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Abstract
Let Γ be a finitely generated group, and let� be a reductive affine algebraic group over

C. The set of group homomorphisms Hom(Γ,�) together with an affine algebraic struc-
ture coming from� is called the representation variety of Γ in� . � acts on Hom(Γ,�) via
conjugation. The categorical quotient -� (Γ) = Hom(Γ,�)//� is called character variety.
For the fundamental group c1 (() of a surface ( , the character variety of good representa-
tions, i.e. irreducible representations with closed orbits under the �-action, is a complex
manifold -6

�
(c1 (()) with tangent spaces � 1 (c1 ((), gAd d ). Using a non-degenerate bilin-

ear form � : g × g → C, William Goldman [Gol84] constructed a symplectic form l� on
-
6

�
(c1 (()). We will use a mostly algebro-geometric approach in order to understand the

construction of this symplectic form.
Afterwards, we will turn to the Lagrangian submanifold theorem as it has been proven

by Adam Sikora in [Sik09]: Consider a compact connected 3-manifold " with boundary
m" = ( . Then the embedding ( ↩→ " induces a map A ∗ : -� (c1 (")) → -� (c1 (())
on the character varieties. The non-singular part of the image .� (") = [A ∗-� (c1 (")) ∩
-
6

�
(c1 (())]=B is an isotropic submanifold of -6

�
(c1 (()). We will see under which cir-

cumstances this isotropic submanifold is Lagrangian. Another Lagrangian submanifold
is the fixed point set L� of a certain anti-symplectic involution on -6

�
(c1 (()). We will

demonstrate the construction of a 3-manifold" by Laura Schaposnik and David Baraglia
in [BS14], for which we have .� (") ⊆ L� . Finally, we will briefly review the general-
ization of the symplectic form l� to a compact connected Kähler manifold as proven by
Yael Karshon in [Kar92]. We will conclude by discussing to which extent the Lagrangian
submanifold theorem can be generalized in this case.

Zusammenfassung
Sei Γ eine endlich erzeugte Gruppe, und sei� eine reduktive affine algebraische Gruppe

über C. Die Menge der Gruppenhomomorphismen Hom(Γ,�) zusammen mit einer von�
kommenden affinen algebraischen Struktur heißt Darstellungsvarietät von Γ in� . Der ka-
tegorielle Quotient -� (Γ) = Hom(Γ,�)//� heißt Charaktervarietät. Für die Fundamental-
gruppe c1 (() einer Fläche ( ist die Charaktervarietät der guten Darstellungen, d.h. der irre-
duziblen Darstellungen mit unter der �-Wirkung abgeschlossenen Orbits, eine komplexe
Mannigfaltigkeit -6

�
(c1 (()) mit Tangentialräumen � 1 (c1 ((), gAd d ). Mittels einer nicht-

degenerierten Bilinearform� : g×g→ C konstruierteWilliamGoldman [Gol84] eine sym-
plektische Form l� auf -6

�
(c1 (()). Wir werden einen vorwiegend algebro-geometrischen

Weg beschreiten, um die Konstruktion dieser symplektischen Form zu verstehen.
Daraufhinwendenwir uns dem Satz über lagrangesche Untermannigfaltigkeiten zu, wie

er von Adam Sikora in [Sik09] bewiesen wurde: Man betrachte eine kompakte zusammen-
hängende 3-Mannigfaltigkeit " mit Rand m" = ( . Die Inklusion ( ↩→ " induziert eine
Abbildung A ∗ : -� (c1 (")) → -� (c1 (()) auf Charaktervarietäten. Der nicht-singuläre
Teil des Bildes .� (") = [A ∗-� (c1 (")) ∩ -6� (c1 (())]

=B ist eine isotrope Untermannigfal-
tigkeit von-6

�
(c1 (()). Wir werden sehen unter welchen Umständen diese isotrope Unter-

mannigfaltigkeit lagrangesch ist. Eine weitere lagrangesche Untermannigfaltigkeit ist die
Fixpunktmenge L� einer gewissen anti-symplektischen Involution auf -6

�
(c1 (()). Wir

demonstrieren die Konstruktion einer 3-Mannigfaltigkeit " nach Laura Schaposnik und
David Baraglia [BS14], für die .� (") ⊆ L� gilt. Zum Schluss werden wir einen kur-
zen Überblick über die Verallgemeinerung der symplektischen Form l� für kompakte zu-
sammenhängende Kähler-Mannigfaltigkeiten geben, wie sie von Yael Karshon in [Kar92]
bewiesen wurde. Wir schließen mit einer Diskussion darüber, inwieweit der Satz über la-
grangesche Untermannigfaltigkeiten auf diesen Fall verallgemeinert werden kann.
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Introduction

At first sight, the science of mathematics may seem to be striving for two separate goals at once.
On the one hand, it pursues the solution of concrete problems; on the other hand, it yearns to
state the existing theory in the most general way possible. However, if all existing tools have
failed to solve a concrete problem, generalization and abstraction are often the best way to find
a new approach. Abstraction offers a deeper understanding of the nature of the problem, and
sometimes, a cross-connection to another theory can be discovered along the way, enabling a
completely new perspective.

The theory of moduli spaces is such a success story. Instead of looking at one specific ge-
ometric structure, we decide to look at the space of all such geometric structures, up to an
equivalence relation. This moduli space bears a geometry on its own, and the study of its ge-
ometry allows drawing new conclusions on the nature of those specific geometric structures
we were studying in the first place. This idea is not only relevant for geometry, but has since
been in use by number theory and mathematical physics alike.

The moduli space that I am studying within this thesis is the character variety, the space
of representations of a finitely generated group modulo conjugation. It is closely related to
the moduli space of semistable Higgs bundles and to the moduli space of vector bundles with
integrable connections [Sim94]. However, for this thesis, we will confine ourselves to studying
the character variety per se. Below, I will briefly introduce the topics covered in the different
sections of the thesis:

Let Γ be a finitely generated group, and let � be a reductive affine algebraic group. In Sec-
tion 1, we will see that the set of homomorphisms Hom(Γ,�) carries the structure of an affine
algebraic set induced by the structure of � . Together with this structure, it is called the repre-
sentation variety of Γ in � . We will construct a schemeH><(Γ,�) with the same underlying
topological space, but with a bigger structure sheaf. The representations d ∈ Hom(Γ,�) are
the closed points ofH><(Γ,�). Their Zariski tangent spaces )dH><(Γ,�) are isomorphic to
the 1-cocycles / 1(Γ, gAd d ) of group cohomology.
� acts on Hom(Γ,�) via conjugation. In Section 2, we will consider the categorical quo-

tient -� (Γ) = Hom(Γ,�)//� ; it is called the character variety of Γ in � . Let Γ = c1(() be a
surface group, i.e. the fundamental group of a closed compact connected surface ( . The sub-
space of good representations, i.e. irreducible representations with closed orbits, turns out
to be a complex manifold -6

�
(c1(()) whose tangent space at d is the first cohomology group

� 1(c1((), gAd d ).
Let � : g × g → C be a non-degenerate, C-bilinear form, which is invariant under the ad-

joint action. In Section 3, we will construct Goldman’s symplectic form l� on the manifold
-
6

�
(c1(()). It is induced by � and by the cup product ∪ of group cohomology. With respect to

this symplectic structure, we will prove the Lagrangian submanifold theorem: For a compact
connected 3-manifold " with boundary m" = ( , the inclusion ( ↩→ " induces a regular map
A ∗ : -� (") → -� (() of the character varieties. The non-singular image in the good represen-
tations .� (") = [A ∗-� (c1(")) ∩-6� (c1(())]

=B is a disjoint union of isotropic submanifolds of
-
6

�
(c1(()), and a component of .� (") is Lagrangian if its inverse image contains a reduced

representation.
In Section 4, we will study another Lagrangian submanifold of -6

�
((). An anti-holomorphic
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involution 5 : ( → ( induces an anti-symplectic involution 5̂ : -6
�
(() → -

6

�
((). The fixed

point set of 5̂ is denoted by L� and it turns out to be a Lagrangian submanifold of -6
�
((). The

two submanifolds L� and .� (") are not unrelated. We will construct a 3-manifold " with
m" = ( for which the inclusion .� (") ⊆ L� holds.

In Section 5, wewill replace the surface ( by an arbitrary compact connected Kählermanifold
 . We will review a generalization of the symplectic form on the character variety -� ( ).
Afterwards, we will briefly discuss how the Lagrangian submanifold theorem for surfaces can
be generalized to the Kähler case.

I have included an appendix covering some of the theory that is needed throughout the the-
sis: the interplay between algebraic geometry and complex geometry, the theory of principal
bundles and flat connections, and a number of isomorphism theorems for singular cohomology,
group cohomology and de Rham cohomology.

Wherever possible, I will choose the tools from algebraic geometry. While this is certainly
also a matter of taste, I do believe that it has one advantage: The Zariski tangent space can be
calculated at all closed points of an affine algebraic set, whereas the tangent space of a subset of
a manifold can only be calculated at points that are a priori known to be smooth. The question
of which points are non-singular can thus be answered by studying the Zariski tangent space.
This choice comes with a drawback, as the algebro-geometric proofs can be quite technical, and
therefore might be less intuitive. At two points in the text, I will make up for this by describing
an alternative proof using tools from differential geometry rather than algebraic geometry. I
believe that this also illustrates how colorful this theory is: there may be several ways to prove
the same statement using tools from different areas of mathematics.

I would like to thank my advisors, Anna Wienhard and Peter Albers, for the suggestion
of such a rich topic, for offering multifaceted insights into the garden of geometry, and for
allowing me the freedom to find my own way through the thicket that leads to the garden.
Nonetheless, you always found time for a detailed explanation whenever I needed it.

I would like to thank the members of the differential geometry group and the symplectic ge-
ometry group and other members of the Mathematical Institute at the University of Heidelberg
for their open ear to a multitude of questions: Johannes Horn, Milan Malčić, Arnaud Maret,
Oskar Riedler, Andy Sanders, Rustam Steingart, Jan Swoboda, Oliver Thomas and Menelaos
Zikidis.

I would like to thank David Baraglia and Laura Schaposnik for their valuable help with a
question concerning one of their articles.

I would like to thank my mother for a large number of corrections and suggestions concern-
ing the subtleties of the English language.

Schließlich möchte ich meiner Mutter Ursula Sauer und meinem Vater Clemens Hoffmann
für die Liebe, den Zuspruch und die Unterstützung über all die Jahre hinweg danken. Vielen
Dank für alles!
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1. Representation varieties

1.1. Embedding the set of homomorphisms

Let Γ be a finitely generated group and let � be any group. Consider the set Hom(Γ,�) of
group homomorphisms from Γ to � .

Pick a presentation Γ = 〈W8 |F_〉. We choose the index set 8 ∈ {1, . . . , # } to be finite, however
this cannot necessarily be ensured for the index set _ ∈ Λ. A relation F_ is a word map: this
means that it is a composition of the group operation and group inversion. The evaluation on
generators,

Hom(Γ,�) → �# , d ↦→ (A8)8 = (d (W8))8 ,
is an injective map. Via this map, we consider Hom(Γ,�) a subset of �# = � × . . . ×� . The
relations F_ can be considered maps F_ : �# → � simply by plugging in elements of �#
instead of the W8 . Therefore Hom(Γ,�) can be identified with

⋂
_F
−1
_
(4) ⊆ �# .

The evaluation of a homomorphism is actually a restriction of a map from�# to� . Indeed,
let W ∈ Γ be an arbitrary element. It is a word in the generators, i.e. W = FW (W1, . . . , W# ). The
evaluation of representations at W

evalW : Hom(Γ,�) → �, d ↦→ d (W)

is the restriction of the word map

FW : �# → �, (68)8 ↦→ FW ((68)8) .

Again, FW can be considered a map on �# simply by plugging in elements of � instead of
elements of the free group.

We can equip Hom(Γ,�) with a �-left action. � acts via conjugation, (6.d) (W) = 6d (W)6−1.
� also acts on �# by conjugating component-wise. On Hom(Γ,�) ⊆ �# , the conjugation of
representations and the conjugation on �# coincide. Sometimes, it will be easier to analyze
the �-operation on �# even though we are interested in the action on Hom(Γ,�).
Lemma 1.1. Let � be any group, and let � act on � and �# via conjugation. A word map
F : �# → � is �-equivariant.

Proof. This can easily be seen by induction over the word length. A word F : �# → � of
length 0 simply maps everything to 4 ∈ � and is therefore trivially �-equivariant.

LetF be a word of length : . We can either write

F (61, . . . , 6# ) = E (61, . . . , 6# )68 (1)

or
F (61, . . . , 6# ) = E (61, . . . , 6# )6−18 , (2)

for some 8 and a word E : �# → � of length : − 1. By the induction hypothesis, E is �-
equivariant. In the case of Eq. (1), we have

F (ℎ61ℎ−1, . . . , ℎ6#ℎ−1) = E (ℎ61ℎ−1, . . . , ℎ6#ℎ−1)ℎ68ℎ−1

= ℎE (61, . . . , 6# )ℎ−1ℎ68ℎ−1

= ℎE (61, . . . , 6# )68ℎ−1 = ℎF (61, . . . , 6# )ℎ−1,

13



which proves �-equivariance. The case of Eq. (2) is proven accordingly. �

Denoting the action on �# and � by f�# and f� , respectively. The lemma shows that the
diagram

� ×�# �#

� ×� �

f
�#

(id,F) F

f�

(3)

commutes, a fact that will come in handy later on.

1.2. The algebraic structure of representation varieties

From now on, let� be an affine complex algebraic group. We will now construct an affine alge-
braic structure on Hom(Γ,�). Hom(Γ,�) equipped with this structure is called representation
variety of Γ in � . Despite this name, there are examples where the representation variety is
not irreducible.

Proposition 1.2. Via the above inclusion,Hom(Γ,�) possesses the structure of an affine algebraic
set. Up to isomorphism, this structure is independent of the choice of generators.

It is immediately clear that the �-action 6.d (·) = 6d (·)6−1 and the evaluation map evalW :
Hom(Γ,�) → �, d ↦→ d (W) are regular maps, as they descend from �# .

Proof of Proposition 1.2. Some ideas in this proof are taken from [Wei64]. �# is an affine alge-
braic set because� is. In other words,�# is the zero locus/ (() ⊂ C= of a set ( ⊂ C[)1, . . . ,)=]
of polynomial functions. We now want to show that this already gives us an affine alge-
braic structure on Hom(Γ,�). Each word map F_ can be regarded as a map �# → � sim-
ply by plugging in elements of � instead of the W8 . As mentioned in Section 1.1, we have
Hom(Γ,�) = ⋂

_F
−1
_
(4) as a subset of�# . EachF_ : �# → � consists of multiplications and

inversions, which are regular maps because� is an algebraic group. So, theF_ give us a set of
polynomials ( ′ such that⋂

_

F−1
_
(4) = / (() ∩ / (( ′) = / (( ∪ ( ′) ⊂ C=,

so Hom(Γ,�) is indeed a zero locus of polynomials, i.e. an affine algebraic set. We see here
that Λ does not have to be finite: An infinite intersection of Zariski-closed sets is still closed,
so an infinite intersection will again be an affine algebraic set.

It remains to be shown that this structure is independent of the choice of generators of Γ.
Let W 9 with 9 ∈ {1, . . . , # ′} be another finite set of (generating) elements. {W8 , W 9 } is also a set of
generators, so that Γ = 〈W8 , W 9 |F_′〉 for a new set of relations {F_′}. AsW8 are already generators,
we have word maps such that W 9 = FW 9 (W8). We can consider these maps as regular functions
�# → � , so that we get a regular function

�# → �#+#
′
, (68) ↦→ (68 ,FW 9 (68)) .

14



By construction, it can be restricted to a map
⋂
_F
−1
_
(4) → ⋂

_′F
−1
_′ (4) and this map is bijec-

tive, as both sets represent Hom(Γ,�). The inverse function is the restriction of the natural
projection map�#+# ′ → �# , (68 , 6 9 ) ↦→ (68). Thus, the inverse function is also regular. There-
fore, the two affine structures can be identified by regular isomorphisms. This shows the affine
algebraic structure ofHom(Γ,�) is independent of the set of generators up to isomorphism. �

Lemma 1.3. 1. Let A : Γ → Δ be group homomorphism of two finitely generated groups. Then
the induced map A ∗ : Hom(Δ,�) → Hom(Γ,�), d ↦→ d ◦ A is a regular map. Obviously,
this map commutes with the �-operation.

2. Let B : � → � be a homomorphism of two algebraic groups (i.e. a regular group homomor-
phism). Then the induced map B∗ : Hom(Γ,�) → Hom(Γ, � ), d ↦→ B ◦ d is regular.

Proof. 1. Choose finite generating sets W8 and X 9 of Γ and Δ, respectively. Consider embeddings
Hom(Γ,�) ⊂ �# and Hom(Δ,�) ⊂ �# ′ as explained above. Under these identifications, the
induced map Ā maps (d (X 9 ))9 ∈ �#

′ to (d (A (W8)))8 ∈ �# . However, A (W8) is a word map in
the X 9 . Therefore, as d is a homomorphism, d (A (W8)) is also a word map in the d (X 9 ). Any
word map is regular as a composition of multiplications and inversions, which proves that A is
regular.

2. The morphism B# : �# → �# is regular as a product of regular maps. The induced map
B∗ is the restriction of B# to Hom(Γ,�). This proves regularity. �

Example 1.4. The fundamental group c1(") of any compact finite-dimensional manifold " is
finitely presented. Hom(c1("),�) is the representation variety which we will mostly study in this
thesis. Surface groups c1(() for closed compact connected surfaces ( have a particularly simple
structure, and many statements are only known in this case. In particular, we will only prove the
Lagrangian submanifold Theorem 3.12 for character varieties of surfaces. Possible generalizations
will be discussed in Section 5.

Thefinitely generated group Γ becomes a topological group when equipped with the discrete
topology. We have the following statement on the topology of Hom(Γ,�).

Remark 1.5. Let� be an affine algebraic group� . Equip�# with the complex analytic topology.
The subspace topology on Hom(Γ,�) ⊆ �# via the above inclusion coincides with the compact-
open topology.

Proof. For compact sets  ⊆ Γ and open sets* ⊆ � , the sets

+ ( ,* ) = {d ∈ Hom(Γ,�), d ( ) ⊆ * }

are a subbase of the compact-open topology. Note that + ( ,* ) = ⋂
W ∈ (evalW )−1(* ). We

begin by showing that these sets are open in the subspace topology of Hom(Γ,�) ⊆ �# as
well.

Note that Γ is discrete, so a compact set is in fact a finite subset of Γ, i.e. a finite set of words
Fa (W8). As before, a word can be considered a continuous map Fa : �# → �, (68) ↦→ Fa (68),
andF−1a (* ) is an open subset of �# . The evaluation is the restriction ofFa , so we have

+ ( ,* ) =
⋂
W ∈ 
(evalW )−1(* ) = Hom(Γ,�) ∩

⋂
a

F−1a (* ) .
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This is an open set in the subset topology because there are only finitely many a .
Now, consider an open set in the subspace topology, i.e. Hom(Γ,�) ∩∏

8 *8 for *8 open in
� . It remains to be shown that this is an open set in the compact-open topology. Clearly, we
have

Hom(Γ,�) ∩
∏
8

*8 =
⋂
8

+ ({W8},*8),

which is an open set in the compact-open topology. Thus, the two topologies are identical. �

Note that the last argument does not work when equipping �# with the Zariski topology:
The Zariski topology of the product is finer than the product topology, so that there could
be open sets in �# which are not of the form

∏
8 *8 . At least, the argument shows that the

compact-open topology on Hom(Γ,�) with respect to the Zariski topology on � is coarser
than the Zariski topology on Hom(Γ,�).

1.3. The universal representation algebra

Any affine algebraic set - = specm(O- (- )) defines a scheme - sch = spec(O- (- )). The
underlying topological space of - consists of the closed points of - sch, see Theorem A.3 for
details. Since all the information on - can be retrieved from - sch, we will use the symbol -
for both the affine algebraic set and the scheme whenever the context is clear. In particular,
Hom(Γ,�) and� define schemesHom(Γ,�)sch = spec(OHom(Hom)) and�sch = spec(O� (�)).
�sch is a group scheme overC. In this section, we will define another affine scheme overCwith
the same underlying topological space as Hom(Γ,�)sch. This scheme, denoted byH><(Γ,�),
has a “bigger” structure sheaf and turns out to be more useful when calculating tangent spaces,
see Section 1.5.

Consider the points functor

� (−) : AlgC → Grp, � ↦→ � (�) = HomAlgC (O� (�), �),

it maps any C-algebra� to the set of C-algebra homomorphisms from O� to�. � (�) naturally
carries the structure of a group and, in particular, we obtain � (C) = � .

Definition 1.6. A commutative C-algebra '(Γ,�) together with a group homomorphism d* :
Γ → � ('(Γ,�)) is called universal representation algebra of Γ into � , if it fulfills the following
universal property: For every commutative C-algebra � and every representation d : Γ →
� (�), there is a unique C-algebra homomorphism 5 : '(Γ,�) → � such that the diagram

� ('(Γ,�))

Γ � (�)

� (5 )d*

d

commutes. Here, � (5 ) is the representation induced by 5 . The homomorphism d* is also
called universal representation.

Proposition 1.7. For every finitely generated group Γ and every affine complex algebraic group
� , the following holds:
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1. The universal representation algebra exists and is unique up to unique isomorphism of C-
algebras. d* is unique up to composition with the respective induced group isomorphism.

2. Wewill writeH><(Γ,�) = spec('(Γ,�)). This scheme’s reduction is given byH><(Γ,�)red =
Hom(Γ,�)sch.

3. The underlying topological spaces ofH><(Γ,�) and Hom(Γ,�)sch coincide. In particular,
the set of closed points ofH><(Γ,�) is exactly Hom(Γ,�).

Proof. 1. The following explicit construction of '(Γ,�) has been performed in [Sik09, Lem.
26].
� is an algebraic group, so� = specm(� ), where� = O� (�) is theC-Hopf algebra of global

sections.
Step 1.i: Construction for a free group. We will first construct '(�,�) for the finitely

generated free group � = 〈W8〉, 8 ∈ {1, . . . , # }. Define

'(�,�) =
#⊗
8=1

�.

We need a group homomorphism

d�* : � → � ('(�,�)) = HomC

(
�,

⊗
8

�

)
.

We set
d�* (W8) = ]8 : � →

⊗
8

�, G ↦→ 1 ⊗ . . . ⊗ G ⊗ . . . ⊗ 1,

which embeds � exactly at the 8-th copy in '(�,�). We can extend this definition to a group
homomorphism by setting

G · ~ ∈ Γ ↦→ d�* (G) · d
�
* (~) ∈ � ('(Γ,�))

and
G−1 ↦→ d�* (G)

−1 ∈ � ('(Γ,�)),

where the group structure on the right-hand side is induced by the Hopf algebra structure of
� = O� (�). Explicitly, this would mean

d�* (G) · d
�
* (~) =< ◦ (d

�
* (G) ⊗ d

�
* (~)) ◦ `

♯, d�* (G)
−1 = d�* (G) ◦ ]

♯,

where `♯ : � → � ⊗ � is the coproduct, ]♯ : � → � is the antipode, and< : � × � → � is
the multiplication of the Hopf algebra, but we will never use this explicit definition.

We have a well-defined group homomorphism d�
*

: � → � and want to check whether it
fulfills the universal property. For every C-algebra � together with a representation d : Γ →
� (�) = HomC(�,�), we have ring homomorphisms

d (W8) : � → �.
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and thus by definition of the tensor product, we canonically obtain a unique induced ring
homomorphism

5 �d :
⊗
8

�
d (W1) ⊗...⊗d (W# )−−−−−−−−−−−−−→ �.

By definition, the diagram
� ('(�,�))

� � (�)

� (5 �d )
d�
*

d

commutes. By construction, 5 �d is unique with this property. So, any other algebra '̃ fulfilling
the universal property is uniquely isomorphic to '(�,�).

Step 1.ii: Construction for any finitely generated group. Now, consider an arbitrary
finitely generated group Γ = 〈W8 |F_〉 = �/〈F_ (W8)8 , _ ∈ Λ〉. Let cΓ : � → Γ be the canonical
projection. Then the d�

*
above is possibly no longer well-defined, because

F_ (W1, . . . , W# ) = 4 in Γ,

but we could possibly have

d* (F_ (W1, . . . , W# )) = F_ (d* (W1), . . . , d* (W# )) ≠ 4� (' (�,�)) in � ('(�,�)) .

We correct this by constructing the following ideal

�Γ =
〈
F_ (d* (W8) (G) − 4� (' (�,�)) (G), for G ∈ �, _ ∈ Λ

〉
⊆ '(�,�) .

We define
'(Γ,�) = '(�,�)/�Γ,

and set c' (Γ,�) : '(�,�) → '(Γ,�) to be the canonical projection. Now we define d* to be
the canonical group homomorphism that makes

� � ('(�,�))

Γ ('(Γ,�))

d�
*

cΓ � (c' (Γ,� ) )
d*

commute. Furthermore, the fact that d : Γ → � (�) is a group homomorphism implies that
F_ (d (W8)) = 4� (�) . In particular, the ring homorphism 5 �

5 ◦cΓ factorizes over �Γ , which means
that we have a commutative diagram

'(�,�) �

'(Γ,�) �.

5 �d◦cΓ

c' (Γ,� )

5d

This shows that '(Γ,�), d* and 5d are well-defined, and it can be easily seen that they fulfill
the universal property. This proves point 1 of Proposition 1.7. �
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Before we continue with parts 2 and 3 of the proof, remark the following:

Remark 1.8. Let F ♯ : � →
⊗

8 � be the C-algebra homomorphism dual to a word map F :
�# → � . ThenF (d* (W8)8) ≡ F ♯. In particular, the ideal �Γ is given by

�Γ =

〈
F

♯

_
(G) − 4� (' (�,�)) (G), for G ∈ O� (�), _ ∈ Λ

〉
⊆ '(�,�).

Proof. We defined d* (W8) : � →
⊗

8 � to be 0 ↦→ 1 ⊗ . . . ⊗ 0 ⊗ . . . ⊗ 1, so

d* (W1) ⊗ . . . ⊗ d* (W# ) :
⊗
8

� →
⊗
8

�

is simply the identity. Note that F (d* (W8)8) is simply the evaluation of the word map F :
� (

⊗
8 � )# → � (

⊗
8 � ) at the element d* (W8)8 . According to the universal property of the

tensor product, we have

� (
⊗
8

� )# =
∏
8

HomC(�,
⊗
8

� ) = HomC(
⊗
8

�,
⊗
8

� ) = �# (
⊗
8

� ).

Therefore, the word map F : � (
⊗

8 � )# → � (
⊗

8 � ) is nothing but the induced morphism
� (F) : �# (

⊗
8 � ) → � (

⊗
8 � ), i.e. q ↦→ q ◦F ♯

_
. In particular,

F (d* (W8)8) = � (F) (d* (W1) ⊗ . . . ⊗ d* (W# )) = id ◦F ♯ = F ♯ .

�

Proof of Proposition 1.7.2 and .3. Using the Remark 1.8, we can now complete the proof of the
theorem.

2. Earlier, we defined the subvariety Hom(Γ,�) = ⋂
_F
−1
_
(4) ⊆ �# . A subvariety always

carries the reduced structure, so

OHom(Hom) = O�# (�# )/
√
� =

(⊗
8

�

)
/
√
� .

The ideal � is generated by all the F ♯

_
(G) − 4�# (G).

√
� is its radical ideal. In particular, Re-

mark 1.8 shows that � = �Γ , which means that

OHom(Hom) = '(�,�)/
√
�Γ = '(Γ,�)/

√
0,

so that Hom(Γ,�) is indeed the reduction ofH><(Γ,�).
3. This is a general property of the reduction of a scheme [see Sta19, Section 01IZ]. �

We have two closed immersions

Hom(Γ,�) ↩→H><(Γ,�) ↩→ �# .

The�-action on�# descends to a�-action onHom(Γ,�). This is not yet sufficent to prove that
the action descends toH><(Γ,�) as well, even though the two schemes coincide topologically.
However, we can show this by proving the invariance of the ideal �Γ .
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Proposition 1.9. The�-action on�# descends to a�-action on the closed subschemeH><(Γ,�).
This means that we have a commutative diagram

� ×�# �#

� ×H><(Γ,�) H><(Γ,�).

f

f |
(id,]) ]

Proof. As before, denote the Hopf algebra of global sections by� = O� (�). The diagram above
is dual to the diagram ⊗

8 � � ⊗
⊗

8 �

⊗
8 �/�Γ � ⊗

⊗
8 �/�Γ,

f♯

]♯ id ⊗]♯

f̄♯

where f♯ is the dual action, ]♯ is the natural projection, and �Γ is the ideal from Proposition 1.7.
We need to show that the dashed arrow is well-defined, i.e. that f♯ (�Γ) ⊆ � ⊗ �Γ . Taking into
account Remark 1.8, it is sufficient to show that

f♯ (F ♯

_
(G) − 4� (⊗8 � ) (G)) ∈ � ⊗ �Γ

for any G ∈ � and any _ ∈ Λ. From Eq. (3) after Lemma 1.1, we obtain f♯ ◦F ♯

_
= (id ⊗F ♯

_
) ◦f♯

�
,

where f� is the conjugation action on � .
Note that 4� (⊗8 � ) is given by B♯ ◦ 4♯, where B♯ : C →

⊗
8 � is the C-algebra structure

morphism (dual to B : �# → spec(C)) and 4♯ : � → C is the counit (dual to 4 : spec(C) → �).
The following diagram commutes:

� ×�# �#

� × spec(C) spec(C)

� ×� �.

f

(id,B) B

(id,4) 4

f�

This shows that f♯ ◦ 4� (⊗8 � ) = f
♯B♯4♯ = (id ⊗B♯4♯) ◦ f♯

�
= (id ⊗4� (⊗8 � ) ) ◦ f

♯

�
. In summary,

we see that

f♯ (F ♯

_
(G) − 4� (⊗8 � ) (G)) = (id ⊗F

♯

_
) ◦ f♯

�
(G) − (id ⊗4� (⊗8 � ) ) ◦ f

♯

�
(G)

= (id ⊗(F ♯

_
− 4� (⊗8 � ) )) ◦ f

♯

�
(G),

which is an element of � ⊗ �Γ . This remained to be shown. �

Lemma 1.10. Let Γ and Δ be two finitely generated groups, and let A : Γ → Δ be a group
homomorphism. There is an induced C-algebra morphism (A ∗)♯ : '(Γ,�) → '(Δ,�) and thus a
morphism of C-schemes A ∗ : H><(Δ,�) → H><(Γ,�).
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Proof. This follows almost immediately from the universal property. Let d* : Δ→ � ('(Δ,�))
be the universal representation of Δ in� . Consider the composition d* ◦ A : Γ → � ('(Δ,�)).
In accordance with the universal property, it defines a unique C-algebra morphism (A ∗)♯ as
required. �

Let � be a C-algebra. The evaluation map evalW : Hom(Γ,�) → �, d ↦→ d (W) is a regular
map, so that it induces a map evalW(�) : Hom(Γ,�) (�) → � (�) on �-valued points. Via
the closed immersion of schemes ] : Hom(Γ,�) ↩→ H><(Γ,�), we obtain an embedding
] (�) : Hom(Γ,�) (�) ↩→H><(Γ,�) (�).

Lemma1.11. Letq be an element ofHom(Γ,�) (�), and consider it as an element ofH><(Γ,�) (�)
via ]∗. We have

evalW(�) (q) = � (q) (d* (W))

for any element W ∈ Γ.

Proof. q ∈ Hom(Γ,�) (�) is a homomorphism OHom(Hom) → � of C-algebras. evalW :
Hom(Γ,�) → � corresponds to a homomorphism (evalW )♯ : O� (�) → OHom(Hom) of C-
algebras. By definition, we simply have evalW(�) (q) = q◦eval

♯
W . The element d* (W) ∈ � ('(Γ,�))

is a homomorphism O� (�) → '(Γ,�) of C-algebras, and we have

� (q) (d* (W)) = q ◦ ]♯ ◦ d* (W) .

Therefore, it suffices to show that ]♯ ◦d* (W) = evalW . This can be seen easily, as both d* (W) and
evalW are induced by the word mapFW : �# → � . This means that the diagram

O�# (�# )

O� (�) '(Γ,�)

OHom(Hom)

(FW )♯

(evalW )♯

d* (W )

]♯

commutes, which ends our proof. �

1.4. Subsets of the representation variety

Due to their more convenient differential or algebraic properties, it is convenient to consider a
couple of subsets of the representation variety Hom(Γ,�). Let � be an affine algebraic group.
A subgroup � ⊆ � is called Borel subgroup if it is a maximal connected solvable subgroup. A
parabolic subgroup % ⊆ � is a subgroup that contains a Borel subgroup. A subgroup is parabolic
if and only if the homogenous space �/% is a complete variety [see Bor91, Cor. 11.2].

Definition 1.12. Let � be an affine algebraic group, and let � be a subgroup.

1. � is called irreducible if it is not contained in any proper parabolic subgroup of � .
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2. � is called completely reducible if for every parabolic subgroup % ⊂ � that contains � ,
there is a Levi subgroup of % containing � as well.

3. We call a representation d ∈ Hom(Γ,�) irreducible (or completely reducible) if d (Γ) ⊂ �
is irreducible or completely reducible, respectively.

4. Let Ad : � → GL(g) be the adjoint representation. We call d Ad-irreducible or Ad-
completely reducible if the representationAd ◦d : Γ → GL(g) is irreducible or completely
reducible, respectively.1

Obviously, every irreducible subgroup is completely reducible and thus, irreducible repre-
sentations are completely reducible.

Example 1.13. This example shows that the above definitions coincide with the classical notions of
irreducible and completely reducible representations. Let+ be aC-vector space and let� = GL(+ )
be the general linear group. Consider a homomorphism d : Γ → GL(+ ), i.e. a representation of Γ
in + . Then the following holds:

1. The subgroup d (Γ) is an irreducible subgroup of GL(+ ) if and only if the representation in
+ is irreducible, i.e. if the only Γ-invariant subspaces of + are 0 and + .

2. The subgroup d (Γ) is a completely reducible subgroup of GL(+ ) if and only if the represen-
tation in+ is completely reducible (or semi-simple), i.e. if+ is the direct sum of irreducible
Γ-invariant subspaces.

These results can be found in [Ser05, Sec. 1.3, Sec. 3.1].

By�.d ⊂ Hom(Γ,�), we will denote the orbit of d under the�-action. Whenever the group
� is obvious, we will write $d = �.d . By �d ⊂ � , we will denote the stabilizer of d . By
� (�) ⊂ � , we will denote the center of � . This said, we define:

Definition 1.14. A representation d ∈ Hom(Γ,�) is good, if$d is closed in� and the stabilizer
of d coincides with the center, �d = � (�).2

Let � be an affine algebraic group. The unity component of the intersection of all Borel
subgroups is a group called the radical of � ,

'� =

( ⋂
�⊆� Borel

�

) 0
.

Its subgroup of unipotent elements is denoted by '�D . � is called reductive, if the unipotent
radical '�D is trivial. We have the following topological properties and inclusions.

Proposition 1.15. Let � be a reductive group. Let Γ be any finitely generated group. We have:

1. The set of irreducible representations Hom8 (Γ,�) is a Zariski-open subset of Hom(Γ,�).
1In [BS14], Ad-completely reducible representations are called reductive.
2In [BS14], this is called a simple point.
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2. The set of Ad-irreducible representations is a Zariski-open subset of Hom(Γ,�).

3. The set of good representations is an open subset of Hom8 (Γ,�) in the complex topology.

4. Every Ad-irreducible representation is good.

We will denote the subset of good representations and the subset of irreducible representa-
tions by

Hom6 (Γ,�) and Hom8 (Γ,�),
respectively. Before proving this proposition, I would like to remark the following. The proof of
point 3 uses a principal orbit type theorem for Lie groups, so that it only shows thatHom6 (Γ,�)
is open in the complex topology. For the proof of Theorem 3.12, it would be highly useful to
know thatHom6 (Γ,�) is Zariski-open as well. I do not have a proof for this. However, there is
a principal orbit type theorem for reductive affine algebraic group claiming that there is a non-
empty Zariski-open subset of principal orbits [see Wal18, Thm. 12]. In view of this theorem,
I consider it highly plausible that Hom6 (Γ,�) should contain a non-empty,�-invariant subset
that is Zariski-open in Hom(Γ,�). An in-depth treatment exceeding the scope of this thesis
would be necessary in order to prove this. I will denote such a subset byHom66 (Γ,�). Perhaps,
some algebraic statements on Hom6 (Γ,�) (such as the construction of a categorical quotient)
should be performed on Hom66 (Γ,�) instead.

Proof of Proposition 1.15. 1. The following proof is based on the proof of [Sik09, Prop. 27].
A representation d : Γ → � is called irreducible if its image is not contained in any proper
parabolic subgroup % ( � . Therefore, Hom8 (Γ,�) ⊂ Hom(Γ,�) is the complement of⋃

%(� par.
Hom(Γ, %) ⊆ Hom(Γ,�),

and it is sufficient to show that this set is closed.
Fix any Borel subgroup � ⊆ � . Every parabolic subgroup is conjugate to precisely one

“standard subgroup”, i.e. a parabolic subgroup that contains � [see Bor91, Cor. 11.17]. It can
be shown that there are only finitely many standard subgroups3. We define

-% =
⋃
6∈�

Hom(Γ, 6%6−1).

It follows that ⋃
% par.

Hom(Γ, %) =
⋃

% stand. par.

-% ,

and the union on the right-hand side is finite. As the finite union of closed sets is closed, it
suffices to show that -% is closed for every standard parabolic subgroup % . According to the
definition of parabolic subgroups, % ⊆ � is a closed subgroup and �/% is complete, so

�% =
⋃
6∈�

6%6−1

3According to [Bor91, Prop. 14.18], all standard parabolic subgroups � ⊆ %� ( � can be indexed by subsets � ⊆ Δ,
where Δ is the set of vertices of some Dynkin diagram related to �. In particular, Δ is finite, so that there are
only finitely many standard parabolic subgroups %� .
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is closed by [Bor91, Lem. 11.9]. This implies that (�%)# is closed in �# .4 With the inclusion
Hom(Γ,�) ⊆ �# , we have

-% = (�%)# ∩ Hom(Γ,�) ⊆ �# .

Hom(Γ,�) is the intersection of some kernels, so it is closed. Therefore, -% is the intersection
of two closed sets, and thus it is closed.

2. This proof follows [Sik09, Cor. 28]. ThemapAd : � → GL(g) is amorphism of algebraic
groups [see Mil17b, Sec. 10.20], and the induced map Ad∗ : Hom(Γ,�) → Hom(Γ,GL(g)) is a
regular map by Lemma 1.3. By definition, the set of Ad-irreducible representations is given by

Ad−1∗ (Hom8 (Γ,GL(g)) .

According to bullet point 1, it is the inverse image of a Zariski-open set, so it is Zariski-open
itself.

We omit the proofs of bullet points 3 and 4; they can be found in Prop. 33 and Cor. 13 of
[Sik09], respectively. �

In the reductive case, we have the following equivalent characterization of closed orbits.

Proposition 1.16. Let � be a reductive group, and let d ∈ Hom(Γ,�) be a representation.
$d ⊆ Hom(Γ,�) is closed if and only if d is completely reducible.

We omit the proof. It can be found in Thm. 30 of [Sik09]. As a consequence of this theorem,
we have several equivalent characterizations of a good representation.

Proposition 1.17. Let � be a reductive group, and d ∈ Hom(Γ,�) be any representation. Then
the following three statements are equivalent:

1. d is a good representation, i.e. $d ⊆ � is closed and �d = � (�).

2. d is completely reducible and �d = � (�).

3. d is irreducible and �d = � (�).

The theorem is a direct consequence of [Sik09, Cor. 17] and Proposition 1.16. The proof will
be omitted.

For all good d , we have�d = � (�), so the�-action induces a�/� (�)-action onHom6 (Γ,�).
The group �/� (�) is itself a smooth affine algebraic group by [Mil17b, Cor. 5.26, Prop. 5.29,
Thm. 7.18]. Obviously, the orbits of the actions are identical, i.e. �.d = �/� (�).d for all good
representations d . The subset of good representations has the following property which will
be of use later on, in the proof of Proposition 2.7.

Proposition 1.18. The �/� (�)-action on Hom6 (Γ,�) is proper in both the complex and the
Zariski topology.
4It is well known that the Zariski topology on the fiber product of schemes - ×( . is not the product topology.

We will show that the product of two closed subschemes is nevertheless a closed subscheme in the product.
Let * → - and + → . be closed immersions. As closed immersions are stable under base change and under
composition, we know that* ×( + → * ×( . → - ×( . is a closed immersion as well.
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Proof. For the action of an affine algebraic group on an affine algebraic set, a point is called
stable if its orbit is closed and its stabilizer is finite.5 Let d be a good representation. We will
see that d is a stable point under the �/� (�)-action.

By definition, all orbits �.d of good representations are closed, and the stabilizer of the
action of �̃ = �/� (�) is trivial, so all good representations are stable points of the �̃ action.
According to [JM87, Prop.1.1, Lem.1.2], this implies that the �-action is proper on the set of
stable points in both topologies. In particular, the �-action is proper on Hom6 (Γ,�). �

1.5. Tangent spaces of the representation variety

We saw that Hom(Γ,�) inherits an affine algebraic structure from �# . Considering �# a
complex manifold, we can calculate the tangent space )d Hom(Γ,�) at a smooth point using
an argument by Goldman.

More generally, we can calculate the Zariski tangent space )dH><(Γ,�) of the scheme
H><(Γ,�). We will see that the Zariski tangent spaces of H><(Γ,�) and Hom(Γ,�) are
isomorphic on the non-singular points of H><(Γ,�). As explained in Proposition A.7, the
theory of GAGA (“Géométrie algébrique et géométrie analytique”) shows that the Zariski tan-
gent space and the complex tangent space are isomorphic for Hom(Γ,�). Nevertheless, we
will demonstrate both techniques in order to show how the different approaches of differential
and algebraic geometry come into effect.

We will see that )dH><(Γ,�) is isomorphic to the 1-cocycles of group cohomology. For
now, the following definition of 1-cocycles is sufficient for our work: Let g be the Lie algebra
of � , and let d : Γ → � be a representation. We can turn g into a Γ−module by setting
W .G = Add (W ) G for any W ∈ Γ and G ∈ g. We denote this Γ-module by gAd d . We define the
group of 1-cocycles of group cohomology by

/ 1(Γ, gAd d ) = {D : Γ → gAd d , D (WX) = D (W) + Add (W ) D (X) for all W, X ∈ Γ}.

The subgroup of 1-coboundaries of group cohomology is defined to be

�1(Γ, gAd d ) = {D : Γ → gAd d , D (W) = G − Add (W ) G for some G ∈ g}.

The quotient
� 1(Γ, gAd d ) = / 1(Γ, gAd d )/�1(Γ, gAd d )

is called the first cohomology group. Note that g carries the structure of C-vector space, so
/ 1(Γ, gAd d ), �1(Γ, gAd d ) and � 1(Γ, gAd d ) are C-vector spaces as well.

1.5.1. A differential calculation

Let � be a real or complex Lie group. As we saw before, we can consider Hom(Γ,�) a subset
of �# . In the following calculations, we equip �# with its real or complex topology, and
Hom(Γ,�) with the corresponding subset topology. We will calculate the tangent space at a
smooth point d of Hom(Γ,�).
5This definition does not precisely match the definition used within geometric invariant theory, but is the defini-

tion provided by [JM87, 1.def.].
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Definition 1.19. Let " be finite-dimensional complex manifold, and let - ⊆ " be a subset
equipped with the subspace topology. We call ? ∈ - a smooth point of - , if it has an open
neighborhood* ⊆ - such that* is a submanifold of" .

With this definition, we can calculate the tangent space at smooth points d ∈ Hom(Γ,�).

Theorem 1.20. For any real or complex Lie group � and any smooth point d ∈ Hom(Γ,�) in
the aforementioned differential sense, we have an isomorphism

)d Hom(Γ,�) � / 1(Γ, gAd d ),

between the tangent space and the 1-cocycles of group cohomology.

Proof. The proof is due to [Gol84, Sec. 1.2]. Let - ∈ )d Hom(Γ,�) be a tangent vector. We will
construct an element D ∈ / 1(Γ, gAd d ) that corresponds to it.

Under the inclusionHom(Γ,�) ⊆ �# ,- corresponds to an element of g# .6 Choose a smooth
neighborhood* of d as above, and choose a curve dC in* such that d0 = d and the derivative
is 3
3C
dC |C=0 = - . Evaluation at an element W ∈ Γ is a smooth map, as it is merely the word map

FW : �# → � , whereFW is the word representing W . Thus, dC (W) is a smooth path in� for any
given W ∈ Γ. According to the inverse function theorem, the Lie exponential map exp : g→ �

is a diffeomorphism from a small neighborhood of 0 ∈ g to a small neighborhood of 4 ∈ � .
Furthermore, right translation is a diffeomorphism on � , so we obtain a map Φ : + × Γ → g

with
dC (W) = exp(Φ(C, W))d (W),

where + ⊆ R is some small neighborhood of 0. Φ is smooth in C because dC (W) is. Therefore,
the Taylor expansion of Φ in C is well defined near 0. Using Φ(0, W) = 0, we obtain

Φ(C, W) = C · D (W) + C2 · ℎ(W, C),

where limC→0 ℎ(W, C) → 0. The homomorphism property dC (WX) = dC (W)dC (X) implies

exp(Φ(C, WX))d (WX) = exp(Φ(C, W))d (W) exp(Φ(C, X))d (X),

which can be simplified to be

exp(Φ(C, WX)) = exp(Φ(C, W)) · d (W) exp(Φ(C, X))d (W)−1

= exp(Φ(C, W)) · exp(Add (W ) Φ(C, X))

= exp(Φ(C, W) + Add (W ) Φ(C, X) +
1
2
[Φ(C, W),Add (W ) Φ(C, X)] + . . .)

= exp(C · D (W) + C · Add (W ) D (X) +$ (C2)),

where we used the Baker-Campbell-Hausdorff formula for combining the two exponential
functions. This formula holds for sufficiently small C . As exp is a local diffeomorphism, we
have CD (WX) = CD (W) + C Add (W ) D (X) +$ (C2), and deriving by C at C = 0 implies

D (WX) = D (W) + Add (W ) D (X),
6We identify all tangent spaces )6� with g via left translation.
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which is the property of being a 1-cocycle. We will denote this D by D- as it depends on - .
On the other hand, consider an arbitrary 1-cocycle D. Unfortunately, the function d̃C : Γ →

� defined by d̃C (W) = exp(CD (W))d (W) for all W ∈ Γ is not a group homomorphism (as the
higher terms of the Baker-Campbell-Hausdorff series are missing when comparing d̃C (WX) to
d̃C (W)d̃C (X)). However, it is “topologically very close” to being a group homomorphism, so we
will only need to alter our definition a little bit. More precisely, consider the group homomor-
phism dDC defined by

dDC (W8) = exp(CD (W8))d (W8)
on all the generators of Γ. Then dD0 = d and 3

3C
dDC |C=0 is an element of the tangent space

)d Hom(Γ,�).
It remains to be shown that

)d Hom(Γ,�) → / 1(Γ, gAd d ), - ↦→ D- (·) = 3

3C
d-C (·)d (·)−1 |C=0,

where d-C is the curve in Hom(Γ,�) with tangent vector - at d , and

/ 1(Γ, gAd d ) → )d Hom(Γ,�), D ↦→ -D =
3

3C
dDC (·)d (·)−1 |C=0

are inverse to one another.
Represent - as an element of g# via - = ( 3

3C
d-C (W8) |C=0)8 . Then,

3

3C
d
(D- )
C (W8) |C=0 = 3'd (W8 ) (3 exp)0(D- (W8)) = 3'd (W8 ) (3 exp)0(

3

3B
d-B (W8)d (W8)−1 |B=0)

= 3'd (W8 ) (3 exp)03'd (W8 )−1 (
3

3B
d-B (W8) |B=0)

=
3

3B
d-B (W8) |B=0,

where we took benefit of the fact that (3 exp)0 is nothing but the identity map. In particular,
- (D

- ) = - . The other direction, i.e. D (-D ) = D for any D ∈ / 1(Γ, gAd d ), follows similarly. (In
order to check this equality, please note that it is sufficient to check the equality on generators
due to the cocycle property.) �

AndréWeil chooses a different approach in [Wei64, Sec. 3]. We saw before thatHom(Γ,�) =⋂
_F
−1
_
(4). Weil calculates equations that characterize the kernels ker(3F_)d , and shows that

elements solving these equations for all _ correspond to 1-cocycles. Thus, if we have

)d Hom(Γ,�) =
⋂
_

ker(3F_)d , (4)

we are done. This approach may face two difficulties: Firstly, the intersection is infinite in case
Γ is not finitely generated. Secondly, we may need extra requirements for the point d , e.g. a
transverse intersection, in order to ensure that Eq. (4) is correct.

Both Goldman’s and Weil’s approach only enable us to calculate the tangent space when
assuming that the point is already smooth. In particular, we need a more general approach if
we want to find out which points are smooth. Accordingly, in Section 1.5.2 below, we will avail
ourselves of the machinery of algebraic geometry in order to determine the Zariski tangent
spaces at all closed points d .
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1.5.2. An algebraic calculation

Every representation d ∈ Hom(Γ,�) can be considered a closed point of the schemeH><(Γ,�).
This means that d corresponds to a maximal idealmd ⊂ '(Γ,�) of the universal representation
algebra. This ideal can be calculated using the universal property: d defines a unique projec-
tion Ad : '(Γ,�) → C, so ker Ad is a maximal ideal. We identify d ∈ Hom(Γ,�) with md ∈
H><(Γ,�). Thusly, it makes sense to consider the Zariski tangent spaces )dH><(Γ,�) :=
)mdH><(Γ,�).

The adjoint representation Ad is a representation of � in its Lie algebra g. Choosing an
element d ∈ Hom(Γ,�), we obtain a Γ-operation on the Lie algebra. We will designate this
Γ-module by gAd d as explained in the beginning of Section 1.5.

Theorem 1.21. Let�d be the centralizer of d (Γ) in� . We then have an�d -equivariant isomor-
phism of C-vector spaces

)dH><(Γ,�) � / 1(Γ, gAd d )

between the Zariski tangent space and the 1-cocycles of Γ in gAd d in the sense of group cohomology.

For the proof, we will need the following lemma. Consider the C-algebra of dual numbers
C[Y] = C[- ]/(- 2) with the element Y2 = 0. The set of C[Y]-valued points is a group because
� is an affine algebraic group. The embedding ] : C ↩→ C[Y] induces an embedding � =

� (C) ↩→ � (C[Y]). On the other hand, the projection c : C[Y] → C, Y ↦→ 0 induces a group
homomorphism � (c) : � (C[Y]) → � . Note that

c ◦ ] = idC (5)

and therefore also
� (c) ◦� (]) = id� (C) .

Lemma 1.22. There is a well-defined map h : � (C[Y]) → g that fulfills

h (6162) = h (61) + Ad� (c ) (61) h (62). (6)

If6 is already an element of� (embedded into� (C[Y]) as explained above), thenAd� (c ) (6) = Ad6.

Proof of the lemma. The Zariski tangent space gives us an abstract notion of the Lie algebra

g � )4� = ker (� (c) : � (C[Y]) → � (C)) ,

as explained in Definition A.5.1 and Section A.5, where c : C[Y] → C is defined by Y ↦→ 0.
Now, consider an element 6 ∈ � (C[Y]). Technically,� (c) (6) is an element of� (C). Neverthe-
less, it can be considered an element of � (C[Y]) via the embedding � (]) : � (C) → � (C[Y]).
Therefore,

h (6) = 6 · (� (c) (6))−1

is a well-defined element of � (C[Y]). We want to show that it is already in ker� (c) � g. The
fact that � (c) ◦� (]) = id� (C) implies

� (c) (6 ·� (c) (6)−1) = � (c) (6)� (c) (6)−1 = 4,
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which shows that h (6) is an element of the tangent space.
It remains to be shown that Eq. (6) holds. This follows by direct calculation:

h (6162) = 6162(� (c) (6162))−1

= 6162(c∗62)−1(� (c)61)−1

= 61(c∗61)−1 · (� (c)61)62(� (c)62)−1(� (c)61)−1

= h (61) · Ad� (c )61 (h (62)),

when using the characterization of the adjoint representation as described in Appendix A.5,
Eq. (32). In any additive characterization of g, · becomes +, so we obtain precisely Eq. (6). �

Proof of Theorem 1.21. Theproof follows [Sik09,Thm. 35]. Letmd be a closed point ofH><(Γ,�).
As we are dealing with an affine scheme, its Zariski tangent space at md can be calculated as
the space

)dH><(Γ,�) =
{
5 : '(Γ,�) → C[Y], c ◦ 5 = Ad

}
,

where 5 is a homomorphism of C-algebras, Ad : '(Γ,�) → '(Γ,�)/md � C is the natural
projection and c : C[Y] → C is defined by Y → 0, see Appendix A.2 for further details. From
such a 5 , we now need to construct a map Γ → g that fulfills the cocycle condition. Using the
universal representation d* , we have a group homomorphism

k5 : Γ
d*−−→ � ('(Γ,�))

� (5 )
−−−−→ � (C[Y]) .

The map D5 = h ◦k5 : Γ → g fulfills the cocycle condition, becausek5 is a group homomor-
phism and because of Eq. (6). Therefore, we have a map

Ψd : )dH><(Γ,�) → / 1(Γ, gAd d ), 5 ↦→ D5 .

Conversely, consider an element D ∈ / 1(Γ, gAd d ). We will see that it defines an element of
)dH><(Γ,�). D defines a group homomorphism

qD : Γ → � (C[Y]), W ↦→ D (W) · d (W) .

Indeed, we have

qD (WX) = D (WX) · d (WX)
= D (W) · Add (W ) D (X) · d (WX)
= D (W)d (W)D (X)d (W)−1d (W)d (X)
= qD (W)qD (X),

which shows that qD is a group homomorphism. According to the universal property, a unique
homomorphism 5D : '(Γ,�) → C[Y] exists, such that qD = � (5D) ◦ d* . We have g � ker� (c).
In particular, we have D (W) ∈ ker� (c). The fact that d (W) ∈ � shows that� (c) (d (W)) = d (W),
so

� (c) (qD (W)) = � (c) (D (W))� (c) (d (W)) = 4 · d (W) = d (W) ∈ �.
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This shows that � (c) ◦ qD = d . The universal property implies that c ◦ 5D = Ad . This shows
that 5D is an element of )dH><(Γ,�). This means that we have a map

Φd : / 1(Γ, gAd d ) → )dH><(Γ,�), D ↦→ 5D .

It remains to be shown that Ψd and Φd are inverse to one another.
We will prove that Φd (Ψd (5 )) = Φd (D5 ) = 5 . Φd (D5 ) is defined to be the unique C-algebra

homomorphism 5D5 : '(Γ,�) → C[Y] such that

� (5D5 ) ◦ d* (W)
!
= qD5 (W) = D5 (W)d (W) .

However,

D5 (W) = h ◦k5 (W) = (� (5 ) ◦ dD) (W) · (� (c) ◦� (5 ) ◦ dD)−1 = (� (5 ) ◦ d* ) (W) · d (W)−1,

so by uniqueness of 5D5 , we obtain 5 = 5D5 . Similarly, it follows that Ψd (Φd (D)) = D. The
�d -equivariance of Φd follows from the definitions. This ends our proof. �

This isomorphism is natural in the following sense: Let A : Γ → Δ be a group homomor-
phism between two discrete groups, then we have an induced morphism A ∗ : H><(Δ,�) →
H><(Γ,�) on the representation varieties according to Lemma 1.10. Furthermore, we have an
induced map A ∗ : / 1(Δ, gAd d ) → / 1(Γ, gAd dA ) on the 1-cocycles, which is defined byD ↦→ D ◦A .

Lemma 1.23. With the above maps, the isomorphism Ψd from Theorem 1.21 makes the diagram

)dH><(Δ,�) )dAH><(Γ,�)

/ 1(Δ, gAd d ) / 1(Γ, gAd dA )

Ψd

3Ā

ΨdA

A ∗

commute.

Proof. We choose the same characterization of )dH><(Δ,�) as in Theorem 1.21, i.e. tangent
vectors C-algebra homomorphisms 5 : '(Δ,�) → C[Y] with c 5 = Ad . The differential is
simply given by 3Ā (5 ) = 5 ◦ Ā ♯, where Ā ♯ : '(Γ,�) → '(Δ,�) is the homomorphism from
Lemma 1.10. We have a commutative diagram

Γ � ('(Γ,�)) � (C[Y])

Δ � ('(Δ,�)) � (C[Y]),

A

d*

� (Ā ♯)

� (3Ā (5 ))

d* � (5 )

where the upper and the lower lines are the definitions ofk3Ā (5 ) andk5 , respectively, as in the
proof of Theorem 1.21. The commutativity shows thatk5 ◦ A = k3Ā (5 ) . This proves that

A ∗ ◦ Ψd (5 ) = A ∗(h ◦k5 ) = h ◦k5 ◦ A = h ◦k3A ∗ (5 ) = ΨdA ◦ 3A ∗(5 ),

which was to be shown. �
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1.6. Reduced and non-singular points of the representation variety

In algebraic geometry, a point ? of an affine algebraic set - is called non-singular if it is con-
tained in only one irreducible component � ⊆ - , and dimC)?- = dim� . Note that this
definition is equivalent to the stalk O-,? being a regular local ring, see Proposition A.9.

With this said, we can relate the non-singular points of the representation variety to the non-
singular points ofH><(Γ,�). First, we will define the notion of a reduced representation.

Definition 1.24. We call a representation d ∈ Hom(Γ,�) reduced, if it is a reduced point of
H><(Γ,�), i.e. OH>< (Γ,�),d – the stalk at the point – has no non-trivial nilpotent elements.

Lemma 1.25. Consider a closed point d ∈ Hom(Γ,�). d is non-singular in H><(Γ,�) if and
only if d is non-singular in Hom(Γ,�) and d is a reduced representation.

Proof. Let ' = '(Γ,�), and let m be the maximal ideal corresponding to d . Then, we have
canonical isomorphisms OH>< (Γ,�),d � 'm and OHom(Γ,�),d � ('/

√
0)m, where 'm is the local-

ization ('\m)−1'. Localization is an exact functor, so the short exact sequence

0→
√
0→ ' → '/

√
0→ 0

is translated into a short exact sequence

0→ ('\m)−1
√
0→ 'm → ('/

√
0)m → 0.

According to [AM69, Cor 3.12], the nilradical of the localization is the localization of the nil-
radical, i.e. ('\m)−1

√
0 =
√
'm · 0. Therefore, the above exact sequence gives us a canonical

isomorphism
'm/

√
'm · 0 � ('/

√
0)m . (7)

In other words, the reduction of the stalk is the stalk of the reduction.
Now suppose d is non-singular inH><(Γ,�). This means that 'm is regular. Every regular

local ring is a domain [Sta19, Lemma 00NP]. Hence, every regular local ring is reduced. This
means that

√
'm · 0 = 0 and the Eq. (7) then gives us an isomorphism 'm � ('/

√
0)m. In

particular, ('/
√
0)m is regular as well and therefore d is non-singular in Hom(Γ,�).

On other hand, suppose d is non-singular in Hom(Γ,�) and reduced in H><(Γ,�), i.e.√
'm · 0 = 0. Then we obtain the same isomorphism as before, and regularity follows in the

same way. �

For surface groups, we will now see that irreducible representations are non-singular. First,
we will need to calculate the dimension of / 1(c1((), gAd d ). Note that the stabilizer subgroup
�d of the �-action on Hom(Γ,�) at d equals the centralizer subgroup of the set d (Γ), i.e.
�d = �� (d (Γ)) ⊆ � .

We use two different notions of dimension: By dim: for : = R or : = C, we denote the
dimension of a :-vector space, and more generally the dimension of smooth or complex man-
ifold. By dim, we denote the Krull dimension of a ring, i.e. the maximal length of chains of
prime ideals, or the Krull dimension of a topological space, i.e. the maximal length of chains
of irreducible closed sets.
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Lemma 1.26. Let c1(() be the fundamental group of a surface ( of genus 6. The dimension of
the 1-cocycles is given by

dim: /
1(c1((), gAd d ) = (26 − 1) dim: � + dim: �d ,

for : = R or C.

Proof. To begin with, let Γ = 〈W8 |F_〉 be an arbitrary finitely generated group and consider
F_ : �# → � as a map as before. In [Gol84, Sec. 3.6], Goldman argues that the 1-cocycles can
be identified with the set

/ 1(Γ, gAd d ) =
{
(D1, . . . , D# ) ∈ g#

��3F_ (D1, . . . , D# ) = 0 for all _
}
.

In the case of a surface group Γ = c1((), we have a set of generators W1, X1, . . . , W6, X6 and a
single relation F (W1, . . . , X6) =

∏
8 [W8 , X8]. Hence, the dimension of the kernel of 3F remains

to be calculated in order to calculate the dimension of / 1(c1((), gAd d ). In [Gol84, Prop. 3.7],
Goldman calculates the rank: (3F)A at a point A = (A1, B1 . . . , A6, B6) ∈ �26. It is given by

rank: (3F)A = dim: � − dim: �� ({A1, B1, . . . , A6, B6}),

where �� ({A1, B1, . . . , A6, B6}) is the centralizer of the set. If the point A ∈ �26 represents an
element d ∈ Hom(c1((),�) ⊆ �26, then we have

�� ({A1, B1, . . . , A6, B6}) = �� (d (c1(())).

It follows that

dim: ker(3Fd ) = dim: �
26 − rank: (3F)d

= (26 − 1) dim: � + dim: �� (d (c1(()) .

Finally, note that�� (d (c1(())) = �d is the stabilizer of the action on the representation variety.
Hence, our statement follows. �

Let d be any representation. The stabilizer �d always contains the center � (�), so we ex-
pect the dimension of )dH><(c1((),�) to be minimal for dimC� (�) = dimC�d . In the next
proposition, we will see that irreducible representations have minimal tangent space dimen-
sion. Thus, they are non-singular.

Proposition 1.27. Let� be a reductive affine algebraic group and let c1(() be a surface group. All
elements d ∈ Hom8 (c1((),�) are non-singular inH><(c1((),�) (and thus also inHom(c1((),�)).

Possibly this proposition only holds with a certain restriction: d is definitely non-singular
when it is contained in a closed irreducible component� ⊆ Hom(Γ,�) that is “irredundant”. I
will explain what this means within the proof.
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Proof. The proof follows [Sik09, Prop. 37]. The stabilizer of an irreducible subgroup is a finite
extension of the center, so dimC�d = dimC�� (d (c1(())) = dimC� (�) [see Sik09, Cor. 17]. In
particular, the isomorphism from Theorem 1.21 together with Lemma 1.26 implies

dimC)dH><(c1((),�) = (26 − 1) dimC� + dimC� (�) . (8)

Let � be any irreducible component of Hom(c1((),�). We claim that it suffices to show that

dim� > dimC)dH><(c1((),�) . (9)

Indeed, suppose that this inequality holds. Using the irreducibility of� and the closed immer-
sion Hom(c1((),�) ↩→H><(c1((),�), we can see that

dim� 6 dimC)d Hom(c1((),�) 6 dimC)dH><(c1((),�),

for all irreducible representations d ∈ � . Therefore, Eq. (9) must be an equality. In accordance
with [AM69, Thm. 11.25], we have dim� = dimOHom,d , and it follows that

dim� = dimOHom,d 6 dimOH><,d 6 dimC)dH><(c1((),�) = dim�.

In particular, dimOH><,d = dimC)dH><(c1((),�). Therefore, OH><,d is regular. This means
that d is a non-singular point ofH><(c1((),�).

Step i: � is semi-simple. First, we will prove that Eq. (9) holds if� is semi-simple. Then the
center � (�) is discrete,7 and in particular dimC� (�) = 0. Therefore, Eq. (8) boils down to

dimC)dH><(c1((),�) = (26 − 1) dimC�.

Now c1(() is generated by 26 generators and one single relationF , soHom(c1((),�) is simply
the fiber F−1(4) of F : �26 → � . The word F is a regular map of irreducible varieties, so we
have

dim� > dim�26 − dim� = (26 − 1) dim�

for any irreducible component � of Hom(c1((),�) according to the fiber dimension theorem
[see Sha13, Thm 1.25]. The topological spaces of Hom(c1((),�) andH><(c1((),�) coincide,
which means that � can be considered an irreducible component of the latter. As the Krull
dimension is an entirely topological property, Eq. (9) follows for a semi-simple � .

Step ii: � is reductive. Now, wewill prove that Eq. (9) holds for any reductive� . According
to [Bor91, Prop. 14.2], we have a surjective map

q : �0(�) × �� → �, (6,ℎ) ↦→ 6ℎ,

where �0(�) 6 � is the connected component at the identity of the center � (�) and �� 6 �
is the derived subgroup (which is semi-simple). As elements of�0(�) commute with elements

7Consider a semi-simple Lie group� with Lie algebra g. The Lie algebra c of the center� (�) is an abelian ideal of
g. The Lie algebra g is semi-simple, so it does not contains any non-trivial abelian ideals. It follows that c = 0,
so � (�) is discrete.
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of �� , q is in fact a group homomorphism. The kernel of q can be identified with�0(�) ∩��
via

�0(�) ∩ �� ↩→ �0(�) × ��, 6 ↦→ (6−1, 6) .

[Bor91, Prop. 14.2] states that the kernel is finite. This implies that�0(�) ×�� → � is a finite
morphism of schemes,8 which in turn shows that the induced morphism

q∗ : Hom(c1((),�0(�)) × Hom(c1((), ��) → Hom(c1((),�)

is finite [using Sta19, Lem. 035D]. Let � be an irreducible component of Hom(c1((),�). Sup-
pose furthermore that � is “irredundant” for the covering of imq∗. By this, I mean that the
image q∗(�><(c1((),�0(�)) × Hom(c1((), ��)) is no longer covered if � is removed from
the covering. We claim that there exists an irreducible component � of Hom(c1((),�0(�)) ×
Hom(c1((), ��) with

dim� > dim�. (10)

Indeed, consider the decomposition of Hom(c1((),�0(�)) × Hom(c1((), ��) =
⋃
�8 into

closed irreducible components �8 . Then the image q∗(�8) is also irreducible, because q∗ is
continuous, and it is closed because q∗ is finite. As a closed irreducible set, q∗(�8) is contained
in an irreducible component of Hom(c1((),�). As C is irredundant, there must be a � = �8
such that q∗(�8) ⊆ � . Because q∗ is finite and closed immersion are finite, q∗ |� : � →
Hom(c1((),�) is finite as well. [Sta19, Lem. 035D] shows that the restriction of the image
q∗ |� : � → � is finite as well. For finite morphisms, we have dim� > dim� according to
[Sta19, Lem. 01WJ, Lem. 0ECG].

The finiteness and surjectivity of q together with the same lemmas [Sta19, Lem. 01WJ, Lem.
0ECG] also show that

dim� = dim�0(�) + dim��. (11)

We claim that Hom(c1((),�0(�)) = (�0(�))26. Indeed, the relationF on a surface group is
the product of commutators, and �0(�) is abelian, so every tuple (21, 31, . . . , 26, 36) ∈ �0(�)26
fulfills the relation. It remains to calculate dim�� . �� is semi-simple. Our calculation for a
semi-simple group shows that every irreducible component of Hom(c1((), ��) has dimen-
sion greater or equal than (26 − 1) dim�� . In particular, an irreducible component � of
Hom(c1((),�) has a dimension of at least

dim� > dim� by Eq. (10)
> 26 dim�0(�) + (26 − 1) dim��

= (26 − 1) dim� + dim�0(�) by Eq. (11),
= (26 − 1) dim� + dim� (�) as all components of � (�) are conjugate,
= (26 − 1) dimC� + dimC� (�) as � and � (�) are non-singular.

8Let q : � → � be a morphism of group schemes over a field : . Then the kernel scheme is defined to be
ker(q) = � ×� spec(:) [see Mil17b, Sec. 1.e]. ker(q) is finite (as a set) if and only if the structure morphism
ker(q) → spec(:) is finite [see Mil17b, Prop. 11.2]. Finite morphisms are stable under base change, and
q : � � � ×� spec(:) ×: � → spec(:) ×: � � � is the base change of the structure morphism. Hence,
q : � → � is finite.

34

https://stacks.math.columbia.edu/tag/035D
https://stacks.math.columbia.edu/tag/035D
https://stacks.math.columbia.edu/tag/01WJ
https://stacks.math.columbia.edu/tag/0ECG
https://stacks.math.columbia.edu/tag/01WJ
https://stacks.math.columbia.edu/tag/0ECG
https://stacks.math.columbia.edu/tag/0ECG


Using Lemma 1.26, this proves that Eq. (9) holds for any reductive group� and any irredundant
component � ∈ Hom(Γ,�). �

If q∗ is surjective, then every connected component � ∈ Hom(Γ,�) is irredundant. If q∗ is
not surjective, Eq. (10) could be wrong, as the following example illustrates. Consider the finite
morphism of varieties

spec(C[-,. ]) → spec(C[-,., / ]/(-/,./ ))

which is induced by the ring map C[-,., / ]/(-/,./ ) → C[-,. ], / ↦→ 0. Geometrically
speaking, it is the embedding of the two-dimensional complex plane into the space consisting
of a plane and a line perpendicular to it. It is a closed immersion, which implies that it is
finite. spec(C[-,. ]) consists of one irreducible component of dimension 2. The components
of spec(C[-,., / ]/(-/,./ )) are the closed subvarieties

spec(C[-,., / ]/(/ )) and spec(C[-,., / ]/(-,. )),

i.e. a plane and a line. Their dimensions are 2 and 1, respectively. In particular,

dim spec(C[-,. ]) > dim spec(C[-,., / ]/(-,. ))

even though the morphism is finite. This shows that Eq. (10) is wrong in this case.
In order to show that Proposition 1.27 is correct in full generality, wewould need to show that

every connected component is irredundant, e.g. by showing that q∗ is surjective – or we would
need to show that the dimension of all redundant components is equal to dimC)dH><(c1((),�)
by some other argument.

1.7. Tangent spaces of orbits

Consider the orbit$d ⊂ Hom(Γ,�) of d under the�-action. As� is a reduced and non-singular
group scheme � , it follows that $d is a non-singular affine algebraic subspace of Hom(Γ,�)
[by Mil17b, Prop. 7.11]. We will now calculate the tangent space of the orbit.

Theorem 1.28. The isomorphism in Theorem 1.21 can be restricted to an isomorphism

)d$d � �
1(Γ, gAd d ),

between the Zariski tangent space of the orbit and the 1-coboundaries of group cohomology. These
subsets are preserved by the action of �d on )dH><(Γ,�) and / 1(Γ, gAd d ).

To prove the theorem, we will need the following lemma.

Lemma 1.29. Let� be a reductive algebraic group, and let- be an affine algebraic set. Consider a
closed point d ∈ - . The homogenous space�/�d exists as an affine algebraic set and is isomorphic
to the orbit $d ⊆ - . Consider the projection morphism � → �/�d . Its differential

)4� → )4 (�/�d ) � )d$d

is an epimorphism and dimC)d$d = dimC g − dimC)4�d .
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Proof. By [Mil17b, Prop. 7.12 and Lem. 7.17], the quotient �/�d exists and is isomorphic to
$d . Consider the canonical projection � → �/�d . We will now prove that the differential
)4� → )4�/�d is an epimorphism. In Proposition 2.3, we will see that �/�d is isomorphic to
�//�d , so we can make use of Luna’s slice theorem.

Let �d act on � via left translation. The stabilizer subgroup of 4 with respect to this action
is trivial. By Luna’s Étale Slice Theorem A.14, we have a subvariety + ⊆ � containing 4 such
that �d ×+ → � is étale, its image * ⊆ � is open and affine, and + → * //�d is étale as well.
In particular, we have isomorphisms)4� � )4�d ⊕)4+ and)4�//�d)4* //�d � )4+ . Therefore,
)4� → )4�//�d is an epimorphism and the dimension formular follows as well. �

Proof of Theorem 1.28. This proof follows [Sik09, Thm. 43]. The orbit $d ⊆ Hom(Γ,�) is the
image of the map fd : � → Hom(Γ,�), fd (6) = 6d6−1. We have an induced map on the
tangent spaces

3fd : g � )4� → )d Hom(Γ,�),
whose image is )d$d . This is easy to see: Both � and $d are non-singular, which means that
fd is a smooth surjective map of manifolds, inducing a surjection on the tangent spaces.

Let us embed g = ker� (c) ⊆ � (C[Y]) and )d Hom(Γ,�) ⊆ Hom(Γ,�) (C[Y]) as explained
in the proof of Theorem 1.21. For an element 5 : O� (�) → C[Y] in g, we have 3fd (5 ) = 5 ◦f♯d .
Therefore, 3fd is in fact a restriction of the map

(fd )C[Y ] : � (C[Y]) → Hom(Γ,�) (C[Y]), 6 ↦→ 6d6−1,

where d is considered an element of Hom(Γ,�) (C[Y]) via the inclusion Hom(Γ,�) (C) ↩→
Hom(Γ,�) (C[Y]).9 For any elementW ∈ Γ, the evaluationmapFW : Hom(Γ,�) → �, d ↦→ d (W)
is a regularmap, and it is�-equivariant as explained in Lemma 1.1. evalW can thus be considered
a�-equivariant morphism of schemes, which is exactly the evaluation map on closed points d .

Let now 5 ∈ g, so (fd )C[Y ] (5 ) is an element of )d Hom(Γ,�). We want to understand
Ψd ((fd )C[Y ] (5 )) = h ◦k (fd )C[Y ] (5 ) , so we first need to understand the group homomorphism

k (fd )C[Y ] (5 ) : Γ
d*−−→ � ('(Γ,�))

� ( (fd )C[Y ] (5 ))−−−−−−−−−−−−→ � (C[Y]) .

Lemma 1.11 shows us that� ((fd )C[Y ] (5 )) (d* (W)) = evalW (fd )C[Y ] (5 ), and we know that evalW

is precisely d ↦→ d (W) on C-rational points d ∈ Hom(Γ,�), so

k (fd )C[Y ] (5 ) (W) = 5 d (W) 5
−1.

Now we have

Ψd ((fd )C[Y ] (5 )) (W) = h (Fd (W) 5 −1)
= 5 d (W) 5 −1� (c) (5 d (W) 5 −1)−1

= 5 d (W) 5 −1� (c) (5 )� (c) (d (W))−1� (c) (5 )−1

= 5 d (W) 5 −1� (c) (d (W))−1 as 5 ∈ ker� (c)
= 5 d (W) 5 −1d (W)−1 as c ◦ ] = id, see Eq. (5)
= 5 · (Add (W ) 5 )−1,

9� acts on Hom(Γ,�) via conjugation, so we have a group action of schemes� on Hom(Γ,�), and therefore also
on C[Y]-valued points.
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or additively written,
Ψd ((fd )C[Y ] (5 )) (W) = 5 − Add (W ) 5 ,

which is precisely the condition for Ψd ((fd )C[Y ] (5 )) ∈ �1(Γ, gAd d ). This means that the image
of )d$d under Ψd : )dH><(Γ,�) → / 1(Γ, gAd d ) lies in �1(Γ, gAd d ).

Now, we need to show now that the restriction Ψd : )d$d → �1(Γ, gAd d ) is an isomorphism.
Ψd is injective, so it is sufficient to show that it is surjective on �1(Γ, gAd d ). According to
Lemma 1.29, we have dimC)d$d = dimC g − dimC)4�d .

We will now estimate dimC �1(Γ, gAd d ) as well. By the definition of 1-coboundaries, the map

g � �1(Γ, gAd d ), 5 ↦→ [W ↦→ 5 − Add (W ) 5 ] (12)

is an epimorphism ofC-vector spaces. Add (W ) : g→ g is the differential of the conjugation map
� → �,6 ↦→ d (W)6d (W)−1. For any W , this map is the identity on�d 10, so Add (W ) is the identity
on the Lie algebra Lie(�d ). Therefore, Lie(�d ) � )4�d is in the kernel of the map in Eq. (12),
which implies dimC �1(Γ, gAd d ) 6 dimC g − dimC)4�d . Thus, dimC �1(Γ, gAd d ) 6 dimC)d$d ,
so Ψd : )d$d → �1(Γ, gAd d ) is surjective and thus an isomorphism. �

10ℎ ∈ �d means ℎd (W)ℎ−1 = d (W), i.e. d (W)ℎd (W)−1 = ℎ for all W ∈ Γ.
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2. Character varieties

2.1. Geometric invariant theory: The categorical quotient

Let ( be a base scheme in the sense of algebraic geometry, and let - be a scheme over ( . Let
f : � ×( - → - be the action of a group scheme on - .

Definition 2.1. Consider an (-scheme-//� together with an (-morphism c : - → -//� such
that the diagram

� ×( - -

- -//�

f

?2 c

c

commutes. We call -//� a categorical quotient of - by � , if the following universal property
holds: For any other (-morphism q : - → / such that q ◦ ?2 = q ◦ f , there exists a unique
(-morphism q̄ : -//� → / such that

� ×( - -

- -//�

/

f

?2 c
q

c

q

q̄

is a commutative diagram as well.

For our needs, the categorical quotient always exists, as the following theorem shows.

Proposition 2.2. Let : be a field with char: = 0. For an affine scheme - = spec(') over a :
and a reductive algebraic group� over : , the categorical quotient -//� always exists and is affine
as well. If - is an affine algebraic variety, then -//� is as well.

A proof can be found in [MFK94, Thm. 1.1.]. We will omit the proof and most of the theory
leading to it, but some of its details are necessary in order to prove some properties of the
quotient. The categorical quotient is defined to be -//� = spec('� ), where '� ⊆ ' is the
so-called ring of invariants under the�-action, and the projection - → -//� is induced by the
inclusion '� ↩→ '. The ring of invariants is constructed as follows:

The group action f : �×:- → - induces a :-algebra homomorphism f♯ : ' → O� (�) ⊗: ',
the dual action on '. There exists a canonical homomorphism � : ' → ' of C-vector spaces,
which is equivariant under the dual action, idempotent, and projects to the elements that re-
main invariant under the dual action. This homomorphism is called the Reynolds operator, see
[MFK94, Def. 1.5 f.] for details. Its image is again a C-algebra, and we denote the ring of
invariants by '� = � (') ⊆ '.

Proposition 2.3. Let - and . be two affine schemes over : . Let� be a reductive algebraic group
over : acting on - and . . The categorical quotient has the following properties:
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1. If- is of finite type over : , then-//� is as well. The respective implication holds for integral,
irreducible and reduced - . In particular, if - is an affine algebraic set, then -//� is as well.

2. A �-morphism . → - canonically induces a morphism .//� → -//� .

3. If the�-morphism. ↩→ - is a closed immersion, then.//� ↩→ -//� is a closed immersion
as well.

4. For an affine algebraic group � and a subgroup � ⊆ � , there is a canonical homorphism
between the homogeneous space and the categorical quotient, �/� � �//� . The homoge-
neous space is an algebraic scheme �/� together with a �-action f : � × �/� → �/�
and a point > ∈ �/� (C) such that f> : � → �/� realizes � (·)/� (·) as a fat subfunctor
of �/� (·), see [Mil17b, Def. 5.20] for details.

Proof. 1. These general properties can be found in [MFK94, Sec. 0.2, p.5]. The fact that -//�
is of finite type is Hilbert’s finiteness theorem, see [Wal17, Thm. 3.11] or [MFK94, Thm. 1.11]
for proofs. Hilbert’s 14th problem conjectured that this is true for char: = ? ≠ 0 as well.
However, Masayoshi Nagata famously constructed a counterexample [Nag59].

2. You can derive this as a direct consequence of the universal property. However, we will
also see how to construct this morphism explicitly in the proof of 3.

3. ] : . ↩→ - is a closed immersion, so we have - = spec(') and . = spec('/� ) for some
ideal � ⊆ '. The dual map corresponding to ] is the natural projection ]♯ = ? : ' → '/� (which
commutes with the dual action). Thus, we have a diagram

' '/�

' '/�

?

�- �.

?

where �- and �- are the respective Reynolds operators. The commutativity �. ◦ ? = ? ◦ �- is
a general property of the Reynolds operator [see MFK94, Sec. 1.1, p.27]. Restricting the bottom
row to the images of �- and �. gives us

' '/�

'� ('/� )� .

?

�- �.

? |
'�

The commutativity implies that the bottom line of the diagram is surjective as well. In partic-
ular, its dual morphism ]̄ : .//� → -//� is a closed immersion.

4. In [MFK94], there is a third notion of a quotient, the geometric quotient, which we
will define in next paragraph. [MFK94, Prop. 0.2] shows that every geometric quotient is a
categorical quotient (and hence unique up to unique isomorphism). Hence, it suffices to show
that �/� is a geometric quotient.

What is a geometric quotient? Letf : �×(- → - be a group action. An (-scheme. together
with an (-morphism c : - → . is called a geometric quotient of - by � if the following four
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properties hold: (i) cf = c?2, (ii) c is surjective and the image of (f, ?2) : � ×( - → - ×( - is
- ×( - , (iii) a subset* ⊆ . is open if and only if c−1 ⊆ - is open, (iv) we have an isomorphism
of sheaves O. � c∗O�- .

The homogeneous space �/� has a �-action f : � ×�/� → �/� and a designated point
> ∈ �/� (C). We want to show that f> : � → �/� fulfills (i)-(iv). Restricting the group
operation ` : � ×C � → � , we have

� ×C � �

� �/�.

?2

`

f>

f>

For smooth and affine � , we can assume that � = �> is the isotropy group of the point > ∈
�/� (C) with respect to the �-action on �/� [see Mil17b, Thm. 7.18]. In particular, f> ◦ ` =

f> ◦ ?2. This proves (i).
For (ii) note that (`, ?2) : � ×C � → � ×C � trivially has the image � ×� � . Furthermore,

`> : � → �/� is faithfully flat [see Mil17b, Prop. 5.25], and therefore also surjective. The fact
that `> is faithfully flat also proves that it fulfills (iii) using [Gro65, Cor. 2.3.12]. Finally (iv) is
a consequence of flatness and of [Har77, Prop. 9.3]. A more detailed explanation of (iv) can be
found in the Michel Brion’s notes [Bri09].

This shows that�/� is a geometric quotient. As every geometric quotient is categorical and
categorical quotients are unique, we obtain a unique isomorphism �/� � �//� . �

Classically, we can consider the action of a group � on a set - , and denote the space of
orbits by -/� . The following theorem explains to which extent the categorical quotient can
be considered an orbit space.

Theorem 2.4. If - is affine and � acts on it, then -//� is a variety parametrizing the closed
orbits.

A proof can be found in [Wal17, Thm. 3.20].

2.2. Definitions of the character variety

� acts on Hom(Γ,�) by conjugation, 6.d (·) = 6d (·)6−1. This action can be considered the
action of an affine algebraic group on an affine algebraic set, as explained after Proposition 1.2.

Definition 2.5. If it exists, the categorical quotient -� (Γ) = Hom(Γ,�)//� is called the char-
acter variety of Γ. We also define X� (Γ) = H><(Γ,�)//� .

As explained in Proposition 2.2, the quotient exists in the case where � is reductive. As
the quotient is of finite type whenever - is, the character variety is also an affine algebraic set.
Despite being called a variety,-� (Γ) is not necessarily irreducible. The name character variety
is motivated by the fact that the points of-� (Γ) correspond to the characters of representations
in some special cases such as � = PSL2(C) [see Lou11, Lem. 3.1].
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The set Hom8 (Γ,�) of irreducible representations subset of Hom(Γ,�) is preserved by the
�-operation. This is clear from the definition as the conjugate of a parabolic subgroup is also
parabolic.

Proposition 2.6. We have equations Hom8 (Γ,�)//� = Hom8 (Γ,�)/� and Hom6 (Γ,�)//� =

Hom6 (Γ,�)/� . We will denote these quotients by - 8
�
(Γ) and -6

�
(Γ), respectively.

In addition, Sikora showed that - 8
�
(c1(()) is a complex orbifold [Sik09, Prop. 49] for a

surface group c1((). A calculation by Goldman shows that the complex dimension of this
orbifold amounts to (26 − 2) dim� + 2 dim� (�), where 6 is the genus of our surface [Gol84,
Prop. 1.2]. However, we will not need these facts here, so we omit the proofs.

Proof of Proposition 2.6. By definition, every irreducible representation is completely reducible.
Hence, all orbits in Hom8 (Γ,�) are closed according to Proposition 1.16. According to Theo-
rem 2.4, every point of Hom8 (Γ,�)//� corresponds to a unique closed orbit. As all orbits are
closed, Hom8 (Γ,�)//� = Hom8 (Γ,�)/� follows.

Every good representation is irreducible as we saw in Proposition 1.17. Hence, the second
equation follows with the exact same argument. �

Now, consider the subset Hom6 (Γ,�) ⊂ Hom8 (Γ,�) of good representations. It is open
according to Proposition 1.15.

Proposition 2.7. For every surface group c1(() and every reductive group� , the set-6� (c1(()) =
Hom6 (c1((),�)/� is a non-singular open subset of- 8

�
(c1(()). In particular, it can be considered

a complex manifold.

Proof. We follow the proof in [Sik09, Cor. 50]. Due to the fact that the stabilizers of good
representations are exactly the center, the orbits fulfill�.d = (�/� (�)) .d for any good d . This
implies that

Hom6 (c1((),�)/� = Hom6 (c1((),�)/(�/� (�)) . (13)

As � is smooth, �/� (�) is as well [see Mil17b, Cor. 5.26]. Thus – as a consequence of Propo-
sition 1.18 and Proposition 1.27 – we have a free proper action of the complex algebraic group
�/� (�) on the complex manifold Hom6 (c1((),�), so the quotient is a complex manifold as
well. By Eq. (13), this quotient is already -6

�
(c1(()), which ends the proof. �

According to Proposition 1.7, we have a closed immersionHom(c1((),�) ↩→H><(c1((),�).
Proposition 2.3 shows that it induces a closed immersion -� (c1(()) ↩→ X� (c1(()). Summa-
rizing the results so far, we can write the following chain of inclusions:

-
6

�
(c1(()) ⊂C−>? - 8� (c1(()) ⊂ -� (c1(()) ⊂2; X� (c1(()) .

Remark 2.8. Consider the fundamental group c1((, I0) and c1((, I ′0) at two different base points
I0 and I ′0 ∈ ( . A path X connecting I0 and I ′0 induces an isomorphism

AX : c1((, I0)
∼−→ c1((, I ′0), W ↦→ XWX−1.
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Another isomorphism q ′
X
differs from qX by conjugation with an element in c1((, I ′0). Hence, the

induced isomorphism

(AX )∗ : Hom(c1((, I ′0),�)
∼−→ Hom(c1((, I0),�)

is “independent of X up to conjugation in �”. Therefore, the good character variety -6
�
(c1(()) is

independent of the base point.

2.3. Tangent spaces of character varieties

From now on, we will assume � as being reductive, so the character variety exists. Using the
projections Hom(Γ,�) → -� (Γ) and H><(Γ,�) → X� (Γ), we can consider d ∈ Hom(Γ,�)
a point of -� (Γ) and X� (Γ). We will denote the image of d in -� (Γ) and X� (Γ) by [d].

We have a closed immersion Hom(Γ,�) ↩→H><(Γ,�), which induces a closed immersion
of schemes

-� (Γ) ↩→ X� (Γ),

which in turn induces an embedding on the tangent spaces

)[d ]-� (Γ) ↩→ )[d ]X� (Γ)

according to [Sta19, Lem. 0B2G, Lem. 04XV].11

Proposition 2.9. If d is reduced, this embedding is an isomorphism.

In particular, we have an isomorphism )[d ]-� (c1(()) � )[d ]X� (c1(()) for good represen-
tations d ∈ Hom(c1((),�) by Lemma 1.25 and Proposition 1.27.

Proof. The closed immersion-� (Γ) ↩→ X� (Γ) induces a surjection OX,d � O-,d on the stalks.
It is suffices to show that this surjection is an isomorphism whenever d is reduced. Write
' = '(Γ,�) and denote by m ⊂ ' the maximal ideal corresponding to d . Denote by '� ⊆ '
the ring of invariants and n = m ∩ '� the corresponding prime ideal. We will see that the
sequence

0→ ('� ∩
√
0)n → ('� )n

q
−→ (('/

√
0)� )n → 0

is exact. This follows simply by restricting the exact sequence

0→
√
0→ ' → '/

√
0→ 0

using the Reynolds operator as in the proof of Proposition 2.3, and then applying the fact that
the localization functor is exact. The arrow ('� )n → (('/

√
0)� )n is the same as OX,d � O-,d .

In order to show that this is an isomorphism in case d is reduced, we only need to show that
('� ∩

√
0)n = 0.

11If you do not want to use abstract nonsense, the statement quickly follows like this: The closed immersion
corresponds to a projection ' � '/

√
0, which induces a surjective map on stalks, which induces a surjective

map on the cotangent spaces. A surjective map on the cotangent spaces induces an injective map on the tangent
spaces.
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The canonical map
('� )n → 'm,

0

1
↦→ 0

1
(14)

is in fact injective. Indeed, suppose

0

1
≡ 0

′

1 ′
in 'm

for some 0, 0′ ∈ '� and 1, 1 ′ ∈ '�\n. By the definition of the localization, this means that
there exists a 2 ∈ '\m such that

2 (01 ′ − 0′1) ∈ '\m.

Applying the Reynolds operator � : ' → ' together with the Reynolds identity [see MFK94,
Sec. 1.2], we obtain

� (2 (01 ′ − 0′1)) = � (2) (01 ′ − 0′1) ∈ '�\n.

Furthermore, � (2) ∈ '�\n, which means that

0

1
≡ 0

′

1 ′
in ('� )n .

This shows that the canonical map Eq. (14) is indeed injective. In particular, we have an em-
bedding ('� ∩

√
0)n ⊆ (

√
0)m ⊆ 'm. For a reduced d , we have (

√
0)m = 0, which implies that

q is indeed an isomorphism. �

Theorem 2.10. 1. If d ∈ Hom(Γ,�) is completely reducible, then the isomorphism of The-
orem 1.21 combined with the natural projection H><(Γ,�) → X� (Γ) induces a natural
linear map q : � 1(Γ, gAd ◦d ) → )[d ]X� (Γ).

2. If d is good, then q is an isomorphism. Note that d is irreducible according to Proposi-
tion 1.17, so q exists.

Proof. This proof follows [Sik09, Thm. 53].
1. Consider a completely reducible d . According to Proposition 1.16, complete reducibility

implies that the orbit$d is closed in Hom(Γ,�) (and therefore also inH><(Γ,�)). Therefore,
we can apply Luna’s Étale Slice Theorem A.14, and obtain an étale slice + ⊆ H><(Γ,�), i.e. a
smooth affine variety that has the following properties: It contains d and is preserved by the
�d -action. Furthermore, the canonical morphism

(� ×+ )//�d
k
−→ H><(Γ,�)

is étale, and the canonical morphism

+ //�d →H><(Γ,�)//� = X� (Γ)

is étale at d . Being étale means that the differential maps

)(4,d) (� ×+ )//�d → )dH><(Γ,�) (15)
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as well as
)d+ //�d → )[d ]X� (Γ) (16)

are isomorphisms. The natural projectionH><(Γ,�) → X� (Γ) induces a map

)dH><(Γ,�) → )[d ]X� (Γ)

on tangent spaces. All of the above maps are canonical, so this differential map can be split up
as follows:

)dH><(Γ,�)
�−→ )(4,d) (� ×+ )//�d → )d+ //�d

�−→ )[d ]X� (Γ), (17)

where the first map is given by the inverse of Eq. (15), the third map is given by Eq. (16), and
the second map is the differential

(3?)(4,d) : )(4,d) (� ×+ )//�d → )d+ //(d

of the canonical map
? : (� ×+ )//�d → + //�d . (18)

The point d ∈ + is represented by a morphism d : spec(C) → + . Hence, we have a constant C-

morphism � → C
d
−→ + . Therefore, the morphism �

(id,d)
−−−−→ (� ×+ )//�d → + //�d is constant.

In consequence, the image of )4� in )(4,d) (� × + )//�d is contained in the kernel of (3?)(4,d) .
As we show in Proposition A.16, the image of)4� corresponds to)d$d under the isomorphism
in Eq. (15), and therefore, the map in Eq. (17) factorizes over

)dH><(Γ,�)
/
)d$d

�−→ ()(4,d) (� ×+ )//�d )
/
(im)4�) → )d+ //�d

�−→ )dX� (Γ) . (19)

Using the isomorphism fromTheorem 1.20 respectivelyTheorem 1.28, we obtain the first state-
ment.

2. If d is good, then it is completely reducible according to Proposition 1.17, so the map
from 1. exists in this case. Per definition, �d = � (�), which acts trivially on Hom(Γ,�), and
thus also on + . The ? in Eq. (18) thus becomes

�/� (�) ×+ → + .

Its differential is the projection (3?)(4,d) : )4�/� (�)×)d+ → )d+ . In 1., we saw that the image
of )4� is contained in the kernel of (3?)(4,d) . Now, the image of )4� → )4�/� (�) × )d+ is
precisely the kernel. Therefore, the map in Eq. (19) boils down to

)dH><(Γ,�)/)d$d
∼−→ )(4,d) (�/� (�) ×+ )/(im)4�) → )d+

∼−→ )dX(Γ),

which must be an isomorphism. �

The isomorphism fromTheorem 2.10.2 is also natural in the following sense. Let A : Γ → Δ be
a group homomorphism between two discrete groups and let� be a reductive affine algebraic
group. If d : Δ → � is a representation, then d ◦ A is a representation of Γ in � . A induces a
homomorphism A ∗ : � 1(Δ, gAd d ) → � 1(Γ, gAd dA ). We have:
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Lemma 2.11. Let � be reductive, and let d : Δ → � be a representation. If d ◦ A : Γ → � is
good, then d is good as well, and with the isomorphism q from Theorem 2.10.2, the diagram

� 1(Δ, gAd d ) � 1(Γ, gAd dA )

)[d ]X� (Δ) )[d ]X� (Γ)

q

A ∗

q

3A ∗

commutes.

Proof. The isomorphism q comes from the isomorphism Ψ−1d from Theorem 1.21, so the com-
mutativity of the diagram follows from Lemma 1.23. It remains to be shown that d ◦ A being
good implies that d is good as well. According to Proposition 1.17, it suffices to show that
�d = � (�) and that d is irreducible.

We commence with the former. From the definition of the �-action, it directly follows that
�d ⊇ � (�). Furthermore, any element 6 ∈ � that leaves d invariant will also leave d ◦ A
invariant. Therefore, �d ⊆ �dA . As dA is good, we have �dA = � (�), which shows that
�d = � (�).
dA is irreducible, which means that (d ◦ A ) (Γ) ⊆ � is not contained in any proper parabolic

subgroup % ⊂ � . However, we have an embedding (d ◦ A ) (Γ) ⊆ d (Δ), so that d (Δ) cannot be
contained in any proper parabolic subgroup either, i.e. d is irreducible. �
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3. The symplectic structure of character varieties of surface
groups

3.1. Non-degenerate forms in group cohomology

Let Γ be any group. In the following section, we will call any abelian group with a Γ-action a
Γ-left module12 (short: Γ-module) and by ⊗Γ , we mean ⊗Z[Γ ] .

Let " be a Γ-module. Let (�∗, m) be a projective resolution of Z as a Z[Γ]-module, then the
group homology of Γ with coefficients in " is defined as the homology of the chain complex
�∗ ⊗Γ " ,

�: (Γ, ") = �: (�∗ ⊗Γ ").
Accordingly, consider the cochain complex (�∗, X) given by�? = HomΓ (�? , ") with (XD) (G) =
D (mG)13, then the group cohomology is defined as the cohomology of the cochain complex

�: (Γ, ") = �: (�∗) .

Now, let" and # be two Γ-modules. We have a chain map

HomΓ (�∗, ") ⊗Γ (�∗ ⊗Γ # ) → " ⊗Γ #,D ⊗ (G ⊗ =) ↦→ D (G) ⊗ =,

which induces a pairing of Γ-modules

〈·, ·〉Γ : �: (Γ, ") × �: (Γ, # ) → " ⊗Γ # .

In fact, we need to be cautious here, as the tensor product " ⊗Γ # is defined for a Γ-right
module " and a Γ-left module # . However, we can turn a left module " into a right module
via<.W = W−1<.

The pairing 〈·, ·〉Γ has the following properties:

Proposition 3.1. 1. Consider two Γ-modules" and # . ForD ∈ �: (Γ, ") and E ∈ �: (Γ, # ),
we have D ∩ E = 〈D, E〉 in �0(Γ, " ⊗Γ # ) = " ⊗Γ # .

2. Consider three Γ-modules "1, "2 and "3. For elements D ∈ �: (Γ, "1), E ∈ � ; (Γ, "2) and
F ∈ �:+; (Γ, "3), the following adjunction formula holds:

〈D ∪ E,F〉 = 〈D, E ∩F〉.

3. Let A : Γ → Δ be a group homomorphism. We can consider a Δ-module" as a Γ-module via
A and denote it by "A . A induces maps A∗ : �: (Γ, "A ) → �: (Δ, ") and A ∗ : �: (Δ, ") →
�: (Γ, "A ) on the (co)homology groups. For D ∈ �: (Δ, ") and E ∈ �: (Γ, "A ), we have the
following duality property

cA 〈A ∗D, E〉Γ = 〈D, A∗E〉Δ,
where cA : "A ⊗Γ"A → ("⊗Δ")A , G⊗~ ↦→ G⊗~ is the canonical Γ-module homomorphism
induced by" ×" → (" ⊗Δ ").

12Using the group ring, this is the same as a Z[Γ]-module.
13[Bro05, Sec. III.1] actually defines (XD)(G) = (−1)?+1D (mG), which makes some things more canonical. However,

the definitions for cocycles, coboundaries and cohomology groups remain untouched by the choice of sign.
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Proof. The first and the second properties are discussed in [Bro05, Sec. V.3].
For the third property, let � Γ∗ and �Δ∗ be projective resolutions of Γ respectively Δ, and let

g : � Γ∗ → �Δ∗ be an augmentation-preserving Γ-chain map compatible with A . Thus, the maps
A∗ and A ∗ are induced by

g ⊗ id : � Γ∗ ⊗Γ "A → �Δ∗ ⊗Δ ",G ⊗< ↦→ g (G) ⊗<

respectively
Hom(g, id) : HomΔ (�Δ∗ , ") → HomΓ (� Γ∗ , "A ), D ↦→ D ◦ g .

Let D ∈ �: (Δ, ") and E ∈ �: (Γ, "A ) be represented by D ∈ HomΔ (�Δ? , ") and GE ⊗ <E ∈
� Γ? ⊗Γ " , then we have

〈A ∗D, E〉Γ = D (g (GE)) ⊗<E ∈ "A ⊗Γ "A

as well as
〈D, A∗E〉Δ = D (g (GE)) ⊗<E ∈ " ⊗Δ ",

which shows our statement. �

Now, assume that " and # bear the structure of C-vector spaces, such that the scalar mul-
tiplication commutes with the action of Γ. By scalar multiplication on" , the chain complexes
and cochain complexes defined above naturally become complexes of C-vector spaces with
C-linear (co)boundary operators. Therefore, the (co)homology groups are C-vector spaces.

Consider a C-bilinear pairing
� : " × # → C

that is invariant under the Γ-action. If we consider C as a Γ-module via the trivial action, then
� is in fact Z[Γ]-bilinear as well. We now define the following Z-bilinear pairing by composing
the pairing defined above with �:

l̃� : �: (Γ, ") × �: (Γ, # )
〈·, ·〉Γ−−−−→ " ⊗Γ #

�−→ C .

Even though " ⊗Γ # is not canonically a C-module – but rather a C×C-module – the whole
pairing is C-bilinear. If we assume that � induces an isomorphism of C-vector spaces

"
�−→ HomC(#,C), < ↦→ �(<, ·), (20)

we obtain:

Proposition 3.2. If � is a bilinear pairing inducing " � HomC(#,C) as described above, then
the pairing l̃� is non-degenerate, i.e. it induces isomorphisms

�: (Γ, ") �−→ HomC(�: (Γ, # ),C), D ↦→ l̃� (D, ·)

of C-vector spaces for all : .
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Proof. Thegroups�: (Γ, ") are the cohomology groups of the cochain complex (HomΓ (�∗, "), X)
for some projective resolution (�∗, m) of Z as Z[Γ]-module. We have

(HomΓ (�∗, "), X) = (HomΓ (�∗,HomC(#,C)), X) according to the choice of �, see Eq. (20)
= (HomC(�∗ ⊗Γ #,C)), X) as ⊗ and Hom are adjoint
= HomC((�∗ ⊗Γ #, m),C),

so the cohomology groups of the two cochain complexes are the same:

�: (HomΓ (�∗, "), X) = �: (HomC((�∗ ⊗Γ #, m),C)) .

As a vector space, C is an injective C-module, which means that the functor HomC(−,C) is
exact. In particular, the functor translates homology groups into cohomology groups. Thus,
we have a group isomorphism

�: (HomΓ (�∗, "), X) � HomC(�: (�∗ ⊗Γ #, m),C),

which is in fact C-linear. Tracking down the definitions, we see that this isomorphism is in-
duced by

HomΓ (�: , ") → HomC(�: ⊗Γ #,C)
D ↦→ [G: ⊗ = ↦→ �(D (G: ) ⊗ =)],

but �(D (G: ) ⊗ =) = �(〈D, G: ⊗ =〉Γ), so by definition, this isomorphism is actually induced by
l̃� . �

3.2. Goldman’s symplectic form

3.2.1. Definition and non-degeneracy of the form

Consider an arbitrary orientable compact surface ( . We will abbreviate -� (() = -� (c1(())
and accordingly for the other definitions. Let� be a reductive group and let g be its Lie algebra.
As before, we will turn g into a c1(()-module via Ad ◦d and denote it by gAd d . LetA be a local
coefficient system with fiber gAd d . As ( is asperical, we can identify singular cohomology with
local coefficients and group cohomology

�:sing((,A) � �:Grp(c1((), gAd d ),

see Appendix C.2 for details. We will abbreviate both of them by �: ((, gAd d ).

Definition 3.3. A bilinear form � : g × g → C is called Ad-invariant, if it is invariant under
the adjoint representation, i.e. �(Ad(6)G,Ad(6)~) = �(G,~).

In particular, this means that � : gAd d × gAd d → C is c1(()-invariant.
Using a “nice” bilinear form �, we will now define a complex symplectic structure on the

manifold-6
�
((). Let d ∈ Hom(c1((),�) be an arbitrary representation. We begin by defining a
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complex symplectic form on the cohomology group� 1((, gAd d ). Denote by ∪ the cup product,
then

l�d : � 1((, gAd d ) × � 1((, gAd d )
∪−→ � 2((, gAd d ⊗ gAd d )

�−→ � 2((,C) � C

is obviously a bilinear form. Note that ( is two-dimensional and orientable, so � 2((,Z) � Z
and hence � 2((,C) � C. l�d can be identified to the l̃� from the previous section as we will
see in the proof of the following Proposition 3.4. Let [(] ∈ �2((, gAd d ) be the fundamental
class of the manifold. Poincaré duality with local coefficients [see Spa93] implies that we have
isomorphisms

%� : �: (c1((), gAd d ) → �2−: (c1((), gAd d ), D ↦→ D ∩ [(] . (21)

Using Poincaré duality, we will show the following result:

Proposition 3.4. For a symmetric,Ad-invariant and non-degenerateC-bilinear form � : g×g→
C, the form l�d is a symplectic form on � 1((, gAd d ).

Proof. We follow the proof in [Sik09, Cor. 59].
A bilinear form on a vector space is called symplectic if it is skew-symmetric and induces an

isomorphism between the space and its dual. The cup product fulfills 0 ∪ 1 = (−1)?@ (1 ∪ 0),
so on the level ? = @ = 1, it is skew-symmetric. Together with the symmetry of �, this shows
that l�d is skew-symmetric.

Hence, it only remains to be shown that l�d induces an isomorphism between � 1((, gAd d )
and its dual. For " = # = gAd d and Γ = c1((), l�d is “isomorphic” to the form l̃� defined in
the previous section. Indeed, consider the commutative diagram

� 1((, gAd d ) × � 1((, gAd d ) � 2((, gAd d ⊗ gAd d ) � 2((,C) � C

� 1((, gAd d ) × �1((, gAd d ) �0((, gAd d ⊗ gAd d ) �0((,C) � C .

∪

id×( · ∩[( ])�

�

· ∩[( ]� · ∩[( ]�

〈·, ·〉 �

(22)

The columns are given by the Poincaré duality isomorphisms %� , see Eq. (21). The upper
line is the form l�d defined above, the lower line is the form l̃� from Section 3.1. The left
cell is commutative by Proposition 3.1.1 and 3.1 .2, and the commutativity of the right cell is
trivial. Therefore, the isomorphism between � 1((, gAd d ) and its dual is given according to
Proposition 3.2. �

The following corollary is a direct consequence is a direct consequence of the non-degeneracy
of l̃� or l�d . Let + be a C-vector, then we denote its dual vector space by + ∨ = HomC(+ ,C).

Corollary 3.5. The diagram in Eq. (22) gives us the following isomorphisms:

� 1((, gAd d ) → � 1((, gAd d )∨, D ↦→ l�d (D, ·),
� 1((, gAd d ) → �1((, gAd d )∨, D ↦→ l�d (D, %�−1(·)) = l̃� (D, ·)
�1((, gAd d ) → � 1((, gAd d )∨, G ↦→ l�d (·, %�−1(G)) = l̃� (·, G).
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More generally, we have isomorphisms

�: (", gAd d ) → �: (", gAd d )∨, D ↦→ l̃� (D, ·)
�: (", gAd d ) → �: (", gAd d )∨, G ↦→ l̃� (·, G)

for any orientable compact finite-dimensional manifold" .

Lemma 3.6. Suppose that group (co)homology and singular (co)homology are isomorphic up to
a certain level : 6 # . Then the isomorphisms from Corollary 3.5 are natural in the following
sense: Let ( → " be a smooth map. Furthermore, let A ∗ : �: (", gAd d ) → �: ((, gAd d ) and
A∗ : �: ((, gAd d ) → �: (", gAd d ) be the respective induced maps on (co)homology. Then, under
the isomorphisms from Corollary 3.5, A∗ corresponds to the dual map of A ∗, i.e. A∗ = (A ∗)∨.

Proof. How is the dual map of a vector space homomorphism defined? Let q : + → , be a
linear map of finite-dimensional vector spaces, and let+ ∨×+ → C, (D, G) ↦→ 〈D, G〉eval,+ = D (G)
be the evaluation pairing. Then, the dual map q∨ : , ∨ → + ∨ can simply be defined via
〈q∨(D), G〉eval,+ = 〈D, q (G)〉eval,, .

Under the isomorphism �: (", gAd d ) � �: (", g)∨ described above, l̃� corresponds to the
evaluation pairing, as 〈l̃� (D, · ), G〉eval,+ = l̃� (D, G) per definition for D ∈ �: ((, gAd d ) and
G ∈ �: ((, gAd d ) (and accordingly for " , of course). Now, take D ∈ �: (", gAd d ) and G ∈
�: ((, gAd d ). According to Proposition 3.1.3, we have

l̃�,( (A ∗D, G) = � ◦ 〈A ∗D, G〉c1 (() = � ◦ 〈D, A∗G〉c1 (") = l̃�," (D, A∗G),

so A ∗ is dual to A∗ under the above isomorphisms. �

Remark 3.7. 1. According to the Cartan-Killing criterion, the Lie algebra g is semisimple if
and only if the Killing form on g is non-degenerate. So, in the semisimple case, the Killing
form can be used as � in Proposition 3.4.

2. In the case where g is simple, it is a well-known fact that every symmetric, �-invariant,
non-degenerate form on g is a scalar multiple of the Killing form.

The tangent spaces of the complex manifold -6
�
(() are � 1(c1((), gAd d ) according to Theo-

rem 2.10. We define a 2-form l� ∈ Ω2(-6
�
(()) via [d] ↦→ l�d .

Theorem 3.8. (-6
�
((), l�) is a complex symplectic manifold.

Proof. In Proposition 3.4, we showed that l�d is a symplectic form on any tangent space, so it
remains to be shown thatl� is closed. Closedness will be proved in the Section 3.2.2 below. �

3.2.2. Closedness of the form

Proposition 3.9. The 2-form l� on -6
�
(() is closed.
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Proof sketch. Theclosedness is proved by performing a symplectic reduction of a larger, infinite-
dimensional space. We follow the sketch as it is provided in [Gol84, Sec. 1.8.] and [AB83, Sec.
9]. We will omit the discussion of smoothness and well-definedness of those infinite dimen-
sional manifolds, maps and their quotients.

As we will explain in Appendix B.2, the space of all connectionsA(%) is an affine space, and
thus a manifold with tangent space )�A(%) = Ω1((, ad %) at a point � ∈ A(%). The gauge
group G(%) is a Lie group with Lie algebra gau(%) = Ω0((, ad %), which acts on A(%), see
Appendix B.4 for details. Finally, we have the curvature function � : A(%) → Ω2((, ad %).
Furthermore, in Appendix B.3 we will see that the level set F = F (%) = �−1(0) of flat connec-
tions has tangent spaces )�F = / 1((, ad %).

Now, we have a 2-form l̄� on A(%), which is defined by

l̄�� : )�A(%) ×)�A(%) → Ω2((,C) ∼−→ C, ([, \ ) ↦→
∫
(

�∗([ ∧ \ ),

where �∗([ ∧ \ ) is defined as explained in Proposition C.1. The same proposition gives us

Ω2((, ad %) × Ω0((, ad %) → C, ([, \ ) ↦→
∫
(

�∗([ · \ ) =
∫
(

�∗([ ∧ \ ),

and this second pairing induces an isomorphism Ω2((, ad %) � Ω0((, ad %)∨.
We want to perform a symplectic reduction on A(%) in the sense of Marsden, Weinstein

and Meyer [Sil08, Thm. 23.1]. For this, we will need a moment map ` : A(%) → gau(%)∨. The
curvature is a good candidate. We define

` : A(%) → Ω2(", ad %) ∼−→ Ω0(", ad %)∨, � ↦→
∫
(

�∗(� (�) ∧ · ) .

For ` to be a moment map, we must show �-equivariance (where G(%) acts on gau(%)∨ via
the coadjoint action) and the “Hamilton function property”, i.e.

3`- = ]-̃ l̄
� for any - ∈ Ω0(", ad %), (23)

where `- : A(%) → C, `- (�) = ` (�) (- ), and ]-̃ is the contraction along the fundamental
vector field -̃ generated by - .

Step i: The Hamilton function property. We will now prove the property from Eq. (23).
Let �C be a curve in A(%) such that 3

3C
|C=0�C = [ ∈ Ω1((, ad %) and �0 = �. Then,

(3`- )� ([) =
3

3C
`- (�C )

����
C=0

=
3

3C

∫
(

�∗(� (�C ) ∧ - )
����
C=0

=

∫
(

�∗(
3

3C
� (�C ) |C=0 ∧ - )

=

∫
(

�∗(3�[ ∧ - ),

where the last line is a consequence of Eq. (33). Now, note that∫
(

3�∗([ ∧ - ) =
∫
(

�∗3� ([ ∧ - ) =
∫
(

�∗(3�[ ∧ - ) +
∫
(

�∗([ ∧ 3�- ) .
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The left-hand side is 0 as a consequence of Stokes’ theorem for closed surfaces. Therefore,

(3`- )� ([) =
∫
(

�∗(−[ ∧ 3�- ) =
∫
(

�∗(3�- ∧ [) = ]-̃ l̄
� ([),

where we applied that -̃ (�) = 3�- , see Corollary B.14.
Step ii: G(%)-eqivariance. The G(%)-equivariance of the moment map is easy to see. We

have an anti-isomorphism G(%) � �∞(%,�)� , which is given by

5 = [% → %, ? ↦→ ?.05 (?)] ↦→ 05 (·).

Under the G(%)-action, the curvature varies by

� (5 ∗�) = Ad� (0−1
5
) ◦ � (�)

[see Bau14, Satz 3.22]. �∗ is invariant under the Ad� action, simply because � is Ad-invariant.
Therefore, we have

�∗(Ad� (0−15 ) ◦ � (�) ∧- ) = �∗(Ad
� (05 ) ◦ (Ad� (0−15 ) ◦ � (�) ∧- )) = �∗(� (�) ∧Ad

� (05 ) ◦- )

for any- ∈ Ω0((, ad %). However,Ad� (05 )◦- = AdG(% ) (5 −1) (- ), becauseG(%) � �∞(%,�)�
is an anti-isomorphism, as explained in Eq. (34). In other words,

` (5 ∗�) (- ) = ` (�) (AdG(% ) (5 −1) .- ) = (AdG(% ) )∗(5 ) .` (�) (- ),

which shows that ` is indeed G(%)-equivariant.
Contrary to the classical approach to symplectic reduction [see Sil08, Sec. 23], we are dealing

with infinite dimensional manifolds in this case. Nevertheless, a proper treatment shows that
the quotient `−1(0)/G(%) = F/G(%) admits a symplectic structure coming from l̄�

�
as defined

above. A more in-depth treatment of the theory of Sobolev spaces necessary for dealing with
the issues of infinite dimensions can be found in [AB83, Sec. 14].

Now, any connected component of the character variety is isomorphic to aA(%) as explained
in Proposition B.3. It can be shown that orbits$� ⊆ F have tangent spaces)�$� � �1((, ad %),
and )�F/G(%) � / 1((, ad %)/�1((, ad %) � � 1((, ad %). Furthermore, the Goldman symplec-
tic form l�d equals l̄�

�
from this proof. Therefore, this symplectic reduction proves the closed-

ness l� . �

3.3. Character varieties of 3-manifolds as Lagrangian subspaces

In symplectic geometry, we have the following definition [see also Sil08, Sec. II.3].

Definition 3.10. Let (",l) be a symplectic manifold, and let - ⊂ " be a submanifold, i.e.
the inclusion ] : - ↩→ " is a proper injective immersion. Then, - is called a Lagrangian
submanifold of" if dim- = 1

2 dim" and if it is an isotropic subspace, i.e. ]∗l = 0.
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Let" be an orientable compact 3-manifoldwith boundary m" = ( , and let� be any reductive
affine algebraic group. The embedding ( = m" ↩→ " induces a homomorphism A : c1(() →
c1("). In accordance with Lemma 1.3, we have�-equivariant morphism on the representation
varieties. According to the universal property of the categorial quotient, we obtain a morphism
A ∗ : -� (") → -� ((). InTheorem 3.12, we will see that the smooth part of the image of-� (")
in -6

�
(() is a Lagrangian submanifold.

Proposition 3.11. 1. Consider the�-equivariantmorphism A ∗ : Hom(c1("),�) → Hom(c1((),�).
Its image is Zariski-closed in Hom(c1((),�).

2. Assume thatHom6 (c1((),�) has a subsetHom66 (c1((),�) which is non-empty,�-invariant
and Zariski-open in Hom(c1((),�). Write -66

�
(c1(()) = Hom66 (c1((),�)//� . Consider

the image A ∗-� (") of the induced morphism A ∗ : -� (") → -� ((). Then, A ∗-� (") ∩
-
66

�
(() is Zariski-closed in -66

�
(().

Proof. 1. Consider finite presentations of the group c1(() = 〈W8 |F_〉 and c1(") = 〈W 9 |Fa〉
with finite index sets 8 ∈ {1, . . . , # } and 9 ∈ {1, . . . , # ′}. Every curve in ( is a curve in" . There-
fore, we can assume that {W8} ⊂ {W 9 } by adding the necessary relations to theFa . Under the em-
beddings Hom(c1("),�) ⊆ �#

′ and Hom(c1((),�) ⊆ �# , the map A ∗ : Hom(c1("),�) →
Hom(c1((),�) is therefore of a very simple form: It simply projects

(d (W8), d (W 9≠8)) ↦→ (d (W8)) .

We embed ] : �# ↩→ �#
′
, (68) ↦→ (68 , 4, . . . , 4). Thus, the image A ∗Hom(c1("),�) is given by⋂

a (Fa◦])−1(4), which is a Zariski-closed subset of�# . However, it already lies inHom(c1((),�),
so that it is closed in the subspace topology on Hom(c1((),�).

2. Assume that Hom6 (c1((),�) has a subset Hom66 (c1((),�) which is non-empty, �-
invariant and Zariski-open in Hom(c1((),�). Note that the inverse image

(A ∗)−1(Hom66 (c1((),�)) ⊆ Hom(c1("),�)

is Zariski-open because A ∗ is continuous. Hence, we have a commutative diagram of quasi-
affine algebraic sets

(A ∗)−1(Hom66 (c1((),�)) Hom66 (c1((),�)

(A ∗)−1(Hom66 (c1((),�))//� -66 (c1((),�) .

A ∗

c c

A ∗

According to Lemma 2.11, all representations in (A ∗)−1(Hom66 (c1((),�)) are good. Therefore,
all the �-orbits in (A ∗)−1(Hom66 (c1((),�)) and Hom66 (c1((),�) are closed. This means that
the categorical quotients (A ∗)−1(Hom66 (c1((),�))//� and -66 (c1((),�) are geometric quo-
tients [see MFK94, Amp. 1.3]. In particular, c is surjective, and the topology on the quotients
is the quotient topology. Hence, the fact that A ∗(-� (")) ∩ -66� (() is closed in -66

�
(() follows

from the commutative diagram above and from 1. �
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We are now coming to the main result of this section: the non-singular part of the image
A ∗(-� (")) ∩ -66� (() is a Lagrangian submanifold of -66

�
(().

Theorem 3.12. Let ( be a compact connected closed orientable surface. Let " be a compact
orientable 3-manifold with boundary m" = ( , and let� be a reductive affine algebraic group. Let
� be a symmetric non-degenerate Ad-invariant bilinear form on g. Consider the manifold -6

�
(()

as a symplectic manifold via Goldman’s symplectic form l� (as defined in Section 3.2).

1. Let d ∈ Hom(c1("),�) be a representation such that d ◦ A is a good representation. Then
the image 3A ∗()[d ]X� (")) is a Lagrangian subspace of )[dA ]-� (().14

2. Assume there is a�-equivariant, non-empty subset Hom66 (c1((),�) of the good represen-
tations, which is Zariski-open in Hom6 (c1((),�). Let

.� (") =
[
A ∗(-� (")) ∩ -66� (()

] =B
be the non-singular part of the image in the good representations.15 Then,.� (") is a disjoint
union of isotropic submanifolds of -6

�
(().

In particular, every connected component of .� (") with dimension 1
2 dim-� (() is a La-

grangian submanifold of -� (().

3. Consider a reduced representation d : c1(") → � , such that [dA ] ∈ .� ("). Then, the
connected component of .� (") that contains [dA ] is a Lagrangian submanifold of -� (().

Be aware that bullet point 2 doesn’t directly follow from 1! One of the difficulties that need
to be dealt with is the issue that )[dA ].� (") could possibly be different from 3A ∗)[d ]X� (").

Themain work in order prove the theorem above consists of proving the following statement
on cohomology. Choose any representation d ∈ Hom(c1("),�). The group homomorphism
A : c1(() → c1(") induces a homomorphism A ∗ : � 1(c1("), gAd d ) → � 1(c1((), gAd dA );
this is a general property of group cohomology. This A ∗ corresponds to the differential 3A ∗ :
)[d ]X� (") → )[dA ]X� ((). In order to keep the following equations neat and in order to avoid
confusion with the boundary operator of cohomology, we will nevertheless denote it by A ∗.

Theorem 3.13. Let d ∈ Hom(c1((),�) be any representation. Consider the group homomor-
phism A : c1(() → c1(") and any non-degenerate, Ad-invariant, symmetric bilinear form
� on g. Then, the image A ∗� 1(c1("), gAd d ) is a Lagrangian subspace of the symplectic space
� 1(c1((), gAd d ) equipped with the sympletic form l� .

Proof. We follow the proof as it is laid out in [Sik09, Thm. 63]. In order to show that the sub-
space is Lagrangian, we need to verify two properties: dimC A ∗� 1(c1("), gAd d ) = 1

2 dimC�
1(c1((), gAd d ),

and isotropy, i.e. the property that the pullback of the symplectic form is trivial.
While the tangent spaces are naturally defined in terms of group cohomology, this cohomol-

ogy theory is not sufficiently powerful to answer these questions. Fortunately, it is isomorphic
14From Proposition 2.9, it follows that )[dA ]-� (() � )[dA ]X� (().
15[Sik09,Thm. 61] usesHom66 (c1 ((),�) = Hom6 (c1 ((),�). Inmy opinion, we need the fact thatHom66 (c1 ((),�)

is Zariski-open, which Sikora does not prove. As I laid out in the remark under Proposition 1.15, I believe that
Hom6 (c1 ((),�) should at least have a subset that is Zariski-open.
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to singular cohomology. In the continuation of this proof, we will make use of singular (co)ho-
mology groups instead.

Step i: Calculation of dimensions. For any compact orientable3+1-dimensionalmanifold
" with boundary ( , the Poincaré-Lefschetz duality theorem implies isomorphisms

%� : �: (", (, gAd d )
∼−→ �3+1−: (", (, gAd d ), D ↦→ D ∩ ["],

where ["] is the fundamental class of" . Poincaré-Lefschetz duality with boundary is a direct
generalization of Poincaŕe duality without boundary, since singular (co)homology relative to
the boundary is equal to normal singular cohomology for manifolds without boundary. That
said, we obtain the following commutative diagram

�2(", (, gAd d ) �1((, gAd dA ) �1(", gAd d )

� 1(", gAd d ) � 1((, gAd dA ) � 2(", (, gAd d )

m

� q � [

A∗

�

A ∗ X

(24)

with exact rows, where the isomorphisms in the columns are given by the inverse %�−1 of
Poincaré-Lefschetz duality. The two rows are a parts of the long exact (co)homology sequences.
In accordance with Corollary 3.5, we have C-linear isomorphisms between the cohomology
groups and the C-duals of the homology groups:

k( : �1((, gAd d )
∼−→ � 1((, gAd d )∨, G ↦→ l̃� (·, G),

k" : �1(", gAd d )
∼−→ � 1(", gAd d )∨, G ↦→ l̃� (·, G).

Under these isomorphisms, k"A∗k−1( is the dual of A ∗ according to Lemma 3.6, i.e. (A ∗)∨ =

k"A∗k−1( . Hence Eq. (24) becomes

�2(", (, gAd d ) � 1((, gAd dA )∨ � 1(", gAd d )∨

� 1(", gAd d ) � 1((, gAd dA ) � 2(", (, gAd d ),

m̃

� q � [̃

(A ∗)∨

�

A ∗ X

(25)

which is a commutative diagram with exact rows, where m̃ = k( m and [̃ = [k−1
(

. Note that the
rank of a linear map equals the rank of its dual.16 It follows that

dimR A
∗� 1(", gAd d ) = rankR A

∗

= rankR(A ∗)∨ by duality
= rankR X by commutativity
= dimR�

1(c1((), gAd dA ) − dimR kerX
= dimR�

1(c1((), gAd dA ) − rankR A ∗ by exactness
= dimR�

1(c1((), gAd dA ) − dimR A ∗� 1(", gAd d ),
16Let 5 : + →, be a linear map of two finite-dimensional vector spaces over an arbitrary field. For any matrix

representation of 5 , the column rank equals the row rank, so rank 5 = rank 5 ∗.
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in otherwords, dimR A ∗� 1(c1("), gAd d ) = 1
2 dimR�

1(c1((), gAd dA ), whichwewanted to show.
Step ii: Isotropy. We would like to show that A ∗� 1(c1("), gAd d ) is an isotropic subspace

of � 1(c1((), gAd dA ) with respect to l� . According to Corollary 3.5, we have

[̃−1 : � 1(c1((), gAd dA ) → � 1(c1((), gAd dA )∨, U ↦→ [̃−1(D) = k( ◦ [−1(D)
= l̃� (·, %� (D))
= l�dA (·, D) .

Accordingly, we have an isomorphism �1(c1("), gAd d ) � � 1(c1("), gAd dA )∨, and we obtain

A∗ ◦ [̃−1(U) = (A ∗)∨(l�dA (·, U)) = l�dA (A ∗(·), U),

as (A ∗)∨ and A ∗ are dual to each other. Now, assume that D = A ∗E is the image of some E ∈
� 1(c1("), gAd dA ). We have

(A ∗)∨ ◦ [̃−1(D) = (A ∗)∨ ◦ [̃−1 ◦ A ∗(E) = (A ∗)∨ ◦ m̃ ◦ q−1(E) = 0

on account of commutativity and exactness of the diagram in Eq. (24). Let E ′ ∈ � 1(c1("), gAd dA )
be another element. Combining the last two equations, we obtain

l�dA (A ∗E ′, A ∗E) = [(A ∗)∨ ◦ [̃−1(D)] (E ′) = 0,

which means that A ∗� 1(c1("), gAd d ) is an isotropic subspace of � 1(c1((), gAd dA ). �

Proof of Theorem 3.12. We follow [Sik09,Thm. 61]. 1. According to Lemma 2.11, the subspace

3A ∗)[d ]X� (") ⊆ )[dA ]X� (() = )[dA ]-� (()

corresponds to A ∗� 1(c1("), gAd d ) ⊆ � 1(c1((), gAd dA ). However, this is a Lagrangian subspace
according to Theorem 3.13, which proves this statement.

2. The proof of statement 2 will require several substeps: First, we will see how .� (")
becomes a disjoint union of complex manifolds. In the complex topology, it is then sufficient
to show that

)[dA ].� (") ⊆ )[dA ]-6� (()

is an isotropic subspace on a dense subset of points [dA ] ∈ .� ("). Indeed, for ] : .� (") ↩→
-
6

�
((), the restricted form ]∗l� : .� (") →

∧2) ∗-
6

�
(() is a continuous map into a Hausdorff

space, so it must be constant whenever it is constant on a dense subset. Therefore, it suffices
to find an appropriate dense subset of .� (").

We will construct such a dense subset in two further steps: We will see that A ∗ : -� (") →
-� (() can be restricted to a holomorphic map of manifolds A ∗ : - ′

�
(") → .� (") ⊆ -6� (()

with dense image in .� ("). Then, we will see that the differential 3A ∗ is surjective on a dense
subset of - ′

�
("). This will be sufficient to show that .� (") is isotropic.

Step 2.i: Manifold structure of.� ("). Aswe saw in Proposition 3.11, A ∗-� (")∩-66� (")
is closed in -66

�
((), so it naturally becomes an affine algebraic subvariety. As it bears a variety

structure, the notion of its non-singular points is well-defined. Using the GAGA functor, a
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non-singular point has a neighborhood that is a complex manifold, see Proposition A.12, so
that .� (") = [A ∗-� (") ∩ -66� (")]

=B is a disjoint union of complex manifolds.
Step 2.ii: A∗ can be restricted to - ′

�
(") → .� (") with dense image. Consider

(A ∗)−1(.� (")). It is the inverse image of a Zariski-open set, so it is Zariski-open in -� (").
In particular, it is a quasi-affine set, so that – again – it is appropriate to speak of its non-
singular points. In accordance with Proposition A.10, we have a Zariski-open dense subset
- ′
�
(") ⊆ (A ∗)−1(.� (")), which consists only of non-singular points. It follows that A ∗- ′

�
(")

is dense in .� (")17. Thus, the regular map A ∗ : - ′
�
(") → .� (") has Zariski-dense image. As

a consequence of a lemma of Chevalley, the image is also dense in the complex topology [Ser56,
Lem. 2., Prop. 7]. Using [Ser56, Lem. 2] once again, we even see that the image contains an
Zariski-open and dense subset, so that this subset is also open and dense in the complex topol-
ogy. Hence, A ∗ : - ′

�
(") → .� (") is both a regular map with Zariski-dense image, and a

holomorphic map between complex manifolds with dense image.
Step 2.iii: Surjective differential on a dense subset. In particular, A ∗ is a smooth map

between two finite-dimensional manifolds, so we can apply Sard’s Theorem, [Sar65, Thm. 3.1].
What does this mean? Denote by �3 ⊆ .� (") the set of critical values. A critical value is
the image A ∗(d) ∈ .� (") of a critical point d ∈ - ′

�
("), i.e. a point with rankR 3A ∗d 6 3 − 1.

(Maybe we will need to split up .� (") and - ′� (") into several connected components for
this to make sense.) Furthermore denote the 3-dimensional Hausdorff measure by `3 , where
3 = dimR .� (") is the dimension of the manifold. Sard’s Theorem states that the set of critical
values is a null set, i.e. `3 (�3 ) = 0. In consequence, the complement .� (")\�3 is dense in
.� (").18 The intersection of a dense set with an open dense set is again dense. The image
A ∗- ′

�
(") contains an open dense set, so A ∗- ′

�
(") ∩ .� (")\�3 is dense in .� ("). However,

this intersection is exactly the set of points where

3A ∗)[d ]-
′
� (") = )[dA ].� (") .

Now, - ′
�
(") is open in -� ("), and therefore )[d ]- ′� (") = )[d ]-� ("). Therefore, we have a

dense subset of points [dA ] ∈ .� (") with

3A ∗)[d ]-� (") = )[dA ].� (") .

In order to prove statement 2., it is sufficient to show that 3A ∗)[d ]-� (") ⊆ )[dA ]-� (() is an
isotropic subspace. However, [dA ] is a good point by definition of .� ("), so 3A ∗)[d ]X� (") is
isotropic by 1. 3A ∗)[d ]-� (") is a subspace of 3A ∗)[d ]X� ("), so it is isotropic as well.

3. Let d : c1(") → � be a reduced representation such that [dA ] ∈ .� ("). Let � ⊆
.� (") be the connected component containing [dA ]; it is an isotropic submanifold of -6

�
(()

17Let 5 : - → . be a continuous map between two topological spaces and let � ⊆ - be a dense subset, i.e. �̄ = - .
Consider a point ~ ∈ 5 (- ), and an open neighborhood ~ ∈ * ⊆ . . Then, 5 −1 (* ) ⊆ - is open and non-empty,
so 5 −1 (* ) ∩� ≠ ∅. This means that* ∩ 5 (�) is non-empty, so ~ ∈ 5 (�). It follows that 5 (�) = 5 (- ), so 5 (�)
is dense in the image.

18Let 3 < ∞. Let - be a 3-dimensional manifold with Hausdorff measure `3 and let � ⊆ - be a null set. Assume
that -\� were not dense in - . Then, an 0 ∈ � with an open neighborhood * ⊆ � would exist. In particu-
lar, there would be a chart in which * contains a ball of radius Y > 0, as balls form a basis of the topology.
On 3-dimensional manifolds, the 3-Hausdorff measure coincides with Lebesgue measure [see Hau19, Sec. 7].
Therefore, the Y-ball is `3 -positive, which implies that* is `3 -positive. This implies that� is `3 -positive, which
stands in contradiction to � being a null set.
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according to 2. We have 3A ∗)[d ]-� (") = 3A ∗)[d ]X� ("), as d is a reduced point. Using bullet
point 1, we know that3A ∗)[d ]X� (") is a Lagrangian subspace, in particular dimC)[d ]-� (") =
1
2 dimC)[dA ]-

6

�
((). � is a smooth manifold, so the dimension of tangent spaces is constant

throughout � , i.e. dimC� = 1
2 dimC-

6

�
((). Hence, the statement follows. �

3.4. A differential proof of isotropy

The theory of character varieties is particularly delightful as we can endue the identical object
with a lot of different “flavors”. To demonstrate this abundance of structure, we will show that
the isotropy of A ∗� 1(c1("), gAd d ) in � 1(c1((), gAd dA ) from Theorem 3.13 can also be proved
with a differential argument using Stoke’s theorem instead of the algebraic argument using
exact sequences and Poincaré duality. I would like to thank Arnaud Maret from the University
of Heidelberg for pointing this out to me during one of my seminar talks.

Let � → " be a flat vector bundle, whose fiber is the c1(")-module gAd d and whose
holonomy is given by the c1(")-action. Denote the pullback bundle with respect to the in-
clusion ] : ( ↩→ " by ]∗� → ( . Elements of twisted de Rham cohomology � 1

dR((, ]
∗�)

are represented by global sections Γ(",) ∗( ⊗ ]∗�), i.e. smooth maps ? ↦→ D? ⊗ G? with
D? ∈ ) ∗( and G? ∈ �] (?) � gAd d . Following de Rham’s theorem, we have isomorphisms
�:dR((, �) � �:sing((,A) for a twisted coefficient system with fiber A? = gAd d . Goldman’s
symplectic form can be written in twisted de Rham cohomology as follows:

l�dR,d : � 1
dR((, ]

∗�) × � 1
dR((, ]

∗�) ∧⊗�−−−→ � 2
dR((,C)

Φ−→ C,

where ∧ ⊗ � is locally given by (D ⊗ G, E ⊗ ~) ↦→ (D ∧ E) ⊗ �(G,~) and Φ is the “top-level
isomorphism” D ⊗ I ↦→ I ·

∫
(
D. The induced map A ∗ : � 1(", gAd d ) → � 1((, gAd dA ) in group

cohomology now translates into ]∗ : � 1
dR(", �) → � 1

dR((, ]
∗�), D ↦→ ]∗D, where ] : m" ↩→ " is

the embedding and ]∗D is the pullback along ]. Equivalently to Theorem 3.13, Step II, we have:

Theorem 3.14. ]∗� 1
dR(", �) is an isotropic subspace of (� 1

dR((, ]
∗�), l�dR,d ).

Proof. LetD ⊗G and E ⊗~ locally represent two elements of� 1
dR(", �). AsD and E are cocycles,

they must be closed, i.e. 3D = 3E = 0. Slightly abusing our notation above, we would like to
show that l�dR,d (]

∗D ⊗ G, ]∗E ⊗ ~) = 0. We have

l�dR,d (]
∗D ⊗ G, ]∗E ⊗ ~) = Φ((D ∧ E) ⊗ �(G,~))

= �(G,~) ·
∫
(

]∗D ∧ ]∗E

= �(G,~) ·
∫
m"

]∗(D ∧ E)

= �(G,~) ·
∫
"

3 (D ∧ E) according to Stoke’s theorem,

= �(G,~) ·
∫
"

3D ∧ E − D ∧ 3E

= 0 as D and E are closed.

This shows that the subspace ]∗� 1
dR(", �) is indeed isotropic. �
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4. Anti-holomorphic involutions on a Riemann surface

In the entire section, let ( be a compact connected Riemann surface, and consider an anti-
holomorphic involution 5 : ( → ( , i.e. I ↦→ 5 (Ī) is holomorphic and 5 2 = id.

4.1. Properties of anti-holomorphic involutions

Anti-holomorphic involutions have been of interest since as early as 1882, when Felix Klein
studied them in the context of Klein surfaces [Kle82]. They naturally appear when studying
real algebraic curves. Below, we will recall some of their basic properties that will be needed
later on.

Definition 4.1. Let * ⊆ C= and + ⊆ C< be two open subsets. A map 5 : * → + is called
anti-holomorphic, if I ↦→ 5 (Ī) is a holomorphic map. Here, Ī is the coordinate-wise conjugate
of I. A map 5 : " → # between two complex manifolds is called anti-holomorphic if it is
anti-holomorphic in local coordinates.

The following result is specific for the case of complex dimension 1.

Proposition 4.2. Let ( be a Riemann surface. An anti-holomorphic involution 5 : ( → ( is
orientation-reversing.

Proof. Let * ⊆ C be an open subset. It is a well-known result from complex analysis that a a
smooth function* → C is orientation-preserving and angle-preserving (i.e. locally conformal)
if and only if it is holomorphic with nowhere vanishing differential [BF09, Thm. I.5.15].

Consider the map ℎ : * → C, I ↦→ 5 (Ī). By definition, it is holomorphic, and it has an
inverse map given by I ↦→ 5 (I). As the complex conjugation is a diffeomorphism, it fol-
lows that ℎ is a diffeomorphism as well. According to the result quoted in the previous para-
graph, this means that ℎ is orientation-preserving. Now 5 (I) = ℎ(Ī). As we will explain
in Appendix A.7, the complex conjugation is orientation-reversing, so 5 must be orientation-
reversing as well. �

4.2. Induced automorphisms on the fundamental group

Wewill now see that an anti-holomorphic involution 5 : ( → ( induces an isomorphism on the
fundamental group. As 5 is continuous and its own inverse, it is a homeomorphism. Therefore,
we obtain a group isomorphism

5∗ : c1((, I0) → c1((, 5 (I0)), W ↦→ 5 (W)

from the fundamental group with base point I0 to that with base point 5 (I0). By selecting a
path X from I0 to 5 (I0), we obtain another isomorphism

qX : c1((, 5 (I0)) → c1((, I0), W ↦→ X.W .X−1.

The composition 5∗,X = qX ◦ 5∗ is a group automorphism of c1((, I0) that has the following
properties:
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Proposition 4.3. 1. If X ′ is another path from I0 to 5 (I0), then 5∗,X and 5∗,X′ differ by an inner
automorphism.

2. 5 2∗,X (W) = ℎ.W .ℎ
−1, where ℎ is the loop X.5 (X) based at I0.

3. Assume that I0 is a fixed point of 5 . Then, we can choose X to be the constant curve. In this
case, 5 2∗,X = id, so 5∗,X is an involution on c1((, I0).

Proof. We will prove 1. Bullet points 2 and 3 can be shown by similarly straightforward calcu-
lations. Let 6 = W .(W ′)−1. This is a loop based at I0. It follows that

5∗,X (D) = X.5 (D).X−1 = 6.X ′.5 (D).X ′−1.6−1 = 6.5∗,X′ (D) .6−1,

which was to be shown. �

1. and 2. show that 5∗,X is an involution that is independent of X “modulo conjugations”.
Therefore, it is natural to consider the induced map on the character variety. We will do this
in the following Section 4.3.

4.3. Induced maps on the character variety

Consider the representation variety Hom(c1((),�). The automorphism 5∗,X from Section 4.2
above induces a �-equivariant map

Hom(c1((),�) → Hom(c1((),�), d ↦→ d ◦ 5∗,X . (26)

It is obviously �-equivariant, so it induces a map

5̂ : -� (() → -� (()

on the character variety.

Proposition 4.4. 1. The map 5̂ : -� (() → -� (() preserves the equivalence classes of good
representations.

2. The restricted map 5̂ : -6
�
(() → -

6

�
(() is independent of the choice of X .

3. The restricted map 5̂ : -6
�
(() → -

6

�
(() is an involution, i.e. 5̂ 2 = id.

4. The restricted map 5̂ : -6
�
(() → -

6

�
(() is holomorphic and anti-symplectic, i.e. 5̂ ∗l� =

−l� for the symplectic form l� on -6
�
(().

Proof. 1. For the stabilizer of an arbitrary representation d and any automorphism q of c1((),
the following stands true:

�d = {6 ∈ �, 6d (G)6−1 = d (G) for G ∈ c1(()}
= {6 ∈ �, 6d (q (G))6−1 = d (q (G)) for G ∈ c1(()} = �d◦q .
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In particular,�d = �d◦5∗,X = �
5̂ (d) , which shows that good representations are mapped to good

representations.
2. The good character variety-6

�
(c1(()) is the “normal” orbit spaceHom6 (c1((),�)/� , so

the independence of X follows from Proposition 4.3.1.
3. The fact that 5̂ is an involution on the good character variety follows from Proposi-

tion 4.3.2, as two conjugated elements are equal in -6
�
(().

4. In accordance with Lemma 1.3, Hom(c1((),�) → Hom(c1((),�), d ↦→ d ◦ 5∗,X is a
regular �-equivariant map, so the induced map 5̂ on the character varieties is regular as well.
Hence, it is holomorphic on non-singular points. It remains to be shown that the restriction to
the good points is anti-symplectic. Let D and E be two elements of � 1

sing((, gAd d ) for some d .
Let 5 ∗ and 5∗ be the maps induced by 5 on singular cohomology and homology, respectively.
Then, we have

5 ∗l�d (D, E) = l�d (5∗D, 5∗E) =
∫
(

�∗(5∗D ∪ 5∗E) =
∫
(

5∗�∗(D ∪ E) =
∫
(

−�∗(D ∪ E) = −l�d (D, E) .

The equation 5∗�∗(D ∪ E) = −�∗(D ∪ E) holds because 5 is orientation-reversing, see Proposi-
tion 4.2, and �∗(D∪E) ∈ � 2

sing(",C) � C is in the “top-level” of cohomology, see Appendix A.7.
It follows that 5̂ ∗l�d = 5 ∗l�d = −l�d . �

Let L� be the fixed point set of 5̂ : -6
�
(() → -

6

�
((). We have:

Theorem 4.5. If it is non-empty, L� is a smooth Lagrangian submanifold of -6
�
(().

In [BS14], this fixed point set is called the (�, �,�)-brane.

Proof. Assume that L� is a manifold. As it is a set of fixed points, we have 5̂ ∗l� = l� on
L� . On the other hand, we have 5̂ ∗l� = −l� according to Proposition 4.4.3. This proves that
l� ≡ 0 on L� ; thus, it is an isotropic subspace.

It remains to be shown that L� is indeed a smooth complex submanifold and that its dimen-
sion is

dimR L� =
1
2
dimR-

6

�
(() .

This is proven in the following general lemma. �

Lemma 4.6. Let " be a complex manifold of complex dimension = and 5 : " → " an anti-
holomorphic involution. If the fixed point set of 5 is non-empty, it is a smooth analytic submanifold
of real dimension =.

Proof. Consider a fixed point ? of 5 . A classical argument using a partition of unity and the
Euklidean metric on each chart shows that a Riemannian metric exists on any manifold [see
Lee13, Prop. 13.3]. Therefore, we can consider a metric 6 on" . Since" is a complex manifold,
its charts are analytic. The Euklidean metric is analytic as well; thus, in a sufficiently small
neighborhood of ? , 6 will be analytic. Without loss of generality, we can assume that 6 is 5 -
invariant by choosing 6 + 5 ∗6 instead of 6. This new metric is still analytic near ? , and 5 is an
isometry with respect to 6.
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Consider the Riemannian exponential map exp : )?" → " with respect to 6. It is a dif-
feomorphism on a small neighborhood of ? . As 5 is anti-holomorphic, 3 5? : )?" → )?"

is an anti-linear involution.19 Because 5 is an isometry, we have exp ◦(3 5?) = 5 ◦ exp [see
Lee97, Prop. 5.9]. This implies that the behavior of 5 on a small neighborhood of ? is entirely
determined by 3 5? . By choosing a complex basis E1, . . . , E= of )?" , we can consider )?" a
2=-dimensional real vector space:

R2= → )?", (G1, ~1, . . . , G=, ~=) ↦→ (G1 + 8~1)E1 + . . . (G= + 8~=)E= .

Obviously, themaximal fixed subspace under the anti-linear involution3 5? is the=-dimensional
real vector space defined by ~: = 0 for all : . Via the exponential map, we obtain a small neigh-
borhood of ? in" in which all fixed points of 5 compose a =-dimensional real submanifold.

Therefore, the set of fixed points of 5 is a smooth submanifold of real dimension=. In fact, it is
analytic. To show this, we only need to show that exp is analytic. expmaps each tangent vector
to a geodesic. Geodesics are solutions of the geodesic equation, which is an analytic partial
differential equation in our case, simply because 6 is analytic. Thus, the equation’s solution
can be seen to be analytic using the Cauchy-Kowalevski theorem [Fol95, Thm. 1.25]. �

4.4. Comparison of Lagrangian submanifolds

We have found two isotropic, and possibly Lagrangian, submanifolds of -6
�
((). One of them

is .� ("), the non-singular good part of A ∗(-� (")), whenever ( = m" is the boundary of a
three-manifold " , see Section 3.3. The other is the fixed point set L� that was introduced in
Section 4.3 above. In this section, we can see that, in the case of a special three-manifold " ,
these two submanifolds can be related.

We will begin by constructing the manifold " . Consider a compact connected closed Rie-
mann surface ( , and an anti-holomorphic involution 5 : ( → ( . We define the three-dimensional
product manifold Σ = ( × [−1, 1]. On Σ, we have a smooth involution

f : Σ→ Σ, (I, C) ↦→ (5 (I),−C).

Via f , the discrete group Z/2Z acts on Σ. We denote the orbit space by" = Σ/f .
We will use the following notations: Denote the natural projection by c : Σ → " , and

denote the image c (I, C) by [I, C]. We have inclusions

80 : ( → Σ, I ↦→ (I, 0) and 81 : ( → Σ, I ↦→ (I, 1)

19Let * ⊆ C= and + ⊆ C< be open subsets. A smooth function 5 : * → + is holomorphic if and only if its
differential is complex linear on its tangent spaces. In dimension= =< = 1, this is an immediate consequence of
the Cauchy-Riemann differential equations: Indeed, the Cauchy-Riemann equations state that for I0 = G0 + 8~0,
we have (3 5 )I0 =

(
0 −1
1 0

)
for some 0,1 ∈ R. However, the multiplication of this matrix with any vector ( DE ) is

the same as the complex multiplication (0+81) (D +8E), so that it is complex linear. The result can be generalized
to several dimensions using Osgood’s lemma [Osg99], so that smooth functions with complex linear differential
are holomorphic. Now, the differential of the complex conjugation is

( 1
−1

)
, which is clearly anti-linear. Any

anti-holomorphic map is the composition of complex conjugation with a holomorphic map, so it must have an
anti-linear differential as well.
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and their respective projections

90 = c ◦ 80 : ( → ",I ↦→ [I, 0] and 91 = c ◦ 81 : ( → ",I ↦→ [I, 1] .

There is a classification theory of anti-holomorphic involutions on surfaces. It indicates that
the fixed point set � ⊂ ( of the involution 5 is a disjoint union of circles [see BS14, Sec. 2.1].
We identify � with � × {0} ⊆ Σ and � × {0} ⊆ " .
f does not have any fixed points on Σ\� , so the group action of Z/2Z is free and proper. In

particular,"\� = (Σ\� )/f bears a canonical quotient manifold structure. It is a three-manifold
with boundary m("\� ) � ( (the image of ( × {1} or ( × {−1}).

Proposition 4.7. The orbit space " carries the structure of a three-manifold with boundary
m" � ( . The natural projection c : Σ → " is smooth with respect to this structure. The smooth
structure is compatible with the canonical manifold structure on"\� . The identification m" � (
is given by 91 : ( → ",I ↦→ [I, 1].

I would like to thank David Baraglia from the University of Adelaide for explaining the proof
of this proposition in a private e-mail conversation.

The construction of the manifold structure involves the choice of a f-invariant Riemannian
metric 6 on Σ. Such a metric exists: Every manifold possesses a Riemannian metric 6 by the
partition-of-unity argument [see Lee13, Prop. 13.3]. Themetric 6+f∗6 is obviously f-invariant
as f is an involution. It is not clear whether, or not, the structure of " is dependent on the
choice of 6.

Before we can turn to the proof of the proposition, we will need to prove the following
lemma.

Lemma 4.8. Consider one of the circles (1 ⊂ � . We can find a neighborhood of (1 in Σ diffeo-
morphic to (1 × �2Y (0), on which f is given by

f (G,~, C) = (G,−~,−C)

for G ∈ (1 and (~, C) ∈ �2Y (0) ⊂ R2.

If we imagine the anti-holomorphic involution 5 : ( → ( as a complex conjugation, then G
is the “real part” that remains fixed and ~ is the “imaginary part” that gets flipped.

Proof of Lemma 4.8. Wewill prove this lemma in several steps. For G ∈ (1, every tangent space
splits into )GΣ = )G(

1 ⊕ #G(1, where #G(1 is the orthogonal space to )G(1 with respect to 6G .
The vector bundle #(1 → (1 with fibers #G(1 is called the orthogonal bundle. As (1 is one-
dimensional, #(1 is a vector bundle of rank 2. As Σ is compact, the Riemannian exponential
map exp : )(I,C )Σ→ Σ is defined on the entire tangent space. We want to see that the map

exp : #(1 → Σ, (G, E) ↦→ expG (E)

for G ∈ (1 and E ∈ #G(1 can be restricted such that it is injective on a tubular neighborhood.
Σ = ( × [−1, 1] is orientable as a product of orientable manifolds. (1 ⊂ Σ is an orientable
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submanifold. In particular, the normal bundle #(1 is orientable as well. Choose compatible
orientations on Σ, )Σ, (1, )(1 and #(1.

Step i: The normal bundle #(1 is trivial. We want to show that #(1 � (1 × R2. This
follows from the classification theory of principal bundles [see Hus94, Cor. 8.3], but it can also
be shown using elementary methods. In fact, any oriented vector bundle � → (1 of rank = is
trivial. We will recall a brief proof: The oriented vector bundle � is associated to a GL+= (R)-
principal bundle, the oriented frame bundle,

� = %GL+ (�) ×GL+= (R) �,

where GL+= (R) is the general linear group with positive determinant. Hence, it is sufficient to
prove that any GL+= (R)-principal bundle % → (1 is trivial.
(1 can be covered by two intervals �1, �2 ⊆ R. Their intersection �1∩�2 ⊂ (1 is a disjoint union

�1 t �2 of two connected open sets. Since intervals are contractible, every principal bundle on
�1 and �2 is trivial. A principal bundle % → (1 is now constructed by patching the principal
bundles �1 × GL+= (R) → �1 and �2 × GL+= (R) → �2 in a smooth manner that is compatible with
the GL+= (R)-action [Bau14, Satz 2.5]. Since the bundles are trivial on �1 and �2, patching results
to the choice of two elements� and � ∈ GL+= (R). The structure of % = %�,� → (1 only depends
on the choice of these two elements. GL+= (R) is path-connected, so there is a smooth path
connecting each of � and � with id ∈ GL+= (R). Therefore, %�,� � %id,id. However, %id,id is the
trivial bundle, which proves that every GL+= (R)-principal bundle over (1 is trivial. Therefore,
every orientable vector bundle over (1 is trivial, and it follows that #(1 � (1 × R2.

In particular, the map (1×R2 → #(1, (G,~, C) ↦→ (~41+C42) is a well-defined diffeomorphism,
where (41, 42) is an orthonormal basis of #G(1 that varies smoothly in G . Therefore, the map

exp : (1 × �2Y (0) → Σ, (G,~, C) ↦→ exp(G,~, C) = expG (~41 + C42)

is well-defined for any Y > 0, where expG is the Riemannian exponential function on)GΣ→ Σ.
Step ii: exp is a local diffeomorphism around (1. For a fixedG , we know that the differen-

tial of expG : )GΣ→ Σ is given by (3 expG )0 = id : )GΣ→ )GΣ. By the inverse function theorem,
expG is a diffeomorphism in a neighborhood of G . However, we need to see that exp(G,~, C) is
still a local diffeomorphism when G varies. We will identify (1 with (1 × {0} ⊂ (1 × �2Y (0). We
would like to show that the differential 3 exp(G,0,0) is invertible for every G ∈ (1. The differen-
tial is a R-linear function 3 exp(G,0,0) : )G(1 × )0 R2 → )GΣ = )G(

1 ⊕ #G(1. Choosing a basis
vector 40 for)G(1, the standard basis for)0 R2 and 41, 42 for #G(1 as before, we obtain a matrix
representation

3 exp(G,0,0) =
(
mG exp, m~ exp, mC exp

)
(G,0,0) ∈ R

3×3 .

In order to calculate mG exp, we can leave (~, C) fixed, so we obtain

mG exp |(G,0,0) = mG expG (0) = mG [G ↦→ G ∈ (1 ⊂ Σ] =
(
1
0
0

)
,

where we applied that the Riemann exponential function at G maps 0 ∈ )GΣ to G . In order to
calculate m~ exp and mC exp, we can leave G fixed. This shows that

m~ exp |(G,0,0) = m~ expG |(0,0,0) =
(
0
1
0

)
and mC exp |(G,0,0) = mC expG |(0,0,0) =

(
0
0
1

)
.
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(1

*8

* 9

exp

im((1)
im(*8)

im(* 9 )

Figure 1: exp only becomes injective after shrinking*8 and* 9 .

Taken together, we see that the 3 exp(G,0,0) is the identity matrix with respect to the chosen
bases, and therefore it is invertible.

Step iii: exp is injective for small Y. We already know that exp is injective when restricted
to (1, as it is merely the embedding of (1 in Σ. We also know that exp is locally a diffeomorphism
around (1. We will now see that this suffices in order to “extend” injectivity onto a small
neighborhood of (1.

Cover the subset (1 ⊆ #(1 by small neighborhoods on whom exp is a diffeomorphism.
Without loss of generality, we can assume that each neighborhood is of the form*8 = �

1
X8
(G8) ×

�2Y8 (0) ⊆ (
1 × R2 = #(1, i.e. they are shaped like small open tubes. As (1 is compact, we may

assume that there are only finitely many *8 . Now, exp is not necessarily a diffeomorphism
on the union of the *8 , as they may have non-trivial intersections in the image, but it will be
injective after shrinking the*8 appropriately, as Fig. 1 illustrates.

Take two different*8 ≠ * 9 . We can assume without loss of generality that*8\* 9 ∩* 9\*8 = ∅
for *8 ≠ * 9 .20 If we can shrink Y8 and Y 9 such that exp(*8) ∩ exp(* 9 ) = exp(*8 ∩* 9 ), we are
done. (When exp is injective on every *8 and the images exp(*8) only intersect where the *8
intersect, then exp is injective everywhere.) We will assume the opposite: Suppose that for
every Y8 > 0 and Y 9 > 0, there are points ? (Y8 , Y 9 ) ∈ *8\* 9 and @(Y8 , Y 9 ) ∈ * 9\*8 such that

exp(? (Y8 , Y 9 )) = exp(@(Y8 , Y 9 )) .

As *8\* 9 and * 9\*8 are compact, there must be convergent subseries {?=} ⊆ {? (Y8 , Y 9 )} and
{@=} ⊆ {@(Y8 , Y 9 )} with

exp(?=) = exp(@=)

and ?= → ? ∈ (1 as well as @= → @ ∈ (1, and ? ≠ @. Continuity of exp implies that exp(?) =
exp(@), which is a contradiction to exp being injective on (1. Therefore we can choose radii
Y8 and Y 9 such that exp(*8) and exp(* 9 ) only intersect on the intersection. As there are only
finitely many *8 , the infimum Y = min Y8 is greater than 0. Therefore, exp must be injective on
(1 × �2Y (0).

Step iv: f is given by (G,~, C) ↦→ (G,−~,−C). We saw that exp is an injective local diffeo-
morphism, i.e. it is an open immersion of (1 × �2Y (0) in Σ. It remains to be shown that f maps
(G,~, C) to (G,−~,−C) on this tubular neighborhood.
20This is merely a technical requirement, which can be achieved by shrinking X8 a little bit and possibly adding

another small neighborhood at G8 + X8 ∈ (1.
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f leaves (1 ⊂ Σ invariant. Furthermore, it is an isometry with respect to the metric 6.
Therefore, we have

f exp(G,~, C) = f expG (~41 + C42) = expG 3f (G,0,0) (~41 + C42) .

Choose the basis (40, 41, 42) ⊂ )GΣ as before. 3f preserves 6, i.e. 3f (G,0,0) ∈ O3(R). #G(1 and
)G(

1 are preserved by 3f (G,0,0) , so

3f (G,0,0) =

(
1 0
0 �

)
,

where � ∈ O2(R). f is orientation-preserving, which implies det� = 1 and thereby � ∈
SO2(R). f2 = id implies � = ±

(
1 0
0 1

)
. f is given by (I, C) ↦→ (5 (I),−C), so 3f (G,0,0) must have at

least one negative eigenvalue. Therefore, � = −
(
1 0
0 1

)
, which shows that

f exp(G,~, C) = expG 3f (G,0,0) (~41 + C42) = expG (−~41 − C42) = exp(G,−~,−C).

This is exactly what remained to be shown. �

Proof of Proposition 4.7. Let � ⊂ ( be the fixed point set of 5 . It is composed of disjoint copies
of the circle (1. Select one of these circles (1. We identify (1 with (1 ⊆ ( , (1 × {0} ⊆ Σ and
(1 × {0} ⊆ " . We equip "\� with the canonical quotient manifold structure of (Σ\� )/f ,
and we see that c : Σ\� → "\� is smooth according to the quotient manifold theorem. It
remains to be shown that we have smooth charts around (1 ⊂ " , which are compatible with
the smooth structure on"\� .

According to Lemma 4.8, we have a neighborhood (1 ⊂ + ⊂ Σ, with + � (1 × �2Y (0) on
which f looks like f (G,~, C) = (G,−~,−C). Consider its image c (+ ) ⊂ " . We have

[G,~, C] = [G,−~,−C] in"

according to the definition of the equivalence relation. ConsiderF = ~+8C as a complex number
and consider the smooth map

+ → R3, (G,F) ↦→ (G,F2) = (G,~2 − C2, 2~C) .

ThemapF ↦→ F2 is open, as every non-constant holomorphic function is open (open mapping
theorem). This implies that (G,F) ↦→ (G,F2) is open as well. Consider the image c (+ ) ⊆ " .
Because ofF2 = (−F)2, we have a commutative diagram

+ R3

c (+ ).

(G,F) ↦→(G,F2)

c
q :[G,F ] ↦→(G,F2)

The map q is injective, since every non-zero complex number has exactly two square roots,
which are identified by the equivalence relation. As" is equipped with the quotient topology
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coming from Σ,q is also continuous and open, so it is a homeomorphism onto its image. Denote
the image by* = q (c (+ )).

We claim that q is actually a diffeomorphism away from (1. Indeed, the complex square root
F ↦→ +

√
F is smooth away from the real axis. Therefore, the map

k : * → + , (G,F) ↦→ (G, +
√
F)

is smooth away from the image of (1 in* . In particular, the map

c ◦k : * \q ((1) → c (+ )\(1 ⊆ "\�, (G,F) ↦→ [G,
√
F]

is a smooth map of manifolds. The map c ◦k is inverse to q , so q is a diffeomorphism away
from (1.

The idea is to choose exactly this q : c (+ ) → * to be the chart around (1 ⊂ " . By
construction, the projection c : Σ→ " is smooth when restricted to c |+ : + → c (+ ). The fact
that q is diffeomorphic away from (1 shows that q is compatible with the manifold structure
of"\� .

Note that we chose exactly one chart around (1 ⊂ " . The construction of this chart depends
on the choice of a f-invariant metric, so the manifold structure could possibly depend on the
choice of this metric.

The same construction is performed for every circle in the fixed point set � ⊂ " . In partic-
ular," becomes a smooth 3-manifold. �

Now that we have defined " , we will consider the image .� (") = [A ∗(-� (")) ∩ -6� (()]
=B

in -6
�
((). We have the following:

Theorem 4.9. With the 3-manifold" being constructed as in Proposition 4.7,.� (") is contained
in L� .

Proof. Recall the maps 80 : ( → Σ, I ↦→ (I, 0) and 81 : ( → Σ, I ↦→ (I, 1) as well as their
projections 90 : ( → ",I ↦→ [I, 0] and 91 : ( → ",I ↦→ [I, 1]. We already know that ( � m"
is given by 91. Consider a representation d : c1(") → � such that A ∗(d) lies in .� ("). We
want to show that A ∗(d) must be a fixed point of the involution 5̂ on -6

�
((). Note that the

embedding ( = m" ↩→ " is given by 91 as explained in Proposition 4.7. This means that

A ∗(d) = d ◦ 9∗1 ,

where 9∗1 : c1(") → c1(() is the induced map on the fundamental groups. Note that the
embedding 91 is homotopic to the map 90, where the homotopy is simply

� : ( × [0, 1] → ", (I, C) ↦→ [I, C]

with � (I, 0) = 90(I) and � (I, 1) = 91. Thus, the induced maps on the fundamental groups are
identical, i.e.

9∗0 = 9∗1 .
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Hence, it is sufficient to show that 5̂ (d ◦ 9∗0 ) = d ◦ 9∗0 . Using the definition 5̂ (d) = d ◦ 5∗,X , this
means that it is sufficient to prove

d ◦ 9∗0 ◦ 5∗,X
!
= d ◦ 9∗0 . (27)

Recall the definition of the automorphism 5∗,X : c1((, I0) → c1((, I0). It is defined by

5∗,X (W) = X−1.5 (W) .X

for some curve X that connects I0 with 5 (I0). The definition of 5∗,X depends on the choice of
X , but the induced map on the character variety does not. We have the base point [I0, 0] =
9∗0 (I0) ∈ " . Let g = 9∗0 (X) = 90 ◦ X be the image of the path in " . As [I0, 0] = [5 (I0), 0], g is
actually a closed path at [I0, 0] and therefore represents an element of the fundamental group
c1(", [I0, 0]).

Note that for 80 : ( → Σ, I ↦→ (I, 0), we have 80 ◦ 5 = f ◦ 80. Because of 90 = c ◦ 80, this means
that

90 ◦ 5 = 90. (28)

All of this said, we are ready to calculate 9∗0 ◦ 5∗,X .

( 9∗0 ◦ 5∗,X ) (W) = 9∗0 (X−1.5 (W).X) = 9∗0 (X−1) .( 9∗0 ◦ 5 ) (W). 9∗0 (X) = g−1.( 90 ◦ 5 ◦ W) .g
(28)
= g−1. 9∗0 (W).g .

In particular, we have
(d ◦ 9∗0 ◦ 5∗,X ) (W) = d (g)−1d ( 9∗0 (W))d (g),

in other words
d ◦ 9∗0 ◦ 5∗,X ≡ d ◦ 9∗0 mod �,

which is precisely Eq. (27), which remained to be shown. �
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5. Generalizations of the Lagrangian submanifold theorem

5.1. The Lagrangian submanifold theorem for non-connected surfaces

Let ( be a compact closed surface that is not necessarily connected. This means that ( =

(1 t . . . t (; is a disjoint union of compact connected closed surfaces. We can define c1(() =
c1((1) × . . . × c1((; ). Then, we have a canonical isomorphism

Hom(c1((),�) � Hom(c1((1),�) × . . . × Hom(c1((; ),�),

which is given by d ↦→ (d |c1 ((1) , . . . , d |c1 ((; ) ). Accordingly, we can see that

H><(c1((),�) � H><(c1((1),�) ×C . . . ×C H><(c1((; ),�)

as well as
-� (() � -� ((1) ×C . . . ×C -� ((; ) .

This shows that Theorem 3.12.1 holds word-for-word for the non-connected case as well.
The proofs of Theorem 3.12.2 and 3.12.3 are not as easy to generalize, as we need to check

under what circumstances good representations in -� (() can be restricted to good represen-
tations in the -� ((8): As the Zariski topology on the project is finer than the project topology,
there may be closed orbits in Hom(c1((),�) which are not the product of closed orbits in the
Hom(c1((8),�).

5.2. The Goldman symplectic form on compact Kähler manifolds

In Section 3.2, we constructed a symplectic form on the character variety of a compact surface
( , defined by

l�d : � 1((, gAd d ) × � 1((, gAd d )
∪−→ � 2((, gAd d ⊗ gAd d )

�−→ � 2((,C) � C .

Let us instead consider any compact connected Kählermanifold of finite dimension dimR  =

3 = 2=. Yael Karshon [Kar92, Thm. 5] developed a way of generalizing Goldman’s sym-
plectic form to Kähler manifolds. Let’s start naively in the same way, for a representation
d : c1( ) → � . We will formulate the definition in de Rham cohomology for a reason which
will become clear later. Let � →  be a flat vector bundle with fiber gAd d . We define the
following form:

� 1
dR( , �) × �

1
dR( , �)

∧−→ � 2
dR( , � ⊗ �)

�−→ � 2
dR( ,C) .

However, 3 = dimR  can be greater than 2, so � 2
dR( ,C) is not necessarily isomorphic to

C. Fortunately, the Hard Lefschetz theorem [GH78, Sec. 0.7] provides us with the necessary
bridge. There are isomorphisms

�=−:dR ( , �)
∼−→ �=+:dR ( , �) (29)
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induced by [D] ↦→ [D ∧ Ω: ], where Ω is the symplectic form on  that comes from the Kähler
structure. We obtain a commutative diagram

� 1
dR( , �) × �

1
dR( , �) � 2

dR( , � ⊗ �) � 2
dR( ,C)

� 1
dR( , �) × �

3−1
dR ( , �) �3dR( , � ⊗ �) �3dR( ,C) .

� id×( · ∧[Ω]=−1)

∧

� ( · ∧[Ω]=−1)

�

� ( · ∧[Ω]=−1)

∧ �

In the lower right corner, we have �3dR( ,C) � C. Therefore, the diagram defines a bilinear
form l�dR,d . In order to show that this is a form on the character variety, we need to show that
the diagram still commutes when passing over to group cohomology. This is non-trivial, as  
is generally no longer aspherical (i.e. c2( ) could possibly not be equal to 0), but this problem
can be circumvented by passing to a bigger topological space  ̃ . Karshon [Kar92] shows that
this process defines a non-degenerate closed form on the character variety -� ( ) (possibly
after making some restrictions on the topology and points of -� ( )). This symplectic form
is in fact compatible with the cup product of group cohomology: This means that we have a
commutative diagram

� 1
Grp( , �) × � 1

Grp( , �) � 2
Grp( , � ⊗ �) � 2

Grp( ,C)

� 1
dR( , �) × �

1
dR( , �) � 2

dR( , � ⊗ �) � 2
dR( ,C) .

�

∪ �

∧ �

5.3. The Lagrangian submanifold theorem on compact Kähler manifolds

Consider a compact connected (3 +1)-dimensional manifold" with boundary m" =  , where
 is a compact connected Kähler manifold. As in the surface case, we have a morphism A ∗ :
X� (") → X� ( ) of the character varieties.

Let Ω be the symplectic form defined on  that is defined by the Kähler structure. First, we
would like to prove isotropy, i.e. the generalization of Theorem 3.14. As we will see, we will
need to impose a new condition on" with respect to Ω.

Theorem 5.1. Suppose that " is a compact manifold with compact connected Kähler boundary
 . Denote the identification m" =  by ] :  ↩→ " . Furthermore, assume that the symplectic
form Ω on  can be extended to a closed differential form Ω̃ ∈ Ω2(") with Ω = ]∗Ω̃. Then,
]∗� 1

dR(", �) is an isotropic subspace of (� 1
dR( , ]

∗�), l�dR,d ).

Proof. LetD ⊗G and E ⊗~ locally represent two elements of� 1
dR(", �). AsD and E are cocycles,

they must be closed, i.e. 3D = 3E = 0. We want to show that l�dR,d (]
∗D ⊗ G, ]∗E ⊗ ~) = 0. We
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have

l�dR,d (]
∗D ⊗ G, ]∗E ⊗ ~) = Φ((D ∧ E) ⊗ �(G,~))

= �(G,~) ·
∫
(

(]∗D ∧ ]∗E) ∧ Ω=−1

= �(G,~) ·
∫
m"

]∗(D ∧ E ∧ Ω̃=−1)

= �(G,~) ·
∫
"

3 (D ∧ E ∧ Ω̃=−1) according to Stoke’s theorem,

= 0 as D, E and Ω̃ are closed.

This shows that the subspace ]∗� 1
dR(", �) is indeed isotropic. �

Unfortunately, we cannot prove that the dimension of the subspace is half of the full dimen-
sion in the same way as we did for Riemann surfaces in the proof of Theorem 3.13. In the
following theorem, we will formulate a general condition under which the theorem could be
generalized.

Theorem 5.2. Consider a compact manifold " with Kähler boundary m" =  of dimension
dimR" = 3 + 1 = 2= + 1. Suppose we have isomorphismsk : �3−1( , gAd dA ) → � 1( , gAd dA )∨
andk" : �3−1(", gAd dA ) → � 1(", gAd dA )∨ such that the diagram

�3−1( , gAd dA ) �3−1(", gAd d )

� 1( , gAd dA )∨ � 1(", gAd d )∨
� k 

A∗

k"�

(A ∗)∨
(30)

commutes. Then the image A ∗� 1(", gAd d ) ⊆ � 1( , gAd dA ) is a subspace of “half dimension”, i.e.
dimR A ∗� 1(", gAd d ) = =.

Proof. First note that for a manifold, the first singular cohomology group and the first group
cohomology group are always isomorphic. Hence, we can prove the isotropy on singular coho-
mology. The argument is completely analogous to the proof ofTheorem 3.13. Again, according
to the Poincaré-Lefschetz duality theorem [Spa93], we obtain a commutative diagram

�3 (", , gAd d ) �3−1( , gAd dA ) �3−1(", gAd d )

� 1(", gAd d ) � 1( , gAd dA ) � 2(", , gAd d ),

m

� q � [

A∗

�

A ∗ X

the same way as we saw in Eq. (24). According to the condition in Eq. (30), we obtain

�3 (", , gAd d ) � 1( , gAd dA )∨ � 1(", gAd d )∨

� 1(", gAd d ) � 1( , gAd dA ) � 2(", , gAd d ) .

k m

� q � [k−1
 

(A ∗)∨

�

A ∗ X
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It follows that

dimR A
∗� 1(", gAd d ) = rankR A

∗

= rankR(A ∗)∨ by duality
= rankR X by commutativity
= dimR�

1( , gAd ◦dA ) − dimR kerX
= dimR�

1( , gAd ◦dA ) − rankR A ∗ by exactness
= dimR�

1( , gAd ◦dA ) − dimR A ∗� 1(", gAd d ),

and therefore dimR A ∗� 1(", gAd d ) = 1
2 dimR�

1( , gAd d ). �

5.4. Outlook

Suppose we have a compact connected manifold" with compact connected Kähler boundary
 , such that the symplectic Kähler form Ω ∈ Ω2( ) can be extended to a form Ω̃ ∈ Ω2(")
with ]∗Ω̃ = Ω. Furthermore suppose that isomorphisms Ψ andΨ" as described inTheorem 5.2
exist. Then, Theorem 5.1 and Theorem 5.2 show that

A ∗� 1(", gAd d ) ⊆ � 1( , gAd ◦dA )

is a Lagrangian subspace. The next step in generalizing the Lagrangian Submanifold Theo-
rem 3.12 would be to understand which points of -6

�
( ) are non-singular, i.e. the Kähler

counterpart of Proposition 2.7. Afterwards, a theorem similar to Theorem 3.12.2 would need to
be proven in order to show that there actually is a Lagrangian submanifold .� (") ⊆ -6� ( ).

Before performing this generalization, we need to know whether the conditions for Theo-
rem 5.1 and Theorem 5.2 are reasonable. Are there manifolds  and " such that the form Ω
can be extended to Ω̃? Are there isomorphisms Ψ and Ψ"? The natural candidate for Ψ is

Ψ : �3−1( , gAd dA )
∼−→ � 1( , gAd dA )∨, G ↦→ l̃� (·, G)

from Corollary 3.5, but it is not clear how this could be extended to

�3−1(", gAd d ) → � 1(", gAd d )∨.
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A. Appendix: Geometry without an adjective

In modern mathematics, a multitude of different geometric theories exists, each coming with
its intrinsic definitions. Classical algebraic geometry deals with (quasi-projective) varieties;
modern algebraic geometry defines schemes; analytic geometry defines analytic varieties; and
differential geometry defines manifolds.

While these definitions may seem separate when encountering them for the first time, a
student of mathematics soon discovers that they are in fact deeply intertwined, and the more
advanced masters of the subject elegantly dance back and forth between the different concepts.

This section aims to provide a brief overview over the different concepts and to highlight
their connections. None of the work is new, so for the proofs and more detailed descriptions of
each concept, we will refer to the most common literature in the respective field. This section
is aimed at graduate students like me, who have a basic understanding of both algebraic and
differential geometry, but struggle to see it all in a larger context. I hope this helps to see
algebraic and differential geometry not only as two separate concepts, but also as constituents
of a more general geometry theory: “geometry without an adjective”.

A.1. Spaces in geometry

Every geometric theory begins with a topological space equipped with some extra structure.
Classical algebraic geometry deals with varieties, modern algebraic geometry with schemes,
differential geometry with manifolds and analytic geometry with analytic spaces. All of these
spaces have appeared in this thesis at some point. Therefore, we will have a review of their
definitions.

Note that a locally ringed space is a topological space - together with a sheaf of rings O-
such that the stalk O-,G is a local ring (i.e. a ring with exactly one maximal ideal) at any point
G ∈ - .

Definition A.1. 1. An affine algebraic set over C is a locally ringed space (-,O- ), where
- = + (() is the zero locus of some set of polynomials ( ⊆ C[)1, . . . ,)=] equipped with
the Zariski topology, and O- is the sheaf of regular functions on - . If - is an irreducible
topological space, it is called an affine variety over C.

2. A scheme is a locally ringed space (-,O- ) that is locally isomorphic to (spec(�),Ospec(�) ),
i.e. the spectrum of a ring together with its structure sheaf. A scheme that is globally
isomorphic to the spectrum of a ring is called affine scheme. A scheme together with a
morphism - → ( to another scheme ( is called a scheme over ( . If ( = spec(C), then we
call - a scheme over C.

3. A smooth manifold of dimension = is a locally ringed space (-, C∞
-
) that is locally iso-

morphic to (* , C∞
*
), where * ⊆ R= is an open subset and �∞

*
is the sheaf of smooth

functions on * . In addition, we require the topological space - to be Hausdorff and
fulfill the second countability axiom.

4. A complex manifold of dimension 3 is a locally ringed space (-,H- ) that is locally iso-
morphic to (* ,H* ), where* ⊆ C3 is an open subset andH* is the sheaf of holomorphic
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functions on* . In addition, we require the topological space- to be Hausdorff and fulfill
the second countability axiom.

5. An analytic subset of C= is a locally ringed space (* ,H* ), where * = + (() is the zero
locus of some set of holomorphic functions ( ⊆ Hol(,,C), where * ⊆ , ⊆ C= is an
open neighborhood, and H* is the sheaf of holomorphic functions on C= restricted to
* . An analytic space(-,H- ) is a locally ringed space that is locally isomorphic to such
(* ,H* ). We require the topological space - to be Hausdorff.

Amorphism between two spaces is a continuous function that preserves the structure sheaves.
A morphism between algebraic sets is called regular function, smooth function between smooth
manifolds, and holomorphic function between complex manifolds.

Remark A.2. In most classical textbooks, including the ones I used during my graduate stud-
ies, manifolds are defined using local charts with smooth (or holomorphic) transition maps. This
classical definition of a manifold coincides with the one presented here. This is a straightforward
consequence of the fact that the structure sheaves of two different local charts must be preserved.

These different notions of a “space with some geometrical structure” are by no means unre-
lated. The following two theorems illustrate how we can switch back and forth between the
different definitions.

Theorem A.3 (Relating algebraic sets and schemes). Let (-,O- ) be an affine algebraic set,21

and let � = O- (- ) be the global ring of regular functions.

1. As a consequence of Hilbert’s Nullstellensatz, there is a homeomorphism between - and the
maximal spectrum specm(�) [Har77, Cor. I.1.4].

2. There is a fully faithful functor sch : AffC → SchC from the category of affine algebraic
sets to the category of C-schemes, which is given by

- � specm(�) ↦→ - sch = spec(�).

The topological space - consists of the closed points of - sch. - sch is a reduced, separated
scheme of finite type over C [Har77, Prop. II.2.6, Prop. II.4.10].

This shows that every affine algebraic set can be considered a scheme. Sometimes, we will
mark this difference by using both - and - sch. However, whenever the context is obvious, we
will just use - for both the algebraic set and the scheme.

The next important link is the connection between algebraic varieties and analytic spaces. In
1956, Jean-Pierre Serre published his influential article “Géométrie algébrique et géométrie an-
alytique” – affectionately dubbed GAGA [Ser56]. Its results are an important key to connecting
algebraic geometry with complex geometry.

TheoremA.4 (Relating algebraic sets and analytic sets). Let (-,O- ) be an affine algebraic set.21

21More generally, this theorem is true for quasi-projective algebraic sets as well, but we will not need this.
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1. Let * ⊆ - be an open chart, i.e. we have a Zariski-homeomorphism q : * → + ⊆ A=
C
.

There is a unique structure of an analytic space on - , denoted by - an, in which all subsets
* as above are also open and q is a homeomorphism with respect to the complex topology
on + , too [Ser56, Prop.2].

2. Regular functions 5 : - → . are also holomorphic functions with respect to the analytic
topology defined before, which shows that the GAGA functor an : AffC → AnaC : - ↦→ - an

is a faithful functor from the category of affine algebraic sets to the category of analytic sets
[Ser56, Sec. 2.5].

We will see that this theorem also provides us with a number of tools to determine when
an affine algebraic set bears the structure of a complex manifold. First, we will need to discuss
several notions of tangent spaces and smoothness in geometry.

A.2. Tangent spaces in algebraic and differential geometry

Let ( be a base scheme and - → ( an (-scheme. The Zariski tangent space can already be
defined in this general setting. However, in the case ( = specC and - = spec�, where � is
a finitely generated C-algebra, we have a multitude of equivalent definitions of this complex
vector space. In the following definition, we denote the C-algebra of dual numbers by C[Y] =
C[- ]/(- 2) . Y is the element that corresponds to - mod (- 2). In other words, Y2 = 0.

Definition A.5. Let - = spec� as above, and let m be a closed point, i.e. a maximal ideal of
�. Let Am : � → �/m � C be the natural projection. Then the following definitions of the
Zariski tangent space are canonically isomorphic:

1. )m- = {5 : � → C[Y], 5 is a C-algebra homomorphism with c ◦ 5 = Am}, where
c : C[Y] → C is the projection defined by Y ↦→ 0. The elements of the C-algebra C[Y]
are also called the dual numbers.

2. )m- = HomC(m/m2,C) is the dual vector space of the Zariski cotangent space m/m2.

3. )m- = {� : � → C, � is C-linear and � (01) = Am (0)� (1) + Am (1)� (0)}. Such a � is
called a derivation.

All definitions are also valid using the stalk �m and embedding the maximal ideal m ⊂ �m

instead of�. This local definition is the better option when working with schemes that are not
necessarily affine.

Similarly, different equivalent definitions for the tangent space of a smooth (or complex)
manifold exist.

Definition A.6. Let " be a smooth (or complex) manifold, and let : = R (or : = C). The
following definitions of the tangent space )?" at a point ? are canonically isomorphic:

1. )?" is the space of equivalence classes of smooth curves W with W (0) = ? . Two curves
W, X are equivalent when their velocity vectors at 0 are identical, i.e. W ′(0) = X ′(0).

75



2. )?" = Hom: (m?/m2
? , :) is the dual vector space of m?/m2

? , where m? ⊂ C∞(") (or
m? ⊂ H(")) is the maximal ideal of functions vanishing at ? .

3. )?" = {� : � → :, � is :-linear and � (5 6) = 5 (?)� (6) + 6(?)� (5 )} is the space of
derivations at ? on � = C∞(") (or � = H(")).

Definitions A.6.2 and A.6.3 also work when using the stalk C∞? (") (orH? (")) instead. A good
starting point for these equivalences is the reference [Lee13, Chap. 3].

Note that Definition A.6.2 is also well-defined for an analytic space (-,H- ). As explained
in Theorem A.4, GAGA draws a connection between analytic space and affine algebraic sets. It
is very handy that the tangent spaces remain the same under the GAGA functor.

Proposition A.7 (Relating Zariski and complex tangent spaces). Let (-,O- ) be an affine al-
gebraic set, and let (- an,H- an) be the corresponding analytic space. Then, there is a canonical
isomorphism between the tangent spaces )?- � )?- an for every point ? ∈ - .

Proof. Consider the stalks O-,? and H- an,? and the respective maximal ideals m = m? and
man = man

? inside them. Wewill use the definitions)?- = (m/m2)∨ and)?- an = (man/(man)2)∨.
In [Ser56, Prop. 3], Serre showed that the stalks’ completions with respect to the m-adic and
man-adic topology are canonically isomorphic:

Ô-,? � Ĥ- an,? .

In particular, we have an isomorphism

m̂/m̂2 � m̂an/(m̂an)2.

Hence, it is sufficient to show that m/m2 � m̂/m̂2 and man/(man)2 � m̂an/(m̂an)2 in order to
prove that)?- � )?- an. This isomorphism is proved in [AM69, Prop. 10.15], but I will include
a short proof here. An element of m̂ = lim←−−m/m

: is a sequence

(. . . , 03, 02, 01, 0) with 0: ∈ m/m: and c: (0:+1) = 0: ,

where c: : m/m:+1 → m/m: is the canonical projection. O- is Noetherian as a consequence
of Hilbert’s basis theorem, andH- an is Noetherian as well [Ser56, Sec. 4]. Hence, the stalks are
Noetherian as well. For Noetherian rings, we have (m2)̂ = m̂2 [AM69, Prop. 10.15]. Therefore,
an element of m̂2 = lim←−−m

2/m: is a sequence

(. . . , 13, 12, 0, 0) with 1: ∈ m2/m: and c: (1:+1) = 1: .

Since inverse limits are left-exact, we have an exact sequence

0→ m̂2 → m̂→ lim←−−(m/m
: )/(m2/m: ). (31)

The inverse limit lim←−−(m/m
: )/(m2/m: ) consists of sequences

(. . . , 23, 22, 21, 0) with 2: ∈ (m/m: )/(m2/m: ) and c̄: (2:+1) = 2: ,
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with the projection c̄: : (m/m:+1)/(m2/m:+1) → (m/m: )/(m2/m: ). There is a canoni-
cal isomorphism (m/m: )/(m2/m: ) � m/m2 under which c̄: simply becomes the identity.
Therefore, the sequence (. . . , 23, 22, 21, 0) is in fact a constant sequence

(. . . , 2, 2, 2, 0),

i.e. an element of m/m2. In other words, m/m2 � lim←−−(m/m
: )/(m2/m: ). However, all con-

stant sequences are contained in m̂, so that Eq. (31) becomes

0→ m̂2 → m̂→ m/m2 → 0

Thereby, we have a canonical isomorphism m/m2 � m̂/m̂2 as remained to be shown. �

A.3. Singularities of varieties and analytic sets

Let (-,O- ) be an affine algebraic set over C. Now that we have established the notion of a
tangent space in the algebraic and in the analytic case, we will talk about non-singular and
singular points of algebraic varieties. Furthermore, we will see that non-singular points of
- coincide with the non-singular points of - an and that the non-singular points of - an are
actually a complex manifold. A basic reference for this section is [Har77, Sec. I.5].

Definition A.8. A point ? ∈ - is called non-singular, if the local ring O-,? is regular, i.e.
dimCm?/m2

? = dimO-,? . Otherwise, ? is called singular.

Proposition A.9. A point % of an affine algebraic set - is non-singular if and only if it is con-
tained in one unique irreducible component � of - and dimC)?- = dim� [Mil17a, Cor. 4.45].

Proposition A.10. Every open subset of an affine algebraic set - has an open subset of non-
singular points, which is dense in the Zariski topology.22

Proof. If - is irreducible, i.e. an affine variety, refer to [Har77, Cor. II.8.16] for a proof. If not,
consider a decomposition - =

⋃
8 *8 into a finite union of affine varieties using the Lasker-

Noether primary decomposition theorem, the argument can then be generalized by a simple
argument [see Mil17a, Thm. 4.37]. �

Accordingly, let (-,H- ) be any analytic space. Again, a point ? ∈ - is called non-singular,
if the local ringH-,? is regular. We have the following very intuitive characterization of non-
singular points:

Proposition A.11 (Relating non-singular analytic spaces and complex manifolds). A point
? ∈ - of an analytic space (-,H- ) is non-singular if and only if it has a neighborhood (* ,H- |* )
isomorphic to an open subspace of (C=,HC= ) [Ser56, Sec. 4].

This means that - is locally a complex manifold at its non-singular points.

Proposition A.12 (Relating non-singular points in algebraic sets and analytic spaces). Let -
be an affine algebraic set and let - an be the corresponding analytic space. A point ? of - is non-
singular if and only if its image in - an is non-singular.
22An open subset of an affine algebraic set is called quasi-affine algebraic set.
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Proof. It has been proven in [Ser56, Cor. 2] that O-,? andH- an,? have the same dimension. In
Proposition A.7, we saw that the tangent spaces )?- and )?- an are isomorphic, so they have
the same dimension as well. Therefore, the equivalence of non-singularity in the algebraic and
analytic space follows directly from the definitions. �

Combining Propositions A.11 and A.12, this means that the set of non-singular points of
an algebraic variety naturally bears the structure of a complex manifold (as the dimension
remains the same throughout all points of an irreducible variety). More generally, if we have a
not necessarily irreducible algebraic set, then its non-singular points are the disjoint union of
several complex manifolds.

A.4. Lie groups and algebraic groups

Let � be a group with group operation ` : � × � → � and inversion ] : � → � . � is called
a smooth (or complex) Lie group, if � is a smooth (or complex) manifold and both ` and ] are
smooth (or holomorphic) functions.

Analogously,� is called an affine algebraic group if� is an affine algebraic variety and both
` and ] are regular maps.

Finally, a group scheme over C is a group object in the category of schemes over spec(C).
In other words, a group scheme over C is a scheme � with structure morphism � → spec(C)
together with the followingC-morphisms: the group operation ` : �×specC� → � , the neutral
element 4 : spec(C) → � and the inversion ] : � → � , such that associativity and the defining
properties for the neutral element and the inversion are fulfilled.

For any group scheme� overC and anyC-algebra�, the set of�-valued points� (�) actually
is a group [see Mil17b, Sec. 1.4].

These three definitions – Lie group, algebraic group and group scheme – are interrelated.
Every affine algebraic group� can be considered a group scheme under the fully faithful func-
tor sch : AffC → SchC. Indeed, if � is the ring of regular functions of � = specm(�), then
the ring of regular functions of � ×� is given by � ⊗C �. In particular, the functor sch maps
` : � ×� → � to `sch : �sch ×spec(C) �sch → �sch, and accordingly for ]. A point has C as its
ring of regular functions, so 4 ↩→ � turns into 4 : spec(C) → �sch as required. This shows that
an affine algebraic group is in fact a group scheme over C.

Furthermore, it can be seen that every affine algebraic group� is non-singular [see Mil17b,
Prop. 1.26]. In particular, its analytification�an is a complex Lie group. These two observations
enable us to tackle affine algebraic groups with both differential and algebraic methods, has
been useful throughout the thesis.

A.5. The adjoint action of an algebraic group

The Lie algebra g of the Lie group� is isomorphic to the tangent space)4� at the identity. We
have a representation of � in g, the adjoint representation

Ad : � → GL(g) .
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It is defined as follows: Let conj6 : � → �, G ↦→ 6G6−1 be an inner automorphism, then define
Ad6 as

Ad6 = (3 conj6)4 : g→ g,

and we obtain an action of � on its Lie algebra. In Definition A.5, we have seen several iso-
morphic characterizations of the Zariski tangent space, so let us consider the case that� is an
algebraic group as well.

For the proof of Lemma 1.22, it is useful to know what the adjoint representation looks like
in the characterization )4� � {5 : O� (�) → C[Y], c ◦ 5 = A4 } from Definition A.5.1.

Consider the points functor � (·). The isomorphism � � � (C) is given by

� → HomAlgC (O� (�),C), 6 ↦→ A6,

where A6 is the projection such that ker A6 is the maximal ideal representing the closed point 6
in specO� (�). Thereby, )4� is simply

ker (� (c) : � (C[Y]) → � (C)) ,

where c is defined by Y ↦→ 0, and � (c) is the induced group homomorphism. On the other
hand, we have an embedding ] : C ↩→ C[Y], which induces an injective group homomorphism
� (]) : � (C) → � (C[Y]), so � is in fact a subgroup of � (C[Y]). This subgroup acts on the
subgroup )4� ⊆ � (C[Y]) by conjugation,

6.5 = 65 6−1 for any 5 ∈ )4� = ker(� (c)), 6 ∈ � = � (C) . (32)

Note that we write all groups multiplicatively (even though ker� (c) � )4� is abelian). This
action is precisely the adjoint action, as can be seen in [Mil17b].

A.6. Luna’s étale slice theorem for algebraic groups

Definition A.13. Let - and . be two affine algebraic sets. A morphism q : - → . is called
étale at a point G ∈ - (C), if the induced map on tangent spaces (3q)G : )G (- ) → )q (G). is an
isomorphism.

Let� be a reductive affine algebraic group and - an affine algebraic set. Let f : � ×- → -

be a group action and let c- : - → -//� be the projection onto the categorical quotient.

Theorem A.14. Let G ∈ - (C) be a point of the variety of which the orbit $G ⊆ - is closed. Let
�G ⊆ � be the stabilizer subgroup. A subvariety + ⊆ - with the following properties exists:

1. + is an affine variety and contains the point G .

2. + is preserved by the action of �G .

3. �G has a left action on� ×+ via ℎ.(6,~) = (6ℎ−1, ℎ~), and� has a left action on� ×+ via
ℎ.(6,~) = (ℎ6,~). The �-equivariant morphismk : (� ×+ )//�G → - is étale.

4. The image * of k is open and affine in - . Furthermore, it is c- -saturated, i.e. * =

c−1
-
(c- (* )).
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Figure 2: Luna’s étale slice theorem: When �G = {4}, then )G- � )4� ⊕ )G+ .

5. The map + //�G � ((� ×+ )//�G )//�
k̄
−→ * //� is étale at G .

6. The mapsk and (� ×+ )//�G → ((� ×+ )//�G )//� � + //�G induce an isomorphism

(� ×+ )//�G � * ×* //� (+ //�G ) .

The proof for this theorem can be found in [Lun73, Sec. III.1]. When the stabilizer is trivial,
Luna’s étale slice theorem implies that )G- � )4� ⊕ )G+ , and accordingly for all points in the
imagek (� ×+ ) ⊆ - , as Fig. 2 illustrates.

Definition A.15. A subscheme + as described in the above theorem is called an étale slice at
G .

Proposition A.16. The slices in Theorem A.14 additionally fulfill the following properties:

1. The embedding * ↩→ - is an open immersion, and so is the quotient map * //� → -//� .
Therefore, both are étale morphisms, and the map in bullet point 5 of the theorem can be
extended to an étale map + //�G → -//� .

2. Compose � → (� ×+ )//�G with k from bullet point 3, then the image of )4� is precisely
)G$G ⊆ )G- .

Proof. 1. According to the theorem, * ⊆ - is open, so the natural restriction of the structure
sheaf makes* ↩→ - an open immersion. In fact, the statement is implicitly proved in [Lun73],
so we will simply sketch how different parts of the reference [Lun73] have to be combined in
order to obtain the statement.

The theorem is first proved for the case that G is a smooth point, using [Lun73, Lem. II.2.3].
Consider the mapk : (� ×+ )//�G → - . Its image is called * . According to this lemma, * //�
is the image of the quotient map k̄ : ((� ×+ )//�G )//� → -//� . The lemma already shows that
* //� is open (and affine) in -//� , so* //� → -//� is an open immersion.

For the general case, assume that- is embedded in some larger smooth affine variety- ⊆ -̃ .
The theorem is then proved for the smooth -̃ and themapk : (�×+̃ )//�G → -̃ as before. Then,
a base change to - is performed. The proof of the lemma after [Lun73, Lem. fondamentale]
shows that a base change- → -̃ corresponds to a base change-//� → -̃//� on the quotients.
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As open immersions are invariant under base change, [see Sta19, Lemma 01JU], this proves that
the image of the changed mapsk- and k̄-//� will be open in - and -//� , respectively.

Let O- be the structure sheaf of - , then O* = O- |* . The Zariski cotangent space of X at G
is mG/m2

G for the maximal ideal mG of the stalk $-,G . We have an isomorphism $* ,G � $-,G ,
which shows that the Zariski tangent spaces of - and * at G coincide. This means that open
immersions are étale.

2. The orbit $G is the image of the map fG : � → -,6 ↦→ 6G . We have a commutative
diagram

� -

(� ×+ )//�G

fG

k

and in particular, the image of )4� is )G$G . �

A.7. Orientation

A multitude of equivalent definitions exist as to when a smooth manifold " can be called
orientable. A survey of different definitions can be found in [Kre13]. For our purposes, there
are two relevant definitions.

The first definition defines orientability via the manifold’s atlas. A manifold is called ori-
entable, if an atlas exists for which the differentials of all transition functions have a positive
determinant. In that case, choosing an orientation simply amounts to choosing a maximal atlas
with that property. This definition is handy: For example, it immediately shows that the com-
plex conjugation on C is an orientation-reversing map on R2 � C as its Jacobian determinant
is -1.

The second definition involves the singular homologywith coefficients inZ. An=-dimensional
smooth manifold is called orientable if we have a “top-level” isomorphism

�=,sing(",Z) � Z .

Choosing an orientation then simply amounts to choosing a generator of that free abelian
group, i.e. 1 or -1. The inverse image of 1 respectively -1 under the isomorphism is also called
fundamental class, written ["]. This definition is useful as well, as it gives us a very simple
characterization of orientation-reversing maps: A diffeomorphism 5 : " → " is orientation-
reversing if its induced map

5∗ : �=,sing(",Z) → �=,sing(",Z), U ↦→ 5 ◦ U

is given by 5∗(U) = −U , or under the isomorphism Z→ Z, G ↦→ −G .
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B. Appendix: Principal �-bundles and representations

B.1. Flat principal �-bundles and group representations

Definition B.1. Two �-principal bundles c : % → " and c ′ : % ′ → " are called isomorphic
(or, more precisely, isomorphic over the identity), if a �-equivariant diffeomorphism Φ : % →
% ′ exists such that the diagram

% % ′

" "

Φ

c c ′

id

commutes.

It is a well-known fact that isomorphism classes of flat principal �-bundles stand in one-
to-one correspondence to conjugacy classes of �-representations of the fundamental group.
In this section, we will present a short survey of the definitions that are necessary for the
establishment of this correspondence. For technical details and a complete proof see [Bau14,
Satz 4.7].

Let " be a smooth connected manifold and let � be a Lie group. Consider the fundamental
group c1(") = c1(",<0) at the base point<0. Let d : c1(") → � be a group homomorphism.
We will now define a principal bundle %d → " associated to the representation d . Fix a
universal covering "̃ → " . The group c1(") acts on "̃ via deck transformations. Thereby,
we have an action on the product "̃ ×� via W .(G̃, 6) = (WG̃, d (W)6). Then, we define the orbit
space

%d = ("̃ ×�)/c1(")

of this action. The canonical flat connection on "̃ ×� induces a flat connection on %d .
On the other hand, consider any principal �-bundle % with a flat connection �. For any
[W] ∈ c1("), the parallel transport of � along W is a �-right invariant map

P�W : %<0 → %<0 .

Furthermore, the fibers are �-equivariantly diffeomorphic to � , so after choosing such a dif-
feomorphism %<0 � � , we obtain

P�W : � → �, 6 ↦→ hol(W)6,

where hol(W) ∈ � depends on the choice of the diffeomorphism %<0 � � . The algebraic
properties of P� show that hol : c1(") → � is a group homomorphism and changing the
diffeomorphism varies hol by conjugation in � . hol is called the holonomy representation of
c1("). The representation hol determines % “uniquely modulo conjugation”:

Theorem B.2. Let Hom(c1("),�)/� be the orbit space of the conjugation of representations.
There is a one-to-one correspondence of sets

{(%,�) flat principal �-bundle} /∼ 1:1←→ Hom(c1((),�)/�
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between the isomorphism classes of flat principal bundles and group representations modulo con-
jugation in � . The maps are given by

% ↦→ hol

and
%d ← � d.

Consider a connected component of Hom(c1((),�). Then, all corresponding flat principal
bundles are in fact isomorphic as principal bundles. This means that we can consider them as
different flat structures of the same principal bundle, as the following proposition states.

Proposition B.3. Let � ⊆ Hom(c1("),�)/� be a connected component. Then, all flat prin-
cipal bundles corresponding to elements of � are isomorphic as principal bundles (forgetting the
connection). In other words, the bijection from Theorem B.2 induces a bijection

F (%d0)
1:1←→ �

for any d0 ∈ � , where F (%d0) ⊂ A(%d0) is the space of flat connections on %d0 as defined in
Definition B.9.

B.2. The space of connections

This section is based on [AB83, Sec. 3] and [Bau14, Chap. 3]. Let " be a finite-dimensional
manifold, and let � be a Lie group. Let c : % → " be a smooth principal �-bundle. For an
element< ∈ " , we will write %< = c−1(<) for the fiber, and we abbreviate %? = �c (?) for an
element ? ∈ % . The pullback bundle c∗)" = {(?, E), ? ∈ %, E ∈ )c (?)"} is a vector bundle over
% . We have a �-equivariant short exact sequence

0→ )�%
]−→ )%

3c−−→ c∗)" → 0

of vector bundles over % , where)�% = {(?, E), ? ∈ %, E ∈ )?%? � g} is the tangent bundle along
the fiber.

Definition B.4. A connection � on % is defined as one of the following equivalent data:

1. a �-equivariant smooth section E� : )% → )�% of the above sequence, i.e. E� ◦ ] =

id)�% . The subspace +% = )�% ⊆ )% is also called the vertical bundle, and E� the vertical
projection.

2. a �-equivariant smooth section B� : c∗)" → )% , i.e. 3c ◦ B� = idc∗)" . The subspace
�% = B� (c−1)") � c∗)" is also called the horizontal bundle and ℎ� = B� ◦ 3c : )% →
�% the horizontal projection.

3. a �-equivariant splitting )% � )�% ⊕ c∗)" into a direct sum of vector bundles, such
that ] and 3c become the natural embedding and projection, respectively.
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4. a so-called connection form �, i.e. a 1-form � ∈ Ω1(%, g) with '∗6� = Ad(6−1) ◦ � for all
6 ∈ � and �(-̃ ) = - for all - ∈ g.23

Let+ be a R-vector space, and consider the graded algebra Ω•(%,+ ) of+ -valued differential
forms. For any connection �, the pullback ℎ∗

�
: Ω•(%,+ ) → Ω•(%,+ ) maps differential forms

to horizontal differential forms, i.e. forms that vanish on vertical vector fields (vector fields with
values in +% ).

Definition B.5. For any connection�, the absolute differential �� : Ω@ (%,+ ) → Ω@+1(%,+ ) is
defined to be �� = ℎ∗

�
◦3 , where 3 is the exterior derivative. It induces the covariant derivative

3� : Ω@ (", �) → Ω@+1(", �), where � = % ×� + is the associated vector bundle with respect
to a representation d : � → GL(+ ).

We have 3�3�l = �� ∧l [see Bau14, Satz 3.16]. Therefore, 3� ◦3� = 0 if and only if �� = 0.
In other words, flat vector bundles � as above turn the Ω•(", �) into a cochain complex.

Definition B.6. The cohomology groups �:dR(", �) corresponding to Ω•(", �) are called de
Rham-cohomology with twisted coefficients.

The adjoint bundle is the vector bundle ad % = % ×� g, which is defined as follows: Let� act
on % × g via 6.(?, G) = (?6−1,Ad6 G). The orbit space (% × g)/� is a vector bundle, which we
call the adjoint bundle.

Proposition B.7. Let " be a compact finite-dimensional manifold. The set A(%) of all connec-
tions is an affine space24 with transformation space Ω1(", ad %), where ad(%) is the adjoint vector
bundle.

This is proved in [AB83, Sec. 3] or [Bau14, Folg. 3.1]. In consequence, we obtain a manifold
structure on A(%).

Corollary B.8. A(%) is an infinite dimensional manifold with tangent space

)�A(%) � Ω1(", ad %)

at any connection � ∈ A(%).

Proof. Fix any point � ∈ A(%). Then, any other point can be written �′ = � + [ for some [ ∈
Ω1(", ad %) according to Proposition B.7. We define those q� : A(%) → Ω1(", ad %), �′ ↦→
�′ −� = [ to be the charts of the manifold. �

23For an element- ∈ g of the Lie algebra, the fundamental vector field -̃ is defined via -̃ (D) = 3
3C
(D ·exp(C- )) |C=0 ∈

()�%)D .
24By affine space, we mean a set with a transitive and free vector space action, and not an affine algebraic set as

defined in algebraic geometry.
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B.3. Curvature and flat connections

Definition B.9. The curvature is the function

� : A(%) → Ω2(%, g), � ↦→ � (�) = ���.

The level set F (%) = �−1(0) ⊆ A(%), which consists the set of connections with vanishing
curvature, is called the set of flat connections.

We will simply define the tangent space to be )�F = ker(3� )� for � ∈ F .

Proposition B.10. For any� ∈ F , the tangent space)�F is given by all elements[ of)�A(%) �
Ω1(", ad %) with 3�[ = 0, where 3� is the covariant derivative. With the definition of twisted de
Rham cohomology, see Definition B.6, we obtain )�F = / 1(", ad %).

Proof. Consider the line �C = � + C[ for C ∈ R in A(%). The curvature along this line is
calculated in [AB83, Sec. 4]; it is

� (�C ) = � (�) + C3�[ +
1
2
C2 [[, [] . (33)

The differential of � at � is given by

(3� )�[ =
3

3C
� (�C ) |C=0 =

3

3C
� (�) + C3�[ +

1
2
C2 [[, [] |C=0 = 3�[,

which implies that )�F consists of the [ with 3�[ = 0. �

B.4. The gauge group action

DefinitionB.11. A gauge transformation 5 : % → % of the principal bundle % is a�-equivariant,
fiber-preserving diffeomorphism. The groupG(%) of gauge transformations is also called gauge
group.

For any connection form � and any gauge transformation 5 , the pullback 5 ∗� is again a
connection form. In particular, the gauge groupG(%) acts on the spaceA(%) of all connections.

Proposition B.12. The gauge group can be identified with the space of invariant smooth func-
tions, �∞(%,�)� . Hence, it is an infinite-dimensional Lie group with corresponding Lie algebra
gau(%) � Ω0(", ad %) � �∞(%, g)� .

Let 5 ∈ G(%). Its corresponding element in �∞(%,�)� is found as follows: Simply write

? ↦→ 5 (?) = ?.05 (?),

then 05 ∈ �∞(%,�)� , see [Bau14, Sec. 3.5] for a more detailed discussion. Note that (5 6) (?) =
?.06 (?)05 (?), so the map G(%) → �∞(%,�)� is in fact an anti-isomorphism of Lie groups.
Therefore, we must be cautious when switch between identifications. For example, the adjoint
action of �∞(%,�)� on its Lie algebra �∞(%, g)� is given by

Ad� (05 ) ◦ - = Ad�
∞ (%,�)� (05 ) (- ) = AdG(% ) (5 −1) (- ), (34)
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where - ∈ �∞(%, g)� � gau(%) is a Lie algebra element, and Ad� : � → GL(g) is the adjoint
representation of � .

Consider the evaluation map eval� : G(%) → A(%) defined by 5 ↦→ 5 ∗�. The following
lemma will turn out useful:

Lemma B.13. The differential (3 eval�)4 : gau(%) → )�A(%) is given by

3� : Ω0(", ad %) → Ω1(", ad %)

under the identifications gau(%) � Ω0(", ad %) and )�A(%) � Ω1(", ad %).

Consider an element - ∈ gau(%) of the Lie algebra. Its fundamental vector field -̃ ∈
Γ(A(%),)A(%)) is defined by

-̃ (�) = 3

3C
|C=0 exp(C- ) .� = (3 eval�)4 (- ) ∈ )�A(%) .

In particular, we can conclude:

Corollary B.14. Under the identifications of Lemma B.13, we have

-̃ (�) = 3� (- ),

for all � ∈ A(%), where -̃ is the fundamental vector field and 3� is the covariant derivative.

C. Appendix: Remarks on cohomology

C.1. A bilinear map on differential forms with coefficients

Let" be a manifold and let �
c�−−→ " be a smooth vector bundle with a C-vector space+ as its

fiber. Let (*U ⊆ ",qU : c−1
�
(*U ) → + ×*U ) be a trivialization such that the transition maps

qV ◦q−1U are locally constant on*U ∩*V ×+ . Such a vector bundle is called a flat vector bundle.
This notion of flatness is actually related to the flatness of connections on principal bundles
from Appendix B.3 above, but we will not need this.

The space of differential:-forms with coefficients in � is the set of smooth sections Ω: (", �) =
Γ(",∧: ) ∗" ⊗R �).

Proposition C.1. Consider a C-bilinear form � : + ×+ → C on the vector space+ . It induces a
�∞(")-bilinear form

Ω1(", �) × Ω1(", �) → Ω2(",C), ([, \ ) ↦→ �∗([ ∧ \ ) .

Proof. � induces a C-linear map � : + ⊗C+ → C. This induces a vector bundle homomorphism
� ⊗ � → C, where C denotes the trivial bundle with fiber C on" . Indeed, locally we have

c−1�⊗� (*U )
qU−−→ *U ×+ ⊗ +

id×�−−−−→ *U × C = c−1C (*U ) .
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This is obviously smooth. It is well-defined because � (and thus also � ⊗ �) is flat: a transition
to another chart*V will be constant on every connected component of (*U ∩*V ) ×+ ⊗ + .

Thereby, we obtain a �∞(")-bilinear map

Γ(",) ∗" ⊗R �) × Γ(",) ∗" ⊗R �) → Γ(",) ∗" ⊗R ) ∗" ⊗R � ⊗R �)
∼−→ Γ(",) ∗" ⊗R ) ∗") ⊗�∞ (") Γ(", � ⊗R �)
�−→ Γ(",) ∗" ⊗R ) ∗") ⊗�∞ (") Γ(",C)

∧−→ Γ(",
2∧
) ∗") ⊗�∞ (") Γ(",C)

� Γ(",
2∧
) ∗" ⊗R C).

This is precisely the form we wanted. �

C.2. Comparing singular, de Rham and group cohomology

In this section, let" be any arc-connected topological space. Let Γ be an arbitrary group.

DefinitionC.2. An arc-connected topological space" is called aspherical or Eilenberg-MacLane
space of type (Γ, 1), if

c: (") = 0 for all : > 1,
c1(") � Γ.

More generally, we say that" is aspherical up to A if c: (") = 0 for all 1 < : < A .

Aspherical spaces are quite remarkable, as their singular cohomology (as well as homology)
groups are determined by Γ only. In other words, the singular cohomology does not decode
any topological information. Historically, the cohomology theory of groups was developed in
order to provide a topology-independent description of the singular cohomology of aspherical
spaces, and more generally Eilenberg-MacLane spaces.

We will state this idea more precisely in the following theorem. Let � be a Γ-module, the
module of coefficients.

Theorem C.3. Suppose that the Γ-action on� is trivial and let" be aspherical up to A . Then, the
group (co)homology is naturally isomorphic to the singular (co)homology with coefficents in�. In
particular, we have isomorphisms

�:sing(",�) � �:Grp(c1("), �)
�:,sing(",�) � �:,Grp(c1("), �)

for : < A .

This trivial case is explained in [Die89, Sec. 3.V.1.D, Eq. 38]. It has the following gener-
alization: Consider a c1(")-module � (with a possibly non-trivial c1(")-action). As " is
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arc-connected, a locally constant sheaf on " has the same fiber everywhere. Now, consider
a locally constant sheaf A with constant fiber A? = � for all ? ∈ " . Such a sheaf is called
a local coefficient system. Then, we have the following statement for comparing singular and
group cohomology.

Theorem C.4. Let " be aspherical up to A . Then, the group (co)homology and the singular
(co)homology with local coefficients are isomorphic up to A . This means that

�:sing(",A) � �:Grp(c1("), �)
�:,sing(",A) � �:,Grp(c1("), �)

for all : < A .

Unfortunately, I could not find a complete reference for this theorem, but [Eil47, Thm. 16.1]
might be a start. A proper treatment of this topic, perhaps using the general approach via sheaf
cohomology, might make up an interesting thesis on its own.

Finally, singular cohomology with local coefficients can also be compared to the de Rham-
cohomology.

TheoremC.5 (Generalized de Rham-Theorem). Let" be a compact connected smooth manifold.
Then, de Rham-cohomology with coefficients is isomorphic to the singular cohomology with local
coefficients. More precisely, let � → " be a flat vector bundle with fiber�, andA a local coefficient
system as before. Then, we have isomorphisms

�:dR(", �) � �
:
sing(",A)

for all : .
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