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Abstract

Thurston’s earthquake theorem in the hyperbolic plane states that any orientation-

preserving homeomorphism of the circle arises as the boundary homeomorphism of a so-

called earthquake map. The goal of this thesis is to define and study these transformations

and to give a detailed proof of the earthquake theorem, following Thurston’s paper [Thu06].

We also define relative hyperbolic structures on the hyperbolic plane, discuss their relation

with homeomorphisms of the circle and we deduce from the earthquake theorem that

any two such structures can be related by an earthquake map.

Zusammenfassung

Thurstons Theorem über Erdbeben in der hyperbolischen Ebene besagt, dass jeder

orientierungs-erhaltende Homöomorphismus des Einheitskreises als Randhomöomorphismus

einer sogenannten Erdbeben-Abbildung auftritt. Das Ziel dieser Arbeit ist es, Erdbeben-

Abbildungen zu definieren, ihre Eigenschaften zu untersuchen und das Erdbeben-Theorem

im Detail zu beweisen. Dabei folgen wir Thurstons Arbeit [Thu06]. Außerdem definieren

wir relative hyperbolische Strukturen der hyperbolischen Ebene und untersuchen ihren

Zusammenhang mit Homöomorphismen des Einheitskreises. Aus dem Erdbeben-Theorem

schließen wir, dass sich zwei beliebige relative hyperbolische Strukturen durch ein Erd-

beben miteinander in Verbindung setzen lassen.



Acknowledgements

First, I would like to thank Prof. Dr. Anna Wienhard for giving me the opportunity to

work in her research group and for introducing me to the fascinating topic of earthquakes.

I am really grateful to Federica for being my mentor during the time I worked on this

thesis. Thank you for your remarkable commitment, for supporting me both academically

and personally and for giving me the opportunity to present my work outside my home

institute. I could not imagine having a better mentor.

Thanks a lot to all people in the Differential Geometry Research Group - for interesting

lectures and seminars, for creating a friendly atmosphere and for doors that are always

open.

Ein großer Dank geht an meine Familie, die mich während meines Studiums immer un-

terstützt hat. Danke auch an meine Freunde, die mein Studium zu einer ganz besonderen

Zeit gemacht haben.

Max - danke, dass du immer da bist und immer an mich glaubst. Danke für all die

gemeinsam verbrachte Zeit - auch für die, die noch vor uns liegt.



Contents

1. Introduction 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Preliminaries on two-dimensional hyperbolic geometry 3

2.1. The hyperbolic plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Isometries of the hyperbolic plane . . . . . . . . . . . . . . . . . . . . . . 5

3. Circle maps 11

4. Relative hyperbolic structures 15

5. Earthquakes in the hyperbolic plane 19

5.1. Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3. Extending earthquakes to the boundary . . . . . . . . . . . . . . . . . . . 29

6. The earthquake theorem in the hyperbolic plane 35

6.1. Extreme left homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2. Convex hulls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3. Covering property of convex hulls . . . . . . . . . . . . . . . . . . . . . . 51

6.4. Construction of an earthquake map . . . . . . . . . . . . . . . . . . . . . 56

6.5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.6. Relation to relative hyperbolic structures . . . . . . . . . . . . . . . . . . 67

A. Basics in homology theory 71

References 75



1.1. Motivation

1. Introduction

1.1. Motivation

In mathematics, surfaces are ubiquitous and their study, from different points of view,

is an active area of research. Topologically, they are completely classified, but their

geometry is not entirely understood, even in the simplest case of Riemannian metrics of

constant sectional curvature. By the Gauss-Bonnet theorem, most surfaces, i.e. those

with negative Euler characteristic, can only admit a metric of negative curvature. If the

curvature is normalized to −1, the metric is called hyperbolic.

Given a topological surface S of negative Euler characteristic, the hyperbolic metrics

on it (up to an appropriate equivalence relation, see for instance [FM12] for a precise

definition) are parametrized by a space called Teichmüller space and denoted by T (S).

If S is the three-punctured sphere, T (S) is trivial. For other surfaces, T (S) is a large

parameter space. For instance, if S is a compact surface S of genus g ≥ 2, T (S) has real

dimension 6g − 6. All Teichmüller spaces can be embedded in a larger space T , that

for this reason is called universal Teichmüller space. One way to define the universal

Teichmüller space is as quotient

T := QS(S1)
/

Möb(S1)

where QS(S1) is the group of quasisymmetric maps of the circle, a subgroup of the space

of orientation-preserving homeomorphisms of the circle, and Möb(S1) is the group of

Möbiustransformations, seen as maps of S1. We refer to [Ser14] for the precise definitions

and more on the universal Teichmüller space. By giving a unifying approach, universal

Teichmüller space T helps us to better understand the classical Teichmüller spaces T (S).

A basic question in Teichmüller theory is how to relate distinct points and how to move

in Teichmüller space. One answer is that any two elements in T (S) can be related

by a transformation called earthquake map. Earthquake maps were first introduced

by William P. Thurston in the 1970s. A basic example for an earthquake map is the

following: Take a compact hyperbolic surface S of genus g ≥ 2 and choose a simple

closed geodesic on the surface. Cut the surface along this geodesic and reglue with a

twist. When the twist is 2π, this transformation is called Dehn twist. Topologically,

the surface is still the same - the genus did not change. But the resulting hyperbolic

surface is different from the original one. A general earthquake map can be much more

complicated than this example. Instead of one simple closed geodesic, we could cut along
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1.2. Structure of the thesis

a set of non-intersecting closed geodesics or along a complete biinfinite geodesic.

The result that for any two points in Teichmüller space, there is an earthquake map

sending one to the other, is known as Thurston’s Earthquake Theorem and has a high

importance in the study of Teichmüller space. Thurston did not publish a proof of his

theorem at first. It was not until 1983 when Stephen Kerckhoff published a proof in

the appendix of his paper on the Nielsen Realization Problem ([Ker83]), where he made

crucial use of the earthquake theorem. In 1986, Thurston published a different proof in

his paper “Earthquakes in 2-dimensional hyperbolic geometry” ([Thu06]). In his words,

this proof is “more elementary and more constructive” than the previous one. It is based

on the fact that the universal cover of any hyperbolic surface is the hyperbolic plane.

Thus, the theory of earthquakes is first developed in the setting of the hyperbolic plane,

including a version of the earthquake theorem in this setup. He then shows how to

deduce the earthquake theorem on surfaces from the hyperbolic plane version.

1.2. Structure of the thesis

The aim of this thesis is to survey the first part of Thurston’s paper [Thu06] that deals

with earthquakes on H
2 and to understand the proofs in detail. If not stated otherwise,

the results and proofs in this thesis are based on Thurston’s paper [Thu06].

In Section 2 we start with a reminder on basics in hyperbolic geometry. Section 3 gives

some background on circle maps. Section 4 then introduces relative hyperbolic structures

that allow us to distinguish between different complete metrics on the hyperbolic plane

H
2. In Section 5, earthquakes on H

2 are defined. The most important result in this

section is that earthquakes, though usually not continuous, have a continuous extension

to the boundary of H2 and that the resulting map on the boundary is an orientation-

preserving homeomorphism. This leads to the question: For a given orientation-preserving

homeomorphism f on the boundary, is there an earthquake map having f as extension?

The answer is yes and moreover, the earthquake is essentially unique. This “Earthquake

theorem in the hyperbolic plane” is the heart of the thesis and proven in Section 6.

From this, it easily follows that any two relative hyperbolic structures are related by an

earthquake map.
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2.1. The hyperbolic plane

2. Preliminaries on two-dimensional hyperbolic geometry

2.1. The hyperbolic plane

In this section, we give a short introduction to the topology and geometry of the hyperbolic

plane. The material presented is based on [Bea83, Ch. 3,4 and 7] and [Mar16, Ch. 2].

One way of defining the hyperbolic plane is as “the unique simply connected Riemannian

manifold of dimension two having constant sectional curvature −1”. The fact that such

a manifold is indeed unique (up to isometry) is proven in [Mar16, Th. 3.1.2]. We denote

the hyperbolic plane by H
2. Topologically, it is homeomorphic to the Euclidean plane E2,

but geometrically it is different. For instance, in E
2, given any geodesic ℓ and a point p

that does not lie on ℓ, there is a unique line ℓ′ through p that is parallel to ℓ, i.e. ℓ and ℓ′

do not intersect. This is not true in H
2. In fact, in the same situation in the hyperbolic

plane, there are infinitely many lines through p that do not intersect ℓ. Other aspects of

the geometries are similar: both in E
2 and H

2 there exists a unique geodesic through

any two distinct points.

An important role is played by “points at infinity”. Informally, these are the directions

of geodesics. Precisely, we have the following.

Definition 2.1. The set ∂H2 of points at infinity in H
2 is the set of all geodesic half-lines

up to the equivalence relation

γ1 ∼ γ2 ⇔ sup
t∈[0,∞)

d(γ1(t), γ2(t)) <∞ , (2.1)

where d denotes the distance function induced by the Riemannian metric on H
2. The

set of points of infinity ∂H2 is sometimes called the visual boundary of H2. We set

H2 := H
2 ∪ ∂H2.

For any two points p, q ∈ ∂H2, there is a unique geodesic γ having p and q as endpoints

in the sense that if we split γ in two geodesic half-lines γ1 and γ2, then [γ1] = p and

[γ2] = q, where [·] denotes the equivalence class for the equivalence relation defined in

(2.1).

In order to work with H2, we need to have a topology on it. For p ∈ ∂H2, we define a

neighbourhood system as follows: Let γ be a geodesic half-line with [γ] = p. Let further

V be an open neighbourhood of γ′(0) in Tγ(0)H
2 and pick r > 0. Set

U(γ, V, r) := {α(t) | α(0) = γ(0), α′(0) ∈ V, t > 0} ∪ {[α] | α(0) = γ(0), α′(0) ∈ V }

3



2.1. The hyperbolic plane

where α is a half-line in H
2. Letting γ, V and r vary, we obtain a system of open

neighbourhoods of p in H2. For any p ∈ H
2, a neighbourhood system is given as usual by

open balls of radius r > 0. Thus, we have a topology on H2 and one can show that with

this topology, H2 is homeomorphic to the closed disk D
2. Note that the intersection of

the sets U(γ, V, r) with H
2 is open in H

2, so the topology defined above restricts to the

original topology on H
2 (see [Mar16, Section 2.2]).

The easiest way to get used to hyperbolic geometry is through various models of the

hyperbolic plane. The models all have their own particular advantage. We present and

use three different models. In the following, | · | will denote the euclidean metric on R

and ‖ · ‖ the euclidean metric on R
2 (or C).

The half-space model H2

Let H2 := {x+ iy ∈ C | y > 0} = {z ∈ C | Im(z) > 0} be the upper half-space in C. We

define a Riemannian metric on H2 by

gH
2

z =
1

Im(z)2
gEz ,

where gEz denotes the Euclidean metric on H2 ⊆ R
2 in the point z. Let d : H2×H2 → R≥0

be the distance function on H2 induced by gH
2

. The geodesics in H2 are Euclidean

semi-circles and Euclidean lines orthogonal to the real line. In H2, the visual boundary

∂H2 identifies with R ∪ {∞} and we have H2 = {x+ iy ∈ C | y ≥ 0} ∪ {∞}.

Proposition 2.2. With the hyperbolic distance d in H2 as above, it holds that

i) d(ip, iq) = | log
(

p

q

)

| for p, q ∈ R>0 and

ii) sinh
(

1
2
d(z, w)

)

= ‖z−w‖

2(Im(z)Im(w))
1
2

for z, w ∈ H2.

Proof. See [Bea83, Th. 7.2.1.].

The disk model D2

Let D2 := {z ∈ C | ‖z‖ < 1} be the open unit disk equipped with the Riemannian metric

gD
2

z =
4

(1− ‖z‖2)2
gEz .
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2.2. Isometries of the hyperbolic plane

Let d: D2 ×D2 → R≥0 be the distance function on D2 induced by gD
2

. We call both

the distance functions on H2 and on D2 hyperbolic distance and will always write d(·, ·).

It will be clear from the context which model we are using.

Proposition 2.3. For r ∈ (0, 1) ⊆ D2 we have

d(0, r) = log

(

1 + r

1− r

)

.

Proof. See [Bea83, Ch. 7.2].

The map

C : C → C, C(z) =
z − i

z + i
,

known as Cayley map, is an isometry from H2 onto D2. The geodesics in D2 are Euclidean

circles and Euclidean lines orthogonal to the boundary ∂D2 = S
1 = {z ∈ C | ‖z‖ = 1},

which is the visual boundary in this model.

The Klein model K2

There is another way to model the hyperbolic plane on the open unit disk: the Klein

model K2. As a set, K2 = D2, but the distance function is different. In the Klein model,

geodesics are Euclidean lines. There exists a map from D2 to K2 mapping a geodesics ℓ

in the disk model to a Euclidean straight line segment ℓ∗, i.e. a geodesic in K2, such that

ℓ and ℓ∗ have the same endpoints on the boundary ([Bea83, Ch. 7.1.]). One downside of

the Klein model is the fact that it is not conformal. However, it is useful for showing

convexity properties as it transfers problems from hyperbolic to Euclidean geometry.

Also in this model, ∂H2 is identified with the circle S
1.

Remark 2.4. We use H2 to denote the hyperbolic plane in general when we do not specify

which model we consider. When working with one of the models, we will use the notation

H2, D2 and K2 respectively. Further, we use S1
∞ to denote the visual boundary ∂H2,

indicating that those are the points at infinity of H2 and that for D2, it coincides with

S
1.

2.2. Isometries of the hyperbolic plane

Also this section is based on [Bea83, Ch. 3,4 and 7]. In this thesis, we only consider

orientation-preserving isometries. In the half-plane model H2, the orientation-preserving
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2.2. Isometries of the hyperbolic plane

isometries are given by

Isom+(H2) ∼= PSL(2,R) = {A ∈ GL(2,R) | det(A) = 1}
/

{±I} ,

where I denotes the 2 × 2−identity matrix and the matrices act on H2 by Möbius

transformations

A(z) :=
az + b

cz + d
for A =

(

a b

c d

)

∈ PSL(2,R), z ∈ H2.

By setting A(−d
c
) = ∞ and A(∞) = a

c
for c 6= 0 and A(∞) = ∞ for c = 0, this extends

to an action on H2.

In the disk model D2,

Isom+(D2) ∼= PSU(1, 1) =

{(

a c

c a

)

∈ GL(2,C) | |a|2 − |c|2 = 1

}

/

{±I} ,

where again the action is by Möbius transformations and extends naturally to D2 = D
2.

We will always use the identification Isom+(H2) ∼= PSL(2,R). One easily computes that

PSL(2,R) acts transitively on oriented triples of S1
∞. In particular, for any two geodesics

ℓ1 and ℓ2, there is an isometry ϕ ∈ PSL(2,R) with ϕ(ℓ1) = ℓ2. ϕ is not unique, but can

be made unique by fixing a point z ∈ ℓ1 and its image points ϕ(z) ∈ ℓ2. The non-trivial

isometries of H2 can be classified into three types.

Definition 2.5. Let ϕ ∈ Isom+(H2) \ {id}. We say that

i) ϕ is parabolic if it has exactly one fixed point on S1
∞ and no other fixed points.

ii) ϕ is hyperbolic if it has exactly two fixed points on S1
∞ and no other fixed points.

iii) ϕ is elliptic if it has no fixed points on S1
∞ and exactly one fixed point in H

2.

Indeed, these are the only cases that can occur: In the half-plane model H2, consider

first the case when ∞ is a fixed point of ϕ. Then ϕ(z) = az + b for some a, b ∈ R. For

a = 1 this does not have a fixed point in R. For a 6= 0, this has a unique fixed point in R.

In both cases, ϕ has either one or two fixed points in R∪∞. If ∞ is not a fixed point of

ϕ, finding the fixed points z of ϕ is equivalent to finding the zeroes of a polynomial with

real coefficients of degree at most two. If the polynomial is of degree one, then it has

exactly one real zero, so ϕ has exactly one fixed point. If the polynomial is of degree two,

6



2.2. Isometries of the hyperbolic plane

it has exactly two zeroes that are either both real or both non-real and conjugated to

each other. In this case, exactly one of the fixed points of ϕ lies in the upper half plane

H2.

Lemma 2.6. Let ϕ ∈ Isom+(H2) \ {id}. Consider the model H2. Then

i) ϕ is parabolic if and only if it is conjugate to the map z 7→ z + 1.

ii) ϕ is hyperbolic if and only if it is conjugate to a map of the form z 7→ eλz for

some λ 6= 0.

Proof. See [Bea83, Ch. 4.3].

If ϕ is hyperbolic, then it preserves the unique geodesic connecting its fixed points.

Note that no other geodesic is preserved, since otherwise, also its endpoints on S1
∞ would

be fixed, contradicting the fact that ϕ has exactly two fixed points on S1
∞.

Definition 2.7. Let ϕ ∈ Isom+(H2) be hyperbolic. The unique geodesic preserved by ϕ

is called the axis of ϕ. The translation distance of ϕ is

τ(ϕ) := inf
z∈H2

d(z, ϕ(z)).

From the definition, it is immediate that τ(ϕ) = τ(ϕ−1).

Remark 2.8. τ(ϕ) can also be defined for elliptic and parabolic isometries. In both cases

τ (ϕ) = 0, where in case that ϕ is elliptic the infimum is attained at the fixed point in H
2

and in case that ϕ is parabolic the infimum is not attained.

Lemma 2.9. Let ϕ ∈ Isom+(H2) be hyperbolic with axis ℓ and z ∈ H
2. Then

τ(ϕ) = d(z, ϕ(z)) ⇔ z ∈ ℓ.

Proof. In the half-plane model H2, suppose first that ϕ is hyperbolic a hyperbolic

transformation with axis the imaginary axis, i.e. it is of the form ϕ(z) = eλz with λ 6= 0.

Then by Proposition 2.2

sinh

(

1

2
d(z, ϕ(z))

)

=
|1− eλ| ‖z‖

2e
λ

2 Im(z)

and this attains its minimum if and only if Re(z) = 0, i.e. if z is on the axis. If ϕ

is a general hyperbolic transformation with axis ℓ, then there is some ψ ∈ Isom+(H2)

7



2.2. Isometries of the hyperbolic plane

mapping the imaginary axis to ℓ and ψ ◦ ϕ ◦ ψ−1 is hyperbolic with axis the imaginary

axis. Since ψ−1 is bijective, it holds that

inf
z∈H2

d(z, ϕ(z)) = inf
z∈H2

d(ψ−1(z), ϕ(ψ−1(z))) = inf
z∈H2

d(z, ψ ◦ ϕ ◦ ψ−1(z)) , (2.2)

so τ(ϕ) = τ(ψ ◦ ϕ ◦ ψ−1) and the minimum is attained if and only if ϕ−1(z) lies on the

imaginary axis, so exactly if z lies on ℓ.

As seen in Lemma 2.6, a hyperbolic isometry ψ is conjugated to a hyperbolic isometry

with axis connecting 0 and ∞, so an isometry of the form ϕ(z) = eλz, for z ∈ H
2, with

λ 6= 0. If λ < 0, then all points on the axis are moved towards 0 and 0 is called the

attracting fixed point of ϕ. If λ > 0, then all points on the axis are moved away from 0

and 0 is called repelling fixed point. If 0 is the attracting fixed point, then ∞ is repelling

and vice versa. The fixed point of ψ identified with 0 is called attracting (respectively,

repelling) if 0 is the attracting (respectively, repelling) fixed point of ϕ.

Proposition 2.10. Consider the half-plane model H2. Let ϕ ∈ Isom+(H2) be hyperbolic

with repelling fixed point x− ∈ R. Then

τ(ϕ) = log(ϕ′(x−)) . (2.3)

Proof. We have seen in (2.2) that τ is invariant under conjugation. To show that also

the right side of (2.3) is invariant, let ψ ∈ Isom+(H2) and y− := ψ(x−) be the repelling

fixed point of ψ ◦ ϕ ◦ ψ−1 and y− ∈ R. Then

(ψ ◦ ϕ ◦ ψ−1)′(y−) = ψ′(ϕ ◦ ψ−1(y−)) · ϕ′(ψ−1(y−)) · (ψ−1)′(y−)

= ψ′(x−) · ϕ′(x−) · (ψ−1)′(ψ(x−))

= ϕ′(x−)

by the inverse function theorem. Hence also the right side is invariant under conjugation

and it suffices to show (2.3) for ϕ of the form ϕ(z) = eλz with λ > 0. Then by Lemma

2.9 and Proposition 2.2 we have

τ(ϕ) = log(eλ) = λ = log(ϕ′(0)),

so indeed, (2.3) holds for ϕ and by invariance under conjugation also for any hyperbolic

transformation.

8



2.2. Isometries of the hyperbolic plane

Note that we cannot compute the right side of (2.3) when ϕ has repelling fixed point

∞. However, in this case the attracting fixed point x+ lies in R and we have

τ(ϕ) = τ(ϕ−1) = log((ϕ−1)′(x+)) .

So also in this case, we can use Proposition 2.10 to calculate τ(ϕ).

The topology of Isom+(H2)

Before introducing a topology on Isom+(H2), we introduce a metric on R̂
2 = R

2 ∪ {∞}.

Let π : R̂2 → S
2 be the stereographic projection given by

π(x1, x2) =

(

2x1
‖x‖2 + 1

,
2x2

‖x‖2 + 1
,
‖x‖2 − 1

‖x‖2 + 1

)

with x = (x1, x2) ∈ R
2

and π(∞) = (0, 0, 1). This a bijective map of R̂2 onto S
2 and we can transfer the

Euclidean metric from S
2 to a metric on R̂

2. This is called the chordal metric on R̂
2,

defined by

dc(x, y) = ‖π(x)− π(y)‖ for x, y ∈ R̂
2. (2.4)

The metric dc restricted to R
2 induces the same topology as the Euclidean metric. Hence,

a function on R
2 is continuous with respect to dc if and only if it is continuous with

respect to the Euclidean metric (see [Bea83, Ch. 3.1]). The restriction of dc to H2 gives

a metric on H2.

Definition 2.11. The topology of uniform convergence T ∗ on Isom+(H2) = PSL(2,R)

is the topology induced by the metric

D(ϕ, ψ) := sup{ dc(ϕ(z), ψ(z)) | z ∈ H2}.

The fact that D is positive definit, symmetric and satisfies the triangle inequality

immediately follows from the fact that dc is a metric. As dc is continuous on the compact

set H2 ×H2, it is bounded, so D is finite and hence a metric. Further, ϕn converges to

ϕ in this metric if and only if ϕn converges to ϕ uniformly on H2.

The group SL(2,R) has a norm induced by the Euclidean norm on R
4, namely for a

9



2.2. Isometries of the hyperbolic plane

matrix in SL(2,R) we have

∥

∥

∥

∥

∥

(

a b

c d

)∥

∥

∥

∥

∥

=
(

|a|2 + |b|2 + |c|2 + |d|2
) 1

2 .

This norm gives a topology on SL(2,R) and we can endow PSL(2,R) with the quotient

topology, which we denote with T .

Theorem 2.12. The topology T ∗ of uniform convergence on Isom+(H2) ∼= PSL(2,R)

and the topology T coincide.

Proof. See [Bea83, Ch. 4.5].

Lemma 2.13. Fix x0 ∈ H
2. Then the map p0 : PSL(2,R) → H

2 given by p0(ϕ) = ϕ(x0)

is continuous and surjective.

Proof. Surjectivity immediately follows from the fact that PSL(2,R) acts transitively on

H
2. For continuity, we have

D(ϕ, ψ) < ε ⇒ dc(ϕ(x0), ψ(x0)) < ε .

Since the standard topology on H
2 and the topology induced by the chordal metric agree,

it follows that p0 is continuous.

Remark 2.14. If not stated otherwise, all function spaces will be endowed with the

topology of uniform convergence of functions with respect to a certain metric. When

working with functions on H2, this will be the chordal metric (as in Definition 2.11). For

functions on R and S
1, we use the euclidean metric.

10



3. Circle maps

3. Circle maps

We now introduce some background on circle maps which will play an important role in

our study of earthquakes.

Cyclic orders and order preserving maps

The following definition and more properties of cyclic orders can be found in [Qui89].

Definition 3.1. A family F of triples of points of a set X is a cyclic order if the following

axioms are satisfied:

i) Cyclicity: (a, b, c) ∈ F ⇒ (b, c, a) ∈ F and (c, a, b) ∈ F .

ii) Antisymmetry: (a, b, c) ∈ F ⇒ (b, a, c) 6∈ F .

iii) Transitivity: (a, b, c) ∈ F and (c, d, a) ∈ F ⇒ (b, c, d) ∈ F and (d, a, b) ∈ F .

We call (a, b, c) ∈ F a cyclically ordered triple or just ordered. More generally, we

say that an n-tuple (a0, . . . , an−1) is ordered if every subtriple (ai, aj, ak) is ordered for

i < j < k ∈ {0, . . . , n− 1}.

We fix an orientation of the circle S
1. With counterclockwise (respectively, clockwise)

we denote the positive (respectively, negative) direction with respect to this orientation.

We define a set C of triples of points of S1 by

(x, y, z) ∈ C ⇔ When moving from x counterclockwise, one first reaches y, then z ,

where x, y, z ∈ S
1 are pairwise distinct. It can be easily verified that C is a cyclic order

on S
1.

Definition 3.2. A map f : S1 → S
1 is order preserving or preserves the cyclic order if

(x, y, z) ∈ C implies (f(x), f(y), f(z)) ∈ C.

Definition 3.3. For distinct points x, y ∈ S
1, we define the open interval between x and

y by

((x, y)) := {z ∈ S
1 | (x, z, y) ∈ C}

and the closed interval by [[x, y]] := ((x, y)) ∪ {x, y}.

11



3. Circle maps

Lifts of circle maps

We introduce some basics on lifts of circle maps, based on [HK03]. The universal cover of

S
1 is R with covering map π : R → S

1 given by π(x) := eix. In particular, π is surjective

and 2π-periodic.

Proposition 3.4. If f : S1 → S
1 is continuous, then there exists a continuous map

F : R → R, called a lift of f , such that

f ◦ π = π ◦ F .

F is unique up to an additive constant of the form 2πk, k ∈ Z and

1

2π
(F (x+ 2π)− F (x))

is an integer independent on x ∈ R and on the lift F . If f is a homeomorphism, then

| 1
2π

(F (x+ 2π)− F (x)) | = 1.

Proof. See [HK03, Prop.4.3.1].

Definition 3.5. A homeomorphism f : S1 → S
1 is called orientation-preserving if any

of its lifts F is increasing.

Note that to show that f is orientation-preserving it suffices to show that one specific

lift F is increasing, since for any other lift F̃ of F it holds that F̃ (x) = F (x) + 2πk for

some k ∈ Z. The fact that f is orientation-preserving is equivalent to

1

2π
(F (x+ 2π)− F (x)) = 1 , i.e. F (x+ 2π) = F (x) + 2π (3.1)

for all x ∈ R. We denote the set of all orientation-preserving homeomorphisms of the

circle by Homeo+(S1).

Lemma 3.6. A homeomorphism f : S1 → S
1 is orientation-preserving if and only if it

preserves the cyclic order.

Proof. Let f be an orientation-preserving homeomorphism, F its lift and (x1, x2, x3) ∈ C.

Let ϕi ∈ R such that xi = eiϕi for i = 1, 2, 3 and chosen such that ϕ1 < ϕ2 < ϕ3

and |ϕ3 − ϕ1| < 2π. As F is a monotonically increasing homeomorphism, we have

F (ϕ1) < F (ϕ2) < F (ϕ3) and |F (ϕ3)− F (ϕ1)| < 2π. It follows that

(f(x1), f(x2), f(x3)) = (eiF (ϕ1), eiF (ϕ2), eiF (ϕ3)) ∈ C .

12
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Vice versa, let f be an order preserving homeomorphism and let F be a lift of f .

Since F is a homeomorphism, we have for all x ∈ R either F (x + 2π) = F (x) + 2π or

F (x+2π) = F (x)−2π, so it suffices to show that F is monotonically increasing on [0, 2π).

Let ϕ1, ϕ3 ∈ [0, 2π) with ϕ1 < ϕ3 and let ϕ2 ∈ (ϕ1, ϕ2). Then the triple (eiϕ1 , eiϕ2 , eiϕ3)

is ordered, so also (f(eiϕ1), f(eiϕ2), f(eiϕ3)) = (π ◦F (ϕ1), π ◦F (ϕ2), π ◦F (ϕ3)) is ordered.

Since F is a homeomorphism, we have |F (ϕ3) − F (ϕ1)| < 2π and it follows that

F (ϕ1) < F (ϕ2) < F (ϕ3), so f is orientation-preserving.

A circle homeomorphism and its lift are closely related in the sense that a lift inherits

some properties from the homeomorphism. This can be seen in the following two lemmata.

Lemma 3.7. Suppose f ∈ Homeo+(S1) has a fixed point. Then there exists a unique lift

of f having fixed points.

Proof. Let p ∈ S
1 be a fixed point of f and let x ∈ R with π(x) = p. Let F : R → R be

any lift of f . Then

eix = p = f(p) = f ◦ π(x) = π ◦ F (x) = eiF (x),

so F (x) = x + 2πk for some fixed k ∈ Z. Set F̃ (y) := F (y) − 2πk for y ∈ R. Then F̃

is a lift of f satisfying F̃ (x) = F (x)− 2πk = x. Further, any other lift G of f is of the

form G(y) = F̃ (y) + 2πm for some m ∈ Z, m 6= 0. If now G has a fixed point y, then,

by (3.1), it also has a fixed point in [0, 2π). Thus, we can assume that y and also x lie in

[0, 2π). Then

y = G(y) = F̃ (y) + 2πm . (3.2)

If y ∈ [x, 2π), then it follows with F̃ (x) = x that F̃ (y) ∈ [x, x+ 2π) and (3.2) can only

hold for m = 0, so G = F̃ . An analogous argument works for y ∈ [0, x]. In total, F̃ is

the only lift of f with fixed points. The fixed points of F̃ are precisely the preimages of

fixed points of f .

Lemma 3.8. Let f ∈ Homeo+(S1) and F : R → R be a lift of f . Then there exists a lift

G of f−1 such that G = F−1.

Proof. Let p, q ∈ S
1 such that f(p) = q and x, y ∈ R such that π(x) = p, π(y) = q and

F (x) = y. Let G be the lift of f−1 satisfying G(y) = x. Then

π ◦ (F ◦G) = f ◦ (π ◦G) = f ◦ f−1 ◦ π = π,

13
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i.e. F ◦ G(t) = t + 2πk for all t ∈ R for a fixed k ∈ Z. But F ◦ G(y) = F (x) = y, so

k = 0 and F ◦G = id. In the same way, one shows G ◦ F = id, so G = F−1.

Homeomorphisms of the disk

In the sequel, it will be useful to be able to extend homeomorphisms of the circle to

homeomorphisms of the closed disk D
2. Given a homeomorphism f of S1, one such

extension is given by setting f̃(0) = 0 and for x ∈ D
2 \ {0}

f̃(x) = ‖x‖ · f

(

x

‖x‖

)

. (3.3)

There are various other ways of extending f to a homeomorphism of D2. For us, it is

sufficient to know that an extension exists; uniqueness will not be a concern for us.

We will also use the Alexander Lemma - a result that gives a sufficient condition for a

homeomorphism of the unit disk to be isotopic to the identity.

Lemma 3.9. Any homeomorphism h : D2 → D
2 that is the identity on the boundary S

1

is isotopic to the identity, where the isotopy is relative to the boundary S
1.

Proof. We reproduce the proof from [FM12, Lemma 2.1]. Let h : D2 → D
2 be a homeo-

morphism with h|S1 = id. We define

H : D2 × [0, 1] → D
2, H(x, t) =







(1− t)h
(

x
1−t

)

for 0 ≤ ‖x‖ < 1− t,

x for 1− t ≤ ‖x‖ ≤ 1 .

Then H is an isotopy from h to id relative to the boundary: H is continuous as h

is continuous and h|S1 = id. Further, H(·, t)|S1 = id for all t ∈ [0, 1]. It remains to

show that for a fixed t ∈ (0, 1), H(·, t) is bijective. For surjectivity, let y ∈ D
2. If

‖y‖ ≥ 1 − t, then H(y, t) = y. If ‖y‖ < 1 − t, then by surjectivity of h there is

some x̃ in the interior of D2 such that h(x̃) = y

1−t
. Since ‖(1 − t)x̃‖ < 1 − t, we have

H((1 − t)x̃, t) = (1 − t)h
(

(1−t)x̃
1−t

)

= y, so H(·, t) is surjective. For injectivity, suppose

that H(x, t) = H(y, t) for x, y ∈ D
2. From injectivity of h it follows that the only case

that this can happen is for ‖x‖ < 1− t and ‖y‖ ≥ 1− t. But then

∥

∥

∥

∥

h

(

x

1− t

)∥

∥

∥

∥

=

∥

∥

∥

∥

y

1− t

∥

∥

∥

∥

≥ 1

a contradiction. So all H(·, t) for t ∈ [0, 1] are homeomorphisms of D2.
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4. Relative hyperbolic structures

4. Relative hyperbolic structures

On H
2, all complete hyperbolic metrics are isometric (see [Mar16, Th. 3.1.2]). However,

if we want to distinguish between different hyperbolic metrics, we can do so by defining

relative hyperbolic structures. They take into account what happens on the boundary

∂H2.

Definition 4.1. A relative hyperbolic structure on (H2, S1
∞) is an equivalence class of

complete hyperbolic metrics on H
2, where two metrics h and h′ are equivalent if

i) there exists exists an isometry φ : (H2, h) → (H2, h′) that is isotopic to the identity

and

ii) φ extends continuously to the identity at the boundary S1
∞.

A relative hyperbolic structure [h] on (H2, S1
∞) is called continuous, if there exists an

isometry f : (H2, h) → (H2, hst) from h to the standard hyperbolic metric hst which extends

continuously to a map f : H2 → H2 that is a homeomorphism on the boundary.

Being a continuous relative hyperbolic structure is well-defined, i.e. independent

on the representative: Let h and h′ be two representatives of a hyperbolic structure

[h] and let φ be the isometry between them as in Definition 4.1. If there exists an

isometry f : (H2, h′) → (H2, hst) that extends continuously to be a homeomorphism at

the boundary, then also f ◦φ : (H2, h) → (H2, hst) is an isometry that extends continuously

to a homeomorphism at the boundary since φ is an isometry and φ|S1
∞
= idS1

∞
. This also

implies that if one isometry fh : (H
2, h) → (H2, hst) extends to a homeomorphism on

the boundary, then any such isometry f̃h does, since f̃h ◦ f
−1
h has to lie in PSL(2,R), so

f̃h = ϕ◦fh for some ϕ ∈ PSL(2,R). The claim follows as ϕ extends to a homeomorphism

on the boundary.

The fact that φ is isotopic to the identity is redundant here, since by the Alexander

trick (Lemma 3.9), any self-homeomorphism of the unit disk that is the identity on S
1 is

isotopic to the identity. Therefore, to show that two metrics are equivalent, it suffices

to

boundary. The property that φ is isotopic to the identity is needed in the more general

case when considering relative hyperbolic structures on arbitrary complete hyperbolic

surfaces with boundary. However, in this thesis we restrict ourselves to relative hyperbolic

structures on (H2, S1
∞).

If we just consider complete hyperbolic metrics on H
2, then all of them are isometric (see
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[Mar16, Th. 3.1.2]). When looking at relative hyperbolic structures in contrast, we can

distinguish between them by looking at what happens on the boundary. In particular,

we can classify continuous relative hyperbolic structures by homeomorphisms of the

boundary S
1.

Theorem 4.2. There is a one-to-one correspondence between the set of continuous

relative hyperbolic structures and the set of right cosets

PSL(2,R)\Homeo+(S1)

where Homeo+(S1) denotes the orientation-preserving homeomorphisms of S1.

Proof. We construct a map

B : {continuous relative hyperbolic structures} → PSL(2,R)\Homeo+(S1)

and show that it is a bijection. Let [h] be a continuous relative hyperbolic structure and

h a metric representing it. Since all hyperbolic metrics on H
2 are isometric (see [Mar16,

Th. 3.1.2]), there exists a homeomorphism

fh : (H
2, h) → (H2, hst)

that is an orientation-preserving isometry from h to the standard hyperbolic metric hst.

Since [h] is continuous, fh extends continuously to a homeomorphism on the boundary.

To simplify notation, we will denote the extension by fh as well. We set B([h]) = [fh|S1
∞
].

First, we have to show that this assignment is independent on fh. Let f̂h be another

such homeomorphism. Then

fh ◦ f̂
−1
h : (H2, hst) → (H2, hst) (4.1)

is an isometry of the hyperbolic plane, so fh = ϕ ◦ f̂h for some ϕ ∈ PSL(2,R). In

particular, [fh|S1
∞
] is independent on the choice of the isometry fh. To show that it is

also independent on the choice of the representative, let h′ be another representative

of [h], φ : (H2, h) → (H2, h′) an isometry with φ|S1
∞
= idS1

∞
and let fh′ be any isometry
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sending h′ to hst. Consider the diagram

(H2, h)
φ

//

fh %%

(H2, h′)

f
h′yy

(H2, hst)

Since all maps are isometries, also fh′ ◦ φ : (H
2, h) → (H2, hst) is an isometry. As seen

before it follows that there is some ϕ ∈ PSL(2,R) such that

fh′ ◦ φ = ϕ ◦ fh .

If we now look at what happens at infinity, using the fact that φ|S1
∞
= idS1

∞
, we get

fh′ |S1
∞
= (fh ◦ φ)|S1

∞
= (ϕ ◦ fh)|S1

∞
,

so fh′ |S1
∞
and fh|S1

∞
are in the same right coset. This proves that the map B : [h] 7→ [fh|S1

∞
]

is well-defined. It remains to show bijectivity. Let [h] and [h′] be two continuous relative

hyperbolic structures with B([h]) = B([h′]). With the same notation as above, we have

[fh|S1
∞
] = [fh′ |S1

∞
],

so fh′ |S1
∞
= ϕ ◦ fh|S1

∞
for some ϕ ∈ PSL(2,R). Consider the diagram

(H2, h)
fh

//

ψ

��

(H2, hst)

ϕ

��

(H2, h′)
f
h′

// (H2, hst)

Then ψ := f−1
h′ ◦ϕ◦fh is an isometry from h to h′ and ψ|S1

∞
= fh′ |

−1
S1
∞

◦ (ϕ◦fh)|S1
∞
= idS1

∞
,

so [h] = [h′], i.e. B is injective. For surjectivity, let f be an orientation-preserving

homeomorphism of S1. Extend it to a homeomorphism F of the disk in an arbitrary way

(see (Section 3, equation 3.3). We can define a new metric hF on H
2 by pulling back the

standard metric hst using F , i.e.

dhF (x, y) = dst(F (x), F (y)) ∀x, y ∈ H
2,

where dst denotes the standard hyperbolic metric. Then F : (H2, hF ) → (H2, hst) is an

isometry by construction, so B([hF ]) = [F |S1
∞
] = [f ]. Hence B is also surjective. In total,
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B gives a one-to-one correspondence between the set of continuous relative hyperbolic

structures and PSL(2,R)\Homeo+(S1) .

For a continuous relative hyperbolic structure, the most important thing is what

happens on the boundary. This is why in the proof of surjectivity above, we can choose

an arbitrary extension F of f to the hyperbolic plane. Indeed, the relative hyperbolic

structure [hF ] is independent on the choice of the extension F : Let F1, F2 be two

homeomorphisms of the disk satisfying F1|S1
∞
= F2|S1

∞
= f and h1, h2 the corresponding

hyperbolic metrics. With φ := F−1
2 ◦ F1 we have the following diagram:

(H2, h1)
φ

//

F1 %%

(H2, h2)

F2yy

(H2, hst)

So φ is an isometry from (H2, h1) to (H2, h2) satisfying φ|S1
∞
= (F−1

2 ◦ F1)|S1
∞
= idS1

∞
, as

F1 and F2 agree on the boundary. Thus indeed, [h1] = [h2].

Remark 4.3. Theorem 4.2 gives a connection between the set of all continuous relative

hyperbolic structures and universal Teichmüller space T introduced in Section 1.1:

As the quasisymmetric maps of the circle are a subset of all orientation-preserving

homeomorphisms, we can see the universal Teichüller space T as a subset of the set of

all continuous relative hyperbolic structures.
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5. Earthquakes in the hyperbolic plane

In geology, roughly speaking, earthquakes arise as a consequence of tectonic plate shifts

when two plates move against each other. Earthquakes in the hyperbolic plane can

be described similarly: If we cut the hyperbolic plane along a geodesic, we obtain two

half-planes. Using an isometry, we can “move” or “shift” one of the planes against

the other and then reglue the two half-planes. Such a map is called an elementary

earthquake. To make precise in what direction we shift, we have to fix an orientation of

H
2. We can not only shift along one single geodesic but we could as well use a finite or

even infinite set of disjoint geodesics, where with geodesic we always mean a complete

geodesic γ : R → H
2 homeomorphic to the real line where the endpoints limt→+∞ γ(t)

and limt→−∞ γ(t) are in ∂H2. To give the definition of an earthquake, we first need to

specify the geodesics along which we shear. They are given by a so-called lamination.

The material presented in this section is based on [Thu06] and [Hu12].

5.1. Definition and basic properties

Definition 5.1. A geodesic lamination λ of the hyperbolic plane is a collection of

geodesics that foliate a closed subset L. This means that the union of the geodesics equals

L and every p ∈ L lies in exactly one geodesic. The closed set L is the locus of λ, the

geodesics are leaves. The components of H2 \ L are gaps. The leaves together with the

gaps are the strata of the lamination λ. We say that λ is a finite lamination if the

collection of geodesics is finite. Otherwise, λ is infinite.

Definition 5.2. Let λ be a geodesic lamination of the hyperbolic plane. A λ-left earth-

quake is a bijective map E : H2 → H
2 such that

i) for any stratum A of λ, the restriction E|A of E to A agrees with the restriction of

an isometry of the hyperbolic plane which we denote by (E|A) and

ii) for any two strata A 6= B of λ, the comparison isometry

cmp(A,B) = (E|A)−1 ◦ (E|B) : H2 → H
2

is a hyperbolic transformation whose axis ℓ weakly separates A and B and which

translates to the left as viewed from A.

The fact that ℓ weakly separates A and B means that any path connecting some points

a ∈ A and b ∈ B intersects ℓ.
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When A is a geodesic contained in the closure of B, then we permit cmp(A,B) to be

trivial. Further, shifting to the left as viewed from A has to be understood as follows:

Consider the connected component of H2 \ ℓ containing A. The orientation of H2 induces

an orientation on this component. In particular this gives an orientation on the translation

axis ℓ. Now shifting to the left means shifting in the positive direction with respect to

this orientation.

Note that in general, the leaves of a lamination λ are not fixed by a λ-left earthquake

map. For a leaf ℓ, E|ℓ agrees with an isometry and can map ℓ to another geodesic of the

hyperbolic plane. It can be convenient to keep track of what happens to the lamination

λ when we apply a λ-left earthquake. That is why sometimes when talking about a left

earthquake, we include this data.

Definition 5.3. A left earthquake of the hyperbolic plane consists of two copies of H2,

the source and the target of the earthquake map, together with laminations λs and λt

and a λs-left earthquake sending the strata of λs to the strata of λt.

To shorten notation, we just talk about a left earthquake without mentioning the

underlying lamination explicitly. Until now, we have only been talking about left

earthquakes. Right earthquakes are defined analogous; we simply replace “left” by “right”

in the definitions given above.

Lemma 5.4. The inverse of a left earthquake is a right earthquake.

Proof. Let E be a left earthquake map with source lamination λs and target lamination

λt. For any stratum At of λt, there is some stratum As of λs with At = E(As). Let F be

the inverse of E. We have

F |At
= (E−1)|E(As) = (E|As

)−1.

Since E|As
agrees with the isometry (E|As), also F |At

agrees with an isometry, namely

with (F |At) = (E|As)
−1. For the comparison isometry of two strata At, Bt, we have

cmpF (At, Bt) = (F |At)
−1 ◦ (F |Bt) = (E|As) ◦ (E|Bs)

−1

where cmpF denotes the comparison isometry with respect to F and cmp always denotes

the comparison isometry for E. We know that cmp(As, Bs) = (E|As)
−1 ◦ (E|Bs) is a

hyperbolic isometry with axis ℓ weakly separating As and Bs. Let x1, x2 be the endpoints

of the translation axis ℓ and set yi := (E|As)(xi) = (E|Bs)(xi) for i = 1, 2. The last
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equality holds since cmp(As, Bs) fixes the points xi. It then follows that for i = 1, 2

cmpF (At, Bt)(yi) = (E|As) ◦ (E|Bs)
−1(yi) = (E|As)(xi) = yi ,

so cmpF (At, Bt) fixes y1 and y2, so is hyperbolic with axis ℓ′ := (E|As)(ℓ) = (E|Bs)(ℓ).

Both (E|As) and (E|Bs) are orientation-preserving, so At = (E|As)(As) and (E|Bs)(As)

lie on the same side of ℓ′ and (E|As)(Bs) and Bt = (E|Bs)(Bs) lie on the other side of ℓ′.

Hence, ℓ′ weakly separates At and Bt. It remains to check that cmpF (At, Bt) translates

to the right as viewed from At. Let x1 be the repelling fixed point of cmp(As, Bs). Since

(E|As) is orientation-preserving, shifting to the left as viewed from At = (E|As)(As) is

shifting from y1 to y2. We have to show that y1 is attracting for cmpF (At, Bt). Let w ∈ S
1

be a point with y1 6= w 6= y2. Then z := (E|Bs)
−1(w) is not equal to x1 = (E|Bs)

−1(y1)

and

cmpF (At, Bt)(w) = (E|As) ◦ (E|Bs)
−1((E|Bs)(z)) = (E|As)(z).

Since x1 is repelling for cmp(As, Bs), z is closer to x1 than (E|As)
−1 ◦ (E|Bs)(z). By

applying (E|As), we see that (E|As)(z) is closer to (E|As)(x1 = y1) than (E|Bs)(z) = w,

i.e. cmpF (At, Bt)(w) is closer to y1 than w. This shows that y1 is attracting, so

cmp(At, Bt) shifts from y2 to y1, i.e. to the right as viewed from At.

In the following, an earthquake will always be a left earthquake unless specified

otherwise. We now prove a technical lemma on compositions of hyperbolic isometries

and give sufficient conditions for a map to be an earthquake. For that, we need a version

of the Brouwer fixed point theorem.

Theorem 5.5. Let C 6= ∅ be a compact convex subset of a finite dimensional normed

space X and let f : C → C be continuous. Then f has a fixed point.

Proof. See [Wer07, Satz IV.7.15].

Lemma 5.6. Let S and T be hyperbolic transformations with non-intersecting axes ℓS, ℓT ,

translating in the same direction. Then also S ◦T is hyperbolic with axis weakly separating

ℓS and ℓT and translating in the same direction as S and T . Further, the translation

distances satisfy

τ(S ◦ T ) ≥ τ(S) + τ(T ). (5.1)

Proof. The proof here follows [Thu06, Prop. III.1.2.4] and [Hu12, Lemma 4.2]. Both S

and T have two fixed points on S1
∞ that we denote by s+, s− and t+, t−, where + denotes
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Figure 5.1: The composition of two hyperbolic transformations S and T with disjoint
axes that translate in the same direction is again hyperbolic with axis weakly
separating the axes of S and T . Further, the translation distance for S ◦ T is
bounded below by the sum of the translation distances for S and T .

the attracting and − the repelling fixed point. We assume that the tuple (s+, t+, t−, s−)

is ordered. We can do so since the axis of S and T do not intersect. Let I+ := ((s+, t+))

and I− := ((t−, s−)) (see Figure (5.1)). We have T (I+) ⊆ I+ and S(I+) ⊆ I+, so in

total S ◦ T (I+) ⊆ I+. I+ is a compact convex subset of the normed space S1
∞, identified

with S
1, and S ◦ T is continuous and maps I+ into itself. It follows by the Brouwer

fixed point theorem 5.5 that S ◦ T has a fixed point x+ ∈ I+. Analogously, (S ◦ T )−1

has a fixed point x− ∈ I−. As isometry of H2 with at least two fixed points on S1
∞,

S ◦ T is hyperbolic with axis ℓ∗ connecting x+ and x−, so separating ℓS and ℓT . Since

S ◦ T (I+) ⊆ I+, x+ is the attracting fixed point, so the direction of translation is the

same as for S and T .

For the second part, let us first assume that S and T have the repelling fixed point in

common, i.e. s− = t−. Then s− is the repelling fixed point of S ◦ T and using Lemma

2.10 we have

τ(S ◦ T ) = log
(

(S ◦ T )′(s−)
)

= log
(

S ′(T (s−)) · T ′(s−)
)

= log
(

S ′(s−)
)

+ log
(

T ′(t−)
)

= τ(S) + τ(T ). (5.2)

If S and T have the attracting fixed point in common, i.e. s+ = t+ then the inverses

S−1 and T−1 share the repelling fixed point s+. Since τ(ϕ) = τ(ϕ−1) for any hyperbolic
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transformation ϕ it follows with (5.2) that

τ(S ◦ T ) = τ(T−1 ◦ S−1) = τ(T−1) + τ(S−1) = τ(S) + τ(T ).

Let now ℓS and ℓT not have any endpoint in common. Then there exists a unique

geodesics ℓ that is orthogonal to both ℓS and ℓT (see [Bea83, Ch. 7.22]). Set ℓ1 := T−1(ℓ)

and ℓ2 := S(ℓ). Then S ◦ T maps ℓ1 to ℓ2.

Fact. ℓ1 and the axis ℓ∗ of S ◦ T intersect.

Proof of the fact. Assume ℓ1 and ℓ∗ do not intersect. Then ℓ1 and ℓ2 = S ◦ T (ℓ1) lie on

the same side of ℓ∗. By construction, ℓ1 intersects ℓT and ℓ2 intersects ℓS. As neither ℓT

nor ℓS intersect ℓ∗, they all have to lie on the same side of ℓ∗, contradicting the fact that

ℓ∗ weakly separates ℓT and ℓS.

Let z1 be the intersection point of ℓ1 and ℓ∗ and let z2 := S ◦ T (z1) ∈ ℓ2. Then, as the

translation length is realized in every point on the axis, we have

τ(S ◦ T ) = inf
z∈H2

d(z, S ◦ T (z)) = d(z1, z2) ≥ inf
z∈ℓ1, w∈ℓ2

d(z, w) =: d(ℓ1, ℓ2), (5.3)

Let ℓ3 be the common perpendicular to ℓ1 and ℓ2. Denote the intersection of ℓ3 with

ℓ1, ℓ, ℓ2 by x1, x, x2 respectively. Then

d(x1, x2) = d(x1, x) + d(x, x2) (5.4)

where we have equality since the points all lie on the geodesic ℓ3. Further, by definition

of x1 and x2 we have

d(x1, x2) = d(ℓ1, ℓ2),

d(x1, x) ≥ d(ℓ1, ℓ) = τ(T ),

d(x, x2) ≥ d(ℓ, ℓ2) = τ(S).

The last two equalities on the right hold since the distance between two geodesics is

realized along the unique geodesic orthogonal to both (see [Bea83, Ch. 7.23]). In the

case of ℓ and ℓ1 this is ℓT , so d(ℓ1, ℓ) is the length of the geodesic segment of ℓT between

ℓ and ℓ1 and this is just τ(T ). The same argument works for τ(S). Together with (5.3)

and (5.4) we obtain the inequality (5.1).
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Lemma 5.7. If λ is a finite lamination, a map E : H2 → H
2 that is an isometry on every

stratum of λ is a left earthquake map if and only if the comparison maps for adjacent

strata A and B are hyperbolic transformations with axis the leaf weakly separating A and

B, translating to the left as viewed from A.

Proof. One implication is immediate. For the other, let A be a fixed stratum of λ. For

any other stratum B consider a path c from A to B. As λ is finite, c intersects only

finitely many strata A0 = A,A1, . . . , An = B, numbered in the order they intersect c.

Then

cmp(A,B) = cmp(A,A1) ◦ cmp(A1, B)

= cmp(A,A1) ◦ cmp(A1, A2) ◦ · · · ◦ cmp(An−1, B) .

Those are all hyperbolic with non-intersecting axes, translating in the same direction.

By Lemma 5.6 it follows that the axis of cmp(A,B) weakly separates A and B and

translates to the left as viewed from A.

For injectivity, let x, y ∈ H
2 with E(x) = E(y). Then x and y cannot lie in different

strata A,B, since then (E|A)(x) = E(x) = E(y) = (E|B)(y) implies

cmp(A,B)(y) = (E|A)−1 ◦ (E|B)(y) = x.

But we have just proved that cmp(A,B) is a hyperbolic transformation with axis ℓ

weakly separating A from B. Then x and y either lie on different sides of ℓ or one lies on

ℓ and the other does not. Either way, cmp(A,B) cannot map y to x. So x and y have to

lie in the same stratum A and (E|A)(x) = E(x) = E(y) = (E|A)(y). By injectivity of

(E|A) it follows that x = y, so also E has to be injective.

It remains to show that E is surjective. By looking at the comparison isometries, the

boundary ∂E(A) for a gap A is just E(∂A). In particular, if A has boundary component

ℓ, then E(A) has boundary component E(ℓ). As the lamination is finite, it follows that

Im(E) is closed. If now y 6∈ Im(E), then there must be a maximal open ball Uε(y) that

is disjoint from Im(E). By maximality of Uε(y), there is some y ∈ Uε(x) that lies in

the image of E. As y has to lie in the boundary of the image, it follows that there is

some leaf ℓ of the lamination with y ∈ E(ℓ). In λ, ℓ is adjacent to two gaps A and B,

so E(ℓ) is adjacent to E(A) and E(B) and hence Uε(x) either intersects E(A) or E(B),

contradicting the fact that it is disjoint from Im(E). So indeed, E is surjective.

Remark 5.8. The proof of injectivity does not use the fact that the lamination is finite.
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Hence, a map that is an isometry on every stratum of an arbitrary lamination λ and

satisfies the property of the comparison maps for an earthquake is already injective.

The statement of the following Lemma is taken from [Š06].

Lemma 5.9. Let E be a map that satisfies all properties of an earthquake except possibly

surjectivity. Then E is surjective if and only if the following holds:

For any sequence (ℓn)n∈N of leaves and a sequence (Hn)n∈N half-planes with boundary ℓn

having the property that Hn+1 ⊆ Hn and
⋂

n∈NHn consists of a unique point in S1
∞, the

sequence (E(ℓn))n∈N satisfies the same property.

Proof. First, from looking at the comparison isometries, we make some observations:

i) As E is an isometry on every stratum, E(ℓ) is a geodesic for a leaf ℓ and E(A) is

open for a gap A. The boundary components of E(A) are geodesics. For a gap A

it holds that ∂E(A) = E(∂A).

ii) If ℓ is a leaf and (ℓn)n∈N is a sequence of leaves accumulating to it from one side,

then also the geodesics (E(ℓn))n∈N accumulate to E(ℓ) from one side.

Now assume that y 6∈ Im(E). Then without loss of generality we can assume that

y ∈ Im(E), because else we expand a ball around y until it hits ∂Im(E) and call the

point of tangency y. Then y is not in Im(E), because otherwise, by i), it would lie in

E(ℓ) for some leaf ℓ. In the source lamination λ either ℓ is adjacent to gaps on both sides

or there is a sequence of strata accumulating to it. In both cases, by i) and ii), the same

holds for E(ℓ), so E(ℓ) cannot lie in the boundary of Im(E) and hence y 6∈ Im(E). It

follows that there must be a sequence (ℓn)n∈N of leaves such that y ∈ limn→∞E(ℓn). The

only situation in which this can happen is when we have a sequence of strata (ℓn)n∈N as

in the statement for which the sequence (E(ℓn))n∈N does not satisfy the stated properties.

Vice versa, let E be surjective. We have to show that the limit of the image leaves E(ℓn)

consists of one single point of the boundary. Assume by contradiction that there is more

than one point in the limit of the image leaves, i.e. limn→∞(diam E(ℓn)) 6= 0, where we

consider the diameter with respect to the Euclidean metric on the closed disk H
2 ∪ S1

∞.

Let xn and yn be the endpoints of the geodesics E(ℓn). Up to taking a subsequence,

those converge to points x respectively y in S1
∞. As the diameter does not go to zero, we

have x 6= y. Let ℓ be the geodesic connecting x and y and let p ∈ ℓ. Then E(ℓn) gets

arbitrarily close to p. It follows that there are pn ∈ ℓn and p ∈ H
2 with limn→∞E(pn) = p.

Since E is surjective, p lies in the image of some stratum A, i.e. there is some q ∈ A

such that p = E(q). Then A is a leaf, since otherwise, there is some neighbourhood of p
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that lies completely in E(A). In particular, for n large enough, E(pn) lies in E(A) and

hence ℓn = A. This contradicts the fact that all ℓn are leaves. Passing to a subsequence

if necessary, we can further assume that ℓn 6= A for all n ∈ N and that all ℓn lie on the

same side of A.

Let an be the axis of the comparison isometry cmp(A, ℓn) and bn be the axis of

cmp(ℓn, ℓn+1). We have

cmp(A, ℓn+1) = (E|A)−1 ◦ (E|ℓn) ◦ (E|ℓn)
−1 ◦ (E|ℓn+1) = cmp(A, ℓn) ◦ cmp(ℓn, ℓn+1).

From Lemma 5.6 it follows that an+1 separates an and bn. As a result, all an lie on

the same side of a1. The hyperbolic transformation cmp(A, ℓn) cannot move any point

on ℓn to a point on the other side of its axis an, and an weakly separates ℓn and A

by construction. Now all image points cmp(A, ℓn)(pn) lie on the same side of an as

ℓn, so they all lie on the same side of a1 as ℓ1. In particular, a1 separates the points

cmp(A, ℓn)(pn) from A. But we have

cmp(A, ℓn)(pn) = (E|A)−1 ◦ (E|ℓn)(pn) −→
n→∞

(E|A)−1(E(q)) = q ∈ A,

giving a contradiction. This shows that indeed, limn→∞ diamE(ℓn) = 0, so the limit

consist of one single point in S1
∞.

5.2. Examples

We now look at some examples for earthquakes.

Example 5.10. We start with the simplest non-trivial example of an earthquake. Consider

the half-plane model H2. Let the lamination λ be given by one single geodesic ℓ. Such

an earthquake is called elementary. Let ℓ be the geodesic connecting 0 and ∞. Then we

have two gaps: A := {z ∈ H2 | Re(z) > 0} and B := {z ∈ H2 | Re(z) < 0}. In total, λ

consists of the three strata ℓ, A and B. Let ϕ ∈ Isom+(H2) be defined by ϕ(z) = e−2z.

It is a hyperbolic transformation with axis ℓ shifting towards 0 and with translation

distance

τ(ϕ) = inf
z∈H2

d(ϕ(z), z) = d(i, e−2i) = | log(e−2)| = 2.

We set (E|A) := id and (E|B) := (E|ℓ) := ϕ. Then cmp(A,B) = ϕ is a hyperbolic

transformation with axis ℓ weakly separating A and B shifting towards 0, so to the left as
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viewed from A. It follows immediately that cmp(B,A) = cmp(A,B)−1 shifts to the left

as viewed from B. Further, as (E|ℓ) = (E|B), we do not have to check the comparison

isometries for A and ℓ separately, so E is indeed an earthquake map. Note that defining

an earthquake E ′ by setting (E ′|B) := (E ′ℓ) = id and (E ′|A) = ϕ does not give us a

left earthquake, but a right earthquake since the corresponding comparison isometry

cmp′(A,B) = ϕ−1 translates to the right as viewed from A. However, we can define a

left earthquake that is the identity on B ∪ ℓ by setting (E ′|A) := ϕ−1. In this case, E

and E ′ differ by an isometry, namely E = ϕ ◦ E ′.

Example 5.11. In Example 5.10, E maps every stratum to itself and hence the source

lamination λs and the target lamination λt agree. However, in general this does not

have to be the case. We modify Example 5.10 slightly to obtain a left earthquake that

changes the lamination. Let λ and ϕ be given as in Example 5.10. Set ψ(z) = z + 1 and

(E|A) := ψ, (E|B) = (E|ℓ) := ψ ◦ ϕ. Now E maps ℓ to the geodesic E(ℓ) connecting 1

and ∞. For the comparison isometry, we have as before

cmp(A,B) = ψ−1 ◦ (ψ ◦ ϕ) = ϕ,

so E is an earthquake map.

Example 5.12. We now give an example that shears along two geodesics that do not have

a common endpoint in S1
∞. An earthquake whose lamination has finitely many leaves is

called simple. Let λ be given by ℓ1 connecting 0 and ∞ and by ℓ2 connecting 1 and 3.

The map

ψ(z) =
3z + 1

z + 1

sends ℓ1 to ℓ2. If we let ϕ be as in Example 5.10, then the conjugated map ψ ◦ ϕ ◦ ψ−1

is a hyperbolic transformation with axis ℓ2 and translation distance 2. Let A be the

half-plane bounded by ℓ2 that does not contain ℓ1, C be the half-plane bounded by ℓ1

that does not contain ℓ2 and let B be the remaining gap. Now λ consists of two leaves

ℓ1, ℓ2 and three gaps A,B,C. Set

(E|A) = id,

(E|B) = (E|ℓ2) = ψ ◦ ϕ ◦ ψ−1 and

(E|C) = (E|ℓ1) = (ψ ◦ ϕ ◦ ψ−1) ◦ ϕ.
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Figure 5.2: A lamination can also consist of infinitely many strata. In this example, there
is a sequence of strata with endpoints −e−n and e−n that accumulate to the
point 0 in the boundary.

Now cmp(A,B) = ψ ◦ ϕ ◦ ψ−1 is hyperbolic with axis ℓ2 shifting from 3 to 1, so to the

left as viewed from A. Further

cmp(B,C) = (ψ ◦ ϕ ◦ ψ−1)−1 ◦ (ψ ◦ ϕ ◦ ψ−1) ◦ ϕ = ϕ.

Thus, all comparison isometries behave as they should, so E is indeed a left earthquake.

Note that given a finite lamination λ and for every leaf a translation distance, one can

proceed analogously to construct a left earthquake map realizing the given translation

distance assigned to the leaf ℓ as translation distance of the comparison isometry of the

two strata adjacent to ℓ.

Example 5.13. Our last example is an earthquake with infinitely many leaves. For

n ∈ N ∪ {0} let ℓn be the geodesic connecting −e−n and e−n. Let λ be the lamination

given by the geodesics ℓn, An the gap between ℓn−1 and ℓn and A0 the remaining gap

(see Figure (5.2)). We construct a left earthquake map that is the identity on A0 and

shears along every leaf by distance 2. For all n ∈ N∪ {0}, let ψn be the isometry sending

the imaginary axis to ℓn. It is given by

ψn(z) =
e−nz − e−n

z + 1
.

Set ϕ(z) = e2z. It is a hyperbolic translation with axis the imaginary axis, translation

distance 2 and 0 as repelling fixed point. Now for all n, ψn ◦ ϕ ◦ ψ−1
n is a hyperbolic

transformation with axis ℓn and translation distance 2. Set (E|A0) = id and define

inductively (E|An) = (E|An−1) ◦ (ψn ◦ ϕ ◦ ψ−1
n ). On the leaves, we let E act as on one

of the adjacent gaps, i.e. we set (E|ℓn) = (E|An). On every stratum, E agrees with

a concatenation of hyperbolic translations, so it is an isometry. For the comparison
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isometries of adjacent gaps An and An+1 we have

cmp(An, An+1) = (E|An)
−1 ◦ (E|An) ◦ (ψn ◦ ϕ ◦ ψ−1

n ) = ψn ◦ ϕ ◦ ψ−1
n ,

so this is a hyperbolic translation with axis ℓn weakly separating An and An+1. Since ϕ

has 0 as repelling fixed point, the repelling fixed point of cmp(An, An+1) is ψ(0) = −e−n,

so it translates to the left as viewed from An. If now Am and An are arbitrary gaps with

m > n, then

cmp(An, Am) = cmp(An, An+1) ◦ cmp(An+1, An+2) ◦ · · · ◦ cmp(Am−1, Am).

As the maps on the left are all hyperbolic transformations with disjoint axes translating

in the same direction as seen from An, it follows with Lemma 5.6 that cmp(An, Am) is

hyperbolic with axis weakly separating An and Am and translating to the left as viewed

from An.

5.3. Extending earthquakes to the boundary

Even though a non-trivial earthquake is not continuous, it can be extended to the

boundary such that the resulting map is continuous at every boundary point.

Proposition 5.14. Let E be an earthquake map. Then there exists a unique map

E∞ : S1
∞ → S1

∞ such that E together with E∞ form a map Ê,

Ê : H2 → H2 ∪ S1
∞, Ê(x) =







E(x) for x ∈ H
2,

E∞(x) for x ∈ S1
∞,

that is continuous at any point x ∈ S1
∞. Further, E∞ : S1

∞ → S1
∞ is an orientation-

preserving homeomorphism.

Proof. We want to define E∞ as extension of E on S1
∞. For x ∈ S1

∞, we distinguish two

cases.

Let us first assume that x lies in the closure of some stratum A. We set E∞(x) := (E|A)(x).

Clearly, E∞(x) ∈ S1
∞, as (E|A) preserves S1

∞. Further, E∞(x) is well-defined: Suppose x

lies in the intersection of the closures of two strata A and B. In that case, those strata

have to meet at infinity, precisely at the point x. Consider the comparison isometry

cmp(A,B) = (E|A)−1 ◦ (E|B). It is a hyperbolic transformation whose axis weakly

separates A and B and hence its closure has to contain x. Therefore, cmp(A,B) fixes x,
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so (E|A)(x) = (E|B)(x) and E∞(x) is well-defined.

If x does not lie in the closure of any stratum, the lamination has to consist of infinitely

many geodesics (see for instance Example 5.13 and Figure 5.2 with x = 0) and x has

a neighbourhood basis in H
2 ∪ S1

∞ consisting of neighbourhoods bounded by leaves

ℓn, n ∈ N, of λ. By Lemma 5.9, the limit of the image leaves E(ℓn) consists of one single

point in S1
∞ that we define to be E∞(x).

We have to show that E∞ is bijective and continuous. The inverse of E is a right

earthquake map F (Lemma 5.4). In the same way as E, F can be extended to a map

F∞ at S1
∞. It then holds that F∞ = E−1

∞ : If x ∈ S1
∞ is in the closure of some stratum A,

then

F∞ (E∞(x)) = (F |(E(A))) ((E|A)(x)) = x.

If x does not lie in the closure of any stratum, then E∞ was defined to be the unique

point in the limit of the E(ℓn), so F∞(E∞(x)) is the unique point in the limit of the

F (E(ℓn)) = ℓn, which equals x. In the same way, E∞ ◦ F∞ = idS1
∞
, so F∞ is the inverse

of E∞ and E∞ is bijective.

We now show that E∞ is orientation-preserving. For that, we can show that E∞ preserves

the cyclic order by Lemma 3.6. Let (x, y, z) ∈ C be an ordered triple, where C denotes

the cyclic order on S
1 (see Section 3). Assume first that there is some stratum A such

that x, y, z ∈ A. As (E|A) preserves orientation, we have that

((E|A)(x), (E|A)(y), (E|A)(z)) = (E∞(x), E∞(y), E∞(z)) ∈ C .

If there are two strata A 6= B with x, y ∈ A and z ∈ B, then the axis ℓ of cmp(A,B)

separates x and y from z, hence ℓ separates x and y from cmp(A,B)(z). Thus,

((x, y, cmp(A,B)(z)) is ordered. By applying the orientation-preserving isometry (E|A)

it follows that

((E|A)(x), (E|A)(y), (E|B)(z)) = (E∞(x), E∞(y), E∞(z)) ∈ C .

The cases x, z ∈ A, y ∈ B and y, z ∈ A, x ∈ B can be treated analogously. Now assume

that x, y, z lie in the closures of different strata x ∈ A, y ∈ B, z ∈ C. Assume by contra-

diction that (E∞(x), E∞(y), E∞(z)) 6∈ C. Then (E∞(y), E∞(x), E∞(z)) ∈ C. Without

loss of generality let (E|C) = id. Hence cmp(C,A) = (E|A) and cmp(C,B) = (E|B)

are hyperbolic with axes separating z from x respectively y, both shifting to the left as

viewed from z ∈ C. We denote the fixed points of (E|A) (respectively, (E|B)) by A+, A−
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Figure 5.3: To show that E∞ preserves orientation, we assume that the image of some
ordered triple of points (x, y, z) is not ordered. Looking at the axes of
comparison isometries, we find that cmp(A,B) moves B− towards cmp+ -
contradicting the fact that it translates to the left as viewed from x ∈ A.

(respectively, B+, B−) where + indicates that the fixed point is attracting. We derive a

contradiction through several steps. The situation is shown in Figure 5.3.

Step 1: (x, y, A+) is ordered, since otherwise, (x,A+, y) would be ordered. Consider-

ing where the axis of (E|A) lies and that E∞(x) = (E|A)(x), this would imply that

(E∞(x), E∞(y), E∞(z)) is ordered, contradicting our assumption.

Step 2: cmp(B,A) = (E|B)−1 ◦ (E|A) has axis weakly separating x and y , translating

to the left as viewed from y. We denote the fixed points by cmp+ and cmp−. Then

(x, cmp+, y) is ordered. Set

w := cmp(B,A)(x) and t := cmp(B,A)(y).

Then the tuple (x, w, cmp+, t, y) is ordered.

Step 3: As (x, w, y) ∈ C, also

((E|B)(x), (E|B)(w), (E|B)(y)) = ((E|B)(x), E∞(x), E∞(y)) ∈ C .

Step 4: Applying (E|A) to the ordered triple (x, y, A+) we deduce that

(

(E|A)(x), (E|A)(y), (E|A)(A+)
)

=
(

E∞(x), (E|B)(t), A+
)

∈ C .

Step 5: (y, B+, x) ∈ C since otherwise, we would have (y, x, B+) ∈ C. Together with the

fact that (y, z, x) ∈ C it would follow that (y, z, B+) ∈ C, contradicting the fact that the

axis of (E|B) separates y from z and that the direction of translation is to the left as
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viewed from z. We deduce that

(

(E|B)(y), (E|B)(B+), (E|B)(x)
)

=
(

E∞(y), B+, (E|B)(x)
)

∈ C .

Step 6: As (E|B)(t) and (E|B)(x) lie on the same side of the axis of (E|B), also x and t

have to lie on this side of the axis. Hence, (t, B−, y) ∈ C and thus also (x, cmp+, B−) ∈ C.

Step 7: Now

cmp(A,B)(B−) = (E|A)−1 ◦ (E|B)(B−) = (E|A)(B−),

so cmp(A,B) moves B− away from A+, i.e. towards cmp+. But we also know that

cmp(A,B) = cmp(B,A)−1 has repelling fixed point cmp+, so moves B− away from cmp+

- a contradiction. This shows that (E∞(x), E∞(y), E∞(z)) has to be ordered.

We are left with the cases where at least one of x, y, z does not lie in the closure

of any stratum. Without loss of generality let y 6∈ A for all strata A, but let x, z

be contained in closures of strata. Let (yn)n∈N be a sequence converging to y and

such that for all n, yn ∈ ℓn for leaves ℓn. Then for n large enough, (x, yn, z) is or-

dered, so also ((E∞(x), E∞(yn), E∞(z)) is ordered. Since (E∞(yn))n∈N converges to

E∞(y) and we have E∞(z) 6= E∞(y) 6= E∞(x) if follows that ((E∞(x), E∞(y), E∞(z))

is ordered. Now let x, y 6∈ A for all strata A and let z ∈ A for some A. Let w be

chosen such that (x, w, y) is ordered. Then also (x, w, z) and (w, y, z) are ordered. It

follows that ((E∞(x), E∞(w), E∞(z)) and ((E∞(w), E∞(y), E∞(z)) are ordered, hence

also ((E∞(x), E∞(y), E∞(z)) is ordered. The case when no point x, y, z lies in the

closure of any stratum follows analogously. So, whenever (x, y, z) is ordered, also

((E∞(x), E∞(y), E∞(z)) is ordered, so E∞ preserves orientation.

It follows that E∞ is continuous: The open intervals ((x, y)) for x, y ∈ S
1 form a basis of

the topology of S1. Hence it suffices to show that E−1
∞ (((x, y))) is open for all x, y ∈ S

1.

Let x, y,∈ S
1. As E∞, also E−1

∞ preserves the circular order, so with bijectivity of E∞

we have

E−1
∞ (((x, y))) = {E−1

∞ (z) | (x, z, y) is ordered}

= {E−1
∞ (z) | (E−1

∞ (x), E−1
∞ (z), E−1

∞ (y)) is ordered}

= {w ∈ S
1 | (E−1

∞ (x), w, E−1
∞ (y)) is ordered}

= ((E−1
∞ (x), E−1

∞ (y))) .

It follows that E∞ is continuous. Since S
1 is a compact Hausdorff space, E∞ is a
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homeomorphism.

It remains to check that the map Ê is continuous at every x ∈ S
1, i.e. that we do not

only have continuity on the boundary, but also when approaching x from inside the disk.

When approaching a boundary point from within one single stratum A, continuity is

clear by construction. However, there could be a sequence (xn)n∈N in D2 converging to a

boundary point x such that all xn lie in different strata. Also in this case, we have to

make sure that E(xn) converges to E∞(x). Let x ∈ S
1 and ε > 0 be fixed. We do a case

distinction.

Case 1: x does not lie in A for all strata A. Then there exists a basis of neighbourhoods

Un of x bounded by leaves ℓn with endpoints xn and yn for all n ∈ N. Since E∞ is

continuous, there exists δ̃ > 0 such that for all t ∈ S
1

‖x− t‖ < δ̃ ⇒ ‖E∞(x)− E∞(t)‖ < ε .

Let N ∈ N be such that xn, yn ∈ Uδ̃(x) for all n ≥ N . Set δ := min{‖x−xN‖, ‖x−yN‖}.

Then by construction Uδ(x) ⊆ UN . As Ê(UN ) is bounded by Ê(ℓN ) we have by choice of

δ that Ê(Uδ(x)) ⊆ Uε

(

Ê(x)
)

, so

‖x− y‖ < δ ⇒ ‖Ê(x)− Ê(y)‖ < ε.

Case 2: x lies in A for some stratum A. Without los of generality let (E|A) = id. Then

for every stratum B 6= A we have cmp(A,B) = (E|B). Let δ̃ > 0 be such that for all

t ∈ S
1

‖x− t‖ < δ̃ ⇒ ‖E∞(x)− E∞(t)‖ < ε .

Let B be some stratum intersecting Uδ̃(x) and let ℓB be the leaf in the boundary of

B separating A from B. We distinguish two cases. If both endpoints of ℓB lie in

Uδ̃(x), then it can easily be seen that B ⊆ Uδ̃(x). Hence for y ∈ Uδ̃(x) ∩ B we have

Ê(y) ∈ Ê(B) ⊆ Uε(Ê(x)). If only one endpoint of ℓB lies in Uδ̃(x), then let δB > 0 such

that for all t, w ∈ H2

‖t− w‖ < δB ⇒ ‖(E|B)(t)− (E|B)(w)‖ < ε .

Set B := {B stratum of λ | ℓB has exactly one endpoint in Uδ̃(x)}.

Fact. inf {δB | B ∈ B} > 0.
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Proof of the Fact. When B is finite, then the claim is trivial. For the general case, let

B ∈ B. As (E|B) = cmp(A,B) is hyperbolic, δB can be characterized by the translation

length: Consider the half-plane model H2 and assume that (E|B) has axis connecting 0

and ∞. Then (E|B)(z) = eλz for some λ 6= 0. Now

‖(E|B)(t)− (E|B)(w)‖ = eλ‖t− w‖.

For λ < 0, 0 is the attracting fixed point and we can choose δB = ε > 0. If 0 is repelling,

then

eλ‖t− w‖ < ε ⇔ ‖t− w‖ <
ε

eλ
,

so we can choose δB = ε
eλ

with λ = τ ((E|B)). Now inf {δB | B ∈ B} > 0 is equivalent to

sup {τ ((E|B)) | B ∈ B} <∞. Let (Bn)n∈N be a sequence of strata in B. Up to passing

to a smaller neighbourhood of x and up to passing to a subsequence, we can assume

that ℓn := ℓBn
weakly separates A from ℓn+1 = ℓBn+1

, so the ℓn get closer to A. Now

the axes of cmp(A,Bn+1) = (E|Bn+1) and cmp(Bn+1, Bn) cannot intersect and both are

hyperbolic transformations translating in the same direction. By Lemma 5.6 we have

τ ((E|Bn)) = τ (cmp(A,Bn+1) ◦ cmp(Bn+1, Bn))

≥ τ (cmp(A,Bn+1)) + τ (cmp(Bn+1, Bn))

≥ τ ((E|Bn+1)) . (5.5)

Hence, the sequence (τ ((E|Bn)))n∈N is non-increasing. This shows that the supremum

of the translation distances is bounded from above, so inf {δB | B ∈ B} > 0.

Set δ := min{δ̃, inf{δB | B ∈ B}}. Then for y ∈ Uδ(x), we have y ∈ B for some B

intersecting Uδ(x) ⊆ Uδ̃(x). Now for B, we either have ℓB ⊆ Uδ or only one endpoint of ℓB

lies in Uδ(x). In both cases, we have Ê(y) ∈ Uε(Ê(x)), so Ê is continuous in x. Summing

up, we have shown that E can be continuously extended to an orientation-preserving

homeomorphism E∞ of S1
∞.
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6.1. Extreme left homeomorphisms

6. The earthquake theorem in the hyperbolic plane

The main goal of this thesis is to establish a correspondence between continuous rela-

tive hyperbolic structures and earthquakes. More precisely, we will show that any two

continuous relative hyperbolic structures differ by an earthquake - where we have to

make clear what this means exactly (see Corollary 6.16). Since we have already seen that

continuous relative hyperbolic structures correspond to orientation-preserving homeo-

morphisms of S1 up to post-composition with elements in PSL(2,R) (Theorem 4.2), we

first consider a correspondence between earthquakes and homeomorphisms of the circle.

As seen in Proposition 5.14, every earthquake map E gives an orientation-preserving

homeomorphism E∞ of S1. We now show the converse of this statement.

Theorem 6.1 (Thurston’s earthquake theorem [Thu06]). Every orientation-preserving

homeomorphism f of S1
∞ to itself arises as the limiting value E∞ of a left earthquake

map E. The underlying lamination λ of E is uniquely determined by f and E is uniquely

determined on all gaps. For any leaf ℓ two possible isometries for (E|ℓ) differ by a

hyperbolic isometry with axis ℓ and translation length between 0 and the infimum of the

translation lengths of the comparison maps for E on the two sides of ℓ.

We devote most of the chapter to the proof of this result.

6.1. Extreme left homeomorphisms

Let f : S1 → S
1 be an orientation-preserving homeomorphism of S1. Fix an extension

of f to the disk D
2 which we denote by f as well. We want to construct an earthquake

map, a map that piecewise is a hyperbolic isometry. Therefore, we consider the left coset

C := PSL(2,R) ◦ f of f in )\Homeo+(S1
PSL(2,R). When acting on the circle, some

elements of C have fixed points, others do not. For example, if f = id, then C = PSL(2,R)

and hyperbolic elements of PSL(2,R) have two fixed points, while elliptic elements have

none. If a homeomorphism h of S1 has at least one fixed point, then there is a unique

lift H of h to R that also has fixed points (Lemma 3.7).

Definition 6.2. A homeomorphism h of S
1 is an extreme left homeomorphism if

i) h has at least one fixed point and

ii) the unique lift H of h that has fixed points satisfies H(x) ≥ x for all x ∈ R.

We set XL := {h ∈ C | h is an extreme left homeomorphism}.
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6.1. Extreme left homeomorphisms

Geometrically, an extreme left homeomorphism moves all points counterclockwise,

except for those that it fixes. The elements in XL will be crucial for the construction of

the earthquake map. However, we do not know a lot about XL yet. It turns out that

topologically, XL is a plane. To establish this, we find a homeomorphism between XL

and H
2.

Proposition 6.3. The set XL is homeomorphic to the hyperbolic plane.

Proof. Since PSL(2,R) is a topological space, so is C = PSL(2,R) ◦ f - just identify

ϕ ∈ PSL(2,R) with ϕ ◦ f ∈ C. We fix a base point x0 ∈ H
2, for instance x0 = 0 in the

disk model. We define

p : C −→ H
2

ϕ ◦ f 7−→ ϕ ◦ f(x0),

so p is the evaluation at x0. As seen in Lemma 2.13, p is continuous and surjective. We

claim that the restriction of p to XL is a homeomorphism. For the proof, we use the

disk model D2. We first show that p|XL is a bijection. Fix y ∈ H
2. We want to prove

that there exists exactly one element in XL ∩ p−1({y}) ⊆ C. Since p is surjective, there

exists some element h0 ∈ C with p(h0) = y. Any other element h in p−1({y}) is of the

form ϕ ◦ h0 for some isometry ϕ. We have

ϕ(y) = ϕ(h0(x0)) = h(x0) = y,

i.e. the isometry ϕ fixes y. Let us first assume that y = 0. Then the isometries fixing y

act as rotations of the circle. In total, we have

p−1({0}) = {rα ◦ h0 | α ∈ [0, 2π)},

where rα denotes the rotation by angle α and center 0, so the fibre of p over 0 is a circle.

The same will be true for all other points y ∈ H
2. To show that p−1({0}) contains exactly

one extreme left homeomorphism, we work with lifts of circle maps (see Section 3). Let

H0 be any lift of h0 to R, i.e.

H0 : R → R, eiH0(y) = h0
(

eiy
)

∀y ∈ R.
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6.1. Extreme left homeomorphisms

If now h = rα ◦ h0 ∈ p−1({0}) and H is a lift of h, then

eiH(y) = h
(

eiy
)

= rα ◦ h0
(

eiy
)

= rα ◦ e
iH0(y) = ei(α+H0(y)) .

Hence, H has to be of the form H0 + α + 2πk for some k ∈ Z. As a result, all lifts of

elements in p−1({0}) are of the form H0 + T for some real constant T . Modulo 2π, T

only depends on α. Remember that we are searching for an extreme left homeomorphism

and that an element h of C is an extreme left homeomorphism if it has some lift H

satisfying H(y) ≧ y, or equivalently H(y) − y ≧ 0, for all y ∈ R, where we use the

symbol ≧ to indicate that the inequality holds with equality at least once. Since h0 is

orientation-preserving it holds that

H0(y + 2π) = H0(y) + 2π ∀y ∈ R,

so the function g(y) := H0(y)− y satisfies for all y ∈ R

g(y + 2π) = H0(y + 2π)− (y + 2π) = H0(y) + 2π − y − 2π = H0(y)− y = g(y) ,

i.e. g is 2π-periodic and attains its minimum on the compact interval [0, 2π]. Set

T := −miny∈[0,2π](H0(y)− y). Then for all y ∈ R we have

(H0(y) + T )− y = (H0(y)− y) + T ≧ −T + T = 0 .

It follows that the element h ∈ C with lift H0 + T is an extreme left homeomorphism.

Since T is uniquely determined by H0, so is h. All other elements in p−1({0}) correspond

to different T , so cannot satisfy the inequality with equality at least once. We showed

that #(p−1({0}) ∩XL) = 1. Now we have to adapt the proof for an arbitrary y ∈ H
2 by

changing coordinates.

Let ψ be an isometry satisfying ψ(y) = 0. We introduce y-coordinates by zy = ψ(z),

i.e. a point z is identified with its image under ψ. In particular, y corresponds to 0 in

y-coordinates, so yy = 0. If h : H2 → H
2 is a map given in standard coordinates, then

the corresponding map in y-coordinates is hy = ψ ◦ h ◦ ψ−1, since for any zy ∈ H
2 given

in y-coordinates

hy(zy) = ψ ◦ h ◦ ψ−1(ψ(z)) = ψ ◦ h(z) = (h(z))y.

If now ϕ ∈ PSL(2,R) fixes y in standard coordinates, then ϕy in y-coordinates acts as
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6.1. Extreme left homeomorphisms

rotation of the circle, since

ϕy(0) = ψ ◦ ϕ ◦ ψ−1(0) = ψ ◦ ϕ(y) = ψ(y) = 0.

We have seen before that all elements h in p−1({y}) are of the form h = ϕ ◦ h0 for

some fixed h0 ∈ p−1({y}) and some ϕ ∈ PSL(2,R) with ϕ(y) = y. If we now change to

y-coordinates, we have

hy = ψ ◦ (ϕ ◦ h0) ◦ ψ
−1 = (ψ ◦ ϕ ◦ ψ−1) ◦ (ψ ◦ h0 ◦ ψ

−1) = ϕy ◦ (h0)y,

where ϕy acts as rotation of the circle. So, in y-coordinates, we have exactly the same

situation as before and know that there exists a unique extreme left homeomorphism in

p−1({y}). It remains to check that being an extreme left homeomorphism is independent

of coordinates. Let h be an extreme left homeomorphism and H a lift satisfying H(y) ≧ y

for all y ∈ R. Let ψ̃, ψ̃−1 be lifts of ψ, ψ−1, chosen such that they are inverse to each

other (Lemma 3.8). Since ψ, ψ−1 are orientation-preserving, ψ̃, ψ̃−1 are monotonically

increasing. Then ψ̃ ◦H ◦ ψ̃−1 is a lift of hy since

ei(ψ̃◦H◦ψ̃−1(y)) = ψ ◦ ei(H◦ψ̃−1(y))

= ψ ◦ h ◦ ei(ψ̃
−1(y))

= ψ ◦ h ◦ ψ−1
(

eiy
)

= hy
(

eiy
)

.

As ψ̃ is monotonically increasing and ψ̃−1 is bijective, H(y) ≧ y for all y ∈ R implies

ψ̃ ◦H ◦ ψ̃−1(y) ≧ y for all y ∈ R. So indeed, hy is an extreme left homeomorphism. In

the same way one can show that if hy is an extreme left homeomorphism, so is h, i.e.

being an extreme left homeomorphism is independent of coordinates. In total, we know

that for every y ∈ H
2 there is exactly one extreme left homeomorphism in p−1({y}), so

p|XL : XL→ H
2 is a bijection.

It remains to show that p|XL is a homeomorphism. Since p is continuous on C (Lemma

2.13), also p|XL is continuous. Recall the steps we followed for finding the unique h ∈ XL

with p(h) = y ∈ H
2:

i) For y ∈ H
2 we chose h0 ∈ XL with h0(x0) = y.

ii) We fixed a lift H0 of h and found T = − infx∈R(H0(x)− x).

iii) The element of p−1({y}) with lift H0(x) + T is the extreme left homeomorphism
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we searched for.

To show that (p|XL)
−1 is continuous, we show that all steps can be done in a continuous

fashion, i.e.

i) h0 can be chosen such that it depends continuously on y,

ii) H0 can be chosen such that it depends continuously on y, and T depends continu-

ously on H and

iii) a circle homeomorphism h depends continuously on its lift H.

Here, the spaces R, H2 and D2 are equipped with the standard topology induced by the

Euclidean metric and the function spaces are endowed with the uniform topology with

respect to the Euclidean metric for functions on R and with respect to the chordal metric

for functions on H2 ⊆ C ∪ {∞} (see (2.4)). We start with showing i). Any h ∈ C is of

the form h = ϕ ◦ f for some ϕ ∈ PSL(2,R), so finding h0 with h0(x0) = y is equivalent

to finding ϕ with ϕ(f(x0)) = y. It suffices to show that we can find an isometry α of

the hyperbolic disc with α(0) = y depending continuously on y. If we found such an α,

we set ϕ := α ◦ ψ for a fixed ψ satisfying ψ(f(x0)) = 0. Then h0 := ϕ ◦ f ∈ C satisfies

h0(x0) = α ◦ ψ(f(x0)) = α(0) = y. Since f and ψ are independent of y and α depends

continuously on y, also h0 depends continuously on y.

Consider the disk model D2 and let α be the isometry defined by

α(z) =
z − y

1− yz
∀z ∈ D

2.

α corresponds to the matrix

A =
1

1− ‖y‖2

(

1 −y

−y 1

)

∈ SL(2,C).

This indeed defines an isometry of the hyperbolic plane in the disk model (see Subsection

2.2). Clearly, A depends continuously on y. Further, the map Φ: SL(2,C) → M sending

a matrix to the corresponding Möbius transformation is continuous (by Theorem 2.12).

We have the following conjunction of continuous mappings:

R −→ SL(2,C) −→ M, y 7−→ A 7−→ α,

so the assignment y 7→ α is continuous. This shows that we can choose h0 ∈ C with

h0(x0) = y in a continuous fashion. To prove ii), we first want a lift of h0 that depends
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continuously on h0.

In the following, x and y will always be points in R and t and w will be on S
1. Further,

we use | · | for the Euclidean norm on R and ‖ · ‖ for the Euclidean norm on R
2 and on

subsets, for instance on S
1.

One would like to make an assignment Homeo+(S1) → Homeo+(R) sending a map h to

some lift H by requiring that for instance, H(y) ∈ [0, 2π) for some fixed y ∈ R. However,

this map would not be continuous, as we could have h (eiy) and g (eiy) close in S
1 with

the lifts satisfying H(y) close to 0 and G(y) close to 2π, getting farther away from each

other when h (eiy) and g (eiy) are getting closer. We can fix this issue by assuming that

we already have some lift H of a map h and a map g that is δ-close to h. All functions

considered are either on R or on S
1, so in the following, all distances are the Euclidean

distances. We choose a lift G of g satisfying

|H(0)−G(0)| ≤ π.

We can do so since all lifts of g differ by an additive constant that is a multiple of 2π.

Let δ < 2. As h and g are δ-close, we have

sup
y∈R

‖h
(

eiy
)

− g
(

eiy
)

‖ < δ < 2,

so for no y ∈ R, h (eiy) and g (eiy) are antipodal. Since |H(0)−G(0)| = π would imply

that h (eiy) and g (eiy) are antipodal, we conclude |H(0)−G(0)| < π. If |H(y)−G(y)| > π

for some y, then by the intermediate value theorem there would be some x between 0 and

y with |H(x)−G(x)| = π, so h (eix) and g (eix) are antipodal - a contradiction. Hence,

δ < 2 and supt∈S1 ‖h(t)− g(t)‖ < δ together imply supy∈R |H(y)−G(y)| < π. Note that

we cannot have equality as H(y) − G(y) is 2π-periodic, so the supremum is in fact a

maximum.

Since

π : R → S
1 , π(x) = eix

is a covering map, for any point in S
1 there is a neighbourhood U and open sets Vk ⊆ R

for k ∈ Z such that

π−1(U) =
⋃

k∈Z

Vk, π|Vk : Vk → U is a homeomorphism ∀k ∈ Z . (6.1)
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One says that U is an evenly covered neighbourhood. If we fix one open set V0 ⊆ R,

all others are of the form Vk = V0 + 2πk, k ∈ Z. If U is chosen small enough, then

x, y ∈ π−1(U) and |x− y| < π together imply that x, y lie in the same open set Vk. Now

for any k, (π|Vk)
−1 is continuous, so

∀ε > 0 ∃ δε > 0 : ‖t− w‖ < δε ⇒ |(π|Vk)
−1(t)− (π|Vk)

−1(w)| < ε . (6.2)

Note that δε can be chosen independently of k. For a fixed t ∈ S
1, evenly covered by

open sets Vk ⊆ R, and for x ∈ R such that t = π(x) = eix and H(x) ∈ Vk for some k, we

have

π|−1
Vk
(h(t)) = π|−1

Vk
(h (π|Vk(x))) = π|−1

Vk
(π|Vk(H(x))) = H(x),

since π|Vk is a homeomorphism. Now ‖h(t)− g(t)‖ < δε implies that H(x) and G(x) lie

in the same Vk and with (6.2) it follows that ‖H(x)−G(x)‖ < ε.

Fix ε > 0. As S1 is compact, there are finitely many open balls Ui, i = 1, . . . , n, of radius

at most δε that cover S
1 and that are all evenly covered. Set δ < min{δε, 2}. For all Ui

and all t ∈ Ui with x ∈ R satisfying t = eix, we have shown that |h(t)− g(t)| < δ implies

|H(x)−G(x)| < ε. It follows that

sup
t∈S1

‖h(t)− g(t)‖ < δ ⇒ sup
x∈R

|H(x)−G(x)| < ε.

Hence, if we have a homeomorphism h and a lift H and vary h just a bit to a homeomor-

phism g, then there is a lift G of g that is close to H.

We now show that the infimum of a function depends continuously on the function, i.e.

for h, g ∈ Homeo+(R)

∀ε > 0 ∃δ > 0 : sup
x∈R

|h(x)− g(x)| < δ ⇒ | inf
x∈R

h(x)− inf
x∈R

g(x)| < ε .

Let ε > 0, δ such that 0 < δ < ε and let supx∈R |h(x) − g(x)| < δ. Let (xn)n∈N be a

sequence with limn→∞ g(xn) = infx∈R g(x). Then g(xn) > h(xn)− δ for all n ∈ N and

inf
x∈R

g(x) = lim
n→∞

g(xn) ≥ lim inf
n→∞

h(xn)− δ ≥ inf
x∈R

h(x)− δ.
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Analogously, one shows that infx∈R h(x) ≥ infx∈R g(x)− δ, so in total

| inf
x∈R

h(x)− inf
x∈R

g(x)| ≤ δ < ε.

This shows continuity in step ii). For iii), we only have to show that a function on S
1

depends continuously on its lift. Note that π : R → S
1 is continuous, so

∀ε > 0 ∃δ > 0 : |x− y| < δ ⇒ ‖π(x)− π(y)‖ < ε .

Let ε > 0 and let δ be as above. Let F,G ∈ Homeo+(R) be lifts of f, g ∈ Homeo+(S1)

and let F,G be δ-close, i.e. supx∈R |F (x)−G(x)| < δ. Then by surjectivity and continuity

of π it follows that

sup
t∈S1

|f(t)− g(t)| = sup
y∈R

|f(π(y))− g(π(y))|

= sup
y∈R

|π(F (y))− π(G(y))| < ε,

so the map assigning to a lift F the map f is continuous. In total, we have proven

that the construction of the inverse of p is continuous, so indeed p|XL : XL → H
2 is a

homeomorphism.

6.2. Convex hulls

From the set XL, we now want to construct a lamination. Given g ∈ XL, let fix(g) be

the set of fixed points of g on S1
∞ and let H(g) ⊆ D

2 ∼= H
2 ∪ S1

∞ be the convex hull

of fix(g), that is the smallest convex set containing fix(g) (see Figure 6.1). Here, we

consider the convex hull in the hyperbolic sense: A set C is convex if for any x, y ∈ C,

the hyperbolic geodesic arc connecting x and y is contained in C. For instance

• if fix(g) consists of one single point, then H(g) = fix(g),

• if fix(g) consists of two points, then H(g) is the hyperbolic geodesic connecting

those points,

• if fix(g) consists of n points, then H(g) is the ideal hyperbolic n-gon with vertices

the points in fix(g).

If H(g) is two-dimensional, it is bounded by geodesics that connect points in fix(g). Since

the leaves of a lamination do not cross and we want to use the convex hulls H(g) for
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(a) (b) (c)

Figure 6.1: The convex hulls H(g) are defined using fix(g). If fix(g) is finite, then H(g) is
an ideal hyperbolic polygon (6.1a). In general fix(g) can contain an interval
of S1

∞ (6.1b and 6.1c).

g ∈ XL to construct a lamination, we would like to have a similar property for the H(g).

Indeed, the following holds:

Lemma 6.4. The sets H(g) for g ∈ XL do not cross each other. More precisely, if

g1, g2 ∈ XL satisfy #fix(gi) > 1 for i = 1, 2 and H(g1) 6= H(g2), then H(g2) is contained

in the closure of D2 \H(g1).

Proof. Let g1, g2 ∈ XL be as in the statement and let ϕ1, ϕ2 ∈ PSL(2,R) be such that

gi = ϕi ◦ f for i = 1, 2. We have

g1 ◦ g
−1
2 = (ϕ1 ◦ f) ◦ (ϕ2 ◦ f)

−1 = ϕ1 ◦ f ◦ f−1 ◦ ϕ−1
2 = ϕ1 ◦ ϕ

−1
2 ∈ PSL(2,R),

so g1 ◦ g
−1
2 can be extended to a unique isometry of H2. In particular, g1 ◦ g

−1
2 preserves

angles and maps geodesics to geodesics. Suppose by contradiction that H(g2) does not

lie in the closure of D2 \H(g1). Then either

i) H(g2) ⊆ H(g1) or

ii) some geodesics ℓ1 and ℓ2 bounding H(g1) and H(g2) have to meet in the interior of

H
2

(see Figure 6.2). In Case ii), for i = 1, 2, let xi and yi by the endpoints of ℓi in fix(gi). Since

H(g1) 6= H(g2) we can assume that ℓ1 6= ℓ2, so at least three of the points x1, y1, x2, y2 are

pairwise distinct. Assume that ℓ1 and ℓ2 meet at a point in H
2. In this case, as ℓ1 6= ℓ2,

the geodesics have no common endpoint on S1
∞. We choose one of the hyperbolic angles

between ℓ1 and ℓ2 and denote it with α. In Figure 6.3 this is the angle corresponding
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(a) (b) (c)

Figure 6.2: If H(g2) is not contained in the closure of D2 \H(g1), it is either contained
in H(g1) (6.2a and 6.2b) or some bounding geodesics of H(g1) and H(g2)
intersect (6.2c).

to the segment of S1
∞ between x1 and y2. We know that α equals the angle between

g1 ◦ g
−1
2 (ℓ1) and g1 ◦ g

−1
2 (ℓ2), as g1 ◦ g

−1
2 is an isometry. Let us have a look at what

g1 ◦ g
−1
2 does to the ℓi. Since g1 ◦ g

−1
2 maps geodesics to geodesics, it suffices to consider

the images of the endpoints of the ℓi. As g
−1
2 fixes x2 and y2 and g1 is an extreme left

homeomorphism, g1 ◦ g
−1
2 either fixes x2 and y2 or moves them counterclockwise. Note

that those points are only fixed by g1 ◦ g
−1
2 if they are also fixed points of g1. Similarly,

x1 and y1 are either fixed by g1 ◦ g
−1
2 or moved clockwise (see Figure 6.3). Considering

the angle between the resulting geodesics, we have

∡(g1 ◦ g
−1
2 (ℓ1), g1 ◦ g

−1
2 (ℓ2)) ≥ α.

Since we already know that we have equality of the angles, it follows that g1 ◦g
−1
2 fixes the

geodesics ℓ1 and ℓ2, so in particular, fixes their endpoints x1, y1, x2, y2. As any element in

PSL(2,R) fixing at least three points is the identity, we hae g1 ◦ g
−1
2 = id, hence g1 = g2.

In Case i), we have fix(g2) ⊆ fix(g1). If #fix(g2) > 2, then g1 and g2 have at least three

common fixed points xi, i = 1, 2, 3. It follows that g1 ◦ g
−1
2 (xi) = xi for i = 1, 2, 3. Since

g1 ◦ g
−1
2 is an isometry, this implies g1 ◦ g

−1
2 = id, so g1 = g2. If #fix(g2) = 2, then H(g2)

is a geodesic ℓ with endpoints x2, y2 the fixed points of g2. As above, those are also fixed

points of g1, so g1 ◦ g
−1
2 has two fixed points and hence is hyperbolic wih axis ℓ. Note

that H(g2) ⊆ D2 \H(g1) implies that g1 has fixed points x1 and y1 on different sides of

ℓ (Figure 6.2b). Now g1 ◦ g
−1
2 moves both points clockwise, as g1, g2 are extreme left

homeomorphisms and g1 fixes x1 and y1. But this contradicts the fact that g1 ◦ g
−1
2 is a

hyperbolic transformation and x1 and y1 lie on different sides of the translation axis ℓ.
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Figure 6.3: To show that the convex hulls for distinct g1, g2 ∈ XL do not cross, one first
considers geodesics ℓ1 ⊆ H(g1) and ℓ2 ⊆ H(g2). If they have an intersection in
H

2, then applying the isometry g1 ◦g
−1
2 increases the angle α - a contradiction.

Hence g1 = g2.

Thus, for g1 6= g2 with H(g1) 6= H(g2) the interiors of the convex hulls are disjoint.

We want to use the geodesics bounding the convex hulls H(g) for g ∈ XL to build a

lamination. For that, we need to show that the union of these geodesics is closed (Lemma

6.7). To define an the earthquake map, we also need a strong property for the convex

hulls, namely, that they cover all of the hyperbolic plane (Proposition 6.8). Working

towards these statements, we first show a continuity property for the convex hulls. For

that, it is easiest to use the Klein model K2. If fix(g) is finite, the convex hull H(g) then

becomes a Euclidean convex polygon with vertices on the circle.

Proposition 6.5. For any h ∈ XL and any open neighbourhood U of H(h) in D
2, there

is a neighbourhood V of h in XL such that

g ∈ V ⇒ H(g) ⊆ U.

In other words, the map H : XL → P(D2) mapping h to H(h) is continuous in the

sense that if h changes a little bit, all that H(h) can do is change a little bit.

Proof. We start with showing that U contains a convex open neighbourhood U0 of H(h).

The set H(h) is closed and since U is open, also D
2 \U is closed. As H(h)∩ (D2 \U) = ∅,

those sets have positive euclidean distance: dist(H(h),D2 \ U) = ε > 0. Set

U0 := U ε

2
(H(h)) = {x ∈ D

2 | dist(x,H(h)) <
ε

2
} ⊆ U .

We show that U0 is convex: Let x, y in U0 and x′, y′ ∈ H(h) such that ‖x − x′‖ < ε
2

and ‖y − y′‖ < ε
2
. For t ∈ [0, 1] let z := tx + (1 − t)y. We show that z lies in U0: Set
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z′ := tx′ + (1− t)y′. By convexity of H(h), z′ lies in H(h) and we have

‖z − z′‖ = ‖ (tx+ (1− t)y)− (tx′ + (1− t)y′) ‖

= ‖ t(x− x′) + (1− t)(y − y′) ‖

≤ t · ‖x− x′‖+ (1− t) · ‖y − y′‖

< t ·
ε

2
+ (1− t) ·

ε

2
=
ε

2
.

Hence z ∈ U0, so indeed, we found a convex neighbourhood U0 of H(h) with U0 ⊆ U and

can therefore assume that U is convex.

We claim that there is a lower bound to the Euclidean distance that h moves points

in S1
∞ \ U. We identify S1

∞ with S
1. Assume there was no lower bound. Then there

is a sequence (tn)n∈N in S
1 \ U with limn→∞ ‖tn − h(tn)‖ = 0. Since S

1 is compact,

after passing to a subsequence, (tn)n∈N converges to some t ∈ S
1 and hence (h(tn))n∈N

converges to h(t) as h is continuous. If follows that h(t) = t, so t ∈ fix(h) ⊆ H(h) ⊆ U.

But we also know that S1 \ U is closed, so the limit of the sequence (tn)n∈N has to lie

in S
1 \ U . This gives us t ∈ (S1 \ U) ∩ fix(h) ⊆ (S1 \ U) ∩ U - a contradiction. So there

has to be some lower bound m > 0 with m < ‖t − h(t)‖ for all t ∈ S
1 \ U . Let now

0 < ε < m and let V be the ε-neighbourhood of h in XL:

V := {g ∈ XL | sup
t∈S1

‖g(t)− h(t)‖ < ε} .

We show that the fixed points of all elements in V lie in U ∩ S1
∞: Let g ∈ V and

t0 be a fixed point of g. Assume that t0 ∈ S1
∞ \ U. Then h moves t0 at least by

distance m, so ε > ‖g(t0) − h(t0)‖ = ‖t0 − h(t0)‖ > m, a contradiction. Hence for all

g ∈ V , fix(g) ⊆ U ∩ S
1 and since U is convex and H(g) = conv(fix(g)), it follows that

H(g) ⊆ U .

We showed in Proposition 6.3 that XL is homeomorphic to H
2 via the evaluation p

at x0. H
2 has as compactification the closed disk D

2(see Section 2.1). By identifying

XL with H
2, we obtain a compactification XL of XL and we define ∂XL := XL \XL.

The elements in ∂XL cannot be interpreted as functions like the elements in XL but

correspond to points in S1
∞. We define

H : XL→ P(D2), H(g) :=







H(g) for g ∈ XL,

{g} for g ∈ ∂XL.
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Thus, H extends H, mapping the boundary points to singleton sets. Also H satisfies a

continuity property.

Proposition 6.6. For all h ∈ XL and any open neighbourhood U of H(h) in D
2, there

is some open neighbourhood V of h in XL such that

g ∈ V ⇒ H(g) ⊆ U. (6.3)

Proof. If h ∈ XL and U is a neighbourhood of H(h) = H(h) in XL, then by Proposition

6.5, there is a neighbourhood V of h in XL such that g ∈ V implies H(g) = H(g) ⊆ U .

As V is also a neighbourhood of h in XL, this proves the statement.

So let h ∈ ∂XL ∼= S
1 and let U be a neighbourhood of H(h) = {h} in D

2. Remember

that we identified g ∈ XL with the point g(x0) ∈ H
2 for some fixed base point x0. We

can assume that U is given as Uη(h) for some η > 0, where

Uη(h) = {g ∈ S
1 | ‖g − h‖ < η} ∪ {g ∈ XL | ‖g(x0)− h‖ < η}

is the η-neighbourhood of h in XL. Let 0 < ε < η and set V := Uε(h). Later we will

make precise how ε has to be chosen. For g ∈ V ∩ S
1 it holds that H(g) = {g} ⊆ V =

Uε(h) ⊆ Uη(h) = U and we have nothing to show. Now let g ∈ V ∩ XL. As in the

proof of Proposition 6.5 we can assume that U is convex. It then suffices to show that

fix(g) ⊆ U . Assume by contradiction that g has a fixed point y that does not lie in U , so

‖y − h‖ ≥ η. Let y1 ∈ Uη−ε(x) be a point close to y in clockwise direction. Note that y1

cannot lie in V as

‖y1 − h‖ ≥ ‖y − h‖ − ‖y1 − y‖ > η − (η − ε) = ε.

Before going on, we prove the following:

Fact. Fix y0 ∈ H
2. Any ϕ ∈ PSL(2,R) can be written as ϕ = t ◦ ρ, where ρ is an elliptic

element of PSL(2,R) fixing y0 and t is a hyperbolic transformation sending y0 to ϕ(y0).

Proof of the Fact. Let t be the hyperbolic transformation with axis the geodesic through

y0 and ϕ(y0), sending y0 to ϕ(y0). Then t−1 ◦ ϕ(y0) = y0, so ρ := t−1 ◦ ϕ is an elliptic

element fixing y0 ∈ H
2. Then ϕ = t ◦ t−1 ◦ ϕ = t ◦ ρ.

We write g = ϕ ◦ f for some ϕ ∈ PSL(2,R) and ϕ = t ◦ ρ, where ρ is an ellip-

tic transformation fixing f(x0) and t is a hyperbolic transformation sending f(x0) to

ϕ(f(x0)) = g(x0), where x0 ∈ H
2 is the point we used to identify XL with H

2. Without
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loss of generality we can assume that f(x0) is the centre of the disk - else, we use a change

of coordinates as in the proof of Proposition 6.3. We can do so since changing coordinates

preserves continuity properties. Now t maps f(x0) = 0 to g(x0). The translation distance

τ(t) of t is attained in any point on the axis, so

τ(t) = inf
z∈D2

d(z, t(z)) = d(0, g(x0)) = log

(

1 + ||g(x0)||

1− ||g(x0)||

)

.

(see Proposition 2.3). As g ∈ Uε(h), we have ||g(x0)|| > 1− ε, so 1− ||g(x0)|| < ε. For

ε≪ 1 this gives us by monotonicity of the logarithm

τ(t) = log

(

1 + ||g(x0)||

1− ||g(x0)||

)

> log

(

2− ε

ε

)

> log

(

1

ε

)

. (6.4)

This shows that by decreasing ε we can obtain arbitrary high translation distances for t.

As g(x0) lies inside Uε(h) and the translation axis ℓ of t goes through 0 and g(x0), also the

attracting endpoint of t has to lie in Uε(h). It follows that neither y nor y1 agree with this

fixed point, since they both lie in S
1 \ Uε(h). As continuous function on the compact set

S
1, f is uniformly continuous. So we have δη > 0 depending on η such that ‖z − w‖ < η

implies ‖f(z)− f(w)‖ < δη for all z, w on S
1. Set δ := ‖f(y)− f(y1)‖; note that δ < δη

as ‖y − y1‖ < η. As ρ is a rotation, it preserves the Euclidean distance between points

on the boundary, so ‖ρ ◦ f(y)− ρ ◦ f(y1)‖ = δ. Now y is a fixed point of g = t ◦ ρ ◦ f ,

so t−1(y) = t−1(g(y)) = ρ ◦ f(y) and hence ‖t−1(y)− ρ ◦ f(y1)‖ = δ. Further, all maps

considered are orientation-preserving, so ρ ◦ f(y1) is clockwise from ρ ◦ f(y). Applying t

to those points will give us g(y1) and y, where again, g(y1) is clockwise from y. Also y1 is

clockwise from y. If we can show that ‖y− g(y1)‖ > ‖y− y1‖, then g moves y1 clockwise,

contradiction the fact that it is an extreme left homeomorphism. Note that for large

translation distance, t−1(y) is close to the repelling fixed point. Intuitively, t expands the

interval between two points that are close to the repelling fixed point by a huge factor

- the larger the translation distance, the larger that factor. If we make sure that the

translation distance is large enough, then indeed we obtain ‖y − g(y1)‖ > ‖y − y1‖. To

show this more precisely, we consider the half-plane model, where we can assume that

the translation axis is the imaginary axis and the repelling fixed point is 0. The fact

that y1 is clockwise from y translates to y1 < y. In the half-plane model, t is of the form

z 7→ eλz for some λ > 0 where the translation distance is λ. Now for all z, w ∈ R we
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have

‖t(z)− t(w)‖ = ‖eλz − eλw‖ = eλ‖z − w‖.

Note that eλ can be seen as expansion factor for any interval [z, w]. In particular, we

have

‖y − g(y1)‖ = ‖t(t−1(y))− t(ρ ◦ f(y1))‖ = eλ‖t−1(y)− ρ ◦ f(y1)‖ = eλδ.

Remember that log(λ2) = τ (t) and from (6.4)we know that we can obtain arbitrarily high

τ (t) by decreasing ε. In particular, for ε small enough, we have ‖y−g(y)‖ = eλδ̃ > ‖y−y1‖.

Note that strictly speaking, we have cross dependencies in this inequality: δ̃ depends

on y1 and this depends on ε, as we required that ‖y − y1‖ < η − ε. So decreasing ε

could possibly change y1, increase the distance between y and y1 and hence δ. But

when ε decreases, δ could only increase and it is bounded by δη. Also, the right-hand

side could increase as we decrease ε, but it is bounded by η, whereas the left-hand side

can grow beyond all limits. Hence, it holds that if ε is chosen small enough, we have

‖y − g(y1)‖ > ‖y − y1‖, where both y1 and g(y1) are clockwise from y (or right in the

half-plane model), contradicting the fact that g ∈ XL. In total, g cannot have a fixed

point outside U , so H(g) ⊆ U for all g ∈ V = Uε(h).

We now define the lamination for the earthquake using the geodesics bounding the

convex hulls for the elements in XL. For any g ∈ XL, H(g) is bounded by geodesics ℓig,

where i ranges in some index set Ig. Let now

λ := {ℓig | g ∈ XL, i ∈ Ig}

be the set of all geodesics bounding the convex hulls H(g) for g ∈ XL. As seen in Lemma

6.4, those geodesics do not intersect. In order to show that they form a lamination, we

have to prove the following:

Lemma 6.7. The union of all geodesics in λ is closed.

Proof. For the proof, we again consider the situation in the Klein model. Let

L :=
⋃

ℓ∈λ

ℓ

be the union of all geodesics in λ. Consider a sequence (pn)n∈N in L that converges

49



6.2. Convex hulls

to some p ∈ H
2. We want to prove that p ∈ L. For any n ∈ N, let ℓn ∈ λ be the

geodesic with pn ∈ ℓn. It is unique as the convex hulls do not cross (Lemma 6.4). Let

xn, yn ∈ S1
∞

∼= S
1 be the endpoints of ℓn. After passing to a subsequence if necessary,

we can assume that there are x, y ∈ S
1 with limn→∞ xn = x and limn→∞ yn = y as S1 is

compact. We have x 6= y since otherwise, the geodesics ℓn would accumulate to a point

on the boundary and this would imply p 6∈ H
2. Let ℓ be the geodesic connecting x and

y. By definition of λ, for any n ∈ N there exists gn ∈ XL such that ℓn is a boundary

component of H(gn) and hence xn, yn ∈ fix(gn). Since XL is compact, there has to be a

subsequence of (gn)n∈N converging to some g ∈ XL. Without loss of generality let this

already be (gn)n∈N. If g ∈ ∂XL, then H(g) = {g} and as H is continuous (Proposition

6.6) for ε > 0 there is some N ∈ N such that fix(gn) ⊆ H(gn) ⊆ Uε(H(g)) = Uε(g) for

all n ≥ N . Letting ε go to zero, it follows that x = limn→∞ xn = g = limn→∞ yn = y,

contradicting the fact that x 6= y. Hence this case cannot occur and we have g ∈ XL.

We show that g has to have x and y as fixed points. Consider

‖x− g(x)‖ = lim
n→∞

‖xn − g(x)‖

= lim
n→∞

‖gn(xn)− g(x)‖

≤ lim
n→∞

‖gn(xn)− g(xn)‖+ ‖g(xn)− g(x)‖ . (6.5)

Let ε > 0. As (gn)n∈N converges to g in the topology of uniform convergence, there is

some N1 ∈ N such that for all n ≥ N1

sup
y∈S1

‖gn(y)− g(y)‖ <
ε

2
.

Further, as g is continuous, there is δ > 0 such that ‖z−w‖ < δ implies ‖g(z)−g(x)‖ < ε
2

for all z, w ∈ S
1. As (xn)n∈N converges to x, there is some N2 ∈ N such that ‖xn−x‖ < δ

for all n ≥ N2. Setting N := max{N1, N2}, we obtain for all n ≥ N

‖xn − g(x)‖ ≤ ‖gn(xn)− g(xn)‖+ ‖g(xn)− g(x)‖ <
ε

2
+
ε

2
= ε .

Letting ε go to zero, we obtain with (6.5) ‖x − g(x)‖ = 0, and hence g(x) = x. The

same argument shows that also y is a fixed point of g, so we have ℓ ⊆ H(g). Because the

geodesics ℓn are getting arbitrary close to ℓ it is not possible that ℓ lies in the interior of

H(g), so it has to be a boundary component, so ℓ ⊆ L. We claim that p ∈ ℓ. As ℓ is the
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Euclidean line segment between x and y we have the equivalence

p ∈ ℓ ⇔ ‖x− p‖+ ‖p− y‖ = ‖x− y‖ . (6.6)

From the triangle inequality we already know that

‖x− p‖+ ‖p− y‖ ≥ ‖x− y‖ . (6.7)

As distance is continuous, we further have

‖x− p‖+ ‖p− y‖ = lim
n→∞

(‖x− pn‖+ ‖pn − y‖)

≤ lim
n→∞

(‖x− xn‖+ ‖xn − pn‖+ ‖pn − yn‖+ ‖yn − y‖)

= lim
n→∞

(‖x− xn‖+ ‖xn − yn‖+ ‖yn − y‖)

= ‖x− y‖ , (6.8)

where we used pn ∈ ℓn for all n ∈ N and (6.6). Combining (6.6), (6.7) and (6.8) we

obtain p ∈ ℓ ⊆ L. So indeed, L has to be closed.

6.3. Covering property of convex hulls

We are now almost ready to define the λ-left earthquake E. For a point x ∈ H
2, we will

define E(x) using the extreme left homeomorphism g ∈ XL with x ∈ H(g). In order to

do so, we first have to make sure that such a g always exist, i.e. that the convex hulls

H(g) for g ∈ XL cover the plane H
2.

Proposition 6.8. The convex hulls H(g) for g ∈ XL cover the hyperbolic plane, i.e.

⋃

g∈XL

H(g) ⊇ H
2.

Unfortunately, the proof of the proposition is not constructive. The idea is to replace

H by a continuous function H
2
→ H

2
using an averaging technique.

Proof. As before we consider the situation in the Klein model K2. We break down the

proof in several steps.

Step 1: Construction of the convolution β ∗ h. For g ∈ XL let h(g) ∈ D
2 be the centroid

of H(g). This is the point in the mean position of all points in H(g) with respect to all

coordinate directions. It can be calculated as follows: If H(g) = {x} is just one point,
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then h(g) := x. If g ∈ XL and #fix(g) = 2, then H(g) is a Euclidean straight line and

we set h(g) to be its Euclidean midpoint. If #fix(g) > 2, let µ be the Lebesgue-measure

on H(g) and let x1, x2 be the cartesian coordinates on R
2. We let h(g) be given by its

coordinates

h(g)i =
1

vol(H(g))

∫

xidµ for i = 1, 2,

where

vol(H(g)) :=

∫

H(g)

1dµ

is the area of H(g). We will not need to determine the point h(g) explicitly. What

matters to us is that it can be interpreted as midpoint of H(g) and that it always lies in

H(g) as H(g) is convex.

The next ingredient in the proof is a bump function β. Let ε > 0 be fixed and let β be

a smooth non-negative function on R
2 with supp(β) ⊆ Uε(0), so β ≡ 0 on R

2 \ Uε(0).

By normalizing we can require that
∫

R2 β(x, y)d(x, y) = 1. For the existence of such a

function we refer to [Hör83]. Also the details of the following definition as well as the

properties used can be found there. We consider the convolution

β ∗ h(x) :=

∫

D2

β(x− y)h(y)dy ∀x ∈ D
2. (6.9)

As the convolution is commutative and supp(β) ⊆ Uε(0), we have for x ∈ D
2

β ∗ h(x) = h ∗ β(x) =

∫

Uε(0)

h(x− y)β(y)dy =

∫

Uε(x)

h(y)β(x− y)dy .

The convolution β ∗ h can be seen as mean value of h in a neighbourhood of x with

weighting governed by β. Note that β ∗ h is a function from D
2 to D

2. As h is bounded

with supp(h) ⊆ D
2, it is integrable. Since β is smooth, it follows that β ∗ h is continuous.

Step 2: β ∗ h is close to the identity near the boundary. We first have to show the

following fact:

Fact. For all g0 ∈ XL, β ∗ h(g0) is contained in the convex hull of the union of the H(g)

where g ranges over the ε−neighbourhood of g0.

Proof of the Fact. Let x0 ∈ D
2 be the element corresponding to g0 in the identification
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from Proposition 6.3. Then by definition

β ∗ h(g0) = β ∗ h(x0) =

∫

Uε(x0)

β(x0 − y)h(y)dy.

The centroid h(y) lies in H(y). Weighting with β and integrating over all values in

Uε(x0) will give some convex combination of the h(y) that might not necessarily lie in
⋃

y∈Uε(x0)
H(y), but will lie in the convex hull.

By continuity of H (Proposition 6.6) it follows that β ∗ h(g0) is contained in some

small neighbourhood Uδ(H(g0)) of H(g0) where δ depends on ε. To show that β ∗ h is

close to the identity near the boundary, let x ∈ S
1 be fixed and set V := U2ε(x). As

H satisfies a continuity property (Proposition 6.6), there is some η > 0 depending on

ε with H(y) ⊆ Uη(x) for all y ∈ V . Let y ∈ Uε(x). Then Uε(y) ⊆ U2ε(x) = V , so for

all ỹ ∈ Uε(y), we have H(ỹ) ⊆ Uη(x). Since Uη(x) is convex and contains all H(ỹ) for

ỹ in the ε−neighbourhood of y , it follows with the fact we have shown above that

β ∗ h(y) ∈ Uη(x), so for all y ∈ Uε(x)

‖β ∗ h(y)− id(y)‖ = ‖β ∗ h(y)− y‖ ≤ ‖β ∗ h(y)− x‖+ ‖x− y‖ < η + ε .

As S1 is compact it can be covered by finitely many balls U ε

2
(xi) for i = 1, . . . , n with

xi ∈ S
1. Let η1, . . . , ηn be as above such that ‖β ∗ h(y)− y‖ < ηi + ε for all y ∈ Uε(xi)

for i = 1, . . . , n. Set η := maxi=1,...,n ηi + ε. Let

N ε

2
(S1) := {y ∈ D

2 | ‖y‖ ≥ 1−
ε

2
}

be the closed ε
2
−neighbourhood of S1 in D

2. For all y ∈ N ε

2
(S1), there is some z ∈ S

1

with y ∈ U ε

2
(z) and there is some i ∈ {1, . . . , n} with z ∈ U ε

2
(xi). In total, this gives us

y ∈ Uε(xi), so

‖β ∗ h(y)− y‖ ≤ η ∀y ∈ N ε

2
(S1).

In particular, supy∈N ε
2
(S1) ‖β ∗h(y)−y‖ ≤ η, so on N ε

2
(S1), β ∗h is η−close to the identity.

Note that η depends on ε and gets smaller as ε does.

Step 3: β ∗ h is surjective onto all except possibly a small neighbourhood of S1. The proof

uses homology theory and is similar to the proof that a map g : S1 → S
2 with non-zero

degree is surjective (Lemma A.9). The definitions and results we need from homology

theory are collected in the Appendix A. We know by Step 2 that β ∗ h(S1) ⊆ Nη(S
1). Let
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6.3. Covering property of convex hulls

ι denote the inclusion of S1 in Nη(S
1). The two maps

(β ∗ h)|S1 : S
1 → Nη(S

1) and ι : S1 → Nη(S
1)

are homotopic by linear interpolation. Explicitly, the homotopy is given by

H : S1 × [0, 1] → Nη(S
1), H(x, t) := t · ι(x) + (1− t) · (β ∗ h)(x).

We define the degree of β ∗ h and ι just as for a map S
1 → S

1 (Definition A.8). This is

possible as S1 and Nη(S
1) are homotopy equivalent: The map

g : Nη(S
1) → S

1, g(x) :=
x

‖x‖

is a homotopy equivalence since ι ◦ g ≃ id by linear interpolation as above and g ◦ ι = id.

Hence the homology groups of Nη(S
1) and S

1 are isomorphic (Proposition A.3).

Now the induced maps (β ∗ h)∗, ι∗ : H1(S
1) → H1(Nη(S

1)) can be interpreted as maps

from H1(S
1) ∼= Z to itself, so it does make sense to talk about deg(β ∗ h) and deg(ι). As

both maps are homotopic we have deg(β ∗ h) = deg(ι) and clearly, deg(ι) = 1.

Assume now that β ∗ h misses a point x ∈ D
2 \ Nη(S

1). Then Nη(S
1) is a subset of

D
2 \ {x}. As β ∗ h is continuous it induces maps between the (relative) homology groups

of the pairs (D2, S1) and (D2 \ {x}, Nη(S
1)). By Proposition A.5 we have the following

diagram coming from long exact sequences of the pairs:

. . . // H2(D
2, S1) ∂

//

(β∗h)∗
��

H1(S
1) //

(β∗h)∗
��

. . .

. . . // H2(D
2 \ {x}, Nη(S

1))d // H1(Nη(S
1)) // . . .

We make the following observations:

• As D
2 \ {x}, Nη(S

1) and S
1 are homotopy equivalent, we have H1(Nη(S

1)) =

H1(S
1) = Z.

• Since for any space X, the relative homology group Hn(X,X) is trivial by con-

struction, it follows that H2(D
2 \ {x}, Nη(S

1)) ∼= H2(S
1, S1) = 0.

It follows that d is trivial. Since (β∗h)∗ is a chain map, we have (β∗h)∗◦∂ = d◦(β∗h)∗ = 0.

But ∂ is an isomorphism and H1(S
1) ∼= Z is non-trivial, so (β ∗h)∗ : H1(S

1) → H1(Nη(S
1))

has to be trivial and hence deg(β ∗ h) = 0 - a contradiction. In total, β ∗ h has to be
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6.3. Covering property of convex hulls

surjective, except possibly onto the small neighbourhood Nη(S
1) of S1.

Step 4: H2 is covered by the convex hulls. The idea of the proof is to consider a sequence

of bump functions whose support goes to zero. The annulus Nη(S
1) where the convolution

with h is not surjective then gets smaller. Let x ∈ H
2 be arbitrary. We want to show

that x ∈ H(f0) for some f0 ∈ XL. If η is small enough, then x ∈ D
2 \Nη(S

1). For all

n, let βn be a bump function with supp(βn) ⊆ U 1

n

(0). Then βn ∗ h is surjective onto

D
2 \ Nηn(S

1) where ηn depends on 1
n
as in Step 2. As ηn converges to 0 there is some

N ∈ N such hat x ∈ D
2 \ Nηn(S

1) for all n ≥ N . Up to taking a subsequence, we can

therefore assume that x ∈ D
2 \ Nηn(S

1) for all n ∈ N. Then for all n ∈ N there exists

fn ∈ XL with βn ∗ h(fn) = x by Step 3. Consider the sequence (fn)n∈N in XL. Up to

passing to a subsequence, we can assume that (fn)n∈N converges to some f0 ∈ XL as XL

is compact. We claim that x ∈ H(f0) and that f0 ∈ XL. Let δ1 > 0. As H is continuous

by Proposition 6.6, there is some δ2 > 0 such that H(g) ⊆ Uδ1(H(f0)) for all g ∈ Uδ2(f0).

As (fn)n∈N converges to f0, there exists N1 depending on δ2 with fn ∈ Uδ2(f0) for all

n ≥ N1. It follows that

H(fn) ⊆ Uδ1(H(f0)) ∀n ≥ N1. (6.10)

By continuity of H, there is some δ(n) > 0 for all n such that g ∈ U 1

n

(fn) implies

H(g) ⊆ Uδ(n)(H(fn)). By the fact we have proven in Step 2, it follows that

β ∗ h(fn) ∈ conv







⋃

g∈U 1
n

(fn)

H(g)






⊆ conv







⋃

g∈U 1
n

(fn)

Uδ(n)(H(fn))






= Uδ(n)(H(fn))

as Uδ(n)(H(fn)) is convex. As δ(n) decreases with increasing n there is some N2 ∈ N

such that δ(n) ≤ δ1 for all n ≥ N2 and hence

x ∈ Uδ1(H(fn)) ∀n ≥ N2. (6.11)

Set N := max{N1, N2}. Then (6.10) and (6.11) give us

x ∈ Uδ1(H(fn)) ⊆ Uδ1(Uδ1(H(f0)) ⊆ U2δ1(H(f0)).

If we let δ1 go to zero it follows that x ∈ H(f0). This also gives us that f0 lies in XL since

for f0 ∈ ∂XL we would have x ∈ H(f0) = {f0}, so x = f0, contradicting the fact that

x ∈ H
2. In total, we have shown that the convex hulls H(g) for g ∈ XL cover H2.
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6.4. Construction of an earthquake map

6.4. Construction of an earthquake map

We are now ready to finish the proof of Theorem 6.1, i.e. to construct an earthquake map

E with E∞ = f . We have seen that the union of all geodesic boundary components of

H(g) for g ∈ XL forms a lamination λ (Lemma 6.4 and Lemma 6.7). We now construct

a λ-left earthquake.

Let A be a stratum of λ. We choose fA ∈ XL with A ⊆ H(fA):

If A is a gap, there is only one possible choice for fA. Assume A ⊆ H(fA) and A ⊆ H(gA)

for fA, gA ∈ XL. Then, since A is open, A ⊆ int(H(fA)) ∩ int(H(gA)), where for a set B

int(B) denotes the interior of B. This can only be true for fA = gA, as by Lemma 6.4

the interiors of H(fA) and H(gA) do not intersect if fA and gA are distinct.

If A is a leaf with endpoints x and y, there may be various choices for fA, but they

all share the two fixed points x and y. For now, we fix one choice. Later, we will

shortly examine what choices are possible for fA. Since fA ∈ XL ⊆ C = PSL(2,R) ◦ f,

there is some ϕA ∈ PSL(2,R) with fA = ϕ−1
A ◦ f , or equivalently, f = ϕA ◦ fA. We set

E|A := (ϕA)|A - so on A, E agrees with ϕA. We claim that E is an earthquake extending

the homeomorphism f . We have to show the following:

i) For any stratum A, E|A agrees with the restriction of an isometry H
2.

ii) For two strata A 6= B, the comparison isometry cmp(A,B) is a hyperbolic transfor-

mation whose axis weakly separates A and B and translates to the left as viewed

from A.

iii) E is injective.

iv) E is surjective.

v) E∞ coincides with f .

As a last step, we will show uniqueness up to translation on leaves as formulated in

Theorem 6.1.

Property i) holds by construction of E. To show ii), observe that for two strata A 6= B

cmp(A,B) = ϕ−1
A ◦ ϕB = (ϕ−1

A ◦ f) ◦ (f−1 ◦ ϕB) = fA ◦ f−1
B , (6.12)

where ϕA and ϕB are as above. The proof is now similar to the proof of Lemma 5.6. Let

ℓA be a geodesic in ∂A weakly separating A and B and with endpoints xA and yA on S1
∞.

Analogously, let ℓB a geodesic in ∂B weakly separating A and B and with endpoints xB
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6.4. Construction of an earthquake map

Figure 6.4: To show that for two strata A and B the comparison isometry is hyperbolic
with axis weakly separating A and B and translates to the left as viewed
from A, one has a look at what happens when applying cmp(A,B) to the
intervals I and J .

and yB on S1
∞. In the case that A (respectively, B) is a leaf, we set ℓA := A (respectively,

ℓB := B). We can assume that the tuple (xA, xB, yB, yA) is ordered. Let J := [[xA, xB]]

and I := [[yB, yA]] (see Figure 6.4). We also allow that one of the intervals is degenerate,

i.e. a point. In this case, ℓA and ℓB share an endpoint. The case that A and B are

adjacent, i.e. both of the intervalls I and J are degenerate, requires some extra thought

and will be considered later. As fA is an extreme left homeomorphism fixing yA, we

have fA(I) ⊆ I . Moreover, f−1
B moves all points at most clockwise and fixes yB, so

f−1
B (I) ⊆ I. Using (6.12), we obtain that cmp(A,B) maps I into itself. By Brouwer’s

fixed point theorem (Theorem 5.5), cmp(A,B) has a fixed point y in I. Analogously,

(cmp(A,B))−1 = fB ◦ f−1
A has a fixed point x in J , so also cmp(A,B) has x as a fixed

point. Hence cmp(A,B) is an isometry with at least two fixed points on S1
∞. As the

fixed point sets of fA and fB do not coincide, cmp(A,B) is not the identity. If follows

that it is a hyperbolic transformation with axis connecting x and y, separating A from B.

Since cmp(A,B) maps I into itself, the translation has to be from x to y, i.e. to the left

as viewed from A. If now both intervals are degenerate, I = {x} and J = {y}, then A

and B are adjacent and we obtain again, that cmp(A,B) is a hyperbolic transformation

with axis weakly separating A and B. In this case, the direction of translation cannot

be deduced from the fact that I = {x} is mapped into itself. But as A 6= B, one of

the homeomorphisms fA and fB has a fixed point w that is not a fixed point of the

other. Without loss of generality let w ∈ fix(fB) \ fix(fA) and let A and B be such that
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6.4. Construction of an earthquake map

translation to the left as viewed from A is translating from x to y. Now the image point

cmp(A,B)(w) = fA ◦ f−1
B (w) = fA(w)

is counterclockwise from w. So indeed, cmp(A,B) translates to the left as viewed from

A.

Now that we have proven i) and ii), the injectivity iii) immediately follows with Remark

5.8.

To show surjectivity, we use Lemma 5.9. Let (ℓn)n∈N be a sequence of leaves and

(Hn)n∈N be a sequence of half-planes bounded by ℓn such that Hn+1 ⊆ Hn and
⋂

n∈NHn

contains a unique point x in S1
∞. Let xn and yn be the endpoints of ℓn. We know

that limn→∞ xn = x = limn→∞ yn. Now for any n, ℓn corresponds to an extreme left

homeomorphism ϕn ◦ f ∈ XL and by definition of E we have (E|ℓn) = ϕ−1
n . To show

surjectivity, is suffices to show that the geodesics E(ℓn) = ϕ−1
n (ℓn) accumulate to a single

point at the boundary, so that limn→∞ ϕ−1
n (xn) = limn→∞ ϕ−1

n (yn). By construction,

ϕn ◦ f fixes xn and yn, so we have for all n

ϕ−1
n (xn) = ϕ−1

n ◦ ϕn ◦ f(xn) = f(xn)

and analogous ϕ−1
n (yn) = f(yn). By continuity of f it follows that limn→∞ ϕ−1

n (xn) =

limn→∞ ϕ−1
n (yn), so E is surjective.

It remains to check property v): E∞ coincides with f . Let x ∈ S1
∞ and suppose that x

lies in the closure of some stratum A. Then x is a fixed point of fA with fA = ϕ−1
A ◦ f

and hence

E∞(x) = (E|A)(x) = ϕA(x) = ϕA(fA(x)) = f(x).

If x is not contained in the closure of any stratum, then x has some neighbourhood basis

bounded by leaves as seen in the proof of Propostion 5.14. In particular there is some

sequence (xn)n∈N in S1
∞ converging to x such that for all n, xn lies in the closure of a

leaf ℓn. Since both E∞ and f are continuous it follows that

E∞(x) = lim
n→∞

E(xn) = lim
n→∞

f(xn) = f(x).

So indeed the extension E∞ of the earthquake E coincides with f on S1
∞. This completes

the proof of existence of an earthquake E extending f .

Before proving uniqueness, we have a closer look at what different possibilities we have

for E on a leaf ℓ of the lamination λ constructed above. Let ℓ be a leaf with endpoints x
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and y and let f1, f2 be two different extreme left homeomorphisms both having x and

y as fixed points, i.e. ℓ ⊆ H(f1) ∩H(f2). Then there are ϕ1, ϕ2 ∈ PSL(2,R) such that

f1 = ϕ−1
1 ◦ f and f2 = ϕ−1

2 ◦ f . Two choices for E on ℓ then are ϕ1 and ϕ2. We claim

that they differ by a hyperbolic isometry with translation distance between 0 and the

infimum of the translation distance for strata on different sides of ℓ. We have

ϕ−1
1 ◦ ϕ2 = f1 ◦ f

−1
2 (6.13)

as seen in (6.12). Since both x and y are fixed points of f1 ◦ f
−1
2 , this is hyperbolic with

axis ℓ. Without loss of generality let x be the repelling fixed point. Let A,B be two

strata on opposite sides of ℓ with notation chosen such that cmp(A,B) translates in

the same direction as ϕ−1
1 ◦ ϕ2 and let ϕA, ϕB ∈ PSL(2,R) such that (E|A) = ϕA and

(E|B) = ϕB as above. We consider the following hyperbolic transformations:

ϕ−1
A ◦ ϕ1 = fA ◦ f−1

1 (6.14)

ϕ−1
1 ◦ ϕB = f1 ◦ f

−1
B (6.15)

ϕ−1
2 ◦ ϕB = f2 ◦ f

−1
B (6.16)

As seen in (6.12), those are all hyperbolic transformations translating in the same direction

as ϕ−1
1 ◦ ϕ2. Assume first that all axes, except possibly those of (6.15) and (6.16), are

pairwise non-intersecting and distinct. We can apply Lemma 5.6 to obtain

τ(cmp(A,B)) = τ(ϕ−1
A ◦ ϕB)

= τ
(

(ϕ−1
A ◦ ϕ1) ◦ (ϕ

−1
1 ◦ ϕB)

)

≥ τ(ϕ−1
A ◦ ϕ1) + τ(ϕ−1

1 ◦ ϕB)

= τ(ϕ−1
A ◦ ϕ1) + τ

(

(ϕ−1
1 ◦ ϕ2) ◦ (ϕ

−1
2 ◦ ϕB)

)

≥ τ(ϕ−1
A ◦ ϕ1) + τ(ϕ−1

1 ◦ ϕ2) + τ(ϕ−1
2 ◦ ϕB)

≥ τ(ϕ−1
1 ◦ ϕ2) . (6.17)

If some of the axes of (6.14), (6.15) and (6.16) coincide, then the proof of Lemma 5.6

shows tat for hyperbolic transformations S, T with the same axis translating in the same

direction, we have

τ(S ◦ T ) = τ(S) + τ(T ).
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Hence, the inequality remains valid if some of the axes coincide. In total, we have shown

that the translation distance of ϕ−1
1 ◦ ϕ2 is bounded from above by τ (cmp(A,B)), where

A and B are strata on opposite sides of ℓ. In particular,

τ(ϕ−1
1 ◦ ϕ2) ≤ inf{τ(cmp(A,B) | A,B strata on opposite sides of ℓ}.

Remark 6.9. In the special case that ℓ is adjacent to two gaps A and B, then we do not

have to consider an infimum and have

τ(ϕ−1
1 ◦ ϕ2) ≤ τ(cmp(A,B)) .

This can be seen from (6.17): If Ã is a gap on the same side of ℓ as A and B̃ is a gap on

the same side of ℓ as B, both not adjacent to ℓ, then we have

τ(cmp(Ã, B̃)) ≥ τ(ϕ−1

Ã
◦ ϕA) + τ(cmp(A,B)) + τ(ϕ−1

B ◦ ϕB̃)

≥ τ(cmp(A,B))

and the claim follows.

To finish the proof of the earthquake theorem, the only thing that is left to show

is uniqueness. Suppose E ′ is any left earthquake satisfying E ′
∞ = f = E∞ and let

λ′ be the underlying lamination of E ′. Let A be a stratum of λ′. We want to show

that A is also a stratum of λ, the underlying lamination of E. The idea is to find an

extreme left homeomorphism fA with A ⊆ H(fA). As E ′ is an earthquake we have

(E ′|A) = ϕA for some isometry ϕA. Set h := ϕ−1
A ◦ E ′ on H

2. Then h extends to S1
∞ as

h∞ = ϕ−1
A ◦ E ′

∞ = ϕ−1
A ◦ f . By construction, h acts on A as the identity:

h|A = ϕ−1
A ◦ E|A = ϕ−1

A ◦ (ϕA)|A = id|A.

We claim that h∞ is an extreme left homeomorphism with at least two fixed points.

Since A is either a leaf or a gap, we have #(A ∩ S1
∞) ≥ 2 and as h|A = id, h∞ fixes all

points in A ∩ S1
∞. For any x ∈ S1

∞ \ A, there are two cases. If x lies in the closure of

some other stratum B of λ′, B 6= A, with ϕB := (E ′|B), then

h∞(x) = ϕ−1
A ◦ E ′

∞(x) = ϕ−1
A ◦ ϕB(x) = cmp′(A,B)(x),

where we consider the comparison isometry cmp′ with respect to E ′. As cmp′(A,B)

moves left as viewed from A and x lies in the closure of B, the translation axis of
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cmp′(A,B) weakly separates x from A and x is moved by h∞ to the left as viewed from

A. If x does not lie in the closure of any stratum, then again there is some sequence

(xn)n∈N in S1
∞ converging to x with xn ∈ ℓn for a leaf ℓn of λ′ for all n ∈ N. By continuity

of h∞ we have h∞(x) = limn→∞ h∞(xn). Since all xn are moved counterclockwise by

h∞, also x is moved at most counterclockwise. This shows that h∞ is an extreme left

homeomorphism, i.e. h∞ ∈ XL. It follows that A ⊆ H(h∞), so in particular, A is

contained in a stratum AE := H(h∞) of the lamination λ of E. If A is a gap, then also

AE has to be a gap and fAE
is uniquely determined and has to agree with h∞ = ϕ−1

A ◦ f .

By construction of E we have (E|(AE)) = ϕA and thus

E|A = (E|AE)|A = (ϕA)|A = E ′|A, (6.18)

so E and E ′ agree on any gap A of λ′. Until now, we only know A ⊆ AE. To show

that both laminations coincide, we need to have equality. If A and B are two gaps of λ′

contained in the same gap AE of λ, it follows using (6.18) that

(E ′|A) = (E|AE) = (E ′|B),

so cmp′(A,B) = id. This can only occur if one the strata is contained in the closure of

the other. As both A and B are gaps, it follows that A = B. The fact that the strata of

λ′ cover all of H2 then gives us A = AE, so any gap A of λ′ is a gap of λ. If A is a leaf,

so is AE and we again have A = AE. In total, the laminations λ′ and λ agree.

As seen above, E ′|A = E|A for any gap A. For a leaf ℓ we have ℓ ⊆ H(h∞) = H(ϕ−1
ℓ ◦ f).

On ℓ, there are various possibilities for E|ℓ, one of them being (E ′|ℓ) = ϕℓ. In particular,

as seen above, (E ′|ℓ) = ϕℓ and (E|ℓ) differ by a hyperbolic transformation with translation

axis A and translation length between 0 and the infimum of the comparison isometries

from both sides of ℓ.

Remark 6.10. The proof of uniqueness also shows that any earthquake map E can be

obtained from the construction using convex hulls of extreme left homeomorphisms: If E

is an earthquake map and f := E∞, then for any stratum A, (E|A)−1 ◦ f is an extreme

left homeomorphism, just as we have seen above for h∞. Using exactly those elements in

XL of the form (E|A)−1 ◦f , in particular for the choice on leaves, to define an earthquake

E ′, this will give us E = E ′.

The earthquake theorem in the hyperbolic plane also holds for right earthquakes. The

proof is analogous with small modifications. One uses extreme right instead of extreme

left homeomorphisms, defined in the obvious way. Now in some steps of the proof one
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has to replace minimum by maximum or clockwise by counterclockwise, but the ideas of

the proofs are the same. However, in general, the right and left earthquake map having

the same effect on the boundary are very different (see Example 6.14).

6.5. Examples

In general circumstances, the proof of the main theorem is not constructive. However, for

very well-behaved circle maps f : S1 → S
1 it gives us a recipe to construct an earthquake

realizing f on the boundary.

Example 6.11. We start with the trivial example when f = id. The resulting earthquake

should be trivial as well. We have C = PSL(2,R)◦ id = PSL(2,R). What are the extreme

left homeomorphisms? Clearly, id ∈ XL. Let ϕ ∈ PSL(2,R) \ {id}. If ϕ is elliptic then

it has no fixed points on the boundary, so it is not in XL. If ϕ is hyperbolic, then

it has two fixed points on the boundary, but it moves some points clockwise, others

counterclockwise. Hence, hyperbolic elements cannot lie in XL. Thus we are left with

parabolic elements. All parabolic elements have exactly one fixed point on ∂H2 and

move all other points in one direction. So XL consists of the identity and all parabolic

elements that move the non-fixed points counterclockwise. Now that we found XL, we

can construct the lamination λ. For all elements ϕ ∈ XL, we have either fix(ϕ) = H2

in case that ϕ = id or fix(ϕ) = {a} if ϕ is parabolic with fixed point a ∈ S1
∞. Thus

H(id) = H2 and H(ϕ) = {a} for all other ϕ ∈ XL. The latter do not contribute to the

lamination. It follows that there are no leaves and the only gap is A = H
2 corresponding

to fA = id ∈ XL. We have E|A = id. So indeed, the earthquake giving rise to the

identity at the boundary is trivial.

Remark 6.12. In this special case, one can also explicitly compute the element in XL

corresponding to i ∈ H
2 using the construction from Proposition 6.3 - it is the identity.

However, as soon as we pick another element, the computation gets more complicated.

Example 6.13. Let

f : R ∪ {∞} → R ∪ {∞}, f(z) =



















z for z > 0,

e−2z for z ≤ 0,

∞ for z = ∞.

f is an orientation-preserving homeomorphism. Note that f agrees with the boundary

homeomorphism induced by the elementary earthquake from Example 5.10. So, by
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uniqueness in the main theorem, the earthquake we construct should agree with the one

in Example 5.10 - up to possibly on leaves. What are the elements in XL ⊆ PSL(2,R)◦f?

Recall that in the half-plane model, being in XL means having at least one fixed point

and moving all points not fixed to the right. We first note that f itself is an extreme left

homeomorphism, hence id ◦ f ∈ XL with fixed point set fix(id ◦ f) = R≥0 ∪ {∞}. Let

now λ ∈ R \ {0} and ϕλ(z) = eλz be a hyperbolic transformation with axis ℓ connecting

0 and ∞. Then

ϕλ ◦ f(z) =



















eλz for z > 0,

eλ−2z for z ≤ 0,

∞ for z = ∞.

We have a look what happens for different values of λ:

• λ < 0 ⇒ ϕλ ◦ f moves all points z > 0 to the left ⇒ ϕλ ◦ f 6∈ XL.

• λ > 2 ⇒ ϕλ ◦ f moves all points z < 0 to the left ⇒ ϕλ ◦ f 6∈ XL.

• λ = 2 ⇒ ϕ2 ◦ f fixes all points z ≤ 0 and z = ∞ and moves all points z > 0 to

the right ⇒ ϕλ ◦ f ∈ XL with fix(ϕ2 ◦ f) = R≤0 ∪ {∞}.

• λ ∈ (0, 2) ⇒ ϕλ ◦ f fixes z = 0 and z = ∞ and moves all other points to the right

⇒ ϕλ ◦ f ∈ XL with fix(ϕλ ◦ f) = {0,∞}.

Note that we can also allow λ = 0. Then ϕ0 = id and ϕ0 ◦ f ∈ XL as seen above. Until

now, we have the following convex hulls for elements in XL, drawn in Figure 6.5:

• H(id ◦ f) = conv(R≥0 ∪ {∞}) = {z ∈ H
2 | Re(z) ≥ 0 } ∪ R≥0 ∪ {∞}

• H(ϕ2 ◦ f) = conv(R≤0 ∪ {∞}) = {z ∈ H
2 | Re(z) ≤ 0 } ∪ R≤0 ∪ {∞}

• H(ϕλ ◦ f) = conv({0,∞}) = {z ∈ H
2 | Re(z) = 0 } ∪ {0,∞} for λ ∈ (0, 2)

These convex hulls already cover H
2. Since we know that the convex hulls do not

intersect, the lamination λ is already determined by these elements in XL. All other

elements in XL have to have singleton fixed point sets and thus do not contribute to

the lamination. Now our lamination consists of one geodesic ℓ connecting 0 and ∞, the

gap A := {z ∈ H
2 | Re(z) > 0} and the gap B := {z ∈ H

2 | Re(z) < 0}. The unique

fA ∈ XL with A ⊆ H(fA) is fA = id ◦ f , so we set (E|A) := id−1 = id. The unique

fB ∈ XL with B ⊆ H(fB) is fB = ϕ2 ◦ f , so we set (E|B) := ϕ−1
2 = (z 7→ e−2z). As
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Figure 6.5: The convex hulls for the extreme left homeomorphisms id ◦ f , ϕ2 ◦ f and
ϕλ ◦ f for some λ ∈ [0, 2] already cover the hyperbolic plane.

seen in the proof of the main theorem, there is no unique fℓ ∈ XL with ℓ ⊆ H(fℓ).

In fact, we have ℓ ⊆ H(ϕλ ◦ f) for all λ ∈ [0, 2]. So we pick one λ ∈ [0, 2] and set

(E|ℓ) := ϕ−1
λ = (z 7→ e−λz). For two different choices λ1, λ2 ∈ [0, 2] we have

ϕ−1
λ1

◦ ϕλ2(z) = eλ1−λ2z.

The translation distance of this map is | log(eλ1−λ2)| = |λ1 − λ2| ∈ [0, 2]. So here we see

again that the choices for E|ℓ differ by a hyperbolic translation with translation distance

between 0 and τ(cmp(A,B)) = 2.

In these two examples we could construct the earthquake giving rise to a given

homeomorphism. However, if the homeomorphism f is more complicated, for instance

if it is not piecewise an isometry, there is no easy way to determine XL and hence

the earthquake map. We now show that the left and right earthquakes with the same

boundary homeomorphism are in general very different.

Example 6.14. As mentioned before, the earthquake theorem holds as well for right

earthquakes. We now want to find the right earthquake map having the same effect on

the boundary as a given elementary left earthquake. Let ℓ, A and B be as constructed in

Example 6.13, let d > 0 and let (E|A)(z) := e
d

2 z and (E|ℓ)(z) = (E|B)(z) = e−
d

2 z. Note

that for d = 2 this coincides with the earthquake from the previous example composed

with the hyperbolic transformation ϕ(z) = e−1z. The corresponding boundary map

h := E∞ is

h(z) =



















e
d

2 z for z > 0,

e−
d

2 z for z ≤ 0,

∞ for z = ∞.

To find the right earthquake F with F∞ = h, we have to find the extreme right homeo-
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(a) Case 1: c > d
2 . (b) Case 2: c < d

2 .

Figure 6.6: The angle θ(z) between z and h(z) at p can be calculated from the angles α
and α′. The explicit formula depends on the position of q and in particular
on the length of the side c of the triangle with vertices p, q and z.

morphisms in PSL(2,R) ◦ h. We switch to the disk model. Using the Cayley transform,

we find that for the upper half of S1, i.e. S1
+ := {z ∈ C | Im(z) > 0} ⊆ ∂B, respectively,

for the lower half S1
− := {z ∈ C | Im(z) < 0} ⊆ ∂A, h has as matrix representation

(

cosh
(

d
4

)

sinh
(

d
4

)

sinh
(

d
4

)

cosh
(

d
4

)

)

respectively,

(

cosh
(

d
4

)

sinh
(

−d
4

)

sinh
(

−d
4

)

cosh
(

d
4

)

)

.

The leaf ℓ then is the geodesic between −1 and 1 in D2. One easily computes that

h(−z) = −h(z) for all z ∈ S
1, i.e. h is symmetric with respect to the origin. Thus, we can

focus on the upper half S1
+ of S1. The idea for finding an extreme right homeomorphism

is the following: Take a point z0 ∈ S
1
+ and use an elliptic element ρ rotating in the

clockwise direction that maps h(z0) to z0. Then ρ ◦ h fixes z0. We want to find ρ such

that all other points are either fixed as well or moved clockwise.

Let p = 0 ∈ ℓ be the origin. For z ∈ S
1
+ let θ(z) be the interior angle at p of the

triangle with vertices p, z and h(z). The function θ is continuous as h is continuous. We

want to find a maximum of θ in S
1
+. To compute θ(z) for a fixed z ∈ S

1
+, let ℓ1 be the

geodesic orthogonal to ℓ ending at z and let ℓ2 be the geodesic orthogonal to ℓ ending at

h(z). Then (E|B)(ℓ1) = ℓ2 and the distance d(ℓ1, ℓ2) =
d
2
is realized along the common

orthogonal ℓ. Denote the intersection of ℓ1 and ℓ by q and let c := d(p, ℓ1) = d(p, q) (see

Figure 6.6). Consider the hyperbolic triangle with vertices p, q and z where z is an ideal

vertex. Let α be the angle at p. The angle at q is π
2
. The interior angle at z is 0. By a
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hyperbolic triangle formula (see [Bea83, Ch. 7.10]) it holds that

cosh(c) =
1 + cos(α) cos(π

2
)

sin(α) sin(π
2
)

=
1

sin(α)
,

so α = arcsin
(

1
cosh(c)

)

. Analogously, this holds for the triangle with vertices p, h(z) and

q̃ where q̃ denotes the intersection of ℓ and ℓ2. We denote the angle at p by α̃. The

point q lies on ℓ which can as be identified with the open interval (−1, 1). We distinguish

several cases:

Case 1: If q lies in (p, 1) and c > d
2
, then d(p, ℓ2) = c − d

2
(see Figure 6.6a). It follows

that

θ(z) = α̃− α = arcsin

(

1

cosh(c− d
2
)

)

− arcsin

(

1

cosh(c)

)

.

We can view θ as a function in c. We observe that θ decreases as c increases and that θ

tends to π
2
− arcsin

(

1

cosh( d

2)

)

as c tends to d
2
. If c = d

2
, then p = q̃ and the triangle with

vertices p, h(z), q̃ is degenerate. However, we can still compute

θ(z) =
π

2
− arcsin

(

1

cosh
(

d
2

)

)

.

Thus, for q ∈ (p, 1) and c ∈ [d
2
,∞), θ achieves its maximum at c = d

2
.

Case 2: If q lies in (p, 1) and c ∈ (0, d
2
), then d(p, ℓ2) =

d
2
− c (see Figure 6.6b). For the

angle θ, we have

θ(z) = π − α̃− α = π − arcsin

(

1

cosh
(

d
2
− c
)

)

− arcsin

(

1

cosh(c)

)

.

Viewing θ again as function in c, it is differentiable on (0, d
2
). By explicit computation

we find

d

dc
θ(c) = −

1

cosh
(

d
2
− c
) +

1

cosh (c)
.

As c and d
2
− c are both positive, this is 0 exactly when c = d

2
− c, so c = d

4
. The second

derivative is negative at c = d
4
, so we have a maximum at d

4
. As this is the only extremal

point in (0, d
2
), it follows that θ(d

4
) > θ(d

2
). We denote the point on S

1 corresponding to
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c = d
2
in this case with z0.

Case 3: If q = p, then c = 0 and we have θ(0) = π
2
− arcsin

(

1

cosh( d

2)

)

which equals θ
(

d
2

)

.

Case 4: If q ∈ (−1, p), then d(p, ℓ2) = c+ d
2
and

θ(z) = α− α̃ = arcsin

(

1

cosh (c)

)

− arcsin

(

1

cosh
(

c+ d
2

)

)

.

As in Case 1, this is smaller than the limit for c going to 0, which is π
2
− arcsin

(

1

cosh( d

2)

)

.

This is equal to θ(d
2
) from Case 1 and we already know that this is smaller than θ(z0).

In total, it follows that θ attains its maximum at the point z0, corresponding to c = d
4
.

Let θ∗ := θ
(

d
4

)

and let ρp be the clockwise rotation around p by angle θ∗. Then ρ ◦ h

fixes z0. By symmetry of ρp and h with respect to p it follows that ρp ◦ h also fixes −z0.

Further, all other points on S
1 are moved by h by an angle less than θ∗, so ρp ◦ h moves

them clockwise. In total, this shows that ρp ◦ h is an extreme right homeomorphism

and H(ρp ◦ h) is the geodesic connecting z0 and −z0, where z0 is an endpoint of the

geodesic that is orthogonal to ℓ at distance d
4
from p. Note that almost all considerations

from above work for an arbitrary p ∈ ℓ, not only for the origin. The only thing that

changes is that ρp ◦ h, fixing z0 ∈ S
1
+, does not fix −z0, but the endpoint of ℓ2 that lies

in S
1
−. If p is the origin, then H(ρp ◦ h) is a diameter of the circle, so it is immediate

that p ∈ H(ρp ◦ h). For other p, we can see this using a change of coordinates mapping p

to the origin. Further, the angle α between H(ρp ◦ h) and ℓ is the same for every p ∈ ℓ.

It follows that the lamination λ of F consists of all geodesics making constant angle α to

ℓ. On ℓ, F acts as the identity. On a leaf ℓp = H(ρp ◦ h) intersecting ℓ at p, (E|ℓp) = ρ−1
p

is a counterclockwise rotation by angle θ∗ = π−2α around p and E maps ℓp to a geodesic

intersecting ℓ at p at complementary angle π − α (see Figure 6.7).

6.6. Relation to relative hyperbolic structures

We constructed an earthquake E having a given f ∈ Homeo+(S1) as boundary homeo-

morphism. If we change f by pre- or post-composing it with an isometry ϕ ∈ PSL(2,R),

then also the corresponding earthquake maps can be obtained by pre- or post-composing

E with ϕ.

Lemma 6.15. Let f ∈ Homeo+(S1) and let E be a left earthquake map such that E∞ = f

as constructed in the proof of Theorem 6.1. Let ϕ ∈ Isom(H2). Then
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Figure 6.7: The underlying lamination of the right earthquake F consists of geodesics
making constant angle α to the geodesic ℓ connecting −1 and 1. Every such
geodesic is mapped by F to a geodesic meeting ℓ at the same point, but with
complementary angle π − α.

i) E1 := ϕ ◦ E is a left earthquake map satisfying (E1)∞ = ϕ ◦ f .

ii) E2 := E ◦ ϕ is a left earthquake map satisfying (E2)∞ = f ◦ ϕ.

Proof. We have to show that E1 and E2 are indeed earthquake maps. The fact that they

extend to ϕ ◦ f respectively f ◦ ϕ is then clear by construction and continuity of the

extension. Bijectivity of E1 and E2 immediately follows from bijectivity of E and ϕ. Let

A be a stratum of the underlying lamination λ of E. Then

(E1)|A = (ϕ ◦ E)|A = (ϕ ◦ (E|A))|A

with ϕ ◦ (E|A) ∈ Isom+(H2). Thus on A, E1 agrees with an isometry. For two strata A

and B, we have

cmp1(A,B) = (E1|A)
−1 ◦ (E1|B) = (ϕ ◦ (E|A))−1 ◦ (ϕ ◦ (E|B))

= (E|A)−1 ◦ (E|B) = cmp(A,B),

where cmp1 is the comparison isometry with respect to the map E1. As E is an earthquake

map, it follows that also E1 is an earthquake map with the same underlying lamination.

Note that this fact is also reflected in the proof of Theorem 6.1: The lamination of

E depends on XL ⊆ PSL(2,R) ◦ f and is invariant under post-composition of f with

elements in PSL(2,R).

From λ, we obtain a lamination λ2 as follows: If λ is given by geodesics {ℓi}i∈I , then λ2
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is given by {ϕ−1(ℓi)}i∈I . Note that this is indeed a lamination since the fact that ϕ is

a homeomorphism guarantees that the locus of λ2 is closed and disjoint leaves do not

intersect. Now for any stratum A of λ there is a stratum ϕ−1(A) of λ2 and

(E2)|ϕ−1(A) = (E ◦ ϕ)|ϕ−1(A) = ((E|A) ◦ ϕ)|ϕ−1(A)

with (E|A) ◦ϕ ∈ Isom+(H2). For the comparison isometries of strata ϕ−1(A) and ϕ−1(B)

we have

cmp2(ϕ
−1(A), ϕ−1(B)) = ((E|A) ◦ ϕ)−1 ◦ ((E|B) ◦ ϕ) = ϕ−1 ◦ cmp(A,B) ◦ ϕ.

Let ℓ be the axis of cmp(A,B). Then cmp2(ϕ
−1(A), ϕ−1(B)) fixes the endpoints of ϕ−1(ℓ)

and hence is a hyperbolic transformation with axis weakly separating ϕ−1(A) and ϕ−1(B)

and shifting to the left as viewed from ϕ−1(A) since ϕ and ϕ−1 preserve orientation. So

indeed, E2 is an earthquake map.

We now want to relate two different continuous relative hyperbolic structures on H
2

by earthquakes.

Corollary 6.16. For two continuous relative hyperbolic structures [h], [h′] on H
2 there

exists an earthquake map sending one to the other.

The Corollary has to be understood in the following sense: Identify [h], [h′] with their

images [fh], [fh′ ] under B in the right cosets of Homeo+(S1) up to PSL(2,R) (see Theorem

4.2). Pick representatives f ∈ [fh] and g ∈ [fh′ ]. Then there exists an earthquake map E

satisfying E∞ ◦ f = g. E is unique up to pre- and post-composition with elements in

PSL(2,R) and up to translation on leaves as specified in Theorem 6.1.

Proof. As described above, pick f ∈ [fh] = B([h]) and g ∈ [fh′ ] = B([h′]). Then

g ◦ f−1 ∈ Homeo+(S1), so by the earthquake theorem 6.1 there exists a left earthquake

map E with E∞ = g ◦ f−1, unique except on leaves. If we choose different representatives

ϕ ◦ f ∈ [fh] and ψ ◦ g ∈ [fh′ ], then the map becomes ψ ◦ g ◦ f−1 ◦ ϕ−1. As seen in

Lemma 6.15, the corresponding earthquake map is given by ψ ◦ E ◦ ϕ−1. Hence, E is

uniquely determined except on leaves and up to pre- and post-composition with elements

in PSL(2,R).

We now have proven Thurston’s earthquake theorem in two versions: First, we showed

that every orientiation-preserving homeomorphism of the circle arises as boundary

homeomorphism of an earthquake map (Theorem 6.1). Then we deduced from this
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that any two relative hyperbolic structures can be related by an earthquake map that

is essentially unique (Corollary 6.16). In his paper [Thu06], Thurston defines relative

hyperbolic structures not only on the hyperbolic plane, but also on hyperbolic surfaces,

and uses the plane version of the earthquake theorem to show an analogous result for

hyperbolic surfaces. The understanding of earthquakes gained in this thesis gives the

possibility to better understand the proof of the earthquake theorem on hyperbolic

surface and maybe also to apply it to other settings.
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A. Basics in homology theory

For one step in the proof of the earthquake theorem we need homology theory. In this

section, we recall the definitions and results needed. Further explanation and proofs can

be found in Chapter 2 of Hatcher’s introductory book ”Algebraic topology” [Hat02].

Definition A.1. Let X be a topological space. A singular n-simplex is a continuous map

σ : ∆n → X, where ∆n denotes the standard n-simplex

∆n = {(t0, . . . , tn) ∈ R
n+1 |

n
∑

i=0

ti = 1, ti ≥ 0 ∀i }.

With Cn(X) we denote the free abelian group with basis the set of singular n-simplices.

If v0, . . . , vn are the vertices of ∆n, we also denote the n-simplex by [v0, . . . , vn]. The

elements of Cn(X) are abstract finite linear combinations

σ =
∑

i

niσi

where ni ∈ Z and the σi are singular n-simplices. For all n ∈ N there is a boundary map

∂n : Cn(X) → Cn−1(X) defined by

∂n(σ) =
∑

i

(−1)iσ|[v0,...,v̂i,...,vn]

where σ|[v0,...,v̂i,...,vn] is the map σ restricted to the (n− 1)-dimensional face of ∆n that

does not contain vi. It holds that ∂n−1 ◦ ∂n = 0.

Definition A.2. The n-th homology group is

Hn(X) := ker(∂n)
/

Im(∂n+1) .

Let X and Y be topological spaces and f : X → Y a continuous map. Let σ be a

singular n-simplex for X. Then f#(σ) := f ◦ σ : ∆n → Y is a singular n-simplex for Y .

Extending f# linearly by

f#

(

∑

i

niσi

)

=
∑

i

nif#(σi)
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gives a homomorphism f# : Cn(X) → Cn(Y ) satisfying f# ◦ ∂n = ∂n ◦ f# for all n.

Therefore f# induces a homomorphism f∗ : Hn(X) → Hn(Y ).

Proposition A.3. If f : X → Y is a homotopy equivalence, then f∗ : Hn(X) → Hn(Y )

is an isomorphism for all n.

Proof. See [Hat02, Cor. 2.11].

We will need to work with relative homology groups. They are defined as follows: Let

A ⊂ X be a subspace. Set

Cn(X,A) := Cn(X)
/

Cn(A) .

The boundary map ∂n : Cn(X) → Cn−1(X) takes Cn(A) to Cn−1(A), hence it induces a

boundary map ∂n : Cn(X,A) → Cn−1(X,A).

Definition A.4. The n-th relative homology group is

Hn(X,A) := ker(∂n)
/

Im(∂n+1) .

Clearly, Cn(X, ∅) = Cn(X) and Hn(X, ∅) = Hn(X).

Proposition A.5. Let ι : A → X be the inclusion map and j : X → X
/

A the quotient

map, where A ⊂ X is a non-empty closed subspace that is a deformation retract of some

neighbourhood in X. Then there is a long exact sequence

. . .→ H̃n(A)
ι∗→ H̃n(X)

j∗
→ H̃n(X,A)

∂n→ H̃n−1(A) → . . .→ H̃0(X,A) → 0 . (A.1)

Proof. See [Hat02, Th.2.13].

Here, H̃n(X) denote the so-called reduced homology groups. For us, it is sufficient to

know that for n > 0 it holds that H̃n(X) = Hn(X), as we will only need the part of the

long exact sequence (A.1) for n = 1 and n = 2.

We now take a look at the concrete spaces that we need in the proof of the earthquake

theorem.

Example A.6. Let X = D
2 and A = S

1. D
2 is homotopy equivalent to a point {x0},

x0 ∈ D
2, i.e. contractible. Thus

Hn(D
2) ∼= Hn({x0}) =







Z for n = 0,

0 for n > 0.
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For S1, we have

Hn(S
1) =







Z for n = 0, 1,

0 for n > 1.

This can be shown using the so-called simplicial homology together with the fact that S1

is a ∆-complex and on ∆-complexes, simplicial and singular homology agree (see [Hat02,

Th.2.27 and Ex.2.2]). In view of Proposition A.5 we obtain an exact sequence

0 Z 0

. . . // H2(D
2) // H2(D

2, S1) // H1(S
1) // H1(D

2) // . . .

As the sequence is exact, it follows that H2(D
2, S1) → H1(S

1) is an isomorphism, so

H2(D
2, S1) ∼= Z.

Example A.7. Let x0 ∈ D
2 and X = D

2 \ {x0}. Without loss of generality we can

assume x0 = 0. Else, we use some ϕ ∈ PSL(2,R) = Isom+(D2) with ϕ(x0) = 0. As

ϕ is a homotopy equivalence from D
2 \ {x0} to D

2 \ {0} with inverse ϕ−1 we have

Hn(D
2 \ {x0}) ∼= Hn(D

2 \ {0}) for all n. Let

Nε(S
1) := {x ∈ D

2 | |x| ≥ 1− ε }

be the closed ε-neighbourhood of S1 in D
2. Let r : D2 \ {0} → S

1 be the retraction of

D
2 \ {0} to S

1, given by

r(x) =
x

|x|
.

We denote by ι : S1 → D
2 the standard inclusion. Then we have r ◦ ι = idS1 and ι ◦ r is

homotopic to idD2 . Thus, D2 \ {0} and S
1 are homotopy equivalent. The same holds for

Nε(S
1). Hence, Hn(D

2 \ {0}) ∼= Hn(S
1) ∼= Hn(Nε(S

1)). Since for any topological space

X, Cn(X,X) is trivial, we have

H2(D
2 \ {0}, Nε(S

1)) ∼= H2(S
1, S1) = 0.
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and

Hn(D
2 \ {0}) ∼= Hn(Nε(S

1)) ∼= Hn(S
1) =







Z for n = 0, 1,

0 for n > 1.

The resulting long exact sequence then is

0 0 Z Z

. . . // H2(D
2 \ {0}) // H2(D

2 \ {0}, Nε(S
1)) // H1(Nε(S

1)) // H1(D
2 \ {0}) // . . .

A further notion we need is the degree of a map f : S1 → S
1.

Definition A.8. Let f : S1 → S
1 be continuous and f∗ : H1(S

1) → H1(S
1) be the induced

map in homology. Let α ∈ H1(S
1) be a generator of H1(S

1) ∼= Z. The degree of f ,

denoted by deg f is the unique integer d ∈ Z such that f∗(α) = d · α.

Note that this definition is independent on the choice of the generator since f∗ is a

group homomorphism.

Lemma A.9. Let f, g : S1 → S
1 be continuous. The degree has the following properties:

i) If f and g are homotopic, then deg f = deg g.

ii) deg idS1 = 1.

iii) deg fg = deg f · deg g.

iv) If f is not surjective, then deg f = 0.

Proof. We only prove iv). Assume x0 ∈ S
1 \ f(S1). Then S

1 \ {x0} is contractible, so

H1(S
1\{x0}) = 0. Now f can be written as composition f = ι◦f0 where ι : S

1\{x0} → S
1

denotes the inclusion and f0 : S
1 → S

1 \{x0} is given by f0(x) = f(x) for all x ∈ S
1. Now

f∗ = ι∗ ◦ (f0)∗ = 0, since (f0)∗(H1(S
1)) ⊆ H1(S

1 \ {x0}) = 0.
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