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Abstract

In this thesis we will present the construction of a so-called boundary map between the
strong Γ-boundary B of a discrete, countable group Γ and the Roller boundary ∂X of a
CAT(0) cube complex X on which Γ acts by automorphisms:

ϕ : B → ∂X.

We will see that this boundary map is measurable and Γ-equivariant almost everywhere.
The existence was first proven by Chatterji, Fernós, and Iozzi [CFI16] under the further
assumption that X is connected, locally countable and finite-dimensional and that Γ acts
non-elementary on X .

This thesis has an expository nature. We will give a brief introduction to CAT(0) cube
complexes and then turn towards the Roller duality, which will lead us immediately to the
Roller boundary. Additionally, we will explore group actions on CAT(0) cube complexes
introducing the notions of non-elementarity and essentiality. Lastly, we will define ergodic
group actions (with coefficients) and strong Γ-boundaries.

Zusammenfassung

Diese Abschlussarbeit hat zum Ziel eine sogenannte Randabbildung von einem starken
Γ-Rand B einer diskreten, abzählbaren Gruppe Γ in den Roller-Rand ∂X eines CAT(0)
Kubenkomplexes X auf dem Γ via Autmorphismen operiert zu konstruieren:

ϕ : B → ∂X.

Wir werden sehen, dass diese Randabbildung messbar und fast überall Γ-äquivariant ist.
Die Existenz dieser Abbildung wurde als erstes von Chatterji, Fernós und Iozzi [CFI16]
bewiesen; unter den zusätzlichen Annahmen, dass X zusammenhängend, lokal abzählbar
und endlich dimensional und die Gruppenwirkung von Γ auf X nicht-elementar ist.

Diese Arbeit hat einen einführenden Charakter. Wir werden zunächst eine kurze Einfüh-
rung in CAT(0) Kubenkomplexe geben und uns anschließend mit der Roller-Dualität ausein-
andersetzen, die direkt zum Roller-Rand führt. Zusätzlich werden wir Gruppenoperationen
auf CAT(0) Kubenkomplexen untersuchen und dabei die Begriffe der Nicht-Elementarität
und Essentialität einführen. Schlussendlich werden wir ergodische Gruppenoperationen
(mit Koeffizienten) und starke Γ-Ränder einführen.
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1 Introduction

Geometric group theory is a relatively new field in mathematics. One starting point
might be seen in Felix Klein’s Erlangen program [Kle93]. There, he pointed out the deep
connection between (abstract) groups and their realization as automorphism groups of
topological and geometric spaces. In the following years this point of view was refined and
graphs and trees (for example the Cayley graph) were identified as important geometrical
objects in order to understand groups from a geometrical point of view. The 1980s and the
1990s were especially fruitful with Gromov’s work [Gro87] and the progress in Thurston’s
geometrization program [Thu82]. In his treatise Gromov introduced (word-)hyperbolic
groups. These groups extend the notion of an isometry group of a hyperbolic space by
generalizing hyperbolic geometry to the geometry of non-positively curved spaces, captured
in the notion of CAT(0) spaces and considering groups operating on these spaces.

In the 1990s, Sageev [Sag95] brought certain special CAT(0) spaces, the so-called CAT(0)
cube complexes, to the attention of a wider audience. General CAT(0) spaces are often too
complicated to facilitate the understanding of a group. Instead, cube complexes introduce
a combinatorial structure which makes these spaces more rigid and hence, easier to handle.
At the same time, they are still flexible enough to admit interesting group actions. In
particular, every fundamental group of a surface of genus at least one admits an action
on a CAT(0) cube complex (see Examples 2.30 and 2.31). Another reason why CAT(0)
cube complexes were quickly adopted as a natural object of study is that every tree is a
CAT(0) cube complex. Hence, this new object generalized the old workhorse of the field.
Interestingly, Sageev was not the first to introduce the complexes. This had already been
done by Gromov in his 1987 treatise [Gro87], but only as a particular example of a CAT(0)
space.

Another old and very important object class in geometric group theory are the Lie groups.
Also in the 1990s Margulis [Mar91] was able to prove an astounding result which was then
coined as Margulis superrigidity. It states that under certain (rather weak) conditions a
linear representation of a lattice in a Lie group can be extended to the whole group. This
superrigidity result had a deep impact and it became an objective to find analogous results
in slightly different settings.

In 2016, Chatterji, Fernós, and Iozzi [CFI16] proved a superrigidity theorem for groups
acting essential and non-elementary on CAT(0) cube complexes:

Theorem 1.1 ([CFI16, Theorem 1.5]). Let Y be an irreducible finite-dimensional CAT(0) cube
complex and Γ < G1 × · · · ×Gl =: G an irreducible lattice in the product of l ≥ 2 locally
compact groups. Let Γ → Aut(Y ) be an essential and non-elementary action on Y . Then the
action of Γ on Y extends continuously to an action of G by factoring via one of the factors.

The main ingredient in their result was the construction of a so-called boundary map.
This map connects the group Γ via a strong Γ-boundary B to the Roller boundary ∂X (a
subset of the Roller compactification X̄) of a CAT(0) cube complex X . More precisely, they
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1 Introduction

proved the existence of a measurable map

ϕ : B → ∂X

which isΓ-equivariant almost everywhere. The spaceB is in fact a probability space. The set
X̄ is deeply intertwined with the combinatorial structure ofX . Each CAT(0) cube complex
has an associated set of hyperplanes Ĥ dividing the complex in two convex components.
The set of all these components H is called the set of all halfspaces ofX . Certain subsets of
these sets are denoted ultrafilters (see Section 3.1). The space X̄ is then simply given as the
set of all ultrafilters (the detailed construction can be found in Chapter 3).

The aim of this thesis is to understand and present the construction of this map (Theo-
rem 6.20 and Corollary 6.21). The idea of the proof is as follows: A strong Γ-boundary B is
defined via two key properties. First, the Γ-action on B must be amenable. Secondly, the
Γ-action must be doubly ergodic with coefficients, which is a strengthening of the standard
notion of (double) ergodicity. The group Γ also acts on X and this action can be extended
to the Roller compactification X̄ , where Γ acts via homeomorphisms. The amenability
provides a measurable map

ψ : B → P(X̄) (1.1)

which is Γ-equivariant almost everywhere and where P(X̄) denotes the set of all regular
probability measures on X̄ . The hard part of the proof is then that every probability measure
in the image of ψ identifies a point in X̄ , i. e. in some sense we would like the probability
measures in the image to have a point mass. In order to make this statement precise, we
need to introduce weighted halfspaces (see Section 4.2). Let µ be a probability measure
then the associated weighted halfspaces give the following decomposition of the set of
halfspaces

H = H−
µ tHµ tH+

µ .

It turns out that ifHµ = ∅ thenH+
µ is an ultrafilter. This would give the desired map from

P(X̄) to X̄ . The main work then is to show that Hµ indeed vanishes for every µ in the
image of ψ. For this part to work, we need to introduce further restrictions. We need our
complex X to be indecomposable (i. e. irreducible, see Section 2.2) and finite-dimensional.
Furthermore, the group action on the complex needs to be well-behaved. This is encoded
in two properties. First, the group needs to act essential which means that Γ needs to be
well-behaved with regard to the combinatorial structure of X . Secondly, the group needs
to act non-elementary which means that Γ needs to be well-behaved with regard to the
CAT(0) structure of X . The details of both notions can be found in Section 5.2. With all
these definitions in place, we will first be able to show that Hµ is always finite. Then, in
a second step, we will see that finiteness always implies emptiness. This closes the main
proof. As a last step, we will see that the image of ϕ indeed is in the Roller boundary not
only in the Roller compactification. In all the steps of the proof ergodicity (with coefficients)
will play a crucial role.
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Chapter outline

In Chapter 2, we will introduce CAT(0) cube complexes. We will start with some metric
preliminaries before introducing general CAT(0) spaces. Most important in this early part
is the definition of the visual boundary (see Definition 2.12). Afterwards, we will introduce
cube complexes and combinatorial maps, which are the structure-preserving mappings
(i. e. morphisms) for our objects. We will give a combinatorial property (Gromov’s link
condition, see Theorem 2.27) to check the CAT(0) property for cube complexes. Afterwards,
we will talk about hyperplanes and halfspaces and some of their important properties
(convexity, non-empty intersections, countability).

In Chapter 3, we will first introduce pocsets. Pocsets are partially ordered sets admitting
a fixed point free, order reversing involution. It turns out that the set of halfspaces of
CAT(0) cube complex is always a (discrete) pocset. Roller [Rol99] proved the reverse,
namely that every (discrete) pocset gives rise to a unique CAT(0) cube complex with this
pocset as pocset of halfspaces. The main ingredient of this construction is the notion of an
ultrafilter which we introduce next. The important observation was that there is a one-to-
one correspondence between principal ultrafilters and the vertex set of the CAT(0) cube
complex. However, Roller went further and noted that the set of all ultrafilters equipped
with a natural topology is a compactification of the vertex set of every CAT(0) cube complex.
This lead to the definition of one of our main objects of study: the Roller compactification of a
CAT(0) cube complex. We will introduce some topological and metric results regarding this
space. Afterwards, we will revisit ultrafilters and introduce a second (equivalent) viewpoint,
which is more natural for the later arguments. Lastly, we turn towards applications and
introduce intervals of ultrafilters. These are special (sub-)complexes which have strong
restrictions when it comes to sets of halfspaces. In particular, we will see that sets of
halfspaces can contain at most finitely many terminal elements (i. e. minimal or maximal
elements with regard to the partial order up to going over to the opposite under involution).
This property is the main reason we are interested in intervals. We will close the chapter
by studying sub-pocsets of halfspaces. We will give conditions under which the associated
CAT(0) cube complex can be embedded into the CAT(0) cube complex associated to the
actual pocset (Lemma 3.37).

After these two chapters, we will shortly leave the realm of CAT(0) cube complexes and
(in Chapter 4) turn towards measure theory and functional analysis. We will start with
generalities concerning measurable spaces, measurable maps and (probability) measures. We
will recall the connection between the vector space of continuous functions and the vector
space of (signed) measures. However, with these generalities in place, we return to our
special case and introduce weighted halfspaces (see Definition 4.15). Lastly, we will prove
measurability for certain key maps.

Up to this point, we did not talk about group actions. This will be remedied in Chapter 5.
First, we will talk about groups acting on CAT(0) cube complexes. Wewill see how the group
action can be extended to the Roller compactification and we will introduce the notions of
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1 Introduction

essential and non-elementary group actions citing some important results by Caprace and
Sageev [CS11]. The second half of the chapter is concerned with the introduction of strong
Γ-boundaries (where Γ is a countable, discrete group). One essential ingredient for this
boundary as well as for the proof in general is ergodicity. Hence, we have a whole section
reserved for this topic. The most important results are:

• If we have a finite group acting ergodically on a space B, then B is purely atomic
(Lemma 5.33);

• Ergodicity is inherited by finite index subgroups (Lemma 5.36).

Afterwards, we will strengthen the notion of ergodicity to ergodicity with coefficients. Both
notions can be defined via requiring certain Γ-equivariant, measurable maps to be constant.
Whereas in the case of ergodicity these maps always have R as codomain (with the trivial
action by Γ), in the case of ergodicity with coefficients we allow the dual of any separable
Banach space that admits a unitary Γ-action. This stronger version of ergodicity leads to a
condition for the essentiality of the Γ-action (see Corollary 5.42), which we will regularly
use. Next, we turn towards amenable group actions, which guarantee the existence of
certain measurable maps which are Γ-equivariant almost everywhere. With this notion in
place, we can define strong Γ-boundaries which are special probability spaces on which Γ
acts amenably and ergodically with coefficients. We close the chapter with the result that
(thanks to the amenability) we find the map ψ in Equation (1.1) (Corollary 5.52).

Chapter 6 contains the statement and the proof of our main result (Theorem 6.20 and
Corollary 6.21). First, we will construct the boundary map using the further assumption
that Hµ vanishes (as described above). Afterwards, we will prove that if the map exists, it
takes values in the Roller boundary. We will then see that Hµ being finite already implies
it to be empty. The remainder of the chapter builds up the necessary tools to excludeHµ

being infinite. The most important results are Proposition 6.6, Proposition 6.13 and Propo-
sition 6.14. Finally, we descend into themain proof plugging all the previous results together.

As a closing remark, we would like to point out that the material in this thesis by its
very nature is very close to the exposition in Chatterji, Fernós, and Iozzi [CFI16].
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2 CAT(0) cube complexes

This chapter is divided into four sections, which are all concerned with the introduction
of our basic objects of study: CAT(0) cube complexes. The Section 2.1 will introduce
general metric preliminaries and properties of CAT(0) spaces. In Section 2.2 we will be
in a position to introduce cubes and cube complexes and give a combinatorial condition
for them to be CAT(0). Section 2.3 is closely related to the former, as we will need to talk
about maps between CAT(0) cube complexes. As it turns out, combinatorial maps are the
right generalization of simplicial maps for us. In this section, we will also introduce the
automorphism group of CAT(0) cube complex. In Section 2.4 we will talk a bit more about
the geometry of the complexes and introduce hyperplanes and halfspaces. These objects
will be heavily used throughout this thesis and will be especially important in Chapter 3,
when they are used to construct the Roller compactification of our complexes.

2.1 Preliminaries on metric and CAT(0) spaces

This section is concerned with basic metric properties of spaces and their connection to
CAT(0) spaces. First, we will recall some generalities about metric spaces. Afterwards, we
will state some basic results about the geometry and topology of CAT(0) spaces. The section
will close with the definition of the visual boundary of a CAT(0) space. The exposition
follows closely [BH99] and [Rol12].

Generalities on metric spaces

Definition 2.1 (Geodesics).
• Let (X, d) be a metric space. A geodesic from x to y with x, y ∈ X is a map
c : [a, b] → X (a, b ∈ R) such that c(a) = x, c(b) = y and

d(c(t), c(t′)) = |t− t′|

for all t, t′ ∈ [a, b].

• The pair (X, d) is called r-geodesic (r > 0) if d(x, y) < r implies that there is a
geodesic joining x and y. It is called uniquely r-geodesic if this geodesic is unique (up
to reparametrization). The pair (X, d) is called (uniquely) geodesic if it is (uniquely)
r-geodesic for all r > 0.

Example 2.2 (Euclidean space). The pair (Rn, d0), where d0(x, y) := ‖x−y‖2, is uniquely
geodesic. The space Rn \ {0} is no longer geodesic, since every pair of antipodal points
can no longer be joined by a line segment.

Example 2.3 (Riemannian manifolds:). By the Hopf-Rinow theorem [HR31], every com-
plete Riemannian manifold is geodesic, but not necessarily uniquely geodesic (consider the
sphere).
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2 CAT(0) cube complexes

Definition 2.4 (Comparison triangles). Let (X, d) be a metric space.
• A geodesic triangle ∆ ⊂ X consists of three points p, q, r ∈ X , its vertices, together
with a choice of three edges, that is, geodesic segments [p, q], [q, r], [r, p] joining them
(recall that geodesics might not be unique). If necessary, the notation ∆ = ∆(p, q, r)
or ∆ = ∆([p, q], [q, r], [r, p]) will be used. The first case is a slight abuse of notation,
as the three vertices might not determine the triangle.

• A comparison triangle in R2 for ∆ = ∆(p, q, r) ⊂ X is a choice of three points
p̄, q̄, r̄ ∈ R2 such that ‖p̄ − q̄‖ = d(p, q), ‖q̄ − r̄‖ = d(q, r) and ‖r̄ − p̄‖ = d(r, p).
It will be denoted by ∆̄ = ∆(p̄, q̄, r̄). Such a comparison triangle always exists [c. f.
BH99, Sec. I.2].

Definition 2.5 (CAT(0) and non-positive curvature spaces). Let (X, d) be a metric space.
• Let ∆ = ∆(p, q, r) ⊂ X be a triangle and ∆̄ = ∆(p̄, q̄, r̄) ⊂ R2 its comparison
triangle. Each point x ∈ [p, q] has a unique associated point x̄ ∈ [p̄, q̄], which has
the same distance from p̄ and q̄ as x from p and q. The same is of course true for any
point lying on any of the other edges.

With this in mind we say that ∆ satisfies the CAT(0) inequality if d(x, y) ≤ ‖x̄− ȳ‖
for any x, y ∈ ∆ and x̄, ȳ ∈ ∆̄ ⊂ R2 the two associated points defined above.

• X is called a CAT(0) space if X is geodesic and if each geodesic triangle ∆ satisfies
the CAT(0) inequality.

• X is called of curvature≤ 0 or non-positively curved if it is locally a CAT(0) space, i. e.
for each x ∈ X there exists an r > 0 such that B(x, r) together with the induced
metric is a CAT(0) space.

Example 2.6 (Euclidean space). Rn is by definition a CAT(0) space. Furthermore, it is
easy to see if we remove the interior ∆ of a non-degenerate triangle from R2 and equip
this space with the induced length metric (i. e. the distance between two points is given
by the infimum of the length over all piecewise linear paths), then R2 \ ∆ is no longer
CAT(0). Indeed, the interior of ∆ is missing and this lengthens all shortest paths which
would normally go through the interior. However, this space is still non-positively curved.

Example 2.7 (Trees). Trees equipped with the edge metric are another example of CAT(0)
spaces. Every triangle in a tree takes the form of one midpointm with three edge paths
connectingm to the three vertices p, q and r. The situation is depicted in Figure 2.1. We
see that each point on the triangle always lies on at least two of its sides at the same time.
Hence, we always find two associated points in the comparison triangle. In the figure, x
has the points x̄i associated and y the points ȳi. We see that two of the representatives (in
our notation x̄2 and ȳ2) lie on a common edge and hence satisfy the CAT(0) (in-)equality
(blue line segment). The other three possible combinations of representatives all have a
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2.1 Preliminaries on metric and CAT(0) spaces

m

p

q r
x

y

q̄ r̄

p̄

x̄1

ȳ2

x̄2

ȳ1

d(x, y) = ‖x̄2 − ȳ‖2

Figure 2.1: A triangle in a tree and the corresponding comparison triangle in R2. The
different choices of comparison points for x and y are inscribed as x̄i and ȳi. The
blue segment in the comparison triangle corresponds to the only comparison
pair with the same length as in the tree. The three green line segments are all
longer.

longer distance (green line segments). This can be deduced from the fact, that the triangles
∆(q̄, x̄1, x̄2) and ∆(p̄, ȳ1, ȳ2) are isosceles. This implies that the angles ∠(x̄2; x̄1, ȳ2) and
∠(ȳ2; ȳ1, x̄2) are larger than π

2 . We see that the triangle satisfies the CAT(0) inequality.
Since every tree is geodesic, we see that trees indeed are CAT(0) spaces.

Example 2.8 (Hyperbolic space). Every hyperbolic n-space Hn is CAT(0). The interested
reader may find further information in Bridson and Haefliger [BH99, Section II.1].

Properties of general CAT(0) spaces

This section contains some important facts about general CAT(0) spaces. For the omitted
proofs, see [BH99].

Proposition 2.9 ([BH99, Prop II.1.4]). Let X be a CAT(0) space. Then

1. X is uniquely geodesic and

2. X is contractible.

Definition 2.10. Let X,Y be metric spaces. The map ϕ : X → Y is called

• an isometric embedding if dX(x, y) = dY (ϕ(x), ϕ(y)) for any two x, y ∈ X ,

7



2 CAT(0) cube complexes

• an isometry if it is an isometric embedding and surjective (and hence bijective), and

• a local isometry if for each x ∈ X there exists an open neighborhood U ⊂ X
containing x such that ϕ|U : U → ϕ(U) is an isometry.

Proposition 2.11 ([Rol12, Propositions 1 & 2]). Let X,Y be geodesic spaces and let Y be
CAT(0). Then every local isometry ϕ : X → Y is an isometric embedding. In particular, every
local geodesic is a geodesic.

On CAT(0) spaces one regularly defines a boundary via identifying certain geodesic rays.
This so called visual boundary will play a minor role in this thesis, but we will still need it.

Definition 2.12 (Visual boundary, [BH99, Sec. II.8]). Let γi : [0,∞) → X two geodesic
rays into a CAT(0) space X . We say γ1 ∼ γ2 if and only if there exists a constantK > 0
such that

d(γ1(t), γ2(t)) < K

for all t ≥ 0. The set of equivalence classes ∂^X is called the visual boundary of X .
Clearly, each group action on X by isometries extends to an action on ∂^X .

Remark 2.13. X t ∂^X can be topologized in a way that it agrees with the topology
induced by the metric on X . If X is locally compact, X t ∂^X is also compact [c. f. BH99,
Sec. II.8].

Example 2.14 (Euclidean space). In Rn two geodesics (i. e. straight lines) are equivalent if
and only if they are parallel. Hence, we can fix any point x ∈ Rn and see that there is a
one-to-one correspondence between points at the visual boundary and (signed) directions.
In other words, we attach an (n− 1)-sphere at infinity and indeed it can be shown that
Rn t ∂^Rn is homeomorphic to the closed unit ball Dn, with Rn homeomorphic to the
interior [c. f. BH99, Section II.8].

Example 2.15 (Trees). In the case of trees, every edge path is a geodesic and two of them,
c1 and c2, are equivalent if and only if there exist n,m ∈ N such that c1(t+m) = c2(t+n)
for all t ≥ 0. This means that up to a finite starting interval the two geodesics have to
coincide. In other words we are only interested in the tails of the geodesic rays.

Lemma 2.16 ([CFI16, Lemma 2.9]). LetX = X1 × · · · ×Xm be a product of CAT(0) spaces
Xj and let G = G1 × · · · ×Gm, where Gj ≤ Isom(Xj). Then any Gj-fixed point in ∂^Xj

defines a G-fixed point in ∂^X .

Proof. Let di and d be the CAT(0) metrics on Xi and X . Up to permuting the indices we
can assume that we have a G1-fixed point in ∂^X1. Let the geodesic ray l1 : [0,∞) → X1

represent this fixed point, i. e.

sup
t≥0

d1(l1(t), g1l1(t)) <∞

8



2.2 Cube complexes

for every g1 ∈ G1. For each i > 1 we fix a point xi ∈ Xi. Then

l : [0,∞) → X, t 7→ (l1(t), x2, . . . , xm)

is a geodesic in X and for any g = (g1, . . . , gm) ∈ G we have

sup
t≥0

d2(l(t), gl(t)) = sup
t≥0

[
d21(l1(t), g1l1(t)) +

m∑
i=2

d2i (xi, gixi)

]
<∞.

Hence, l defines a G-fixed point in ∂^X .

2.2 Cube complexes

We are now able to define the central object of this thesis: CAT(0) cube complexes. First, we
will introduce Euclidean cubes and some necessary notation (faces and links). Afterwards,
we will define the gluing process that will lead to cube complexes. We will state some basic
properties and define flag complexes. This allows us to connect the geometric property of
being CAT(0) to a purely combinatorial notion which is stated in Gromov’s link condition
(Theorem 2.27). Lastly, we will turn towards locally countable complexes and prove some
necessary lemmas concerning the countability of vertex sets.

Definition 2.17 (Cubes). A set C = [0, 1]n ⊂ Rn is called a cube. A face is a subset of the
form

F = C ∩ {xi1 = e1, . . . , xik = ek},

where 0 ≤ k ≤ n, i1, . . . , ik are pairwise different elements in {1, . . . , n} and ej ∈ {0, 1}.
F is called a proper face if F 6= C . The notation F � C will be used for faces. The dimension
of F is n− k. The interior F̊ , is the interior of F equipped with its Rn−k-structure. Any
subset C ∩ {xi = ¹⁄₂} is called a midcube of C . Them-skeleton of C is defined by

C(m) :=
⋃

{F | F � C and dimF ≤ m}.

For a fixed x ∈ C , the support of x, supp(x), is the unique face of C containing x in its
interior or alternatively the unique face with minimal dimension containing x.

The link of x in C is given by

Lk(x,C) := {u ∈ UxRn | ∃t > 0: expx(tu) ∈ C} ⊂ UxRn ∼= Sn−1,

where UxRn is the unit tangent space at x in Rn considered as a Riemannian manifold. It
can be isometrically identified with Sn−1.

Remark 2.18. The link Lk(v, C) ⊂ Sn−1 is a simplex for all vertices v ∈ C (unless
dimC = 0). Its edges have length π

2 .
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2 CAT(0) cube complexes

Now, that we have introduced the vocabulary concerning Euclidean cubes, we turn
towards cube complexes. These are obtained by gluing disjoint cubes along their faces via
isometries. The restriction on the gluing maps ascertain that many of the combinatorial
properties we know from simplicial complexes will transfer to cube complexes.

Definition 2.19 (Cube complexes).
• Let (Cλ)λ∈Λ be a family of cubes and C :=

⊔
λ∈ΛCλ its disjoint union. Furthermore,

let ∼ denote an equivalence relation on C and denote by X the space of equivalence
classes with natural projection p : C → X . Lastly, let pλ : Cλ → X be the embedding
of Cλ into C concatenated with the projection.

X is called a cube complex if

1. pλ is injective and

2. for arbitrary λ1, λ2 ∈ Λ and xi ∈ Cλi
such that pλ1(x1) = pλ2(x2), there exists

an isometry h : supp(x1) → supp(x2) such that pλ1|supp(x1) = pλ2 ◦ h.

Now, let X be a cube complex.

• C ⊂ X is called an n-dimensional cube, if it is the image of an n-dimensional face
F � Cλ under pλ. The interior of C is given by C̊ := pλ(F̊ ). A midcube of C is the
image of a midcube of F under pλ.

• Them-skeleton of X is given by

X(m) :=
⊔

λ∈ΛC
(m)
λ

/
∼ ,

where ∼ is given by the restriction of the equivalence relation on C to the disjoint
union of them-skeleta of the cubes.

• Let x ∈ X and (xi)i∈I be the family of all the points xi ∈ Cλ(i) lying in the fiber
over X . Consider the disjoint union

⊔
i∈I Lk(xi, Cλ(i)). We define an equivalence

relation: ui ∼ uj if and only if there exist ti, tj > 0 such that expxi
(tiui) ∈ Cλ(i),

expxj
(tjuj) ∈ Cλ(j) and pλ(i)(expxi

(tiui)) = pλ(j)(expxj
(tjuj)). Then the link of x

in X is given by

Lk(x,X) :=
⊔

i∈I Lk(xλ(i), Cλ(i))
/
∼ .

Remark 2.20.
• In the language ofMκ-polyhedral complexes the link Lk(x,X) is aM1-polyhedral
complex whenever x is a vertex of X . For more details see Bridson and Haefliger
[BH99, Section I.7]. Although all the cells of Lk(x,X) consist of simplices, it might
happen that Lk(x,X) is not a simplicial complex. An example is given in Exam-
ple 2.29.

10



2.2 Cube complexes

• Since the cubes are glued isometrically, one can think of Lk(x,X) as being inscribed
inX . The key observation is that one can fix ti respectively tj to any (common) value
smaller than 1 (one common choice is ¹⁄₃). Then the maps pλ(i)(expxi

(ti·)) induce
the embedding. Vertices correspond to the intersection of the 1-skeleton with the
image of this embedding and edges must lie in the 2-skeleton. For an example see
Figure 2.2.

Figure 2.2: The left-hand side depicts a CAT(0) cube complex (black). One vertex link is
inscribed into the complex via the intersection of a small sphere (blue). The
right-hand side depicts the vertex link without the CAT(0) cube complex.

• Our definition of a cube complex is not standard. Usually, the above defined object
is called a cubical complex [c. f. BH99, Def. I.7.37]. The difference between the two
concepts lies solely in the fact that in the cubical case we need the maps pλ to be
injective on the whole cube, whereas in the cube case they are only assumed to
be injective on the interior of each cube. However, as Leary [Lea13, Thm. C.4] has
shown, in the case of CAT(0) cube complexes the two definitions are equivalent,
hence we will adopt it from the start.

• By definition, two cubes either intersect in a common face or have an empty inter-
section. In this sense, they are completely analogous to simplicial complexes (c. f.
Definition 2.26).

In the following we will list some useful results about cube complexes. For the proofs
see [Lea13, Appendices A, B] or [BH99, Sec. I.7, II.5].

Theorem 2.21 ([BH99, p. I.7.10]). Every cube complex X is a metric space, when equipped
with the metric dp induced by the piecewise linear paths in X .

With the above definition we can define:

Definition 2.22 (CAT(0) cube complex). A CAT(0) cube complex is a cube complexX such
that the pair (X, dp) is a CAT(0) space, where dp is the metric induced by the piecewise
linear paths on X .

Remark 2.23. Although the path metric dp gives X its CAT(0) structure, this metric is
often of no great importance in the theory of CAT(0) cube complexes. The reason for this
is described in Remark 2.45.

11



2 CAT(0) cube complexes

Theorem 2.24 ([Lea13, Theorem A.6], [BH99, Theorem I.7.50]). A cube complex is complete
if and only if every chain of ascending cubes is finite.

Notation 2.25. Let S be a set. We will denote its power set by

Pot(S) = {A ⊂ S}.

Definition 2.26 (Flag complexes and joins).

• Let S be a set and P ⊂ Pot(S). A pairK = (S, P ) is called a simplicial complex if
{s} ∈ P for every s ∈ S and for every X ∈ P and Y ⊂ X with Y 6= ∅ we have
Y ∈ P .

An n-simplex is an element X ∈ P such that |X| = n+ 1.

A 0-simplex is called a vertex and a 1-simplex is called an edge.

• A simplicial complexK = (S, P ) is flag, if every finite subset of S that is pairwise
joined by edges spans a simplex (see [BH99, Definition II.5.15]).

• LetK1 = (S1, P1) andK2 = (S2, P2) be two simplicial complexes. Their join K is
the simplicial complex (S, P ) such that S := S1 t S2 and X ∈ P if and only if one
of the following is true:

1. X ∈ P1,

2. X ∈ P2, or

3. there exist Xi ∈ Pi such that X = X1 tX2.

We writeK = K1 ∗K2 (See [BH99, Definition I.7A.2]).

Theorem 2.27 (Gromov’s link condition, [Lea13, Theorem B.8], [BH99, Theorem II.5.20]).
A cube complexX is non-positively curved if and only if Lk(v,X) is a flag complex for each
vertex v ∈ X .

A cube complexX is CAT(0) if and only if Lk(v,X) is a flag complex for each vertex v ∈ X
and X is simply connected.

The following examples were taken from Sageev [Sag12]:

Example 2.28 (Graphs). The link of every vertex in a graph is a set of disconnected vertices,
which is, by the non-existence of any higher dimensional simplices, a flag complex. Hence,
every graph is non-positively curved. In the case of graphs, simply connectedness is
equivalent to the graph being a tree such that we see that CAT(0) cube complexes are in a
natural way a generalization of trees.

12



2.2 Cube complexes

Example 2.29 (Sphere). Figure 2.3 contains three representations of the two-dimensional
sphere as a quotient of a disjoint union of cubes. None of these is a CAT(0) cube complex.
In case 2.3a the cube is not embedded into the quotient. Nonetheless, one can define links
for the vertices and we see that these are not simplicial complexes, since one contains a
loop and the other contains parallel edges. In the case 2.3b, we see that we can indeed
realize the sphere as a cube complex. However, we still have a non-simplicial vertex link.
In the case 2.3c, we can even find a realization as a cube complex such that the vertex links
are simplicial. However, even then the link is not flag.

Naturally, this is as it should be as we know that a sphere is an example of a positively
curved space and our definition agrees with the one in the case of manifolds.

(a) (b)

(c)

Figure 2.3: Three topological realizations of a sphere and their vertex links. Figure a is
not a cube complex, whereas Figures b and c are. In Figure b the link is not a
simplicial complex (parallel edges). In Figure c the link is simplicial, but not flag.

Example 2.30 (Torus). Figure 2.4 contains a realization of a two-dimensional torus as a
cube complex. The vertex links show that the torus is indeed non-positively curved. This is
what we would expect, since a torus is an example of a flat space. However, it is not a CAT(0)
cube complex, as it is not simply connected. A generalization of the Cartan-Hadamard
theorem shows that the universal cover of a non-positively curved cube complex is always
CAT(0). In the case of a torus the universal cover can be chosen to be R2 with its standard
cubulation via Z2.

The above considerations generalize to tori in arbitrary dimensions.

Example 2.31 (Higher genus surfaces). In order to complete our discussion of surfaces, we
consider in Figure 2.5 the example of a genus 2 surface. Inscribed in the standard octagon,
there are four more geodesics creating eight cubes embedded in the quotient. The vertex

13



2 CAT(0) cube complexes

x1 x2x2

x3

x3

x4

x4

x4

x4
Lk(xi)

Figure 2.4: Realization of a 2-dimensional torus as a cube complex and its vertex link. We
see that the torus is non-positively curved.

links are clearly flag and so we see that the surface can be realized as a non-positively
curved cube complex. The construction can be generalized to all higher genus surfaces.
This is expected, as all these higher genus surfaces are negatively curved.

x2

x2

x2

x2

x2

x2

x2

x2

z1

z3

z2

z4

z1

z3

z2

z4

x1

Lk(xi) Lk(zi)

Figure 2.5: Realization of a genus 2 surface as a cube complex and the two non-isomorphic
vertex links. The links indicate that the surface is non-positively curved.

As in the previous example, these surfaces lead to a cube complex structure on the
universal cover, which can be chosen to be H2.

Lemma 2.32. The joinK = (S, P ) of two simplicial complexesKi = (Si, Pi) (i = 1, 2) is a
simplicial complex. IfK1 andK2 are flag, so isK .

Proof. Let X ∈ P and ∅ 6= Y ⊂ X . The set X can be decomposed as X = X1 t X2,
where Xi ∈ Pi or Xi = ∅. With this we have Y = Y1 t Y2 where Yi := Xi ∩ Y . If both
Y1 and Y2 are non-empty, then Yi ∈ Pi and, by construction, we have Y ∈ P . If Y2 = ∅,
then Y1 6= ∅ and hence Y = Y1 ∈ P1 ⊂ P . Likewise for Y1 = ∅. We conclude thatK is a
simplicial complex.
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2.2 Cube complexes

We will now show thatK is flag if theKi are flag. Let v1, . . . , vn ∈ P be distinct vertices
that are pairwise connected in the 1-skeleton, i. e. vi∪vj ∈ P for all i 6= j. We have to show
that X :=

⋃
i vi ∈ P . After renaming the vertices we may assume that v1, . . . , vk ∈ P1

and vk+1, . . . vn ∈ P2. If k = 0 or k = n, we are done as Ki is flag and we have Pi ⊂ P .
Otherwise X1 :=

⋃k
i=1 vi ∈ P1 and X2 :=

⋃n
i=k+1 vi ∈ P2, again since the Ki are flag.

However, then X = X1 tX2 ∈ P by definition. Hence,K is flag.

Proposition 2.33. Let X1 and X2 be two cube complexes, then X := X1 ×X2 is a cube
complex. If X1 and X2 are both CAT(0), so is X .

Proof. Wewill first prove thatX1×X2 is a cube complex. IfX1 andX2 are cube complexes,
we have the following maps:

pi :
⊔
λ∈Λi

Cλ → Xi.

Hence, we have the map

(p1 × p2) :
⊔

λ′∈Λ1

⊔
λ∈Λ2

Cλ′ × Cλ → X1 ×X2

and via the embedding of the cubes the maps

pλ′,λ : Cλ′ × Cλ → X1 ×X2.

These maps are injective because each pi is injective on every cube. The fact that the cubes
are glued by isometries can also be seen on each factor separately.

We turn towards the proof thatX is CAT(0), if theXi are CAT(0). We will show that for
any vertex (v, w) ∈ X the link Lk((v, w), X) is the join of Lk(v,X1) and Lk(w,X2). We
use Remark 2.20 and think of the link as inscribed into the complex. Let us first consider two
Euclidean cubes Cλ′ and Cλ and the origin as the vertex. Let n = dimCλ′ and k = dimCλ.
Then a vertex v ∈ Lk(0, Cλ′ × Cλ) is uniquely defined by the unique coordinate vi which
is non-zero. If i ≤ n, then v corresponds to a vertex in Lk(0, Cλ′), otherwise to a vertex in
Lk(0, Cλ). Now, the three links are indeed a (n− 1)-, (k − 1)- and (n+ k − 1)-simplex
respectively and we have Lk(0, Cλ′ × Cλ) = Lk(0, Cλ′) ∗ Lk(0, Cλ).

In the case of a general X , we can accomplish the above decomposition on each cube
separately. Since the isometric gluing is also factor wise, it preserves the decomposition and
we have Lk((v, w), X) = Lk(v,X1) ∗ Lk(v,X2). With this assertion in place Lemma 2.32
finishes the proof.

The above proposition leads to the following definition:

Definition 2.34. A CAT(0) cube complex X is called reducible, if it can be decomposed as
a (proper) product of CAT(0) cube complexes. Otherwise, it is called irreducible.
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2 CAT(0) cube complexes

Definition 2.35. A cube complex X is called locally finite if every x ∈ X is contained
in only finitely many cubes. It is called locally compact if for every x ∈ X there exists a
compact neighborhoodK ⊂ X . It is called locally countable if every x ∈ X is contained in
at most countably many cubes.

Proposition 2.36 ([Rol12, Prop. 14]). Let X be a cube complex. Then the following are
equivalent:

1. X is locally finite,

2. each bounded subset of X meets only finitely many cubes,

3. X is proper (i. e. closed balls are compact), and

4. X is locally compact.

Definition 2.37 (Edge metric). The edge metric on V (X) := X(0), the vertex set of X , is
the graph metric of the 1-skeleton X(1) considered as a simplicial graph with all edges
assigned unit length.

Lemma 2.38. Let X be a locally countable CAT(0) cube complex. Let V (X) be its vertex
set equipped with the edge metric d. Then for every x0 ∈ V (X) and n ∈ N0 the set
Xn := {x ∈ V (X) | d(x0, x) = n} is countable.

Proof. We fix x0 ∈ V (X) and proceed by induction. Since d is a metric we haveX0 = {x0}.
Now, assume Xn to be countable and let for each x ∈ V (X) be N(x) the set of its
neighboring vertices (i. e. all vertices connected by an edge to x or equivalently all vertices
with distance 1 from x). Because of the local countability N(x) is countable. Thus

Xn+1 ⊂
⋃

x∈Xn

N(x)

is a countable set.

Remark 2.39. In this thesis we will be mostly concerned with connected, locally countable,
finite-dimensional CAT(0) cube complexes. Wewill recall in each sectionwhich assumptions
are necessary on our space.

2.3 Combinatorial maps

This is a short section concerned with maps between cube complexes. We will deal with
these maps in order to understand group actions on CAT(0) cube complexes and the
decomposition of the complexes in factors.

Definition 2.40 (Combinatorial maps). LetX,Y be cube complexes. The map f : X → Y
is called a morphism of cube complexes or a combinatorial map, if
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2.3 Combinatorial maps

1. each vertex v ∈ X(0) is mapped to a vertex f(v) ∈ Y (0),

2. each cube C ⊂ X is mapped to a cube f(C) ⊂ Y and

3. the induced map given by

fλ,ω : Cλ
pX,λ−−−→ C

f−→ f(C)
p−1
Y,ω−−−→ Cω

can be represented as fλ,ω(x) =
∑n

i=1 aif(vi), where v1, . . . , vn are the vertices of
Cλ and x =

∑n
i=1 aivi is an arbitrary element of Cλ in its convex representation.

The automorphism group of a cube complex X will be denoted by Aut(X).

Remark 2.41. The above definition of a combinatorial map is completely analogous to the
one of a simplicial map of simplicial complexes [c. f. ST76].

We have two direct observations stemming from the above definition:

Lemma 2.42. After possibly rotating Cλ ⊂ Rn and Cω ⊂ Rm, the map fλ,ω is induced by
the restriction of the natural projection from Rn to Rm. In particular, we have n ≥ m.

Corollary 2.43. Let f : X → Y be a combinatorial map. The restriction f |C : C → Y
is distance non-increasing for each cube C ⊂ X , i. e. dY (f(x), f(y)) ≤ dX(x, y) for all
x, y ∈ C .

Proposition 2.44. Let f : X → Y be a combinatorial map. Then f is distance non-increasing
with regard to the metric dp. In particular, a combinatorial isomorphism is an isometry.

Proof. By the combinatorial structure of f , each piecewise linear path c in X is mapped to
a piecewise linear path in Y . For each x, y ∈ X we denote by PL(x, y) the set of piecewise
linear paths joining x to y. Furthermore, each segment of c lying in a cube is shortened by
Corollary 2.43. Hence, l(f ◦ c) ≤ l(c) and thus

dX(x, y) = inf {l(c) | c ∈ PL(x, y)}
≥ inf {l(f ◦ c) | c ∈ PL(x, y)}
≥ inf {l(c) | c ∈ PL(f(x), f(y))}
= dY (x, y),

which is the desired result.

Remark 2.45. In the last two sections we have seen that there are two closely intertwined
aspects to CAT(0) cube complexes. First, there is the combinatorial nature of their con-
struction, which is also mirrored in the definition of combinatorial maps. Second, there is
the geometric structure as CAT(0) spaces. As stated in Theorem 2.21, X is a metric space
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2 CAT(0) cube complexes

with regard to the path metric and it is with regard to this metric, that it is a CAT(0) space.
However, often (and in particular in our case) one prefers to work on the combinatorial side
and one introduces a second metric on the vertex set V (X) := X(0) of X . This so-called
edge metric, as seen in Definition 2.37, is given by the infimum over the length of all paths
between vertices along edges, i. e. the infimum of the length over all paths in the 1-skeleton
X(1). Indeed, because of Gromov’s link condition (Theorem 2.27), we are in the special
situation that all the geometric information of our space is already encoded in its 1-skeleton
(or equivalently in its vertex set equipped with the edge metric). This is also the reason why
in the following chapters the length metric of CAT(0) cube complexes will not appear any
longer and we will mostly be concerned with its vertex set and the equipped edge metric.

2.4 Halfspaces

We will introduce hyperplanes, halfspaces and talk about their geometric properties. We
will see that they are convex and have rather strong intersection properties. Later, we will
introduce strongly separated halfspaces, which will be linked directly to the irreducibility
of a CAT(0) cube complex (see Proposition 5.20). Lastly, we will be concerned with some
combinatorial properties of halfspaces. The first part of this section follows the lecture
notes by Rolli [Rol12].

Definition 2.46 (Hyperplanes). Let X be a cube complex.

• The 0-, 1- and 2-dimensional cubes are called vertices, edges and squares respectively.

• We say that two edges e and e′ are equivalent (e ∼ e′) if and only if either e′ = e
or there is a sequence of edges e1, . . . , en such that e1 = e and en = e′ and any
two edges ei−1, ei are opposite edges in a common square in X . Note that this is an
equivalence relation and we will call it square relation.

• A midcubeM ⊂ X is transverse to a square relation class E = [e]∼ (writeM t E)
ifM ∩X(1) contains only midpoints of edges in E.

• The hyperplane defined by E is given by

ĥ(E) :=
⋃

MtE

M ⊂ X.

We will often write ĥ instead of ĥ(E).

Example 2.47. Figure 2.6 contains an example of a CAT(0) cube complex with an equiva-
lence class of edges (dark blue) and associated hyperplane (light blue).

Proposition 2.48 (Convexity of halfspaces, [Rol12, Propositions 18 & 19]). Let X be a
CAT(0) cube complex and ĥ ⊂ X a hyperplane. Then ĥ is closed and convex. Furthermore, if
ĥ contains at least two points of the image of any geodesic γ, then the whole image of γ is
contained in ĥ.
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2.4 Halfspaces

Figure 2.6: Example of a CAT(0) cube complex with a hyperplane inscribed. The dark blue
edges form an edge equivalence class which defines the blue hyperplane. The
red and green parts indicate the two halfspaces associated to the hyperplane.
The figure follows closely the example in Sageev [Sag12].

Corollary 2.49. Let X be a CAT(0) cube complex. Every ĥ ⊂ X is itself a CAT(0) cube
complex.

Sketch. By construction, it is easy to verify that the gluing of midcubes inherited from X
gives ĥ a cube complex structure. Additionally, every convex closed subspace of a CAT(0)
space is CAT(0) itself.

Theorem 2.50 (Separation, [Rol12, Proposition 21]). Any hyperplane ĥ separates X in
exactly two convex connected components.

Definition 2.51 (Halfspaces). The two connected components ofX \ĥ are called halfspaces.
If h ⊂ X \ ĥ is one of these halfspaces, then h∗ denotes the opposite halfspace leading to
X = h t ĥ t h∗.

Example 2.52. Figure 2.6 also indicates the two halfspaces (red and green color).

Theorem 2.53 (Intersection, [Rol12, Proposition 22 & 24]).
1. Let ĥ1, . . . , ĥn be hyperplanes with pairwise non-trivial intersection. Then

n⋂
i=1

ĥi 6= ∅.

2. Let h1, . . . , hn be halfspaces with pairwise non-trivial intersection. Then

n⋂
i=1

hi 6= ∅.

In particular, the intersection contains a vertex of X .

This concludes our discussion of geometric properties. The following definition will play
a central role in Section 5 (see for example Proposition 5.20).
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2 CAT(0) cube complexes

Definition 2.54 (Strongly separated halfspaces). Two hyperplanes are strongly separated
if they are parallel (i. e. they do not intersect) and there is no hyperplane transverse to both.
Two halfspaces are strongly separated if the same is true for their associated hyperplanes.

Example 2.55 (Euclidean space). The spaceRd with its standard cubulation is one example
of a CAT(0) cube complex without any strongly separated hyperplanes. Indeed, any pair of
parallel hyperplanes is orthogonal to some coordinate axis. Any hyperplane parallel to this
axis is transverse to both.

Example 2.56 (A tree). As an example with strongly separated halfspaces, consider the
tree depicted in Figure 2.7. There we have three pairwise parallel hyperplanes ĥ, k̂ and l̂.
Hence, any pair is strongly separated.

ĥ

k̂

l̂

Figure 2.7: A tree with three pairwise parallel hyperplanes ĥ, k̂ and l̂.

We close this section with two technical results. The first one will be employed in the
metrizability of the Roller compactification (see Corollary 3.8). The significance of the
second result will become clear in Proposition 3.5 and Remark 3.6.

Corollary 2.57. If X is a locally countable CAT(0) cube complex, then its set of hyperplanes
Ĥ and its set of halfspaces H are countable.

Proof. We fix a vertex x0 ∈ V (X) and consider the sets

Yn := {(x, y) ∈ Xn−1 ×Xn | y ∈ N(x)} ⊂ Xn−1 ×Xn ∀n ∈ N.

By Lemma 2.38, the sets Xn are countable and we have that

Ĥ =
∞⋃
n=1

⋃
e∈Yn

ĥ([e])

is countable. Since every hyperplane has exactly two halfspaces associated to it, the same
is true for H.

Lemma 2.58. Let X be a connected CAT(0) cube complex. Then for any two h, k ∈ H(X)
such that h ⊂ k we have

|{l ∈ H(X) | h ⊂ l ⊂ k}| <∞.
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Proof. LetM be the set as in the statement above and M̂ the set of corresponding hyper-
planes. Clearly, the two sets are one-to-one. We take any vertex v ∈ h and w ∈ k∗. Then
there exists a finite edge path c joining the two. We claim that M̂ is a subset of all the
hyperplanes defined by the edges in c. Indeed, let l ∈M . Then v ∈ l and w ∈ l∗. Hence, c
has to cross l̂. So l̂ is one of the hyperplanes defined by an edge in c.
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3 Pocsets and the Roller compactification

This whole chapter is dedicated to the interplay between CAT(0) cube complexes and
discrete pocsets. Roller [Rol99] showed that there is a one-to-one-correspondence between
these two points of view, which is an important tool in this field of study.

This chapter is divided into five sections. In Section 3.1, we will introduce pocsets
and ultrafilters, which are the main ingredients in the so-called Roller compactification of
the vertex set of a CAT(0) cube complex. This compactification is described in detail in
Section 3.2. Section 3.3 is again concerned with ultrafilters. There are two equivalent ways
to define them and we will need both. The first viewpoint (in Section 3.1) has advantages
when it comes to topological and metrical properties of the Roller compactification, whereas
the second viewpoint (in Section 3.3) is more natural when it comes to measurability. The
main result in Section 3.3 is Theorem 3.21, showing that the two viewpoints are equivalent.
Section 3.4 is only loosely related to the previous sections. We will introduce intervals of
ultrafilters, which are special subcomplexes of CAT(0) cube complexes. Themost interesting
property of these intervals is that they are always embeddable into some Rd (considered
as a CAT(0) cube complex, see Example 2.30). The second topic of the section consists in
so-called terminal elements. These are all the elements in a set of halfspaces that are minimal
or maximal with regard to inclusion. The existence or non-existence of these elements is
one cornerstone of the main proof. Intervals have at most finitely many terminal elements
(c. f. Example 3.34) which is why they are so interesting for us. In Section 3.5, we are
interested in one special case of the above mentioned correspondence between pocsets and
CAT(0) cube complexes: If H′ ⊂ H are both pocsets, under which circumstances will the
associated complex X(H′) be a subcomplex of X(H)? We will be able to give a partial
answer by providing a sufficient condition (which, however, might not be necessary).

3.1 Pocsets and ultrafilters

In this section we will introduce a special type of partially ordered sets (or short: posets).
These sets are special because they have a certain fixed point free involution. They are
called pocsets (a poset with complementation). After having established this notion, we
will introduce ultrafilters which are the necessary objects to construct a compactification
of the vertex set of a CAT(0) cube complex. In this section, we will mostly be interested in
topological and metric properties of the set of all ultrafilters. The connection to CAT(0)
cube complexes will be established at the end of this section.

Definition 3.1 (Pocset, [Rol99]).
• A pocset is a triple (A,≺, ∗) consisting of a set A, a partial ordering ≺ on A and a
fixed point free, order reversing involution

∗ : A→ A,

a 7→ a∗
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3 Pocsets and the Roller compactification

such that a and a∗ are incomparable for every a ∈ A. If there is no danger of
ambiguity, we will often drop the triple and we will write A for short.

Let A,B be pocsets. The map f : A→ B is called a pocset morphism if the following
conditions hold:

1. a ≺ b implies that f(a) ≺ f(a) for every a, b ∈ A, and

2. f(a∗) = f(a)∗ for every a ∈ A.

• A pocset A is called discrete if for any two a, b ∈ A the interval

[a, b] := {c ∈ A | a ≺ c ≺ b}

is finite.

• Two elements a, b of a pocset A are called nested if they satisfy a ≺ b, a∗ ≺ b, a ≺ b∗

or a∗ ≺ b∗. Otherwise, they are called transverse.

• A pocset A has finite width if there exists a constant N ∈ N such that the cardinality
of any subset of transverse elements of A is bounded from above by N .

Definition 3.2 (Ultrafilter). Let (A,≺, ∗) be a pocset. Let Ã be the set of equivalence
classes via: a ∼ b if and only if a∗ = b or a = b. We define

P (A) :=
∏
ã∈Ã

ã,

i. e. P (A) is the product over all the two element sets containing an element of A and its
opposite under involution. Let α ∈ P (A). The notation a ∈ α for some a ∈ A means
that the natural projection P (A) → ã maps α to a (instead of to a∗). With this notation
introduced, we define:

An element α ∈ P (A) is called an ultrafilter if it satisfies the so called consistency
condition, namely: If a ∈ α and b ∈ A such that a ≺ b, then b ∈ α.

We denote by U(A) ⊂ P (A) the subset of all ultrafilters. We put on every ã the discrete
topology. By Tychonoff’s theorem [c. f. Jän94, Chapter 10], P (A) is compact. A basis of
the topology is given by the sets of the form

U(a1, . . . , an) := {α ∈ P (A) | a1, . . . , an ∈ α},

where a1, . . . , an ∈ A are arbitrary elements.

We will postpone an example until we have introduce the pocset of halfspaces of a CAT(0)
cube complex in Proposition 3.5.

Proposition 3.3. Let A be a pocset. The set of all ultrafilters U(A) is a compact space.
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3.1 Pocsets and ultrafilters

Proof. Since P (A) is already compact it suffices to show that U(A) is closed in P (A).
However, the complement

P (A) \ U(A) = {α ∈ P (A) | ∃a, b ∈ A : a ∈ α, b /∈ α, a ≺ b}

=
⋃
a∈A

{α ∈ P (A) | a ∈ α, ∃b ∈ A : a ≺ b, b /∈ α}

=
⋃
a∈A

{α ∈ P (A) | a ∈ α, ∃b ∈ A : a ≺ b, b∗ ∈ α}

=
⋃
a∈A

⋃
a≺b

{α ∈ P (A) | a ∈ α, b∗ ∈ α}

=
⋃
a∈A

⋃
a≺b

U(a, b∗)

is open, which proves the claim.

Corollary 3.4. If A is countable, then U(A) is a compact metrizable space.

Proof. By Engelking [Eng89, Theorem 4.2.2], it holds that every countable product of
metrizable spaces leads to a metrizable space. Thus, P (A) is compact and metrizable. Since
U(A) is a closed subset the same is true for this space.

The pocset of halfspaces of a CAT(0) cube complex

Proposition 3.5. Let X be a connected CAT(0) cube complex and H its set of halfspaces.
Furthermore, let

∗ : H → H,
h 7→ h∗.

Then (H,⊂, ∗) is a discrete pocset. If X is finite-dimensional then H has finite width.

Proof. Clearly, (H,⊂) is a partially ordered set and, by definition, ∗ has no fixed points
and is order reversing. Hence, H is a pocset. By Lemma 2.58, it is discrete.

Assume that h1, . . . , hn ∈ H are transverse. Then they intersect pairwise and the same is
true for the associated hyperplanes ĥi. ByTheorem 2.53, the hyperplanes contain a common
point. This point must lie in some cube C of X and in this cube all the hyperplanes are
given by (transverse) midcubes. Hence, dimC ≥ n. We see that if X is finite-dimensional
with dimX = n, then any subset of transverse elements of H can have at most n elements.
This proves that H has finite width.

Remark 3.6. In his habilitation Roller [Rol99] showed that there is a one-to-one-correspon-
dence between discrete pocsets and CAT(0) cube complexes (the so-called Roller duality).
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3 Pocsets and the Roller compactification

The direction from the complexesX to the pocsets has been realized in Proposition 3.5. The
other way around is far more involved and makes heavy use of ultrafilters as defined above.
This Roller construction is what lead to the Roller compactification of every finite-dimensional
CAT(0) cube complex.

Example 3.7 (Trees). We describe the ultrafilters in the case of a tree. There, each edge
defines a unique hyperplane, and hence the choice of a halfspace is equivalent to assigning
a direction to an edge. We agree that the arrow we assign to an edge will point towards
the chosen halfspace. Since each ultrafilter contains either a halfspace or its complement,
we have to assign an arrow to each edge. The consistency condition implies that if we have
an outgoing edge at a vertex, then all other edges must be incoming. In other words, an
ultrafilter converts our undirected tree into a directed one such that each vertex has at
most one outgoing edge. An example of this can be found in Figure 3.1.

Figure 3.1: A tree with inscribed ultrafilter

This reformulation leads to another interesting observation. If all vertices have one out-
going edge, then we can start a geodesic ray from any vertex following the ultrafilter. Each
of these geodesic rays will merge after finitely many steps and emanate on. Hence, each of
these ultrafilters defines one element at the visual boundary of the tree (see Definition 2.12).
Additionally, one can convince oneself that the only other possibility is that there is exactly
one vertex with no outgoing edge [c. f. Sag12, p. 14]. Hence, these ultrafilters define a
unique vertex in the tree. We see that for trees ultrafilters are a reformulation of the visual
compactification of the CAT(0) space.

Corollary 3.8. If X is a locally countable CAT(0) cube complex and H is its pocset of
halfspaces, then U(H) is a compact metrizable space.

Proof. If X is locally countable, then the pocset H is countable by Corollary 2.57 and we
can apply Corollary 3.4.

Remark 3.9. We would like to point out that the countability of H is the only place
where the local countability of our CAT(0) cube complexX comes into play. However, it
is essential at this place. Indeed, the metrizability of U(H) is central in order for certain
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3.2 The Roller compactification

vector spaces of continuous functions to be separable. Otherwise, we could not construct
the first part of our boundary map (see Theorem 5.51 and Corollary 5.52).

We will close this section with two results giving a criterion for reducibility of a CAT(0)
cube complex X using a decomposition of the pocset of halfspaces H(X).

Proposition 3.10 ([CS11, Lemma 2.5]). A CAT(0) cube complexX is reducible, i. e.X splits
as a (proper) product if and only if there exists a partition H(X) = H1 tH2 such that each
halfspace in H1 is transverse to each halfspace inH2.

Sketch. The key observation is that if we have two CAT(0) cube complexesX1 andX2 and
we consider the cube complex X1 ×X2, then the halfspaces take the form h×X2 for any
h ∈ H(X1) orX1× k for any k ∈ H(X2). Any two of them will always be transverse. Thus,
if X splits as a product, then this argument shows that we find the desired partition. If we
have the partition, then the Hi are pocsets. Hence, up to isomorphism, we find two unique
CAT(0) cube complexes corresponding to the two pocsets and their product has the same
set of halfspaces asX . By the aforementioned uniqueness, they have to be isomorphic.

Proposition 3.11 ([CS11, Proposition 2.6]). Every finite-dimensional CAT(0) cube complex
X admits a decomposition

X = X1 × · · · ×Xm

into a product of irreducible cube complexes Xi. This decomposition is canonical up to per-
mutation. Every automorphism of X preserves that decomposition, up to a permutation of
possibly isomorphic factors. In particular, the image of the canonical embedding

Aut(X1)× · · · × Aut(Xm) ↪→ Aut(X)

has finite index in Aut(X).

3.2 The Roller compactification

This section contains the connection between CAT(0) cube complexes, pocsets and ultrafil-
ters leading directly to the Roller compactification. This connection was first discovered by
Roller [Rol99]. Hence, all constructions in this direction inherited his name. We will first
define two special kinds of ultrafilters, the principal ultrafilters and the non-terminating
ultrafilters. Afterwards, we will show how to embed the vertex set of a CAT(0) cube complex
into its set of ultrafilters over the pocset of halfspaces.

Definition 3.12 (Descending Chain Condition, non-terminating and principal).
• An ultrafilter α satisfies the descending chain condition if all descending chains in α
become stationary.

• An ultrafilter is non-terminating if every finite descending chain can be extended.
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3 Pocsets and the Roller compactification

• Let X be a finite-dimensional CAT(0) cube complex and v ∈ X a vertex. Then

αv := {h ∈ H(X) | v ∈ h}

is called a principal ultrafilter (see the next lemma).

Lemma 3.13. LetX be a finite-dimensional CAT(0) cube complex and v ∈ X a vertex. Then
αv is an ultrafilter. Furthermore, it satisfies the descending chain condition and every ultrafilter
satisfying the descending chain condition arises in this way.

Proof. Clearly, either h or h∗ contains v such that αv lies in P (A). Furthermore, if h ∈ αv

and k ∈ H are such that h ⊂ k, we have v ∈ h ⊂ k. Hence, k ∈ αv and αv satisfies the
consistency condition. This shows that αv is an ultrafilter.

If α satisfies the descending chain condition, then each halfspace contains a minimal
halfspace of α. If we take the set of minimal halfspaces of α, then all the elements must
be pairwise transverse. Furthermore, since X is finite-dimensional, every set of pairwise
transverse elements must be finite. By Theorem 2.53, we find that the intersection over all
minimal elements is non-empty and contains a vertex v. We claim that αv = α. Indeed,
if h ∈ α, then there exists a minimal element k ∈ α and v ∈ k ⊂ h. Hence, h ∈ αv .
Conversely, if h 6∈ α then h∗ ∈ α and as before v ∈ h∗ and h 6∈ αv .

Theorem 3.14 (The Roller compactification). Let X be a finite-dimensional CAT(0) cube
complex with associated pocset (H,⊂, ∗). Let V (X) be the vertex set of X . Then the map

ι : V (X) ↪→ U(H),

v 7→ αv

is injective, continuous and the image is dense in U(H).

Definition 3.15. The Roller compactification of a CAT(0) cube complex is X̄ := U(H). The
Roller boundary ∂X is the set of all ultrafilters which have at least one infinite descending
chain (by abuse of notation one often writes ∂X := X̄ \X).

Proof of Theorem 3.14. Themap is well-defined by Lemma 3.13. In order to see the injectivity,
consider two vertices v 6= w. There exists a halfspace h separating the two, i. e. v ∈ h
and w ∈ h∗. Hence, h ∈ αv and h∗ ∈ αw and αv 6= αw. The continuity is clear, since we
have the discrete topology on V (X). Lastly, we have to show that the image is dense. We
consider a basic open set U := U(h1, . . . , hn) in U(X). If U 6= ∅, then the hi intersect
pairwise. Otherwise, assume that hi ∩ hj = ∅. We have V (X) = hi t h∗i . Hence, for any
v ∈ hj we have v ∈ h∗i . This yields hj ⊂ h∗i . However, no ultrafilter can contain both
hi and h∗i . Now, we know by Theorem 2.53 that

⋂n
i=1 hi contains a vertex v and hence

αv ∈ U .
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3.3 (Set-)Ultrafilters

Remark 3.16. Many compactifications one encounters have an additional interesting
property: The space itself is embedded as an open subset of the compactification. In our
case this can fail. Here is an example: Consider an infinite family of copies of the non-
negative reals R≥0 with their standard cubulation. We glue these lines together at their
respective origins (and call this vertex ∗). This construction leads to a tree and hence to a
CAT(0) cube complex. We claim that any open neighborhood of the ultrafilter α∗ contains
an ultrafilter which does not satisfy the descending chain condition. The construction is
depicted in Figure 3.2

∗

h1
h2

h3

hn

∗

h1
h2

h3

hn

Figure 3.2: The left-hand side depicts the ultrafilter α∗. The blue edges depict the halfspaces,
determined byU(h1, . . . , hn). The green branch contains no hi and its halfspaces
can therefore be reversed. This leads to the ultrafilter α on the right-hand side.

Let U := U(h1, . . . , hn) be any basic open set containing α∗. Then hi ∈ α∗. We recall
from Example 2.28 that in the case of trees, halfspaces correspond to the choice of a direction
at an edge and in the case of α∗ all arrows have to point towards ∗. Since we have infinitely
many branches with ∗ as their root, but only finitely many arrows prescribed by the hi’s,
we can construct the following ultrafilter: We take α∗ and choose a branch which does not
contain one of the edges with prescribed direction (the green branch in the figure). On this
branch we reverse all arrows. This leads to a new ultrafilter α (each vertex has at most one
outgoing edge), which does not satisfy the descending chain condition, but nonetheless
lies in U .

3.3 (Set-)Ultrafilters

Now that we have defined the Roller compactification, we have to consider a second
viewpoint. The advantage of the above construction was that the topological and metric
properties were easy to establish. However, the disadvantage of the construction is that the
ultrafilters are not simply sets or more precisely special subsets of H(X), but elements in a
product space. The new form has its advantages when it comes to measurability of certain
maps. Therefore, we will establish this second viewpoint as well and prove the equivalence
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3 Pocsets and the Roller compactification

of the two.

Definition 3.17. Let A be a set. Let F1, F2 ⊂ A be finite subsets. The set

C(F1, F2) := {H ⊂ A | F1 ⊂ H and F2 ⊂ A \H} ⊂ Pot(A)

is called a cylinder set. We set C(a) := C({a},∅) for arbitrary a ∈ A.

Proposition 3.18. The set of all cylinder sets is a basis for a topology on Pot(A) for any set
A.

Proof. There are two properties we have to establish:

1. We have to show that the union of all cylinder sets is all of the power set. However,
C(∅,∅) = Pot(A).

2. We have to show that the intersection of two cylinder sets is a union of arbitrarily
many cylinder sets. Thus, let F1, F2, G1, G2 ⊂ A be finite and consider

C(F1, F2) ∩ C(G1, G2) = {H ⊂ A | F1 ∩G1 ⊂ H and F2 ∩G2 ⊂ A \H}
= C(F1 ∩G1, F2 ∩G2).

Since F1 ∩G1 and F2 ∩G2 are still finite we are done.

Definition 3.19 ((Set-)Ultrafilters). LetX be a CAT(0) cube complex. We say that a subset
α ⊂ H := H(X) satisfies:

1. the partial choice condition if α ∩ α∗ = ∅,

2. the choice condition if α ∩ α∗ = ∅ and α t α∗ = H and

3. the consistency condition if whenever h ∈ α and k ∈ H such that h ⊂ k, then k ∈ α.

A (set-)ultrafilter is a set α ⊂ H that satisfies the choice condition and the consistency
condition. We denote by Us(X) ⊂ Pot(H(X)) the set of all (set-)ultrafilters and equip it
with the subspace topology.

Lemma 3.20. The space Us(X) is a Hausdorff space.

Proof. Let α, β ∈ Us(X) and α 6= β. Then there exists h ∈ α such that h∗ ∈ β (choice
condition). Next, let us define

U := C(h ) ∩ Us(X) and
V := C(h∗) ∩ Us(X).

By construction, both sets are open and we have α ∈ U and β ∈ V . Furthermore, no
(set-)ultrafilter can contain both h and h∗. Thus, U ∩ V = ∅.
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3.4 Intervals & terminal elements

Theorem 3.21. The spaces U(X) and Us(X) are homeomorphic.

Proof. Consider the map

f : U(X) → Us(X),

(hi)i∈Ĥ(X) 7→ {hi | i ∈ Ĥ(X)}.

This map is well-defined and bijective. Next, let us show that it is continuous. For 1 ≤ i ≤ n
and 1 ≤ j ≤ m let hi, h′j ∈ H(X) and set

U := C({h1, . . . , hn}, {h′1, . . . , h′k}) ∩ Us(X)

which is a basic open set. Thus, we have

f−1(U) = {α ∈ U(X) | hi ∈ α and h′j /∈ α}
= {α ∈ U(X) | hi, h′∗j ∈ α}
= U(h1, . . . , hn, h′∗1, . . . , h′

∗
k),

which is a basic open set in U(X). However, this already suffices to show that f is an
homeomorphism. Indeed, every closed set A ⊂ U(X) is compact (since U(X) is) and as f
is continuous f(A) is also compact. Lastly, as Us(X) is Hausdorff f(A) is also closed. This
finishes the proof.

Remark 3.22. With the above theorem in place, we can switch viewpoints whenever
necessary. Actually, whenever convenient we will confuse the two and stop to distinguish
between ultrafilters and set-ultrafilters.

3.4 Intervals & terminal elements

In this section we will introduce intervals of ultrafilters. These are special subsets of CAT(0)
cube complexes. If they are interpreted as a complex in their own right, they can be
embedded into some Rd with its standard cubulation (see Theorem 3.26).

Additionally, we will introduce terminal elements. The existence or non-existence of
these is one of the main technical tools in the proof of our main result. We will see that
intervals can have at most finitely many terminal elements.

Definition 3.23. Let α, β ∈ X̄ . The interval [α, β] is defined as

[α, β] :=
⋂

h∈α∩β
h ⊂ X.

Lemma 3.24. Let X be a finite-dimensional CAT(0) cube complex and α ∈ X̄ an ultrafilter.
If α∗ is an ultrafilter, then X = [α, α∗].
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3 Pocsets and the Roller compactification

Proof. Since no halfspace can be contained in both α and α∗, we have an empty intersection
and thus X = [α, α∗].

Example 3.25 (Euclidean space). The above lemma immediately shows that every Rd

with its standard cubulation is an interval. Indeed, every hyperplane ĥ is orthogonal to a
coordinate axis given by a unit vector ei. We choose the halfspace h such that there exists a
K > 0 such that λei ∈ h for all λ > K . This is an ultrafilter α and the opposite α∗ is given
by all the halfspaces such that there exists aK > 0 such that −λei ∈ h for all λ > K . This
is again an ultrafilter.

Theorem 3.26 ([Bro+09,Theorem 1.14]). LetX be a CAT(0) cube complex of finite dimension
d and [α, β] ⊂ X an interval. Then [α, β] is isometrically embeddable in Rd considered as a
CAT(0) cube complex equipped with the edge metric.

Definition 3.27. Let α and β be two ultrafilters. The set of separating halfspaces of α and
β is defined as

H(α, β) := {h ∈ H | h ∈ α and h∗ ∈ β or vice versa}.

Remark 3.28. Indeed, we have that H(α, β) = H([α, β]), i. e. the halfspaces separating α
and β are exactly the halfspaces of the interval [α, β].

Lemma 3.29 ([Bro+09, Lemma 1.16]). LetX be a CAT(0) cube complex of dimension d <∞
and α, β ∈ X̄ . Then we have

H(α, β) = P1 t · · · t Pd,

where each Pi contains all the halfspaces whose associated hyperplanes are parallel. Some of
the Pi might be empty.

Remark 3.30. By construction, each of the non-empty Pi contains exactly two chains. The
first by choosing an arbitrary element and considering all halfspaces that are comparable
to this element. The second by involution on this chain.

Corollary 3.31 ([Fer16, Corollary 2.8]). LetX be a CAT(0) cube complex of (finite) dimension
d and α, β ∈ X̄ . Then the set

{(γ, δ) ∈ X̄ × X̄ | [γ, δ] = [α, β]}

contains at most 2d elements.

Proof. As we noted in Remark 3.28, H(α, β) = H([α, β]). Because of the Roller duality, it
is enough to work on the pocset of halfspaces. By Lemma 3.29 we have the decomposition

H(α, β) = P1 t · · · t Pd.
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Any other elements γ, δ ∈ X̄ with the same set of halfspaces must admit the same decom-
position. Let h, k ∈ Pi and h ∈ α. Hence, h∗ ∈ β. If h ⊂ k, then k ∈ α because of the
consistency condition. If k ⊂ h, then k∗ ∈ β because of the consistency condition and again
we have k ∈ α. We see that α contains a chain in Pi and β contains the opposite chain
(under involution, see Remark 3.30).

However, the same is true for any other pair (γ, δ) having the same decomposition Pi.
Since each Pi contains 0 or 2 chains, we see that there are at most 2d possible choices of
how these two chains might be divided between γ and δ.

Definition 3.32. Let H be the pocset of halfspaces of a CAT(0) cube complex and H′ ⊂ H
a subset. An element h ∈ H′ is called

• minimal inH′ if for every k ∈ H′ we have either k t h, h ⊂ k or h ⊂ k∗,

• maximal inH′ if h∗ is minimal in H′,

• terminal in H′ if it is either minimal or maximal in H′.

Let τ : Pot(H) → Pot(H) be the map that assigns to each subset of H its set of terminal
elements.

Example 3.33 (DCC ultrafilters). Every ultrafilter satisfying the descending chain con-
dition contains minimal (and hence terminal) elements. If the CAT(0) cube complex is
finite-dimensional, there can be at most finitely many transverse halfspaces and hence
only finitely many minimal elements. In general, we cannot say anything about maximal
elements in ultrafilters.

Example 3.34 (Euclidean space). In Rd with its standard cubulation, we know that all
halfspaces are parallel to coordinate axes and along each axis we can have at most one
minimal and one maximal element. This implies that any subset of halfspaces of Rd can
have at most 2d terminal elements. With the help of Theorem 3.26 this reasoning can be
extended to intervals.

Lemma 3.35 ([CFI16, Lemma 4.12]). Let α and β be two ultrafilters and h ∈ τ(α). Then
h /∈ β if and only if h ∈ τ(H(α, β)).

Proof. If h ∈ β, then h does not separate α and β. Hence, h /∈ H(α, β) and also h /∈
τ(H(α, β)). Conversely, assume h /∈ τ(H(α, β)). If h /∈ H(α, β), then h ∈ β. Otherwise,
h is not a terminal element in H(α, β). However, this is impossible since h is terminal in
α.
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3 Pocsets and the Roller compactification

3.5 Embeddings of the Roller compactification

In Remark 3.6 we outlined the connection between discrete pocsets and CAT(0) cube
complexes. We saw that each discrete pocset has a unique CAT(0) cube complex associated
to it. Now, let X be any CAT(0) cube complex and H its pocset of halfspaces. Then any
involution invariant subset H′ ⊂ H is a pocset in its own right with associated CAT(0)
cube complexX ′. It is natural to ask under which circumstances it is possible to embedX ′

into X . This section will establish a sufficient (but not necessarily necessary) condition by
introducing the notion of a lifting decomposition. We will need this construction later in
Section 6.4 in order to embed the Roller compactification of certain subcomplexes into the
Roller compactification of the parent-complex. See Lemma 5.15.

Unless noted otherwise X is a connected, locally countable, finite-dimensional CAT(0)
cube complex.

Definition 3.36. Let H′ ⊂ H := H(X) be an involution invariant subset of halfspaces. A
lifting decomposition of H′ is a choice of a subsetW ⊂ H \H′ satisfying the partial choice
and consistency condition (see Definition 3.19) and such that H = H′ tW tW ∗.

Lemma 3.37 ([CFI16, Lemma 2.6]). LetH′ ⊂ H := H(X) be an involution invariant subset
of halfspaces. Assume thatH′ admits a lifting decompositionH = H′ tW tW ∗. Then there
is a continuous injective map

i : X̄ ′ := X̄(H′) → X̄,

α 7→ α tW,

whose image is given by i(X̄ ′) = ∩h∈WC(h) (c. f. Definition 3.17).
Furthermore, if H′ = ∅, then i(X̄ ′) is a point. IfW contains an infinite descending chain,

then i(X̄ ′) ⊂ ∂X .

Proof. We will work with the power set definition of the Roller compactification.
Since H′ is involution invariant, it is a pocset in its own right and therefore we can

construct a unique CAT(0) cube complexX ′ withH′ as its set of halfspaces (c. f. Remark 3.6).
First, we need to show that the above construction of the map is well-defined. Let α′ ∈ X̄ ′.
We claim that α := α′ tW is an ultrafilter in X̄ . First, we see that α satisfies the choice
condition. Indeed,

α ∩ α∗ = (α′ tW ) ∩ (α∗ tW ∗)

= (α′ ∩ α′∗) t (α′ ∩W ∗) t (W ∩ α′∗) t (W ∩W ∗)

= ∅

and

α t α∗ = (α′ t α′∗) tW tW ∗

= H′ tW tW ∗

= H.
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3.5 Embeddings of the Roller compactification

For the consistency condition, we proceed as follows. Let h ∈ α and k ∈ H such that h ⊂ k.
We have three cases:

1. If k ∈ H′, then k ∈ α′ ⊂ α and we are done.

2. If k ∈W ⊂ α, there is nothing to prove.

3. If k ∈ W ∗, we will find a contradiction. Indeed, we have k∗ ⊂ h∗ and W satisfies
the consistency condition. Hence, h∗ ∈ W and, equivalently, h ∈ W ∗. However,
α ∩W ∗ = ∅ which is absurd.

If α′ 6= β′ in H′, then also α 6= β in H and i is injective. Next, let us consider the
continuity of i. Consider two finite subsets F1, F2 ⊂ H. These can be decomposed into
Fi = Gi t Ei, where Gi ⊂ H′ and Ei ⊂W tW ∗. Then we have

i−1(C(F1, F2)) = C(G1, G2)

and i is continuous.
In order to compute the image, let us first show that i(X̄ ′) ⊂ ∩h∈WC(h). Indeed, we

have
α′ ∩W =

⋂
h∈αtW

C(h) ⊂
⋂
h∈W

C(h).

Conversely, if α ∈ ∩h∈WC(h), thenW ⊂ α. Additionally, (α \W ) ∩W ∗ = ∅ because of
the choice condition. Hence, α′ := α \W ⊂ H′. We claim that α′ is an ultrafilter. The
choice condition is satisfied, since it is satisfied by α. So let h ∈ α′ and k ∈ H′ such that
h ⊂ k. Hence, k ∈ α and k /∈W . This shows that k ∈ α′ and α′ also satisfies the consistency
condition.

Since we are only interested in connected cube complexes, H′ = ∅ implies that X ′ is
only a single point. The same is true for X̄ ′ and its image under i.

IfW contains an infinite descending chain, so does α′ tW and thus α′ tW ∈ ∂X .
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4 Measure theoretic preliminaries

Measure theory will play an important role in the main proof. Hence, we have this dedicated
chapter introducing the necessary notation.

This chapter is divided into three sections. Section 4.1 collects general facts about
measures, measure theory and functional analysis. Section 4.2 introduces the notion of
weighted halfspaces which are central to our problem. We will highlight some of their
elementary properties. Section 4.2 is the most important of the three. Section 4.3 contains
a collection of unrelated lemmas proving measurability for some maps which will be used
later on. All of these maps are technical in nature and the same is true for the proofs.

4.1 Properties of probability measures and functional analysis

This section is a conglomeration of facts about measures and their connection to certain
spaces of continuous functions. We will need deep measure theoretic and functional
analytic results, which we will mostly state without proof. All of the results will culminate
in Section 5.4 in Theorem 5.51 which is the first big step towards our boundary map.

Probability measures

Definition 4.1 (Signed and probability measures). Let (B,Σ) be a measure space. A map
µ : Σ → R is called a signed measure if it is σ-additive, i. e.

µ

(⋃
i∈N

Ai

)
=
∑
i∈N

µ(Ai)

for arbitrary Ai ∈ Σ such that Ai ∩Aj = ∅ whenever i 6= j. Here we mean that the right
hand side needs to converge.

We call a signed measure µ a measure, if µ(A) ≥ 0 for every A ∈ Σ and a probability
measure, if it is a measure and µ(X) = 1.
A ∈ Σ is called null, if µ(A) = 0 and conull or full measure if its complement is null.

Remark 4.2. In this thesis we are mostly interested in probability measures and hence
our measures are always finite. Thus, we defined signed measures only with image in R,
ignoring infinities. Since we have this restrictions in place, the above definition of (signed)
measures in fact satisfies all the standard conditions, in particular µ(∅) = 0.

Definition 4.3 (Positive, negative and total variation). For any A ∈ Σ and any signed
measure µ the total variation |µ|(A) is defined as

|µ|(A) := sup

{∑
i∈N

µ(Ai)

∣∣∣∣∣Ai ∈ Σ and A =
⊔
i∈N

Ai

}
.
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4 Measure theoretic preliminaries

The positive and negative variation are defined as

µ± :=
1

2
(|µ| ± µ).

Proposition 4.4 ([Rud91, Ch. 6.1]). The maps |µ| and µ± are measures on (X,Σ) and
|µ|(X) <∞ holds.

Often the σ-algebras we are considering stem from a topology on our space, i. e. are the
Borel σ-algebra of its topology. In this case we would also like our measures to be related
to the topology of our space. Hence, we need the following definitions:

Definition 4.5 (Borel measures and support). If Σ is the Borel σ-algebra of a topology on
X , then a measure µ is called Borel, if every x ∈ X has an open neighborhood U ⊂ X
such that µ(U) > 0.

The support of a Borel measure µ is defined to be the set

supp(µ) := {x ∈ X | ∀ U ⊂ X open with x ∈ U : µ(U) > 0}.

Definition 4.6 (Regular measures). A Borel measure µ is called inner regular if

µ(A) = sup{µ(K) | K ⊂ A compact}

and outer regular if
µ(A) = inf{µ(U) | U ⊃ A open}.

If it is both it is called regular. A signed Borel measure µ is called regular if |µ| is regular.

Lastly, let us recall the definition of measurable maps and how to pushforward measures
along these maps:

Definition 4.7 (Measurable maps). Let (A,ΣA) and (B,ΣB) be two measure spaces and
f : A→ B a map. f is called measurable if f−1(S) ∈ ΣA for every S ∈ ΣB .

Let µ be a (signed) measure on A and f measurable. Then f is called essentially constant
(with regard to µ) if there exists a conull set S ∈ ΣA such that f |S is constant. The
pushforward of µ along f is defined via

(f∗µ)(S) := µ(f−1(S))

for every S ∈ ΣB .

Remark 4.8. Clearly, f∗µ is again a (signed) measure.

Lemma 4.9. Let X be a topological space and µ an inner regular measure on X . Then for
every measurable set A ⊂ X \ supp(µ) we have that µ(A) = 0. In particular, if µ is non-zero
the set supp(µ) is not empty.
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Proof. We fix a measurable A ⊂ X \ supp(µ). Since µ is inner regular, we find a sequence
of compact sets Kn ⊂ A such that µ(Kn)

n→∞−−−→ µ(A). Let x ∈ Kn, then x 6∈ supp(µ)
and there exists Ux ⊂ X open such that x ∈ Ux and µ(Ux) = 0. SinceKn is compact, we
find an l = l(n) ∈ N and finitely many x1, . . . , xl ∈ Kn such thatKn ⊂

⋃l
i=1 Uxi . Hence,

we have

µ(Kn) ≤
l∑

i=1

µ(Uxi) = 0

for every n ∈ N. By the convergence, we obtain µ(A) = 0.
If supp(µ) were empty, then the setX \ supp(µ) would be measurable of full (non-zero)

measure, which is a contradiction.

Functional analytic preliminaries

Definition 4.10. Let X be a topological space. The vector space C0(X) of continuous
functions vanishing at infinity is defined via

C0(X) := {f ∈ C(X) | ∀ε > 0 ∃K ⊂ X compact : f |X\K < ε}.

Theorem 4.11 (Riesz-Markow representation, [Rud91, Theorem 6.19]). Let X be a locally
compact Hausdorff space. Every bounded linear functional Φ on C0(X) is represented by a
unique regular signed Borel measure µ in the sense that

Φf =

∫
X
f dµ

for every element f ∈ C0(X). Moreover, we have ‖Φ‖ = |µ|(X). In other words, there exists
an isometry of normed vector spaces between X∗ the (topological) dual of X equipped with
the operator norm ‖ · ‖ andMs(X) the space of signed measures equipped with total variation
| · |(X) as norm.

Theorem 4.12 (Banach-Alaoglu, [Rud87]). Let X be a topological vector space and V ⊂ X
a neighborhood of 0. Then

K := {Φ ∈ X∗ | |Φx| ≤ 1 ∀x ∈ V },

is weak∗-compact.

Corollary 4.13. If X is a compact metric space, then the space of all regular probability
measuresP(X) is weak∗-compact and contained in the unit ball of all regular signed measures
Ms(X).

Proof. Note that C0(X) together with the supremum norm is a Banach space. Let V be
the unit ball in C0(X). Theorem 4.12 yields that the unit ball B ⊂ Ms(X) ∼= C0(X)∗ is
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4 Measure theoretic preliminaries

weak∗-compact. For each probability measure µ we have |µ|(X) = µ(X) = 1. Thus, it
follows that P (X) ⊂ B. Now, we only need to show that P (X) is weak∗-closed in B.
However,

P :=

{
µ ∈Ms(X)

∣∣∣∣ ∫
X
f dµ ≥ 0 ∀f ≥ 0

}
,

N :=

{
µ ∈Ms(X)

∣∣∣∣ ∫
X

dµ =

∫
X
χX dµ = 1

}
,

P(X) =B ∩ P ∩N.

The second set ensures that the measure is positive and the last enforces the normalization.
These are all the necessary restrictions for a probability measure. Additionally, these sets
are clearly weak∗-closed.

We will close the section with a result concerning the separability of the vector space of
continuous functions:

Lemma 4.14 ([Con90, Theorem V.6.6]). IfX is a compact metric space, then the vector space
of continuous functions C(X) equipped with the supremum norm is separable.

4.2 Weighted halfspaces

This section defines the main technical tool for our main proof, namely weighted halfspaces.
These are special subsets of the pocset of halfspacesH of a CAT(0) cube complex, which are
defined using probability measures on the Roller compactification. In order to understand
the following section, it is important to keep the notation introduced in Sections 2.4 and 3.2
in mind.

Unless noted otherwise, X is a connected, locally countable, finite-dimensional CAT(0)
cube complex with pocset of halfspaces H and Roller compactification X̄ . Recall the
topology on X̄ introduced in Definition 3.17 with open sets C(h) for every h ∈ X̄ .

Definition 4.15. Let µ be a regular probability measure on X̄ . We define

Hµ := {h ∈ H(X) | µ(C(h)) = µ(C(h∗))},
H+

µ := {h ∈ H(X) | µ(C(h)) > ¹⁄₂},
H−

µ := {h ∈ H(X) | µ(C(h)) < ¹⁄₂} and

H±
µ := {h ∈ H(X) | µ(C(h)) 6= ¹⁄₂}.

The above four sets are called balanced, heavy, light and unbalanced halfspaces respectively.

Lemma 4.16 ([CFI16, Lemma 4.6]). Let µ and ν be regular probability measures on X̄ .

1. Hµ is closed under involution. Also, involution is a bijection between H+
µ and H−

µ .
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4.2 Weighted halfspaces

2. There is the following partitionH(X) = Hµ tH±
µ = Hµ tH+

µ tH−
µ .

3. If h, k ∈ Hµ (resp. H+
µ or H−

µ ), then either h t k or (after possibly switching h and k)
the interval [h, k] lies in Hµ (resp. H+

µ or H−
µ ).

4. If Hµ and Hν are both non-empty and Hµ ∩ Hν = ∅, then Hµ ∩ H+
ν 6= ∅ and

Hµ ∩H−
ν 6= ∅.

5. If h, k ∈ Hµ are two parallel halfspaces with h ⊂ k, then µ(C(h∗) ∩ C(k)) = 0.

6. The assignments µ 7→ Hµ, µ 7→ H+
µ and µ 7→ H−

µ are Aut(X)-equivariant for the
natural actions on P(X̄) and Pot(H(X)).

Proof. 1. – 3. are clear from the definitions and the additivity of the measure.
For 4. we see thatHµ ⊂ H+

ν ∩H−
ν . SinceHµ is invariant under involution, butH+

ν and
H−

ν get interchanged, we see that both intersections must be non-empty.
For 5. we have

1

2
= µ(C(k)) = µ(C(k) ∩ C(h∗)) + µ(C(k) ∩ C(h))

= µ(C(k) ∩ C(h∗)) + µ(C(h))

= µ(C(k) ∩ C(h∗)) + 1

2
,

where we have C(h) ⊂ C(k) because we have h ⊂ k and ultrafilters satisfy the consistency
condition. Hence, µ(C(h∗)∩C(k)) = 0. Assertion 6 follows again easily from the definitions.

Lemma 4.17 ([CFI16, Lemma 4.7]). The complex X̄(Hµ) is an interval (in the sense of
Definition 3.23).

Proof. Let

p : X̄ → X̄(Hµ),

α 7→ α ∩Hµ

be the projection. Since p is continuous, we can have p∗µ. Next, choose α ∈ supp(p∗µ),
i. e. every open neighborhood of α must have non-zero measure. The set supp(p∗µ) is not
empty by Lemma 4.9. We claim that α∗ is also an ultrafilter. It automatically satisfies the
choice condition, so we only need to check consistency. Let h ∈ α∗ and k ∈ Hµ such that
h ⊂ k. Assume that k is not in α∗. Then C(h∗) ∩ C(k) is an open neighborhood of α in
X̄(Hµ) and its measure positive. However, by Lemma 4.16(5), we know that the measure
is zero. Hence, we have k ∈ α∗ and we can conclude the proof thanks to Lemma 3.24.

Lemma 4.18. For any H ⊂ Hµ, we have that |τ(H)| <∞ (see Definition 3.32).
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4 Measure theoretic preliminaries

Proof. By Lemma 4.17 and Theorem 3.26, we know that X̄(Hµ) is an interval and is
embeddable in some Rd. The observation in Example 3.34 shows that any subset H ⊂
Hµ ⊂ H(Rd) has at most 2d terminal elements.

Lemma 4.19. Let X be a finite-dimensional CAT(0) cube complex with pocset of halfspaces
H and Y one of its irreducible factors with pocset of halfspacesH′. Then the projection

p : X̄ → Ȳ ,

α 7→ α ∩H′

is continuous. If µ is a regular probability measure on X̄ , we have

Hp∗µ = Hµ ∩H′

Proof. Let F,G ⊂ H′ be finite. Then

p−1(CH′(F,G)) = CH(F,G) ⊂ H

and p is continuous. Hence, the pushforward of the measure is well-defined and for every
h ∈ H′ we have

(p∗µ))(CH′(h)) = µ(p−1(CH′(h))) = µ(CH(h))

proving the last equality.

4.3 Measurability of certain maps

In the main proof of our theorem ergodicity will play a central role (see Section 5.3). We will
mostly use it in the form that measurable Γ-invariant maps have to be essentially constant.
Hence, we need all our important maps to be measurable. These proofs are mainly technical
and have been collected in this section. The results are mostly stand-alone and there is no
deeper connection between them.

Unless noted otherwise,X is a locally countable, finite-dimensional CAT(0) cube complex
with H := H(X) its pocset of halfspaces and X̄ its Roller compactification.

Lemma 4.20. Let N be a countable set. Then

f : Pot(N) → N ∪ {∞},
A 7→ |A|

is measurable, where N ∪ {∞} is equipped with the discrete topology.
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4.3 Measurability of certain maps

Proof. Wewill see that a basis of the topology is mapped to measurable sets via the preimage.
First, let us consider n ∈ N. Then we have

f−1({n}) = {A ⊂ N | |A| = n}

=
⋃

A⊂N
|A|=n

 ⋂
F⊂N
|F |<∞

C(A,F )

 ,

where C(A,F ) is a cylinder set as defined in Definition 3.17. Since the set of all finite
subsets of N is countable, the above preimage is measurable as it is a countable union and
intersection of measurable sets.

Lastly, we consider f−1({∞}). However, here we have

f−1({∞}) = N \

( ∞⋃
n=0

f−1({n})

)

which is measurable as the complement of a measurable set.

Lemma 4.21. Let τ : Pot(H) → Pot(H) be the map assigning to each subset of H its set of
terminal elements (c. f. Definition 3.32). Then τ is measurable.

Proof. We take an arbitrary cylinder set C(F1, F2) and are interested in the preimage

τ−1(C(F1, F2)) = {H ⊂ H | F1 ⊂ τ(H) and ∀h ∈ F2 : h ∈ H ⇒ h 6∈ τH}
= {H ⊂ H | F1 ⊂ τ(H)} ∩ {H ⊂ H | ∀h ∈ F2 : h ∈ H ⇒ h 6∈ τ(H)}
=: T ∩N.

We now decompose T as follows:

T =
⋂
h∈F1

{H ⊂ H | h ∈ τ(H)}

=
⋂
h∈F1

({H ⊂ H | h ∈ H minimal} ∪ {H ⊂ H | h ∈ H maximal})

=
⋂
h∈F1

⋂
k∈H
k⊂h

C({h}, {k}) ∪
⋂
k∈H
h⊂k

C({h}, {k})

 .
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This set is measurable as it is a countable intersection and union of measurable sets. Next
let us decompose N :

N =
⋃

F⊂F2

{H ⊂ H | F ⊂ H \ τ(H) and (F2 \ F ) ∩H = ∅}

=
⋃

F⊂F2

({H ⊂ H | F ⊂ H \ τ(H)} ∩ C(∅, F2 \ F )) .

We will now show that every set where a finite subset of elements, that are not terminal,
is measurable. This will conclude the proof. This can be achieved via an induction over
n = |F |. The case n = 0 is clear, since any σ-algebra needs to contain the whole set.
Assume the assertion is true for every finite subset F ⊂ H of n elements. If F contains
n+ 1 elements, fixing h ∈ F and F̃ := F \ {h}, we do the following decomposition:

{H ⊂ H | F ⊂ H \ τ(H)} = {H ⊂ H | {h} ∪ F̃ ⊂ H \ τ(H)}
= {H ⊂ H | F̃ ⊂ H \ τ(H)} \ {H ⊂ H | h ∈ τ(H)}.

The first set is measurable by induction hypothesis, the second one is measurable by our
computations above. All in all we obtain that τ−1(C(F1, F2)) is measurable.

Lemma 4.22 ([CFI16, Lemma A.1]). Let I ⊂ [0, 1] be a subinterval that is either open, closed
or half open. Let HI

µ := {h ∈ H(X) | µ(C(h)) ∈ I}. Then the map

P(X̄) → Pot(H(X)),

µ 7→ HI
µ

is measurable with respect to the weak∗-topology on P(X).

Proof. In Section 3 we defined a topology on the power set (c. f. Definition 3.17 and Propo-
sition 3.18). Hence, we need to show that the preimages of the basic open sets are mapped
to measurable sets in P(X̄). So let F1, F2 ⊂ H(X) be finite and consider the cylinder set
C(F1, F2). Then the preimage is given by the set

K(F1, F2) = {µ ∈ P(X̄) | HI
µ ∈ C(F1, F2)}.

For now, let us consider the sets EI(h) := {µ ∈ P(X̄) | µ(U(h)) ∈ I}. We will now show
that these sets are measurable. We know that X̄ = U(h) t U(h∗). Hence, h̃ := U(h) is
both open and closed in X̄ . Thus, the indicator function χh̃ is continuous. However, the
weak∗-topology is defined such that each map

Tf : P(X̄) → R,

µ 7→
∫

X
f dµ
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4.3 Measurability of certain maps

is continuous (for each f ∈ C(X̄)). Hence, T := Tχh̃
is continuous and thus alsomeasurable.

Furthermore, we have that T−1(I) = EI(h). The interval I is measurable, so the same is
true for EI(h).

Together with the following observation this finishes the proof:

K(F1, F2) =

 ⋂
h∈F1

EI(h)

 ∩

 ⋂
h∈F2

EI(h)
c

 .

Lemma 4.23. Let α, β ∈ X̄ . LetH(α, β) be the set of halfspaces separating α from β (c. f.
Definition 3.27). Then the map

f : X̄ × X̄ → Pot(H),

(α, β) 7→ H(α, β)

is measurable.

Proof. We will see that the map is even continuous. Take finite subsets F,G ⊂ H and
consider the following preimage

f−1(C(F,G)) ={(α, β) ∈ X̄ × X̄ | F ⊂ H(α, β)}
∩ {(α, β) ∈ X̄ × X̄ | G ∩H(α, β) = ∅}

=:S ∩N.

We will consider S and N separately:

S =
⋃

F ′⊂F

(
C(F ′ ∪ (F \ F ′)∗,∅)× C(F ′∗ ∪ F \ F ′,∅)

)
and

N =
⋂
h∈G

[(C(h)× C(h)) ∪ (C(h∗)× C(h∗))] .

Then f−1(C(F,G)) is open as a finite intersection of open sets.

Lemma 4.24. The map

P(X̄) → N ∪ {∞},
µ 7→ |(Hµ ×Hµ) ∩ S|,

where
S := {(h, k) ∈ H ×H | h and k are strongly separated},

is measurable.
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Proof. We decompose the map as follows

P(X̄)
f−→ P(X̄)2

g−→ Pot(H2)
h−→ Pot(H2)

j−→ N ∪ {∞},
µ 7→ (µ, µ) 7→ (Hµ,Hµ) 7→ Hµ ×Hµ ∩ S 7→ |Hµ ×Hµ ∩ S|.

The map f is continuous and hence measurable. The map g is measurable, because the
map on each factor is measurable by Lemma 4.22. The map j is measurable by Lemma 4.20.
We are left with h. Consider the two finite subsets F,G ⊂ H2. Then the preimage of the
associated cylinder set is given by

h−1(C(F,G)) :={(H,K) ∈ Pot(H)2 | F ⊂ H ×K ∧G ⊂ (H ×K)c

∧ (h, k) ∈ H ×K is strongly separated}

=

 ⋂
(h,k)∈F

C(h)× C(k)


∩

 ⋂
(h,k)∈G

C(h)c × Pot(H) ∪ Pot(H)× C(k)c


∩

 ⋂
(h,k)∈H2

not str. sep.

C(h)× C(k)


c

,

which is a countable union of measurable sets. Hence, our map is measurable as a composi-
tion of measurable maps.

Lemma 4.25. Let A be a set. The maps

f : Pot(A)× Pot(A) → Pot(A)
(H,K) 7→ H ∩K

and

g : Pot(A)× Pot(A) → Pot(A)
(H,K) 7→ H ∪K

are measurable with regard to the Borel-σ-algebra of the cylinder topology.

Proof. Let F,G ⊂ A be two finite subsets. Then we have

f−1(C(F,G)) ={(H,K) ∈ Pot(A)2 | F ⊂ H ∩K ∧G ⊂ Hc ∪Kc}

=
⋂
f∈F

C(f)× C(f)

∩
⋂
g∈G

(C(g)c × Pot(A) ∪ Pot(A)× C(g)c)
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and

g−1(C(F,G)) ={(H,K) ∈ Pot(A)2 | F ⊂ H ∪K ∧G ⊂ Hc ∩Kc}

=
⋂
f∈F

(C(f)× Pot(A) ∪ Pot(A)× C(f))

∩
⋂
g∈G

C(g)c × C(g)c.

Hence, both maps are measurable.

Lemma 4.26. The map

P(X̄)× P(X̄) → Potf (H),

(µ, ν) 7→ τ([H+
µ ∩Hν ] ∪ [H+

ν ∩Hµ])

is measurable.

Proof. We know that the diagonal embedding and the product of measurable functions
is again measurable. Hence, the only interesting thing to see is that the intersection and
union preserve measurability. However, this has been proven in Lemma 4.3. Together with
Lemma 4.21 this proves the assertion.
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5 Group actions on CAT(0) cube complexes and strong
Γ-boundaries

This chapter is divided into four sections which cover two general topics. The first two
sections deal with the actions of a group Γ on a CAT(0) cube complex X . First, we will
convince ourselves that a group action via automorphisms always extends to an action on
X̄ by homeomorphisms. This will be accomplished in Section 5.1. In Section 5.2, we will
introduce two properties for group actions on X , namely non-elementarity (introduced
in [CFI16]) and essentiality (introduced in [CS11]). Interestingly, these two properties are
rather of a different kind. The first is more concerned with the CAT(0) structure, namely, it
excludes the existence of any finite orbits in X or in the visual boundary ∂^X . Whereas
the second is more concerned with the combinatorial structure of the halfspaces ofX . Here
we want orbits of the group to get arbitrarily far away from each hyperplane (on both of
its sides).

The last two sections (Sections 5.3 and 5.4) are concerned with the definition of strong
Γ-boundaries. They can be thought of as generalized Furstenberg-Poisson boundaries for
certain random walks on nice groups Γ (see Example 5.48 or [Kai03]). They are defined via
two properties. The first is a strengthening of the notion of ergodicity and the second is
amenability. Hence, in Section 5.3 we will first recall the notion of (standard) ergodicity.
Our two most important consequences are encoded in Lemmas 5.33 and 5.36. Afterwards,
in Section 5, we will introduce ergodicity with coefficients and relate it to the notion of essen-
tiality defined before (Corollary 5.42). Lastly, we will introduce amenability. This property
guarantees the existence of certain measurable and almost everywhere Γ-equivariant maps
from the strong Γ-boundary to the dual of a separable Banach space. In our case we will
use it to construct a map to P(X̄), the set of regular probability measures on X̄ . The result
is recorded in Corollary 5.52. The notion of a strong Γ-boundary was first introduced
by Monod and Shalom [MS04]. Many of the concepts of ergodicity with coefficients and
amenability were also present in Monod’s thesis [Mon01]. Amenability was first introduced
by Zimmer [Zim78]. For an overview we would recommend the treatise by Kaimanovich
[Kai03].

5.1 Extending a group action to the Roller boundary

In this section we would like to remark on how one can extend a group action on a CAT(0)
cube complex X to its Roller compactification X̄ . For that matter, let Γ be a group with
an action Γ → Aut(X), where X is a finite-dimensional CAT(0) cube complex. The group
Aut(X) consists of the combinatorial automorphisms of X (c. f. Definition 2.40).

The following proposition collects some facts about how combinatorial isomorphisms
act on X . The notation can be found in Sections 2.4 and 3.

Proposition 5.1. Let g ∈ Aut(X). Then the following holds:
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1. if ĥ ∈ Ĥ(X), then gĥ ∈ Ĥ(X),

2. if h ∈ H(X), then gh ∈ H(X),

3. for every h ∈ H(X) : g(h∗) = (gh)∗,

4. if h, h′ ∈ H(X) : h ⊂ h′, then gh ⊂ gh′,

5. if α ∈ X̄ , then gα ∈ X̄ and

6. if α satisfies the descending chain condition, then so does gα.

Proof. The first statement is an immediate consequence of the fact that g is an isometry.
This leads directly to statement 2 and 3. For statement 4 we only need that g is a bijection.
Statements 5 and 6 are then simple applications of 4.

With the above proposition in place, we see that each group action Γ → Aut(X)
immediately leads to an action Γ → Perm(X̄). However, this is not yet what we want. We
would prefer the image to lie in the homeomorphisms of X̄ . This will be accomplished by
the following observation:

Proposition 5.2. Let g ∈ Aut(X) and

U := U(h1, . . . , hn) ⊂ X̄

a basic open set. Then we have

g−1U = U(g−1h1, . . . , g
−1hn).

Hence, g ∈ Homeo(X̄).

Sketch. hi lies in α if and only if ghi lies in gα.

We arrive at the following result:

Theorem 5.3. Let Γ be a group and Γ → Aut(X) a group action on a CAT(0) cube complex
X . Then this action extends to an action Γ → Homeo(X̄) on the Roller compactification.

5.2 Non-elementary and essential group actions

Not every group action on a CAT(0) cube complex leads to our desired boundary map.
There are two additionally properties we need to demand in order for our construction
to work. These two are introduced in this section. The first is non-elementarity which
is concerned with fixed points of the group in X and in the visual boundary of X (see
Definition 2.12). The second is essentiality which is concerned with the interplay of the
group with the halfspaces H ofX . The section will close with some results by Caprace and
Sageev [CS11].
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5.2 Non-elementary and essential group actions

5.2.1 Non-elementary group actions

Definition 5.4 ((Non-)elementary action). A group action Γ → Aut(X) is called elemen-
tary if there exists a finite orbit of the action on X t ∂^X . Otherwise the action is called
non-elementary.

The above definition has one interesting immediate consequence:

Proposition 5.5. If Γ → Aut(X) acts non-elementary on X , then the vertex set V (X) of
X together with the edge metric is unbounded, i. e. for every v ∈ V (X) and every K > 0
there exists a w ∈ V (X) such that d(v, w) > K . In particular, V (X) is infinite.

The previous observation already provides many examples for elementary actions by
considering any group action on a finite cube complex. Let us consider an example of a
cube complex with infinitely many vertices:

Example 5.6 (Euclidean space). An example of an elementary action is X := Rd with its
standard cubulation and any cyclic subgroup of Zd acting by translations. This action has
no finite orbits in Rd, but every point at infinity is fixed. Indeed, two rays define the same
point at infinity if and only if they are parallel. However, a translated ray is still parallel to
the untranslated ray.

Example 5.7 (A tree). As an example for a non-elementary action we consider the universal
cover X̃ of X := S1 ∨ S1 as depicted in Figure 5.1 (we note that this is also the Cayley
graph of the free group with two generators). The spaceX is not a cube complex. However,
its universal cover X̃ is a tree and hence a CAT(0) cube complex. Let Γ := Deck(X̃/X) be
the group of deck transformations (for an introduction to covering space theory and deck
transformations see for example [Hat01, Section 1.3]). This group acts by combinatorial
maps. Indeed, each vertex is mapped to a vertex, since fibers are preserved by deck
transformations and each edge is again mapped to an edge (even more: the signing as in
Figure 5.1 is preserved) because of the path lifting property.

The universal cover is always a normal covering. This implies that Γ acts transitively
on the vertices. Hence, Γ has no finite orbit in X̃ . Now, consider any geodesic ray c
represented by its vertices (vi)i∈N. Then each edge ei := vivi+1 has an assigned signing
by an arrow and after translating by a deck transformation, this signing will be the same.
Without loss of generality assume that ei has signing . We choose one of the neighborswi

of vi such that viwi has signing . Then we choose gi ∈ Γ such that givi = wi. We claim
that gic and c are not equivalent. Since we can drop any finite number of starting vertices,
it is enough to show the assertion in the case i = 1. If g1c and c are equivalent, then there
exists anm ∈ N such that g1vm is a vertex in c, call it vn. There is a path connecting the
two, namely

g1vm, g1vm−1, . . . , g1v1, v1, . . . , vn.
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5 Group actions on CAT(0) cube complexes and strong Γ-boundaries

Figure 5.1: The pointed sum of two spheres X := S1 ∨ S1 and its universal coverX̃ . The
arrows indicate which edges in the universal cover correspond to which loop in
X .

Since we are in a tree, this is the unique path. Hence, g1cmust transverse v1w1 = v1(g1v1).
However, every vertex is at most visited once by g1c and its first vertex is w1. So we
needm = 1 and g1e1 = v1w1. This is impossible, because deck transformations conserve
signing of edges. So we established that gic and c are always inequivalent, showing that
any orbit in the visual boundary is infinite.

5.2.2 Essential group actions

Definition 5.8 (Essential halfspaces). A halfspace h ∈ H is called Γ-essential if for some
x ∈ X the orbit in h, Γx ∩ h, is not a bounded distance away from ĥ. A hyperplane ĥ ∈ Ĥ
is called Γ-essential if both its halfspaces are Γ-essential. It is called half-essential if only
one of its halfspaces is Γ-essential.

Ess(X,Γ) denotes the set of all essential hyperplanes. Accordingly, nEss(X,Γ) denotes
the set of all non-essential hyperplanes, leading to

Ĥ(X) = Ess(X,Γ) t nEss(X,Γ).

The above definition leads to the following consequence:

Proposition 5.9. The sets Ess(X,Γ) and nEss(X,Γ) are Γ-invariant.

Definition 5.10 (The essential core). The essential core is the CAT(0) cube complex corre-
sponding to the the pocset of halfspaces associated to Ess(X,Γ).

Proposition 5.11 ([CS11, Proposition 3.5]). Let X be a finite-dimensional CAT(0) cube
complex and let Γ ≤ Aut(X). Assume that at least one of the following two conditions is
satisfied:
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5.2 Non-elementary and essential group actions

1. Γ has finitely many orbits of hyperplanes or

2. Γ has not fixed point at infinity.

Then the essential core of X is unbounded if and only if Γ has no fixed point. In that case the
essential core embeds as a Γ-invariant convex subcomplex Y of X .

Definition 5.12 (Essential action). A group action Γ → Aut(X) is called essential if the
essential core of Γ is the whole space X .

Example 5.13 (Euclidean space). ConsiderX := Rd with the standard cubulation and the
action of Γ := Zd on it via translations. This action respects the cube complex structure.
Additionally, every hyperplane in X is a hyperplane ĥ ∈ Ĥ(X) in the usual Euclidean
sense. The translates of any vertex get arbitrarily far away from h on either side. Hence, Γ
acts essentially on X .

5.2.3 Consequences of non-elementary and essential group actions

This paragraph contains some consequences and characterizations of non-elementary and
essential group actions. Most of these have been found by Caprace and Sageev [CS11] and
we refer the reader to this text for the proofs.

Lemmas 5.14 and 5.15 relate the Roller boundary of a subcomplex to the Roller boundary
of the whole complex. This is important for Corollary 6.21.

Lemma 5.14 ([CS11, Lemma 3.1]). Let X be a CAT(0) cube complex and let Γ ≤ Aut(X)
and Y ⊂ X be a Γ-invariant convex subcomplex. Then each hyperplane of Y extends to a
unique hyperplane of X such that there is a natural inclusion Ĥ(Y ) ⊂ Ĥ(Y ).

Lemma 5.15. Let X be a CAT(0) cube complex and let Γ ≤ Aut(X) and Y ⊂ X be a
Γ-invariant convex subcomplex. LetH andH′ be the pocset of halfspaces associated toX and
Y . Then there exists a natural lifting decomposition

W := {h ∈ H | Y ⊂ h}

and the associated continuous inclusion

ι : Ȳ → X̄

is Γ-equivariant. Furthermore, we have ι(∂Y ) ⊂ ∂X .

Proof. Clearly,W satisfies the partial choice and consistency. Then, by Lemma 5.14, we
have

H = H′ tW tW ∗.
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5 Group actions on CAT(0) cube complexes and strong Γ-boundaries

Applying Lemma 3.37, we obtain the lifting decomposition

i : Ȳ → X̄,

α 7→ α tW.

Since Y is Γ-invariant, the same is true forW . Hence, i is Γ-equivariant.
Lastly, if α contains an infinite descending chain, so does α tW .

The following four results (Lemmas 5.16, 5.18 and 5.17 and Theorem 5.19) give character-
izations of essential and/or non-elementary group actions. These give us a handle on the
special interplay between our group Γ and the pocset of halfspaces H. All of these results
will be used throughout the remainder of this thesis.

Lemma 5.16 (Skewering Lemma, [CS11, Proposition 3.2]). Let X be a finite-dimensional
CAT(0) cube complex, ĥ ∈ Ĥ(X) and Γ ≤ Aut(X). Then the following are equivalent:

1. ĥ ∈ Ess(X,Γ),

2. X(Γ · ĥ) is unbounded and

3. Γ skewers ĥ, i. e. there exists g ∈ Γ and n ∈ N such that for one h of the two halfspaces
of ĥ we have gnh ( h.

Lemma 5.17 ([CFI16, Lemma 2.28]). LetX be a finite-dimensional CAT(0) cube complex and
let Γ → Aut(X) be a non-elementary action. Then the Γ0-action on the irreducible factors of
the essential core is also non-elementary and essential, where Γ0 is the finite index subgroup
preserving the decomposition in irreducible factors.

Proof. Let Y ⊂ X be the essential factor and Y = Y1 × · · · × Ym its decomposition into
irreducible factors. Let Γ0 be the finite index subgroup of Γ preserving this decomposition.

We will first show that the Γ0-action on each Yi is essential. By construction, Γ acts
essentially on Y and since Γ0 has finite index in Γ the same is true for Γ0. We would like
to apply Lemma 5.16. For this we note that any halfspace hi ∈ H(Yi) defines a unique
halfspace in Y via

h := Y1 × · · · × Yi−1 × hi × Yi+1 × · · · × Yk.

Using this each hyperplane ĥi = {hi, h∗i } ∈ Ĥ(Yi) defines an associated hyperplane
ĥ = {h, h∗}. Since Γ0 acts essentially on Y , Lemma 5.16 assures the existence of g ∈ Γ0

and n ∈ N such that gnh ( h (after possibly switching h and h∗). We have gnhi ( hi and
using the same lemma in the other direction, we obtain that Γ0 acts essentially on each Yi.

Secondly, we will show that Yi does not have a fixed point in the visual boundary. We
will achieve this by contraposition. Assume that Γ0 ≤ Γ has a finite orbit. Passing to a
further finite index subgroup, which we will still call Γ0, we can assume that Γ0 has a fixed
point at infinity. However, then we can apply Lemma 2.16 and see that we have a Γ0-fixed
point in ∂^Y ⊂ ∂^X . By the finite index, Γ must have a finite orbit at infinity.
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Lemma 5.18 ([CS11, Double Skewering Lemma]). Let X be a finite-dimensional CAT(0)
cube complex and Γ ≤ Aut(X) be a group acting essentially and without fixed point at
infinity. Then for any two halfspaces k ⊂ h, there exists g ∈ Γ such that gh ( k ⊂ h.

Theorem 5.19 (Flipping Lemma, [CS11, Theorem 4.1]). Assume that X is a finite-dimen-
sional CAT(0) cube complex and let Γ ≤ Aut(X) be any subgroup. Let h ∈ H(X) such that
h∗ 6⊂ gh for each g ∈ Γ. Then Γ has a fixed point in the visual boundary or h is not essential
with regard to Γ.

Caprace and Sageev [CS11] showed that the existence of strongly separated hyperplanes
is closely related to the irreducibility of the complex. This is the content of the next
proposition:

Proposition 5.20 ([CS11, Proposition 5.1]). Let X be a finite-dimensional and unbounded
CAT(0) cube complex such that Aut(X) acts essentially and without fixed point at infinity.
Then the following conditions are equivalent:

1. X is irreducible,

2. there is a pair of strongly separated hyperplanes, and

3. for every halfspace h there is a pair of strongly separated halfspaces hi such that
h1 ⊂ h ⊂ h2.

The remainder of this paragraph builds towards Corollary 5.24 and for the remainder of
this thesis, knowledge of this result is quite sufficient. We will see that a non-elementary
group action prevents the existence of any factors in the irreducible decomposition that
are intervals (in the sense of Definition 3.23). This result is directly used in the proof of our
main result (Theorem 6.20).

Proposition 5.21 ([CS11, Proposition 3.6]). Let X be a finite-dimensional CAT(0) cube
complex and let Γ ≤ Aut(X). Let (Ya)a∈A be a Γ-invariant family of closed convex subsets
of X . If for any finite subset B ⊂ A the intersection

⋂
a∈B Ya is non-empty, then either⋂

a∈A Ya is a non-empty Γ-invariant subspace or
⋂

a∈A ∂^Y ⊂ ∂^X contains a finite Γ-orbit.
In particular, in this case Γ acts elementary on X .

Lemma 5.22 ([Fer16, Lemma 3.19]). If X is an interval, then Aut(X) is elementary.

Proof. By Corollary 3.31, we know that there are only finitely many α, β ∈ X̄ such that
X = [α, β]. SinceX is clearly Aut(X)-invariant, we see that Aut(X) acts by permutations
on the finite set

I = {(α, β) ∈ X̄2 | X = [α, β]}.

Hence, we find a finite index subgroup Γ0 ≤ Aut(X) fixing each element in I . Let
(α, β) ∈ I . By construction, we have gα = α for all g ∈ Γ0. Hence, the collection of
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5 Group actions on CAT(0) cube complexes and strong Γ-boundaries

halfspaces given by α is Γ0-invariant. Take h1, . . . , hn ∈ α. If any of the ĥi are parallel,
we have seen in the proof of Corollary 3.31 that the corresponding halfspaces in α form a
chain. Hence, their intersection is never empty. If the two halfspaces are transverse, their
intersection is also non-empty. Hence, we can invoke Theorem 2.53 to see that

⋂n
i=1 hi is

non-empty as well. We can now apply Proposition 5.21 and see that Γ0 acts elementary
in X . Since Γ0 has finite index in Aut(X) every finite orbit of Γ0 leads to a finite orbit in
Aut(X). Hence, Aut(X) acts elementary as well.

Remark 5.23. With the previous lemma, Example 3.25 shows that we could have chosen
every group action by combinatorial automorphisms on Rd in Example 5.6, not only cyclic
subgroups of Zd.

Corollary 5.24 ([Fer16, Corollary 3.21]). If Γ → Aut(X) is non-elementary, then no factor
in the irreducible decomposition of X is an interval.

Proof. Let Y be one of the factors and Γ0 ≤ Γ the finite index subgroup preserving the
decomposition. By Lemma 5.17, we know that Γ0 acts non-elementary on each factor, in
particular on Y . However, Γ0 ≤ Aut(Y ) and hence Aut(Y ) has to act non-elementary, too.
Otherwise, we would find finite orbits of Aut(Y ), which would directly lead to finite orbits
of Γ0. However, then Lemma 5.22 finishes the proof.

5.3 (Doubly) ergodic group actions

We need properties of our group action not only on our complex, but also on its so called
strong boundary (which will be introduced in the next section). One of these properties
is ergodicity. We will mostly use it to make certain maps essentially constant. One other
guise we need it in is that ergodic actions of finite groups lead to purely atomic spaces (c. f.
Definition 5.32 and Lemma 5.33). Lastly, we will introduce standard Borel and Lebesgue
spaces and prove one last technical lemma making use of this definition and Mackey’s point
realization (Theorem 5.35).

Unless noted otherwise, Γ will denote a countable, discrete group.

Definition 5.25 (Measure class preserving action). Let (B,Σ) be a measurable space. We
can define an equivalence relation on all measures onΣ via µ ∼ ν if and only if the null-sets
of µ and ν coincide. An equivalence class [µ] is called a measure class. If a group Γ acts by
measurable transformations on B, then Γ preserves measure classes if for every measure µ
of Σ we have that µ(A) = 0 implies that µ(g−1A) = 0 for every A ∈ Σ and g ∈ Γ.

Lemma 5.26. Let (B,Σ, µ) be a measure space on which a countable group Γ acts by
measurable and measure class preserving transformations. Let B0 ∈ Σ be a conull subspace.
If µ 6= 0, then there exists x ∈M such that Γ · x ⊂ B0.
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5.3 (Doubly) ergodic group actions

Proof. We define

A := {x ∈ B0 | ∃g ∈ Γ: gx ∈ Bc
0} = B0 ∩

⋃
g∈Γ

g−1Bc
0

 ⊂
⋃
g∈Γ

g−1Bc
0.

Since Γ acts measure class preserving, we have that µ(gBc
0) = 0 for every g ∈ Γ. As Γ is

countable, we have that µ(A) = 0. Hence, B0 \A has full measure. In particular it is not
empty and every x ∈ B0 \A satisfies Γ · x ⊂ B0.

Definition 5.27 ((Doubly) ergodic action). Let (B,Σ, µ) be a probability space with a
group Γ acting by measurable and measure class preserving transformations. Then the
action is called ergodic if one of the two equivalent conditions is satisfied (c. f. Lemma 5.28):

1. for everyE ∈ Σ such that g−1E = E for each g ∈ Γwe have µ(E) = 0 or µ(E) = 1,
or

2. every measurable Γ-invariant map f : B → R is essentially constant.

The action is called doubly ergodic if the diagonal action on B × B equipped with the
product measure is ergodic.

Lemma 5.28. The two statements in Definition 5.27 are equivalent.

Proof. We assume 1. Let f : B → R be measurable and Γ-invariant. Then for every c ∈ R
the set f−1(c) is measurable and Γ-invariant. Hence, it has either measure 0 or 1. Since B
is a disjoint union of all these preimages, we see that there exists exactly one c ∈ R such
that f−1(c) has full measure, which means that f is essentially constant.

Now, we assume 2. Consider a Γ-invariant measurable set E. Then its indicator function
χE is a measurable, Γ-invariant map and hence essentially constant. This implies that
µ(E) ∈ {0, 1}.

The first definition of ergodicity shows that transitive group actions (i. e. for every
x, y ∈ B there exists a g ∈ Γ such that gx = y) are automatically ergodic (as long as they
act measurably and measure class preserving). The following is a less pathological example:

Example 5.29 (Bernoulli space). Consider the Bernoulli space B := {0, 1}Z with the
product σ-algebra stemming from the discrete topology on each of the sets {0, 1}. We
equip this space with the measure µ that comes from the uniform distribution on each
factor. Let Z act on this space via a shift operation. Then Klenke [Kle14, Example 20.26]
shows that this system is ergodic.

Proposition 5.30. Every doubly ergodic action is ergodic.

Sketch. Consider the second criterion together with the (equivariant and measurable)
projection from the product to the first factor.
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5 Group actions on CAT(0) cube complexes and strong Γ-boundaries

Lemma 5.31. Let A and B be measurable spaces with a measurable group action Γ. Fur-
thermore, let f : A → B be a measurable Γ-equivariant map and µ a measure on A. If Γ
acts ergodically on (A,µ), then Γ acts ergodically on (B, f∗µ), where f∗µ is the pushforward
measure (see Definition 4.7).

Proof. We will apply the first criterion for ergodicity. Let E ⊂ B be measurable such that
g−1E = E for every g ∈ Γ. Then we have:

f−1(E) = f−1(g−1E) = g−1f−1(E)

because of the equivariance. Thus, by ergodicity on A we have µ(f−1(E)) ∈ {0, 1}.
However, µ(f−1(E)) is exactly the definition of f∗µ(E).

Definition 5.32. Let (M,Σ, µ) be a measure space. A set B ∈ Σ is called atomic if
µ(B) > 0 and for all measurable A ⊂ B either µ(A) = 0 or µ(A) = µ(B). The spaceM
is called purely atomic if there exists a partition ofM consisting of atomic sets.

Lemma 5.33. Let (M,Σ, µ) be a measure space and Γ a finite group acting ergodically on it.
ThenM is purely atomic.

Proof. We will find the above mentioned partition. Start by considering the following set:

Λ := {Ã ∈ Σ | µ(Ã) > 0}.

This set is clearly partially ordered under inclusion and not empty. Consider a descending
chain A1 ⊃ A2 ⊃ A3 ⊃ . . . in Λ. Then A0 := ∩iAi is also measurable, and since

µ

⋃
g∈Γ

gA0

 = lim
k→∞

µ

 k⋂
i=1

⋃
g∈Γ

gAi

 = lim
k→∞

µ

⋃
g∈Γ

gAk

 = 1

at least one of the sets gA0 has non-zero measure for some g ∈ Γ. Next, we note that Γ acts
measure class preserving. Hence, if any of the sets gA0 has zero measure, then all of them
have zero measure. All in all we obtain A0 ∈ Λ. Thus, we have found a lower bound for
our chain. Applying Zorn’s Lemma we find a minimal element A ∈ Λ, i. e. for every B ∈ Λ
such that B ⊂ A we have B = A. We note that the above reasoning also shows that if
B ∈ Λ, then gB ∈ Λ for every g ∈ Γ by means of the measure class preserving action.
Observe that for each g ∈ Γ, the set gA is also a minimal element. Indeed, if B ⊂ gA then
g−1B ⊂ A. Hence, g−1B = A and multiplying again we find B = gA.

Let us consider the case that A is Γ-invariant. Then by ergodicity, we have µ(A) = 1.
We claim that in this caseM is atomic. Take any B ∈ Σ. Then

µ(B) = µ(B ∩A) + µ(B ∩Ac) = µ(B ∩A),
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5.3 (Doubly) ergodic group actions

since Ac is a null-set. We see that B ∩A ⊂ A and thus either µ(B ∩A) = 0 or B ∩A ∈ Λ
and hence B ∩A = A and µ(B) = 1 = µ(M).

If A is not Γ-invariant, we can consider the sets A ∩ gA for each g ∈ Γ. Whenever
µ(A∩ gA) > 0, we have A = A∩ gA = gA, since both A and gA are minimal in Λ. Thus,
there exists at least one g ∈ Γ such that µ(A∩ gA) = 0, otherwise A would be Γ-invariant.
Let g1, . . . , gl ∈ Γ all these group elements. We define:

B1 := A \ g1A
Bi := Bi−1 \ giA ∀i = 2, . . . , l.

We claim that µ(Bi) = µ(A) > 0 for each i. Indeed, by induction we have:

µ(B1) = µ(A)− µ(A ∩ g1A) = µ(A) and
µ(A) ≥ µ(Bi) = µ(Bi−1)− µ(Bi−1 ∩ giA) ≥ µ(A)− µ(A ∩ giA) = µ(A).

Hence, Bi ∈ Λ and Bi = A for each i and we have:

A ∩ giA = Bi ∩ giA = (Bi−1 \ giA) ∩ giA = ∅.

All in all we have that ⋃
g∈Γ

gA =

l⊔
i=0

giA,

where we set g0 = e. Thus, this set has full measure. If we now define

B0 :=M \

(
l⊔

i=1

giA

)
⊃ A

Bi := giA ∀i = 1, . . . , l,

thenM = tiBi and as before we can show that each of these sets is atomic.

Definition 5.34. A measurable space (B,Σ) is called a standard Borel space if it is isomor-
phic (as a measurable space) to a measurable set E ⊂ X , where X is a complete separable
metric space equipped with its Borel σ-algebra.

A measure space (B,Σ, µ) is called a Lebesgue space if it is a standard Borel space and µ
is a regular probability measure.

Theorem 5.35 (Mackey’s point realization, [Mac62, p. 330], [Zim84, Corollary B.6]). Let
(B,Σ, ϑ) be a Lebesgue space. Let a locally compact, second countable group Γ act on B by
measurable transformations. Let Λ be a sub-σ-algebra of Σ which is Γ-invariant, and such
that for any A ∈ Λ and g ∈ Γ we have ϑ(A) = 0 if and only if ϑ(gA) = 0. Then there
exists a Lebesgue space (B′,Σ′, ϑ′) on which Γ acts by measurable transformations and a
Λ-measurable Γ-equivariant map p : B → B′ such that p∗ϑ = ϑ′. Additionally, p induces a
bijection of Σ′ and Λ.
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5 Group actions on CAT(0) cube complexes and strong Γ-boundaries

Lemma 5.36 ([CFI16, Lemma 4.3]). Let Γ be a group acting on a Lebesgue space (B,ϑ). If Γ
acts doubly ergodically on B, then every finite index subgroup Γ0 ≤ Γ acts ergodically on B.

Proof. We proceed by contradiction. Assume that Γ acts doubly ergodic on B, but that
there exists a finite index subgroup Γ0 ≤ Γ which does not act ergodically on B. We can
find a finite index normal subgroup of Γ within Γ0, which still acts non-ergodically on B.
Without loss of generality, we can assume that Γ0 is normal in Γ.

We consider the set

Λ := {A ⊂ B measurable | gA = A ∀g ∈ Γ0}.

This is a σ-subalgebra. Since Γ0 is normal it inherits a Γ-action. Applying Mackey’s
point realization (Theorem 5.35), we find a Lebesgue space (B0,Σ0, ϑ0) and a measurable
Γ-equivariant map p : B → B0, which induces a bijection on the two σ-algebras Λ and
Σ0 and ϑ0 = p∗ϑ. Via this pushforward, Γ acts (doubly) ergodically on B0 and on the
σ-algebra Σ0. We find a well-defined group action Γ̄ := Γ

/
Γ0 , which is still ergodic,

because all elements of the algebra are Γ0-invariant.
However, applying Lemma 5.33 this implies thatB0 is purely atomic. IfB0 is atomic, then

Γ0 would act ergodically on B. Indeed, any A ∈ Λ corresponds to exactly one A0 ∈ Σ0

such that p−1(A0) = A and hence

ϑ(A) = ϑ0(A0) ∈ {0, 1}.

This contradicts the fact that we assumed that Γ0 does not act ergodically on B.
Therefore, there exists an atomic subset A0 ⊂ B with 0 < ϑ0(A0) < 1. We consider

A := p−1(A0) and also in this case 0 < ϑ(A) < 1. We claim that the set

X :=
⋃
ḡ∈Γ̄

gA× gA ⊂ B ×B

is neither null nor conull. However, we will see that this is a contradiction, since X is
Γ-invariant and Γ is assumed to act doubly ergodic. In order to see this, we first note thatX
is well-defined, as A is Γ0-invariant. Thus, the action of Γ factors through Γ̄. Additionally,
X is not null as it contains A × A. Lastly, we will show that up to a null set A × Ac is
contained in Xc. Indeed, we have:

(ϑ× ϑ)((A×Ac) ∩X) ≤
∑
ḡ∈Γ̄

ϑ(A ∩ gA) · ϑ(Ac ∩ gA).

NowA∩gA still lies inΛ. Also note that onΛ,A is atomic. Hence, we have ϑ(A∩gA) = 0
or ϑ(A ∩ gA) = ϑ(A). So either ϑ(A ∩ gA) or ϑ(Ac ∩ gA) are 0 and the right-hand side
of the above equation vanishes.
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5.4 Strong Γ-boundaries

Finally, we are in a position to define strong Γ-boundaries for certain topological groups
Γ. These are group theoretic objects and they will be the domain of our boundary map
(Theorem 6.20). Indeed, at the end of this section, we will be able to construct the first half
of this map. However, we first need to introduce two more group action properties. We
need to generalize ergodic group actions as defined in the previous sections to ergodic group
actions with coefficients. Afterwards, we will define amenable group actions. This property
guarantees the existence of certain measurable maps from the space the group is acting on
into the dual of certain Banach spaces (on which Γ also has to act). Both definitions are
rather technical in nature. However, their two main applications are simpler to grasp.

The first main application consists in Corollary 5.40, namely that ergodicity with co-
efficients implies ergodicity in the regular sense. We will provide a few applications of
this.

The second main application consists in Theorem 5.51 and Corollary 5.52, in which we
construct a measurable Γ-equivariant mapψ : B → P(X̄), whereB is a strong Γ-boundary
and P(X̄) is the set of all regular probability measures on X̄ . This is the only place in the
entire proof, where we use the amenability of the group action.

5.4.1 Doubly ergodic group action with coefficients

Here we will strengthen the notion of ergodicity. The main application is Corollary 5.42.
We will often encounter measurable, Γ-equivariant maps that take values in the finite
subsets of some set. Corollary 5.42 ensures that these maps are always essentially constant
with the empty set as essential value.

Definition 5.37 (Doubly ergodic action with coefficients). Let Γ be a group and (B,Σ, ϑ)
a Lebesgue space endowed with a measure class preserving Γ-action. The action of Γ on B
is doubly ergodic with coefficients if any weak∗-measurable Γ-equivariant mapB×B → E∗

is essentially constant, where E∗ is the topological dual of any separable Banach space E
on which Γ → Isom(E) acts by isometries.

Remark 5.38. Since we have an action of Γ on E by isometries, we also get an action of Γ
on E∗ via the adjoint.

Lemma 5.39 ([BFS06, Section 2.a]). Let Γ act doubly ergodic with coefficients on B. Then
for every measure preserving ergodic Γ-space (X,µ), the space B ×B ×X is ergodic.

Corollary 5.40. If a group action is doubly ergodic with coefficients, then it is doubly ergodic
in the usual sense.

Proof. We choose a singleton for X and apply Lemma 5.39.
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5 Group actions on CAT(0) cube complexes and strong Γ-boundaries

Lemma 5.41 ([CFI16, Lemma 4.4]). Let C be a countable set with a Γ-action and (B,ϑ) a
Lebesgue space with a measure class preserving Γ-action that is in addition doubly ergodic
with coefficients. If ψ : B ×B → C or ψ : B → C is a Γ-equivariant measurable map, then
ψ is essentially constant.

Proof. It satisfies to prove the assertion for B × B. For B we concatenate ψ with the
projection p : B ×B → B onto the first factor. By construction of the product measure,
we have p∗(ϑ× ϑ) = ϑ which finishes the proof in this case.

Since Γ acts ergodically on B ×B, the same is true for the action on C equipped with
the pushforward measure µ := ψ∗(β × β). Next, we choose representatives (yn)n∈N of the
equivalence classes of imψ

/
Γ . Indeed, since C is countable, we really only need countably

many representatives. With this we have:

imψ =
⊔
n∈N

Γ · yn

and thus
1 = µ(imψ) =

∑
n∈N

µ(Γ · yn).

However, each Γ ·yn is Γ-invariant and by ergodicity we obtain µ(Γ ·yn) ∈ {0, 1}. All in all
we see that there exists exactly one n ∈ N such that µ(Γ · yn) = 1. We define D := Γ · yn
for this n and observe that Γ acts transitively on this countable set.

First, we consider the case that D is finite. In this case we find a finite index subgroup
Γ0 ≤ Γ which acts trivially on D. Furthermore, by the Lemma 5.36, we know that Γ0 still
acts ergodically on D. As previously, we can decompose D via

1 = µ(D) =
∑
x∈D

µ({x}).

By the trivial action, each of these atomic spaces is Γ0-invariant and hence for exactly one
x ∈ D we have µ({x}) = 1. Hence, ψ is essentially constant with essential value x.

Lastly, we need to consider the case where D is infinite. Indeed, we will show that this
cannot happen. We consider the Bernoulli space A := {0, 1}D together with the standard
Bernoulli measure λ [c. f. Kle14, p. 29]. Since Γ acts transitively on D, the action of Γ on
A via gχS := χgS , where S is any subset of D and g ∈ Γ and χS is an indicator function,
is ergodic [c. f. Kle14, Example 20.26]. By Lemma 5.39, B × B × A is ergodic. We can
consider the following map

f : B ×B ×A→ R,
(x, y, χS) 7→ χS(ψ(x, y)).
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The map f isG-invariant under the diagonal action and hence essentially constant. Denote
this value by y ∈ {0, 1}. Then by Fubini’s theorem we have that the map

g : B ×B → R,

(x, y) 7→
∫

A
f(x, y, χS) dµ(χS)

exists for almost all (x, y) ∈ B ×B and is also essentially constant with value y. Fixing
a value (x0, y0) for which this is true, we see that χS(x0, y0) = y for almost all χS ∈ A.
However, by construction of the standard Bernoulli measure on A, we have that

µ({χS ∈ A | χS(d) = 1}) = µ({χS ∈ A | χS(d) = 0}) = ¹⁄₂

for every d ∈ D. This is a contradiction to the previous statement for d = ψ(x0, y0). Hence,
D cannot be infinite and we are done.

Corollary 5.42 ([CFI16, Cor. 4.5]). Let H be the pocset of halfspaces of a connected, locally
countable, finite-dimensional CAT(0) cube complex. Let Potf (H) ⊂ Pot(H) be the set contain-
ing only finite subsets ofH. Let (B,Σ, ϑ) be a Lebesgue space with a measure class preserving
Γ-action that is in addition doubly ergodic with coefficients. If there exists a Γ-equivariant
measurable map B × B → Potf (H) or if there exists a Γ-equivariant measurable map
B → Potf (H), whose image is not essentially ∅, then the Γ-action on X is not essential.

Proof. By Corollary 2.57, we know that H is countable. We choose an enumeration hn of
H and for each n ∈ N we define

Hn := {h1, . . . , hn}

We can then write
Potf (H) =

⋃
n∈N

{A ⊂ Hn}

showing that Potf (H) is countable. By Lemma 5.41, the map is essentially constant. Since
Γ is countable, we can apply Lemma 5.26 and find a finite orbit Γ · ĥ. ThenX(Γ · ĥ) is finite.
By Lemma 5.16, ĥ is not essential and the group action is neither.

5.4.2 Amenable group action

Now, we introduce amenable group actions. The details are rather technical. However, the
only result we need is encoded in Theorem 5.51 and its corollary (Corollary 5.52). For the
remainder of the thesis an understanding of these two results is sufficient and if need be,
they can be thought of as an alternative definition of amenability.

In the rest of the section, we will use the following notation, unless stated otherwise:

• Γ denotes a second countable, locally compact group,
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5 Group actions on CAT(0) cube complexes and strong Γ-boundaries

• E denotes a separable Banach space,

• E∗
1 denotes the unit ball in the (topological) dual of E, and

• S denotes a standard Borel space.

We also assume that Γ acts on S preserving measure classes.

Definition 5.43 (Borel field). For each s ∈ S consider a non-empty convex weak∗-com-
pact subspace As ⊂ E∗

1 . Then (As)s∈S will be called a Borel field of compact convex sets if
{(s, λ) | λ ∈ As} is a Borel subset of S × E∗

1 .

Definition 5.44 ((Left) cocycle). Let M be a topological group equipped with its Borel
σ-algebra. Then a (left) cocycle is a measurable map

α : Γ× S →M

such that α(gh, s) = α(g, hs) · α(h, s) for all g, h ∈ Γ and almost all s ∈ S.

Remark 5.45. Each element T ∈ Isom(E) gives rise to a homeomorphism T ∗ of E∗
1 via

(T ∗Φ)(x) := Φ(Tx) for every x ∈ E. Thus, every cocycle α : S ×Γ → Isom(E) gives rise
to a cocycle α∗ : S × Γ → Homeo(E∗) via α∗(g, s) = (α(g, s)−1)∗.

With this remark in place, we can turn to the final definition of this paragraph:

Definition 5.46 (Amenable group action).
• Let α : Γ× S → Isom(E) be a cocycle. A Borel field (As)s∈S is called α-invariant if
α∗(g, s)As = Ags for each g ∈ Γ and almost all s ∈ S.

• The Γ-action on S is called amenable if for every separable Banach space E, every
Borelian (left) cocycle α : Γ × S → Isom(E) and every α-invariant Borel field
(As)s∈S , there exists a Borel map ϕ : S → E∗

1 such that ϕ(s) ∈ As for almost all s
and for each g ∈ Γ we have α∗(g, s)ϕ(s) = ϕ(gs) almost everywhere.

5.4.3 Strong Γ-boundary

In this paragraph we will plug the previous two notions, namely ergodicity with coefficients
and amenability, together to define strong Γ-boundaries. We will see that these boundaries
exist for a broad enough spectrum of groups (see Remark 5.49) and that they are well-
behaved under transitioning to finite index subgroups (Theorem 5.50).

Definition 5.47 (Strong Γ-boundary). Let Γ be a second countable, locally compact group.
A Lebesgue space (B,Σ, ϑ) is called a strong Γ-boundary if there is a group action of Γ on
B by measurable transformations, and this action is:

1. amenable, and
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5.4 Strong Γ-boundaries

2. doubly ergodic with coefficients.

Example 5.48 (Furstenberg-Poisson boundary). In his paper, Kaimanovich [Kai03, Theo-
rem 3] showed that the Furstenberg-Poisson boundary of any spread out, non-degenerate,
symmetric random walk on a locally compact, second countable group Γ is a strong Γ-
boundary. A measure µ on Γ is called spread out (or étalée) if there exists a convolution
power µ∗n which is not singular with respect to the Haar measure class on Γ, i. e. there is
no partition Γ = A tB such that µ∗n is zero on all measurable subsets of A and the Haar
measure class is zero on all measurable subsets of B. The measure is called non-degenerate
if the minimal closed semigroup S ⊂ Γ with µ(S) = 1 is all of Γ. A measure is called
symmetric, if µ = f∗µ, where f is the continuous map given by inversion on Γ. A random
walk is called spread out, non-degenerate or symmetric if the same is true for the measure
µ of the associated transition probability. For details please refer to [Kai03, Section 3].

If Γ is a free group, then the Furstenberg-Poisson boundary is isomorphic to the visual
(and hence, to the Roller) boundary of the Cayley tree of Γ. More generally, Kaimanovich
[Kai00] showed that if the first moment of the transition measure is finite and it is non-
degenerate, then for every hyperbolic group the Gromov boundary is equivalent to the
Furstenberg-Poisson boundary.

Remark 5.49. The previous example is the one most often encountered. Indeed, in his
paper Kaimanovich [Kai03] used the Furstenberg-Poisson boundary to prove that every
locally compact, second countable, σ-compact group (and in particular, every countable,
discrete group) admits a strong Γ-boundary.

In the following, we will need that strong Γ-boundaries are well behaved under going
over to finite index subgroups:

Theorem 5.50 ([Mon01, Lemma 5.4.3], [Kai03, Proposition 3.2.4]). Let Γ be a countable,
discrete group and Γ0 ≤ Γ a finite index subgroup. If (B,Σ, ϑ) is a strong Γ-boundary, then
it is also a strong Γ0-boundary.

Theorem 5.51. Let (B,Σ, ϑ) be a strong Γ-boundary and X a compact metric space with a
continuous Γ-action. Then there exists a measurable map ϕ : B → P(X) which is Γ-equi-
variant almost everywhere and where P(X) is the set of all regular probability measures on
X .

Proof. Let C(X) be the space of continuous functions fromX to R. This is a Banach space
with respect to the supremum norm. By Lemma 4.14, it is also separable. Furthermore,
there exists a group action of Γ on C(X) via (gf)(x) := f(g−1x) where g ∈ Γ, x ∈ X
and f ∈ C(X). This action is clearly via isometries. Also for µ ∈ P(X) we define
(gµ)(A) := µ(g−1A) for every g ∈ Γ and A ∈ Σ. Then the dual pairing established in the
Riesz-Markow representation theorem (Theorem 4.11) yields

〈gf, µ 〉 = 〈f, g−1µ〉
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5 Group actions on CAT(0) cube complexes and strong Γ-boundaries

or, in other words, g∗ = g−1. Next, consider

α : Γ×B → Isom(C(X)),

(g, b) 7→ g.

This is a left cocycle. Since X is compact, we have C(X) = C0(X) (c. f. Definition 4.10).
Thus, using the Riesz-Markow representation theorem (Theorem 4.11), we obtain that
C(X)∗ is isomorphic to Ms(X) the set of all regular signed measures on X . By Corol-
lary 4.13, we know that P(X) is weak∗-compact and contained in the unit ball ofMs(X).
Furthermore, P(X) is convex and non-empty (take any normalized Dirac measure) and we
set Ab := P(X) for all b ∈ B. This is in fact an α-invariant Borel field. Since B is a strong
Γ-boundary, the Γ-action is amenable and we obtain a measurable map ϕ : B → C(X)∗1
such that ϕ(b) ∈ Ab = P(X), i. e. ϕ : B → P(X) (which is still measurable). Lastly, we
have

ϕ(gb) = α∗(g, b)ϕ(b)

=
(
α(g, b)−1

)∗
ϕ(b)

=
(
g−1
)∗
ϕ(b)

= gϕ(b)

for almost all b ∈ B and every g ∈ Γ.

Corollary 5.52. Let X be a finite-dimensional CAT(0) cube complex and X̄ its Roller com-
pactification. Let Γ → Aut(X) be a group acting on X and B a strong Γ-boundary. Then
there exists a measurable map ϕ : B → P(X̄) which is Γ-equivariant almost everywhere and
where P(X̄) is the set of regular probability measures on X̄ .

Additionally, P(X̄) inherits a probability measure via the pushforward from B and the
group action of Γ on P(X̄) is doubly ergodic with coefficients with respect to this measure.

Proof. Corollary 3.8 establishes that X̄ is a compact metrizable space. Furthermore, the
Γ-action on X extends to a Γ-action on X̄(c. f. Theorem 5.3). Thus, all conditions for
Theorem 5.51 are satisfied and we get the desired map ϕ : B → P(X̄).
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6 The boundary map

Finally, we can construct the boundary map as in Theorem 6.20. This process will take the
whole chapter. The actual construction will be achieved in Section 6.1. However, we will
need the additional assumption thatHµ is empty for almost all µ ∈ P(X̄) (see Lemma 6.1).
Afterwards, we will prove that the boundary map (if it exists) will only take values in the
Roller boundary ∂X instead of in the whole Roller compactification X̄ . Then we will have
to prove that Hµ is indeed empty for almost all µ. Section 6.2 will deal with the rather
simple case 0 < |Hµ| < ∞. Section 6.3 will construct the tools to deal with the case
|Hµ| = ∞. This case is the most involved and we will have to split it into further subcases
in order to deal with it. The detailed strategies for all the cases can be found at the start of
each paragraph. Section 6.4 contains the statement (Theorem 6.20) and the proof of our
main theorem. Additionally, it contains a slight generalization in the form of Corollary 6.21.

6.1 The construction of the boundary map

In this section we will construct the actual boundary map first assuming that the set of
balanced halfspaces Hµ (see Section 4.2) is empty for almost every regular probability
measure µ (with respect to the measure mentioned in Corollary 5.52). Then we will prove
that its image lies in the Roller boundary ∂X .

Lemma 6.1. Let X be a finite-dimensional, locally countable CAT(0) cube complex and Γ
a group with an action Γ → Aut(X) that is essential and non-elementary. Furthermore,
let (B,Σ, ϑ) be a strong Γ-boundary. If Hµ = ∅ for almost all µ ∈ P(X̄) with respect to
the pushforward measure from B, then there exists a measurable map ϕ : B → X̄ which is
Γ-equivariant almost everywhere.

Proof. By Corollary 5.52, we have a measurable map ψ : B → P(X̄)which is Γ-equivariant
almost everywhere. Hence, we only need to find a map from P(X̄) to X̄ . We will first
prove that if Hµ = ∅, then H+

µ is an ultrafilter. Indeed, since H = H+
µ tHµ tH−

µ and
(H+

µ )∗ = H−
µ (c. f. Lemma 4.16), we have the choice condition. For the consistency condition

we only need to know that h ⊂ k implies C(h) ⊂ C(k) and hence µ(C(h)) ≤ µ(C(k)).
By assumption, the set E := {µ ∈ P(X̄) | Hµ = ∅} has full measure. Since ψ is only

well-defined up to a null set, we can concatenate it with the map

ξ : E → X̄,

µ 7→ H+
µ .

By Lemma 4.22 applied to the interval(¹⁄₂, 1], this map is measurable and Γ-equivariant
almost everywhere.

All in all we have that ξ ◦ ψ is our desired map ϕ.
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Wewill now prove that anyϕ as above only takes values in ∂X . This will be accomplished
with the next lemma:

Lemma 6.2 ([CFI16, Lemma 4.11]). Let X be a finite-dimensional, locally countable CAT(0)
cube complex. Let Γ be a discrete, countable group with an essential and non-elementary
action Γ → Aut(X), (B, ν) a Lebesgue space on which Γ acts doubly ergodic with coefficients.
If ϕ : B → X̄ is a measurable map which is Γ-equivariant almost everywhere, then ϕ takes
values in the non-terminating ultrafilters of X .

Proof. Consider the map

B → N ∪ {∞},
x 7→ |τ(ϕ(x))|,

which is measurable (Lemma 4.21) and Γ-invariant (τ was defined in Definition 3.32). By
ergodicity, it is essentially constant with essential valueM . If we show thatM = 0, then
the image of ϕ contains only non-terminating ultrafilters (up to measure 0) and we are
done.

For this purpose, let us consider the following map

B ×B → N ∪ {∞},
(x, y) 7→ |τ(H(ϕ(x), ϕ(y)))|.

It is measurable as it is a composition of measurable maps (consider Lemma 4.23) and
Γ-invariant. Again we obtain an essential value N . By Remark 3.28, we have that N <∞
and hence τ(H(ϕ(x), ϕ(y))) takes values in Potf (H). By Corollary 5.42, this would mean
that the action of Γ is inessential, unless N = 0.

Lastly, we will show that this is incompatible with the caseM > 0. Contrarily, assume
M > 0, then we could find x0 ∈ B such that |τ(ϕ(x0))| > 0 and a set B0 ⊂ B of
full measure such that τ(H(ϕ(x0), ϕ(y))) = ∅ for all y ∈ B0. By Lemma 3.35, for all
h ∈ τ(ϕ(x0)), we have h ∈ ϕ(y).

However, by Lemma 5.26, B0 contains a Γ-orbit, i. e. there exists a y ∈ B0 such that
gh ∈ ϕ(y) for every g ∈ Γ. Now, Γ acts non-elementary and essential. By Theorem 5.19,
we find g ∈ Γ such that gh ⊂ h∗, but by consistency, we would then have h∗ ∈ ϕ(y) which
is a contradiction to the choice condition of ultrafilters.

6.2 The case 0 < |Hµ| < ∞

So far we have seen that if Hµ is empty for almost all µ, we find our desired map with
all the necessary properties. We will now prove that if |Hµ| is finite, then it is already
0. So after this section we will be left with the case that |Hµ| is infinite. The following
two lemmas capture the precise ideas. The main argument in the proof of Lemma 6.4 is
Corollary 5.42, which gives us a contradiction to the essentiality of the Γ-action.
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Lemma 6.3. The map

P(X̄) → N ∪ {∞},
µ 7→ |Hµ|

is essentially constant.

Proof. The map is Γ-invariant and measurable as a concatenation of measurable maps
(c.f. Section 4.3). Since the group action is ergodic with regard to the pushforward measure
on P(X̄) from B, we see that the map is essentially constant.

Lemma 6.4. If |Hµ| is essentially constant and not infinite, then Hµ is empty for almost all
µ ∈ P(X̄).

Proof. We consider the map

P(X̄) → Potf (H),

µ 7→ Hµ.

This map is measurable and Γ-equivariant. Hence, by Corollary 5.42, we know that its
image has to be essentially ∅ in order for our Γ-action to be essential.

All in all we see that if we can show that |Hµ| is finite for almost all µ ∈ P(X̄), we are
done.

6.3 The case |Hµ| = ∞

This is the most involved case. The following two paragraphs will contain all the tech-
nical details in order to exclude it. We will divide this case into two subcases, namely
|Hµ ∩ Hν | = 0 and |Hµ ∩ Hν | = ∞ for almost all µ and ν. The strategy is always to
find a contradiction to the essentiality of the group action, the non-elementarity of the
group action or to the fact that the complex is finite-dimensional. The central result of
Paragraph 6.3.1 is Proposition 6.6. The central results of Paragraph 6.3.2 are Proposition 6.13
and Proposition 6.14. Lemma 6.15 and Lemma 6.16 are also used in the main proof, but
their complete content is given there. For the two subcases to make sense, we need the
following lemma:

Lemma 6.5. The map

P(X̄)× P(X̄) → N ∪ {∞},
(µ, ν) 7→ |Hµ ∩Hν |

is essentially constant.

Proof. This map is again measurable and Γ-invariant (c. f. Section 4.3) and hence essentially
constant by the doubly ergodic action of Γ on P(X̄).
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6.3.1 The case |Hµ ∩Hν | = 0

Here we will prove that |Hµ| = ∞ and |Hµ ∩Hν | = 0 for almost all µ, ν ∈ P(X̄) cannot
happen in our setting. More precisely, we will see thatX cannot be finite-dimensional. The
precise statement is captured in the next proposition. It is the only result of this paragraph
that will be used in the main proof of the theorem. The remainder of this paragraph is only
necessary to understand the proof of this proposition.

Unless noted otherwise, X is a connected, locally countable, finite-dimensional CAT(0)
cube complex and Γ a discrete, countable group.

Proposition 6.6 ([CFI16, Proposition 4.10]). If for almost all µ, ν ∈ P(X̄) we have all of
the following:

• |Hµ| = |Hν | = ∞,

• Hµ ∩Hν = ∅, and

• τ(Hµ ∩H+
ν ) = ∅,

then X contains cubes of arbitrarily large dimension.

We will prove this proposition at the end of the paragraph. Our strategy is to construct a
directed graph having measures as vertices. The following lemma will then give a condition
under which two measures are joined by a (directed) edge. Afterwards, we can use a
graph theoretic result (Lemma 6.12) showing that we find (finite) sets of pairwise transverse
halfspaces with arbitrarily many elements. This leads to the desired cubes in Proposition 6.6.

Lemma 6.7. Let µ, ν ∈ P(X̄) be two regular probability measures such thatHµ ∩Hν = ∅
and such that there exists an infinite descending chain hn ∈ H+

µ and an infinite descending
chain km ∈ H+

ν . Then there exists C ∈ N such that we have a decomposition

NC ⊂ N1 tNj ,

where j ∈ {2, 3, 4} and we have:

NC := {(n,m) ∈ N2 | n,m ≥ C},
N1 := {(n,m) ∈ N2 | hn t km},
N2 := {(n,m) ∈ N2 | h∗n ⊂ km},
N3 := {(n,m) ∈ N2 | hn ⊂ km}, and

N4 := {(n,m) ∈ N2 | hn ⊃ km}.

Proof. There is the following decomposition:

N× N = N1 tN2 tN3 tN4.
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We will consider different cases, depending on which Nj are not empty. If at most one of
the Nj (j = 2, 3, 4) is not empty, we are done. So we deal with the cases where at least
two of the sets are non-empty.

Case N2, N3 6= ∅: We can take (n3,m3) ∈ N3 and (n,m) ∈ N2 and define

m′ := min{m,m3}.

Then we have the following two inclusions

hn3 ⊂ km3 ⊂ km′ and h∗n ⊂ km ⊂ km′.

If we have n ≥ n3, we have hn ⊂ hn3 ⊂ km′ , which is impossible by the second
inclusion above. Hence, fixingm3 we define

A := min{n3 ∈ N | (n3,m3) ∈ N3}

and see that for all n ≥ A and anym ∈ N we have (n,m) /∈ N2 or, in other words,
we have

{(n,m) ∈ N2 | n ≥ A3} = ∅.

IfN4 is empty, this is already sufficient to show that NA = N1 tN3. The case, when
all three are not empty, will be handled below.

Case N3, N4 6= ∅: Again we take (n3,m3) ∈ N3 and (n,m) ∈ N4. If n ≥ n3, we have

kn ⊂ hn ⊂ hn3 ⊂ km3.

This would imply that hn ∈ Hµ ∩Hν , since it is enclosed in two halfspaces which
lie in Hν . However, we haveHµ ∩Hν = ∅. Hence, we define as before

B := min{n3 ∈ N | (n3,m3) ∈ N3}

and see that if n ≥ B, then for any m ∈ N we have (n,m) /∈ N4. If N2 is empty,
this implies NB = N1 tN3.

Case N2, N4 6= ∅: This case is analogous to the first except that we flip the roles of n and
m. Hence, we define a constant

D := min{m4 | (n4,m4) ∈ N4},

where n4 ∈ N was chosen such that the above set is not empty. Ifm ≥ B and n ∈ N
is arbitrary, we have (n,m) /∈ N2. As above, ifN3 is empty, this is sufficient to show
that ND = N1 tN4.
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Case Nj 6= ∅ ∀j ∈ {2, 3, 4}: In this case we can use the constants defined above and
set C := max{A,B,D}. Then if (n,m) ∈ NC \ N1, we have m ≥ B and hence
(n,m) /∈ N2 and n ≥ Dmeaning (n,m) /∈ N4. All in all this leads toNC = N1tN3.

Lemma 6.8 ([CFI16, Lemma 4.13]). Let (µi)i∈N0 be a sequence of probability measures in
P(X̄) such that Hµi ∩Hµj = ∅ whenever i 6= j and such that for each i > 0 there exists
an infinite descending chain hin ∈ H+

µ0
∩Hµi . Then, (up to switching i and j) any pair of

measures µi and µj satisfies the following condition:
There exists C(i, j) ∈ N such that for every n ≥ C(i, j) there is anMn ≥ C(i, j) such

that ifm ≥Mn, then ĥjm t ĥin.

Proof. We fix two measures and call them µ and ν. Let hn ∈ H+
µ0

∩Hµ and km ∈ H+
µ0

∩Hν

be the corresponding infinite descending sequences.
By Lemma 6.7, we have C ∈ N, j ∈ {2, 3, 4} and a decomposition

NC = N1 tNj .

We will consider three cases:

Case NC = N1 tN3: If N3 6= ∅, we take (n0,m0) ∈ N3 and define

M =M(n0) :=max{m ∈ N | (n0,m) ∈ N3}
=max{m ∈ N | hn0 ⊂ km ⊂ km0}.

M is well-defined since the maximum is taken over a non-empty set (by choice of
(n0,m0)) and the set is finite since two nested halfspaces contain only finitely many
halfspaces in between (c. f. Lemma 2.58).

We see that ifm > M , we have (n0,m) ∈ N1, which is what we wanted.

Case NC = N1 tN2: This case works completely analogous, with hn0 replaced by h∗n0
.

Case NC = N1 tN4: If we switch the roles of hn and km the proof goes as above and we
are done.

Preliminaries on directed graphs

We did not dedicate a whole section to directed graphs as they are only necessary to
understand the above mentioned proposition. For the main proof, in depth knowledge of
this paragraph is not necessary. We will only need the technical result that every complete
directed graph has a subgraph with the same vertex set that is strictly upper triangular
(Lemma 6.12).
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6.3 The case |Hµ| = ∞

Definition 6.9. A directed graph G(V,E) consists of two sets V and E, its vertex set and
edge set respectively and of two maps s, t : E → V associating to each edge its source
and target vertex respectively. In our case there are no parallel edges allowed (antiparallel
edges may occur) and we will not allow loops. This allows us to think of E ⊂ V × V and
we will prefer writing vw ∈ E for two vertices v, w ∈ V . This has the further advantage of
making the maps s and t obsolete. We will call G complete if it is complete as an undirected
graph, i. e. each pair of vertices is joined by a single (undirected) edge. For each v ∈ V we
will denote by o(v) the number of outgoing edges and by i(v) the number of incoming edges.
A complete directed finite graph is strictly upper triangular if there exists an enumeration
V = {v1, . . . , vD} such that for all j = 1, . . . , D we have

o(vj) = D − j and
i(vj) = j − 1.

Remark 6.10. The name strictly upper triangular stems from the fact that the transition
matrix for the graph with the given enumeration of the vertices is strictly upper triangular.

Lemma 6.11 ([CFI16, Lemma A.6]). If G := G(V,E) is a complete directed finite graph with
|V | = D, then there exists v ∈ V such that o(v) ≥ D−1

2 .

Proof. Since G is complete we have o(v) + i(v) ≥ D − 1 for every v ∈ V and summing
over all vertices we obtain ∑

v∈V
o(v) + i(v) ≥ D(D − 1).

Since all edges that start somewhere have to end somewhere, we have:∑
v∈V

o(v) =
∑
v∈V

i(v),

leading to ∑
v∈V

o(v) ≥ D(D − 1)

2
.

If o(v) were smaller than D−1
2 for each v ∈ V , we would have that∑

v∈V
o(v) <

D(D − 1)

2
,

which is a contradiction. Hence, there exists at least one v ∈ V such that o(v) ≥ D−1
2 .

Lemma 6.12 ([CFI16, Lemma A.8]). Let G = G(V,E) be a (not necessarily finite) complete,
directed graph and D ∈ N. If |V | ≥ 5D, there exist D vertices v1, . . . , vD and a subset
ED ⊂ E such that G({v1, . . . , vD}, ED) is complete, directed and strictly upper triangular.
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6 The boundary map

Proof. We will prove this by induction, but need a slightly stronger statement. We will
prove:

Let N ∈ N and |V | ≥ 5N . Then for each D ≤ N there exist v1, . . . , vD ∈ V and a
subset ED ⊂ E such that G({v1, . . . , vD}, ED) is complete, directed and strictly upper
triangular. Furthermore, for the set

VD := {v ∈ V \ {v1, . . . , vD} | viv ∈ E ∀i = 1, . . . , D}

we have |VD| ≥ 5N−D.
Observe that it is sufficient to prove this statement for finite graphs. Indeed, for infinite

graphs, we can always consider a finite subgraph with sufficiently many vertices. So we
will reduce to the finite case.

Base: D = 1: By Lemma 6.11 we can find a v1 ∈ V such that

o(v1) ≥
|V | − 1

2
≥ V

5
≥ 5n−1.

Then G({v1},∅) is clearly complete and upper triangular. Furthermore, we have
that

V1 = {v ∈ V | v1v ∈ E},

since G does not contain loops. However, then we have |V1| = o(v1) ≥ 5N−1 and
we are done.

Inductive step: D → D + 1: By the induction hypothesis we find {v1, . . . , vD} and a
subset ED ⊂ E such that G({v1, . . . , vD}, ED) is complete and strictly upper trian-
gular and |VD| ≥ 5N−D. We consider the complete graph induced by G on the set
VD 6= ∅. Again by Lemma 6.11, we find a vertex vD+1 ∈ VD such that

o(vD+1) ≥
|VD| − 1

2
≥ |VD|

5
≥ 5N−(D+1).

By construction, this vertex is connected via an incoming edge to each of the vi. If
we set

ED+1 = ED ∪ {vivD+1 | ∀i = 1, . . . , D},

then G({v1, . . . , vD+1}, ED+1) is still complete and strictly upper triangular by
construction. Additionally, we have

VD+1 = {v ∈ VD | vD+1v ∈ E}

and thus |VD+1| = o(vD+1) ≥ 5N−(D+1) which completes the induction.
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6.3 The case |Hµ| = ∞

Proof of Proposition 6.6. Since Hµ ∩H+
ν has no minimal elements for almost all µ, ν, we

can find a sequence (µi)i∈I such that H+
µ0

∩ Hµi contains an infinite descending chain,
which we denote by (hin)n∈N. Thus, we can apply Lemma 6.8 and find C(i, j) ∈ N such
that for all n ≥ C(i, j) there is anM ≥ c(i, j) such that if m > Mn, we have ĥin t ĥjm
(after possibly switching i and j).

Using this, we can construct a graph G := G(V,E) with V := {µi | i ∈ I} and an edge
from µi to µj if and only if the above mentioned C(i, j) exists. With this, G becomes a
directed graph and since C(i, j) exists for (i, j) or (j, i) it is complete. Hence, we can apply
Lemma 6.12 using anyD ∈ N and find (after relabeling) µ1, . . . , µD ∈ V such that we find
a subset of edges ED such that G(V,ED) becomes strictly upper triangular. This implies
that for each 1 ≤ i < j ≤ D there exists C(i, j) without needing to switch i and j. We set

C := max{C(i, j) | 1 ≤ i < j ≤ D} and
M := max{MC(i, j) | 1 ≤ i < j ≤ D}.

Fixing n = C , for eachm ≥M we have that ĥin t ĥjm for each 1 ≤ i < j ≤ D. Fixingm,
this leads to a set ofD transverse halfspaces. Since they intersect pairwise, byTheorem 2.53,
the common intersection is not empty. An element in this intersection is in a cube, which
has all these hyperplanes as midcubes. Hence, this cube has at least dimension D. Since D
was chosen arbitrarily, X contains cubes of arbitrary dimension.

6.3.2 The case |Hµ ∩Hν | = ∞

Here we will prove that |Hµ| = ∞ and |Hµ ∩Hν | = ∞ cannot happen in our case. The
two main results of the paragraph are stated in the following two propositions.

Unless noted otherwise, Γ is assumed to be a discrete, countable group andX a connected,
locally countable, finite-dimensional CAT(0) cube complex.

Proposition 6.13 ([CFI16, Corollary 4.21]). Let X be irreducible. Assume that for almost
every µ ∈ P(X̄), there are no pairs of strongly separated halfspaces in Hµ. If Hµ ∩Hν 6= ∅
for almost every pair (µ, ν), then the Γ-action is non-essential or Γ has a fixed point in the
visual boundary.

We will find a contradiction to the Flipping Lemma (Theorem 5.19). We will see that if
there are no strongly separated halfspaces in everyHµ, then we can find two halfspaces
h, k ∈ H such that for almost every µ and every l ∈ Hµ we have

h ⊂ l ⊂ k. (6.1)

For the precise statement please see Lemma 6.18. Of course, this property prevents the
flipping of l. The main work lies in establishing Equation (6.1).

Proposition 6.14 ([Fer16, Corollary 3.32]). Assume we have an essential and non-elementary
action of Γ on X , and Γ0 ≤ Γ of finite index. If H′ ⊂ H is a non-empty sub-pocset such that
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6 The boundary map

• H′ is Γ0-invariant, and

• if h, h′ ∈ H′ with h ⊂ h′ and k ∈ H such that h ⊂ k ⊂ h′, then k ∈ H′,

then eitherH′ = H or X = X ′ ×X ′′ and H′ is the halfspace structure for X ′.

We will prove this with the help of strongly separated halfspaces. We will first consider
the irreducible case and show that then H = H′ using an infinite sequence of strongly
separated halfspaces in H′. In the reducible case, we will apply the same reasoning on each
irreducible factor separately. This leads to the product decomposition

For both propositions, the Double Skewering Lemma (Lemma 5.18) will be vital.

Towards the proof of Proposition 6.13

As stated above, we will try to find a contradiction to the Flipping Lemma (Theorem 5.19).
This is done by flanking any element l in Hµ by two halfspaces thus preventing it from
flipping.

Lemma 6.15 ([CFI16, Lemma 4.18]). Let X = X1 × · · · ×Xn be the decomposition of X
into irreducible factors andH = H1 t · · · tHn the associated decomposition of halfspaces. If
Hµ∩Hi contains strongly separated halfspaces considered as a subset ofHi (c. f. Definition 2.54)
for every i, then H+

µ satisfies the descending chain condition.

Proof. Let (hi)i∈N be a descending chain in H+
µ . Since all hi are parallel, they all lie in a

common Hk. Without loss of generality we assume k = 1. Now, take h, k ∈ Hµ ∩H1 with
h ⊂ k strongly separated in H1 and define

P (h) := {l ∈ H+
µ ∩H1 | h ‖ l}.

Because of the strong separation, each l ∈ H1 is parallel to h or k. Hence, we have

H+
µ ∩H1 = P (h) ∪ P (k).

We return to our descending chain. By going over to a subsequence, we can assume that all
halfspaces lie in either P (h) or P (k). Without loss of generality, we choose P (h). The case
hn ⊂ h and hn ⊂ h∗ cannot happen, as µ(h) = µ(h∗) < µ(hn). In the case that h ⊂ hn,
we know by Lemma 2.58 that there are only finitely many halfspaces between the two.
Hence, the chain must terminate. The same argument holds in the case h∗ ⊂ hn.

Lemma 6.16. Let h ⊂ k ⊂ l be three halfspaces in H and g ∈ Γ. Then

1. if (h, k) or (k, l) are strongly separated, then the same is true for (h, l), and

2. (h, k) is strongly separated if and only if the same is true for (gh, gk).

Proof.
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6.3 The case |Hµ| = ∞

1. Assume that m is transverse to both h and l. Then we would have

m ∩ k ⊃ m ∩ h 6= ∅,
m∗ ∩ k ⊃ m∗ ∩ h 6= ∅,
m ∩ k∗ ⊃ m ∩ l∗ 6= ∅ and
m∗ ∩ k∗ ⊃ m∗ ∩ l∗ 6= ∅.

Hence, m is transverse to k. This contradicts the assumption that (h, k) or (k, l) are
strongly separated.

2. If (h, k) are strongly separated and we have any m ∈ H, then g−1m ∈ H and it is
parallel to either h or k. Hence,m is parallel to either gh or gk. The opposite direction
is analogous.

Lemma 6.17 ([CFI16, Lemma 4.19]). Let X be irreducible and Γ → Aut(X) an essential
and non-elementary group action. For every measure µ either Ĥµ contains a pair of strongly
separated hyperplanes or there exists a pair h ∈ H−

µ and k ∈ H+
µ of halfspaces such that

the hyperplanes ĥ and k̂ are strongly separated and for every l ∈ Hµ we have h ⊂ l ⊂ k or
h ⊂ l∗ ⊂ k

Proof. Suppose that Hµ does not contain strongly separated halfspaces. By Proposition
5.20, we find two strongly separated halfspaces ki such that k1 ⊂ l ⊂ k2. By Lemma 5.18,
we find g ∈ Γ such that

gk1 ⊂ gk2 ⊂ k1 ⊂ l ⊂ k2 ⊂ g−1k1 ⊂ g−1k2.

The arcs in the diagram connect strongly separated halfspaces which were identified using
Lemma 6.16.

We would like to show that gk1 ∈ H−
µ and g−1k2 ∈ H+

µ . If neither ki is in Hµ, we are
done (since l is in Hµ). Suppose that k2 is in Hµ, then k1 ∈ H−

µ , because Hµ contains
no strongly separated halfspaces. Thus, by the additivity of the measure, we also have
gk1 ∈ H−

µ . Additionally, g−1k2 ∈ H+
µ again since it is strongly separated from k2. The case

if k1 ∈ Hµ can be proven similarly.
There is one additional step necessary. We define h := g2k1 ∈ H−

µ and k := g−2k2 ∈ H+
µ ,

which are strongly separated by Lemma 6.16. Furthermore, we set k0 := gk1 ∈ H−
µ and

k3 := g−1k2. Then we have the following sequence:

h ⊂ k0 ⊂ k3 ⊂ k,
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6 The boundary map

where the pairs (h, k0), (k0, k3) and (h, k) are strongly separated.
If we take any other l′ ∈ Hµ, then k 6⊂ l′ and k 6⊂ l′∗, because of the measure. Additionally,

l′ 6t k, since it would be parallel to k3 and as before we would have k3 6⊂ l′ and k3 6⊂ l′∗.
Hence, l′ or l′∗ contains k3 and thus k. All in all this shows that either l′ or l′∗ contains k.
Up to renaming, we can assume that l′ ⊂ k. A similar argument applied to h and l′, shows
that h ⊂ l′ and hence h ⊂ l′ ⊂ k.

Lemma 6.18 ([CFI16, Lemma 4.20]). Let X be irreducible. Let µi ∈ P(X̄) be a family of
measures such that Ĥµi does not contain strongly separated hyperplanes for all i. Assume
thatHµi0

∩Hµi 6= ∅ for all i and a fixed i0. Then there exists a pair of halfspaces h ⊂ k such
that ĥ and k̂ are strongly separated and for every l ∈ Hµj , we have h ⊂ l ⊂ k or h ⊂ l∗ ⊂ k.

Proof. We fix µ0 := µi0 and apply Lemma 6.17 to find two strongly separated halfspaces
h2 ⊂ h3. By Lemma 5.18, we find a g ∈ Γ such that gh3 ⊂ h2 ⊂ h3. We set h0 := g2h2,
h1 := gk2, h4 := g−1h3 and h5 := g−2h3. Then we have the sequence

h0 ⊂ h1 ⊂ h2 ⊂ h3 ⊂ h4 ⊂ h5.

Since h2 and h3 are strongly separated, by Lemma 6.16, the above halfspaces are pairwise
strongly separated.

We would like to show that h0 ⊂ l ⊂ h5 for each l ∈ Hµi and every i. This is in fact
already true for every l ∈ Hµi ∩Hµ0 . By assumption, we know that the intersection is not
empty and we fix a li ∈ Hµi ∩Hµ0 for every i.

Now, for every l ∈ Hµi , we see that l can be parallel to at most one hi, since they are
pairwise strongly separated. We will consider the following cases:

Case 1: If l is transverse to any hi, where 1 ≤ i ≤ 4, we are done, because in this case l is
parallel to h0 and h5.

Case 2: Assume that l is transverse to h0. We will see that this is impossible. In this case
it is parallel to h1 and we consider the following two subcases:

• We could have the chain l′ ⊂ h1 ⊂ h2 ⊂ li, where l′ is either l or its complement.
In either case, we have l′, li ∈ Hµi and thus the same is also true for the two
enclosed halfspaces. However, h1 and h2 are strongly separated and Hµi does
not contain pairs of strongly separated halfspace, so this cannot happen.

• The only other possibility is where h0 ⊂ h1 ⊂ l′, but then h0 cannot be
transverse to l.

Thus, l can never be transverse to h0.

Case 3: If l is transverse to h5 we find a contradiction as in Case 2.
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6.3 The case |Hµ| = ∞

Case 4: If l is parallel to each hi, then l′ 6⊂ h0, since otherwise Hµi would again contain
pairs of strongly separated halfspaces. By the same argument, h5 6⊂ l′, where l′ is
defined as above. As before we obtain h0 ⊂ l ⊂ h5 or h0 ⊂ l∗ ⊂ h5.

Proof of Proposition 6.13. By the construction of the product measure, we find a measure
µ0 and a subset B0 ⊂ P(X̄) of full measure such that for all ν ∈ B0, we have

Hµ0 ∩Hν 6= ∅.

By Lemma 6.18, we find two halfspaces h ⊂ k such that for each hyperplane l̂ ∈ Ĥν with
ν ∈ B0, we that (after a possible involution of l) h ⊂ l ⊂ k.

Since Γ is countable, we can apply Lemma 5.26 and find a ν0 ∈ B0 such that Γν0 ⊂ B0.
We fix an l ∈ Hν0 . We know that gν0 ∈ B0. Hence, we have h ⊂ gl ⊂ k for all g ∈ Γ.

However, then l∗ 6⊂ gl for all g ∈ Γ, because k cannot contain both l and l∗. The Flipping
Lemma (Theorem 5.19) then finishes the proof.

Towards the proof of Proposition 6.14

Lemma 6.19 ([Fer16, Lemma 3.31]). Suppose thatX is irreducible with a non-elementary and
essential action of the group Γ. Any non-empty sub-pocsetH′ ⊂ H satisfying the following
properties must be equal to H:

• H′ is Γ-invariant, and

• if h, h′ ∈ H′ with h ⊂ h′ and k ∈ H such that h ⊂ k ⊂ h′, then k ∈ H′.

Proof. Let h ∈ H′. By Proposition 5.20, we find k, l ∈ H such that k and l are strongly
separated and we have

k ⊂ h ⊂ l.

By the Double Skewering Lemma (Lemma 5.18), we find g ∈ Γ such that gl ( k. By
Lemma 6.16, gh and l are. Then, g2h and gl are strongly separated, too. And lastly, we
obtain that h′ := g2h and h are strongly separated. Additionally, we note that h′ ∈ H′,
since H′ is Γ-invariant.

Now, let m ∈ H be any halfspace. Then m is transverse to at most one of the two
halfspaces h and h′. Without loss of generality, we assume that m is parallel to h. We have
four possible cases: m ⊂ h, m∗ ⊂ h, h ⊂ m or h ⊂ m∗. However, in all of these cases,
we can use the Double Skewering Lemma (Lemma 5.18) to enclose m or m∗ between two
elements of H′. Hence, by assumption, we have m ∈ H′ or m∗ ∈ H′. Since H′ is closed
under involution, this finishes the proof.
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Proof of Proposition 6.14. IfX is irreducible, we can apply Lemma 6.19 and find thatH = H′.
Otherwise, let

H = H1 t · · · t Hn

be the decomposition into sets of pairwise transverse halfspaces corresponding to the
irreducible decomposition. By Lemma 5.17, we can assume without loss of generality
that Γ0 preserves this decomposition. Then we can apply Lemma 6.19 on each of the sets
H′ ∩Hi considered as subsets of the pocsets Hi. Then the intersection is either empty, or
we have H′ ∩Hi = Hi. With this we see that X decomposes as the desired product.

6.4 The main theorem

Finally, we are in a position to prove our main theorem (Theorem 6.20). A slight gener-
alization takes the form of Corollary 6.21. The proofs will use all the technical details of
the previous sections. Additionally, we will make heavy use of the measurability results
of Section 4.3, results for essential and non-elementary group actions on CAT(0) cube
complexes in Section 5.2 and results concerning strong Γ-boundaries in the Sections 5.3
and 5.4.

Theorem 6.20 ([CFI16, Theorem 4.1]). Let Γ be a discrete, countable group acting on a
connected, locally countable, finite-dimensional CAT(0) cube complex X via automorphisms.
Assume the action is essential and non-elementary. If (B,Σ, ϑ) is a strong Γ-boundary, there
exists a measurable map

ϕ : B → ∂X

which is Γ-equivariant almost everywhere and which takes values in the non-terminating
ultrafilters in ∂X .

Proof. By Lemma 6.3, |Hµ| is essentially constant. If Hµ is finite for almost all µ, by
Lemma 6.4, Hµ is empty for almost all µ. Hence, Lemma 6.1 and Lemma 6.2 lead to our
desired map.

The only thing left to prove is that Hµ cannot be infinite. Contrarily, assume that it
is. For every µ, ν we consider the set Hµ ∩ Hν . By Lemma 6.5, their cardinality must
be essentially constant and we consider the case that the sets are infinite for almost all
µ, ν ∈ P(X̄). We define the set

E := {(µ, ν) ∈ P(X̄)× P(X̄) | Hµ = Hν}.

If f : P(X̄) → Pot(H) is the map such that µ 7→ Hµ, then E = (f × f)−1(∆), where
∆ ⊂ Pot(H)2 is the diagonal. The set Pot(H) is Hausdorff with regard to the cylinder
topology. Hence, ∆ is closed and measurable. The map f × f is also measurable and we
obtain that the same is true for E . Furthermore, E is Γ-invariant. By the doubly ergodic
action of Γ on P(X̄), it has either measure 0 or measure 1. Let us consider the two cases:
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Case ϑ(E) = 1: Since Hµ = Hν for almost all µ and ν, by the definition of the product
measure, we can find µ0 ∈ P(X̄) and a full measure subsetM ⊂ P(X) such that
Hν = Hµ0 for all ν ∈M . By Lemma 5.26, we find ν ∈M such that

Hgν = gHν = Hgν = Hµ0 = Hν

for every g ∈ Γ. Hence, Hν is Γ-invariant. The set Hν is additionally closed under
involution. By Lemma 4.16, we can apply Proposition 6.14. Hence, either H = Hµ

or X = X ′ ×X ′′, where X ′ has Hµ as its pocset of halfspaces. In both cases, the
irreducible factors of X would contain an interval, since X ′ = X(Hµ) is an interval
by Lemma 4.17. However, by Corollary 5.24, this contradicts the fact that the Γ-action
is non-elementary.

Case ϑ(E) = 0: In this case we have Hµ 6= Hν for almost all µ and ν. We decompose X
into its irreducible factors

X = X1 × · · · ×Xn

and H into the associated subsets of pairwise transverse halfspaces

H = H1 t · · · tHn.

Furthermore, we denote by Γ0 ≤ Γ the finite index subgroup respecting this decom-
position. Then Γ0 acts still non-elementary and essential on X (Lemma 5.17). We
define the set

Si := {(h, k) ∈ Hi ×Hi | h and k are strongly separated in Hi}.

By Lemma 6.16, we see that this set is Γ0-invariant and we can consider the following
map

P(X̄) → N ∪ {∞},
µ 7→ |(Hµ ×Hµ) ∩ Si|,

which is, by the above observation, Γ0-invariant and also measurable (c. f. Lemma
4.24 together with Lemma 4.19). Hence, it is essentially constant (Lemma 5.36). We
have two cases depending on the essential values Ni.
Case 1: The value Ni > 0 for all i, i. e. there are strongly separated hyperplanes

in all Hµ ∩ Hi. Hence, we can use Lemma 6.15 and see that H+
µ satisfies the

descending chain condition. This implies that the setsH+
µ ∩Hν contain terminal

elements whenever the intersection is not empty. Furthermore, we know by
Lemma 4.18 that they each contain at most finitely many terminal elements.
However, then

P(X̄)× P(X̄) → Potf (H),

(µ, ν) 7→ τ([H+
µ ∩Hν ] ∪ [H+

ν ∩Hµ])
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is Γ-equivariant and measurable (c. f. Lemma 4.26) and Corollary 5.42 assures
H+

µ ∩ Hν = ∅ for almost all µ and ν. However, Hν 6= Hµ for almost all µ
and ν. Hence, there exists h ∈ Hν \ Hµ and thus h ∈ H±

µ . Without loss of
generality, we can assume that it lies inH+

µ and we see thatH+
µ ∩Hν 6= ∅ for

almost all µ and ν, which is a contradiction.

Case 2: The value Ni = 0 for at least one i. Without loss of generality, we can
assumeN1 = 0. The spaceX1 is irreducible,Hp1∗µ = Hµ∩H1 does not contain
pairs of strongly separated halfspaces. Furthermore, Hp1∗µ ∩Hp1∗ν = ∅ for
almost all µ, ν. Hence, we can apply Proposition 6.13 and find a contradiction
to the fact that Γ0 is both essential and non-elementary.

We see that Hµ ∩Hν cannot be infinite. Thus, we have the map

P(X̄)× P(X̄) → Potf (H),

(µ, ν) 7→ Hµ ∩Hν ,

which is Γ-invariant and measurable (c. f. Section 4.3) and takes values in the finite subsets
ofH. With the help of Corollary 5.42, we see that this implies thatHµ ∩Hν must be empty
for almost all µ and ν.

In this case we consider the map

P(X̄)× P(X̄) → N ∪ {∞},
(µ, ν) 7→ |τ([Hµ ∩H+

ν ] ∪ [Hν ∩H+
µ ])|,

where τ is the map assigning the set of terminal elements to any subset of H (c. f. Defi-
nition 3.32). This map is again measurable (c. f. Lemmas 4.20 and 4.26) and Γ-invariant.
Hence, it is essentially constant. Furthermore, by Lemma 4.18, the map takes only finite
values. However, by Corollary 5.42, we have that [Hµ ∩H+

ν ] ∪ [Hν ∩H+
µ ] contains no

terminal elements for almost all µ and ν. This allows us to apply Proposition 6.6, which
leads to the impossibility of the case Hµ ∩Hν = ∅ and hence of |Hµ| = ∞.

Before finishing this treatise, we would like to drop the essentiality condition on Γ. This
is indeed possible. The only thing we lose is that we cannot be sure that the image lies in
the non-terminating ultrafilters. However, it will still lie in ∂X . The precise statement is as
follows:

Corollary 6.21. Let Γ → Aut(X) be a discrete, countable group acting on a connected,
locally countable, finite-dimensional CAT(0) cube complex X . Assume that the action is
non-elementary and denote by Y the essential core of X . Then there exists a measurable map

ϕ : B → ∂Y ⊆ ∂X

which is Γ-equivariant almost everywhere.
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6.4 The main theorem

Proof. Since there is no finite orbit of Γ in the visual boundary, we also have no fixed
point there. Hence, we can apply Proposition 5.11 which yields that the essential core
Y is not empty. As a convex subcomplex, we have ∂^Y ⊂ ∂^X and we see that Γ acts
non-elementary on Y , too. By definition, the action Γ on Y is also essential. Hence, we
can apply Theorem 6.20 and find the map

ϕ : B → ∂Y.

With the help of Lemma 5.15, we can embed ∂Y into ∂X in a natural way that is compatible
with the Γ-action.
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6 The boundary map
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