]) such that for some
i € Symp g satisfying (i), and for all v € 7 and w € (y)~' @ z}') Nz}, one has
(v, W) = (v, i(w)) = 0.
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In other words  is directed by the non-zero elements ¢ € Q(x},) such that

q(v,w) =0forallvez} andwe (y;"1 @ azg) Nz, i.e. such that (y[}fl @ z;}) N

z}, is singular for ¢.
Since ¢ is non-zero but admits a singular hyperplane, its signature is equal
to (1,0) or (0,1) O

A first application of this result is the following lemma, which will be used
in the proof of Lemma [5.5.

Lemma 5.3.8. Let p be a {n—1,n}-Anosov representation that satisfies property
H,. Let z € 0T'y. The map that associates to y € 0L'y\{z} the hyperplane
y;}’l @ 2" < R?™ is constant on no open interval.

Proof. Let x € 0I'y be any point distinct from z. Let ¢ be the map that
associates to an element y € 0l'y\{z} the following hyperplane of z}:

V) = (v @) naj.

If this map was constant on some open interval I, Lemma would imply
that the image by y — u% , € Sym, , restricted to I has a tangent direction

which is always a rank one symmetric element with constant kernel ¢ (z).

However in this case u , would be the integral of some elements u € Sym,, ,
whose kernel always contains (). In particular u¥ , would have rank at most
1. However this would imply that this element has a kernel, and hence y; has
a non-trivial intersection with xj. This would contradict the transversality of

the boundary maps (Proposition [5.1.5)).

Hence the map 1 cannot be constant on any open interval. O

5.4 Relation between maximality and property H,,.

Our goal will be to prove that a {n — 1, n}-Anosov representation p is maximal
if and only if it satisfies property H,. In order to prove property H, implies
maximality we will use the smoothness of the n-th boundary curve and the
following simple geometric fact.

A closed cone of a vector space is a closed subset that is stable by addition
and multiplication by positive scalars.

Lemma 5.4.1. Let V be a real vector space and S be a closed cone in V', Let
n:R—V beaCl curve such that for allt € R, 1/ (t) € S and n(0) € S. Then,
forallt =0, n(t)e S.

In other words, if the derivative of a curve stays in a closed cone and if the
curve is in the closed cone initially, then the curve stays in this closed cone. We
will use this fact again to prove Lemma
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Proof. Let t = 0 be a real number, the we can write 7(t) as :

t

) = n(0) + [ o (s)as
Hence 7)(t) can be approximated by finite sums of elements in S, which are
also in S since S is a cone. Moreover S is closed so n(t) € S. O

Now we prove the following characterization of maximal representations that
are {n — 1,n}-Anosov.

Theorem 5.4.2. Let 1 < k <n. Let p: Ty = Sp(2n,R) be a {n —1,n}-Anosov
representation. The representation p satisfies property H, if and only if it is
mazimal for some orientation of 0l'y.

Proof. Suppose first that p is maximal for some orientation of I'y. Let (z,y, 2)
be a positive triple of distinct points in 0I'y. Suppose that the sum (5.1)) is not
direct, i.e. that there is a vector h belonging to the intersection:

(@p ez 0y ™).

Note that in this expression, (xﬁ N z,’j“) (—Bzg_l is direct since xj N 22—1 =
{0}. In particular h = v 4+ w for some v € )} n 2™, w € 2=, Moreover h € y

so uf ,(v) = w with u¥ , € Sym, _ the element corresponding to y; .

Lemma implies that z;“rl and z;‘_l are orthogonal with respect to w, so
w(v,w) = 0. Thus the symmetric bilinear form ¢¥ , associated to u , satisfies
¢Y.(v,v) = w(v,u¥ .(v)) = 0. However ¢¥ , is positive since p is maximal and
(2,9, 2) is positive. Hence v = w = 0 and the desired sum of spaces is direct.
This means that the sum is direct for all positive triples (z,y, z), but since
stays invariant when x and y are exchanged, this sum is direct for all triples.

Therefore if p is maximal, then property H,, holds.

Conversely, let us suppose that p satisfies H,. Let x,z € o'y be distinct
points. Lemma [5.3.7] implies that there exists a parametrization ¢ : R —
0Ty\{z} which is a homeomorphism such that f : R — Q(x}), t — qﬁfﬁ) is
a C! embedding.

The derivative of f at all times is non-zero and has signature (1,0) or (0, 1).
Up to considering ¢ — ¢(—t), we can assume that at some point the derivative
of f has signature (1,0), and hence it has signature (1,0) for all points ¢ € R.

Let us assume that ¢(0) = z. The derivative of t — qu) has signature (1,0),

hence it belongs to the closed cone Q* (%) of semi-positive elements. Moreover
g5, = 0 is also in this closed cone. Hence by Lemma @ the image of Rxg
consists only of semi-positive elements.

For t > 0, the transversality of boundary maps implies that:

z, N &y o p(t) ={0}.
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Hence qu) is a non-degenerate symmetric bilinear form. Since it belongs to

Q*(xp), it is positive. Therefore the triple of Lagrangians (z7;, £} o ¢(t), z;,) is
maximal for all ¢ > 0.

Hence for at least one triple of distinct points z,y,z € 0I'y , the triple
(z,yy,2,) is maximal. Because of Remark this holds for all triple of
distinct points (2, 3/, 2’) ordered as (x,y, z) in dT'y. Therefore for the orientation
of oIy such that (x,y, z) is positive, the representation p is maximal. O

5.5 From property H, to H; for Sp(4,R).

We proved in Sectionthat any maximal and {n—1, n}-Anosov representation
satisfies property H,. This means that we can use Theorem to get more
information on the boundary curve. In this section we prove that if additionally
n = 2, such a representation must also satisfy property H;.

For a triple (z,y, z) of distinct points in the circle 0Ty, let (x,y). and [z, y].
be respectively the open and closed arc in the circle 0T'; between = and y not
containing z.

Before we prove the key result of this section in Lemma [5.5.4] we need to
find a positive triple of points in 0I'y that satisfies the following lemma. Given
a triple (z,w, z) in 0I'y such that z,w # z we define:

Y(w) = (w; @ zi) N xi € P(xz).

Lemma 5.5.1. Let p : I'y — Sp(4,R) be a {1,2}-Anosov representation that is
mazimal for some orientation of OI'y. There exists a positive triple (x,y, z) in
OI'y such that ¥(z) # ¥(y) and for all w e (z,y), and Y(w) # Y(x),Y(y).

Proof. Let z € 0I'y be any point. Let ¢y be the map that associates to an
element w € dl'y\{z} the hyperplane w} @ 22  R*. Theorem implies that
p satisfies property H,,, and because of Lemma the map ) is not constant.

In particular we can find some distinct xg, yo € 0T';\{z} such that g (xo) #
¥o(yo). Let = € [zg,yo]. be the unique point such that g(x) = o(xo) and for
all w e (z,90)2, Yo(w) # Yo(z). Then define similarly y € [z, yo]. as the unique
point such that 1o (y) = vo(yo) and for all w € (x,y)-, Yo(w) # Yo(y).

Hence 9o(z) # ¢o(y), and for all w € (z,y)., Yo(w) # to(z),vo(y). Up to
exchanging x and y we can assume that (x,y, z) is a positive triple.

Now that we fixed a triple (z,y, z), the map v is defined. For all w # z,

Yo(w) = (w) @ z2. Hence (z) # (y) and for all w € (2,9)., Pp(w) #
¥(x),¥(y). The triple (z,y, z) satisfies the desired condition.
O

Let P,Q be two Lagrangians in R*. The space P(QT(P)) of positive sym-
metric bilinear forms on P up to a scalar is a projective model of the hyperbolic
plane H2. There is a natural identification ¢ : P(P) — P(0Q*(P)). To a line
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¢ € P(P) we can associate the line ¢(¢) of symmetric bilinear elements g € Q(P)
for which ¢ is singular (see Definition [5.2.4)).

Recall that we use Notation for the boundary maps of an Anosov
representation. Given a {1,2}-Anosov representation p that satisfies property
Hy, the fact that y, c y2 < y3 implies the following result.

Lemma 5.5.2. Let p : Ty — Sp(4,R) be a {1,2}-Anosov representation that
satisfies property Hy. Let (z,y,z) € 0Ly be distinct points. The point [q%z] €
P(Q" (x2)) lies in the projective line between the two elements of P(0Q* (x7)):

L(yi N :Ef)) L ((y; @zﬁ) ) xz) .

This projective line is illustrated as a dotted line in Figure[5.2] Through the
identification P(Q* (x2)) = H?, this line corresponds to a geodesic.

Proof. Let ve yi ) x?) be a non-zero vector. One has u¥ ,(v) +v € yi c yg and
hence u¥ (v) € Y N 27

Let ug € Sym,, , be such that Ker(ug) = (y) @ z2) n 2. Since ug is sym-
metric, Im(ug) is orthogonal with respect to w to Ker(ug). Since yfl) and yf; are
orthogonal with respect to w, then Im(ug) = y5 N z2. Hence ug(v) € y3 n 22

p,
therefore ug(v) and uf ,(v) are collinear.

By the part (iv) of Lemma and since p satisfies property Ha, y5 n a2 n

Ker(ug) = {0}, and hence ug(v) # 0. Therefore, for some A € R, uy(v) = 0
with uy = u¥ , — AMup. In particular ¢¥ , = ¢ + Ago where qo,q1 € Q(P) are
such that (y) @ z2) n 22 is singular for go and y3 n 22 is singular for ¢;. Hence
qrevyl nal)and gz € ((y; ®22) N x?)), which concludes the proof.

]
u(xy) u(xy)
Wy, N xi) L(yZ’ N x?))
(G ®2) nad) S, L Ure) na)
L(Zg N m%) L(Zz ) x%)

Figure 5.2: Two possible configurations of the image by ¢ of the points in (|5.4))
in P(Q(xz)).

In order to state Lemma we need to define a notion of cyclically ori-
ented quadruple on a topological circle.
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Definition 5.5.3. Let V' be a vector space of dimension 2. A quadruple (a, b, ¢, d)
of points in P(V) is cyclically ordered if b and d are in different components of
P(V)\{a, ¢}, or equivalently if the following cross ratio is negative:

anb end
- X =.
cAb and

cr(a, b;c,d) := (5.3)

Here @, b, ¢, d are any non-zero vectors representing the lines a, b, ¢, d.

The key argument of the proof of Theorem [5.5.5] is the Lemma We
will use the geometric fact from Lemma that a curve whose derivative lies
in a cone must remain in that cone.

Lemma 5.5.4. Let p : 'y — Sp(4,R) be a {1,2}-Anosov representation that
satisfies property Ho. There exists some triple of distinct points x,y,z € 0Ty
such that the quadruple

( zi N xi, (y,l) (—Bzi) ) mi, yg N xi, m}, ) (5.4)

is cyclically ordered in P(x7).

Figure [5.2] illustrates this Lemma. The depicted filled points are distinct
from the unfilled ones because of Lemma The 4 points depicted are
cyclically ordered as in ([5.4)) on the right picture, but not on the left.

Proof. Our goal is to find x,y,z € 0I'y such that the 4 points in are
cyclically ordered, i.e. are not ordered as in the left part of Figure[5.2] Because
of Theorem [5.4.2] we can choose an orientation of 0T'y such that p is maximal.
Let (z,y, z) be a positive triple in 0Ty that satisfies the properties from Lemma
Let ¢(w) = (w) @ 22) n a2 for w # z as defined in Lemma Note
that ¢(z) = x}.

Let us assume that the four points in (5.4]) are not cyclically ordered for the
triple (z,y, z). This means that y3 n 22 and 2> n 22 are in the same connected

component of P(x2)\[1)(), t(y)}. o
The linear plane in Q(z2) passing through (¢ (x)) and t(¢(y)) cuts the

closure QF(z2) of the cone of scalar products into two closed cones. Let C' be
the closure of the one whose projectivization satisfies t(y} nz2), t(z3nz?) ¢ P(C).

The convex set P(C) is illustrated as the colored region in Figure One
has t(¢(x)), L(¥(y)) € JP(C). Moreover Lemma implies that [g¥ .] lies in

the segment between +(¢(y)) and ¢(y3 n x2). As a consequence [¢¥ ] ¢ P(C).

Because of Lemma [5.3.7, there exists a parametrization ¢ : R — 0'y\{z},
such that ¢(0) = z,¢(1) = y and 55 o ¢ is a C! embedding. Let ¢(to) be the
derivative at ¢ = ty of the map:

thf(t).

2

Since (z,y, 2) is positive, for any ¢y € R, g(to) is an element of Q*(x2), whose
projectivization is ¢(¢(¢(¢0))).
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Figure 5.3: P(Q(x7)) and the convex P(C) from the proof of Lemma

The map g : ¢ — «((¢(t))) is continuous from [0,1] to the circle P(2).
Because (z,y,2) was chosen as in Lemma [5.5.2] one has g(0) # ¢(1) and for
t e (0,1), g(¢t) # g(0),9(1). Hence g([0,1]) is equal to one of the two arcs
joining ¢(0) and g(1). Because of Lemma (23 n a3) is not in the image
of this map.

Therefore g([0,1]) = «(¢([z, y].)) is equal to the closed arc in +(P(22)) be-
tween (¢(x)) and (¥ (y)) not containing ¢(z5 N «2). In particular (¢ (w)) €
P(C) for w € [x,y].. Hence for all t € [0, 1], 4(¢) € C.

$(0)

Moreover 0 = g , = gz,>” € C. Hence, since C' is a closed cone, by Lemma

qu) € C for all ¢ € [0,1]. But this would imply that ¢¥ , € C. We proved
already that [g¥ .] ¢ P(C), so this is a contradiction.

Hence the four points (5.4) are cyclically ordered for this choice of a triple

(z,y,2).
0

Theorem 5.5.5. Let p : I'y — Sp(4,R) be a {1,2}-Anosov representation that
satisfies property Hy. The representation p must satisfy property H; .

Proof. Let p be a {1,2}-Anosov representation that satisfies property Hs. By
Theorem [5.4.2] p is maximal. Because of Lemma [5.5.4] there exist a triple of
distinct points (z,y, z) in 6Ty such that the quadruple is cyclically ordered.
This is for instance the case in the right part of Figure [5.2

Let (u,v,w) be a triple of distinct points on 0T, that is oriented as (z, y, ).
These two triples are joined by a continuous path in the space of disjoint triples
in 0I'y. Along this path, the cross ratio of the points is defined and
cannot vanish, because of Lemma [5.3.4] Hence the cross ratio of these points
stays negative. In particular for every triple of distinct points (u,v,w) that
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are oriented in the circle 0T'y as (z,y,2), the following 4 points are cyclically

ordered:
3 2

1 2 2 .3 2 1
(wpmup, (vp(-Bwp)mup, v, O U, up)
In particular wz ) ui # v2 N uf), therefore the following sum is direct :
3 2 3 2 0
w, N U, + VU, N U, + Uy,

Since this expression is invariant if one exchanges v and w, this holds for

all triple (u,v,w) of distinct points in dI'y. Therefore property Hsz holds for p.
Finally, because of Proposition [5.3.3] property H; holds for p.

O

We end this section by presenting a Proposition that describes the behavior
of y +— [g¥ .]. This proposition is not used in the proof of the main theorem but
it helps to understand Figure [5.2]

Proposition 5.5.6. Let p : I'y — Sp(4,R) be a {1,2}-Anosov representation that
satisfies property Hy. Let ,z € 0Ty be two distinct points.

(i) tThe limit in P(Q(x2)) of [q.] is u(x}) € OP(QF (x2)) when y converges
ox.

(i) If moreover p satisfies property Hy, the limit in P(Q(x2)) of [¢¥.| when

o
y converges to z is u(z5 N x2) € OP(QT (7).

Because of Theorem [5.5.5] it is actually not necessary to require property
H, for part (ii).

Proof. Because of Lemma there is a parametrization ¢ : R — dI'g\{z}

such that t — qf,(zt) is a C! embedding. Let us assume that ¢(0) = = and let
G(to) be the derivative of t — qu) at t = tg. Since g5 , = 0, one can write for ¢

close to 0:

g3 = 1q(0) + te(t),
with €(t) — 0 when ¢t — 0.

This implies that the limit of P(qu)) when ¢ goes to 0 is equal to P(¢) =

v((x} ®22) na?) = u(x}), which proves (i).

Let’s now prove (ii). A representation p satisfies property Hy, if and only
if it is (1,2, 3)-hyperconvex in the sense of ([PSW2I|] Definition 6.1). Hence
([PSW21], Theorem 7.1) implies that the hyperplane y}) @ zi converges to 22
when y converges to z.

Therefore [¢(t)] € P(Q(z3)) converges to t(z) N 23). Hence for any small
closed cone C' in Q*(z2) containing (2} N x7) in its interior, there is an affine
cone Cy directed by C' such that for any ¢ big enough qf,(zt) € Cy.

Since ¢ , diverges when y — z, then any subsequence of [¢} ,] converges
to a point in P(C). Hence for ¢ — +00, [¢¥ ] converges to ¢(z3 n x2). When

P
t — —o0, a similar argument holds.
O
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5.6 Hyperconvex representations.

Let N > 2 be an integer. Labourie introduced the notion of an hyperconvex
representation.

Definition 5.6.1. A Borel Anosov representation p is hyperconvex if for all dis-
tinct o1, ,xn € 0Ty, the N lines (21),, (x2),, - , (2n), span the whole vec-
tor space RY.

A Borel Anosov representation p is {a, b, ¢}-hyperconvex if for all z, z,y € T,
distinct, then the following sum is direct :

a b c
T, tY,+ 2,

If p is {a, b, c}-hyperconvex for all 1 < a < b < ¢ such that a + b + ¢ < 2n,
then we say that it is 3-hyperconvex.

Remark 5.6.2. A representation is {a, b, c}-hyperconvex in this sense if and only
if it is (a, b, N — ¢)-hyperconvex in the sense of [PSW21] .

The following theorem of Labourie [Lab06] will enable us to show hypercon-
vexity using property H for any maximal and Borel Anosov representation in
Sp(4,R).

Theorem 5.6.3 ([Lab06, Lemma 7.1]). Every Borel Anosov representation that
satisfies property H and that is 3-hyperconvex is hyperconvex.

Then the following theorem of Guichard [Gui08] will enable us to show that
hyperconvex representation are Hitchin. This theorem is one part of the char-
acterization of Hitchin representations by the hyperconvexity condition. The
other part was proved by Labourie [Lab06].

Theorem 5.6.4 ([GuiO8, Theorem 1]). Any Borel Anosov and hyperconvex rep-
resentation p : I'y — SL(N,R) is Hitchin.

Finally we can prove our main Theorem.

Theorem 5.6.5. Every representation p : I'y — Sp(4,R) that is mazimal and
Borel Anosov is Hitchin.

Proof. Because of Theorem and Theorem the representation p must
satisfy property Hs, Hy, and therefore H3 by Proposition[5.3.3] Hence p satisfies
property H.

When n = 2, property H; is equivalent to {1,1,2}-hyperconvexity for a
representation p. Moreover if a + b+ ¢ = 4 with a,b, ¢ = 1 then {a, b, ¢} is equal
to {1,1,2}. Therefore the representation p is 3-hyperconvex. By Theorem [5.6.3]
the representation p is hyperconvex, and by Theorem it is Hitchin.

O
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