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Abstract

The system considered is the motion of a charged point mass within a compact, connected subset of
the euclidean plane with non-empty interior, bounded by a curve diffeomorphic to the unit circle, with
constant magnetic field perpendicular to the plane and with reflection at the boundary according to the
law of reflection. Two models are introduced, which both describe the motion in terms of the iteration
of a smooth map preserving a symplectic stucture. Both models are discussed for zero and non-zero
magnetic field. For the Birkhoff billiards model, the related concept of generating functions is discussed.
The orbit dynamics model is generalized to higher dimensions. The equivalence of both models in the
two-dimensional case is shown.

Zusammenfassung

Betrachtet wird die Bewegung eines geladenen Massepunktes innerhalb einer kompakten, zusammen-
hängenden Teilmenge der euklidischen Ebene mit nichtleerem Inneren, berandet durch eine Kurve welche
diffeomorph zum Einheitskreis ist, mit einem konstanten Magnetfeld senkrecht zur Ebene, und mit
Reflektion am Rand nach dem Reflektionsgesetz. Zwei Modelle werden vorgestellt, beide beschreiben die
Bewegung in Form von der Iteration einer glatten Abbildung welche eine symplektische Struktur erhält.
Für das Birkhoff-Billard-Modell wird das verwandte Konzept der erzeugenden Funktion diskutiert. Das
Orbit-Dynamik-Modell wird auf höhere Dimensionen verallgemeinert. Die Äquivalenz beider Modelle im
zweidimensionalen Fall wird gezeigt.
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Introduction

The object of study in this text will be mathematical billiards. In two-dimensional space, this can be
described as follows: Consider a non-empty compact connected subset Ω ⊆ R2 whose boundary is a
smooth connected manifold of codimension 1. The set Ω shall be called the billiards table, or just table
for short. Consider the following flow within the billiards table, which can be imagined as the movement
of a point mass: For an initial position x ∈ int(Ω) and an initial velocity v ∈ R2, the point mass moves
along a straight line

t 7→ x+ tv

as long as it stays in the interior of the table. Here, t can be understood as the time. As soon as the
point mass reaches the table boundary, the flow goes on by elastic collision of the point mass at the
boundary, such that the angle of incidence is equal to the angle of reflection (see Fig. 1).

Figure 1: Billiards in 2 dimensions with straight line flow

The reflection law can also be described as follows: The velocity vector vin before reflection can be
split up into a component tangential to the edge curve of the table, and into an orthogonal component
(with respect to the standard scalar product 〈·, ·〉 on R2):

vin = v‖ + v⊥.

The velocity vrefl after reflection can then be computed by reversing the sign of the orthogonal component:

vrefl = v‖ − v⊥.

Using the outward pointing unit normal vector n of the boundary curve of the table at the point of
reflection, the orthogonal component v⊥ can be given as

v⊥ = 〈vin, n〉n.

Then
vrefl = vin − 2v⊥ = vin − 2〈vin, n〉n

and thus

‖vrefl‖2 = ‖vin − 2〈vin, n〉n‖2 =

√
‖vin‖22 − 2 · 2〈vin, n〉〈vin, n〉+ 4〈vin, n〉2‖n‖22 = ‖vin‖2,

so the absolute value of the velocity does not change by reflection. Using this description, the reflection
law can be generalized to higher dimensions.
Apart from the flow of the point mass along straight lines, which shall be called straight line flow, or
SLF for short, the circular flow or CF for short, is also considered: Here, after fixing a radius R > 0 and
a rotational direction (i.e. clockwise or counterclockwise), the point mass moves along circular arcs of
radius R in the fixed rotational direction, whereby the absolute value of the velocity remains constant.
If the mass reaches the table boundary, it gets reflected according to the same reflection law as described
above, and continues on a new circular arc with same radius R and same rotational direction. This
radius R shall be called Larmor radius, following the nomenclature in [1, Section 1 and 2] or [2, Section
1.1]. The circular flow is depicted in Fig. 2.
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Figure 2: Billiards in 2 dimensions with circular flow

For the circular flow, the data of the radius and the rotational direction can be encoded in the
magnetic field B 6= 0, where

R =
‖v‖2
|B|

,

and the rotational direction is given by the sign of B, where it is taken to be counterclockwise if B > 0
and clockwise if B < 0. In physics, the symbol B usually denotes magnetic flux density. This similarity
of notation is intentional because the circular flow can be physically motivatied by considering the
point mass to be a charged particle moving in the R2-plane while there is a constant magnetic field
perpendicular to this plane. Details of the physical motivation can be found in section 2.3. Because of
this, the CF case will also be called the magnetic case or magnetic billiards. The case B = 0 can then
be considered to be the limit case R → ∞ which corresponds to the straight line flow. Although such
a limit process will not be explicitly considered in this text, it helps to keep this in mind to see the
connection between SLF and CF.
Given an initial position in the interior of the table and an initial velocity, the resulting flow curve of the
point mass shall be called billiard trajectory or trajectory for short. Observe that the absolute value of
the velocity remains constant along the entire trajectory. If the initial velocity is zero, then the trajectory
is for ever stationary; this case shall not be considered. Neither shall the trajectories of the circular flow
be considered where no reflections with the boundary occur, i.e. trajectories described by a closed circle
in the interior of the table.
Furthermore, to avoid the occurence of “degenrate” trajectories which become tangential to the table
boundary (see Fig. 3), a certain regularity condition is imposed on the billiards table.

Figure 3: “degenerate” trajectories for SLF and CF

Fixing the absolute value of the velocity, the billiard trajectories can be described as a discrete
dynamics of the positions and velocities at the table boundary. This is done in the Birkhoff billiards
model, which is the topic of the first part of this text.
The second part of this text deals with an alternative description: The billiard trajectories are seen as
a discrete dynamics of the trajectory segments between the reflections, or rather of the extensions of
these segments: For SLF, a discrete dynamics of oriented lines is considered, and for CF, it is a discrete
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dynamics of circles of radius R. This description shall be called the orbit dynamics model. Whereas the
Birkhoff billiards model only refers to dimension 2, the orbit dynamics model is formulated in the setting
of higher dimensions.
The starting point of the orbit dynamics model is the description of the billiards flow as a Hamiltonian
flow in T ∗RN ∼= RN × RN , which induces an R-action in the case of SLF, or an S1-action in the case of
CF. The orbit space is then obtained by a quotient construction, which is described in a more general
setting in [6, Chapter 5.4]. This construction is detailed and applied to the specific case of the straight
line flow and circular flow. Finally, the two-dimensional case of the orbit dynamics model is compared
with Birkhoff billiards.
In both models, the discrete dynamics is decribed by a smooth invertible map T , called billiards map,
from a smooth manifold to itself:

T : PS −→ PS.

Call this manifold PS the phase space. In both models, the phase space has a symplectic sturcture: It
can be equipped with a symplectic form, i.e. a closed, non-degenerate 2-form. This form is preserved by
the billiards map, which makes the map T a symplectomorphism. Moreover, the natural correspondence
of the two models in dimension 2 preserves this symplectic structure.
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1 Birkhoff billiards in dimension 2

1.1 Phase space and billiard map

Let the billiards table be a compact connected subset Ω ⊆ R2 such that ∂Ω is a smooth 1-manifold
diffeomorphic to S1, i.e. a smooth closed curve without self-intersections with a finite length L > 0. To
simplify notation, write

S1
L := R/LZ

in the rest of this text. Describe the boundary ∂Ω by the curve

γ : S1
L −→ R2

which is parametrized by unit length, and runs along ∂Ω in counterclockwise orientation.
Fix the absolute value of the velocity of billiard trajectories to 1. Thus for the circular flow, the Larmor
radius is simply given by

R =
1

|B|
.

For the straight line flow, use the notion that B = 0 and R = +∞. The radius of curvature of γ is given
by

ρ : S1
L −→ R ∪ {+∞}, ρ(l) :=

1

‖γ′′(l)‖2
.

Here, the value of positive infinity is taken if the second derivative of γ vanishes. The following regularity
condition is inspired by [2, Section 1.1].

Definition 1.1 (Regularity condition). Let Ω ⊆ R2 be a billiards table, i.e. a compact connected subset
of R2 with boundary diffeomorphic to S1. Then Ω is said to fulfil the regularity condition if

max
l∈S1L

ρ(l) < R or min
l∈S1L

ρ(l) > R.

Proposition 1.2. For the case of straight line flow, the regularity condition is equivalent to asking that
Ω be a convex set.

Proof. Since R = +∞, it must hold that

ρ(l) < +∞ ∀l ∈ S1
L,

which is the same as asking that γ′′ never vanishes. Now because γ is parametrized by unit length, it
holds that

0 =
d

dl
〈γ′(l), γ′(l)〉 = 2〈γ′(l), γ′′(l)〉,

so γ′′ is perpendicular to γ′. Considering that the curve γ bounds the connected convex set Ω, the
second derivative γ′′ can be geometrically described as “inwards pointing” or “outwards pointing”. By
continuity of γ′′, transitioning from inwards to outwards pointing would require that γ′′ vanishes at some
value of l ∈ S1

L. But this is forbidden by the regularity condition. Thus, the regularity condition for
straight line flow can be fulfilled if and only if γ′′ is always inwards pointing, and this equivalent to the
condition that Ω is a convex set.

Because of following remark, degenerate trajectories as in Fig. 3 do not occur:

Remark 1.3. Let Ω ⊆ R2 be a billiards table fulfilling the regularity condition. For B 6= 0, for a circle
with radius equal to the Larmor radius R = 1/|B|, exactly one of following three cases can occur:

• The circle does not have any common points with the table boundary ∂Ω.

• The circle has exactly one common point with the table boundary ∂Ω, and at this point the circle
touches ∂Ω, i.e. the intersection is not transversal.

• The circle has two distinct common points with ∂Ω, and the intersection is transversal in both
points.

In particular, if a circle intersects ∂Ω transversally, then it intersects ∂Ω in exactly two points, and
transversally in both points.
Similarly, if B = 0, the analogous statement is valid for straight lines instead of circles.
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Idea of Proof. If B = 0 then Ω is a convex set, and this implies that the above statement is valid for
straight lines. So consider the case B 6= 0.
Use the terminology that a circle intersects ∂Ω if, while going along the circle, there is a transition from
inside ∂Ω to outside ∂Ω, and that a circle touches ∂Ω if there is no such transition. Observe that at
a touching point, the tangents of ∂Ω and the circle agree, but at an intersection point, in general, the
tangents might or might not agree: The intersection might be transversal (i.e. the tangents do not agree)
or non-transversal (i.e. the tangents agree). Also observe that every common point of a circle with ∂Ω
must fall into one of these three categories: touching point, point of transversal or of non-transversal
intersection.
Also use the terminology that two common points of a circle with ∂Ω are consecutive if, while following
the circle in counterclockwise orientation, one intersection point comes directly after the other.
First, prove the fact that a circle of Larmor radius R cannot have a non-transversal intersection point
with ∂Ω. For this, let m ∈ R2 and consider the function

dm : S1
L −→ R, l 7→ ‖γ(l)−m‖2

2 −R2 .

The first and second derivatives of this function are

d′m(l) = 2〈γ′(l) , γ(l)−m〉 and d′′m(l) = 2(〈γ′′(l) , γ(l)−m〉+ 1) .

If a circle with Larmor radius R centered at m has a non-transversal intersection with ∂Ω at γ(l0), then
because it is an intersection, the function dm has a zero with change of sign at l0. Furthermore, because
the intersection is non-transversal, γ′(l0) ⊥ γ(l0)−m. This in turn implies d′m(l0) = 0. But this means
that dm has a saddle point at l0, i.e. d′m(l0) = d′′m(l0) = 0. Now because γ is parametrized by unit length,
γ′′ ⊥ γ′, which implies γ′′(l0) ‖ γ(l0)−m, thus d′′m(l0) = 0 implies

〈γ′′(l0) , γ(l0)−m〉 = −1 = −‖γ′′(l0)‖2 · ‖γ(l0)−m‖2︸ ︷︷ ︸
=R

.

This can only be fulfilled if ρ(l0) = 1/‖γ′′(l0)‖2 = R, but this is a contradiction to the regularity
condition.
Now, if a circle of Larmor radius has only one common point with ∂Ω, then this cannot be an intersection,
because an intersection with a transition from inside ∂Ω to outside ∂Ω, or vice versa, implies that another
transition in the other dircetion must occur, so there would be at least another intersection point.
Also, the case that there is an open interval I ⊆ S1

L of common points with a circle of Larmor radius
(i.e. for all l ∈ I, the point γ(l) lies on the circle) can be excluded, because in this case, the part of
∂Ω described by γ

∣∣
I

would be a circular arc with Larmor radius, so the radius of curvature would be
ρ(l) = R for all l ∈ I, which contradicts the regularity condition.
The last case which remains to be considered is the case of three or more common points. The idea for
this: Assume that a circle C of Larmor radius has three or more common points with ∂Ω. Then by
moving C such that “two of the common points move together”, it should be possible to find two circles
of Larmor radius Cin and Cout which touch ∂Ω, but are locally inside / locally outside Ω, respectively:
If all common points are transversal intersection points, if γ(l1), γ(l2) and γ(l3) are three consecutive
transversal intersection points, then Cin and Cout can be obtained by on the one hand “moving together”
γ(l1) and γ(l2), and on the other hand by “moving together” γ(l2) and γ(l3). If one of the intersection
points already is a touching point, say γ(l1), then C is one of the circles Cin and Cout, and if γ(l2) is the
next common point after γ(l1), then the other circle is obtained by “moving γ(l1) and γ(l2) together”.
But if Cin and Cout can be constructed, then at the points lin and lout where these circles touch ∂Ω, the
curvature fulfils

ρ(lin) > R and ρ(lout) 6 R ,

so there must be a point l0 such that ρ(l0) = R, which contradicts the regularity condition.

From this point on, assume that the billiards table Ω fulfils the regularity condition. Now, every trajectory
can be described as a discrete dynamics of positions and velocities at the table boundary. This description
of the billiard dynamics is called Birkhoff billiards. The phase space of Birkhoff billiards is given by

PSBirk := S1
L × (0;π),

this is a smooth 2-manifold. The coordinates (l, α) describe the billiard trajectory leaving the point
γ(l) of the table boundary at an angle of α relative to the tangent vector γ′(l), and then following the
respective billiard flow (see Fig. 4).
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Figure 4: Birkhoff billiards

Now, fixing a value for B, the billiard map is defined on this phase space:

TB : PSBirk −→ PSBirk, (l, α) 7→
(
l̂(l, α), α̂(l, α)

)
.

Here, l̂ and α̂ are the component funtions of TB , where l̂(l, α) and α̂(l, α) describe the position and
velocity at the next boundary point after (l, α), respectively (see Fig. 4).

Proposition 1.4. Let Ω ⊆ R2 be a billiards table fulfilling the regularity condition, and let TB be the
associated billiard map. Then TB is a diffeomorphism.

Proof. The billiard trajectory segment starting with position and velocity as described by (l, α) ∈ PSBirk

describes either a line segment (if B = 0) or a circular arc of a circle with Larmor radius (if B 6= 0).
According to Remark 1.3, the intersection of this billiard trajectory segment with ∂Ω at the second point
is transversal, thus the map TB is well-defined. The continuity of TB is apparent from the fact that
“degenrate” trajectories (see Fig. 3) are not possible, and thus no discontinuities occur.
Smoothness of TB is apparent, since ∂Ω is smooth and of finite length, and a smooth variation of the
coordinates (l, α) leads to a smooth variation of the line segment (for B = 0) or the circular arc (for
B 6= 0), and thus also the second point of intersection and the angle of intersection at this point smoothly

vary, such that the component functions l̂ and α̂ are smooth.
To see that TB is a diffeomorphism, define the smooth involution

r : PSBirk −→ PSBirk, (l, α) 7→ (l, π − α),

then the inverse map can be described as

TB
−1 = r ◦ T−B ◦ r.

Note that the regularity condition depends only on the absolute value of B, thus if Ω fulfils the regularity
condition with respect to a magnetic field B, then it also does this with respect to magnetic field
−B. Thus T−B is well-defined and smooth as well, so also TB

−1 is smooth. This proves that TB is a
diffeomorphism.

1.2 Symplectic structure and generating function

Define the 2-form
ωBirk := sinα dα ∧ dl

on PSBirk, this is taken from [7, Section 1.2].

Proposition 1.5. (PSBirk, ωBirk) is a symplectic manifold.

Proof. Because PSBirk is of dimension 2, it is sufficient to prove that ωBirk does not vanish anywhere.
But dα ∧ dl does not vanish anywhere, and because α ∈ (0;π), it holds that sinα 6= 0.

The next aim is to prove that TB preserves the symplectic structure, this can be done by means of a
generating function.
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Proposition 1.6. Let

T : PSBirk −→ PSBirk, (l, α) 7→
(
l̂(l, α), α̂(l, α)

)
be a smooth map with component functions l̂ and α̂, and define the diagonal ∆ :=

{
(l, l)

∣∣ l ∈ S1
L

}
. Let

U ⊆
(
S1
L × S1

L

)
\∆ be open such that

∀(l, α) ∈ PSBirk :
(
l, l̂(l, α)

)
∈ U.

Then a function

G : U −→ R with ∂2G
(
l, l̂(l, α)

)
= −T ∗

(
∂1G

(
l, l̂(l, α)

))
∀(l, α) ∈ PSBirk (1)

is called generating function of T , and it fulfils the following property: Define

F : PSBirk −→ R, (l, α) 7→ G
(
l, l̂(l, α)

)
and

λ := ∂1G
(
l, l̂(l, α)

)
dl and ω := dλ =

∂

∂α

(
∂1G

(
l, l̂(l, α)

))
dα ∧ dl.

Call λ the associated 1-form of G and ω the associated 2-form. Then it holds that

λ− T ∗λ = dF and ω − T ∗ω = d2F = 0,

thus T preserves ω.

Proof. It only needs to be proven that λ− T ∗λ = dF . This follows directly from Eq. (1):

λ− T ∗λ = ∂1G
(
l, l̂(l, α)

)
dl − T ∗

(
∂1G

(
l, l̂(l, α)

)
dl
)

= ∂1G
(
l, l̂(l, α)

)
dl − T ∗

(
∂1G

(
l, l̂(l, α)

))
dl̂

(1)
= ∂1G

(
l, l̂(l, α)

)
dl + ∂2G

(
l, l̂(l, α)

)
dl̂ = dF.

The name “generating function” is taken from [7, Section 1.4]. Using above proposition, the task of
proving that TB preserves ωBirk amounts to finding a fitting generating function .For the case of B = 0,
this is done in [7, Section 1.2], and that proof is reformulated here.

Proposition 1.7. The function

G0 :
(
S1
L × S1

L

)
\∆ −→ R, (l, l1) 7→ ‖γ(l)− γ(l1)‖2

is a generating function of T0, with associated 2-form ωBirk. Thus, by Prop. 1.6, T0 preserves ωBirk.

Figure 5: A trajectory segment (l, α)
T07→ (l1, α1) of the straight line flow
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Proof. Calculate the partial derivatives of G0:

∂1G0(l, l1) =

〈
γ(l)− γ(l1)

‖γ(l)− γ(l1)‖2︸ ︷︷ ︸
unit vector from γ(l1) to γ(l)

, γ′(l)

〉
and ∂2G0(l, l1) =

〈
γ(l1)− γ(l)

‖γ(l1)− γ(l)‖2︸ ︷︷ ︸
unit vector from γ(l) to γ(l1)

, γ′(l1)

〉
.

Because γ is parametrized by unit length, these are scalar products of unit vectors, and their values are
given by the cosine of the angle between them. Fix (l, α) ∈ PSBirk and define

T0(l, α) =
(
l̂(l, α), α̂(l, α)

)
=: (l1, α1),

then it follows that

∂2G0

(
l, l̂(l, α)

)
= ∂2G0(l, l1) = cosα1 = cos α̂(l, α)

= −T0
∗(− cosα) = −T0

∗(cos(π − α)) = −T0
∗
(
∂1G0

(
l, l̂(l, α)

))
,

see Fig. 5. Thus, Eq. (1) is fulfilled, and so G0 is a generating function of T0, with associated 2-form

∂

∂α

(
∂1G0

(
l, l̂(l, α)

))
dα ∧ dl =

∂

∂α
(− cosα) dα ∧ dl = sinα dα ∧ dl = ωBirk.

To find a generating function for the CF case, some considerations need to be made: To prove thet TB
preserves ωBirk, a generating function GB is required such that

∂1GB

(
l, l̂(l, α)

)
= − cosα.

Because GB is a function of two “position coordinates” from S1
L, this condition implicitly requires that

the angle α (or at least its cosine) can be determined as a function of two consecutive length coordinates

l and l̂(l, α). For SLF, this is true: Given l, l1 ∈ S1
L with l 6= l1, these uniquely determine angles

α, α1 ∈ (0;π) such that T0(l, α) = (l1, α1). For CF, it is not always possible to determine such angles,
and if they can be determined, the angles are not always unique.

Figure 6: Two possibilities of connecting γ(l) and γ(l1) by a billiard trajectory segment for B > 0

If the points γ(l) and γ(l1) lie apart by a distance greater than 2R, there is no way of connecting them
by a circular arc with Larmor radius R, so no fitting value for α can be found. If the distance is smaller
or equal to 2R, then the points can only be connected if the circular arc from γ(l) to γ(l1) following the
rotational direction determined by the sign of B lies within the billiards table. If this is the case, then
if the distance between γ(l) and γ(l1) is exactly 2R, there is a unique semi-circular arc connecting these
points, but if the distance between them is smaller than 2R, there might be two different possible choices
of α, call them αs and αl (see Fig. 6).
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Notation 1.8. For B 6= 0, the short arc case / long arc case shall refer to situations concerning one
iteration of the billiard map TB, where the trajectory segment described by this iteration corresponds
to a short / long arc, respectively. Here, a short arc refers to a circular arc of angle smaller or equal
to π, and a long arc refers to a circular arc of angle greater or equal to π. Thus, these cases are not
mutually exclusive, but occur at the same time when the circular arc has the angle of exactly π, i.e. when
it describes a semicircle.
The short arc case and the long arc case shall be denoted by a superscript “s” or “l” on all relevant
quantities, respectively. To summarily describe both cases at the same time (in the same way that the
symbol “±” describes “+” and “−”), the notation “s, l” as a superscript will be used, e.g. αs,l for the
two possible choices of an angle α, where αs refers to the short arc case, and αl to the long arc case.

Remark 1.9. If B 6= 0 and the regularity condition is met by

max
l∈S1L

ρ(l) < R,

i.e. if “large radii” or “weak magnetic fields” are considered, then only the short arc case can occur.

Idea of Proof. The condition implies that

ρ(l) < R < +∞ ∀l ∈ S1
L

which in turn implies that the billiards table is convex, as explained in Prop. 1.2. Furthermore, because
the radius of curvature is smaller than R everywhere, Ω is contained in a circle or radius R, i.e. there
exists

BR(p0) :=
{
q ∈ R2

∣∣‖p0 − q‖2 6 R
}

such that Ω ⊆ BR(p0).

Now let l, l1 ∈ S1
L with l 6= l1, such that a trajectory segment connects points γ(l) and γ(l1), then this

circular arc of Larmor radius R is also contained in BR(p0). But a circle of radius R can contain a
circular arc of same radius R only if the arc is a short arc.

In [1, Section 4, Prop. 2] the generating function

G = L+
1

R
S (2)

is considered, where L is the length of the circular arc connecting two points on ∂Ω, and S is the area
of that portion of the billiards table which lies to the right of the trajectory segment, see Fig. 7.

Figure 7: Quantities L and S used in the generating function for circular flow

It should be noted that in [1], only the case B > 0 is considered1, and it is explicitly assumed that
only the short arc case occurs2.
In the following text, the possibility of the long arc case shall also be included, as well as the case B < 0.

1See [1, Section 2], in particular the sign convention qB < 0, which implies counterclockwise rotation.
2“Suppose that the shape of [the billiards table] is such that it cannot contain any arc of [Larmor radius] and angle

larger than π. [. . . ] In such a case, [the billiards map] is called a (symplectic) twist map.”, see [1, Section 3] The condition
that the billiards map is a twist map is one of the prerequisites of [1, Prop. 2 in Section 4].
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Inspired by (2), a generating function which can informally be described as “a function of the trajectory
segment / circular arc” given by

GB = L+B · S (3)

is considered. Observe that in the limit case of B = 0, this coincides with the generating function G0

defined in Prop. 1.7.
The next definition introduces some notation to describe the generating function GB more formally, as
a function of the coordinates in S1

L of the starting point and ending point of a trajectory segment, while
considering both the short arc case and the long arc case.

Definition 1.10. Define
L,S : PSBirk −→ R

as in Fig. 7 with respect to the points (l, α) and TB(l, α), i.e. L is the length of the trajectory segment
from (l, α) to TB(l, α), and S is the area of that part of the billiards table which lies to the right of the
trajectory segment from (l, α) to TB(l, α). Define W s,W l as

W s,l :=
{

(l, l1) ∈
(
S1
L × S1

L

)
\∆
∣∣ l and l1 can be connected by a short / long arc trajectory segment

}
,

and define maps
αs,l : W s,l −→ (0;π)

such that for (l, l1) ∈ W s,l, the trajectory segment defined by
(
l, αs,l(l, l1)

)
describes a short / long arc,

respectively. Define functions

GB
s,l : W s,l −→ R, (l, l1) 7→ L

(
l, αs,l(l, l1)

)
+B · S

(
l, αs,l(l, l1)

)
.

Furthermore, define maps

α1
s,l : W s,l −→ (0;π), (l, l1) 7→ α̂

(
l, αs,l(l, l1)

)
.

The above definition can be summarized as follows: If (l, l1) ∈W s,l describe a pair of distinctive position
coordinates which can be connected by a short / long arc, then the functions αs,l and α1

s,l describe the
corresponding angles such that

TB : (l, αs,l(l, l1)) 7→ (l1, α1
s,l(l, l1))

is the billiard dynamics, following a short / long arc.
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Remark 1.11. Define

W b :=
{

(l, l1) ∈
(
S1
L × S1

L

)
\∆
∣∣ l and l1 can be connected by a semicircular trajectory segment

}
,

then
W b ⊆W s ∩W l and ∂W s = ∂W l = ∆ ∪W b and W s,l = int

(
W s,l

)
∪W b.

The functions L and S are smooth, and the functions αs,l, α1
s,l and GB

s,l are continuous, and are smooth
on

int
(
W s,l

)
= W s,l\W b.

Furthermore, following “boundary condition” holds:

αs
∣∣
W b = αl

∣∣
W b , and thus also GB

s
∣∣
W b = GB

l
∣∣
W b and α1

s
∣∣
W b = α1

l
∣∣
W b .

Consider the space

W s∪l := W s
∐
W b

W l

which refers to the disjoint union of W s and W l “glued together” along the boundary W b. The resulting
space W s∪l can be understood as a topological 2-manifold, the spaces W s and W l can then be understood
as subspaces of W s∪l with an additional differentiable structure.
Because of the boundary condition, the maps αs and αl can also be glued along W b, such that the map

αs∪l : W s∪l −→ (0;π), w 7→ αs,l(w) if w ∈W s,l

is well-defined and continuous. The maps GB
s∪l and α1

s∪l, which can be constructed in the same manner,
are also well-defined and continuous. In particular, all these maps are also defined on W b.
Now let

pr1 : S1
L × S1

L −→ S1
L, (l, l1) 7→ l ,

then a map pr1
s∪l can be defined on W s∪l by gluing pr1

∣∣
W s and pr1

∣∣
W l along W b. The map

ηB :=
(
pr1

s∪l, αs∪l
)

: W s∪l −→ PSBirk, w 7→
(
pr1

s∪l(w), αs∪l(w)
)

is well-defined and continuous, and smooth on int
(
W s,l

)
, respectively. It is also a homeomorphism, with

continuous inverse map

ηB
−1 : PSBirk −→W s∪l, (l, α) 7→

(
l, l̂(l, α)

)
∈W s,l ⊆W s∪l.

This should be read as follows: If the trajectory segment from γ(l) to γ
(
l̂(l, α)

)
is a short / long arc,(

l, l̂(l, α)
)

is taken to be an element of W s,l, respectively.

In the limit case of B = 0, following Remark 1.9, only the short arc case can occur. Then

W b = W l = ∅ and W s∪l = W s =
(
S1
L × S1

L

)
\∆,

so ηB simplifies to
η0 :

(
S1
L × S1

L

)
\∆ −→ PSBirk.

By above remark, instead of describing the billiard dynamics as a map on PSBirk, it can also be described
as a map on the space W s∪l.
In the next Lemma, the partial derivatives of GB

s,l are computed.

Lemma 1.12. On int
(
W s,l

)
, it holds that

dGB
s,l = − cosαs,l dl + cosα1

s,l dl1.

Proof. For (l, l1) ∈W s,l, define A to be the area to the right of the line segment from γ(l) to γ(l1), and
let D be the area between the line segment from γ(l) to γ(l1) and the circular arc, see Fig. 8.
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Figure 8: Areas A and D

The area S can then be described by

S = A− sign(B) ·D.

Define

C := L − 1

R
D = L − |B| ·D,

then
GB

s,l = L+BS = L+B(A− sign(B) ·D) = L+B ·A− |B| ·D = B ·A+ C.

Observe that A does not depend on the magnetic field B, nor does it differ for the short arc and long
arc cases. Furthermore, C only depends on R and on the distance between γ(l) and γ(l1), although it
differs for the short arc and long arc cases. Thus, A and C can be defined as functions

A :
(
S1
L × S1

L

)
\∆ −→ R

and
CB

s,l : (0; 2R) −→ R, dist 7→ CB
s,l(dist).

Remember that the distance between γ(l) and γ(l1) is given by G0(γ(l), γ(l1)), where G0 is the generating
function for the SLF case, see Prop. 1.7. Then

GB
s,l(l, l1) = B ·A(l, l1) + CB

s,l ◦G0(l, l1).

Observe that this is consistent with the case B = 0, beacuse in this case C0
s,l(dist) = dist. The partial

derivatives of GB
s,l are

∂iGB
s,l = B · ∂iA(l, l1) + ∂iG0 ·

(
CB

s,l
)′
◦G0, for i = 1, 2. (4)

The partial derivatives ∂iG0 are known from the proof of Prop. 1.7, only the angles need to be named
differently. Call the corresponding angles ϕ and ϕ1 as in Fig. 8, then

∂1G0 = − cosϕ and ∂2G0 = cosϕ1. (5)

The derivatives of A are

∂1A = −1

2
G0 sinϕ and ∂2A =

1

2
G0 sinϕ1 , (6)

this can be proven using Stokes: Let γ = (γx, γy) be the coordinate functions of γ. For simplicity, use
A(l, l1) to denote the area as a value (i.e. a non-negative real number) and also as the geometric entity
(i.e. a measurable subset of R2) at the same time. Then

A(l, l1) =

∫
A(l,l1)

dx ∧ dy =

∫
∂A(l,l1)

xdy =

l1∫
l

γx(s)γ′y(s) ds+

1∫
0

(tγx(l) + (1− t)γx(l1))(γy(l)− γy(l1)) dt

=

l1∫
l

γx(s)γ′y(s) ds+
1

2
(γx(l) + γx(l1))(γy(l)− γy(l1)) .
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Taking the derivative with respect to the first coordinate yields

∂1A =
∂A(l, l1)

∂l
= −γx(l)γ′y(l) +

1

2
γ′x(l)(γy(l)− γy(l1)) +

1

2
(γx(l) + γx(l1))γ′y(l)

=
1

2
〈i(γ(l1)− γ(l)) , γ′(l)〉 = −1

2
‖γ(l1)− γ(l)‖2 cos

(
ϕ+

π

2

)
= −1

2
G0 sinϕ .

Here, multiplication with i denotes rotation by π/2 in the counterclockwise direction, i.e. R2 is identified
with C via the standard complex structure, i · (x, y) := (−y, x).
Taking the derivative of A(l, l1) with respect to the second coordinate yields

∂2A =
∂A(l, l1)

∂l1
= +γx(l1)γ′y(l1) +

1

2
γ′x(l1)(γy(l)− γy(l1))− 1

2
(γx(l) + γx(l1))γ′y(l1)

= −1

2
〈i(γ(l)− γ(l1)) , γ′(l1)〉 = −1

2
‖γ(l)− γ(l1)‖2 cos

(
ϕ1 +

π

2

)
=

1

2
G0 sinϕ1 .

To compute the derivative of CB
s,l, write

CB
s,l = LBs,l −

1

R
DB

s,l.

Here, LBs,l and DB
s,l are meant to refer to the same geometric quantities as defined by L and D, but

here are viewed as functions only of the distance “dist” between the points γ(l) and γ(l1), and depending
on R. Then with

δ := arcsin

(
dist

2R

)
,

see Fig. 9, it holds that
LBs = 2δR and LBl = 2(π − δ)R.

Figure 9: Angle δ and area of triangle Tr

Moreover, with the area of the triangle Tr as in Fig. 9, it holds that

Tr =
R

2
dist ·

√
1−

(
dist

2R

)2

and
DB

s = δR2 − Tr and DB
l = (π − δ)R2 + Tr.

Taking the expressions for LBs,l and DB
s,l together and inserting them in the expression for CB

s,l, while
using the expression for Tr, it follows that

CB
s = δR+

dist

2
·

√
1−

(
dist

2R

)2

and CB
l = (π − δ)R− dist

2
·

√
1−

(
dist

2R

)2

.

With
∂

∂ dist
δ =

1√
1−

(
dist
2R

)2 · 1

2R
,
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it follows that (
CB

s,l
)′

(dist) = signs,l

√
1−

(
dist

2R

)2

, (7)

where
signs = +1 and signl = −1.

Using the fact that B = sign(B)/R and that

√
1−

(
dist
2R

)2
= cos δ, and inserting Eq. (5), (6) and (7) in

(4), the derivatives of GB
s,l are

∂1GB
s,l = −sign(B) sin δ sinϕ−signs,l cos δ cosϕ and ∂2GB

s,l = sign(B) sin δ sinϕ1+signs,l cos δ cosϕ1 .

By means of the cosine addition formula, these further simplify to

∂1GB
s,l = −signs,l cos

(
δ − signs,lsign(B)ϕ

)
and ∂2GB

s,l = signs,l cos
(
δ − signs,lsign(B)ϕ1

)
. (8)

A certain “abuse of notation” has occured here: The angle “δ” refers to the same geometric quantity
throughout, but where it was initially defined as a function of “dist”, here in Eq. (8) it is taken to be a
function of (l, l1) via the identification “dist = G0(l, l1)”. This is why the function G0 does not appear
here although it appears in Eq. (4).
The angles and signs in Eq. (8) can be further simplified: Consider the cases B > 0 and B < 0 separately,
also consider the short arc case and long arc case separately for each of these, see Fig. 10.

(a) B < 0, short arc (b) B < 0, short arc

(c) B < 0, short arc (d) B < 0, short arc

Figure 10: Relations of the angles α,ϕ and α1, ϕ1 with δ

It follows that, for the short arc case and B < 0,

α = ϕ+ δ and α1 = ϕ1 + δ

and for the short arc case and B > 0,

α = ϕ− δ and α1 = ϕ1 − δ.
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For the long arc case and B < 0,

α = π + ϕ− δ and α1 = π + ϕ1 − δ

and for the long arc case and B > 0,

α = ϕ+ δ − π and α1 = ϕ1 + δ − π.

Using these identities for the angles, and the cosine rules

∀x ∈ R : cosx = cos(−x) and cos(π − x) = − cosx,

the partial derivatives of GB
s,l simplify to

∂1GB
s,l = − cosαs,l − cos and ∂1GB

s,l = cosα1
s,l.

This concludes the proof.

Now to the problem of proving that TB preserves the symplectic form ωBirk. The proof closely follows
the method in Prop. 1.6, except that, instead of having a generating function on an open subset of(
S1
L × S1

L

)
\∆, the function GB

s∪l defined on W s∪l is used. This finally justifies using the term “gener-

ating function” for GB
s∪l.

Proposition 1.13. Define the function

FB := GB
s∪l ◦ ηB−1 : PSBirk −→ R,

where
GB

s∪l : W s∪l −→ R

and ηB are defined as in Remark 1.11. Then

dFB = − cosα dl + cos α̂ dl̂.

Furthermore, TB preseves ωBirk.

Proof. Observe that the restriction of ηB
−1 to int

(
W s,l

)
, given by

ηB
−1
∣∣
W s,l : PSBirk −→W s,l, (l, α) 7→

(
l, l̂(l, α)

)
is smooth. Thus, for (l, α) ∈ ηB

(
int
(
W s,l

))
the function FB yields

FB(l, α) = Gs,lB

(
l, l̂(l, α)

)
,

and thus by Lemma 1.12 and chain rule, and using

αs,l
(
l, l̂(l, α)

)
= α and α1

s,l
(
l, l̂(l, α)

)
= α̂(l, α),

the exterior derivative of FB at (l, α) is

dFB
∣∣
(l,α)

= − cosα dl
∣∣
(l,α)

+ cos α̂(l, α) dl̂
∣∣
(l,α)

. (9)

What remains to be considered is the case (l, α) ∈ ηB
(
W b
)
, i.e. when the billiard trajectory segment

from (l, α) to TB(l, α) is a semicircular arc. First, observe that FB itself is smooth: The functions FB
and GB

s∪l describe the same geometric entity, namely the value of the generating function as described
in Eq. (3). The difference is that FB describes the trajectory segment by coordinates (l, α), and GB

s∪l

describes it by coordinates (l, l1) as well as the information about whether the short arc case or long arc
case is being considered. From the geometric construction, it is apparent that the value of FB smoothly
varies with l and α, therefore FB is smooth.
Next, consider the local topological structure of W b: By definition,

W b ⊆
{

(l, l1) ∈
(
S1
L × S1

L

)
\∆
∣∣ ‖γ(l)− γ(l1)‖2 = R

}
=: ∆R.
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Now, ∆R is a 1-submanifold of
(
S1
L × S1

L

)
\∆, in particular, for any (l, α) ∈ ηB

(
W b
)
, there are sequences

{(ln, αn)}n∈N in ηB
(
int
(
W s,l

))
such that

lim
n−→∞

(ln, αn) = (l, α) .

Considering that the component functions l̂ and α̂ of TB are smooth, by continuity of the various functions
and 1-forms in Eq. (9) it follows that

dFB
∣∣
(l,α)

= lim
n−→∞

dFB
∣∣
(ln,αn)

= − cosα dl
∣∣
(l,α)

+ cos α̂(l, α) dl̂
∣∣
(l,α)

.

Now, taking the exterior derivative of the equation

dFB = − cosα dl + cos α̂ dl̂

results in
0 = d2FB = sinα dα ∧ dl − sin α̂ dα̂ ∧ dl̂ = ωBirk − TB∗ωBirk,

thus TB preserves ωBirk.
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2 Billiards as a dynamics of the orbit space

The regularity condition in Def. 1.1 guarantees that any straight line intersecting the billiards table
boundary transversally has exactly two points of intersection, and both intersections are transversal.
Similarly, for CF, any circle of Larmor radius R transversally intersecting the table boundary has exactly
two intersections with it, both of which are transversal.
This makes it possible to think of the billiard dynamics as a discrete dynamics of an orbit space: These
are oriented lines for SLF, and circles of Larmor radius R for CF, see Fig. 11.

Figure 11: The billiard map as discrete dynamics of circles (for CF) or oriented lines (for SLF)

The aim of this section is to formalize this idea. For this, the flow in the surrounding space (i.e. not
restricted to the billiards table) is described as a Hamiltonian flow of a Hamiltonian system, and then
a quotient construction leads to the description of the orbit space of this flow. The billiard map then
operates on an open subset of this space, namely the subset of all orbits which intersect the billiards
table transversally. As in section 1, a regularity condition for the billiards table is formulated.

2.1 Moment maps and symplectic quotients

The following statements about the theory of symplectic quotients, leading up to and including Prop. 2.2,
except for Notation 2.1, are paraphrased and summarized from [6, Section 5.2 to 5.4].
Consider a symplectic manifold (M,ω) as well as a smooth Lie group action of G on M , then the action
is called symplectic if, for every g ∈ G, the map

ψg : M −→, m 7→ g ·m

is a symplectomorphism. Let g := Lie(G), the associated Lie algebra. The action of G on M defines a
map

g −→ X(M,ω), ξ 7→ Xξ :=
d

dt

∣∣∣∣
t=0

ψexp(tξ) ,

where
exp : g −→ G

is the Lie group exponential, and

X(M,ω) := {X ∈ X(M) |ω(X, ·) is closed},

is the set of symplectic vector fields.
A symplectic group action is called weakly Hamiltonian if, for every ξ ∈ g, the 1-form ω(Xξ, ·) is exact.
If so, then each Xξ admits a Hamiltonian function Hξ, i.e. Hξ is a real-valued function on M such that
Xξ is the associated Hamiltonian vector field fulfilling

ω(Xξ, ·) = dHξ.

This equation defines the Hamiltonian functions Hξ up to a constant, and the constants can be chosen
in such a way that the map

g −→ C∞(M), ξ 7→ Hξ

17



is linear. Choose constants for the functions Hξ in this way.
A weakly Hamiltonian action is called Hamiltonian if, for ξ ∈ g and g ∈ G, it holds that

Hξ ◦ ψg = HAd(g−1)ξ .

Here,

Ad(g−1) : g −→ g, ξ 7→ d

dt

∣∣∣∣
t=0

g−1 exp(tξ)g

is the adjoint action of g−1.
Now consider a Hamiltonian action of a Lie group G on a symplectic manifold (M,ω), then a moment
map is a smooth map

µ : M −→ g∗

which fulfills the condition that
〈µ(p), ξ〉 = Hξ(p),

where the brackets “〈·, ·〉” denote the pairing between g∗ and g.
The coadjoint action of g ∈ G is given by

Ad∗(g) : g∗ −→ g∗, ξ∗ 7→
(
η 7→

〈
ξ∗,Ad(g−1)η

〉)
,

or, equivalently,
〈Ad∗(g)ξ∗, η〉 :=

〈
ξ∗,Ad(g−1)η

〉
.

Now, to be able to formulate a proposition about symplectic quotients more precisely, the following
notation will be useful:

Notation 2.1. Consider a family of isomorphic vector spaces {Vi}i∈I , where I is an index set, as well
as an associated family of linear isomorphisms {Fij : Vi −→ Vj}i,j∈I such that

Fii = idVi and Fjk ◦ Fij = Fik for all i, j, k ∈ I.

Call this family of vector spaces, together with the associated family of linear isomorphisms, an associative
vector space family.
Call any other vector space V , together with linear isomorphisms {Fi : V −→ Vi}i∈I with the property

Fij ◦ Fi = Fj for all i, j ∈ I, (10)

a representation of the associative vector space family.
Observe that each member Vi0 of the family, together with {Fi0i : Vi0 −→ Vi}i∈I , is a representation of
the associative vector space family.
A linear map to / from the associative vector space family is understood as a linear map to / from a
member of the family of vector spaces, or a map to / from a representation of the family. Using the fitting
associated linear maps, such a map can be understood as a linear map to / from any other representation
of the family.
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Proposition 2.2. Consider a Hamiltonian group action of a Lie group G on a symplectic manifold
(M,ω), and let µ : M −→ g∗ be a moment map. Let ξ∗ ∈ g∗ be a fixed point of the coadjoint action, i.e.

Ad(g)ξ∗ = ξ∗ for all g ∈ G .

Then the G-action on M restricts to Q := µ−1(ξ∗). If the G-action on Q is free and proper, then ξ∗ is
a regular value of µ, and Q is a coisotropic submanifold, i.e. for all q ∈ Q it holds that TqQ

ω ⊆ TqQ.
Furthermore, the G-orbits

O(p) := {g · p | g ∈ G}

for p ∈ Q are isotropic leaves which foliate Q. (This in particular implies that for p ∈ Q the G-orbit
O(p) is a submanifold of Q, with TqO(p) = TqQ

ω for all q ∈ O(p).) Moreover, the quotient space, or
orbit space

Q := Q/G := {O(q) | q ∈ Q}

is then a smooth manifold of dimension

dimQ = dimM − 2 dimG

which inherits a symplectic structure ω from M , uniquely determined by the condition that π∗ω = ω
∣∣
Q

.

Here,
π : Q −→ Q, q 7→ [q] := O(q)

is the canonical projection of Q onto the quotient Q, which is a surjective submersion.
The tangent space of the quotient at a point [q] can be described by the associative vector space family{

TrQ

TrO(q)

}
r∈O(q)

with well-defined associated linear isomorphisms

Linrs :
TrQ

TrO(q)
−→ TsQ

TsO(q)
, [X] 7→

[
dψg

∣∣
r
(X)

]
, r, s ∈ O(q),

where g ∈ G is unique such that g · r = s. The tangent space T[q]Q is then taken to be any representation
of this associative vector space family.
The differential of π at q ∈ Q can be described by

dπ
∣∣
q

: TqQ −→
TqQ

TqO(q)
∼= T[q]Q, V 7→ [V ].

Proof. The complete proof will not be stated here, but only the parts which are not found in other sources.
For the majority of the proof, see [6, Prop. 5.4.5, Prop. 5.4.13 and the text before it, Prop. 5.4.15].
The proofs of those propositions implicitly use the quotient manifold theorem, which can be found
in [5, Theorem 21.10], for instance. From there, the fact that π is a smooth surjective submersion is
taken.
The ideas for the description of the tangent spaces of Q are inspired by [6, Proof of Prop. 5.4.5], however,
there the description is not as precise as it is possible with Notation 2.1. In particular, no mention of
the consistency of the various representations of the tangent space is made, and no condition similar to
Eq. (10) is checked. This is the only condition that remains to be checked here: Let q ∈ Q. It needs to
be checked that Linrs are well-defined linear isomorphisms, and that

Linrr = id, Linst ◦ Linrs = Linrt for r, s, t ∈ O(q)

are fulfilled.
Let r, s ∈ O(q). To prove that Linrs is well-defined, use the isomorphism theorem of linear algebra:
Consider

L̃inrs := prq,s ◦ dψg
∣∣
r

: TrQ −→
TsQ

TsO(q)
, X 7→

[
dψg

∣∣
r
(X)

]
,

where prq,s : TsQ −→ TsQ
TsO(q) is the canonical projection. Because ψg is a diffeomorphism, the differential

at each point is a linear isomorphism, so L̃inrs is a surjective map as a composition of surjective maps.
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Compute the kernel: Let X ∈ TrQ such that
[
dψg

∣∣
r
(X)

]
= 0, i.e. dψg

∣∣
r
(X) ∈ TsO(q). This is equivalent

to
X = dψg−1

∣∣
s
◦ dψg

∣∣
r
(X) ∈ dψg−1

∣∣
s
(TsO(q)),

since dψg
∣∣
r

and dψg−1

∣∣
s

are inverse to each other. By definition, the G-orbit O(q) preserves the G-action,
so ψg−1 restricts to a map

ψg−1 : O(q) −→ O(q) ,

and so the derivative also restricts as follows:

dψg−1

∣∣
s

: TsO(q) −→ TrO(q).

This map is surjective, thus dψg−1

∣∣
s
(TsO(q)) = TrO(q), so X ∈ TrO(q). Thus the kernel is computed:

ker L̃inrs = TrO(q). This proves well-definedness of Linrs.
To understand that Linrr = id for r ∈ O(q), it is sufficient to note that dψe

∣∣
r

= id, and this is true
because ψe = id.
The fact that Linst ◦ Linrs = Linrt for s, t ∈ O(q) readily follows from the fact that if g, h ∈ G are the
unique elements such that g · r = s and h · s = t, then hg ∈ G is the unique element such that hg · r = t,
and from the fact that

dψh
∣∣
s
◦ dψg

∣∣
r

= dψhg
∣∣
r
.

As stated in Prop. 2.2, the symplectic form on Q is given by

π∗ω = ωQ, where π : Q −→ Q is a smooth surjective submersion.

This property is in fact a defining property of the space (Q,ω), which is to be understood as follows:

Proposition 2.3.

(i) Le Q and Q be smooth manifolds, and let π : Q −→ Q be a smooth surjective submersion. Then,

for another smooth manifold Q̃, there exists a diffeomorphism F : Q −→ Q̃ if and only if there
is a smooth surjective submersion π̃ : Q −→ Q̃ such that π̃ and π are constant on each other’s
fibers. Furthermore, the maps F and π̃ uniquely determine each other via the following commutative
diagram:

Q

Q Q̃

π π̃

F

(ii) Let the situation be as in above diagram, i.e. π and π̃ are smooth surjective submersions and F is
a diffeomorphism and the diagram commutes. Let ω and ω be differential k-forms on Q and Q,
respectively, with π∗ω = ω. Then, for a differential k-form ω̃ on Q̃, the following equivalence holds:

F ∗ω̃ = ω ⇐⇒ π̃∗ω̃ = ω .

Furthermore, the above equivalence uniquely defines ω̃.

Proof. The proof of (i) can be found in [5, Theorem 4.31].
Prove (ii): Let q ∈ Q and X1, . . . , Xk ∈ TqQ. Let q := π(q), and for j = 1, . . . , k, let Xj := dπ

∣∣
q
(Xj).

Then the condition π∗ω = ω at q can be written as

ω
∣∣
q

(
X1, . . . , Xk

)
= ω

∣∣
q
(X1, . . . , Xk). (11)

Furthermore, it holds that
F ∗ω̃

∣∣
q

(
X1, . . . , Xk

)
= π̃∗ω̃

∣∣
q
(X1, . . . , Xk), (12)

this can be seen as follows:

F ∗ω̃
∣∣
q

(
X1, . . . , Xk

)
= ω̃

∣∣
F (q)

(
dF
∣∣
q

(
X1

)
, . . . ,dF

∣∣
q

(
Xk

))
= ω̃

∣∣
π̃(q)

(
d(F ◦ π)

∣∣
q
(X1), . . . ,d(F ◦ π)

∣∣
q
(Xk)

)
= ω̃

∣∣
π̃(q)

(
dπ̃
∣∣
q
(X1), . . . ,dπ̃

∣∣
q
(Xk)

)
= π̃∗ω̃

∣∣
q
(X1, . . . , Xk).
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Now, first prove “ =⇒ ”:
Let F ∗ω̃ = ω be given. Then

π̃∗ω̃
∣∣
q
(X1, . . . , Xk)

(12)
= F ∗ω̃︸︷︷︸

=ω

∣∣
q

(
X1, . . . , Xk

) (11)
= ω

∣∣
q
(X1, . . . , Xk).

Because this holds for any q ∈ Q and X1, . . . , Xk ∈ TqQ, this proves π̃∗ω̃ = ω. Now, prove “⇐= ”:
Let π̃∗ω̃ = ω. Then

F ∗ω̃
∣∣
q

(
X1, . . . , Xk

) (12)
= π̃∗ω̃︸︷︷︸

=ω

∣∣
q
(X1, . . . , Xk)

(11)
= ω

∣∣
q

(
X1, . . . , Xk

)
.

Now, because this is true for all q ∈ Q and X1, . . . , Xk ∈ TqQ, and because π and dπ are surjective, this
is true for all q ∈ Q and X1, . . . , Xk ∈ TqQ, so this proves F ∗ω̃ = ω.

2.2 Orbit space of a Hamiltonian flow

Consider a symplectic manifold (M,ω) and a Hamiltonian function H : M −→ R, and let XH be the
associated Hamiltonian vector field, i.e. the unique vector field determined by

ω(XH , ·) = dH ,

and assume that the Hamiltonian flow φt of XH is global. Assume further that one of the following two
cases hold: On all non-stationary points of the flow, either the flow is non-periodic everywhere, or it is
periodic everywhere with a globally fixed minimum period P > 0 for every orbit. In both cases, this
leads to a group action on M defined by the flow: In the first case, it is

G = (R,+) yM, t ·m := φt(m) for t ∈ G,

and in the second case, it is

G = (R/PZ,+) yM, [t] ·m := φt(m) for [t] ∈ G,

whereby the well-definedness in the second case follows directly from the fact that the maps φt and φt+zP
are identical for any integer z.
In both cases, the action is smooth. Moreover, on the set of all non-stationary points, the action is free.
Because the maps φt are symplectomorphisms, the action is symplectic:

Proposition 2.4. The Hamiltonian flow preserves the symplectic structure.

Proof. Prove φ∗sω = ω for all s ∈ R. For s = 0, this equation apparently holds. Furthermore,

d

ds
φ∗sω =

d

dt

∣∣∣∣
t=0

φ∗s+tω =
d

dt

∣∣∣∣
t=0

φ∗sφ
∗
tω = φ∗s

(
d

dt

∣∣∣∣
t=0

φ∗tω

)
= φ∗sLXHω

= φ∗s(ιXH dω︸︷︷︸
=0

+d ιXHω︸ ︷︷ ︸
=dH

) = φ∗sd
2H = 0.

This implies that φ∗sω = ω for all s ∈ R.

For both choices of G, it is abelian, and the associated Lie algebra is g = R. For G = R, the Lie
exponential map exp : g −→ G is the identity on R, and for G = R/PZ, it is the quotient map
R −→ R/PZ. Thus, the map R = g −→ X(M,ω) is given by

ξ 7→ Xξ :=
d

dt

∣∣∣∣
t=0

φtξ = ξ ·XH .

Thus, the Hamiltonians for ξ ∈ g can be chosen as Hξ = ξH. Because the group acting on M is abelian,
the adjoint action Ad(g−1) : g −→ g is the identity, and because Hξ = ξH, the condition for the action
to be Hamiltonian can be written as

H ◦ φt = H ∀t ∈ R,

prove this:
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Proposition 2.5. The Hamiltonian flow preserves the Hamiltonian function.

Proof.
d

dt
H(φt(p)) = dH

∣∣
φt(p)

(
d

dt
φt(p)

)
= dH(XH)

∣∣
φt(p)

= ω(XH , XH)
∣∣
φt(p)

= 0.

With the identification g∗ = R∗ ∼= R, a moment map can be chosen as identical with the Hamiltonian
function:

µ = H : M −→ g∗ ∼= R.

Observe that, with the identification g∗ ∼= R, the inner multiplication of g∗ and g is the same as the
standard multiplication in R. Furthermore, note that, because Ad(g−1) is the identity, so is Ad∗(g):

Ad∗(g) : g∗ ∼= R −→ g∗ ∼= R, ξ∗ 7→ (η 7→ ξ∗ · η) = ξ∗.

Thus, all coadjoint orbits of Ad∗ in g∗ are stationary, i.e. any value r ∈ R is a fixed point of the coadjoint
action.
Now let E ∈ R such that Q = H−1(E) doesn’t contain any stationary points of the Hamiltonian flow.
This is the case if and only if E is a regular value of H:

Proposition 2.6. The zeroes of dH and XH coincide, and these are the stationary points of the Hamil-
tonian flow.

Proof. Let p ∈M , then because ωp is non-degenerate,

XH

∣∣
p

= 0 ⇐⇒ dH
∣∣
p

= ω(XH , ·)
∣∣
p
≡ 0.

Assume that p fulfils this equivalent statements. The point p is stationary if and only if φs(p) = p for
all times s ∈ R. For s = 0, this is apparently true, and it is true for all times if and only if

0 =
d

ds
φs(p) =

d

dt

∣∣∣∣
t=0

φs+t(p) =
d

dt

∣∣∣∣
t=0

φs(φt(p)) = dφs(XH

∣∣
p
),

and because dφs is a linear isomorphism, this is the case if and only if XH

∣∣
p

= 0.

Call Q an energy hypersurface. Now apply Prop. 2.2 to this setting: It implies that the group action
restricts to Q. (This also follows directly from Prop. 2.5.) Because no stationary points lie in Q,
the action on Q is free. In the case of the periodic flow, the group actiong on M is compact, so the
action is proper, because continuous actions of topological groups on Hausdorff spaces are always proper,
see [4, Prop. 12.22] for a proof of this.
For the case of G = R, assume that the action is proper. Then, for both cases, Prop. 2.2 further implies
that

Q := Q/G

is a symplectic manifold of dimension dimM − 2. This manifold can be called the orbit space of the
Hamiltonian flow, since each orbit of the flow is a point in Q.
The symplectic form is given by

ω[q]([V ], [W ]) := ωq(Vq,Wq) for q ∈ Q and [V ], [W ] ∈ TqQ

TqO(q)
,

and this is well-defined. The tangent spaces TqO(q) are 1-dimensional, and are given by the span of the
Hamiltonian vector field:

TqO(q) = span
{
XH

∣∣
q

}
.
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2.3 Physical description of SLF and CF in dimension 2

The physical derivations in this section follow the formalism described in [3, Chapters 9 and 27], here
applied to the specific situation of a charged particle in the euclidean plane.
Consider a negatively charged point mass moving in a 2-dimensional euclidean plane spanned by cartesian
coordinates, let e1, e2 be the unit vectors in the coordinate directions. Now let e3 be a third unit vector
perpendicular to the 2-dimensional plane such that e1, e2, e3 form a right-handed system, and let there
be a homogenous magnetic field −Be3 perpendicular to the plane. Assume the mass to be 1, and the
charge to be −1. Use the variable x = (x1, x2) to describe the position, and v = (v1, v2) to describe the
velocity of the point mass. Then the kinetic energy T is

T =
1

2
‖v‖2

2

and the Lortenz force F exerted on the point mass by the magnetic field is given by

F = (F1, F2) = (−Bv2, Bv1).

According to [3, Eq. (3.90)], to determine the Lagrangian function of this system, a potential function
U = U(x, v, t) for the Lorentz function which fulfils

Fi = − ∂U
∂xi

+
d

dt

∂U

∂vi
for i = 1, 2

needs to be chosen. Here, t is the time variable. One choice of U which fulfils this condition is

U =
B

2
(x1v2 − x2v1).

Choose U this way. Then the Lagrangian function L is given by

L(x, v) = T − U =
1

2
(v1

2 + v2
2) +

B

2
(v1x2 − v2x1).

Notice that L is time-independant. Now, the generalized momenta p1 and p2 are given by

p1 =
∂L

∂v1
= v1 +

B

2
x2 and p2 =

∂L

∂v2
= v2 −

B

2
x1.

By means of the above expressions, the velocity can be written in terms of x and p = (p1, p2), i.e.

vi = vi(x, p) for i = 1, 2 .

Using this, the Hamiltonian function H is given by

H(x, p) = v1(x, p) · p1 + v2(x, p) · p2 − L(x, v(x, p)) =
1

2

((
p1 −

B

2
x2

)2

+

(
p2 +

B

2
x1

)2
)
.

The solutions of this Hamiltonian system are the solutions of the Hamiltonian differential equations

∂H

∂pi
= ẋi and

∂H

∂xi
= −ṗi for i = 1, 2 .

The solutions of these differential equations can also be described as the Hamiltonian flow φt of a
symplectic manifold M = R2 × R2 with coordinates (x, p), symplectic form

ω = dx1 ∧ dp1 + dx2 ∧ dp2

and the Hamiltonian function defined as above. The Hamiltonian differential equations are then equiv-
alent to the equations

ω(XH , ·) = dH and
d

dt
φt = XH ◦ φt .

Changing the coordinates that ω and H are defined on from (x, p) to (x, v) can be accomplished by
pulling back ω and H via the diffeomorphism

Φ : R2 × R2 −→ R2 × R2, (x, v) 7→ (x, p(x, v)) =

(
x, v1 +

B

2
x2, v2 −

B

2
x1

)
.
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This results in

Φ∗H = H ◦ Φ =
1

2
‖v‖2

2
and Φ∗ω = dx1 ∧ dv1 + dx2 ∧ dv2 +Bdx1 ∧ dx2.

The case B = 0 where there is no magnetic field and thus no force acting on the point mass describes the
straight line flow. The case B 6= 0 describes the magnetic flow. These descriptions will be generalized to
higher dimensions in section 2.4 and 2.6.
Describing the Hamiltonian system in the coordinates (x, v) has the property that the second component
of the flow represents the time-derivative of the first component. This statement can be generalized:

Proposition 2.7. Let M := RN × RN with coordinates (x, v) and with symplectic form

ω =

2n∑
ν=0

dxν ∧ dvν +

n∑
i,j=0
i<j

fij dxi ∧ dxj ,

where fij are smooth functions on M . Let the Hamiltonian function be

H : M −→ R, (x, v) 7→ 1

2
‖v‖2

2
.

Then the Hamiltonian flow φt = (φx,t, φv,t) fulfils

d

dt
φx,t = φv,t.

Thus, the coordinate v can be viewed as the velocity coordinate, and x as the position coordinate.
Moreover, the functions fij do not depend on the velocity coordinate v.

Proof. To prove the above stated property of the Hamiltonian flow, it is sufficient to show that the
Hamiltonian vector field has the form

XH

∣∣
(x,v)

= (v, ∗),

i.e. the first coordinate of XH is the projection onto the v-coordinate. Then the statement follows from
the flow equation d

dtφt = XH ◦ φt.
Write the components of XH as

XH = (Xx1

H , . . . , XxN
H , Xv1

H , . . . , X
vN
H ).

Then

N∑
ν=0

vνdvν = dH = ω(XH , ·) =

2n∑
ν=0

(Xxν
H dvν −Xvν

H dxν) +

n∑
i,j=0
i<j

fij(X
xi
H dxj −X

xj
H dxi).

Comparing the coefficients of dvν for ν = 1, . . . , N yields

Xxν
H = vν for ν = 1, . . . , N ,

so XH has the desired form.
The fact that tne functions fij only depend on x follows from the fact that dω = 0: Let i, j, k ∈ {1, . . . , n},
then

0 = dω

(
∂

∂vk
,
∂

∂xi
,
∂

∂xj

)
=
∂fij
∂vk

,

thus the partial derivatives of fij with respect vk for k = 1, . . . , n vanish. Since M is connected, this
implies that the functions fij do not depend on v.

2.4 Orbit space of SLF

For N ∈ N, consider the smooth manifold M := RN × RN woth coordinates (x, v), the symplectic form

ω = dx ∧ dv =

N∑
j=0

dxj ∧ dvj
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and the Hamiltonian function

H : M −→ R, (x, v) 7→ 1

2
‖v‖2

2
.

Then the corresponding Hamiltonian vector field and Hamiltonian flow are given by

XH

∣∣
(x,v)

= (v, 0), φt(x, v) = (x+ tv, v).

Note that the case N = 2 corresponds to the description in section 2.3: Call this the straight line
flow because the x-coordinate of the flow describes the flow along a straight line, and the v-coordinate
describes its velocity, see Prop. 2.7.
The fixed points of the flow are all points with v = 0, and the flow is non-periodic everywhere outside
these fixed points. Now, E := 1

2 is a regular value of H, since

H(x, v) = E =
1

2
=

1

2
‖v‖2

2
=⇒ v 6= 0 =⇒ XH

∣∣
(x,v)

= (v, 0) 6= 0 =⇒ dH
∣∣
(x,v)

6≡ 0,

see Prop. 2.6. Let
Q := H−1(E) = RN × SN−1,

this energy hypersurface is a submanifold of M of codimension 1, and the Hamiltonian flow induces
a smooth, free (R,+)-action on Q. This action turns out to be proper. Use the following condition
from [4, Prop. 12.23] to prove this:

Lemma 2.8. For a continuous action of a topological group G on a Hausdorff space X, the action is
proper if and only if, for every compact subset K ⊆ X, the set

GK := {g ∈ G | g ·K ∩K 6= ∅}

is compact.

As a first step, consider the following statement:

Lemma 2.9. Consider a continuous (R,+)-action on a Hausdorff space X. For any compact K ⊆ X,
the set

RK := {t ∈ R | t ·K ∩K 6= ∅}

is closed.

Proof. Fix K ⊆ X compact, and define W := R\RK = {t ∈ R | t ·K ∩K = ∅}. It needs to be proven
that W is open. Let t0 ∈ W . Then for every k ∈ K, it holds that t0 · k /∈ K. Thus, considering the
continuous map

f : R×X −→ X (t, x) 7→ t · x,

it follows that (t0, k) ∈ f−1(X\K), which is an open set. Thus, for every k ∈ K, there is an open
neighbourhood Uk ⊆ X and εk > 0 such that

(t0, k) ∈ Bεk(t0)× Uk ⊆ f−1(X\K),

here Bεk(t0) is the open ball of radius εk centered at t0.
Now {Uk}k∈K is an open cover of K, so there exists a finite subcover {Uk1 , . . . , Ukl}. But then, with
ε := {εk , . . . , εkl}, it follows that Bε(t0)×K ⊆ f−1(X\K). This implies that Bε(t0) ⊆W . This proves
that W is open, so RK is closed.

To prove that the (R,+)-action on Q is proper, since R has the Heine-Borel property (i.e. every closed
bounded subset of R is compact), it needs to be shown that for any K ⊆ Q, the set RK as defined in
Lemma 2.9 is bounded for any compact set K. Following Lemma gives a necessary condition for this:

Lemma 2.10. Consider a continuous action of (R,+) on a metric space (X,dist) such that for any
non-empty compact set K ⊆ X it holds that

fK : R −→ R, t 7→ min
k∈K

dist(t · k, k)

diverges to +∞ for t −→ ±∞. Then RK defined as in Lemma 2.9 is bounded, and thus the action is
proper.
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Proof. Fix a non-empty, compact set K ⊆ X such that fK diverges to +∞ for t −→ ±∞. This can also
be written as follows:

∀B > 0 ∃C(B) > 0 ∀t ∈ R : (|t| > C(B) =⇒ ∀k ∈ K : dist(t · k, k) > B). (13)

Now K, as a compact subset of a metric space, is bounded, let BK > 0 be a bound of K such that

∀k, k̃ ∈ K : dist(k, k̃) < BK .

Then it turns out that RK is bounded by C(BK), i.e.

∀t ∈ RK : |t| 6 C(BK).

This can be seen as follows: Assume that this is not true, then choose t0 ∈ RK with |t0| > C(BK).
Then, by condition (13), ∀k ∈ K : dist(t0 · k, k) > BK , which in turn implies that ∀k ∈ K : t0 ·K /∈ K.
Thus, t0 ·K ∩K = ∅; which contradicts t0 ∈ RK .

Using Lemma 2.10, verify that (R,+)-action on Q is proper: For any (x, v) ∈ Q it holds that

dist(t · (x, v) , (x, v)) = ‖(x+ tv, v)− (x, v)‖2 = |t| ‖v‖2︸︷︷︸
=1

= |t|.

Thus, for any compact set K ⊆ R, it follows that fK(t) = |t|, which diverges to +∞ for t −→ ±∞. So
the Hamiltonian flow induces a smooth, free and proper (R,+)-action on Q, this implies that the orbit
space Q = Q/R is a symplectic manifold, as described in section 2.2.

In the following proposition, an equivalent description Q̃ of the orbit space for SLF is described:

Proposition 2.11. Define

Q̃ := TSN−1 =
{

(v, x) ∈ RN × RN
∣∣ 〈v, v〉 = 1, 〈x, v〉 = 0

}
,

i.e. Q̃ consists of elements (v, x) with v ∈ SN−1, where SN−1 is understood as a submanifold of RN , and
x ∈ TvSN−1 = (Rv)⊥. Furthermore, let

π̃ : Q −→ Q̃, (x, v) 7→ (v, x− 〈x, v〉v).

Then π̃ is a smooth surjective submersion, and the equation

π̃∗ω̃ = ω
∣∣
Q

= (dx ∧ dv)
∣∣
Q

defines a symplectic structure on Q̃ such that (Q̃, ω̃) is symplectomorphic to (Q,ω).

Proof. By Prop. 2.3. it is sufficient to check that π̃ is a smooth surjective submersion, and that the fibers
of π̃ are R-Orbits (i.e. orbits of the Hamiltonian flow) in Q.

Smoothness is apparent. Surjectivity follows from the fact that, for (v, x) ∈ Q̃, it holds that π̃(x, v) =

(v, x), since X and V are othogonal by definition of Q̃.
To see that π̃ is a submersion, it is required to show that its differential is surjective at every point. So
let (x, v) ∈ Q and (X,V ) ∈ T(x,v)Q, then

dπ̃
∣∣
(x,v)

(X,V ) =
d

dt

∣∣∣∣
t=0

π̃(x+ tX, v + tV )

=
d

dt

∣∣∣∣
t=0

(v + tV , x+ tX − 〈x+ tX, v + tV 〉(v + tV ))

= (V , X − 〈X, v〉v − 〈x, V 〉v − 〈x, v〉V ).

Here, the fact that π̃ can be extended to a map from RN ×RN to RN ×RN was used. Now consider the
kernel of this linear map dπ̃

∣∣
(x,v)

:

dπ̃
∣∣
(x,v)

(X,V ) = 0 ⇐⇒ (V = 0 and X = 〈X, v〉v) ⇐⇒ (X,V ) ∈ Rv × {0}.
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Dimension formula yields

dim im dπ̃
∣∣
(x,v)

= dimT(x,v)Q− dim ker dπ̃
∣∣
(x,v)

= dimQ− dim(Rv × {0})
= N − 1− 1 = N − 2.

But N − 2 is the dimension of the codomain of dπ̃
∣∣
(x,v)

. Thus the differential of π̃ is surjective at every

point, i.e. π̃ is a submersion.

As a next step, describe the symplectic form ω̃ of Q̃ in more detail. For this, the following definition of
the tautological 1-form on the cotangent bundle, taken from [5, Chapter 22, text before Prop. 22.11], is
necessary:

Definition 2.12. Let S be a smooth manifold, q ∈ S and ϕ ∈ T ∗q S. Then the tautological 1-form λ on
T ∗S is given by

λ(q,ϕ) : T(q,ϕ)(T
∗S) −→ R, v 7→ ϕ

(
dπS

∣∣
(q,ϕ)

(v)
)
.

Here, πS : T ∗S −→ S is the natural projection.

Proposition 2.13. Let Q̃ = TSN−1 be identified with the cotangent bundle T ∗SN−1 via the induced
Riemannian metric on SN−1 which it naturally inherits as a submanifold of RN with the standard metric:

Φ : Q̃ = TSN−1 −→ T ∗SN−1, (v, x) 7→ (v, 〈x, ·〉RN ) .

Let λ be the tautological 1-form on T ∗SN−1. Then the symplectic form ω̃ from Prop. 2.11 is identical
with the differential of λ pulled back via Φ, and is given by

ω̃ = Φ∗dλ = d(Φ∗λ) = (−dv ∧ dx)
∣∣
Q̃
.

Proof. Start by computing ω̃, which is given by the condition π̃∗ω̃ = ω
∣∣
Q

= (dx∧ dv)
∣∣
Q

. Let (v, x) ∈ Q̃.

The tangent space of Q̃ at this point is given by

T(v,x)Q̃ =
{

(Ṽ , X̃) ∈ RN × RN
∣∣∣ 〈v, Ṽ 〉 = 0,

〈
X̃, v

〉
+
〈
x, Ṽ

〉
= 0
}
.

Let (Ṽ , X̃) , (W̃ , Ỹ ) ∈ T(v,x)Q̃. Now π̃(x, v) = (v, x) and, using the expression for dπ̃
∣∣
(x,v)

computed in

the proof of Prop. 2.11, and remembering that 〈x, v〉 = 0 and 〈v, v〉 = 1, it follows that

dπ̃
∣∣
(x,v)

(
X̃ −

〈
x, Ṽ

〉
v , Ṽ

)
=
(
Ṽ , X̃ −

〈
x, Ṽ

〉
v −

〈
X̃ −

〈
x, Ṽ

〉
v , v

〉
v −

〈
x, Ṽ

〉
v − 〈x, v〉Ṽ

)
=
(
Ṽ , X̃ −

〈
x, Ṽ

〉
v −

〈
X̃, v

〉
v +

〈
x, Ṽ

〉
v −

〈
x, Ṽ

〉
v
)

=
(
Ṽ , X̃ −

(〈
X̃, v

〉
+
〈
x, Ṽ

〉)
v
)

= (Ṽ , X̃).

In the same way, it follows that dπ̃
∣∣
(x,v)

(
Ỹ −

〈
x, W̃

〉
v , W̃

)
= (W̃ , Ỹ ).
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Now,

ω̃(v,x)

(
(Ṽ , X̃) , (W̃ , Ỹ )

)
= ω̃π̃(x,v)

(
dπ̃
∣∣
(x,v)

(
X̃ −

〈
x, Ṽ

〉
v , Ṽ

)
, dπ̃

∣∣
(x,v)

(
Ỹ −

〈
x, W̃

〉
v , W̃

))
= (π̃∗ω̃)

∣∣
(x,v)︸ ︷︷ ︸

=(dx∧dv)
∣∣
Q

((
X̃ −

〈
x, Ṽ

〉
v , Ṽ

)
,
(
Ỹ −

〈
x, W̃

〉
v , W̃

))

=
〈
X̃ −

〈
x, Ṽ

〉
v , W̃

〉
−
〈
Ỹ −

〈
x, W̃

〉
v , Ṽ

〉
=
〈
X̃, W̃

〉
−
〈
x, Ṽ

〉〈
v, W̃

〉
︸ ︷︷ ︸

=0

−
〈
Ỹ , Ṽ

〉
+
〈
x, W̃

〉〈
v, Ṽ

〉
︸ ︷︷ ︸

=0

=
〈
X̃, W̃

〉
−
〈
Ỹ , Ṽ

〉
= dx ∧ dv

∣∣
Q̃

(
(Ṽ , X̃) , (W̃ , Ỹ )

)
.

Thus, the result of the calculation is
ω̃ = (−dv ∧ dx)

∣∣
Q̃
.

Now compute λ. The projection

πSN−1 : T ∗SN−1 −→ SN−1, (v, α) 7→ v

can be understood as the restriction of the projection

πRN : T ∗RN −→ RN , (v, α) 7→ v

and thus, for (v, α) ∈ T ∗SN−1 and (V,A) ∈ T(v,α)T
∗SN−1 it holds that

dπSN−1

∣∣
(v,α)

(V,A) =
d

dt

∣∣∣∣
t=0

πRN (v + tV, α+ tA) =
d

dt

∣∣∣∣
t=0

v + tV = V.

Thus, the tautological form λ at (v, α) is given by

λ(v,α)(V,A) = α
(
dπSN−1

∣∣
(v,α)(V,A)

)
= α(V ).

Now compute the pullback Φ∗λ. The map Φ can be understood as the restriction of the smooth map

ΦRN : TRN −→ T ∗RN , (v, x) 7→ (v, 〈x, ·〉RN ) .

Thus, for (Ṽ , X̃) ∈ T(v,x)Q̃, it holds that

dΦ
∣∣
(v,x)

(Ṽ , X̃) =
d

dt

∣∣∣∣
t=0

ΦRN
(
v + tṼ , x+ tX̃

)
=

d

dt

∣∣∣∣
t=0

(
v + tṼ ,

〈
x+ tX̃ , ·

〉)
=
(
Ṽ ,
〈
X̃ , ·

〉)
.

It follows that

(Φ∗λ)
∣∣
(v,x)

(Ṽ , X̃) = λΦ(v,x)

(
dΦ
∣∣
(v,x)

(Ṽ , X̃)
)

= λ(v,〈x,·〉)

(
Ṽ ,
〈
X̃ , ·

〉)
=
〈
x, Ṽ

〉
.

This implies that Φ∗λ = (x dv)
∣∣
Q̃

. Taking the exterior derivative of this equation yields

d(Φ∗λ) = d(xdv)
∣∣
Q̃

= (−dv ∧ dx)
∣∣
Q̃

= ω̃.
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2.5 Complex projective space as an orbit space

The construction in this section is motivated by [6, Exercise 5.1.3].
For n ∈ N, consider the smooth manifold M := Rn × Rn with coordinates (x, y), the symplectic form

ω = dx ∧ dy =

n∑
j=0

dxj ∧ dyj

and the Hamiltonian function

H : M −→ R, (x, y) 7→ −1

2
‖(x, y)‖2

2
.

The corresponding Hamiltonian vector field is given by

XH

∣∣
(x,y)

= (−y, x).

The resulting Hamiltonian flow can better be described in complex coordinates: Identify M with Cn,
using complex coordinates z = (z1, . . . , zn) with

zj = xj + iyj for j = 1, . . . , n .

Then the Hamiltonian vector field and Hamiltonian flow are given by

XH

∣∣
z

= iz, φt(z) = eitz.

This flow is 2π-periodic everywhere, except at the only stationary point z = 0.
Choose E := − 1

2 . This is a regular value of H, since

H(z) = E = −1

2
= −1

2
|z|2 =⇒ z 6= 0 =⇒ XH

∣∣
z

= iz 6= 0 =⇒ dH
∣∣
z
6≡ 0,

see Prop. 2.6. The energy hypersurface

Q := H−1(E) = S2n−1

is a submanifold of M of codimension 1. The 2π-periodic Hamiltonian flow induces a smooth, free and
proper action of (R/2πZ,+) ∼= S1 on Q, as described in section 2.2. Thus,

CPn−1 := Q/S1 = S2n−1/S1,

is a symplectic manifold, called the complex projective space of complex dimension n−1, i.e. the dimension
as a smooth real manifold is 2n−2. The symplectic form ωCPn−1 is uniquely determined by the condition
Π∗ωCPn−1 = ω

∣∣
Q

, where Π is the projection

Π : S2n−1 −→ S2n−1/S1 = CPn−1 z 7→ [z] . (14)

Call ωCPn−1 the standard symplectic form on CPn−1.

2.6 Orbit space of CF

For n ∈ N and B ∈ R\{0}, define M := R2n × R2n, a smooth manifold with coordinates (x, v) and
symplectic form

ω =

2n∑
j=1

dxj ∧ dvj +B

n∑
j=1

dxj ∧ dxn+j = dx ∧ dv +B dx̂ ∧ dŷ ,

where x = (x̂, ŷ) are a break-down of the coordinates of the first factor R2n of M , i.e.

x̂ = (x1, . . . , xn) and ŷ = (xn+1, . . . x2n).

Let the Hamiltonian function be

H : M −→ R, (x, v) 7→ 1

2
‖v‖2

2
.
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Note that the case n = 1 corresponds to the case described in section 2.3. Also note that, if B = 0, this
corresponds to the straight line flow for even dimensions N = 2n as described in section 2.4.
Describe the corresponding Hamiltonian vector field and Hamiltonian flow in complex coordinates: Iden-
tify M with Cn × Cn, using complex coordinates (z, w) given by

zj = xj + ixn+j and wj = vj + ivn+j for j = 1, . . . , n .

In these coordinates, the Hamiltonian vector field and Hamiltonian flow are given by

XH

∣∣
(z,w)

= (w,B · iw), φt(z, w) =

(
z +

1

B
i(1− eiBt)w , eiBtw

)
.

Call this flow the circular flow, because the z-coordinate describes the flow along circles of radius
‖w‖2
|B|

with constant speed, i.e. absolute value of the velocity ‖w‖2. These circles lie in the affine complex plane
parallel to Cw containing z. The w-coordinate describes the velocity, see Prop. 2.7.
Define P := 2π

|B| > 0. The flow is P -periodic everywhere except in the stationary points, which are

exactly the points with w = 0. Now fix E := 1
2 , this is a regular value of H, since

H(z, w) = E =
1

2
=

1

2
|w|2 =⇒ w 6= 0 =⇒ XH

∣∣
(z,w)

6= 0 =⇒ dH
∣∣
(z,w)

6≡ 0,

see Prop. 2.6. Thus, the energy hypersurface

Q := H−1(E) = Cn × S2n−1

is a submanifold of M of codimension 1. The Hamiltonian flow induces a smooth, free and proper action
of (R/PZ,+) ∼= S1 on Q, as described in section 2.2. Thus, the orbit space

Q = Q/S1

is a symplectic manifold. The following proposition describes an equivalent description Q̃ of this orbit
space:

Proposition 2.14. Let
Q̃ := Cn × CPn−1 ,

and let

π̃ : Q −→ Q̃, (z, w) 7→
(
z +

1

B
iw , Π(w)

)
.

Here, Π is the projection defined in Eq. (14) in section 2.5. Then π̃ is a smooth surjective submersion,

and the equation π̃∗ω̃ = ω
∣∣
Q

defines a symplectic structure on Q̃ such that it is symplectomorphic to

(Q,ω). Furthermore, this symplectic form can be described as a direct sum of the standard symplectic
forms on R2n and CPn−1 with prefactors depending on B:

ω̃ = B dx̂ ∧ dŷ ⊕
(
− 1

B
ωCPn−1

)
.

Here, (x̂, ŷ) = (Re(z), Im(z)) are the real coordinates of Cn ∼= Rn × Rn.

Proof. First, show that π̃ is a smooth surjective submersion. Smoothness is clear because both component
functions are apparently smooth. Surjectivity can be seen by the fact that Π is surjective, so every element
in Q̃ can be written in the form (c,Π(w)), and

π̃

(
c− 1

B
iw , w

)
= (c,Π(w)) .

To check that it is a submersion, consider the differential of π̃: Let (Z,W ) ∈ T(z,w)Q ∼= Cn × TwS2n−1.
Then

dπ̃
∣∣
(z,w)

(Z,W ) =

(
Z +

1

B
iW, dΠ

∣∣
w

(W )

)
,
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and this map is surjective because dΠ
∣∣
w

is surjective, and for
(
C, dΠ

∣∣
w

(W )
)
∈ Tπ̃(z,w)Q̃ it holds that

dπ̃
∣∣
(z,w)

(
C − 1

B
iW , W

)
=
(
C,dΠ

∣∣
w

(W )
)
.

Thus, by Prop. 2.3, (Q̃, ω̃) is symplectomorphic to (Q,ω).

Now calculate ω̃: Let (c,Π(w)) ∈ Q̃, and (C,Z), (D,W ) ∈ T(c,Π(w))Q̃ ∼= Cn × TΠ(w)CPn−1. Set z =

c− 1
B iw, then π̃(z, w) = (c,Π(w)). Choose Z,W ∈ TwS2n−1 such that dΠ

∣∣
w

(Z) = Z and dΠ
∣∣
w

(W ) = W .
For C,D ∈ Cn, write the real and imaginary components as C = (Cx̂, Cŷ) and D = (Dx̂, Dŷ), and use
the same notation for Z,W ∈ TwS2n−1 ⊆ Cn. Let the notation “〈·, ·〉” refer to the real scalar product of
appropriate dimension. Then

ω̃
∣∣
(c,Π(w))

(
(C,Z) , (D,W )

)
= ω̃

∣∣
π̃(z,w)

(
dπ̃
∣∣
(z,w)

(
C − 1

B
iZ , Z

)
, dπ̃

∣∣
(z,w)

(
D − 1

B
iW , W

))
= π̃∗ω̃︸︷︷︸

=ω
∣∣
Q

∣∣
(z,w)

((
C − 1

B
iZ , Z

)
,

(
D − 1

B
iW , W

))

=

〈
C − 1

B
iZ , W

〉
−
〈
D − 1

B
iW , Z

〉
+B

(〈
Cx̂ +

1

B
Zŷ , Dŷ +

1

B
Wx̂

〉
−
〈
Dx̂ +

1

B
Wŷ , Cŷ +

1

B
Zx̂

〉)
= 〈C,W 〉 − 〈D,Z〉+

1

B
(〈iW,Z〉 − 〈iZ,W 〉)

+B(〈Cx̂, Dŷ〉 − 〈Dx̂, Cŷ〉) + (〈Zŷ, Dŷ〉 − 〈Cx̂,Wx̂〉 − 〈Wŷ, Cŷ〉+ 〈Dx̂, Zx̂〉)︸ ︷︷ ︸
=〈D,Z〉−〈C,W 〉

+
1

B
(〈Wŷ, Zx̂〉 − 〈Zŷ,Wx̂〉)

= B(〈Cx̂, Dŷ〉 − 〈Dx̂, Cŷ〉) +
1

B
(〈−Wŷ, Zx̂〉+ 〈Wx̂, Zŷ〉 − 〈−Zŷ,Wx̂〉 − 〈Zx̂,Wŷ〉)

+
1

B
(〈Wŷ, Zx̂〉 − 〈Zŷ,Wx̂〉)

= B(〈Cx̂, Dŷ〉 − 〈Dx̂, Cŷ〉) +
1

B
(〈Wx̂, Zŷ〉 − 〈Zx̂,Wŷ〉)

= B (dx̂ ∧ dŷ)
∣∣
c
(C,D)− 1

B
(dx̂ ∧ dŷ)

∣∣
w︸ ︷︷ ︸

=Π∗ωCPn−1

∣∣
w

(Z,W )

= B (dx̂ ∧ dŷ)
∣∣
c
(C,D)− 1

B
ωCPn−1

∣∣
Π(w)

(Z,W ) .

Thus,

ω̃ = B dx̂ ∧ dŷ ⊕
(
− 1

B
ωCPn−1

)
is proven.

2.7 Billiard map in higher dimensions

Consider M := RN ×RN with coordinates (x, v) as well as a generalized representation of the symplectic
form which is applicable to both the SLF and CF case: Let

ω =

N∑
k=0

dxk ∧ dvk +
∑
i,j=0
i<j

fij dxi ∧ dxj

be a symplectic form on M , where fij are smooth functions on M . Let the Hamiltonian function be

H : M −→ R, (x, v) 7→ 1

2
‖v‖2

2
.
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By Prop. 2.7, the functions fij only depend on x, and the second coordinate of the Hamiltonian flow
describes the time-derivative of the first coordinate.
Now assume that the prerequisites are met such that the symplectic quotient construction described in
section 2.2 can be applied here, as it was applied to the case of SLF (see section 2.4) and CF (see section
2.6), i.e. assume that the Hamiltonian flow induces a G-action on M , with G = (R,+) or G = S1, fix
E := 1

2 of H and assume that the G-action, which restricts to the energy hypersurface

Q := H−1(E) = RN × SN−1

acts smoothly, freely and properly on Q. Then the orbit space Q/G is a symplectic manifold of dimension
dimM − 2, the projection

π : Q −→ Q/G =: Q, (x, v) 7→ [(x, v)] =: O(x, v)

is a smooth surjective submersion, and the symplectic form ω on Q is uniquely determined by the
condition π∗ω = ω

∣∣
Q

.

In this general case, consider the billiard map: Let Ω ⊆ RN , the billiards table, be compact, connected
and with smooth boundary, i.e. ∂Ω is a smooth submanifold of codimension 1. Let

ν : ∂Ω −→ RN

be the outward pointing unit normal vector field, and define

P in :=
{

(x, v) ∈ ∂Ω× SN−1
∣∣ 〈v, ν(x)〉 < 0

}
⊆ Q

and
P out :=

{
(x, v) ∈ ∂Ω× SN−1

∣∣ 〈v, ν(x)〉 > 0
}
⊆ Q.

These are open subsets of ∂Ω × SN−1. In particular, these are smooth manifolds of dimension 2N − 2.
Geometrically, if (x, v) ∈ P in, then x ∈ ∂Ω and v is a transversally inward pointing unit vector with
respect to Ω. Similarly, if (x, v) ∈ P in, then x ∈ ∂Ω and v is a transversally outward pointing unit vector
with respect to Ω. Note that P in and P out are disjoint.
The regularity condition can be formulated as follows:

Definition 2.15 (Regularity condition). For every (x, v) ∈ Q, if the component in position space of the
orbit O(x, v) (i.e. the set {φx,t(x, v) | t ∈ R}) intersects ∂Ω transversally, then there are exactly two points
of intersection with ∂Ω, and both intersections are transversal. Moreover, if (xin, vin) and (xrefl, vrefl)
describe these two distinct points of intersection, then

(xin, vin) ∈ P in and (xrefl, vrefl) ∈ P out .

Remark 2.16. If the regularity condition is fulfilled, then the restrictions π
∣∣
P in and π

∣∣
P out are injective,

and diffeomorphic onto their image. Moreover, the images of these maps agree:

π
(
P in
)

= π
(
P out

)
=: O.

Furthermore, O ⊆ Q is open, because the orbits in O are exactly those which transversally intersect ∂Ω,
and transversal intersection is an open condition.

Given these prerequisites, define a billiard map

TP : P in −→ P out, (x, v) 7→ (x , v − 2〈v, ν(x)〉ν(x)) ,

this geometrically describes the reflection law at the boundary ∂Ω of the billiard table.
Call O the phase space of the orbit dynamics model. The billiards map T on O is defined by following
commutative diagram:

P in P out

O O

TP

π
∣∣∣
P in

π
∣∣∣
Pout

T

The symplectic form ω defined on Q restricts to a symplectic form O ⊆ Q, because this is an open subset.
To simplify notation, in the following considerations ω instead of ω

∣∣
O is written.

To prove that T preserves ω, following Lemma is used:
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Lemma 2.17. Let x ∈ ∂Ω and X1, X2 ∈ Tx(∂Ω), then〈
X1 , dν

∣∣
x
(X2)

〉
=
〈
X2 , dν

∣∣
x
(X1)

〉
.

Proof. Start by describing the normal vector ν differently: Because ∂Ω is a submanifold of RN of
codimension 1, it can be locally described as the preimage of a regular value: Fix x ∈ ∂Ω and an open
neighbourhood U ⊆ RN of x. Then there is the smooth map

F : U −→ R

such that U ∩ ∂Ω = F−1(0), with 0 6= ∇F (y) ⊥ Ty∂Ω for all y ∈ ∂Ω ∩ U . Because ∂Ω is orientable,
∇F

∣∣
∂Ω∩U is always outward pointing or always inwards pointing. Without loss of generality, assume

that it is outwards pointing. (Otherwise, multiply F with −1.) Define

g : U −→ R, y 7→ 1

‖∇F (y)‖2
,

then for y ∈ ∂Ω ∩ U it holds that ν(y) = g(y)∇F (y). Now define

h := g · F : U −→ R, y 7→ g(y) · F (y) .

Observe that
∇h = ∇(gF ) = g∇F + F∇g.

In particular, for y ∈ ∂Ω ∩ U , it holds that F (y) = 0, so ∇h(y) = g(y)∇F (y) = ν(y).
Fix X1, X2 ∈ Tx(∂Ω), and let ν be a curve on ∂Ω ∩ U such that ν(0) = x and ν′(0) = X2. Then

dν
∣∣
x
(X2) =

d

dt

∣∣∣∣
t=0

ν(η(t)) =
d

dt

∣∣∣∣
t=0

∇h(η(t)) = Hess(h)(η(t))η′(t)
∣∣
t=0

= Hess(h)
∣∣
x
·X2,

similarly it follows that dν
∣∣
x
(X1) = Hess(h)

∣∣
x
·X1. Now, because the Hessian is symmetric, it holds that〈

X1 , dν
∣∣
x
(X2)

〉
=
〈
X1 , Hess

∣∣
x
·X2

〉
=
〈
X2 , Hess

∣∣
x
·X1

〉
=
〈
X2 , dν

∣∣
x
(X1)

〉
.

Proposition 2.18. The billiard map T preserves the symplectic structure ω.

Proof. Remember the commutative diagram:

P in P out

O O

TP

π
∣∣∣
P in

π
∣∣∣
Pout

T

To prove that T ∗ω = ω, use the fact that ω is uniquely determined by π∗ω = ω
∣∣
Q

, so it suffices to prove

that
(
π
∣∣
P in

)∗
T ∗ω = ω

∣∣
P in . Now(

π
∣∣
P in

)∗
T ∗ω =

(
T ◦ π

∣∣
P in

)∗
ω =

(
π
∣∣
P out ◦ TP

)∗
ω = TP

∗(π∣∣
P out

)∗
ω = TP

∗ω
∣∣
P out .

Therefore, what remains to be proven is TP
∗ω
∣∣
P out = ω

∣∣
P in .

Write ω = ωstd + τ with

ωstd :=

N∑
k=0

dxk ∧ dvk and τ :=
∑
i,j=0
i<j

fijdxi ∧ dxj .

Now because the functions fij only depend on x, and because TP preserves x, it directly follows that TP
preserves τ , so it remains to be proven that TP

∗ωstd

∣∣
P out = ωstd

∣∣
P in .

So let (x, v) ∈ P in and (X1, V1) , (X2, V2) ∈ T(x,v)P
in = Tx(∂Ω)× (Rv)⊥. Then for i = 1, 2 it holds that

dTP
∣∣
(x,v)

(Xi, Vi) =
d

dt

∣∣∣∣
t=0

(x+ tXI , v + tVi − 2〈v + tVi , ν(x+ tXi)〉ν(x+ tXi))

=
(
Xi , Vi − 2〈Viν(x)〉ν(x)− 2

〈
v,dν

∣∣
x
(Xi)

〉
ν(x)− 2〈v, ν(x)〉dν

∣∣
x
(Xi)

)
.
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So

TP
∗ωstd

∣∣
(x,v)

((X1, V1) , (X2, V2)) = ωstd

∣∣
TP (x,v)

(
dTP

∣∣
(x,v)

(X1, V1) , dTP
∣∣
(x,v)

(X2, V2)
)

=
〈
X1 , V2 − 2〈V2ν(x)〉ν(x)− 2

〈
v,dν

∣∣
x
(X2)

〉
ν(x)− 2〈v, ν(x)〉dν

∣∣
x
(X2)

〉
−
〈
X2 , V1 − 2〈V1ν(x)〉ν(x)− 2

〈
v,dν

∣∣
x
(X1)

〉
ν(x)− 2〈v, ν(x)〉dν

∣∣
x
(X1)

〉
.

The fact that ν(x) ⊥ Tx(∂Ω) and X1, X2 ∈ Tx(∂Ω) simplifies the scalar products, such that

TP
∗ωstd

∣∣
(x,v)

((X1, V1) , (X2, V2))

=
〈
X1 , V2 − 2〈v, ν(x)〉dν

∣∣
x
(X2)

〉
−
〈
X2 , V1 − 2〈v, ν(x)〉dν

∣∣
x
(X1)

〉
= 〈X1 , V2〉 − 〈X2 , V1〉 − 2〈v, ν(x)〉

(〈
X1,dν

∣∣
x
(X2)

〉
−
〈
X2,dν

∣∣
x
(X1)

〉)
.

Using Lemma 2.17, this further simplifies to

TP
∗ωstd

∣∣
(x,v)

((X1, V1) , (X2, V2)) = 〈X1 , V2〉 − 〈X2 , V1〉 = ωstd|(x,v)((X1, V1) , (X2, V2)).

This concludes the proof.

2.8 Comparison of orbit dynamics with Birkhoff billiards

Remember the description of Birkhoff billiards in section 1: It is a discrete dynamical system of billiards
in 2-dimensional space, and the phase space PSBirk with coordinates (l, α) describes the segment of the
billiard trajectory starting at γ(l) on the edge of the table, and leaving the table at an angle α relative
to the tangent vector γ′(l), until the next intersection with the boundary, where reflection according to
the reflection law happens. Here

γ : S1
L −→ R2

is a smooth curve of length L parametrized by unit length, and runs along ∂Ω in counterclockwise
orientation, and Ω ⊆ R2 is the billiards table, a compact connected set, which further fulfils the regularity
condition in Def. 1.1. As a consequence, by Remark 1.3, every orbit of the corresponding Hamiltonian
flow (which in the case of CF is a circle of Larmor radius, in the case of SLF is a straight line) which
intersects the table boundary ∂Ω transversally has excatly two points of intersection, and both these
intersections are transversal. This means that the regularity condition stated in Def. 2.15 is fulfilled.
Now consider the phase space of the orbit dynamics model for the 2-dimensional case, as described in
section 2.7. Instead of considering these open subsets of the quotient spaces Q = Q/G, consider the

corresponding open subsets of the alternative descriptions Q̃ for the orbit space: For the SLF case, as
described in Prop. 2.11, for the CF case, as described in Prop. 2.14.

ÕSLF :=
{

(v, x) ∈ TS1
∣∣The orbit represented by (v, x) intersects ∂Ω transversally

}
⊆ TS1 ,

ÕCF,B := {z ∈ C |The orbit represented by z intersects ∂Ω transversally} ⊆ C .

Here, the “B” in the index of ÕCF,B indicates that for fixed Ω, this space looks different for every value

of B. Remember that ÕCF,B is only defined for B 6= 0, see section 2.6. Also, let ωSLF and ωCF represent

the symplectic forms restricted to the open subsets ÕSLF and ÕCF,B of the orbit space, respectively.
Now consider the natural maps FSLF and FCF which map the phase space of Birkhoff billiards PSBirk onto
the corresponding phase space of the orbit dynamics model, i.e. the sets ÕSLF and ÕCF,B , respectively,
see Fig. 12.
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Figure 12: The mapping F from PSBirk to the phase space of the orbit dynamics model

Following definition will be useful later:

Definition 2.19. The signed curvature κ of the curve γ at l ∈ S1
L is given by

κ(l) := ‖γ′′(l)‖2sign(〈γ′′(l) , iγ′(l)〉) .

Because γ is parametrized by unit length, γ′′(l) ⊥ γ′(l) for all l ∈ S1
L, and because γ goes along ∂Ω in

counterclockwise orientation, the sign of κ(l) is positive if γ′′(l) is inwards pointing, and clockwise if
γ′′(l) is outwards pointing.

The signed curvature is well-defined and smooth. In particular, the case where the scalar product
〈γ′′(l) , iγ′(l)〉 becomes zero does not pose a problem even though no sign is defined for zero, because
this expression only becomes zero when γ′′(l) is zero, and then κ(l) is zero as well.
The next proposition compares the symplectic structures of the Birkhoff billiards and the orbit dynamics
model.

Proposition 2.20. Let

FSLF : PSBirk −→ ÕSLF and FCF : PSBirk −→ ÕCF

be the maps which map (l, α) to the extension of the billiard trajectory segment from (l, α) to TB(l, α)

as represented in the corresponding orbit space ÕSLF or ÕCF,B. These maps are diffeomorphisms and
preserve the symplectic structure, i.e.

(FSLF)∗ωSLF = (FCF)∗ωCF = ωBirk.

Proof. Start with the straight line flow. For (l, α) ∈ PSBirk, the point (γ(l), eiαγ′(l)) lies in the cor-
responding orbit in Q = R2 × S1 ⊆ R2 × R2, where R2 is identified with C via the standard complex
structure. To determine the point in ÕSLF corresponding to this orbit, follow the projection map π̃
defined in Prop. 2.11, this leads to following description of FSLF:

FSLF : PSBirk −→ ÕSLF, (l, α) 7→
(
eiαγ′(l) , γ(l)−

〈
γ(l), eiαγ′(l)

〉
eiαγ′(l)

)
.

This map is apparently smooth, and surjectivity follows by construction, since by the regularity condition
in Def. 2.15, every orbit in ÕSLF has an intersection with ∂Ω which lies in P out, and this point is
represented in PSBirk in the coordinates (l, α). Injectivity follows from the fact that every element

(l, α) ∈ PSBirk uniquely represents an orbit in ÕSLF, by construction.
Now let (l, α) ∈ PSBirk and (L,A) ∈ T(l,α)PSBirk, then

dFSLF

∣∣
(l,α)

(L,A) =
d

dt

∣∣∣∣
t=0

FSLF(l + tL, α+ tA)

=
d

dt

∣∣∣∣
t=0

(
ei(α+tA)γ′(l + tL) , γ(l + tL)−

〈
γ(l + tL) , ei(α+tA)γ′(l + tL)

〉
ei(α+tA)γ′(l + tL)

)
=
(
A · ieiαγ′(l) + L · eiαγ′′(l) , Lγ′(l)−

〈
Lγ′(l) , eiαγ′(l)

〉
eiαγ′(l)

−
〈
γ(l) , A · ieiαγ′(l) + L · eiαγ′′(l)

〉
eiαγ′(l)−

〈
γ(l) , eiαγ′(l)

〉(
A · ieiαγ′(l) + L · eiαγ′′(l)

))
.
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The following simplifications can be made:

γ′′(l) = κ(l) · iγ′(l) and
〈
γ′(l) , eiαγ′(l)

〉
= cosα .

Here, κ is the signed curvature of γ. To simplify notation, omit the l-dependancy of all functions
(e.g. write “γ′ ” instead of “γ′(l)”). Then the expression for the differential of FSLF simplifies to

dFSLF

∣∣
(l,α)

(L,A)

=
(
(A+ κL)ieiαγ′ , Lγ′ − L cosα · eiαγ′ −

〈
γ , (A+ κL)ieiαγ′

〉
eiαγ′ −

〈
γ , eiαγ′

〉
(A+ κL)ieiαγ′

)
.

Now, this differential is injective: Let dFSLF

∣∣
(l,α)

(L,A) = 0, this implies (A + κL)ieiαγ′ = 0, and these

two statements together imply Lγ′ − L cosα · eiαγ′ = 0. Because γ′ 6= 0 and 0 < α < π, it holds that
γ′ 6= cosα · eiαγ′, so L = 0. Together with A+ κL = 0, this implies that A = 0.
For dimension reasons, the differential is then invertible, and thus by the inverse function theorem, FSLF

is a local diffeomorphism. Because FSLF is bijective, this makes it a diffeomorphism.
Now let (l, α) ∈ PSBirk and (L,A), (L̃, Ã) ∈ T(l,α)PSBirk, then

(FSLF)∗ωSLF

∣∣
(l,α)

(
(L,A) , (L̃, Ã)

)
= ωSLF|(l,α)︸ ︷︷ ︸

=(−dv∧dx)
∣∣
Q̃

(
dFSLF

∣∣
(l,α)

(L,A) , dFSLF

∣∣
(l,α)

(L̃, Ã)
)

=
〈
Lγ′ − L cosα · eiαγ′ −

〈
γ , (A+ κL)ieiαγ′

〉
eiαγ′ −

〈
γ , eiαγ′

〉
(A+ κL)ieiαγ′ ,

(
Ã+ κL̃

)
ieiαγ′

〉
−
〈
L̃γ′ − L̃ cosα · eiαγ′ −

〈
γ , (Ã+ κL̃)ieiαγ′

〉
eiαγ′ −

〈
γ , eiαγ′

〉
(Ã+ κL̃)ieiαγ′ , (A+ κL)ieiαγ′

〉
.

Using the fact that

〈γ′ , iγ′〉 = 0 and
〈
eiαγ′ , ieiαγ′

〉
= 0 and

〈
γ′ , ieiαγ′

〉
= − sinα ,

the pullback simplifies to

(FSLF)∗ωSLF

∣∣
(l,α)

(
(L,A), (L̃ , Ã)

)
= − sinα · L

(
Ã+ κL̃

)
−
〈
γ , eiαγ′

〉〈
(A+ κL)ieiαγ′ ,

(
Ã+ κL̃

)
ieiαγ′

〉
+ sinα · L̃(A+ κL) +

〈
γ , eiαγ′

〉〈(
Ã+ κL̃

)
ieiαγ′ , (A+ κL)ieiαγ′

〉
= sinα

(
AL̃− ÃL

)
= sinα dα ∧ dl

∣∣
(l,α)

(
(L,A), (L̃ , Ã)

)
.

This shows that (FSLF)∗ωSLF = ωBirk.

Next, consider the circular flow. In ÕCF,B , the circular orbit is described by its midpoint. For (l, α) ∈
PSBirk, the billiard trajectory segment from (l, α) to TB(l, α) is a circular arc, and FCF maps (l, α) to
the midpoint of the circle corresponding to the extension of this circular arc. Because the velocity vector
of this trajectory segment at γ(l) is given by eiαγ(l), follow the projection map π̃ defined in Prop. 2.14

for the case n = 1 to determine the corresponding orbit in ÕCF,B . Thus the map FCF is given by

FCF : PSBirk −→ ÕCF,B (l, α) 7→ γ(l) +
1

B
· ieiαγ′(l).

This map is apparently smooth and, exactly as for the SLF case, surjectivity follows by construction
because by the regularity condition in Def. 2.15, every orbit in ÕCF,B has an intersection with ∂Ω which
lies in P out, and this point is represented in PSBirk in the coordinates (l, α), and injectivity follows

because every (l, α) uniquely represents an orbit in ÕCF,B .
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Now let (l, α) ∈ PSBirk and (L,A) ∈ T(l,α)PSBirk, then

dFCF

∣∣
(l,α)

(L,A) =
d

dt

∣∣∣∣
t=0

FCF(l + tL , α+ tA)

=
d

dt

∣∣∣∣
t=0

γ′(l + tL) +
1

B
· iei(α+tA)γ′(l + tL)

= Lγ′(l)− A

B
eiαγ′(l) +

L

B
ieiαγ′′(l)

= Lγ′(l)− 1

B
(A+ κL)eiαγ′(l) .

This differential is injective: Let dFCF

∣∣
(l,α)

(L,A) = 0. Because γ′(l) and eiαγ′(l) are linearly indepen-

dant, this implies L = 0 and 1
B (A+ κL) = 0, which implies A = 0.

As above, dimension reasons imply that the differential is invertible, and thus by implicit function theo-
rem, FCF is a local diffeomorphism, which makes it a diffeomorphism because FCF is bijective.
Now let (l, α) ∈ PSBirk and (L,A), (L̃, Ã) ∈ T(l,α)PSBirk, then

(FCF)∗ωCF

∣∣
(l,α)

(
(L,A) , (L̃, Ã)

)
= ωCF|(l,α)

(
dFCF

∣∣
(l,α)

(L,A) , dFCF

∣∣
(l,α)

(L̃, Ã)
)

= B dx ∧ dy

(
Lγ′ − 1

B
(A+ κL)eiαγ′ , L̃γ′ − 1

B

(
Ã+ κL̃

)
eiαγ′

)
.

Here, (x, y) = (Re(z), Im(z)) are the real coordinates of C ∼= R2. The differential form dx ∧ dy can
instead be described using the complex coordinate z and its complex conjugate z as follows:

dz ∧ dz = (dx− i dy) ∧ (dx+ i dy) = dx ∧ dx+ 2i dx ∧ dy − i2dy ∧ dy = 2idx ∧ dy .

Thus

(FCF)∗ωCF

∣∣
(l,α)

(
(L,A) , (L̃, Ã)

)
=
B

2i
dz ∧ dz

(
Lγ′ − 1

B
(A+ κL)eiαγ′ , L̃γ′ − 1

B

(
Ã+ κL̃

)
eiαγ′

)
=
B

2i

[(
Lγ′ − 1

B
(A+ κL)e−iαγ′

)(
L̃γ′ − 1

B

(
Ã+ κL̃

)
eiαγ

)
−
(
Lγ′ − 1

B
(A+ κL)eiαγ

)(
L̃γ′ − 1

B

(
Ã+ κL̃

)
e−iαγ′

)]
=
B

2i

(
− 1

B

)
γ′γ′(e−iα − eiα)

(
L̃(A+ κL)− L

(
Ã+ κL̃

))
= γ′γ︸︷︷︸

=1

1

2i
(eiα − e−iα)︸ ︷︷ ︸

=2i sinα

(
AL̃− ÃL

)
= sinα dα ∧ dl

∣∣
(l,α)

(
(L,A) , (L̃, Ã)

)
.

This shows that (FCF)∗ωCF = ωBirk, and concludes the proof.
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Conclusion

The Birkhoff billiards model describes the billiard dynamics in the two-dimensional case, whereby the
phase space PSBirk and the symplectic form ωBirk are identical for all values of magnetic field strength
B. Thus, the billiard maps TB constitute a whole family of symplectomorphisms, and the case B = 0
can in every way be viewed as a limit case of the magnetic billiards for B −→ 0. This is even true for
the generating functions which are used to prove that the maps TB are symplectomorphisms.
The symplectic form ωBirk depends on Ω, since the coordinates l and α by which it is described are
bound to the geometry of Ω.
In contrast, the orbit dynamics model describes a symplectic structure which is defined on the whole
orbit space irrespective of Ω, and is then restricted to the open set of all orbits transversally intersecting
Ω. Thus, here the symplectic structure is independant of the geometry.
However, even though for B 6= 0, limit case B −→ 0 of the Hamiltonian function, symplectic form and
Hamiltonian flow on the total space R2n × R2n coincides with the case B = 0, in the resulting orbit
space, the phase spaces of the magnetic and non-magnetic cases differ completley, and for the magnetic
case, the symplectic form varies with B.
The symplectic structure on the orbit space is in some sense natural, since in dimension 2, for a fitting
choice of coordinates, it directly emerges from the physical derivation. The fact that the symplectic
stuctures defined on the two models are preserved by the natural correspondence in dimension 2 shows
that the choice of ωBirk is also natural.
The orbit dynamics in higher dimensions defined here leads to a description of higher-dimensional bil-
liards, magnetic and non-magnetic, as a discrete dynamical system of a symplectic map, which can be
further studied. Another avenue for further thought is the question whether higher-dimensional magnetic
billiards has a description as a physical system, as is the case in dimension 2.
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