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Abstract

Our goal in this Master’s thesis is to give a detailed proof of the volume rigidity theorem due
to Bucher, Burger, and Iozzi, following the lines of the article [BBI13]. To every lattice em-
bedding i : Γ ↪→ Isom+(Hn) and any representation ρ : Γ → Isom+(Hn) we may associate a
real number Vol(ρ), the so called volume of ρ. The definition of Vol(ρ) relies on techniques
from bounded cohomology and is reminiscent of the definition of the Toledo invariant for sur-
face group representations as in [BIW03], [BI07]. If n ≥ 3, the volume rigidity theorem asserts
that |Vol(ρ)| ≤ |Vol(i)| = Vol(M), where M = i(Γ)\Hn. Moreover equality holds if and only if ρ
is conjugated to i by an isometry. This may be considered as a generalization of Mostow’s rigidity
theorem for finite volume hyperbolic manifolds of dimension at least three.
Along the way, background information on hyperbolic geometry and in particular on continuous

(bounded) cohomology is provided, introducing the reader to the subject. We also prove a version of
de Rham’s theorem for relative de Rham cohomology in the appendix. Further a detailed discussion
of Douady-Earle’s barycenter construction for probability measures on ∂Hn with no atoms of mass
≥ 1/2 is included.

Zusammenfassung

Das Ziel dieser Masterarbeit ist einen detaillierten Beweis des Volumenstarrheitssatzes von Bucher,
Burger und Iozzi zu geben, wobei wir [BBI13] folgen. Für jede Gittereinbettung i : Γ ↪→ Isom+(Hn)
ordnen wir einer beliebigen Darstellung ρ : Γ → Isom+(Hn) eine reelle Zahl Vol(ρ) zu, das sog.
Volumen von ρ. Die Definition von Vol(ρ) benutzt hierbei beschränkte Kohomologie und ist ähn-
lich zu der Definition der Toledo-Invariante für Darstellunen von Flächengruppen wie in [BIW03],
[BI07]. Für n ≥ 3 besagt der Volumenstarrheitssatz nun, dass |Vol(ρ)| ≤ |Vol(i)| = Vol(M) gilt,
wobeiM = i(Γ)\Hn. Darüber hinaus gilt Gleichheit genau dann, wenn ρ und i durch eine Isometrie
konjugiert sind. Dieser Satz kann als eine Verallgemeinerung des Mostow’schen Starrheitssatzes für
hyperbolische Mannigfaltigkeiten endlichen Volumens mit Dimension mindestens drei verstanden
werden.
Es werden viele Hintergrundinformationen zu hyperbolischer Geometrie und insbesondere beschränk-

ter Kohomologie bereitgestellt, welche den Leser an das Thema heranführen. Im Anhang beweisen
wir zudem eine Version des Satzes von de Rham für relative de-Rham-Kohomologie. Darüber hin-
aus erläutern wir detailliert Douady-Earles Baryzenter Konstruktion für Wahrscheinlichkeitsmaße
auf ∂Hn, welche keine Atome der Masse ≥ 1/2 besitzen.
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Introduction

The objective of this Master’s thesis is to outline the paper by Bucher, Burger, and Iozzi [BBI13]
in a way that is digestible for non-experts in the field of bounded cohomology. The main result of
[BBI13] is the so called volume rigidity theorem, which can be regarded as a generalization of the
Mostow rigidity theorem for finite volume hyperbolic manifolds.
Mostow’s rigidity theorem is a remarkable result linking the topology and geometry of finite

volume hyperbolic manifolds of dimension at least three. Specifically it asserts, that two such
hyperbolic manifolds with isomorphic fundamental groups are already isometric. This is in rough
contrast to the case of dimension two. In fact the study of Teichmüller spaces Tg for hyperbolic
surfaces of genus g ≥ 2 shows, that there are already uncountably many surfaces with isomorphic
fundamental groups but different/non-isometric hyperbolic metrics. More precisely the Fenchel-
Nielsen coordinates on Tg yield a bijection Tg ∼= R3(g−1)

+ × R3(g−1); see e.g. [BP92].
By now there are several proofs of Mostow’s rigidity theorem all using different techniques.

Mostow’s original proof – for compact hyperbolic manifolds of dimension at least three – uses
pseudo-isometries in order to extend a given homotopy equivalence continuously to the boundary
of hyperbolic n-space and then shows that this extension is in fact induced by an isometry; see
e.g. [Thu]. For compact hyperbolic 3-manifolds Thurston [Thu] gives another proof making use of
Gromov’s l1-homology and measure homology. More recently Besson, Courtois and Gallot [BCG96]
gave a proof using entropy methods. A nice survey comparing the preceding approaches may be
found in [Lü10].
However the starting point of [BBI13] is [BI09] where Burger and Iozzi succeed in applying the

machinery of continuous bounded cohomology to prove Mostow’s rigidity theorem for compact
hyperbolic 3-manifolds. Their proof is along the lines of the Gromov-Thurston proof and may
be regarded as a ”dual version” of it, since the classical singular bounded cohomology can be
interpreted as the dual theory to l1-homology (cf. [Gro82]). The reason why [BI09] is limited to
dimension three is that there is additional knowledge on the continuous bounded cohomology group
H3

cb(Isom
+(H3),R), which is unavailable in higher degress. Further effort has been made to remedy

this in [BBI13], as we will see.
As we have already mentioned, Bucher, Burger, and Iozzi do not prove Mostow’s rigidity theorem

directly, but rather prove the following volume rigidity theorem for representations of hyperbolic
lattices (cf. section I.4). It is formulated by means of the volume Vol(ρ) of a lattice representation
ρ : Γ < Isom+(Hn) → Isom+(Hn), which we will define in section III.2. In fact the definition Vol(ρ)
is very similar to the Toledo invariant for surface group representations; see e.g. [BIW03], [BI07],
[BIW10], [Wie04].

Theorem (Volume Rigidity Theorem; [BBI13]). Let n ≥ 3. Let i : Γ ↪→ Isom+(Hn) be a lattice
embedding and let ρ : Γ → Isom+(Hn) be any representation. Then:

|Vol(ρ)| ≤ |Vol(i)| = Vol(M)

with equality, if and only if ρ is conjugated to i by an isometry. Here M denotes the quotient
i(Γ)\Hn.

We will see that Mostow’s rigidity theorem follows quite easily from the volume rigidity theorem
in section III.1.
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Note that Francaviglia and Klaff [FK06] were able to prove a similar volume rigidity theorem with
a different definition of volume based on the notion of pseudo-developing maps following Dunfield
[Dun99]. However [FK06] is also concerned with representations ρ : Γ < Isom+(Hk) → Isom+(Hn)
where 3 ≤ k ≤ n, i.e. k is not necessarily equal to n.
The proof of the volume rigidity theorem can be divided into two parts. Establishing the inequal-

ity is the first part. This will not be very difficult after we will have deduced some basic properties
of Vol(ρ) by using transfer maps and applying ideas from relative cohomology. The second part
is concerned with the case of equality and the construction of a conjugating isometry. We will do
this in three steps following the usual strategy of proofs of Mostow rigidity. First, we will construct
a boundary map ϕ : ∂Hn → ∂Hn, which is in some sense ”compatible” with the action of Γ on
∂Hn via the representation ρ. In the second step we will use a very explicit version of Burger and
Iozzi’s useful formula [BI09] to deduce, that the constructed boundary map sends regular ideal
simplices to regular ideal simplices preserving their orientation. Finally we will apply a general
proposition about boundary maps, which asserts that such a boundary map is already induced by
an isometry. This is infact the only step in the proof which requires n ≥ 3. The compatibility of
the boundary map with the ρ-action of Γ on ∂Hn then implies that this isometry conjugates i and ρ.

Outline of the thesis:
In our elaboration of [BBI13] we strive for a very detailed exposition. Therefore we give plenty

of background information on hyperbolic geometry, continuous and bounded cohomology, measure
theory and Douady-Earles’s barycenter construction among others. Our declared goal is to provide
an explanation of all relevant aspects for an audience with some background in differential geometry
and algebraic topology.
Chapter I recalls some results in hyperbolic geometry. Sections I.1-I.4 are concerned with the

basic notions of hyperbolic geometry and constitute the fundament of our further investigations.
The most important among these is probably section I.4 where we introduce lattice subgroups
and show how they relate to finite volume hyperbolic manifolds and the existence of invariant
probability measures. In section I.5 we are interested in ergodicity phenomena and prove that
every lattice Γ < Isom+(Hn) acts double ergodically on the boundary ∂Hn. This double ergodicity
is one of the central technical ingredients in our proof of the volume rigidity theorem and also in the
Gromov-Thurston proof of Mostow’s rigidity theorem. Section I.6 then introduces the thick-thin
decomposition of finite volume hyperbolic manifolds. In particular the notion of a compact core
will be important in the definition of Vol(ρ) later on. In section I.7 we consider (euclidean and)
hyperbolic simplices, which are play a fundamental role in many respects. The final section I.8 is
about boundary maps. We give a proof of the above mentioned proposition, which will be the key
in the third step in the proof of the volume rigidity theorem.
Chapter II is about continuous cohomology and continuous bounded cohomology. We give a

concise introduction to the main aspects of both theories in section II.1 and II.2 respectively.
These sections follow a similar outline and we hope that this facilitates the comparison of both.
In section II.3 we then apply these cohomology theories to the group of hyperbolic isometries
Isom(Hn) and their subgroups. We try to be very concrete and provide some isomorphisms at
the cochain level. For example we give the van Est isomorphism in continuous cohomology at
the cochain level, which is otherwise a bit hard to find in the literature. This is also where we
introduce the volume class ω(b)

n ∈ Hn
c(b)(Isom(Hn),Rε) and see some cocycles representing it in

different resolutions. The volume class plays the central role in the definition of Vol(·) as its name
already suggests. Afterwards we show that the comparison map c : 〈ωb

n〉 ∼= Hn
cb(Isom(Hn),Rε) →

Hn
c (Isom(Hn),Rε) ∼= 〈ωn〉 is an isomorphism in top degree. The latter is the key result to overcome

the limitation of Burger and Iozzi’s proof of Mostow’s rigidity theorem in [BI09] to dimension three.
Chapter III uses the previously gathered results in hyperbolic geometry and continuous (bounded)

4



Introduction

cohomology to give a proof of the volume rigidity theorem following the above mentioned strategy.
In section III.1 we restate the volume rigidity theorem and deduce two versions of Mostow’s rigidity
theorem from it. Section III.2 then gives a precise definition of the volume Vol(ρ) of a representation
ρ : Γ → Isom+(Hn) for a hyperbolic lattice Γ < Isom+(Hn) – as promised. Further properties are
deduced from which the inequality in the volume rigidity theorem follows. Finally, we give a proof
in the case of equality and construct a conjugating isometry following the described three steps in
section III.3.
We added five appendices to this thesis, containing background knowledge on certain fundamental

theories or constructions that did not seem to fit in the main body of the text.
Appendix A gives an introduction to measure theory with a view towards harmonic analysis

on general locally compact groups. Many constructions and computations throughout the thesis
depend on some knowledge on Haar measures, quotient measures, measure classes and so on. In
particular we treat the canonical measure class on oriented smooth manifolds.
Appendix B is about G-modules and Banach G-modules, which are the underlying objects in the

functorial framework of continuous cohomology resp. continuous bounded cohomology.
Appendix C gives a brief discussion of amenability, i.e. amenable groups as well as amenable

actions. These are important notions in the theory of continuous bounded cohomology and form a
subject themselves. We shall only state some necessary results and refer to the literature for proofs
and a more thorough discussion.
Appendix D recalls the classical cohomology theories such as singular and de Rham cohomology

very briefly fixing some notation. Further we introduce relative singular bounded cohomology
and prove a relative version of de Rham’s theorem, which will be needed in our discussion of the
properties of Vol(·) and the relative transfer maps.
Appendix E provides a proof of Douady-Earle’s barycenter construction in the realm of hyperbolic

geometry. First we compute the Busemann functions in the Poincaré ball model and the upper
half space model explicitly, and investigate their transformation behaviour. Then we give a proof
of the barycenter construction for probability measures on the boundary ∂Hn that have no atoms
of mass ≥ 1/2. At the end we include some graphics that visualize the barycenter construction and
a python script that was used to plot the images.
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I. Hyperbolic Geometry

In this first chapter we want to give an exposition of some results in hyperbolic geometry, that
we will need in the context of the volume rigidity theorem. In section I.1 we just recall some
fundamental terminology assuming that the reader is already familiar with the basic notions of
hyperbolic geometry. Section I.2 deals with the isometries of the different models of hyperbolic
space. We will also identify hyperbolic n-space and its boundary as homogeneous spaces, which
will be important throughout the rest of this thesis. Investigating further the isometry group we
will introduce the notion of elementary (sub-)groups in section I.3. Section I.4 then covers lattice
subgroups and relates them to hyperbolic manifolds with finite volume using covering theory and
some results about quotient measures (cf. appendix A). Staying in the realm of measure theory we
will recall the basic notions of ergodic theory and give a proof of the double ergodicity of lattice
actions on the boundary in section I.5. Section I.6 then introduces the thick-thin decomposition of
hyperbolic manifolds with finite volume, which will be important in the definition of the volume
of a representation later on. Coming back to hyperbolic n-space section I.7 is concerned with
hyperbolic simplices, their volume and their reflection group. In section I.8 we will then see under
which conditions a boundary map is already induced by an isometry. This is one of the central
aspects of our proof of the volume rigidity theorem.
Throughout this chapter let n ≥ 2.

I.1. Basics

We assume that the reader is already familiar with the basic notions of hyperbolic geometry as
there are already many textbooks on the subject, e.g. [BP92], [Kap09], [Rat06], [Thu97]. Therefore
we will just fix some notation and recall some basic facts here.

Definition I.1.1 (Hyperbolic n-space Hn). Let n ∈ N. Hyperbolic n-space Hn is the unique simply
connected and complete Riemannian manifold with constant sectional curvatureK = −1 (cf. [dC92,
Theorem 4.1, p. 163]).

We will further assume, that the reader is familiar with the upper half space model Un, the
Poincaré ball model Bn, the hyperboloid model Hn and the projective disc model Dn of hyperbolic
n-space (cf. [Rat06]). Recall that from all the previous models the projective disc model is not
conformal. However this gives us the advantage, that geodesics are the usual straight euclidean
cords in the disc Dn, which is quite helpful whilst dealing with convex sets.
Hn carries a metric, which we will denote by d(·, ·) in the following.

Definition I.1.2 (Boundary ∂Hn). Consider the set S of all geodesic half-lines in Hn parametrized
by arc length on [0,∞), and define an equivalence relation ∼ on S in the following way:

γ1 ∼ γ2 ⇐⇒ sup
t≥0

d(γ1(t), γ2(t)) <∞

Set ∂Hn = S/ ∼ and Hn
= Hn ∪ ∂Hn. We define a topology on Hn such that Hn ⊂ Hn is open

and inherits its original topology, and a neighborhood of p ∈ ∂Hn is obtained in the following way:

7



I. Hyperbolic Geometry

choose γ in the class of p, and let x be its starting point, let V be a neighborhood of γ̇(0) in the
unit sphere of TxHn and let r > 0; then we set

U(γ, V, r) ={γ1(t) : γ1 ∈ S, γ1(0) = x, γ̇1(0) ∈ V, t > r}
∪ {[γ1]∼ : γ1 ∈ S, γ1(0) = x, γ̇1(0) ∈ V }

These fulfill the axioms of a fundamental system of neighborhoods of p.
It turns out, that ∂Hn is homeomorphic to Sn−1 and Hn is homeomorphic to Bn. Moreover if we

consider the Poincaré ball model Bn, Bn is canonically identified with the closure of Bn as a subset
of Rn (cf. [BP92, Proposition A.5.10, p. 29]). In the very same way for the upper half space model
Un we can identify ∂Un ∼= Rn−1 × {0} ∪ {∞} ∼= Rn−1 ∪ {∞}, where the latter can be understood
as the one-point-compactification of Rn−1. ∂Hn is called the boundary at infinity of Hn.

Instead of writing [γ] for the class of a geodesic ray γ : [0,∞) → Hn we will often use the more sug-
gestive notation limt→∞ γ(t); being consistent with this notation we will also write limt→∞ expx(t ·
vx) for the boundary point represented by the class of the geodesic ray starting in the direction of
the tangent vector vx ∈ TxHn at x ∈ Hn.

Definition I.1.3 ((Generalized) Hyperbolic Subspace). A subset N of Hn is a hyperbolic subspace
if and only if it contains the entire geodesic passing through any two of its points. One may now
compactify N to a compact subset of Hn by considering its closure in Hn. This is just the set
we obtain by adding all the classes [γ]∼ of geodesics γ in N . A set of this form is then called a
generalized hyperbolic subspace; or just a hyperbolic subspace if there is no ambiguity.

Hyperbolic subspaces take different shapes in the different models. In the ball model Bn these are
just spheres meeting Sn−1 orthogonally resp. linear subspaces (through 0). In the upper half space
model Un theses are also just spheres meeting the boundary Rn−1 ∼= Rn−1×{0} orthogonally resp.
vertical affine subspaces. In the projective disc model Dn these are euclidean affine subspaces and
in the hyperboloid model theses are intersections of Hn with linear subspaces in Rn,1. In particular
(generalized) hyperbolic subspaces are submanifolds (with boundary) of Hn (resp. Hn).
Further we get, that a p-dimensional hyperbolic subspace is isometric to Hp (cf. [BP92, Corollary

A.5.7, p. 27]).
We now turn to a different geometric notion in hyperbolic n-space, namely horospheres and

horoballs.

Definition I.1.4 (Horosphere). Consider the upper half space model Un. The horosphere centered
at ∞ is a hypersurface of the form {x = (x1, . . . , xn) ∈ Un : xn = c} for some c > 0. A horosphere
N centered at ∞ inherits a Euclidean structure by restrichting the hyperbolic metric to N (cf.
[BP92, Theorem A.4.3., p. 24]). A horosphere centered at a point ξ ∈ Rn−1 = ∂Un−{∞} is defined
to be the image of a horosphere centered at ∞ under an isometry taking ∞ to ξ, i.e. euclidean
spheres tangent to ξ with center in Un.
Passing to the Poincaré ball model Bn a horosphere centered at ξ ∈ ∂Bn is also a euclidean

sphere properly contained in Bn and tangent to ξ.
Equivalently, a horosphere centered at ξ ∈ ∂Hn is a maximal hypersurface N in Hn such that for

every point x ∈ N the geodesic passing through x in the direction of ξ is perpendicular to N .

Definition I.1.5 (Horoball). Let N be a horosphere in Hn centered at ξ ∈ ∂Hn. Then Hn−N has
two connected components. One of them contains every geodesic ray γ|(0,∞) emanating from some
point γ(0) ∈ N and tending towards γ(∞) = ξ; we will call any subset of this form a horoball.
In the Poincaré ball model horoballs are just the ”interiors” of horospheres, whence the name.
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I.2. Isometries of Hn

Let us first conisder the hyperboloid model Hn. Let us denote by O(Hn) the subgroup of O(n, 1)
which leaves Hn ⊂ Rn,1 invariant, and denote by SO(Hn) the intersection of SL(n + 1,R) with
O(Hn). Note that O(Hn) and SO(Hn) are closed subgroups of GL(n+ 1,R), and hence they are
naturally endowed with a Lie group structure.

Proposition I.2.1. O(Hn) is generated by the reflections it contains.

Proof. See [BP92, Proposition A.2.3, p. 5].

Theorem I.2.2 (Isometries in the hyperboloid model Hn). Isom(Hn) consists of the restrictions of
the elements of O(Hn), thus O(Hn) ∼= Isom(Hn); in particular Isom(Hn) is generated by reflections.
Similarly Isom+(Hn) ∼= SO(Hn).

Proof. See [BP92, Theorem A.2.4, p. 6].

Identifying Hn ∼= Hn we get that Isom(Hn) resp. Isom+(Hn) are Lie groups. However this
description of their Lie group structure is not intrinsic, since it depends on the chosen model.
Therefore we want to mention that the isometry group of a connected Riemannian manifoldM can
be equipped with a Lie group structure by identifying it with a submanifold of the frame bundle
F (TM). Recall that, for any p ∈ M , an isometry ϕ is uniquely determined ϕ(p) and dϕp. It is
easy to check that both Lie group structures coincide.
Observe further that the topology on Isom(Hn) induced by its Lie group structure can be defined

intrinsically as well. For that consider Isom(Hn) as a topological subspace of all continuous map-
pings C(Hn,Hn). The latter is now equipped naturally with the compact-open topology. Recall
that a subbasis for the compact-open topology on C(X,X), for any topological space X, is given
by all the following subsets

W (K,U) := {f ∈ C(X,X) : f(K) ⊂ U}

where K ⊂ X is compact and U ⊂ X is open; hence the name ”compact-open topology”.
Now we turn to the more important models Bn and Un.

Definition I.2.3 (Inversion ix0,α). Let x0 ∈ Rn and α > 0. We will call the mapping

ix0,α : x 7→ α · x− x0
|x− x0|2

+ x0

an inversion at the sphere with centre x0 and radius
√
α. This mapping is understood both as a

mapping of Rn−{x0} onto itself and as a mapping of the extended euclidean space R̂n ∼= Rn∪{∞}
onto itself, where ix0,α exchanges x0 and ∞.

Recall that the stereographic projection π : Hn → Bn

π(x) =
(x1, . . . , xn)

xn+1 + 1
, x = (x1, . . . , xn, xn+1) ∈ Rn,1

is an isometry and further that the inversion i−en,2 : B
n → Un at the sphere of radius

√
2 centered

at −en is an isometry; the latter is sometimes called the (inverse) Cayley transform in complex
analysis.

Proposition I.2.4. Isom(Bn) resp. Isom(Un) is generated by inversions at spheres orthogonal to
∂Bn ∼= Sn−1 resp. ∂Un ∼= Rn−1 ∪ {∞}.

9
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Proof. It is easy to check, that under the above isometries Hn → Bn and Bn → Un reflections in
Hn correspond to inversions at spheres orthogonal to the boundary in the respective models. The
assertion now follows from Proposition I.2.1 and Theorem I.2.2.

Finally we have the following very helpful description of the isometries in the Poincaré ball model
Bn and the upper half space model Un.

Theorem I.2.5 (Isometries of Bn). Isom(Bn) consists of all and only the mappings of the form

ϕ : x 7→ A · i(x)

where A ∈ O(n) and i is either the identity or an inversion with respect to a sphere orthogonal to
∂Bn.
Further ϕ is orientation preserving, i.e. ϕ ∈ Isom+(Bn), if and only if

(A ∈ SO(n), i = id) or (A /∈ SO(n), i 6= id)

Proof. This follows from [BP92, Theorem A.4.1, p. 22], [BP92, Theorem A.3.9, p. 21] and [BP92,
Remark A.3.10, p. 21].

Theorem I.2.6 (Isometries of Un). Isom(Un) consists of all and only the mappings of the form

ϕ : x 7→ λ

(
A 0
0 1

)
i(x) +

(
b
0

)
where λ > 0, A ∈ O(n), i is either the identity or an inversion with respect to a sphere orthogonal
to Rn−1 and b ∈ Rn−1.
Further ϕ is orientation preserving, if and only if

(A ∈ SO(n), i = id) or (A /∈ SO(n), i 6= id)

Proof. This follows from [BP92, Theorem A.4.2, p. 22], [BP92, Theorem A.3.9, p. 21] and [BP92,
Remark A.3.10, p. 21].

Observe that by the above description, the stabilizer Isom(Bn)0 of the origin 0 ∈ Bn is just O(n).
Further the stabilizer Isom(Un)∞ of ∞ ∈ ∂Un is the set of all mappings of the form(

x
t

)
7→ λ

(
A 0
0 1

)(
x
t

)
+

(
b
0

)
for every (x, t) ∈ Un, where λ > 0, A ∈ O(n) and b ∈ Rn−1. Hence it can be identified with the
group of euclidean similarities S(Rn−1) via the identification Rn−1 ∼= Rn−1 × {0}.
From the concrete description of the isometries it is easy to deduce the following proposition.

Proposition I.2.7. (i) All isometries of Hn extend to homeomorphisms of Hn, and hence they
have some fixed point in Hn.

(ii) Isom(Hn) and Isom+(Hn) (the group of orientation preserving isometries) act transitively on
∂Hn and the unit tangent bundle

T 1Hn = {(x, v) : x ∈ Hn, v ∈ TxHn, ‖v‖x = 1}

(iii) Isom(Hn) and Isom+(Hn) act transitively on the set of triples of distinct boundary points
(∂Hn)(3) via the diagonal action, i.e. Isom(Hn)(+) acts 3-transitively on the boundary.

10
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(iv) Every isometry of Hn is uniquely determined by its action on ∂Hn.

(v) IfM is either the ball model Bn or the upper half space model Un the restriction to the boundary
is an isomorphism of Isom(M) onto Conf(∂M) (the group of conformal diffeomorphisms). In
particular Isom(M) acts via diffeomorphisms on ∂M .

Proof. This is [BP92, Proposition A.5.13, p. 31] except of (iii). However (iii) is obvious when we
pass to the upper half space model Un. Indeed, if we have a triple (x, y, z) ∈ (∂Un)(3) we may
without loss of generality assume that x = ∞, since Isom(+)(Hn) acts transitively on ∂Hn. Now
the isometries fixing ∞ are just all euclidean similarities S(Rn−1) and it is obvious that these act
transitively on the set of pairs of distinct points.

There are three different types of isometries depending on their fixed points. Recall that due to
Brouwer’s fixed point theorem every isometry has to fix at least one point of Hn ∼= B

n.

Proposition I.2.8. If ϕ ∈ Isom(Hn) the following mutually excluding possibilities are given:

(i) ϕ has some fixed point in Hn; in this case ϕ is called elliptic

(ii) ϕ has no fixed points in Hn and exactly on fixed point in ∂Hn; in this case ϕ is called parabolic

(iii) ϕ has no fixed points in Hn and exactly two fixed points in ∂Hn; in this case ϕ is called
hyperbolic

Proof. See [BP92, Proposition A.5.14, p. 31].

Remark I.2.9. Sometimes in the literature hyperbolic isometries are also called loxodromic.

Because G = Isom(Hn) acts transitively on Hn the mapping px : G → Hn, g 7→ gx is surjective
for every x ∈ Hn. It is not hard to see that px induces a diffeomorphism p̄x : G/K → Hn, gK 7→ gx,
where K = Gx, allowing us to identify Hn ∼= G/K. Note that any two stabilizers are conjugate,
such that K = Gx is conjugate to O(n) = G0 and hence compact. In fact it is even a maximal
compact subgroup of G as we will show in the next lemma.

Remark I.2.10. The above statement is also true for the group of orientation preserving isometries
G+ = Isom+(Hn) and one may identify G+/K ∼= Hn where K = G+

x is the stabilizer of some point
x ∈ Hn.

Definition I.2.11. Let G be a topological group and K < G a subgroup. K is called a maximal
compact subgroup if K is compact and for every other compact subgroup H < G such that H ⊆ K,
we have that K = H.

Lemma I.2.12. Let x ∈ Hn and K = G
(+)
x . Then K < G(+) = Isom(+)(Hn) is a maximal compact

subgroup.

Proof. Let us first consider the case of arbitrary isometries G = Isom(Hn). By conjugation we may
assume without loss of generality, that x = 0 in the ball model Bn. Hence K = O(n). Now let
H < G = Isom(Bn) be another compact subgroup containing K.
We claim that H fixes a point y ∈ Hn. For that let ν be a Haar measure on H. Since H is

compact ν is finite. We now pass to the hyperboloid model and set

ŷ =

∫
H
h · o dν(h) ∈ Rn,1

11
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where o is some point in Hn ⊂ Rn,1 and the elements of H ⊂ O(Hn) act via linear transformation
on Rn,1. In general ŷ is not in Hn anymore, but still a time-like vector (cf. [Rat06, §3.1, p. 54]).
Hence by normalizing we get

y :=
ŷ

|||y|||
∈ Hn

where |||z||| =
√
−〈z|z〉n,1 for every time-like vector z ∈ Rn,1. It is easy to check that y ∈ Hn is

indeed H-invariant, i.e. a fixed point of the H-action.
Back in the ball model Bn, if y is a fixed point of H, then it is also a fixed point of O(n) = K ⊂ H.

O(n) fixes no other point but 0, whence y = 0. This in turn implies that H ⊂ G0 = O(n) = K, i.e.
H = K.
Our proof also works in the case of orientation preserving isometries G+ = Isom+(Hn), if one

replaces O(n) by SO(n) etc.

So far we have described Hn as a quotient of G by a maximal compact subgroup. It is also
possible to – in a sense – reverse this point of view, and identify G ∼= Bn ×O(n) in the ball model
Bn. Here the key ingredient are the so called hyperbolic translations.

Definition I.2.13 (hyperbolic translation). Let b ∈ Bn. Then there is a unique isometry τb taking
0 to b whose jacobian is a positive multiple of the identity; in particular τb ∈ G+. Considering the
reflection ρb at the hyperplane 〈b〉⊥ and the unique inversion ib at a sphere perpendicular to Sn

and the line through 0 and b taking 0 to b gives the formula τb = ib ◦ ρb, or explicitly

τb(x) =
(1− |b|2)x+ (|x|2 + 2〈x, b〉+ 1)b

|b|2|x|2 + 2〈x, b〉+ 1

for every x ∈ Bn (cf. [Rat06, (4.5.5), p. 124] and [BP92, p. 135]).
τb is called the hyperbolic translation by b.

Theorem I.2.14. The map Bn ×O(n) → G, (b, A) 7→ τbA is a diffeomorphism.

Proof. All that needs to be said is that the map η : Bn → G, b 7→ τb is a smooth global section of
the bundle map π : G → G/K ∼= Bn. Then we get two maps Φ : Bn × O(n) → G, (b, A) 7→ τbA
and Ψ : G → Bn × O(n), g 7→ (π(g), η(π(g))−1g) which are smooth and inverse to each other, i.e.
they are diffeomorphisms. We leave out the easy verifactions.
Compare also [BP92, p. 136] and [Rat06, Theorem 5.2.8, p. 154].

We can also identify the boundary ∂Hn as a homogeneous space. If ξ ∈ ∂Hn, then the map
pξ : G = Isom(Hn) → ∂Hn, g 7→ gξ is a surjective because G acts transitively on ∂Hn. It is easy
to deduce that pξ induces therefore a diffeomorphism p̄ξ : G/P → ∂Hn, gP 7→ gξ, where P = Gξ

is the stabilizer of ξ ∈ ∂Hn, allowing us to identify G/P ∼= ∂Hn. This time the stabilizer is not
compact, but still amenable (cf. Definition C.1.1).

Lemma I.2.15. Let ξ ∈ ∂Hn and P = Gξ its stabilizer. Then P is the compact extension of a
solvable group. Hence P is amenable (cf. Definition C.1.1).

Proof. We pass to the upper half space model Un and assume without loss of generality that
ξ = ∞. Hence P can be identified with the group of euclidean similarities S(Rn−1). Every
euclidean similarity can be uniquely written as

p(x) = λAx+ b ∀x ∈ Rn−1

where λ > 0, A ∈ O(n) and b ∈ Rn−1. Clearly the map

f : P → O(n), (p : x 7→ λAx+ b) 7→ A

12
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is a surjective group homomorphism. Hence we get the short exact sequence

1 → ker f → P → O(n) → 1

Because O(n) is compact it will suffice to show, that ker f is solvable. Now every p ∈ ker f is of
the form

p(x) = λx+ b ∀x ∈ Rn−1

where λ > 0 and b ∈ Rn−1. Let pi : x 7→ λix + bi (i = 1, 2) be two elements of ker f . Then for
every x ∈ Rn−1

[p1, p2](x) = p1p2p
−1
1 p−1

2 (x) = p1p2p
−1
1 (λ−1

2 x− λ−1
2 b2) = p1p2(λ

−1
1 λ−1

2 x− λ−1
1 λ−1

2 b2 − λ−1
1 b1)

= p1(λ
−1
1 x− λ−1

1 b2 − λ2λ
−1
1 b1 + b2) = x+ (1− λ2)b2 + (λ1 − 1)b1

Thus (ker f)(1) ≤ (Rn−1,+) which is abelian, i.e. (ker f)(2) = {0}.
As we have seen P is a compact extension of a solvable group. Since compact groups and solvable

groups are amenable so is P (cf. Proposition C.1.5).

We will now construct an explicit section of the map p : G → ∂Hn ∼= G/P, g 7→ gξ0, for some
fixed boundary point ξ0 ∈ ∂Hn , i.e. a map η : ∂Hn → G such that p(η(ξ)) = ξ for all ξ ∈ ∂Hn. We
define η : ∂Hn → G via

η(ξ) =

{
id, if ξ = ξ0

ρξ, else
, ∀ξ ∈ ∂Hn

where ρξ ∈ Isom(Hn) is the unique euclidean reflection at a hyperplane through 0 in the Poincaré
ball model Bn, that takes ξ0 to ξ. We can give an explicit formula for ρξ : Rn → Rn by

ρξ(x) = x− 2
〈x, ξ0 − ξ〉
|ξ0 − ξ|2

· (ξ0 − ξ), ∀x ∈ Rn

We now get the following lemma.

Lemma I.2.16. The above mapping η : ∂Hn → G is (Borel) measurable, fulfills p(η(ξ)) = ξ for
all ξ ∈ ∂Hn, i.e. it is a section, and its image η(G/P ) is relatively compact in G, i.e. η(G/P ) ⊂ G
is compact.

Proof. It is immediate, that η : ∂Hn ∼= G/P → G is continuous on ∂Hn − {ξ0}. In particular it is
(Borel) measurable on all of ∂Hn ∼= G/P .
We check that η : ∂Hn → G is indeed a section. First p(η(ξ0)) = p(id) = id(ξ0) = ξ0. Second

p(η(ξ)) = p(ρξ) = ρξ(ξ0) = ξ

for every ξ ∈ ∂Hn − {ξ0} by construction.
Further its image η(G/P ) is contained in O(n), since id as well as every ρξ fix the origin 0 ∈ Bn

for every ξ ∈ ∂Bn. Because O(n) is compact and η(G/P ) ⊂ O(n) is closed by definition, the latter
is also compact.

It is important to note, that G = Isom(Hn) is unimodular (cf. Definition A.4.5).

Proposition I.2.17. Isom(Hn) is a unimodular Lie group.

Proof. See [BP92, Proposition C.4.11, p. 111].
Alternatively we shall see later, that Isom(Hn) contains lattices from which it also easily follows,

that it is unimodular (see for example [Bou04b, Corollary 3, VII.44 §2]).
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I.3. Elementary Groups
There are particularly simple subgroups of Isom(Hn) called elementary groups. We want to recall
some of their characteristic properties here as they will play a role in the proof of the volume rigidity
theorem later on.
Our main reference for this section is [Rat06, §5.5].

Definition I.3.1 (Elementary Group). A subgroup G of Isom(Hn) is elementary if and only if G
has a finite orbit in Hn.
We shall divide the elementary subgroups of Isom(Hn) into three types. Let G be an elementary

subgroup of Isom(Hn).

(i) The group G is said to be of elliptic type if and only if G has a finite orbit in Hn.

(ii) The group G is said to be of parabolic type if and only if G fixes a boundary point in ∂Hn

and has no other finite orbits in Hn.

(iii) The group G is said to be of hyperbolic type if and only if G is neither of elliptic type nor of
parabolic type.

Remark I.3.2. It is plain to see, that the type of an elementary group depends only on its conjugacy
class within Isom(Hn).

Elementary groups of elliptic type are characterized by the following theorem.

Theorem I.3.3. Let G be an elementary subgroup of Isom(Hn). Then the following are equivalent:

(i) The group G is of elliptic type.

(ii) The group G fixes a point in Hn.

(iii) The group G is conjugate in Isom(Bn) to a subgroup of O(n).

Proof. See [Rat06, Theorem 5.5.1, p. 177].

Elementary groups of parabolic type are characterized by the following theorem.

Theorem I.3.4. Let G be an elementary subgroup of Isom(Hn). Then the following are equivalent:

(i) The group G is of parabolic type.

(ii) The group G has a unique fixed point in ∂Hn.

(iii) The group G is conjugate in Isom(Un) to a subgroup of S(Rn−1) (the group of euclidean
similarities) that fixes no point of Rn−1.

Proof. See [Rat06, Theorem 5.5.3, p. 178].

Elementary groups of hyperbolic type are characterized by the following theorem.

Theorem I.3.5. Let G be an elementary subgroup of Isom(Hn). Then the following are equivalent:

(i) The group G is of hyperbolic type.

(ii) The union of all the finite orbits of G in Un consists of two points in Rn−1 ∪ {∞}.

(iii) The group G is conjugate in Isom(Un) to a subgroup of S(Rn−1)∗ that fixes no point of the
positive n-th axis.
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Here S(Rn−1)∗ is the subgroup of Isom(Un) that fixes the set {0,∞}.

Proof. See [Rat06, Theorem 5.5.6, p. 179].

There is also an interesting relation between limit sets and elementary subgroups.

Definition I.3.6. A point a ∈ ∂Hn is a limit point of a subgroup G of Isom(Hn) if there is a point
x ∈ Hn and a sequence {gi}i∈N of elements in G such that{gix}i∈N converges to a. The limit set of
G is the set L(G) of all limit points of G.

There is also the following useful characterization of the limit set.

Theorem I.3.7. If G is a subgroup of Isom(Hn), then for each point x ∈ Hn, we have L(G) =
Gx ∩ ∂Hn.

Proof. This is [Rat06, Theorem 12.1.2, p. 601].

Theorem I.3.8. Let G be a subgroup of Isom(Hn). Then L(G) is empty if and only if G is
elementary of elliptic type.

Proof. See [Rat06, Theorem 12.1.4, p. 602].

Proposition I.3.9. If G < Isom(Hn) is non-elementary then L(G) is infinite and the fixed points
of hyperbolic elements of G are dense in L(G).

Proof. This is [Kap09, Corollary 3.26, p. 42].
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I.4. Hyperbolic Manifolds and Lattices
In this section we will introduce lattice subgroups and see how they relate to finite volume hyperbolic
manifolds. In the following we will only be concerned with complete and connected hyperbolic
manifolds, whence the following definition.

Definition I.4.1. A hyperbolic manifold M is a complete connected Riemannian manifold of con-
stant sectional curvature K = −1.

Because Hn is the unique complete simply connected Riemannian manifold of constant sectional
curvature K = −1, basic covering theory yields that the universal cover of M is Hn and we get a
covering map π : Hn → M . If we set Γ = Deck(π) < Isom(Hn), we can identify M ∼= Γ\Hn (cf.
[dC92, Chap. 8, 4. Space forms, pp. 162]).
One can reverse the above process starting with a subgroup Γ < Isom(Hn) and construct a

hyperbolic manifold as the quotient Γ\Hn, such that the quotient map π : Hn → Γ\Hn is a
covering. Of course this does not work for any arbitrary subgroup Γ < Isom(Hn). A necessary
and sufficient condition is given by the following proposition, which works for even more general
topological spaces than Hn.

Proposition I.4.2. Let X be a connected locally compact (Hausdorff 1) topological space, and let
Γ be a group of homeomorphisms of X. Then the following are equivalent.

(i) Γ acts freely and properly discontinuously on X.

(ii) Γ\X is a Hausdorff space and the quotient projection π : X → Γ\X is a covering.

Proof. This is [BP92, Proposition B.1.6, p. 49].

Recall that a group Γ is said to act …
…freely on a topological space X if γ ∈ Γ, x ∈ X and γ(x) = x implies γ = id.
…properly discontinuously on a topological space X if for every K ⊂ X compact the number

of γ ∈ Γ such that γK ∩K 6= ∅ is finite. Note that if Γ is discrete, it acts properly discontinuously
if and only if it acts properly.
However we would like to have a set of more intrinsic and group theoretic conditions for which

π : Hn → Γ\Hn is a covering of hyperbolic manifolds. These are given by the following two
propositions.

Proposition I.4.3. A subgroup Γ < Isom(Hn) acts properly discontinuously on Hn if and only if
Γ is discrete.

Proof. See [Rat06, Theorem 5.3.5, p. 164].

Proposition I.4.4. A discrete subgroup Γ < Isom(Hn) acts freely on Hn if and only if Γ is
torsion-free.

Proof. See [Rat06, Theorem 8.2.1, p. 341].

If we drop the assumption of Γ being torsion-free, i.e. Γ does not act freely on Hn, we will not
get a smooth manifold anymore. However the quotient Γ\Hn is still Hausdorff and carries what is
called a (Hn, Isom(Hn))-orbifold structure (cf. [Rat06, Example 1, p. 692]). Such spaces are called
(complete) hyperbolic n-orbifolds.

1We adopt Bourbaki’s definition of a locally compact topological space, in which it is always assumed to be Hausdorff
(cf. [Bou89, Definition 4,p. 90]).
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We are now ready to introduce the notion of hyperbolic lattices. Let us therefore consider the
classical case of euclidean geometry first. In Rn a discrete subgroup Λ < Rn generated by n-linearly
independent vectors v1, . . . , vn ∈ Rn is called a lattice. The volume of a fundamental set for the
action Λ on Rn by translation is det(v1, . . . , vn) and hence finite. In other words the quotient
measure λ/µΓ is finite, where λ is the Lebesgue measure on Rn and µΓ is the normalized Haar
measure on Γ (cf. Theorem A.4.20); for further details on measure theoretic constructions we refer
to appendix A. We take this as an inspiration for our definition of a (hyperbolic) lattice.

From now on we abbreviate G := Isom(Hn).

Definition I.4.5 (Lattice). Let Γ < G be a discrete subgroup, let ν be the hyperbolic volume
measure on Hn (cf. Example A.3.1) and µΓ the normalized Haar measure on Γ (i.e. the counting
measure). Γ is called a lattice, if the quotient measure µ := ν/µΓ is finite, i.e. if µ(Γ\Hn) <∞.

Remark I.4.6. Note that ν ∈ M(Hn) is invariant under G, in particular under Γ, and Γ is
unimodular (cf. Proposition A.4.8), such that the quotient measure ν/µΓ exists (cf. Proposition
A.4.9 and Remark A.4.18).

However one may also have a different look at the previously described euclidean situation. Rn is a
Lie group and Λ < Rn a discrete (hence closed) subgroup. The quotient Λ\Rn is therefore a smooth
manifold and in this particular case a flat torus. The flat structure induces a Riemannian volume
form on the torus, which in turn induces a measure. The right action of Rn on itself descends to a
right action of Rn on Λ\Rn by isometries. In summary Λ\Rn admits a finite Rn-invariant measure.
Thus one may define for an arbitrary Lie group G and a discrete subgroup Γ < G, that Γ is a lattice
if the quotient Γ\G admits a finite G-invariant measure (cf. Remark I.4.7 below). This is exactly
the definition, that occurs in texts concerning more general Lie groups. However this is not really
a different definition and we will soon see, that both definitions coincide in our case. Intuitively
speaking the reason for this is, that Hn is the quotient of G = Isom(Hn) by a compact subgroup.

Remark I.4.7. Note that, if G is an arbitrary Lie group and Γ < G a discrete (and hence closed)
subgroup, then Γ acts on G freely and properly discontinuously via left translation. Indeed, the
action is clearly free. The action is proper since for any two sequences (γn) ⊂ Γ, (gn) ⊂ G such
that γngn → h and gn → g as n tends to infinity, we get γn = (γngn)g

−1
n → hg−1 ∈ Γ as n→ ∞.

Therefore the canonical quotient map π : G → Γ\G is a covering map and the quotient Γ\G
admits a unique smooth structure such that π is smooth. Also the right action of G on itself via
right translation descends to a smooth right action on Γ\G.

The next proposition is a very useful result from general topology, that will be needed to justify
some constructions in the following (e.g. lifting measures, taking quotient measures). Basically it
asserts that all sorts of maps corresponding to a continuous group action by a compact group are
proper.

Proposition I.4.8 (Compact groups act properly). Let K be a compact group operating continu-
ously on a Hausdorff space X. Then:

(i) K operates properly on X.

(ii) The mapping K ×X → X, (k, x) 7→ kx is proper.

(iii) The canonical quotient map X → K\X is proper.

Proof. This is [Bou89, Proposition 2, III §4.2, p. 252].

Remark I.4.9. There is nothing special about left actions, such that Proposition I.4.8 also holds
for right actions. In fact we will mainly use it for right actions in the following.
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In an intermediate step we want to see, that a discrete subgroup Γ < Isom(Hn) = G is a lattice
if and only if the quotient measure µG/µΓ is finite. We will need the following lemma.

Lemma I.4.10. Let Γ < Isom(Hn) = G be a discrete subgroup, and ν ∈ M(Hn) = M(G/K) the
hyperbolic volume measure. Then the lifted measure ν] ∈ M(G) corresponding to ν via π : G →
G/K ∼= Hn is a Haar measure on G.

Proof. First, note that the lifted measure ν] exists, since K is compact and hence acts properly on
G (cf. Proposition I.4.8).
Let µK ∈ M(K) be the normalized Haar measure on K. Then:∫

G
f(g) dν](g) =

∫
G/K

∫
K
f(gk) dµK(k) dν(gK)

=

∫
G/K

∫
K
f(g′gk) dµK(k) dν(g′gK)

=

∫
G/K

∫
K
f(g′gk) dµK(k) dν(gK)

=

∫
G
f(g′g) dν](g)

for every f ∈ Cc(G) and every g′ ∈ G. Hence ν] is invariant and therefore a Haar measure on
G.

Proposition I.4.11. Let Γ < G be a discrete subgroup. Further let ν be the hyperbolic volume
measure on Hn, µG a Haar measure on G and µΓ the normalized Haar measure on Γ. Choose
x ∈ Hn and set K = Gx as usual.
Then there is α > 0 such that

µG
µΓ

= α · ν̄

where ν̄ ∈ M(Γ\G) is the lift of ν/µΓ along the quotient map p : Γ\G→ Γ\G/K =M .
In particular ν/µΓ is finite if and only if µG/µΓ is finite, and A ⊂M is a null set if and only if

p−1(A) ⊂ Γ\G is a null set.

Proof. Again, the lift ν̄ exists due to Proposition I.4.8. Let µK ∈ M(K) be the normalized Haar
measure on K. We may lift the measure ν̄ ∈ M(Γ\G) one more time to a measure ν̄] ∈ M(G).
Recall that the unique lift of ν/µΓ to G/K = Hn is ν ∈ M(G/K) and that the lift ν] of ν to G is
a Haar measure on G. First we shall see that ν] = ν̄] ∈ M(G). For that let f ∈ Cc(G). Then∫

G
f(g) dν](g) =

∫
G/K

∫
K
f(gk) dµK(k) dν(gK)

=

∫
Γ\G/K

∫
Γ

∫
K
f(γgk) dµK(k) dµΓ(γ) d(ν/µΓ)(ΓgK)

=

∫
Γ\G/K

∫
K

∫
Γ
f(γgk) dµΓ(γ) dµK(k) d(ν/µΓ)(ΓgK)

=

∫
Γ\G

∫
Γ
f(γg) dµΓ(γ) dν̄(Γg)

=

∫
G
f(g) dν̄](g)
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where we have used Fubini’s theorem in the third line. This proves that ν] = ν̄]. Because ν] is a
Haar measure on G there is a positive real number α > 0 such that α · ν] = µG. Therefore

µG
µΓ

=
α · ν]

µΓ
= α · ν̄

]

µΓ
= α · ν̄

by Lemma A.4.11.
By Proposition A.4.12 we get

µG
µΓ

(Γ\G) =
∫
Γ\G

1 d(µG/µΓ)(Γg)

= α ·
∫
Γ\G

1 dν̄(Γg)

= α ·
∫
Γ\G/K

∫
K
1 dµK(k) dν(ΓgK)

= α · µK(K)︸ ︷︷ ︸
=1

·ν(Γ\G/K)

= α · ν(Γ\G/K)

and thus ν/µΓ is finite if and only if µG/µΓ is finite.
By Proposition A.4.13 a subset A ⊂M is a null set if and only if p−1(A) ⊂ Γ\G.

It is now easy to deduce that both of the proposed definitions for a lattice subgroup in G =
Isom(Hn) coincide.

Corollary I.4.12. Let Γ < Isom(Hn) be a discrete subgroup. Then Γ is a lattice if and only if the
quotient Γ\G admits a finite G-invariant measure.

Proof. First assume that Γ < G is a lattice. Then for any Haar measure µG on G the quotient
measure µG/µΓ is finite. It is easy to see, that µG/µΓ is G-invariant, since G is unimodular, such
that µG/µΓ is indeed a finite invariant measure on Γ\G.
Conversely if µ is a finite G-invariant measure on Γ\G we can show by the same method as in

Lemma I.4.10 that µ] is a Haar measure on G such that µ]/µΓ = µ. Therefore Γ is a lattice by
Proposition I.4.11.

Our next objective is to make sense of the quotient measure ν/µΓ geometrically. It will turn out,
that this measure can be realized as the integral of ν over a fundamental region for Γ in Hn (cf.
Theorem A.4.20).

Definition I.4.13 (fundamental region). A subset R of Hn is called a fundamental region for a
group Γ < Isom(Hn) if and only if

(i) the set R is open in Hn;

(ii) the members of {gR : g ∈ Γ} are mutually disjoint; and

(iii) Hn = ∪{gR : g ∈ Γ}.

There is a nice relation between fundamental sets (cf. Definition A.4.19) and fundamental regions
in Hn.

Theorem I.4.14. An open subset R ⊂ Hn is a fundamental region for a group Γ < Isom(Hn) if
and only if there is a fundamental set F for Γ such that R ⊂ F ⊂ R.
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Proof. This is [Rat06, Theorem 6.6.11, p. 242].

Definition I.4.15 (proper fundamental region). A fundamental region R for a group Γ < Isom(Hn)
is called proper if and only if vol(∂R) = 0, that is ∂R is a null set in Hn.

It follows immediately from the definition and Theorem I.4.14, that for a fundamental region R
the fundamental set R ⊂ F ⊂ R is measurable as it is equal to R up to a null set.
Thus we get by Theorem A.4.20 the following:

Proposition I.4.16. Let R be a proper fundamental region for Γ < Isom(Hn) and k : Γ\Hn → R
a function. Denote by π : Hn → Γ\Hn the canonical quotient map and we set λ = ν/µΓ where ν
denotes the hyperbolic volume measure on Hn and µΓ the normalized Haar measure on Γ.
Then for k to be measurable (resp. λ-integrable) it is necessary and sufficient that χR · (k ◦ π) be

measurable (resp. ν-integrable); and if k is λ-integrable then∫
Γ\Hn

k dλ =

∫
R
(k ◦ π) dµ

Proof. The necessary and sufficient conditions for k to be measurable (resp. λ-integrable) follow at
once from Theorem A.4.20 and our observation that there is a fundamental set R ⊂ F ⊂ R which
differs from R by a null set; recall that Hn is a complete measure space.
As for the formula we may replace F by R since they differ by a null set. In view of Theorem

A.4.20 we are now left to prove that n(x) = |Γx| = 1 for every x ∈ R. For that let x ∈ R and
γ ∈ Γx. Then by definition γx = x such that x ∈ γR ∩ R, which can only be the case if γ = id
by definition of a fundamental region for Γ. Hence Γx = {id} for every x ∈ R and the assertion
follows.

Because of the above proposition we will sometimes write vol instead of ν/µΓ.
Although we have now characterized the quotient measure on Γ\Hn quite nicely by means of

proper fundamental regions, we still do not know, whether such regions exist. In order to see that
we need the following theorem.

Theorem I.4.17. Let Γ < Isom(Hn) be discrete. Then there is a point x of Hn whose stabilizer
Γx is trivial.

Proof. This follows from [Rat06, Theorem 6.6.12, p. 243] and the fact that Hn is a rigid metric
space.

We will now encounter a particularly nice kind of fundamental region; the so called Dirichlet
domain.

Definition I.4.18 (Dirichlet domain). Let Γ < Isom(Hn) be discrete and let a ∈ Hn be a point
whose stabilizer Γa is trivial. For each γ 6= id in Γ define

Hγ(a) = {x ∈ Hn : d(x, a) < d(x, γa)}

Note that the set Hγ(a) is an open (and convex) half-space of Hn containing the point a whose
boundary is the perpendicular bisector of every geodesic segment joining a to γa.
The Dirichlet domain D(a) for Γ, with center a, is either Hn if Γ is trivial or

D(a) =
⋂

{Hγ(a) : γ ∈ Γ− {id}}

if Γ is non-trivial.
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Proposition I.4.19. Let Γ < Isom(Hn) be discrete. Then every Dirichlet domain for Γ is a proper
fundamental region for Γ.

Proof. This follows from [Rat06, Corollary 1, p. 247] and [Rat06, Theorem 6.6.13, p. 244]. However
it is also not hard to deduce this from Theorem I.4.14 and the fact, that the sets {x ∈ Hn : d(x, a) =
d(x, γa)} are null sets in Hn for every γ ∈ Γ−{id} and a the centre of a Dirichlet domain for Γ.

Theorem I.4.20. Let Γ < Isom(Hn) be discrete and Γ′ < Γ a subgroup. Then

vol(Γ′\Hn) = |Γ′ : Γ| · vol(Γ\Hn)

Proof. This is [Rat06, Theorem 6.7.3, p. 248]. The idea is to consider a Dirichlet domain D for Γ
and set

R =
⋃

{giD : i ∈ I}

where {gi : i ∈ I} is a system of representatives for the coset space Γ′\Γ. One may now show, that
R is a proper fundamental region for Γ′. Thus by Proposition I.4.16 we have

vol(Γ′\Hn) = vol(R) =
∑
i

vol(giD) = [Γ′ : Γ] · vol(D) = [Γ′ : Γ] · vol(Γ\Hn)

where we have also written vol for the hyperbolic volume measure on Hn.

Now if Γ < G is not only discrete but also torsion-free, Γ acts freely and properly discontinuously
on Hn (cf. Proposition I.4.4). In particular π : Hn → Γ\Hn is a covering and M := Γ\Hn admits a
(unique) smooth manifold structure such that π is smooth. If additionally Γ < G+, i.e. Γ consists
only of orientation preserving isometries, then also the quotient M = Γ\Hn inherits an orientation
from Hn such that π is orientation preserving. We thus get another measure µω onM by considering
the Riemannian volume form ω on M (cf. section A.3). Note that π∗ω = ωn where the latter is the
hyperbolic volume form on Hn.
However both measures ν/µΓ and µω coincide. Indeed, let f ∈ Cc(Hn) and recall the definition

of f [ ∈ Cc(M) via f [(π(x)) =
∑

γ f(γx) (cf. section A.4.3). Then by [Lee13, Proposition 16.8, p.
408] we have ∫

Γ\Hn

f [ dµω =

∫
M
f [ · ω =

∫
F
π∗(f [ · ω) =

∫
F
f [ ◦ π · ωn

where F is a measurable fundamental set for Γ in Hn. Further∫
F
f [ ◦ π · ωn =

∫
F
f [(π(x)) dν(x)

=

∫
F

∑
γ

f(γx) dν(x)

=
∑
γ

∫
γF
f(x) dν(x)

=

∫
Hn

f(x) dν(x)

such that by the uniqueness of quotient measures ν/µΓ = µω (cf. Proposition A.4.9). Thus if Γ is
a (torsion-free) lattice in Isom+(Hn) the quotient manifold M has finite volume.
Conversely if M is a finite volume hyperbolic manifold and Γ = Deck(π) ∼= π1(M) its group of

Deck transformations, then under the identificationM = Γ\Hn we get that the measure µω = ν/µΓ
is finite, such that Γ is a lattice. Therefore torsion-free lattices occur naturally whilst considering
finite volume hyperbolic manifolds.
Finally the next proposition yields, that every quotient Γ\Hn by a lattice subgroup Γ < Isom+(Hn)

is at least finitely covered by a finite volume hyperbolic manifold.
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Proposition I.4.21. Let Γ < Isom(Hn) be a lattice. Then there is a torsion-free subgroup Γ′ < Γ
of finite index; in particular Γ′ is again a lattice (cf. Theorem I.4.20).

Proof. This is an application of the celebrated Selberg’s Lemma (cf. [Rat06, Corollary 5 §7.6, p.
331]), which states that every finitely generated subgroup Γ of Isom(Hn) has a torsion-free normal
subgroup of finite index. Hence it will be enough to show, that the lattice Γ is finitely generated.
By [Bow93, Proposition 4.7, p. 297] Γ is geometrically finite if Γ\Hn has finite volume. Hence by
[Bow93, Proposition 3.1.6] Γ is finitely generated.

22



I.5. Ergodic Theory

I.5. Ergodic Theory
We will now investigate some ergodicity phenomena in hyperbolic geometry. First we will give some
basic definitions and characterizations of ergodicity. Our goal is to deduce that every lattice acts
double ergodically on the boundary of hyperbolic n-space. For some results and basic definitions
of measure theory we refer to appendix A.

Definition I.5.1 (Ergodic Action). Let (X,A, µ) be a σ-finite measure space and G a locally
compact second countable group, that acts measurably on X from the left such that the measure
class of µ is preserved, i.e. g∗µ is equivalent to µ for every g ∈ G.
The action of G is called ergodic if there are no non-trivial invariant subsets of X, that is, if

the following holds: if A ⊂ X is measurable and G-invariant, then A is either null or conull, i.e.
µ(A) = 0 or µ(X −A) = 0.

Remark I.5.2. It is apparent from the above definition that ergodicity only depends on the measure
class of a measure and not on the measure itself. This will be important in the following as we
will be concerned with smooth manifolds (with or without boundary) equipped with their canonical
measure class (cf. section A.3).

The next theorem gives a quite useful characterization of ergodic actions. Before that we need
the notion of essentially G-invariant functions.

Definition I.5.3. Let G be a group acting on a measure space (X,A, µ). A measurable function
f : X → R is called essentially G-invariant if, for any g ∈ G, one has f(x) = f(gx) for µ-almost
every x ∈ X.
A function f : X → R is called G-invariant if, for any g ∈ G, one has f(gx) = f(x) for all x ∈ X.

Theorem I.5.4 (Characterization of Ergodic Actions). Let G be a locally compact second countable
group acting on a σ-finite measure space (X,A, µ). Then the following are equivalent:

(i) The action of G is ergodic.

(ii) If f : X → R is measurable and G-invariant, then f is constant almost everywhere.

(iii) If f : X → R is measurable and essentially G-invariant, then f is constant almost everywhere.

Proof. The equivalence of (i) and (iii) is [BM00, 1.3 Theorem, p. 3]. The implication of (iii) to (ii)
is clear by definition, since every G-invariant function is also essentially G-invariant. Conversely
the implication (ii) to (iii) follows from [BM00, 1.2 Lemma, p. 2] as in the proof of [BM00, 1.3
Theorem, p. 3].

The next lemma will be useful later.

Lemma I.5.5. Let G be a locally compact second countable group and let M be a smooth manifold
equipped with its canonical measure class. Further let G act continuously and transitively on M
and let H < G be a dense subgroup.
Then the induced action of H on M is ergodic.

Proof. Let f : M → R be an H-invariant measurable function and let µ be a probability measure
in the canonical measure class of M (the existence of such a probability measure is easily verifed
using a partition of unity and appropriate local measures). We may now apply Lusin’s theorem
and get for every n ≥ 3 a compact set Kn such that f restricted to Kn is continuous and

µ(M −Kn) = 1− µ(Kn) ≤ 1/n ≤ 1/3.
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Let n ≥ 3. From the invariance of f and the continuity of the action it follows easily that f is
also continuous on HKn =

⋃
h∈H hKn. We claim that f is already constant on Kn.

Let k, k′ ∈ Kn. Because G acts transitively on M there is a g ∈ G such that gk = k′. Because
H ⊂ G is dense, there is a sequence (hj) ⊂ H converging to g. This in turn implies that hjk → gk =
k′ as j → ∞. However f is continuous on all of HKn such that f(k′) = limj→∞ f(hjk) = f(k).
Thus f is constant on Kn.
Observe that for every n,m ≥ 3 we have that µ(Kn), µ(Km) ≥ 2/3 such that

1 = µ(M) ≥ µ(Kn ∪Km) = µ(Kn) + µ(Km)− µ(Kn ∩Km) ≥ 4

3
− µ(Kn ∩Km).

Hence µ(Kn∩Km) ≥ 1/3 and in particular Kn∩Km 6= ∅. Therefore f is equal to the same constant
on every Kn, i.e. there is a constant c ∈ R such that f(x) = c for every x ∈ Kn and every n ≥ 3.
This implies, that f is constant on A :=

⋃
n≥3Kn. Finally A has full measure, since

µ(A) ≥ µ(Kn) ≥ 1− 1

n

for every n ≥ 3.

Similar to ergodic group actions one may also define when a flow is called ergodic.

Definition I.5.6 (Ergodic Flow). Let M be a smooth manifold with or without boundary and
Φ : R×M →M a smooth (global) flow (cf. [Lee13, p. 211]). A set A ⊂M is said to be Φ-invariant
if Φt(A) = A for every t ∈ R, where Φt(x) = Φ(t, x) for every t ∈ R and every x ∈M .
The flow Φ is said to be ergodic or act ergodically on M if every Φ-invariant measurable set

A ⊂M is either null or conull.

Now let M be a Riemannian manifold. We denote by TM its tangent bundle and by

T 1M = {v ∈ TxM : x ∈M, ‖v‖x = 1} ⊂ TM

its unit tangent bundle. Recall that we have the geodesic flow Φ on T 1M , which is global (i.e.
defined on all of R) if M is complete.

Proposition I.5.7. Let M be a finite volume hyperbolic manifold. Then the geodesic flow Φ :
R× T 1M → T 1M on the unit tangent bundle is ergodic.

Proof. See [BM00, 4.29 Corollary].

This implies that every lattice acts double ergodically on the boundary as the next corollary
states.

Corollary I.5.8. Let Γ < G+ = Isom+(Hn) be a lattice. Then Γ acts double ergodically on ∂Hn,
i.e. the diagonal action of Γ on ∂Hn × ∂Hn is ergodic.

The following proof is inspired by the remark following up [Thu, Chapter 5, Theorem 5.9.10, p.
112].

Proof. We may assume that Γ is torsion-free without loss of generality. Indeed, by Proposition
I.4.21 there is a torsion-free lattice Γ′ < Γ of finite index. Now if A ⊂ ∂Hn × ∂Hn is Γ-invariant, it
is also Γ′-invariant, such that Γ acts ergodically if Γ′ acts ergodically. Thus we may assume that
Γ is torsion-free and hence acts freely on Hn such that its quotient M = Γ\Hn is a finite volume
hyperbolic manifold.
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Now observe that Γ acts freely and properly discontinuously on T 1Hn via γ · vx = dγx(vx), for
every vx ∈ T 1

xHn, such that we can identify T 1M ∼= Γ\T 1Hn.
Further consider the map Ψ : T 1Hn → ∂Hn × ∂Hn given by

Ψ(vx) = ( lim
t→∞

expx(t · vx), lim
t→−∞

expx(t · vx))

= ( lim
t→∞

p(Φ(t, vx)), lim
t→−∞

p(Φ(t, vx)))

for every vx ∈ T 1Hn, where p : T 1Hn → Hn is the bundle projection assigning each tangent vector
its base point. One easily checks that Ψ is smooth and surjective.
Further Ψ : T 1Hn → ∂Hn × ∂Hn is Γ-equivariant with respect to the previously discussed action

of Γ on the unit tangent bundle and the diagonal action of Γ on ∂Hn×∂Hn. Indeed, let vx ∈ T 1
xHn

and γ ∈ Γ, then

γ · lim
t→±∞

expx(t · vx) = lim
t→±∞

γ(expx(t · vx))

= lim
t→±∞

expγ(x)(t · dγx(vx))

and therefore γ ·Ψ(vx) = Ψ(γ · vx) as asserted.
In addition Ψ is also invariant under the geodesic flow Φ : R × T 1Hn → T 1Hn, since for every

vx ∈ T 1Hn and every s ∈ R, one has

lim
t→±∞

p(Φ(t,Φ(s, vx))) = lim
t→±∞

p(Φ(t+ s, vx)) = lim
t→±∞

p(Φ(t, vx))

Finally observe that the geodesic flow on T 1Hn induces the geodesic flow Φ̄ : R× T 1M → T 1M
of M = Γ\Hn by passing to the quotient via π : T 1Hn → Γ\T 1Hn ∼= T 1M , since Φ is clearly
Γ-equivariant, i.e. Φ̄ is defined by π ◦ Φ = Φ̄ ◦ π.
Now let A ⊂ ∂Hn × ∂Hn be a measurable Γ-invariant subset. Then by the Γ-equivariance of Ψ

also Ψ−1(A) ⊂ T 1Hn is Γ-invariant. Passing to the quotient we consider π(Ψ−1(A)) and claim,
that it is Φ̄-invariant. Indeed,

Φ̄t(π(Ψ
−1(A))) = π(Φt(Ψ

−1(A))) = π((Ψ ◦ Φ−t)
−1(A)) = π(Ψ−1(A))

for every t ∈ R, since Ψ is invariant under the geodesic flow. Thus π(Ψ−1(A)) is Φ̄-invariant and
hence is either null or conull by ergodicity.
Let us first assume that π(Ψ−1(A)) is null. Then also π−1(π(Ψ−1(A))) = ΓΨ−1(A) = Ψ−1(A) is

null by Proposition A.3.6, since π is a covering map and thus in particular a smooth submersion.
But then also Ψ(Ψ−1(A)) = A ⊂ ∂Hn × ∂Hn is a null set by Theorem A.3.4.
Now let us assume that π(Ψ−1(A)) is conull. Then again by Proposition A.3.6 π−1(π(Ψ−1(A))) =

ΓΨ−1(A) = Ψ−1(A) is conull. Now

∂Hn × ∂Hn −A = Ψ(T 1Hn)−Ψ(Ψ−1(A)) = Ψ(T 1Hn −Ψ−1(A))

such that by Theorem A.3.4 also A is conull.
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I.6. The Thick-Thin Decomposition
We will now see that finite volume hyperbolic manifolds admit a particular nice decomposition in
some thick part and some thin part, where the thick part is compact and the thin part is ”not very
complicated”. We will follow here in essence [BP92, Chapter D, pp. 133], which in turn elaborates
on the more intuitive treatment in [Thu97, 4.5. The Thick-Thin Decomposition, pp. 253]. There
are also other approaches to this kind of decomposition which arise out of the study of geometrical
finiteness and uses extensively limit sets, which can be found for example in [Rat06, Chapter 12,
pp. 600].
Let M be a Riemannian manifold. If σ is a piecewise differentiable path in M , we shall denote

by L(σ) its length. Remark that each loop in M is homotoptic to a piecewise differentiable loop
based at the same point, so that we can think of π1(M) as the set of all piecewise differentiable
loops up to homotopy. For ε > 0 we set

M(0,ε] = {x ∈M : ∃[σ] ∈ π1(M,x)− {1} s.t. L(σ) ≤ ε}
M[ε,∞) = {x ∈M : ∀[σ] ∈ π1(M,x)− {1}, L(σ) ≥ ε}

Of course if M is a compact manifold we have M(0,ε] = ∅ whenever ε is small enough.
We shall say that M(0,ε] is the ε-thin part of M , and M[ε,∞) is the ε-thick part of M ; when a

constant ε is fixed we will omit its specification, so we shall speak of the thin and the thick part of
M .
With the above definitions the thick part of a hyperbolic manifold with finite volume is always

compact as the following proposition asserts.

Proposition I.6.1. Let M be a finite volume hyperbolic manifold. Then its ε-thick part M[ε,∞) is
compact for every ε > 0.

Proof. See [BP92, Proposition D.2.6., p. 142].

We want to investigate the so called ε-ends:

Definition I.6.2 (ε-end). Let M be a hyperbolic n-manifold and 0 < ε ≤ εn, where εn > 0 is the
n-th Margulis constant (cf. [BP92, Theorem D.1.1 Margulis’ Lemma, p. 134]).
We shall call the closure of a connected component of M −M[ε,∞) an ε-end of M .

We get the following classification theorem for the ends of a hyperbolic n-manifold.

Theorem I.6.3. Let M be a hyperbolic n-manifold and 0 < ε ≤ εn, where εn > 0 is the n-th
Margulis constant. Then the ε-thin part M(0,ε] of M is the union of pieces homeomorphic to one
of the following types:

(i) Dn−1 × S1, where Dn−1 is the (n− 1)-dimensional unit disk;

(ii) V × [0,∞), where V is a smooth oriented (n − 1)-manifold without boundary supporting a
Euclidean structure;

(iii) S1.

Moreover:

• these pieces have positive distance from each other;

• the ε-ends of M are the pieces of type (i) and (ii);
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• the pieces of type (iii) are closed geodesics of length precisely ε;

• if M has finite volume the pieces of type (i) and (ii) are finitely many and in those of type
(ii) the manifold V is compact.

We will call an ε-end of M a tube, if it is of type (i), and a cusp, if it is of type (ii).

Proof. This is [BP92, Theorem D.3.3., p. 145].

For the rest of this section we will fix the hypothesis of the above theorem.

Lemma I.6.4. If M has finite volume and C is a cusp of M , then there is a subset C ′ of C such
that:

(i) C − C ′ is compact in M ;

(ii) C ′ is diffeomorphic to V ×R where V is a compact oriented smooth euclidean (n−1)-manifold;

(iii) the inverse image of C ′ under the universal covering π : Hn → M ∼= Γ\Hn is a horoball in
Hn;

(iv) M − C is a (strong) deformation retract of M − C ′.

Due to (iii) such a C ′ is called a horocusp region for C or simply a horocusp of M .

Proof. (i) and (ii) follow directly from [BP92, Proposition D.3.12, pp. 151] when we replace C ′

by its interior. (iii) and (iv) are easy consequences of the proof of [BP92, Proposition D.3.12, pp.
151].

The next corollary summarizes the above results in a more qulitative statement about the overall
topology of a finite volume hyperbolic manifold.

Corollary I.6.5. LetM be a finite volume hyperbolic n-manifold. Then there is a compact embedded
n-dimensional submanifold N ⊂M with (possibly empty) boundary ∂N such that:

(i) M −N is the disjoint union of finitely many horocusps Ei (i = 1, . . . , k);

(ii) each connected component of ∂N is diffeomorphic to a compact oriented smooth euclidean
(n− 1)-manifold;

(iii) N is a (strong) deformation retract of M .

We will call every such N ⊂ M a compact core of M . By (iii) any two compact cores are
homotopy equivalent.

Proof. This follows directly from the previous lemma. It is in fact a slight elaboration on [BP92,
Corollary D.3.14, p. 156].

Remark I.6.6. Note that, for a finite volume hyperbolic n-manifold M one may choose 0 < ε ≤ εn
so small, that the ε-ends of M are only cusps. In this case a compact core N , which contains
M[ε,∞), deformation retracts to M[ε,∞).

Finally we want to recall one of Bieberbach’s Theorems from which we will deduce that every
compact euclidean manifold is finitely coverd by a torus. This result will be important in the study
of the volume of lattice representations.
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Theorem I.6.7 (Bieberbach). Let Γ be a discrete subgroup of isometries of Rn. Then Γ is
crystallographic (i.e. Γ\Rn is compact) if and only if the subgroup T of translations of Γ is of finite
index and has rank n.

Proof. This is [Rat06, Theorem 7.5.2, p. 311]. See also [Thu97, Theorem 4.2.2, p. 222].

Corollary I.6.8. Every compact euclidean n-manifold is finitely covered by a torus.

Proof. Let M be a compact euclidean n-manifold. Basic covering theory asserts, that M can be
identified with the quotient Γ\Rn where Γ < Isom(Rn) is a discrete subgroup acting freely on Rn.
Thus Γ is crystallographic and therefore its subgroup of translations T is of finite index and has
rank n by the previous theorem. Again by covering theory we get a covering map p : T\Rn → Γ\Rn

and it is obvious, that the quotient T\Rn is an n-dimensional flat torus.
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I.7. Simplices
Simplices will become very important in our discussion of boundary maps later on, which in turn
are a key ingredient in the final step of the volume rigidity theorem. We will recall some basic
notions and properties of simplices in the first subsection. In the second we will investigate the
volume of simplices. In particular we will see that the volume of a simplex depends continuously
on its vertices and that a simplex has maximal volume if and only if it is regular and ideal. In the
last subsection we will investigate the reflection groups of regular n-simplices both euclidean and
hyperbolic. The upshot here is, that the simplex reflection group of a regular ideal n-simplex is
dense in Isom(Hn) for n ≥ 4. This will be very handy in the next section on boundary maps.

I.7.1. Regular Simplices
Definition I.7.1. Let X = Rn or X = Hn, and v0, . . . , vn ∈ X. Then the (geodesically) convex
hull of these points ∆n = conv(v0, . . . , vn) is called the n-simplex in X with vertices v0, . . . , vn;
a 4-simplex is also called a tetrahedron. ∆n is called degenerate if all its vertices lie in a proper
(generalized) totally geodesic subspace of X. A non-degenerate n-simplex in X is called regular if
every permutation of its vertices can be obtained by applying a suitable isometry.
If X = Hn a simplex ∆n in X is called ideal if all its vertices lie on the boundary ∂Hn.

The following lemma gives us some information about the shape of regular ideal simplices in Hn

and Rm.

Lemma I.7.2. If ∆n is an ideal n-simplex in Un with vertices ∞, v1, . . . , vn then ∆n is regular if
and only if the euclidean (n − 1)-simplex with vertices v1, . . . , vn ∈ Rn−1 is regular. Moreover an
m-simplex in Rm is regular if and only if all its edges have the same length.

Proof. See [BP92, Lemma C.2.4, p. 96].

Let us set T = {(ξ0, . . . , ξn) ∈ (∂Hn)n+1 : ξ0, . . . , ξn are vertices of a regular ideal simplex in Hn}.
It is not hard to see, that T ⊂ (∂Hn)n+1 is an embedded submanifold. Note that the action of G
on T is smooth and transitive. The next proposition will show, that one may even identify G with
T after choosing some base simplex.

Proposition I.7.3. Let η̄ = (η0, . . . , ηn) ∈ T and define a map Φη̄ : G→ T by

Φη̄(g) = g · η̄ = (g(η0), . . . , g(ηn)).

Then Φη̄ : G→ T is a G-equivariant diffeomorphism. Further the following formula holds

Φξ̄(g) = Φη̄(gΦ
−1
η̄ (ξ̄))

for every ξ̄ ∈ T and every g ∈ G.

Proof. Let η̄ = (η0, . . . , ηn) ∈ T . By definition it is clear that Φη̄ is smooth and G-equivariant.
Further it is surjective, since the action of G on T is transitive.
We claim that Φη̄ is also injective. Let g, h ∈ G such that Φη̄(g) = Φη̄(h), that is h(ηi) = g(ηi) for

every i = 0, . . . , n. Without loss of generality we may assume that η0 = ∞ in the upper half space
model; otherwise conjugate g and h by some isometry sending η0 to ∞. Then η1, . . . , ηn ∈ Rn−1

are the vertices of a regular euclidean simplex and are fixed by h−1g ∈ G. Because h−1g(∞) = ∞,
h−1g is a euclidean similarity and it is easy to see, that every euclidean similarity fixing the vertices
of some regular simplex is the identity. Hence h−1g = id and thus g = h. This shows that Φη̄ is
indeed injective.
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Finally, we claim that Φη̄ has constant rank. For g, h ∈ G we have

dg(Φη̄ ◦ Lh) = dhgΦη̄ · dgLh

where Lh : G → G, g 7→ hg is the diffeomorphism given by left translation. Thus rank dgΦη̄ =
rank dhgΦη̄, since dgLh : TgG→ ThgG is non-singular. This shows, that the rank of Φη̄ is constant.
By the Global Rank Theorem (cf. [Lee13, Theorem 4.14 (Global Rank Theorem), p. 83] Φη̄ :

G→ T is a diffeomorphism.
The asserted formula follows from a simple computation. Let ξ̄ ∈ T and h = Φ−1

η̄ (ξ̄), i.e. ξ̄ = hη̄.
Then

Φξ̄(g) = gξ̄ = ghη̄ = Φη̄(gh) = Φη̄(gΦ
−1
η̄ (ξ̄))

for every g ∈ G.

I.7.2. Volume
The next theorem is very important in hyperbolic geometry characterizing the simplices of maximal
volume.

Theorem I.7.4. A n-simplex in Hn has maximal volume if and only if it is regular and ideal.

Proof. See [Rat06, Theorem 11.4.1, p. 539].

Let us now turn to a proof, that the volume of a n-simplex is continuous. This will be helpful in
the definition of the volume cocycle later on. The next proposition is the initial step of an induction
argument.

Proposition I.7.5. Let ξ0, . . . , ξ3 ∈ ∂H3 and T = conv(ξ0, . . . , ξ3) the ideal tetrahedron spanned
by these points. Then the volume of T depends continuously on its vertices ξ0, . . . , ξ3.

Proof. Obviously the three dihedral angles α, β, γ of the edges incident to a vertex of T depend
continuously on the vertices of T . By [see Rat06, Theorem 10.4.10., p. 475] the volume of T is
given by

vol(T ) = L(α) + L(β) + L(γ)

where L : R → R is the so called Lobachevsky function (cf. [Rat06, pp. 465]). Because L is
continuous (cf. [see Rat06, Theorem 10.4.3., p. 468]), vol(T ) depends continuously on its vertices
as asserted.

Lemma I.7.6. The volume of an ideal n-simplex ∆n in Un, with vertices v0, . . . , vn such that
v0 = ∞ and v1, . . . , vn are in Sn−2, is given by

vol(∆n) =
1

n− 1

∫
p(∆n)

dx1 . . . dxn

(1− |x|2)(n−1)/2

where p : Un → Rn−1 denotes the standard vertical projection.

Proof. See [Rat06, Lemma 1, p. 532].

Theorem I.7.7. Let n ≥ 3 and let v0, . . . , vn ∈ D
n ∼= Hn∪∂Hn. Then the volume of the generalized

simplex T = conv(v0, . . . , vn) depends continuously on its vertices v0, . . . , vn ∈ D
n.

Our proof is based on the proof of [Rat06, Theorem 11.4.2., p. 541], which apparently only works
in a situation where the vertices are not contained in a proper hyperbolic subspace. However we
are specifically interested in this case later on such that we have to adapt the proof.
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Proof. Let {(v0j , . . . , vnj)}j∈N be a sequence in (D
n
)n+1 converging to (v0, . . . , vn). Denote ∆n

j =
conv(v0j , . . . , vnj) and accordingly ∆n = conv(v0, . . . , vn). We have to prove that

lim
j→∞

vol(∆n
j ) = vol(∆n)

Assume first that ∆n
j is ideal for each j, i.e. {(v0j , . . . , vnj)}j∈N ⊂ (Sn−1)n+1. Therefore also

(v0, . . . , vn) ∈ (Sn−1)n+1 and ∆n is ideal. This part of the proof is by induction on the dimension
n. By the above Proposition I.7.5 the initial step of the induction for dimension n = 3 is settled. For
the induction step we distinguish two more cases. Let (Sn−1)[n+1] denote the set of all (n+1)-tuples
of points, that are not contained in a proper (generalized) hyperbolic subspace. It is easy to see,
that

(Sn−1)[n+1] = {(ξ0, . . . , ξn) ∈ (Sn−1)n+1 : D(ξ0, . . . , ξn) 6= 0}

where

D(ξ0, . . . , ξn) = det

 | |
ξ1 − ξ0 · · · ξn − ξ0

| |


is the determinant of the matrix containing the differences ξi − ξ0 as column vectors. Therefore
(Sn−1)[n+1] ⊂ (Sn−1)n+1 is (relatively) open.
Assume now, that {(v0j , . . . , vnj)}j∈N ⊂ (Sn−1)n+1− (Sn−1)[n+1], i.e. ∆n

j is contained in a proper
hyperbolic subspace. Then also its limit (v0, . . . , vn) is in (Sn−1)n+1 − (Sn−1)[n+1], because the set
is closed. Thus also ∆n is contained in a proper hyperbolic subspace and we have

lim
j→∞

vol(∆n
j ) = 0 = vol(∆n)

since degenerate simplices have no volume.
So we are left with the case that {(v0j , . . . , vnj)}j∈N ⊂ (Sn−1)[n+1], i.e. ∆n

j is non-degenerate.
Note that its limit ∆n may still be degenerate. For each j ∈ N let Aj be the rotation of En that
rotates v0j to v0 with no other nonzero angles of rotation. As v0j → v0, we have that Aj → Id in
O(n). Hence (Ajv0j , . . . , Ajvnj) → (v0, . . . , vn). As

vol(Aj(∆
n
j )) = vol(∆n

j )

we may replace ∆n
j by Aj(∆

n
j ). Thus, we may assume, without loss of generality, that v0j = v0 for

all j.
We now pass to the upper half space model Un of hyperbolic space and assume, without loss of

generality, that v0 = ∞ and v1, . . . , vn lie on the unit sphere Sn−2 in Rn−1. For each j, the vertices
v1j , . . . , vnj lie on an (n− 2)-sphere S(aj , rj) in Rn−1; here we need, that ∆n

j is not contained in a
proper hyperbolic subspace. Now as (v1j , . . . , vnj) → (v1, . . . , vn), we have that aj → 0 and rj → 1.
Let

φj = −r−1
j aj + r−1

j Id

Then φj maps S(aj , rj) onto Sn−2. Moreover φj → Id in S(Rn−1). Hence (φj(v1j), . . . , φj(vnj)) →
(v1, . . . , vn). As

vol(φj(∆n
j )) = vol(∆n

j )

we may replace ∆n by φj(∆n
j ). Thus, we may assume, without loss of generality, that the vertices

v1, . . . , vn lie on the sphere Sn−2 for all j. By the above lemma, we have

vol(∆n) =
1

n− 1

∫
p(∆n)

dx1 . . . dxn−1

(1− |x|2)(n−1)/2
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For each j, let χj be the characteristic function of the set p(∆n
j ) and let χ be the characteristic

function of p(∆n). Then the sequence χj converges pointwise almost everywhere to χ. Thinking
of p(∆n) as an ideal (n− 1)-simplex in the projective disk model Dn−1 we have for its volume

volDn−1(p(∆n)) =

∫
p(∆n)

dx1 . . . dxn−1

(1− |x|2)n/2
=

∫
Dn−1

χ(x)dx1 . . . dxn−1

(1− |x|2)n/2

(cf. [Rat06]). Hence by our induction hypothesis we have that

lim
j→∞

∫
Dn−1

χj(x)dx1 . . . dxn−1

(1− |x|2)n/2
= lim

j→∞
volDn−1(p(∆n

j ))

= volDn−1(p(∆n))

=

∫
Dn−1

χ(x)dx1 . . . dxn−1

(1− |x|2)n/2

We have that

χj(x)

(1− |x|2)n/2
→ χ(x)

(1− |x|2)n/2
and χj(x)

(1− |x|2)(n−1)/2
→ χ(x)

(1− |x|2)(n−1)/2
(j → ∞)

pointwise almost everywhere. Because (1−|x|2) ≤ 1 for every x ∈ D
n−1, we have that (1−|x|2)n/2 ≤

(1− |x|2)(n−1)/2 and thus
|χj(x)− χ(x)|
(1− |x|2)(n−1)/2

≤ |χj(x)− χ(x)|
(1− |x|2)n/2

for every x ∈ Dn−1. We may now apply the general dominated convergence theorem A.1.5, which
yields

lim
j→∞

vol(∆n
j ) = lim

j→∞

1

n− 1

∫
Dn−1

χj(x)dx1 . . . dxn−1

(1− |x|2)(n−1)/2

=
1

n− 1

∫
Dn−1

χ(x)dx1 . . . dxn−1

(1− |x|2)(n−1)/2
= vol(∆n)

and the first part of the proof is finished.
We now return to the general case. Without loss of generality, we may assume that 0 is the

centroid of ∆n. As the vertices of ∆n
j converge to the vertices of ∆n, the centroid cj = (v0j + . . .+

vnj)/(n+1) of ∆n
j converges to 0. Let τj be the hyperbolic translation of Dn by −cj (cf. Definition

I.2.13). Then τj → Id in Isom(Hn) and hence

(τj(v0j), . . . , τj(vnj)) → (v0, . . . , vn) (j → ∞)

As vol(τj(∆n
j )) = vol(∆n

j ), we may replace ∆n
j by τj(∆n

j ). Then 0 is in ∆n
j for each j. Let ∆̂n

j be
the ideal n-simplex with vertices v̂0j , . . . , v̂nj , where v̂ij = vij/|vij | for each j, and let ∆̂n be the
ideal n-simplex with vertices v̂0, . . . , v̂n, where v̂i = vi/|vi|. Then

(v̂0j , . . . , v̂nj) → (v̂0, . . . , v̂n) (j → ∞)

Let χj , χ̂j , χ, χ̂ be the characteristic functions for the sets ∆n
j , ∆̂n

j , ∆n, ∆̂n, resp. Then χj → χ

and χ̂j → χ̂ almost everywhere. Now as ∆n
j ⊂ ∆̂n

j , we have that χj ≤ χ̂j for each j.
Denote by µ the measure of hyperbolic volume in the projetive disk model, i.e.

dµ

dλ
(x) =

1

(1− |x|2)(n+1)/2
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where λ denotes the Lebesgue measure on Dn and dµ/dλ is the Radon-Nikodym derivative (cf.
[Rat06]). By the first case, we have

lim
j→∞

∫
Dn

χ̂j dµ =

∫
Dn

χ̂ dµ <∞

Again by the general version of Lebesgue’s dominated convergenc theorem, we deduce that

lim
j→∞

∫
Dn

χj dµ =

∫
Dn

χdµ

Therefore, we have
lim
j→∞

vol(∆n
j ) = vol(∆n)

Observe that the above theorem fails in dimension 2. In fact any two ideal 2-simplices are
congruent, since Isom(H2) acts 3-transitively on the boundary. Therefore vol(conv(ξ0, ξ1, ξ2)) is
constant on the subset of triples of distinct points (ξ0, ξ1, ξ2) ∈ (∂H2)3 and is 0 on its complement.
As a consequence vol(conv(ξ0, ξ1, ξ2)) is not continuous on all of (∂H2)3, but still on the subset
(∂H2)(3) of triples of distinct boundary points (and its complement). However we get the following
theorem.

Theorem I.7.8. The function vol(conv(v0, v1, v2)) is continuous on (H2)3 ∪ (H2
)[3], where (H2

)[3]

denotes the set of triples (v0, v1, v2) ∈ (H2
)3 such that v0, v1, v2 are not contained in a proper

hyperbolic subspace.

Remark I.7.9. Note that (∂H2)[3] = (∂H2)(3).

Proof. We will work in the projective disk model and identify without furhter notice H2 ∼= D
2. Let

(v0, v1, v2) ∈ (H2)3 ∪ (H2
)(3) and {(v0j , v1j , v2j)}j∈N ⊂ (H2)3 ∪ (H2

)(3) a sequence converging to it.

Assume first, that (v0, v1, v2) ∈ (H2)3. Then also (v0j , v1j , v2j) ∈ H2 for j large enough.
There is clearly a δ > 0 such that Bδ(xi) ⊂ D2 for every i = 0, 1, 2. Consider the convex
hull V = conv(Bδ(v0) ∪ Bδ(v1) ∪ Bδ(v2)). Then V is open in D2, has compact closure and
conv(v0j , v1j , v2j) ⊂ V for j large enough. Denote by χ, χj , χV the characteristic functions of
conv(v0, v1, v2), conv(v0j , v1j , v2j), V respectively. We now have

0 ≤ χj ≤ χV

for j large enough. Further denote by µ the measure of hyperbolic volume in the projective disk
model as in the proof of the previous theorem. As V has compact closure in D2 we have that∫

D2

χV dµ = µ(V ) = vol(V ) <∞

Additionally χj → χ pointwise as j tends to ∞. Thus by Lebesgue’s dominated convergence
theorem

lim
j→∞

vol(conv(v0j , v1j , v2j)) = lim
j→∞

∫
D2

χj dµ =

∫
D2

χdµ = vol(conv(v0, v1, v2)

Now assume that (v0, v1, v2) ∈ (H2
)[3]. As in the proof of the previous theorem we may as-

sume that conv(v0j , v1j , v2j) contains 0 without loss of generality. Then we can choose j large
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enough, such that (v0j , v1j , v2j) ∈ (H2
)[3], v0j , v1j , v2j are all different from 0 and (v̂0j , v̂1j , v̂2j) ∈

(∂H2)[3] where v̂ij = vij/|vij | for i = 0, 1, 2. Consider also v̂i = vi/|vi|. Then (v̂0j , v̂1j , v̂2j) →
(v̂0, v̂1, v̂2) as j tends to ∞. Denote by χj , χ̂j , χ, χ̂ the characteristic functions of conv(v0j , v1j , v2j),
conv(v̂0j , v̂1j , v̂2j), conv(v0, v1, v2), conv(v̂0, v̂1, v̂2) respectively. As

conv(v0j , v1j , v2j) ⊂ conv(v̂0j , v̂1j , v̂2j)

we have that χj ≤ χ̂j for every j. Observe that conv(v̂0j , v̂1j , v̂2j), conv(v̂0, v̂1, v̂2) and conv(v0, v1, v2)
are all regular ideal triangles in D2 and therefore have the same maximal volume. Because χ̂j con-
verges to χ̂ and χj converges to χ as j tends to ∞, we may apply the generalized dominated
convergence theorem A.1.5 and get

lim
j→∞

vol(conv(v0j , v1j , v2j)) = lim
j→∞

∫
D2

χj dµ =

∫
D2

χdµ = vol(conv(v0, v1, v2))

I.7.3. Simplex Reflection Groups

In this final section on simplices we will show that the reflection group of a regular ideal n-simplex
is dense in Isom(Hn) for n ≥ 4. This will significantly facilitate the proof of Proposition I.8.3. Let
us first see this result for euclidean n-simplices with n ≥ 3.

Proposition I.7.10. Let n ≥ 3. Then the reflection group of a regular euclidean n-simplex is
dense in Isom(Rn).

Proof. Let v0, . . . , vn ∈ Rn denote the vertices of a regular euclidean n-simplex. The first step is
to compute the dihedral angles of a regular euclidean n-simplex. Denote by Fi the i-th face of the
simplex not adjacent to vi, i.e. the convex hull of all the vertices but vi, and denote by Hi the
(n− 1)-dimensional affine subspace of Rn containing Fi. Consider the barycenter of each face Fi

bi =
1

n

∑
j 6=i

vj

By symmetry one easily checks that the vectors

ni = vi − bi = vi −
1

n

∑
j 6=i

vj =
1

n

∑
j 6=i

(vi − vj) =
1

n

n∑
j=0

(vi − vj)

are orthogonal to Hi, i.e. y ∈ Hi ⇐⇒ 〈y − vj , ni〉 = 0 for some j 6= i. Hence the dihedral angle α
is just

arccos
(
|〈n0, n1〉|
|n0|2

)
Note that they are all the same again by symmetry.
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We calculate explicitly

〈n0, n1〉
|n0|2

=
〈v0 − b0, v1 − b1〉

|v0 − b0|2
=

1
n2

∑n
i,j=0〈v0 − vi, v1 − vj〉

1
n2

∑n
i,j=0〈v0 − vi, v0 − vj〉

=

∑n
i,j=0〈v0 − vi, v1 − v0〉+

∑n
i,j=0〈v0 − vi, v0 − vj〉∑n

i,j=0〈v0 − vi, v0 − vj〉

= 1−
∑n

i,j=0〈v0 − vi, v0 − v1〉∑n
i,j=0〈v0 − vi, v0 − vj〉

= 1−
(n+ 1)

∑n
i=0〈v0 − vi, v0 − v1〉∑

i 6=j〈v0 − vi, v0 − vj〉+ n|v0 − v1|2

= 1−
(n+ 1)(|v0 − v1|2 +

∑n
i=2〈v0 − vi, v0 − v1〉)∑n

i=1

∑
j 6=i〈v0 − vi, v0 − vj〉+ n|v0 − v1|2

= 1− (n+ 1)(|v0 − v1|2 + (n− 1)〈v0 − v2, v0 − v1〉)
n(n− 1)〈v0 − v2, v0 − v1〉+ n|v0 − v1|2

= 1− n+ 1

n
= − 1

n

where we have used that for distinct i, j

|vi − vj | = |v0 − v1|

and for distinct i, j, k
〈vi − vj , vi − vk〉 = 〈v0 − v1, v0 − v2〉

Thus the dihedral angle is

arccos
(
1

n

)
Now clearly

2π

arccos
(
1
n

) → 4 (n→ ∞)

in a strictly monotonically decreasing fashion and
2π

arccos
(
1
3

) ≈ 5.1043 ,
2π

arccos
(
1
4

) ≈ 4.7668

Hence the dihedral angle is no submultiple of 2π for n ≥ 3.
If we denote by ρi the reflection in the affine subspace Hi then by definition the simplex reflec-

tion group Λ of the regular simplex (v0, . . . , vn) is the subgroup of Isom(Rn) generated by these
reflections, i.e. Λ = 〈ρi : i = 0, . . . , n〉. We shall now consider the subgroups Λi = 〈ρj : j 6= i〉 < Λ
generated by all reflections in the faces adjacent to the vertex vi. Further let τb : Rn → Rn, x 7→ x+b
denote the translation by b ∈ Rn. Recall that every ϕ ∈ Isom(Rn) has the form ϕ(x) = τb(Ax) =
Ax+ b for some b ∈ Rn and A ∈ O(n).
We claim that each subgroup Li := τ−1

vi Λiτvi is dense in O(n). By symmetry it is sufficient
to show this for v0. Clearly L0 is generated by the reflections ri = τ−1

v0 ρiτv0 which are just the
reflections at the subvectorspaces Vi := τ−1

v0 Hi = 〈ni〉⊥ (i = 1, . . . , n).
We know that O(n) is generated by all reflections. Hence in order to show that L0 is dense in O(n)

it suffices to show that any reflection can be approximated arbitrarily good by elements of L0. It is
clear that for a reflection r(x) = x−2〈x, ν〉ν and a sequence of reflections r(k)(x) = x−2〈x, ν(k)〉ν(k)
with respective normal vectors ν and ν(k) (k ∈ N)

r(k) → r in O(n) ⇐⇒ ν(k) → ν in Sn−1
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Taking the reflection r1(x) = x − 2〈x, n̂1〉n̂1 in L0 (n̂1 := n1/|n1|) and conjugating it by some
other element ψ ∈ L0 we get a reflection ψr1ψ−1(x) = x−2〈x, ψ(n̂1)〉ψ(n̂1) with the normal vector
ψ(n̂1). Hence it suffices to see that the orbit L0n̂1 is dense in Sn−1.
This will follow easily by our discussion of the dihedral angles. Every iterated reflection rirj in

L0 is a rotation by the dihedral angle in the 2-dimensional subvectorspace generated by ni and nj
(i, j ∈ {1, . . . , n}, i 6= j). Because the dihedral angle is no submultiple of 2π the element rirj does
not have finite-order and any rotation in the ni-nj-plane can be approximated arbitrarily good by
powers of rirj . By regularity of the simplex the vectors n1, . . . , nn form a basis of Rn which is not
orthonormal though. However it is still easy to see, that one can reach every point ξ ∈ Sn−1 by
succesively rotating n̂1 in some ni-nj-plane. Approximating each rotation by a power of rirj we
can hence approximate ξ by an element of L0n̂1 arbitrarily good. Hence L0n̂1 is dense in Sn−1 and
L0 is dense in O(n).
We have now seen that each Li = τ−1

vi Λiτvi is dense in O(n) and hence Λi = τviLiτ
−1
vi is dense in

τviO(n)τ−1
vi . In order to conclude the proof it will be enough to show that Isom(Rn) is generated by

elements of G0 = τv0O(n)τ−1
v0 and G1 = τv1O(n)τ−1

v1 , i.e. Isom(Rn) = 〈τv0O(n)τ−1
v0 , τv1O(n)τ−1

v1 〉 =:

G. Indeed if ϕ = s1 · · · sm ∈ G for some sk ∈ G0 ∪G1 we can approximate each by a sequence s(l)k
in Λ0 resp. Λ1, i.e. s(l)k → sk for l → ∞. By continuity of the group action we then get

s
(l)
1 · · · s(l)m → s1 · · · sm = ϕ (l → ∞)

and hence
Λ ⊇ Isom(Rn)

Let ϕ ∈ Isom(Rn). Then

ϕ ∈ τv0O(n)τ−1
v0 = G0 ⇐⇒ τ−1

v0 ϕτv0 ∈ O(n) ⇐⇒ τ−1
v0 ϕτv0(0) = 0 ⇐⇒ ϕ(v0) = v0

If we can find ψ ∈ G, such that ψ(v0) = ϕ(v0), then ψ−1ϕ(v0) = v0 and hence ψ−1ϕ ∈ G0 ⊂ G.
This implies that ϕ ∈ ψ ·G = G and we are done.
Indeed G acts transitively on Rn. G0 and G1 are just orthogonal transformations based at v0

and v1 respectively. It is now easy to see that by iteratively rotating around v0 or v1 one can send
v0 to any point in Rn.

The result for regular ideal hyperbolic simplices will follow quite easily from the next observation.

Lemma I.7.11. Let n ≥ 3 and i : Hn → Hn an inversion at a sphere orthogonal to Rn−1 ∼=
Rn−1 × {0} ⊂ ∂Un in the upper half space model Un. Then Isom(Hn) is generated by i and
Isom(Rn−1) where we regard the latter as a subgroup of Isom(Hn) as usual.

Proof. Let L denote the group generated by Isom(Rn−1) and i. We already know, that Isom(Hn) is
generated by all reflections at half spaces through∞ and inversions at spheres centered on Rn−1 , i.e.
inversions at (generalized) spheres orthogonal to the boundary. Since all reflections in half spaces
through ∞ are already contained in Isom(Rn−1), we only need to show that also every inversion
at an arbitrary sphere orthogonal to Rn−1 is in L. Observe that for ψ ∈ Isom(Rn−1) ⊂ Isom(Hn)
and an inversion i ∈ L with center m ∈ Rn−1 and radius r also ψ ◦ i ◦ ψ−1 ∈ L is an inversion
at a sphere of radius r but with center ψ(m) , i.e. we can move inversions at spheres around by
conjugating with elements in Isom(Rn−1). Thus we only need to see that there is for every R > 0
an inversion at a sphere with radius R in L.
We can construct a new inversion from the given one i in the following way. Letm be the center of

the inversion i and r its radius, i.e. i is the inversion at the sphere S(m, r). Consider a reflection ρ in
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an affine half space H at distance d ∈ (0, r) from m. That is, H intersects S(m, r) in more than one
point and does not contain the center m. Since i and ρ are both inversions at generalized spheres,
iρi−1 = iρi is also an inversion at a generalized sphere. Observe that Fix(ρ) = H, Fix(i) = S(m, r)
and Fix(iρi) ⊃ Fix(ρ) ∩ Fix(i). Also

iρi(m) = iρ(∞) = i(∞) = m

and thus Fix(iρi) ⊃ (Fix(ρ) ∩ Fix(i)) ∪ {m}. Because m 6∈ Fix(ρ) = H the union is disjoint.
Therefore iρimust be an inversion at a proper sphere S(m′, R) orthogonal to Rn−1 through (Fix(ρ)∩
Fix(i)) ∪ {m}. In particular m′ lies on the line through m meeting H orthogonally in some point
ξ. Note that ξ realizes the distance d between H and m in Rn−1. By construction all points in
H ∩ S(m, r) have the same distance from ξ - say h. Thus the following two equalities hold

h2 + d2 = r2 (I.1)
h2 + (R− d)2 = R2 (I.2)

Eliminating h2 and solving for R yields

R =
r2

2d

Because 0 < d < r was arbitrary we can use the above construction to get an inversion at a
sphere of arbitrary radius R ∈

(
r
2 ,∞

)
. Hence we can indeed construct by iteration an inversion to

every given radius R > 0.

Proposition I.7.12. Let n ≥ 4. Then the reflection group of a regular ideal hyperbolic n-simplex
is dense in Isom(Hn).

Proof. Let (ξ0, . . . , ξn) ∈ (∂Hn)n+1 be the vertices of a regular ideal n-simplex. Without loss of
generality we may assume that ξ0 = ∞ in the upper half space model. Then ξ1, . . . , ξn ∈ Rn−1 are
the vertices of a regular euclidean (n−1)-simplex. The reflection group Λ of the simplex (ξ0, . . . , ξn)
is now generated by the reflections in the codimension 1 half spaces Hi through {ξ0, . . . , ξn}− {ξi}
(i = 1, . . . , n) and the inversion i at the sphere through ξ1, . . . , ξn.
Denote by Λ′ the subgroup generated by the reflections in the half spaces Hi. Clearly Λ′ corre-

sponds to the reflection group of the regular euclidean (n− 1)-simplex (ξ1, . . . , ξn) and is hence by
Proposition I.7.10 dense in Isom(Rn−1). Because Isom(Hn) is generated by i and Isom(Rn−1) we
have that

Λ = 〈i,Λ′〉 ⊇ 〈i,Λ′〉 = 〈i, Isom(Rn−1)〉 = Isom(Hn)
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I.8. Boundary Maps

As in the classical proof of the Mostow Rigidity Theorem outlined in [Thu, Chapter 5, §9, pp.
106] boundary maps will play an important role in our proof of the volume rigidity theorem too.
The reason for their use is, that boundary maps can be constructed quite easily and under certain
conditions they are induced by an isometry of hyperbolic n-space; we will then also say, that the
boundary map is ”equal” to an isometry. The objective of this section is to prove Proposition I.8.3,
which gives a condition for when a boundary map is essentially an isometry. This fact was used by
Thurston in his revision of Gromov’s proof of the Mostow Rigidity Theorem in [Thu, Chapter 6,
§3, pp. 133]. It is worth noting, that the results of this section only work in dimenson n ≥ 3. They
will be needed the final step of the proof of the volume rigidity theorem and they are in fact the
only places where we require n ≥ 3.
We will again use the notation of the previous section and denote by T the set of (n+ 1)-tuples

in ∂Hn which are vertices of a regular ideal n-simplex. Recall Proposition I.7.3 which states, that
the map Φη̄ : G → T, g 7→ gη̄ is a diffeomorphism for every η̄ ∈ T . We will call an (n + 1)-tuple
in T simply a regular simplex. Note that the order of the vertices ξ0, . . . , ξn induces an orientation
on the simplex ξ̄. For ξ̄ ∈ T , denote by Λξ̄ < Isom(Hn) the reflection group generated by the
reflections in the faces of the simplex ξ̄.

Lemma I.8.1 (cf. [BBI13, Lemma 7, p. 26]). Let n ≥ 3. Let ξ̄ = (ξ0, . . . , ξn) ∈ T . Suppose that
ϕ : ∂Hn → ∂Hn is a map such that for every γ ∈ Λξ̄ the simplex with vertices (ϕ(γξ0), . . . , ϕ(γξn))
is regular and of the same orientation as (γξ0, . . . , γξn) ∈ T .
Then there exists a unique isometry h ∈ Isom+(Hn) such that h(ξ) = ϕ(ξ) for every ξ ∈ ∪n

i=0Λξ̄ξi.
In particular the isometry is given by Φ−1

ξ̄
(ϕ(ξ̄)) and we have the formula

Φ−1
ξ̄

(ϕ(ξ̄)) = Φ−1
η̄ (ϕ(ξ̄)) ·

(
Φ−1
η̄ (ξ̄)

)−1

for any η̄ ∈ T .

Remark I.8.2. Note that this lemma fails for n = 2. Indeed, any triple of distinct boundary points
in ∂H2 are the vertices of a regular ideal simplex. Thus any orientation preserving homeomorphism
of ∂H2 would satisfy the hypothesis. However not every orientation preserving homeomorphism is
already induced by an isometry as one readily checks.

Proof. Let ξ̄ = (ξ0, . . . , ξn) ∈ T . Then (ϕ(ξ0), . . . , ϕ(ξn)) ∈ T and it has the same orientation as ξ̄.
Hence there is a unique isometry h ∈ Isom+(Hn) such that h(ξi) = ϕ(ξi) for i = 0, . . . , n; namely
Φ−1
ξ̄

(ϕ(ξ̄)).
It remains to check that

h(γξi) = ϕ(γξi) (I.3)

for every γ ∈ Λξ̄. Every γ ∈ Λξ̄ is a product γ = rk · . . . · r1, where rj is a reflection in a face of the
regular simplex rj−1 · . . . ·r1(ξ̄). We prove the equality (I.3) by induction on k, the case k = 0 being
true by assumption. Set ηi = rk−1 · . . . · r1(ξi). Our induction hypothesis is, that h(ηi) = ϕ(ηi).
The induction step will be proven, if we show that h(rkηi) = ϕ(rkηi) for all i = 0, . . . , n. The
simplex (η0, . . . , ηn) is regular and rk is a reflection in one of its faces, say without loss of generality
the face containing η1, . . . , ηn. Since rkηi = ηi for i = 1, . . . , n and by the induction hypothesis
h(ηi) = ϕ(ηi), we obtain

h(rkηi) = h(ηi) = ϕ(ηi) = ϕ(rkηi) ∀i = 1, . . . , n
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and it just remains to show, that h(rkη0) = ϕ(rkη0). Now the simplex (rkη0, rkη1, . . . , rkηn) =
(rkη0, η1, . . . , ηn) is regular with opposite orientation to (η0, . . . , ηn). Since h is orientation preserv-
ing, this implies that the simplex (h(rkη0), h(η1), . . . , h(ηn)) is regular with opposite orientation to
(h(η0), h(η1), . . . , h(ηn)). By assumption (ϕ(rkη0), ϕ(rkη1), . . . , ϕ(rkηn)) = (ϕ(rkη0), ϕ(η1), . . . , ϕ(ηn))
is regular with opposite orientation to (ϕ(η0), . . . , ϕ(ηn)). Because (h(η0), . . . , h(ηn)) = (ϕ(η0), . . . , ϕ(ηn))
and in dimension n ≥ 3 there is only one regular simplex with face h(η1), . . . , h(ηn) and opposite
orientation to (h(η0), . . . , h(ηn)) it follows that h(rkη0) = ϕ(rkη0) and the induction step is proven.
The formula follows from Proposition I.7.3 with h = Φ−1

ξ̄
(ϕ(ξ̄)) and

ϕ(ξ̄) = Φξ̄(h) = Φη̄(h · Φ−1
η̄ (ξ̄)) ⇐⇒ h = Φ−1

η̄ (ϕ(ξ̄)) ·
(
Φ−1
η̄ (ξ̄)

)−1

Proposition I.8.3 (cf. [BBI13, Proposition 6, p. 27]). Let n ≥ 3. Let ϕ : ∂Hn → ∂Hn be a
measurable map sending the vertices of almost every positively, resp. negatively, oriented regular
ideal simplex to the vertices of a positively, resp. negatively, oriented regular ideal simplex with the
same orientation. Then ϕ is essentially equal to an isometry (up to a null set).

We shall first prove this result for dimensions n ≥ 4 since the proof is easier. This is where
Proposition I.7.12 comes in.

Proof in the case of n ≥ 4. Let Tϕ ⊂ T be the set of regular simplices ξ̄ = (ξ0, . . . , ξn) ∈ T such
that (ϕ(ξ0), . . . , ϕ(ξn)) is also in T and has the same orientation as (ξ0, . . . , ξn). By assumption Tϕ

has full measure in T . Now consider the subset

Tϕ
Λ := {ξ̄ ∈ T | γξ̄ ∈ Tϕ ∀γ ∈ Λξ̄} ⊂ Tϕ

of those regular simplices for which all reflections by the reflection group Λξ̄ are in Tϕ. We claim
that Tϕ

Λ has full measure in T .
Again we use the identification Φη̄ : G→ T as before, where η̄ ∈ T is some reference point. The

subset Tϕ is mapped to a subset Gϕ := Φ−1
η̄ (Tϕ) ⊂ G via this correspondence. Observe that a

regular simplex ξ̄ = g(η̄) is in Tϕ
Λ if and only if, γξ̄ = γgη̄ is in Tϕ for every γ ∈ Λξ̄. One readily

checks that Λξ̄ = gΛη̄g
−1, so the latter condition is equivalent to gγ0η̄ ∈ Tϕ for every γ0 ∈ Λη̄, or

in other words g ∈ Gϕγ−1
0 . Hence the subset Tϕ

Λ is mapped to

Gϕ = Φ−1
η̄ (Tϕ

Λ ) =
⋂

γ0∈Λη

Gϕγ−1
0 ⊂ G

Since a countable intersection of full measure subsets has full measure, the claim is proved.
For every ξ̄ ∈ Tϕ

Λ and hence almost every ξ̄ ∈ T there exists by Lemma I.8.1 a unique isometry
hξ̄ such that hξ̄(ξ) = ϕ(ξ) on the orbit points ξ ∈ ∪n

i=0Λξ̄ξi. By the uniqueness of the isometry, it
is immediate that hγξ̄ = hξ̄ for every γ ∈ Λξ̄. We have thus a measurable map h : T → Isom(Hn)
given by

ξ̄ 7→ hξ̄ = Φ−1
ξ̄

(ϕ(ξ̄)) = Φ−1
η̄ (ϕ(ξ̄)) ·

(
Φ−1
η̄ (ξ̄)

)−1

defined on a full measure subset of T . Precomposing h by Φη̄ it is straightforward that the left
Λξ̄-invariance of h on Λξ̄ ξ̄ naturally translates to a global right invariance of h ◦ Φη on G. Indeed,
let g ∈ G and γ0 ∈ Λη̄. We compute

h ◦ Φη̄(g · γ0) = hgγ0η̄ = hgγ0g−1gη̄ = hgη̄ = h ◦ Φη̄(g)

where we have used the left Λgη̄-invariance of h on the reflections of gη̄ in the third equality (recall
gγ0g

−1 ∈ gΛη̄g
−1 = Λgη̄). Thus h ◦ Φη̄ : G → G is invariant under the right action of Λη̄ (and
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measurable). Since the latter group is dense in G (cf. Proposition I.7.12) , it acts ergodically on G
(cf. Lemma I.5.5) and h ◦ Φη̄ is essentially constant (cf. Theorem I.5.4). This means that also h is
essentially constant. Thus for almost every regular simplex ξ̄ ∈ T the evaluation of ϕ on any orbit
point of the vertices of ξ̄ under the reflection group Λξ̄ is equal to h. In particular for almost every
ξ̄ = (ξ0, . . . , ξn) ∈ T and also for almost every ξ0 ∈ ∂Hn, we have ϕ(ξ0) = h(ξ0).

Now we turn to the proof for n = 3. We give essentially the proof of Dunfield in [Dun99, pp. 30]
which is a more rigorous outline of Thurston’s idea in [Thu, Chapter 6, §3, pp. 133].

Proof in the case of n = 3. As above let Tϕ ⊂ T be the set of regular simplices ξ̄ = (ξ0, . . . , ξ3) ∈ T
such that (ϕ(ξ0), . . . , ϕ(ξ3)) is also in T and has the same orientation as (ξ0, . . . , ξ3). By assumption
Tϕ has full measure in T . Let ξ̄ = (ξ0, . . . , ξ3) ∈ Tϕ ⊂ T be such a simplex. By composing and
precomposing ϕ with suitable isometries we may assume without loss of generaltiy that ξ0 = ∞
and ϕ(ξ0) = ∞ in the upper half space model of H3. As we have already seen all oriented regular
simplices with one vertex at infinity can be identified with the (oriented) equilateral triangles in
C ∼= R2. For almost all lines l through 0, almost all equilateral triangles with the edge between the
first and second vertices parallel to l define tetrahedra which are in Tϕ. We can assume without
loss of generatliy that one such line is the real axis (apply a suitable isometry). Let S denote the
set of regular simplices (tetrahedra) with first vertex at ∞ and such that the edge between the
second and third vertices (the first and second vertices of the corresponding triangle) is parallel to
the real axis.
We know that Sϕ := S∩Tϕ has full measure in S. Let ω be the 3

√
−1 which has positive imaginary

part. Then {0, 1, ω} is an oriented equilateral triangle. Let L0 be all equilateral triangles in the
tiling of C by the triangle {0, 1, ω}. Let Lk denote the same set of triangles scaled by 2−k. Let
L =

⋃
k∈Z Lk be the nested family of equitriangular lattices.

We claim there is an r ∈ R such that for almost all z ∈ C the entire countable set of triangles
z + rL are in Sϕ. Consider the submersion π : C × R × Z × Z × Z → S which sends (z, r, k, n,m)
to the equilateral triangle with vertices(

z + r2−k(n+mω), z + r2−k(n+ 1 +mω), z + r2−k(n+ (m+ 1)ω)
)

in z + rLk. We will think of Z as having a finite measure ν, say ν({q}) = 1/q2. As π is
a submersion, π−1(Sϕ) has full measure. Thus by Fubini, for almost all r and z, we have
π−1(Sϕ) ∩ ({r} × {z} × Z× Z× Z) has full measure and is hence equal to {r} × {z} × Z× Z× Z,
as desired. Without loss of generality assume r = 1 has this property (again apply a suitable
isometry). So for almost all z ∈ C all triangles in z + L are in Sϕ. This forces ϕ(z + L) to be a
family of nested equitriangular lattices. Indeed one easily checks this fact by picking a triangle in
z + L and applying its reflection group as in our discussion of the proof for n ≥ 4. Hence there is
for each z a complex number h(z) such that:

ϕ
(
z + 2−k(n+mω)

)
= ϕ(z) + h(z)2−k(n+mω) (I.4)

for all n,m, k ∈ Z. We claim that the function h is invariant under the group of translations of the
form z 7→ z + 2−j(a+ bω) where j, a, b ∈ Z. Let z′ = z + 2−j(a+ bω). We have by (I.4)

ϕ(z′) = ϕ(z) + h(z)2−j(a+ bω) (I.5)

Now at z′ + 2−j we have by (I.4)

ϕ(z′ + 2−j) = ϕ(z′) + h(z′)2−j
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Since z′ + 2−j = z + 2−j(a+ 1 + bω) we also have that

ϕ(z′ + 2−j) = ϕ(z) + h(z)2−j(a+ 1 + bω)

Putting these together we get

ϕ(z′) + h(z′)2−j = ϕ(z) + h(z)2−j(a+ 1 + bω) = ϕ(z′ + 2−j) (I.6)

By subtracting equation (I.5) from (I.6) and dividing by 2−j we get h(z) = h(z′) as desired. Because
our group of translations is dense, and so acts ergodically, h is constant almost everywhere. But
then ϕ(z′) = ϕ(z) + h2−j(a+ bω) almost everywhere which implies that ϕ(z) − h · z is invariant
under our group of transformations. So there is a constant c such that ϕ(z) − h · z = c almost
everywhere and thus ϕ(z) = c+ hz almost everywhere.
Therefore ϕ is essentially a euclidean similarity and hence an isometry of H3.
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Continuous bounded cohomology is at the core of our study of volume rigidity. Hence we want
to cover the most important results of both continuous and continuous bounded cohomology, and
apply them to the isometry group of hyperbolic n-space in this chapter. Both theories allow a
functorial characterization which provide us with plenty of resolutions to compute the respective
cohomology from. We will present these characterizations for continuous and continuous bounded
cohomology together with some resolutions in section II.1 and in section II.2 respectively. They both
follow a similar outline underlining the similarities and the differences between the two theories.
In favour of a more concise exposition and in order to emphasize the theoretical constructions we
do not give any examples in these sections. Instead we apply the developed theory to the case of
G = Isom(Hn) in section II.3. We do so in a way that is geared towards the proof of the volume
rigidity theorem.
If not otherwise mentioned G denotes a locally compact second countable topological group and

n ≥ 2 in this chapter.

II.1. Continuous Cohomology

Let us present the key features of continuous cohomology in this section. Subsection II.1.1 gives a
first hands-on definition of continuous cohomology omitting completely a functorial point of view
and without any homological algebra. In subsection II.1.2 we then introduce some important no-
tions of homological algebra and present the functorial characterization of continuous cohomology
in terms of strong resolutions by relatively injective G-modules. Based on this functorial charac-
terization we will then give some resolutions in subsection II.1.3, which will be important in the
context of the volume rigidity theorem later on.
Our main reference for this section is [Gui80]. We will make extensive use of the terminology of

G-modules as discussed in section B.1 of the appendix.

II.1.1. Naive Definition

Let (π,E) be a G-module. We shall frequently omit the actual representation π, if there is no
ambiguity, i.e. π(g)v = gv for all g ∈ G and v ∈ E.
Let q ≥ 0. Consider the spaces of continuous functions on Gq+1 with values in E

C(Gq+1, E) := {f : Gq+1 → E : f is continuous}.

C(Gq+1, E) itself becomes a G-module via the left regular representation

(λπ(g)f)(g0, . . . , gq) := π(g)f(g−1g0, . . . , g
−1gq) (II.1)

for f ∈ C(Gq+1, E) and g, g0, . . . , gq ∈ G. If it is clear from the context we shall simply write g · f
instead of λπ(g)f in the following.
We can consider the subspaces of G-invariant functions

C(Gq+1, E)G := {f : Gq+1 → E : f is continuous and g · f = f}
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Note that g · f = f reads

gf(g0, . . . gq) = f(gg0, . . . , ggq) ∀g, g0, . . . , gq ∈ G

For that reason elements of C(Gq+1, E)G will be called G-equivariant. Moreover if (π,E) is a
trivial G-module, i.e. π(g)v = gv = v for all g ∈ G, v ∈ E, an element of C(Gq+1, E)G will be called
G-invariant.
We now define the homogeneous coboundary operator dq : C(Gq+1, E) → C(Gq+2, E) via

dq+1(f)(g0, . . . , gq+1) =

q+1∑
i=0

(−1)if(g0, . . . , ĝi, . . . , gq+1)

where the hat indicates omission of the variable underneath. We shall simply write d if q is
understood. It is easy to check, that d is indeed a G-morphism and hence restricts to the subspace
of invariants

d : C(Gq+1, E)G → C(Gq+2, E)G

A standard calculation shows that d ◦ d = 0 which yields the following cochain complex

0 → C(G,E)G → C(G2, E)G → . . .→ C(Gq+1, E)G → C(Gq+2, E)G → . . .

The continuous cohomology H•
c (G,E) of G with coefficients in E is the cohomology of the above

cochain complex

Hq
c (G,E) =

ker{dq+1 : C(Gq+1, E)G → C(Gq+2, E)G}
im{dq : C(Gq, E)G → C(Gq+1, E)G}

.

Pullback

Let H be another locally compact second countable topological group and ρ : H → G a con-
tinuous homomorphism. Pulling back functions on Gq+1 via ρ yields the so-called pullback ρ∗ :
C(Gq+1, E) → C(Hq+1, E)

(ρ∗f)(h0, . . . , hq) := f(ρ(h0), . . . , ρ(hq)) (II.2)

for f ∈ C(Gq+1, E) and h0, . . . , hq ∈ H. Precomposing the G-representation π on E with ρ turns
the G-module (π,E) into the H-module (πρ,E); or shorter ρ∗E.
Observe that for a G-equivariant function f ∈ C(Gq+1, E)G the image ρ∗(f) is H-equivariant

with respect to the induced representation πρ : H → G→ Aut(E). Indeed,

(λπ◦ρ(h)(ρ
∗f))(h0, . . . , hq) = π(ρ(h))(ρ∗f)(h−1h0, . . . , h

−1hq) (II.3)
= π(ρ(h))f(ρ(h−1h0), . . . , ρ(h

−1hq)) (II.4)
= π(ρ(h))π(ρ(h−1))f(ρ(h0), . . . , ρ(hq)) (II.5)
= ρ∗f(h0, . . . , hq) (II.6)

Hence ρ∗ : C(Gq+1, E) → C(Hq+1, E) restricts to a map on the subspaces of invariants

ρ∗ : C(Gq+1, E)G → C(Hq+1, ρ∗E)H

One immediately checks that it also commutes with the homogeneous coboundary operator d,
i.e. ρ∗ ◦ d = d ◦ ρ∗, and thus induces a pullback on cohomology

ρ∗ : H•
c (G,E) → H•

c (H, ρ
∗E)
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II.1.2. Functorial Characterization

Basic Definitions

We will start with some notions from ordinary homological algebra in the category of LCTVS and
G-modules. For the basics on LCTVS and G-modules we refer to section B.1 in the appendix.

A complex (E•, d•) of G-modules, or complex for short, is a Z-indexed sequence

· · · En−1 En En+1 · · ·
dn dn+1

of G-modules En and G-morphisms dn such that dn+1 ◦ dn = 0 for all n ∈ Z. The G-morphisms
dn are called differentials or coboundary operators, and elements of En are referred to as cochains
of degree n. A right complex is a complex (E•, d•) such that En = 0 for all n < 0, and will also
be considered as a N0-indexed sequence. A complex (E•, d•) is also said to start at degree k ∈ Z if
En = 0 for all n < k.

Remark II.1.1. As in our ”naive definition” in the previous section we will most of the time omit
the superscript and simply write d instead of dn. In diagrams we will often drop this label altogether
and content ourselves with a horizontal arrow. Accordingly, we denote the comples (E•, d•) simply
by E•.

A complex (E•, d•) is said to be exact at degree k ∈ Z if ker(dk+1) = im(dk). If a complex is
exact at every degree, we simply call it exact or sometimes an exact sequence.
A complex E• is said to have a property P whenever all En (n ∈ Z) share the property P.
By E•G we denote the subcomplex

· · · (En−1)
G

(En)G (En+1)
G · · ·

of G-invariants.
A morphism of complexes α• : E• → F • is a sequence αn (n ∈ Z) of morphisms En → Fn such

that the diagram

· · · En−1 En En+1 · · ·

· · · Fn−1 Fn Fn+1 · · ·

αn−1 αn αn+1

commutes. A G-morphism of complexes is a morphism of complexes consisting of G-morphisms.
The identity and zero morphisms of complexes are simply denoted by Id and 0 respectively.
If α• and β• are two morphisms of complexes from (E•, d•) to (F •, ∂•), a homotopy σ• from α•

to β• is a sequence of morphisms σn : En → Fn−1 (n ∈ Z) such that

∂nσn + σn+1dn+1 = βn − αn

for all n ∈ Z, as depicted in the diagram
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· · · En−1 En En+1 · · ·

· · · Fn−1 Fn Fn+1 · · ·

When such a homotopy exists, then α• is said to be homotopic to β•. This definition is an equiva-
lence relation since the definition of homotopies is additive. Notice that by definition α• is homo-
topic to β• if and only if the zero morphism of complexes is homotopic to β• −α•. A morphism of
complexes is said to be null homotopic if it is homotopic to zero.

Remark II.1.2. Given three complexes A•, B•, C• and morphisms α : A• → B•, β•1 , β•2 : B• → C•

where β•1 and β•2 are supposed to be homotopic via h• : B• → C•−1, it is easy to check that

H• := h• ◦ α• : A• → C•−1

is a homotopy between β•1 ◦ α• and β•2 ◦ α•, i.e. they are homotopic morphisms.

A morphism of complexes α• : E• → F • is called a homotopy equivalence if there is a morphism
of complexes β• : F • → E• such that α•β• and β•α• are homotopic to the identity morphism of
the respective complexes.
A complex E• is said to admit a contracting homotopy h• if h• is a homotopy from 0 : E• → E•

to id : E• → E•. We want to emphasize, that h• is not necessarily a G-morphism. We call a
complex E• strong if it admits a contracting homotopy.
The n-th cohomology space of a complex (E•, d•) is by definition the quotient

Hn(E•) = Hn(E•, d•) = ker(dn+1)/im(dn)

Any morphism of complexes α• : E• → F • induces a sequence of continuous linear maps

αn : Hn(E•) → Hn(F •)

as is known from usual homological algebra. The morphism of complexes α• is called a homologism
if the induced map αn is an isomorphism of topological vector spaces for all n ∈ Z ; G-homologisms
are defined accordingly.
It follows from the definition of homotopies that homotopic morphisms of complexes induce

identical maps in cohomology, so that in particular any homotopy equivalence is a homologism.

Remark II.1.3. Observe that G-morphisms of complexes E• → F • as well as G-homotopies restrict
to the continuous subcomplexes and restrict further to morphisms of complexes and homotopies
(E•)G → (F •)G of the subcomplex of invariants. In particular, a G-homologism E• → F • induces
a homologism (E•)G → (F •)G.

Let E be a G-module, (E•, d•) a right complex of G-modules and a : E → E0 a G-morphism,
such that

0 E E0 E1 E2 · · ·
a d1 d2 d3

is an exact complex (starting at degree −1). Then the latter complex is called an (augmented)
resolution of E and is denoted by (a, E•). The G-morphism a : E → E0 is then called the
augmentation.
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Definition II.1.4. Let E, F be LCTVS. An injective morphism ι : E → F is called strongly
injective if it admits a left-inverse morphism, i.e. a continuous linear map σ : F → E such that
σ ◦ ι = id.

Definition II.1.5. A G-module E is relatively injective if for every strongly injective G-morphism
ι : A→ B of G-modules A,B and every G-morphism α : A→ E there is a G-morphism β : B → E
satisfying βι = α.

A B

E

ι

α ∃β

σ

If there is any ambiguity as to the group, we say that E is G-relatively injective.

Statement of the Functorial Characterization

We are now in a position to state the key theorem and some important lemmas in view of the
functorial characterization of continuous cohomology in terms of strong resolutions by relatively
injective G-modules.

Lemma II.1.6. Let A and B be G-modules. Further let

0 A A0 A1 A2 · · ·
a d1 d2 d3

be a strong resolution of A and

0 B B0 B1 B2 · · ·
b ∂1 ∂2 ∂3

a complex of relatively injective G-modules beginning at degree −1. Then for any G-morphism
α : A → B there exists a G-morphism of complexes α• : A• → B• such that the following diagram
commutes

0 A A0 A1 A2 · · ·

0 B B0 B1 B2 · · ·

a d1 d2 d3

b ∂1 ∂2 ∂3

α−1 = α α0 α1 α2

Proof. See [Gui80, Proposition 1.1 (i),p. 176].

Definition II.1.7. In the situation of Lemma II.1.6, one says that the G-morphism α extends to
a G-morphism of complexes, and α• is called an extension of α.

Lemma II.1.8. Keep the notation of Lemma II.1.6 and Definition II.1.7. Then any two extensions
of α are G-homotopic.
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Proof. See [Gui80, Proposition 1.1 (ii),p. 176].

Putting these together we get a lemma similar to one from standard homological algebra.

Lemma II.1.9. Let (a, E•) and (b, F •) be two strong resolutions of a G-module E by relatively
injective G-modules. Then there is a G-homotopy equivalence E• → F • which induces a canonical
isomorphism of topological vector spaces

Hn(E•G) ∼= Hn(F •G)

for all n ≥ 0.
In particular this canonical isomorphism is given by a restriction to the subcomplexes of invariants

E•G and F •G of an extension of the identity morphism E → E to the strong augmented resolutions
(a, E•) and (b, F •).

Proof. The proof is standard and an immediate consequence of Lemma II.1.6 and Lemma II.1.8.
We shall give a similar proof in the setting of bounded cohomology later (cf. Lemma II.2.15). Of
course there is also a reference for this result: [Gui80, Corollaire 1.1, p. 177].

We now have to fit our previous definition of continuous cohomology as the cohomology of the
cochain complex

0 C(G,E)G C(G2, E)G C(G3, E)G · · ·
d1 d2 d3

into the new more abstract framework of strong resolutions by relatively injective G-modules. The
next proposition establishes this link.

Proposition II.1.10. Let E be a G-module. Then

0 E C(G,E) C(G2, E) C(G3, E) · · ·
ε d1 d2 d3

is a strong augmented resolution of E by relatively injective G-modules, where the augmentation
ε : E → C(G,E) is given by

ε(v)(g) := v

for all v ∈ E, g ∈ G and d• is the usual homogeneous coboundary operator.

Proof. See [Gui80, Proposition 1.2, p. 179].

Definition II.1.11. The resolution (ε, C(G•, E)) appearing in Proposition II.1.10 is called the
homogenoeus standard resolution and the map ε : E → C(G,E) the standard coefficient inclusion
or standard augmentation.

Summarizing the previous results we get the following functorial characterization of continuous
cohomology.

Theorem II.1.12. Let E be a G-module. Then:

(i) There exists a strong resolution of E by relatively injective G-modules.

(ii) For any strong resolution (a, E•) of E by relatively injective Banach G-modules, the coho-
mology Hn(E•G) of the complex E•G of invariants is canonically isomorphic, as a topological
vector space, to the continuous cohomology Hn

c (G,E) for all n ≥ 0.
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Proof. Proposition II.1.10 establishes (i). Lemma II.1.9 implies (ii) since we may take for (b, F •)
the homogeneous standard resolution (ε, C(G•, E)).

As an immediate consequence we get the following corollary.

Corollary II.1.13. Let E be a relatively injective G-module. Then

H•
c (G,E) = 0

Proof. We can simply consider the following trivial strong augmented resolution of E by relatively
injective G-modules

0 E E 0 · · ·
id

Clearly the cohomology induced by this resolution vanishes and hence by Theorem II.1.12

H•
c (G,E) = 0

as asserted.

II.1.3. More Resolutions

The advantage of a functorial characterization of a cohomology theory is, that one usually gets
many resolutions and hence many complexes to compute the cohomology with. We are going to
present some of them here. For the sake of simplicity, and because we are not going to need any
other resolutions later on, we content ourselves with resolutions of real G-modules (π,R). In the
following we will often omit the concrete representation π and simply write R. If we want to stress
that R might not be the trivial G-module we write Rπ.

Remark II.1.14. Note that for a G-module (π,R) we have Aut(R) ∼= R× and via this isomorphism
the action π(g)t can be understood as multiplication π(g) · t for all g ∈ G, t ∈ R.

The Resolution (ε, C((G/K)•,Rπ))

Our first example of a resolution is a generalization of our standard homogeneous resolution in
some sense.
Let K < G be a compact subgroup. Denote X = G/K and p : G → X = G/K the canonical

projection given by p(g) = gK for g ∈ G. Then G acts canonically from the left on X via

g · (hK) = ghK

for g, h ∈ G. Consider the space of continuous functions on Xn+1

C(Xn+1,Rπ) := {f : Xn → R continuous}

which becomes a LCTVS via the topology of uniform convergence on compact subsets of Xn

(n ∈ N0). We can endow C(Xn+1,Rπ) with a G-module structure via the so-called left regular
representation λπ

(λπ(g)f)(x0, . . . , xn) := π(g)f(g−1x0, . . . , g
−1xn)

for f ∈ C(Xn+1,Rπ), x0, . . . , xn ∈ X and g ∈ G.
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In great analogy to our naive definition of continuous cohomology we also define a homogeneous
coboundary operator dn : C(Xn+1,Rπ → C(Xn+2,Rπ) given by the formula

(dnf)(x0, . . . , xn + 1) =
n+1∑
i=0

(−1)if(x0, . . . , x̂i, . . . , xn+1)

for f ∈ C(Xn+1,Rπ), x0, . . . , xn+1 ∈ X, where the hat again indicates omission of the variable
underneath.
Finally we define an augmentation ε : Rπ → C(X,Rπ)

ε(t)(x0) = t

for t ∈ R, x0 ∈ X and get a strong resolution of Rπ by relatively injective G-modules:

Proposition II.1.15. Let K < G be a compact subgroup. Then the complex

0 Rπ C(G/K,Rπ) C((G/K)2,Rπ) C((G/K)3,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective G-modules.
Moreover the cohomology of the complex

0 C(G/K,Rπ)
G C((G/K)2,Rπ)

G C((G/K)3,Rπ)
G · · ·

d1 d2 d3

is canonically isomorphic to H•
c (G,Rπ).

Proof. This is [Gui80, Proposition 2.3, p. 187], although they adopt a slightly different notation.
The G-modules under consideration in [Gui80] are the spaces C(Gn+1,Rπ)K of continuous functions
f ∈ C(Gn+1,R) satisfying

f(g0k0, . . . , gnkn) = f(g0, . . . , gn)

for all g0, . . . , gn and k0, . . . , kn ∈ K.
However it is easy to see that the maps

ϕn : C((G/K)n+1,Rπ) → C(Gn+1,Rπ)

f 7→ ((g0, . . . , gn) 7→ f(g0K, . . . , gnK))

constitute a G-isomorphism ϕ• of complexes.

The Resolution (ε,Ω•(G/K,Rπ))

Now let G be a Lie group with a finite number of connected components and K < G a maximal
compact subgroup. Then the homogeneous space M = G/K is a smooth manifold on which G acts
via diffeomorphisms. We can consider the complex of differential forms (Ω•(M,Rπ), d

•) where the
coboundary operator is given as usual by exterior derivative. For every n ∈ N0 the vector space
Ωn(M,Rπ) becomes a LCTVS much like the space of smooth functions by using local coordinates
and uniform convergence of every derivative on compact subsets.
A G-module structure is now given by

(g · α) = π(g)
[
(g−1)∗α

]
for g ∈ G, α ∈ Ωn(M,Rπ), where the application of π(g) ∈ Aut(R) ∼= R× is thought of as
multiplication and (g−1)∗ denotes the pullback (cf. [Gui80, § E.3, p. 364]).
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By defining an augmentation ε : Rπ → Ω0(M,Rπ) ∼= C∞(M,R) via

ε(t)(x0) = t

for every t ∈ R and x0 ∈ M , we get a strong augmented resolution of Rπ by relatively injective
G-modules:

Proposition II.1.16. Let G be a Lie group with a finite number of connected components and let
K < G be a maximal compact subgroup. Then the complex

0 Rπ Ω0(G/K,Rπ) Ω1(G/K,Rπ) Ω2(G/K,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective G-modules.
Moreover the cohomology of the complex

0 Ω0(G/K,Rπ)
G Ω1(G/K,Rπ)

G Ω2(G/K,Rπ)
G · · ·

d1 d2 d3

is canonically isomorphic to H•
c (G,Rπ).

Proof. See [Gui80, Proposition 7.2, p. 224].

Connection to Singular Cohomology

There is a nice relation between the continuous cohomology of a discrete group and covering theory,
which we want to present here briefly. For a discussion of singular cohomology see section D.2 in
the appendix.
Let X be a contractible topological space and Γ a group (with the discrete topology). Assume

that Γ acts on X freely and denote by Y = Γ\X the resulting quotient space with the quotient map
π : X → Y . Finally let us assume that π : X → Y is a covering and hence the universal covering
of Y . Basic covering theory asserts that we may now identify Γ with the fundamental group of Y
resp. the group of Deck transformations of π : X → Y ; Γ ∼= π1(X) ∼= Deck(π).
Thus one may ask for the relation between the continuous cohomology of Γ and the singular

cohomology of Y . The next proposition gives a very satisfying answer.

Proposition II.1.17. We keep the above notation.
Then H•

c (Γ,R) ∼= H•(Y ), where R denotes the trivial Γ-module.

Proof. See [Gui80, Proposition 14.1., p. 93].

51



II. Cohomology

II.2. Continuous Bounded Cohomology
Let us now turn to continuous bounded cohomology. Our treatment of continuous bounded coho-
mology will be in great analogy to the previous section II.1 on continuous cohomology facilitating a
direct comparison of both theories. Therefore we will again start with a naive definition of continu-
ous bounded cohomology and its important features such as the pullback map and the comparison
map in subsection II.2.1. After that we give the functorial characterization of bounded cohomol-
ogy in terms of strong resolutions by relatively injective Banach G-modules in subsection II.2.2
and present some resolutions to compute it from in subsection II.2.3. Finally we revisit the naive
definitions of the pullback map and the comparison map and put them in the functorial framework
in subsections II.2.4/II.2.5 and II.2.6 respectively. Especially the realizations of the pullback via
equivariant boundary maps as discussed in subsection II.2.5 will play a prominent role in the proof
of the volume rigidity theorem.
Our main reference for this section is [Mon01]. However to us every Banach space will be over

R and not C as in [Mon01]. Gladly this makes no significant difference for the theory as one sees
in the associated papers [BM02] and [BI02], or in the classical treatment of bounded cohomology
of discrete groups in [Iva87].
We will use the notion of Banach G-modules extensively in this section and refer to section B.2

in the appendix for more details.

II.2.1. Naive Definition
For the rest of this section let E be a Banach G-module and q ∈ N0. We may now similarly to
the definition of continuous cohomology consider the space of bounded continuous functions from
Gq+1 to E

Cb(G
q+1, E) := {f : Gq+1 → E : f continuous and bounded } ⊂ C(Gq+1, E).

Putting the sup-norm on Cb(G
q+1, E)

‖f‖ := sup{‖f(g0, . . . , gq)‖ : g0, . . . , gq ∈ G} ∀f ∈ Cb(G
q+1, E)

it is easy to check, that this space becomes a Banach space. Evidently the left regular representation
λπ in (II.1) of C(Gq+1, E) restricts to an isometric action on Cb(G

q+1, E) and hence induces a
Banach G-module structure on the latter.
Moreover also the homogeneous coboundary operator dq+1 : C(Gq+1, E) → C(Gq+2, E) restricts

to dq+1 : Cb(G
q+1, E) → Cb(G

q+1, E). Again dq+1 is a G-morphism and hence gives a map between
the invariant spaces

dq+1 : Cb(G
q+1, E)G → Cb(G

q+2, E)G

and we get the (sub-)complex of cochains

0 → Cb(G,E)G → Cb(G
2, E)G → . . .→ Cb(G

q+1, E)G → Cb(G
q+2, E)G → . . .

Now the continuous bounded cohomology H•
cb(G,E) of G with coefficients in E is the cohomology

of this cochain complex

Hq
cb(G,E) =

ker{dq+1 : Cb(G
q+1, E)G → Cb(G

q+2, E)G}
im{dq : Cb(Gq, E)G → Cb(Gq+1, E)G}

Since it is a quotient of Banach spaces, H•
cb(G,E) carries a semi-norm

‖α‖ := inf{‖f‖ : f ∈ α} ∀α ∈ Hq
cb(G,E)

This is indeed only a semi-norm and not a norm, since im(dq) ⊂ Cb(G
q+1, E)G is in general not

closed.
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Remark II.2.1. In other literature on bounded cohomology the q-th bounded cohomology group of
a discrete group Γ with coefficients in a Banach Γ-module E is sometimes denoted by Hq

b (Γ, E)
omitting the additional ”c” in the subscript. Of course this makes sense if one is only interested in
discrete groups as in that case every function on Γq+1 is continuous. However we are going to deal
with non-discrete topological groups later on, e.g. Isom(Hn). Therefore we want to be consistent in
our notation and keep the ”c” in the subscript for discrete groups as well.

Pullback

Given another locally compact second countable topological group H and a continuous homo-
morphism ρ : H → G the pullback map ρ∗ : C(Gq+1, E) → C(Hq+1, E) from (II.2) restricts to
ρ∗ : Cb(G

q+1, E) → Cb(H
q+1, E).

As for continuous cohomology we can endow the Banach G-module (π,E) with a Banach H-
module structure via precomposition by ρ. Indeed, this is a Banach module since π ranges in
the linear isometries of E and therefore π ◦ ρ does as well. We shall denote the resulting Banach
H-module by (πρ,E), ρ∗E or simply E as well (cf. section B.2.2 in the appendix).
By the very same computation as in (II.3) we verify that ρ∗(Cb(G

q+1, E)G) ⊂ Cb(H
q+1, E)H such

that the pullback map induces a map at the cochain level

ρ∗ : Cb(G
q+1, E)G → Cb(H

q+1, E)H

One easily verifies that it commutes with the homogeneous coboundary operator as for continuous
cohomology. Thus ρ∗ induces a map at the cohomology level

ρ∗ : H•
cb(G,E) → H•

cb(H, ρ
∗E)

Further ρ∗ is does not increase the semi-norm. Indeed, at the cochain level

|ρ∗f(h0, . . . , hq)| = |f(ρ(h0), . . . , ρ(hq))| ≤ ‖f‖

for all f ∈ Cb(G
q+1, E)G and h0, . . . , hq ∈ H. Hence at the cohomology level

‖ρ∗α‖ = inf{‖f‖ : f ∈ ρ∗α}
≤ inf{‖ρ∗f ′‖ : f ′ ∈ α}
≤ inf{‖f ′‖ : f ′ ∈ α} = ‖α‖

for every cohomology class α ∈ Hq
cb(G,E).

The Comparison Map c : H•
cb(G,E) → H•

c (G, CE)

First observe that any continuous Banach G-module, such as CE (cf. Definition B.2.11), is also a
G-module in the sense of continuous cohomology (cf. Remark B.2.9). Therefore H•

c (G, CE) is well
defined.
Further the following holds.

Lemma II.2.2. Cb(G
•+1, E)G = Cb(G

•+1, CE)G

Proof. Let q ∈ N0 and f ∈ Cb(G
q+1, E)G. It is sufficient to show, that f ranges in CE. We want

to apply Lemma B.2.10.
Let x ∈ Gq+1 and let (gα)α∈A be a net in G converging to the neutral element e ∈ G. Then

‖π(gα)f(x)− f(x)‖ = ‖π(gα)f(x)− π(gα)f(g
−1
α x)‖ = ‖f(x)− f(g−1

α x)‖ → 0

which shows that f(x) is indeed in CE.
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Therefore we can consider the inclusion

Cb(G
q+1, E)G = Cb(G

q+1, CE)G ↪→ C(Gq+1, CE)G

Since both cochain complexes use the very same homogeneous coboundary operator d the inclusion
is actually a map between cochain complexes, i.e. commutes with d.
The induced map in cohomology is called the comparison map c : H•

cb(G,E) → H•
c (G, CE).

Remark II.2.3. Although Cb(G
q+1, CE)G ↪→ C(Gq+1, CE)G is injective, this does not imply, that

also c : H•
cb(G,E) → H•

c (G,E) is injective!

Remark II.2.4. Observe that one could also apriori consider the cochain complex

0 → C(G,E)G → C(G2, E)G → · · ·

and its cohomologyH•(C(G•+1, E)G). The advantage is, that one gets immediately a mapH•
cb(G,E) →

H•(C(G•+1, E)G) induced by the inclusion Cb(G
•+1, E)G ↪→ C(G•+1, E)G. However one now has

to prove that H•(C(G•+1, E)G) = H•
c (G, CE). This can be achieved by a lemma similar to Lemma

II.2.2 (cf. [Mon01, Proposition 9.1.3., p.120]). [Mon01] takes this approach and even gives a ”new”
definition of continuous cohomology by the above cochain complex. Nevertheless this appears to be
somewhat unnatural and thus we chose our slightly different treatment of the comparison map. It
is easy to see that both approaches yield the same comparison map in cohomology.
Finally we want to note that all these distinctions become completely irrelevant when we consider

an apriori continuous Banach G-module, since then CE = E. This will be the case in our application
of the theory later on, where we will only be concerned with continuous (Banach) G-modules (π,R).
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II.2.2. Functorial Characterization

As for continuous cohomology there is also a functorial characterization of continuous bounded
cohomology as developed by Burger and Monod in [BM02] and [Mon01]. This will provide us with
easier to compute cochain complexes.
We follow here essentially section III.7 in [Mon01].

Basic Definitions

We want to use the same terminology of homological algebra as for continuous cohomology. By
replacing G-modules by Banach G-modules in the definitions of section II.1.2 we get the notions
for complexes, morphisms between those, resolutions etc. Instead of repeating every definition and
terminology with Banach G-modules instead of G-modules, we will only point out the differences.
Most of these differences arise for two reasons. First, in our definition of Banach G-modules we

had no continuity assumption on the action whatsoever. In order to remedy this one considers
maximal continuous submodules instead (cf. Definition B.2.11). Second, a good theory of bounded
cohomology has to take care of the semi-norm and hence some of the occuring morphisms should
at least not increase the norm. This leads to a slightly different definition of relative injectivity for
Banach G-modules. Let us now delve into the details.
Let (E•, d•) by a complex of Banach G-modules. By Lemma B.2.13 the coboundary operators

restrict to the continuous submodules CE• and we get a continuous subcomplex

· · · CEn−1 CEn CEn+1 · · ·

The coboundary operator restricts even further to the sub-sub-complex E•G of invariants

· · · (En−1)
G

(En)G (En+1)
G · · ·

Note that by Lemma B.2.14 we have (CE•)G = (E•)G such that it is not important, whether we
take the invariants of the original complex or its maximal continuous subcomplex.
As before the cohomology of a complex (E•, d•) is defined as the quotient spaces

Hn(E•) = ker(dn+1)/im(dn)

However this time we may equip this quotient space with the usual quotient semi-norm

‖α‖ := inf{‖v‖ : v ∈ α} ∀α ∈ Hn(E•)

Recall that a complex of G-modules E• is said to admit a contracting homotopy, if there is a
homotopy h• from id : E• → E• to 0 : E• → E•. In the case of Banach G-modules we require
more, namely that additionally ‖hn‖ ≤ 1 for every n ∈ Z.
Now a complex of Banach G-modules E• is called strong, if its maximal continuous subcomplex

CE• admits a contracting homotopy. This terminology applies now to resolutions (a, E•), i.e. such
a resolution is strong if the restricted resolution (a, CE•) admits a contracting homotopy (in the
sense of Banach G-modules).

Remark II.2.5. Although the notion of a complex with a contracting homotopy does not depend
on the group G considered, the concept of strong complex does, because CE• depends on the group.
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Remark II.2.6. The definition of a strong resolution in [Iva87] appears to be more restrictive than
ours, since a resolution (a, E•) is only strong in the sense of [Iva87], if the whole complex admits a
contracting homotopy and not only the subcomplex (a, CE•) of continuous Banach G-modules (cf.
[Iva87, p. 1099]). However [Iva87] is only concerned with discrete groups, such that E• = CE• and
the definitions in fact coincide.

Also the notion of strongly injective morphisms is different and even replaced by the notion of
admissible morphisms.

Definition II.2.7. A morphism η : A → B of Banach spaces is admissible if there is a morphism
σ : B → A with ‖σ‖ ≤ 1 and ηση = η.
A G-morphism of Banach G-modules is said to be admissible if the underlying morphism is so.

This fits also well into the context of G-modules as in the theory of continuous cohomology, as we
regain our definition of a strongly injective morphism by simply dropping the norm requirement.

Remark II.2.8. Observe that if η is an injective G-morphism, it is admissible, if and only if
it admits a left inverse morphism σ satisfying ‖σ‖ ≤ 1. This being said an injective admissible
G-morphism η is strongly injective as defined in [Iva87].

As we mentioned before the definition of relatively injective modules changes in order to take
care of the semi-norm.

Definition II.2.9. A Banach G-module E is relatively injective if for every injective admissible
G-morphism ι : A → B of continuous Banach G-modules A,B and every G-morphism α : A → E
there is a G-morphism β : B → E satisfying βι = α and ‖β‖ ≤ ‖α‖.

A B

E

ι

α ∃β

σ

If there is any ambiguity as to the group, we say that E is G-relatively injective.

Observe that by replacing ”injective admissible” by ”strongly injective” – in accordance with
what we have said before – and dropping the norm requirement ”‖β‖ ≤ ‖α‖” we get back the
definition of relative injectivity in the sense of continuous cohomology.

Remark II.2.10. This definition coincides in view of Remark II.2.8 with the definition of relatively
injective G-modules in [Iva87].
Note that there is a typo in [Iva87] in the corresponding definition. Instead of ”[…] and ‖β‖ ≤ ‖σ‖

[…]” (p. 1098) it should say ‖β‖ ≤ ‖α‖. It is clear, that this is what was meant here in view of the
proof of the following up Lemma (3.2.2).

Lemma II.2.11. A Banach G-module E is relatively injective if and only if CE is so.

Proof. See [Mon01, Lemma 4.1.5, p. 32].
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Statement of the Functorial Characterization

We are now in a position to state the key theorem and some important lemmas in view of the
functorial characterization of continuous bounded cohomology by strong resolutions of relatively
injective Banach G-modules. The analogies to continuous cohomology are evident.

Lemma II.2.12. Let A and B be Banach G-modules. Further let

0 A A0 A1 A2 · · ·
a d1 d2 d3

be a strong resolution of A and

0 B B0 B1 B2 · · ·
b ∂1 ∂2 ∂3

a complex of relatively injective Banach G-modules beginning at degree −1. Then for any G-
morphism α : A→ B there exists a G-morphism of complexes α• : A• → B• such that the following
diagram commutes

0 A A0 A1 A2 · · ·

0 B B0 B1 B2 · · ·

a d1 d2 d3

b ∂1 ∂2 ∂3

α−1 = α α0 α1 α2

Proof. This is [Mon01, Lemma 7.2.4, p. 70].

Definition II.2.13. In the situation of Lemma II.2.12, one says that the G-morphism α extends
to a G-morphism of complexes, and α• is called an extension of α.

Lemma II.2.14. Keep the notation of Lemma II.2.12 and Definition II.2.13. Then any two
extensions of α are G-homotopic.

Proof. See [Mon01, Lemma 7.2.6, p. 71].

Putting these together we get a lemma familiar to one from standard homological algebra.

Lemma II.2.15. Let (a, E•) and (b, F •) be two strong resolutions of a Banach G-module E by
relatively injective Banach G-modules. Then there is a G-homotopy equivalence CE• → CF • which
induces a canonical isomorphism of topological vector spaces

Hn(E•G) ∼= Hn(F •G)

for all n ≥ 0.
In particular this canonical isomorphism is given by a restriction to the subcomplexes of invari-

ants E•G and F •G of an extension of the identity morphism CE → CE to the strong augmented
resolutions (a, CE•) and (b, CF •).

Proof. As we have already mentioned before we get via restriction (cf. Lemma B.2.13) strong
resolutions (a, CE•), (b, CF •) of CE. Since (a, E•) and (b, F •) are strong augmented resolutions
of E by relatively injective Banach G-modules, also (a, CE•) and (b, CF •) are strong augmented
resolutions of CE by relatively injective Banach G-modules (cf. Lemma II.2.11).
Hence by Lemma II.2.12 there is a G-morphism of complexes α• : CE• → CF • extending the

identity morphism id : CE → CE
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0 CE CE0 CE1 CE2 · · ·

0 CE CF 0 CF 1 CF 2 · · ·

a

b

α−1 = id α0 α1 α2

Exchanging the roles of the two resolutions we get another extension β• : CF • → CE• of the
identity morphism id : CE → CE.

0 CE CF 0 CF 1 CF 2 · · ·

0 CE CE0 CE1 CE2 · · ·

b

a

β−1 = id β0 β1 β2

Therefore the composed G-morphism of complexes β•α• : CE• → CE• extends the identity
G-morphism id : CE → CE to the strong augmented resolution of CE given by (a, CE•). Clearly
the identity morphism of complexes id• : CE• → CE• extends the identity as well and hence β•α•

is G-homotopic to id• by Lemma II.2.14. In particular, β•α• restricted to the (non-augmented)
complex of invariants E•G is G-homotopic to the identity morphism of complexes and hence induces
the identity Hn(E•G) → Hn(E•G) for all n ≥ 0. Likewise, α•β• is G-homotopic to the identity,
such that α• and β• are G-homotopy equivalences.
In particular, α• and β• restrict to homotopy equivalences between E•G and F •G and thus induce

topological isomorphisms Hn(E•G) ∼= Hn(F •G) for all n ≥ 0. These isomorphisms are canonical
because by Lemma II.2.14 any choice of extensions α• and β• would amount to the same maps in
cohomology.

We now have to fit our previous definition of continuous bounded cohomology as the cohomology
of the cochain complex

0 Cb(G,E)G Cb(G
2, E)G Cb(G

3, E)G · · ·
d1 d2 d3

into the new more abstract framework of strong resolutions by relatively injective G-modules. The
next proposition establishes this link.

Proposition II.2.16. Let E be a Banach G-module. Then

0 E Cb(G,E) Cb(G
2, E) Cb(G

3, E) · · ·
ε d1 d2 d3

is a strong augmented resolution of E by relatively injective G-modules, where the augmentation
ε : E → Cb(G,E) is given by

ε(v)(g) := v

for all v ∈ E, g ∈ G and d• is the usual homogeneous coboundary operator.

Proof. See [Mon01, Corollary 7.4.7, p. 80].
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Definition II.2.17. The resolution (ε, Cb(G
•, E)) appearing in Proposition II.2.16 is called the

homogenoeus standard resolution and the map ε : E → Cb(G,E) the standard coefficient inclusion
or standard augmentation.

Summarizing the previous results we get the following functorial characterization of continuous
bounded cohomology.

Theorem II.2.18. Let E be a Banach G-module. Then:

(i) There exists a strong resolution of E by relatively injective Banach G-modules.

(ii) For any strong resolution (a, E•) of E by relatively injective Banach G-modules, the coho-
mology Hn(E•G) of the complex E•G of invariants is canonically isomorphic, as a topological
vector space, to the continuous bounded cohomology Hn

cb(G,E) for all n ≥ 0.

Proof. Proposition II.2.16 establishes (i). Lemma II.2.15 implies (ii) since we may take for (b, F •)
the homogeneous standard resolution (ε, Cb(G

•, E)).

As for continuous cohomology we get the following immediate corollary.

Corollary II.2.19. Let E be a relatively injective Baanch G-module. Then

H•
cb(G,E) = 0

Proof. The proof given for continuous cohomology works verbatim (cf. Corollary II.1.13).

With some further investigation of relative injectivity it is possible to show, that the trivial
Banach G-module R is relatively injective, if G is amenable (cf. Definition C.1.1). This observation
is crucial to us and one of the ingredients of bounded cohomology, that enable us to even define
the volume of a representation later on.

Corollary II.2.20. If G is amenable, then the trivial Banach G-module R is relatively injective.
In particular

H•
cb(G,R) = 0.

Proof. See for example [Mon01, Corollary 5.4.1, p. 46] or for a more versatile approach dealing
with coefficient G-modules [Mon01, Theorem 5.6.1, p. 55] resp. [BM02, Theorem 2.2.4, p. 31]. For
the latter the assertion follows putting E = R and observing that a mean L∞(G,R) → R exists
simply by the invariant mean property of amenable groups (cf. Definition C.1.1).

We want to emphasize that the canonical isomorphism of Theorem II.1.12 (ii) is purely topological
and does not take into account the semi-norms on Hn(E•) and Hn

cb(G,E). The next theorem shows,
that this canonical isomorphism does not increase the semi-norm.

Theorem II.2.21. Let E be a Banach G-module and (a, E•) a strong augmented resolution of E
by relatively injective Banach G-modules. Then the canonical isomorphism

Hn(E•G) → Hn
cb(G,E)

granted by Theorem II.1.12 does not increase the norm for all n ≥ 0.

Proof. This is [Mon01, Theorem 7.3.1,p. 74]. Actually [Mon01] shows this for a different standard
resolution than ours (cf. Remark II.2.23). This difference however is rendered irrelevant by [Mon01,
Corollary 7.4.7, p. 80] and our next lemma. Also compare Remark II.2.23.
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The fact that we get only a semi-norm non-increasing isomorphism out of the general theory might
by disappointing at first. However we will encounter in the next subsection several resolutions,
which actually guarantee a canonical isometric isomorphism. The next lemma will state a trivial
but nonetheless important relation between such resolutions.
Lemma II.2.22. Let E be a Banach G-module. Let (a, A•), (b, B•) and (s, S•) be strong augmented
resolutions by relatively injective Banach G-modules. Denote by α• : H•(A•) → H•(S•), β• :
H•(B•) → H•(S•) and γ• : H•(A•) → H•(B•) the canonical isomorphisms in cohomology induced
by extensions of the identity id : CE → CE. If α• and β• are isometric, then also γ• is isometric.
Proof. Denote by

a• : CA• → CS•

b• : CB• → CS•

c• : CA• → CB•

the extensions of id : CE → CE to the according resolutions inducing the canonical isomorphisms
α•, β• and γ• respectively. Therefore b• ◦ c• : CA• → CS• is also an extension of the identity, hence
G-homotopic to a• : CA• → CS• and thus induces the same map in cohomology, i.e. α• = β• ◦ γ•.
Let n ≥ 0 and ω ∈ Hn(A•). We then get

‖γn(ω)‖ = ‖βn(γn(ω))‖ = ‖αn(ω)‖ = ‖ω‖

This concludes the proof.

Remark II.2.23. Most of the functorial characterization summarized in this section also works
for general topological groups. However care must be taken concerning our standard resolution. It
is still an augmented resolution of E by relatively injective Banach G-modules, but it is unclear
whether it is also a strong one. Instead one considers the inductively defined Banach G-modules
C•
b (G,E)

C0
b (G,E) := Cb(G,E), Cn

b (G,E) = Cb

(
G,Cn−1

b (G,E)
)

(n ∈ N)
which we can equip in an evident way with a Banach G-module structure. This is exactly the
approach taken in [Mon01] and they show in fact, that the resulting augmented resolution is strong.
It is tempting to ”identify” Cn

b (G,E) with Cb(G
n, E) via the map

An : Cn
b (G,E) → Cb(G

n+1, E)

defined by
(Anf)(x0, . . . , xn) = (· · · (f(x0)(x1) · · · ) (xn)

Although this gives indeed an isometric G-morphism, it is in general not surjective!

II.2.3. More Resolutions
We will now investigate some resolutions of a Banach G-module (π,R), since that is the only
important application of continuous bounded cohomology to us. Sometimes we will write Rπ in
order to emphasize, that R is not necessarily a trivial Banach G-module. All of these resolutions
work in a more abstract framework of general Banach G-modules (in case of the Cb-spaces) or
coefficient G-modules (in case of the L∞-spaces). However we will only work with the resolutions
of R later on. Although the notion of coefficient G-modules is important to the general theory of
continuous bounded cohomology, it is somewhat cumbersome and we omit it in favour of a more
concise exposition. We shall just note that any real Banach G-module (π,R) is in particular a
coefficient G-module. For details we refer to [Mon01].
Remark II.2.24. Note that for a Banach G-module (π,R) we have Iso(R) ∼= {±1} and via this
isomorphism the action π(g)t can be understood as multiplication π(g) · t for all g ∈ G, t ∈ R.
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Resolutions by Function Spaces

In this section we will encounter spaces of functions as Banach G-modules such as Cb(X
n,R),

L∞(G/H,R), …etc. The coboundary operator of the occuring resolutions will always be in a sense
the same and a natural generalization of our previous homogeneous coboundary operator:
Let X be a set, n ∈ N and denote by Map(Xn,R) = {f : Xn → R} the set of all maps from Xn

to R. We define the homogeneous coboundary operator dn : Map(Xn,R) → Map(Xn+1,R) via the
familiar formula

(dnf)(x0, . . . , xn) :=
n∑

i=0

(−1)if(x0, . . . , x̂i, . . . , xn), f ∈ Map(Xn,R);x0, . . . , xn ∈ X

where the hat over a variable means, that it is omitted. Note that this definition coincides with
our previous definition of the homogeneous coboundary operator in the standard resolution when
restricted to Cb(G

n+1,R).
We also generalize the standard augmentation in a similar fashion.

ε : R → Map(X,R)
t 7→ (x 7→ t)

In the following whenever we encounter a resolution by function spaces we mean by ε and d• the
above augmentation resp. coboundary operators restricted to the respective space of functions.

The first resolution by such function spaces is a generalization of our standard resolution. Let
X be a locally compact topological space with a continuous G-action. Then G acts via the usual
diagonal action also on Xn (n ∈ N). Consider the Banach space

Cb(X
n,R) := {f : Xn → R : f is continuous and bounded}

with the common supremum norm. We can endow it with a Banach G-module structure via the
left regular representation λπ

(λπ(g)f)(x1, . . . , xn) = π(g)f(g−1x1, . . . , g
−1xn)

for f ∈ Cb(X
n,Rπ), g ∈ G and x1, . . . , xn ∈ X. Under more restrictive assumptions on the G-action

and its quotient we get the following Theorem.

Theorem II.2.25. Let X be a locally compact topological space with continuous proper G-action
such that the quotient G\Xn+1 is paracompact for all n ≥ 0. Let (π,R) be a Banach G-module.
Then

0 Rπ Cb(X,Rπ) Cb(X
2,Rπ) Cb(X

3,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective Banach G-modules.
Moreover the cohomology of the complex

0 Cb(X,Rπ)
G Cb(X

2,Rπ)
G Cb(X

3,Rπ)
G · · ·

d1 d2 d3

is canonically isometrically isomorphic to H•
cb(G,Rπ).

Proof. See [Mon01, Theorem 7.4.5, p. 77].
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Corollary II.2.26. Let H < G be a closed subgroup and K < G a compact subgroup. Let (π,R)
be a Banach H-module. Then

0 Rπ Cb(G/K,Rπ) Cb((G/K)2,Rπ) Cb((G/K)3,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective Banach H-modules.
Moreover the cohomology of the complex

0 Cb(G/K,Rπ)
H Cb((G/K)2,Rπ)

H Cb((G/K)3,Rπ)
H · · ·

d1 d2 d3

is canonically isometrically isomorphic to H•
cb(H,Rπ).

Proof. See [Mon01, Corollary 7.4.10, p. 81].

The next important examples of resolutions by function spaces are the ones arising from L∞-
spaces. Let S be an amenable G-space (see Definition C.2.4). Then the space L∞(S,R) of all
essentially bounded function classes is a Banach space with the usual essential supremum norm.
Recall that we have an invariant measure class on S by definition of an amenable regular G-space
such that the notion of function classes up to null sets is well-defined. We get again a diagonal G-
action on Sn for n ∈ N (which is also amenable by Proposition C.2.8). Hence L∞(Sn,Rπ) becomes
a Banach G-module with the left regular representation λπ

(λπ(g)f)(x1, . . . , xn) = π(g)f(g−1x1, . . . , g
−1xn)

for f ∈ L∞(Sn,Rπ), g ∈ G and x1, . . . , xn ∈ S.
We then get:

Theorem II.2.27. Let S be an amenable regular G-space and (π,R) a Banach G-module. Then

0 Rπ L∞(S,Rπ) L∞(S2,Rπ) L∞(S3,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective Banach G-modules.
Moreover the cohomology of the complex

0 L∞(S,Rπ)
G L∞(S2,Rπ)

G L∞(S3,Rπ)
G · · ·

d1 d2 d3

is canonically isometrically isomorphic to H•
cb(G,Rπ).

Proof. See [Mon01, Theorem 7.5.3, p. 83].

Corollary II.2.28. Let G′,H < G be closed subgroups and (π,R) a Banach G-module. If H is
amenable, then

0 Rπ L∞(G/H,Rπ) L∞((G/H)2,Rπ) L∞((G/H)3,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective Banach G′-modules and the cohomology
of the complex
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0 L∞(G/H,Rπ)
G′

L∞((G/H)2,Rπ)
G′

L∞((G/H)3,Rπ)
G′ · · ·

d1 d2 d3

is canonically isomerically isomorphic to H•
cb(G

′,Rπ).

Proof. By Proposition C.2.7 the space S = G/H is an amenable regular G-space. By Lemma C.2.9
it is also an amenable regular G′-space. Finally by Proposition C.2.8 the productspaces Sn (n ∈ N)
are also amenable regular G′-spaces. The corollary now follows from Theorem II.2.27. See also
[Mon01, Corollary 7.5.9, p. 87].

By setting H = {1} and G′ = G we get that Hcb(G,Rπ) can be computed by an L∞-resolution
as well. This is the assertion of the following corollary.

Corollary II.2.29. Let (π,R) a Banach G-module. Then

0 Rπ L∞(G,Rπ) L∞(G2,Rπ) L∞(G3,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective Banach G-modules and the cohomology
of the complex

0 L∞(G,Rπ)
G L∞(G2,Rπ)

G L∞(G3,Rπ)
G · · ·

d1 d2 d3

is canonically isometrically isomorphic to H•
cb(G,Rπ).

Because L∞-spaces consist of function classes up to null sets which are hence not well-defined at
an arbitrarily chosen point, they are sometimes not particularly handy to work with in a geometric
situation. It is therefore natural to consider for a measurable space X with a measurable G-action
the spaces

B∞(Xn,R) := {f : Xn → R : f is measurable and bounded}, (n ∈ N)

without taking equivalence classes of functions up to null sets. Clearly B∞(Xn,R) becomes a
Banach space with the supremum norm, since already the space of all bounded functions is a
Banach space and every pointwise limit of a measurable function is again measurable. As for the
function spaces before we equip B∞(Xn,Rπ) via the left regular representation λπ with a Banach
G-module structure.
It is not clear whether the spaces B∞(Xn,Rπ) are relatively injective Banach G-modules, but at

least they form a strong augmented resolution as the following proposition asserts.

Proposition II.2.30. Let (π,R) be a Banach G-module, X a measurable space with a measurable
G-action. Then the complex

0 Rπ B∞(X,Rπ) B∞(X2,Rπ) B∞(X3,Rπ) · · ·ε d1 d2 d3

is a strong augmented resolution of Rπ by (not necessarily relatively injective) Banach G-modules.

Proof. See [BI02, Proposition 3.1, p. 6].
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Connection to Singular Bounded Cohomology

As for continuous cohomology there is a relation between singular bounded cohomology and contin-
uous bounded cohomology for discrete groups given by covering theory. For a discussion of singular
bounded cohomology see section D.3 in the appendix.
Recall that the singular bounded cohomology of a topological space X is the cohomology of the

cochain complex

0 S0
b (X) S1

b (X) S2
b (X) · · ·

δ1 δ2 δ3

where Sn
b (X) is the Banach space of singular bounded cochains with the norm given by

‖f‖ := sup{f(σ) |σ : ∆n → R continuous}, f ∈ Sn
b (X)

and δn is the restriction of the usual singular coboundary operator δn : Sn−1(X) → Sn(X) to the
bounded singular cochains (n ∈ N). We want to emphasize here, that we are only concerned with
real coefficients and hence omit their explicit notation.
Let π : X̃ → X be the universal covering and Γ := π1(X) ∼= Deck(π) the fundamental group of

X identified with the (discrete) group of Deck transformations as usual. The pullback of singular
bounded cochains by elements of Γ = Deck(π) equips Sn

b (X) with a Banach Γ-module structure

Γ× Sn
b (X) → Sn

b (X)

(γ, f) 7→ (γ−1)∗f

Together with the usual augmentation

ε : R → S0
b (X̃)

x 7→ (σ 7→ x)

we get a strong augmented resolution (ε, S•
b (X̃)) of the trivial Banach Γ-module R as the following

proposition asserts.

Proposition II.2.31. Let X be a countable CW-complex, π : X̃ → X its universal covering and
Γ = π1(X) ∼= Deck(π). Then

0 R S0
b (X̃) S1

b (X̃) S2
b (X̃) · · ·

ε δ1 δ2 δ3

is a strong augmented resolution of R (as the trivial Γ-module) by relatively injective Banach
Γ-modules.
Moreover the cohomology of the complex

0 S0
b (X̃)Γ S1

b (X̃)Γ S2
b (X̃)Γ · · ·

δ1 δ2 δ3

is canonically isometrically isomorphic to H•
cb(Γ,R).

Proof. This is [Iva87, Theorem (4.1), p. 1104]. Observe that the slightly different definitions of
relatively injective Γ-modules and strong resolutions in [Iva87] are compatible with ours as we have
already pointed out in Remark II.2.8, Remark II.2.10 and Remark II.2.6.
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The following lemma provides a more geometric insight on the bounded cohomology of Γ.

Lemma II.2.32. Let X be a countable CW-complex, π : X̃ → X its unversal covering and
Γ = Deck(π). Then the pullback

π∗ : Sn
b (X) → Sn

b (X̃), (n ∈ N0)

induces an isomorphism of complexes π∗ : S•
b (X) → S•

b (X̃)Γ. In particular it induces an isometric
isomorphism in cohomology

π∗ : H•
b (X) = H•(S•

b (X)) −→ H•(S•
b (X̃)Γ) ∼= H•

cb(Γ,R)

Proof. Let n ∈ N0, f ∈ Sn
b (X) and γ ∈ Γ = Deck(π). Then

γ∗(π∗f) = (π ◦ γ)∗f = π∗f

Hence π∗(Sn
b (X)) ⊆ Sn

b (X̃)Γ

It is well known, that we can lift any continuous map σ : ∆n → X to some continuous map
σ̃ : ∆n → X̃. Any two such lifts differ by some element of Γ = Deck(π). Thus we can define an
inverse map ϕ : Sn

b (X̃)Γ → Sn
b (X). For f ∈ Sn

b (X̃)Γ we set

ϕ(f)(σ) := f(σ̃)

where σ : ∆n → X is a singular chain and σ̃ : ∆n → X̃ any lift of it along π. This is well-defined,
since f is Γ-invariant. As usual we define ϕ(f) by linear continuation on Sn(X). It is easy to check,
that ϕ is indeed the inverse of π∗.
By the above lifting argument it is also immediate, that π∗ is isometric.
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II.2.4. A Functorial View on the Pullback ρ∗ : H•
cb(G,E) → H•

cb(H, ρ∗E)

Let H be another locally compact second countable topological group and ρ : H → G a continuous
homomorphism. In our naive definition of continuous bounded cohomology we have already defined
a pullback map in cohomology ρ∗ : Hn

cb(G,E) → Hn
cb(H, ρ

∗E) for all n ≥ 0. We now want to
understand this construction at a more abstract level and deduce a way to compute the pullback
map for some of the other resolutions. From a cohomological point of view this is what we have
done in our naive definition:
Consider the Banach G-module (π,E). By pulling back the structure we may regard it as

an H-module (πρ,E) (cf. section B.2.2). Now the Banach H-module structure on Cb(H
n+1, E) is

given by the left regular representation λπρ. However we can also equip Cb(G
n+1, E) with a Banach

H-module structure and get the module (λπρ,Cb(G
n+1, E)). With respect to these structures the

map ρ∗ : Cb(G
n+1, E) → Cb(H

n+1, E) becomes in fact H-equivariant. Indeed

ρ∗(λπ(ρ(h))f)(h0, . . . , hn) = (λπ(ρ(h))f)(ρ(h0), . . . , ρ(hn))

= π(ρ(h))f(ρ(h)−1ρ(h0), . . . , ρ(h)
−1ρ(hn))

= π(ρ(h))f(ρ(h−1h0), . . . , ρ(h
−1hn))

= π(ρ(h))(ρ∗f)(h−1h0, . . . , h
−1hn)

= λπρ(h)(ρ
∗f)(h0, . . . , hn)

for all f ∈ Cb(G
n+1, E) and h, h0, . . . , hn ∈ H. Hence ρ∗ is an H-morphism of complexes extending

the identity E → E.

0 E Cb(G,E) Cb(G
2, E) Cb(G

3, E) · · ·

0 E Cb(H,E) Cb(H
2, E) Cb(H

3, E) · · ·

ε

ε

id ρ∗ ρ∗ ρ∗

Restricting to the H-invariants we get ρ∗ : Cb(G
n+1, E)H → Cb(H

n+1, E)H . With respect to the
pullbackH-module structure on Cb(G

n+1, E) the space of invariants is nothing but Cb(G
n+1, E)ρ(H)

when we view Cb(G
n+1, E) again as a G-module. Because ρ(H) < G and hence Cb(G

n+1, E)G ⊂
Cb(G

n+1, E)ρ(H) we can restrict the pullback map further and get our original ρ∗ : Cb(G
n+1, E)G →

Cb(H
n+1, E)H , which induces ρ∗ : Hn

cb(G,E) → Hn
cb(H, ρ

∗E) in cohomology.
We can mimic this construction for arbitrary resolutions. Let (a, A•) be a strong resolution of

(π,E) by G-relatively injective Banach G-modules and let (b, B•) be a strong resolution of (πρ,E)
byH-relatively injective BanachH-modules. We may again consider (a, A•) as a complex of Banach
H-modules via the pullback structure (cf. Lemma B.2.15). This complex is now not necessarily a
strong resolution of Banach H-modules anymore!
However the subcomplex of maximal continuous G-modules (a, CπA•) is both G-strong and H-

strong. In order to check that (a, CπA•) is also H-strong, we have to check that the subcomplex
of maximal continuous H-modules (a, CπρCπA•) admits a contracting homotopy. Recall that by
Lemma B.2.16 we have for any Banach G-module (π,E) that CπE ⊂ CπρE. Now

CπAn = CπCπAn ⊂ CπρCπAn

and since clearly CπρCπAn ⊂ CπAn we have

CπρCπAn = CπAn
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for all n ≥ 0.
Because (a, A•) is G-strong, (a, CπA•) admits a contracting homotopy. By the above equality

of continuous modules this homotopy is also a contracting homotopy for (a, CπρCπA•), such that
(a, CπA•) is H-strong.
We can now again by Lemma B.2.16 consider the inclusion CπE ↪→ CπρE, which is clearly an

H-morphism regarding CπE as an H-module via πρ. Because (a, CπA•) is H-strong we can extend
this inclusion to an H-morphism i• between the complexes of Banach H-modules (a, CπA•) and
(b, B•) by Lemma II.2.12.

0 CπE CπA0 CπA1 CπA2 · · ·

0 CπρE CπρB0 CπρB1 CπρB2 · · ·

a

b

i i0 i1 i2

As usual we may restrict this map to i• : (CπA•)H → (CπρB•)H = (B•)H . Observe that (CπA•)H =
(CπA•)ρ(H) ⊃ (CπA•)G = (A•)G when considered as a Banach G-module, such that we can restrict
i• even further to a morphism of complexes

i• : (A•)G → (B•)H

This induces a map in cohomology

i• : H•(A•G) → H•(B•H)

We know that H•(A•G) ∼= H•
cb(G,E) and H•(B•H) ∼= H•

cb(H, ρ
∗E) from Theorem II.1.12. Recall

that these isomorphisms are given by a G-extension α• : CπA• → CπCb(G
•, E) and an H-extension

β• : CπρCb(H
•, E) → CπρB• of the identity id : CπE → CπE and id : CπρE → CπρE respectively

(cf. Lemma II.2.15). Note that α• is also an H-morphism (cf. Lemma B.2.15). Further recall that
ρ∗ : Cb(G

•, E) → Cb(H
•, E) is an H-extension of the identity E → E and hence restricts to an

H-extension of the inclusion CπE → CπρE.
Considering the H-morphism of complexes

β• ◦ ρ∗ ◦ α• : CπA• → CπCb(G
•, E) → CπρCb(H

•, E) → CπρB•

this is clearly an H-extension of

id ◦ i ◦ id = i : CπE → CπE → CπρE → CπρE

and is thus H-homotopic to the previously defined extension i• : CπA• → CπρB•. Thus both
restrictions

β• ◦ ρ∗ ◦ α• : (A•)G → (B•)H

and
i• : (A•)G → (B•)H

are homotopic morphisms of complexes and hence induce the same map in cohomology. Indeed,
both maps restricted to the subcomplex (A•)G of G-invariants are homotopic, because they are
already homotopic when restricted to the subcomplex (A•)H of H-invariants (cf. Remark II.1.2).
Summarizing our previous discussion we get the following proposition.
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Proposition II.2.33. Let (a, A•) be a strong resolution of (π,E) by G-relatively injective Banach
G-modules and (b, B•) be a strong resolution of (πρ,E) by H-relatively injective Banach H-modules.
Consider the former as a complex of H-modules.
Then the inclusion CπE → CπρE extends to an H-morphism of the augmented complexes and

moreover for all n ≥ 0 the map
i• : Hn(A•G) → Hn(B•H)

induced by any such extension i• is conjugated to ρ∗ by the canonical isomorphisms

Hn
cb(G,E) ∼= Hn(A•G) and Hn

cb(H, ρ
∗E) ∼= Hn(B•H)

given by Theorem II.2.18.

Note that Proposition II.2.33 is actually [Mon01, Proposition 8.4.2, p. 102], although we have
used our slightly different standard resolution here (cf. Remark II.2.23).

Remark II.2.34. A similar result holds for continuous cohomology too. We chose not to give the
result in our section on continuous cohomology in favour of a more concise exposition and due to
the fact, that it is not needed in our proof of the volume rigidity theorem. The proof is along the
same lines as the one for bounded cohomology and even a bit easier, since no maximal continuous
submodules have to be considered.

This enables us to identify the pullback map in other resolutions than the standard one.
If H < G is a closed subgroup we can due to Corollary II.2.28 compute H•

cb(H,Rπi) also as
H•(L∞(G•+1,Rπi)

H). In this case we get from Proposition II.2.33, that the pullback correspond-
ing to the canonical inclusion i : H → G is simply given by the inclusion L∞(G•+1,Rπ)

G →
L∞((G)•+1,Rπi)

H .

Corollary II.2.35. Let H < G be a closed subgroup and i : H → G the canonical inclusion. Then
the pullback

i∗ : H•
cb(G,Rπ) → H•

cb(H,Rπi)

along the canonical inclusion is given at the cochain level by the inclusion

ι : L∞(G•+1,Rπ)
G → L∞(G•+1,Rπi)

H

i.e. i∗ is conjugated to ι with respect to the canonical isomorphismsH•
cb(G,Rπ) ∼= H•(L∞(G•+1,Rπ)

G)
and H•

cb(H,Rπi) ∼= H•(L∞(G•+1,Rπi)
H).

Proof. Observe that we have for the pullback of the left regular representation λπ ◦ i = λπi. Thus
the inclusion

ι : CλπiL
∞(G•+1,Rπ) → L∞(G•+1,Rπi)

is clearly an extension of the inclusion CπR → CπiR. The assertion now follows from Proposition
II.2.33.

Moreover we can use this understanding of the pullback to realize it geometrically in a certain
situation as the following corollary shows.

Corollary II.2.36. Let X be a countable CW-complex, π : X̃ → X its universal cover and
Λ := π1(X) ∼= Deck(π). Further let Λ < Λ be a subgroup. Denote by p : Λ\X̃ → Λ\X̃ the induced
covering map and by i∗ : H•

cb(Λ,R) → H•
cb(Λ,R) the pullback map induced by the canonical inclusion

i : Λ ↪→ Λ. Then the following diagram commutes
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H•
cb(Λ,R) H•

cb(Λ,R)

H•
b (Λ\X̃) H•

b (Λ\X̃)

i∗

∼=

p∗

∼=

where both vertical arrows are the isomorphisms given by Lemma II.2.32.

Proof. As we have seen before in Proposition II.2.31 the bounded cohomology of both Λ and Λ
can be computed by means of the strong augmented resolution (ε, S•

b (X̃)). Since Λ and Λ are
discrete, every module over them is continuous, such that we do not have to work with maximal
continuous submodules at all. Therefore an extension i• as in Proposition II.2.33 is simply given
by the identity in every degree and the pullback i∗ : H•

cb(Λ,R) → H•
cb(Λ,R) is conjugated to the

map induced by the inclusion of subcomplexes

S•
b (X̃)Λ ↪→ S•

b (X̃)Λ

By Lemma II.2.32 we have isomorphisms of complexes

π∗ : S•
b (Λ\X̃) → S•

b (X̃)Λ

and
π∗ : S•

b (Λ\X̃) → S•
b (X̃)Λ

where π : X̃ → Λ\X̃ and π : X̃ → Λ\X̃ are the canonical covering maps.
These fit into the commutative diagram of covering maps

X̃

Λ\X̃ Λ\X̃

π
π

p

which induces the commutative diagram of complexes

S•
b (X̃)Λ S•

b (X̃)Λ

S•
b (Λ\X̃) S•

b (Λ\X̃)

π∗

p∗

π∗

where the upper horizontal map is the inclusion of subcomplexes.
Therefore we get at the cohomology level the asserted commutativity.
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II.2.5. The Pullback via Equivariant Maps
We keep the notation of the previous subsection, i.e. H < G is a second countable locally compact
group and ρ : H → G a continuous homomorphism. Our main reference for this section is [BI02].

Proposition II.2.37. Let (π,E) be a Banach G-module. Let (c, C•) and (d, D•) be strong resolu-
tions of E by Banach G-modules and let α• : CD• → CC• be a G-morphism of complexes extending
the identity id : CπE → CπE. Then for any resolution (a, A•) of (πρ,E) by relatively injective
Banach H-modules the following diagram in cohomology commutes

H•(A•H) H•(D•G)

H•(C•G)

γ•

α•
i•

where i• is as in Proposition II.2.33 induced by an extension of the inclusion CπE ↪→ CπρE and γ• is
the map induced by any H-morphism of complexes CπD• → A• extending the inclusion H-morphism
CπE ↪→ E.

Proof. The proof is basically diagram chasing and using Lemma II.2.12 similar to our discussion of
Proposition II.2.33. For details we refer to [BI02, Proposition 2.2, p. 4].

This proposition enables us to understand the pullback map via equivariant maps in certain
situations.

Definition II.2.38. Let (B, ν) be a measure space with a measurable H-action and let X be a
measurable space with a measurable G-action (H and G are here understood as measurable spaces
via their Haar σ-algebras as usual). A measurable map ϕ : B → X is called a.e.-ρ-equivariant if

ϕ(hx) = ρ(h)ϕ(x)

for all h ∈ H and almost every x ∈ B.

Lemma II.2.39. We keep the notation of Definition II.2.38. Let ϕ : B → X be an a.e.-ρ-
equivariant map. Then ϕ induces maps

ϕ∗ : B∞(Xn+1,Rπ) → L∞(Bn+1,Rπρ)

given via precomposition

(ϕ∗f)(x0, . . . , xn) = f(ϕ(x0), . . . , ϕ(xn))

for every f ∈ B∞(Xn+1,Rπ), for all x0, . . . , xn ∈ B and n ∈ N0. These maps constitute an
H-morphism of complexes ϕ∗ : B∞(X•+1,Rπ) → L∞(B•+1,Rπρ) which extends the inclusion
CπR ↪→ Rπρ and is norm non-increasing.

Proof. One immediately checks, that ϕ∗ is norm non-increasing and extends the inclusion CπR ↪→
Rπρ. It remains to check, that it is indeed an H-morphism of complexes. For that recall that the
H-action on L∞(Bn+1,Rπρ) is given by

(h · f)(x0, . . . , xn) = π(ρ(h))f(h−1x0, . . . , h
−1xn)
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for every f ∈ L∞(Bn+1,Rπ), h ∈ H, x0, . . . , xn ∈ B, and that B∞(Xn+1,Rπ) becomes a Banach
H-module via the pullback structure λπρ, i.e.

(h · f)(x0, . . . , xn) = π(ρ(h))f(ρ(h−1)x0, . . . , ρ(h
−1)xn)

for every f ∈ B∞(Xn+1,Rπ), h ∈ H, x0, . . . , xn ∈ X.
With that in mind we compute

(ϕ∗(h · f))(x0, . . . , xn) = (h · f)(ϕ(x0), . . . , ϕ(xn))
= π(ρ(h))f(ρ(h−1)ϕ(x0), . . . , ϕ(xn))

= π(ρ(h))f(ϕ(h−1x0), . . . , ϕ(h
−1xn))

= π(ρ(h))(ϕ∗f)(h−1x0, . . . h
−1xn)

= (h · (ϕ∗f))(x0, . . . , xn)

for every f ∈ B∞(Xn+1,Rπ), h ∈ H and almost every x0, . . . , xn ∈ B, i.e. ϕ∗ is indeed an
H-morphism.

Corollary II.2.40. Let Rπ be a Banach G-module, S be an amenable regular H-space, X be a
measurable space with measurable G-action, ϕ : S → X an a.e.-ρ-equivariant map and (c, C•)
any strong resolution of Rπ by relatively injective Banach G-modules. Then we have the following
commutative diagram in cohomology

H•
cb(H,Rπρ) H•(L∞(S•+1,Rπρ)

H) H•(B∞(X•+1,Rπ)
G)

H•
cb(G,Rπ) H•(C•G)

ϕ∗∼=

α•
i•

∼=

ρ∗

where α• is induced by a G-morphism extending the identity id : CRπ → CRπ, i• is induced by an
H-morphism extending the inclusion CπR ↪→ CπρR and both isomorphisms are the canonical ones
given by Theorem II.2.27 and Theorem II.2.18.

Proof. This is Proposition II.2.37 with

A• = L∞(S•+1,Rπρ)

D• = B∞(X•+1,Rπ)

and the functorial characterization of the pullback given in Proposition II.2.33.

This corollary has the following two important special cases.

Corollary II.2.41. Let Rπ be a Banach G-module, S be an amenable regular G-space and ϕ : S → S
an a.e.-ρ-equivariant map. Then the following diagram commutes

H•
cb(H,Rπρ) H•(L∞(S•+1,Rπρ)

H) H•(B∞(S•+1,Rπ)
G)

H•
cb(G,Rπ) H•(L∞(S•+1,Rπ)

G)

ϕ∗∼=

i•

∼=

ρ∗
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where the vertical arrow on the right is induced by the inclusion of complexes B∞(S•+1,Rπ) ↪→
L∞(S•+1,Rπ) and i• is induced by an H-morphism extending the inclusion CπR ↪→ CπρR

Proof. Note that if S is an amenable regular G-space, then it is also an amenable regular H-space
via the restricted action (cf. Lemma C.2.9).
Further it is immediate that the inclusion of complexes B∞(S•+1,Rπ) ↪→ L∞(S•+1,Rπ) is a

G-morphism of complexes extending id : CRπ → CRπ.

Corollary II.2.42. Let Rπ be a Banach G-module. Then the map ϕ = ρ : H → G is an
a.e.-ρ-equivariant map and the following diagram commutes

H•
cb(H,Rπρ) H•(L∞(H•+1,Rπρ)

H) H•(B∞(G•+1,Rπ)
G)

H•
cb(G,Rπ) H•(L∞(G•+1,Rπ)

G)

ϕ∗ = ρ∗∼=

i•

∼=

ρ∗

where the vertical arrow on the right is induced by the inclusion of complexes B∞(S•+1,Rπ) ↪→
L∞(S•+1,Rπ) and i• is induced by an H-morphism extending the inclusion CπR ↪→ CπρR

Proof. Note that G is an amenable regular G-space and H is an amenable regular H-space with
their respective Haar measures.
Further it is immediate that the inclusion of complexes B∞(G•+1,Rπ) ↪→ L∞(G•+1,Rπ) is a

G-morphism of complexes extending id : CRπ → CRπ.

II.2.6. A Functorial View on the Comparison Map c : H•
cb(G,E) → H•

c (G, CE)

In this section we want to give a more functorial explanation of the comparison map similar to our
functorial discussion of the pullback map. As for the pullback map we first want to investigate our
naive definition from the beginning and put it in a more functorial framework.
Let (π,E) be a Banach G-module. Recall that the comparison map c : H•

cb(G,E) → H•
c (G, CE)

is given by the inclusion

Cb(G
•+1, E)G = Cb(G

•+1, CE)G ↪→ C(G•+1, CE)G

By Proposition II.2.16 the resolution (ε, Cb(G
•+1, E)) is a strong augmented resolution (by rela-

tively injective Banach G-modules), i.e. the complex of continuous Banach G-modules

0 CE CCb(G,E) CCb(G
2, E) · · ·

admits a contracting homotopy and is hence also a strong resolution of G-modules in the sense
of continuous cohomology. Considering the standard resolution (ε, C(G•+1, CE)) of CE in contin-
uous cohomology we know that there must be an extension of the identity id : CE → CE from
(ε, CCb(G

•+1, E)) to (ε, C(G•+1, CE)).
Now we have the following lemma.

Lemma II.2.43. CCb(G
•+1, E) ⊆ Cb(G

•+1, CE)
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Proof. Let q ∈ N0 and f ∈ CCb(G
•+1, E). We want to apply Lemma B.2.10.

Let x ∈ Gq+1 and let (gα)α∈A be a net converging to the neutral element e ∈ G. Then

‖π(gα)f(x)− f(x)‖ ≤ ‖π(gα)f(x)− π(gα)f(g
−1
α x)‖+ ‖π(gα)f(g−1

α x)− f(x)‖
≤ ‖f(x)− f(g−1

α x)‖+ ‖(λπ(gα)f)(x)− f(x)‖ → 0

where the first term tends to 0 because f is continuous and the second term tends to 0 because f
is contained in the maximal continuous submodule.

Therefore we can consider the inclusion

ι• : CCb(G
•+1, E) ⊆ Cb(G

•+1, CE) ↪→ C(G•+1, CE)

It is immediate, that this is an extension of id : CE → CE.
At the level of invariants this is just the inclusion

Cb(G
•+1, E)G = Cb(G

•+1, CE)G ↪→ C(G•+1, CE)G

from above and hence induces the comparison map c : H•
cb(G,E) → H•

c (G, CE) in cohomology.
In the case of arbitrary resolutions we can mimic the above approach to the comparison map.

Let (a, A•) be a strong augmented resolution of E by relatively injective Banach G-modules and
let (b, B•) be a strong augmented resolution of CE by (continuous) relatively injective G-modules.
Again the complex of continuous Banach G-modules

0 CE CA0 CA1 · · ·
a

is a strong resolution of CE by (continuous) G-modules. Therefore there is an extension ψ• : CA• →
B• of id : CE → CE.
Our objective is to show that the map in cohomology induced by such an extension ψ• is conju-

gated to the comparison map c : H•
cb(G,E) → H•

c (G, CE). For that let α• : CA• → CCb(G
•+1, E)

and β• : C(G•+1, CE) → B• be extensions of id : CE → CE inducing the respective canonical
isomorphisms H•(A•G) ∼= H•

cb(G,E) and H•
c (G, CE) ∼= H•(B•G).

These fit into the commutative diagram

0 CE CA0 CA1 · · ·

0 CE CCb(G,E) CCb(G
2, E) · · ·

0 CE C(G, CE) C(G2, CE) · · ·

0 CE B0 B1 · · ·

a

ε

ε

b

id

id

id

α0

ι0

β0

α1

ι1

β1

with the previous inclusion
ι• : CCb(G

•+1, E) ↪→ C(G•+1, CE)

in the middle. Now their composition β• ◦ ι• ◦α• : CA• → B• is also an extension of id : CE → CE
just as ψ• : CA• → B•. By Lemma II.1.8 these are G-homotopic and hence induce the same map
in cohomology. Thus we get the following commutative diagram in cohomology
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H•
cb(G,E) H•

c (G, CE)

H•(A•G) H•(B•G)

c

∼=

ψ•

∼=

where the vertical arrows are the canonical isomorphisms induced by α• and β•.
The following proposition summarizes what we have proved so far.

Proposition II.2.44. Let (π,E) be a Banach G-module. Further let (a, A•) be a strong resolution of
E by relatively injective Banach G-modules and let (b, B•) a strong resolution of CE by (continuous)
relatively injective G-modules.
Then the identity morphism id : CE → CE extends to a G-morphism ψ• : CA• → B• and

moreover for all n ≥ 0 the map

ψn : Hn(A•G) → Hn(B•G)

induced by any such extension ψ• is conjugated to the comparison map c : Hn
cb(G,E) → Hn

c (G, CE)
by the canonical isomorphisms

Hn
cb(G,E) ∼= Hn(A•G) and Hn

c (G, CE) ∼= Hn(B•G)

given by Theorem II.2.18 and Theorem II.1.12.

The following corollary is immediate.

Corollary II.2.45. Let (π,R) be a Banach G-module and let K < G be a compact subgroup. Then
the inclusion

i• : Cb((G/K)•+1,Rπ) ↪→ C((G/K)•+1, CRπ)

restricts to an extension of id : CRπ → CRπ.
Therefore the comparison map c : Hn

cb(G,Rπ) → Hn
c (G, CRπ) is conjugated via the canonical

isomorphisms to the map i• : H•(Cb((G/K)•+1,Rπ)
G) → H•(C((G/K)•+1, CRπ)

G).
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II.3. Applications to G = Isom(Hn)

Let us apply the previously gathered results from continuous and continuous bounded cohomology
to the isometry group of hyperbolic n-space now. Again we will first treat continuous cohomology
and show how one may compute the continuous cohomology of Isom(Hn) from different resolutions
in subsection II.3.1. In order to facilitate switching between the different resolutions we give con-
crete isomorphisms at the cochain level. A particularly important example of such an isomorphism
will be given by the van Est isomorphism, which we will present here in some detail. Similarly we
will see how the continuous bounded cohomology may be computed from different resolutions in
subsection II.3.2. We also give here some concrete isomorphisms at the cochain level. In subsection
II.3.3 we will then introduce the key cohomology class in the context of volume rigidity, namely
the volume class. The definition of the volume of a representation will be by means of this class.
After these preparations we will finally compute some cohomology groups in subsection II.3.4. In
particular we compute Hn

c (G,Rε) and show that the comparison map c : H•
cb(G,Rε) → H•

c (G,Rε)
is an isomorphism, where ε : G→ Iso(R) ∼= {±1} ∼= Iso(R) is a special representation.
For the rest of this chapter we put G = Isom(Hn), G+ = Isom+(Hn) and fix n ≥ 2.

II.3.1. Continuous Cohomology and Hyperbolic Geometry

Recall that Hn ∼= G/K, resp. Hn ∼= G+/K+, where K and K+ are the stabilizers of a point in Hn

by G and G+ respectively. We have that K and K+ are maximal compact subgroups of G and G+

respectively (cf. Lemma I.2.12). By Proposition II.1.15 we get the following resolution identifying
Hn ∼= G/K resp. Hn ∼= G+/K+ as above.

Corollary II.3.1. Let H = G+ or G and let (π,R) be an H-module. Then the complex

0 Rπ C(Hn,Rπ) C((Hn)2,Rπ) C((Hn)3,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective H-modules.
Moreover the cohomology of the complex

0 C(Hn,Rπ)
H C((Hn)2,Rπ)

H C((Hn)3,Rπ)
H · · ·

d1 d2 d3

is canonically isomorphic to H•
c (H,Rπ).

As G and G+ are also Lie groups (with a finite number of connected components) we get yet
another resolution by Proposition II.1.16.

Corollary II.3.2. Let H = G+ or G and let (π,R) be an H-module. Then the complex

0 Rπ Ω0(Hn,Rπ) Ω1(Hn,Rπ) Ω2(Hn,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective H-modules.
Moreover the cohomology of the complex

0 Ω0(Hn,Rπ)
H Ω1(Hn,Rπ)

H Ω2(Hn,Rπ)
H · · ·

d1 d2 d3

is canonically isomorphic to H•
c (H,Rπ).
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Finally, we get by Proposition II.1.17 the following connection to ordinary singular cohomology.

Corollary II.3.3. Let Γ < G be a discrete and torsion-free subgroup and M = Γ\Hn the resulting
quotient manifold.
Then H•

c (Γ,R) ∼= H•(M), where R denotes the trivial Γ-module.

Proof. Note that Hn is contractible and Γ acts freely and properly discontinuously on Hn by
Proposition I.4.3 and Proposition I.4.4. Thus by Proposition I.4.2 the quotient map π : Hn →
Γ\Hn = M is a covering and the hypothesis of Proposition II.1.17 is fulfilled. Hence H•

c (Γ,R) ∼=
H•(M).

The van Est Isomorphism

Let us fix the notation of the previous two corollaries for this subsection. By the homological
algebra approach to continuous cohomology we know, that there exists a H-morphism between the
two strong augmented resolutions (ε,Ω•(Hn,Rπ)) and (ε, C((Hn)•+1,Rπ)) extending the identity
morphism id : Rπ → Rπ and inducing the isomorphism in cohomology (cf. Lemma II.1.9). However
it is apriori not clear what such a morphism would look like at the cochain level. Gladly our
geometric situation enables us to define concrete maps, which will constitute the desired extension.
This morphism is usually called the van Est isomorphism in the literature.

Remark II.3.4. It is also possible to construct such an extension in the more abstract setting of
Proposition II.1.16. For details we refer to [Gui80, Chp. III, no 7.3., p. 227].

We will work in the hyperboloid model Hn ∼= Hn. Consider for (q + 1) points x0, . . . , xq ∈ Hn

the straight simplex str(x0, . . . , xq) with vertices x0, . . . , xq.

str : ∆q → Hn

(t1, . . . , tq) 7→
(1−

∑q
i=1 ti)x0 + t1x1 + · · · tqxq

‖(1−
∑q

i=1 ti)x0 + t1x1 + · · ·+ tqxq‖

We will adopt the abbreviation t0 = 1−
∑n

i=1 ti in the following. Observe that str(x0, . . . , xq) is a
smooth singular q-simplex (cf. Appendix D) and that

(g∗str(x0, . . . xq))(t1, . . . , tq) = g(str(x0, . . . , xq)(t1, . . . , tq)) = g
t0x0 + . . . tqxq
‖t0x0 + tqxq‖

=
g(t0x0 + . . . tqxq)

‖g(t0x0 + tqxq)‖
=
t0 · gx0 + . . . tq · gxq
‖t0 · gx0 + tq · gxq‖

= str(gx0, . . . gxq)(t1, . . . , tq)

for all g ∈ H, (t1, . . . , tq) ∈ ∆q.
We now define the van Est isomorphism Φ : Ωq(Hn,Rπ) → C((Hn)q+1,Rπ) at the cochain level

by integrating over straight simplices

Φ(ω)(x0, . . . , xq) :=

∫
str(x0,...,xq)

ω

for all ω ∈ Ωq(Hn,Rπ), x0, . . . , xq ∈ Hn. In degree zero the integral over the simplex str(x0) is to be
understood as evaluating the smooth function ω ∈ Ω0(Hn,Rπ) ∼= C∞(Hn,Rπ) at x0. It is not hard
to see that Φ(ω) is indeed a continuous function by applying Lebesgue’s dominated convergence
theorem.
Clearly Φ is linear and one readily checks that it is also continuous.
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It is also an H-morphism as we have

Φ(g · ω)(x0, . . . , xq) =
∫

str(x0,...,xq)
g · ω =

∫
str(x0,...,xq)

π(g) · (g−1)∗ω

= π(g) ·
∫
g−1
∗ str(x0,...,xq)

ω = π(g) ·
∫

str(g−1x0,...,g−1xq)
ω

= π(g) · Φ(ω)(g−1x0, . . . , g
−1xq) = (g · Φ(ω))(x0, . . . , xq)

for all g ∈ H, ω ∈ Ωq(Hn,Rπ), x0, . . . , xq ∈ Hn.
Finally we need to see that it is indeed an extension of id : Rπ → Rπ to the resolutions

(ε,Ω•(Hn,Rπ)) and (ε, C((Hn)•+1,Rπ)). First observe that for the i-th face inclusion Fi : ∆
q−1 →

∆q we have

str(x0, . . . , xq) ◦ Fi = str(x0, . . . , x̂i, . . . , xq)

for all x0, . . . , xq ∈ Hn. Hence by Stoke’s Theorem for smooth cochains (cf. Theorem D.4.1) we get

Φ(dω)(x0, . . . , xq) =

∫
str(x0,...,xq)

dω =

∫
∂str(x0,...,xq)

ω

=

q∑
i=0

(−1)i
∫

str(x0,...,xq)◦Fi

ω =

q∑
i=0

(−1)i
∫

str(x0,...,x̂i,...,xq)
ω

=

q∑
i=0

(−1)iΦ(ω)(x0, . . . , x̂i, . . . , xq) = (dΦ(ω))(x0, . . . , xq)

for all ω ∈ Ωq(Hn,Rπ), x0, . . . , xq ∈ Hn, i.e. Φ commutes with the coboundary operators. It is also
compatible with the augmentations, as we have

Φ(ε(t))(x0) =

∫
str(x0)

t = t = ε(id(t))(x0)

for all t ∈ R and x0 ∈ Hn. Hence Φ is indeed an extension of id : Rπ → Rπ and thus induces an
isomorphism at the cohomology level

Φ : H•(Ω•(Hn,Rπ)
H) → H•(C((Hn)•+1,Rπ)

H)

The Isomorphism p∗K : H•(C((Hn)•+1,Rπ)
H) → H•(C(H•+1,Rπ)

H)

We also want to give a concrete isomorphism H•(C((Hn)•+1,Rπ)
H) → H•(C(H•+1,Rπ)

H), where
– as in the previous section – H = G or G+ and (π,R) is an H-module. Further let x ∈ Hn

be an arbitrary point and K its stabilizer in H. We may now consider the quotient map pK :
H → H/K ∼= Hn, g 7→ gx. This map induces a map p∗K : C((Hn)•+1,Rπ) → C(H•+1,Rπ) via
precomposition

(p∗Kf)(g0, . . . , gq) := f(pK(g0), . . . , pK(gq)) = f(g0x, . . . , gqx)

for every f ∈ C((Hn)q+1,Rπ), (g0, . . . , gq) ∈ Hq+1, q ∈ N0. In fact this map induces an isomorphism
in cohomology.
Proposition II.3.5. Keep the above notation. The map

p∗K : C((Hn)•+1,Rπ) → C(H•+1,Rπ)

is a G-morphism of complexes extending the identity id : Rπ → Rπ to the strong augmented
resolutions (ε, C((Hn)•+1,Rπ)) and (ε, C(H•+1,Rπ)). In particular it induces an isomorphism at
cohomology

p∗K : H•(C((Hn)•+1,Rπ)
H) → H•(C(H•+1,Rπ)

H)
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Proof. One easily verifies that p∗K : C((Hn)•+1,Rπ) → C(H•+1,Rπ) is continuous and linear. It is
also H-equivariant, since

(h · (p∗Kf))(g0, . . . , gq) = π(h)(p∗Kf)(h
−1g0, . . . , h

−1gq)

= π(h)f(h−1g0x, . . . , h
−1gqx)

= p∗K(h · f)(g0, . . . , gq)

for every f ∈ C((Hn)q+1,Rπ), (g0, . . . , gq) ∈ Hq+1, q ∈ N0.
It remains to check, that it is indeed an extension of id : Rπ → Rπ. Let us first consider the

coefficient inclusion. Then

p∗K(ε(t))(g0) = ε(t)(g0x) = t = ε(t)(g0)

for every t ∈ R and every g0 ∈ H, i.e. p∗K ◦ ε = ε ◦ id. Finally, considering the homogeneous
coboundary operators we get

d(p∗Kf)(g0, . . . , gq+1) =

q+1∑
i=0

(−1)ip∗Kf(g0, . . . , ĝi, . . . , gq+1)

=

q+1∑
i=0

(−1)if(pK(g0), . . . , pK(gi−1), pK(gi+1), . . . , pK(gq+1))

= p∗K(df)(g0, . . . , gq+1)

for every f ∈ L∞((Hn)q+1,Rπ), g0, . . . , gq+1 ∈ H, q ∈ N0, i.e. d ◦ p∗K = p∗K ◦ d.
This concludes the proof.

II.3.2. Continuous Bounded Cohomology and Hyperbolic Geometry

As for continuous cohomology in the previous section we now put its bounded counterpart in the
setting of hyperbolic geometry. Let Γ < G+ be a lattice subgroup in the following.
First of all applying Corollary II.2.26 to the trivial compact subgroup K = {1} yields the follow-

ing:

Corollary II.3.6. Let H = Γ, G+ or G, and let (π,R) be a Banach H-module. Then

0 Rπ Cb(G,Rπ) Cb(G
2,Rπ) Cb(G

3,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective Banach H-modules.
Moreover the cohomology of the complex

0 Cb(G,Rπ)
H Cb(G

2,Rπ)
H Cb(G

3,Rπ)
H · · ·

d1 d2 d3

is canonically isometrically isomorphic to H•
cb(H,Rπ).

Proof. Clearly Γ, G+ and G are all closed subgroups of G, such that Corollary II.2.26 applies.

Identifying Hn ∼= G/K where K is again the stabilizer of one point in Hn we get by Corollary
II.2.26 the following resolutions.
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Corollary II.3.7. Let H = Γ, G+ or G, and let (π,R) be a Banach H-module. Then

0 Rπ Cb(Hn,Rπ) Cb((Hn)2,Rπ) Cb((Hn)3,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective Banach H-modules.
Moreover the cohomology of the complex

0 Cb(Hn,Rπ)
H Cb((Hn)2,Rπ)

H Cb((Hn)3,Rπ)
H · · ·

d1 d2 d3

is canonically isometrically isomorphic to H•
cb(H,Rπ).

Proof. Clearly Γ, G+ and G are all closed subgroups of G, such that Corollary II.2.26 applies.

We now turn to resolutions by L∞-spaces. Since the trivial subgroup {1} is clearly amenable we
get by Corollary II.2.28 the following resolution.

Corollary II.3.8. Let H = Γ, G+ or G, and let (π,R) be a Banach H-module. Then

0 Rπ L∞(G,Rπ) L∞(G2,Rπ) L∞(G3,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective Banach H-modules and the cohomology
of the complex

0 L∞(G,Rπ)
H L∞(G2,Rπ)

H L∞(G3,Rπ)
H · · ·

d1 d2 d3

is canonically isometrically isomorphic to H•
cb(H,Rπ).

This is in case of H = G a generalization of our standard resolution by the complex of continuous
bounded functions to essentially bounded function classes.
Because compact groups are amenable we get by the identification Hn = G/K as above the

following resolution.

Corollary II.3.9. Let H = Γ, G+ or G, and let (π,R) be a Banach H-module. Then

0 Rπ L∞(Hn,Rπ) L∞((Hn)2,Rπ) L∞((Hn)3,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective Banach H-modules and the cohomology
of the complex

0 L∞(Hn,Rπ)
H L∞((Hn)2,Rπ)

H L∞((Hn)3,Rπ)
H · · ·

d1 d2 d3

is canonically isometrically isomorphic to H•
cb(H,Rπ).

A particularly nice feature of continuous bounded cohomology is, that it allows us to compute
the cohomology on the boundary of Hn as we will show now. Recall that G acts transitively on
the boundary ∂Hn and we may hence identify ∂Hn ∼= G/P where P is the stabilizer of a boundary
point. We have already seen in Lemma I.2.15, that P is amenable.
We may now apply Corollary II.2.28 and get the following resolutions.
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Corollary II.3.10. Let H = Γ, G+ or G, and let (π,R) be a Banach H-module. Then

0 Rπ L∞(∂Hn,Rπ) L∞((∂Hn)2,Rπ) L∞((∂Hn)3,Rπ) · · ·
ε d1 d2 d3

is a strong augmented resolution of Rπ by relatively injective Banach H-modules and the cohomology
of the complex

0 L∞(∂Hn,Rπ)
H L∞((∂Hn)2,Rπ)

H L∞((∂Hn)3,Rπ)
H · · ·

d1 d2 d3

is canonically isometrically isomorphic to H•
cb(H,Rπ).

As a Corollary to Proposition II.2.30 we get the following strong resolution:

Corollary II.3.11. Let H = Γ, G+ or G, and let (π,R) be a Banach H-module. Then the complex

0 Rπ B∞(∂Hn,Rπ) B∞((∂Hn)2,Rπ) B∞((∂Hn)3,Rπ) · · ·ε d1 d2 d3

is a strong augmented resolution of Rπ by (not necessarily relatively injective) Banach H-modules.

Proof. We have only to check, that ∂Hn is a measurable space with a measurable G-action. This
is immediate for ∂Hn with its Borel σ-algebra as the G-action is not only measurable but even
continuous.

Finally we want to make the previously mentioned connection to singular bounded cohomology
more concrete in the setting of hyperbolic geometry. The key observation here is, that if Γ is
torsion-free, it acts freely and properly discontinuously on Hn (cf. section I.4). Therefore taking
the quotient by this action induces the universal covering p : Hn → Γ\Hn =:M , such that M is an
(oriented) hyperbolic manifold (cf. Proposition I.4.2). Then the group of Deck transformations of
p is just Γ. Because Hn is a smooth manifold and thus in particular a countable CW-complex we
can apply Proposition II.2.31 and Lemma II.2.32, which yields the following result.

Corollary II.3.12. The complex

0 R S0
b (Hn,R) S1

b (Hn,R) S2
b (Hn,R) · · ·

ε δ1 δ2 δ3

is a strong augmented resolution of R (as the trivial Γ-module) by relatively injective Banach
Γ-modules.
Moreover the cohomology of the complex

0 S0
b (Hn,R)Γ S1

b (Hn,R)Γ S2
b (Hn,R)Γ · · ·

δ1 δ2 δ3

is canonically isometrically isomorphic to H•
cb(Γ,R). Further the cohomology is isometrically

isomorphic to the bounded singular cohomology H•
b (M) of M = Γ\Hn via the pullback along

p : Hn → Γ\Hn.
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Some Concrete Isomorphisms

We now want to establish some isomorphisms between the above cohomologies of complexes, on
which the continuous bounded cohomology can be computed. We will adopt the same notation
as before, i.e. let H = Γ, G+ or G and let (π,R) be a Banach H-module. As for continuous
cohomology and the van Est isomorphism the idea here is to find an H-morphisms between the
resolutions extending the identity morphism id : CRπ → CRπ (cf. Lemma II.2.15).
We will use as a ”connecting resolution” (ε, L∞(G•+1,Rπ)), that is, we will give an H-morphism

extending the identity from every resolution to this particular one. In analogy to continuous
cohomology these maps will be given in terms of pullbacks along suitable quotient maps.
First, we consider the resolution (ε, L∞((Hn)•+1,Rπ)) and the quotient map pK : G → G/K ∼=

Hn, g 7→ gx where x is some arbitrary point in Hn and K is its stabilizer. We define a morphism

p∗K : L∞((Hn)•+1,Rπ) → L∞(G•+1,Rπ)

via precomposition by

(p∗Kf)(g0, . . . , gq) := f(pK(g0), . . . , pK(gq)) = f(g0x, . . . , gqx)

for every f ∈ L∞((Hn)q+1,Rπ), g0, . . . , gq ∈ G, q ∈ N0.
Second, we consider the resolution (ε, L∞((∂Hn)•+1,Rπ)) and the quotient map p∗P : G→ G/P ∼=

∂Hn, g 7→ gξ where ξ is some arbitrary point in ∂Hn and P is its stabilizer. We define a morphism

p∗P : L∞((∂Hn)•+1,Rπ) → L∞(G•+1,Rπ)

via precomposition by

(p∗P f)(g0, . . . , gq) := f(pP (g0), . . . , pP (gq)) = f(g0ξ, . . . , gqξ)

for every f ∈ L∞((∂Hn)q+1,Rπ), g0, . . . , gq ∈ G, q ∈ N0.
Now the following holds.

Proposition II.3.13. Let H = Γ, G+ or G. With the above notation we get:

(i) The inclusion ι : Cb(G
•+1,Rπ) → L∞(G•+1,Rπ) is anH-morphism of complexes extending the

identity id : CRπ → CRπ and induces in particular an isometric isomorphism in cohomology

ι : H•(Cb(G
•+1,Rπ)

H) → H•(L∞(G•+1,Rπ)
H)

(ii) The inclusion ι′ : Cb((Hn)•+1,Rπ) → L∞((Hn)•+1,Rπ) is an H-morphism of complexes
extending the identity id : CRπ → CRπ and induces in particular an isometric isomorphism
in cohomology

ι′ : H•(Cb((Hn)•+1,Rπ)
H) → H•(L∞((Hn)•+1,Rπ)

H)

(iii) The map
p∗K : L∞((Hn)•+1,Rπ) → L∞(G•+1,Rπ)

is an H-morphism of complexes extending the identity id : CRπ → CRπ and induces in
particular an isometric isomorphism in cohomology

p∗K : H•(L∞((Hn)•+1,Rπ)
H) → H•(L∞(G•+1,Rπ)

H)

Furthermore it restricts to

p∗K : Cb((Hn)•+1,Rπ) → Cb(G
•+1,Rπ)

which is also an extension of the identity and hence induces an isometric isomorphism in
cohomology as well

p∗K : H•(Cb((Hn)•+1,Rπ)
H) → H•(Cb(G

•+1,Rπ)
H)
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(iv) The map
p∗P : L∞((∂Hn)•+1,Rπ) → L∞(G•+1,Rπ)

is an H-morphism of complexes extending the identity id : CRπ → CRπ and induces in
particular an isometric isomorphism in cohomology

p∗P : H•(L∞((∂Hn)•+1,Rπ)
H) → H•(L∞(G•+1,Rπ)

H)

Proof. By Lemma II.2.22 it will suffice to show that the above maps are extensions of the identity
id : CRπ → CRπ.
(i) and (ii) are trivial to verify. (iii) and (iv) can be proven completely analogously to the

corresponding Proposition II.3.5 for continuous cohomology. That p∗K restricts to

p∗K : Cb((Hn)•+1,Rπ) → Cb(G
•+1,Rπ)

is also immediate by direct inspection and in view of Proposition II.3.5.

II.3.3. The Volume Class
We now turn to the cohomology class, that will be the most important to us in the following, the
volume class. It will play a central role in the definition of the volume of a representation. Our
objective in this subsection is to introduce the volume class and to recognize different cocycles in
the different complexes representing it.
Before we can define it, we have to set the stage and introduce a non-trivial (Banach) G-module

structure on R. Consider the quotient map ε : G = Isom(Hn) → G/G+. Since G+ is a subgroup of
index two, we may identify G/G+ ∼= {±1} such that

ε(g) =

{
+1, if g is orientation preserving
−1, if g is not orientation preserving

for every g ∈ G. Clearly ε : G → {±1} ∼= Iso(R) is a homomorphism, such that (ε,R) (or Rε

for short) becomes a Banach G-module. This representation is clearly (jointly) continuous and
hence Rε is even a continuous Banach G-module. Therefore it is also a G-module in the sense
of continuous cohomology (cf. Remark B.2.9). In the following we will frequently pull back this
structure by continuous homomorphisms H → G+ < G with image in the orientation preserving
isometries. It is clear that the resulting pullback structure on R is the trivial one.

Let us first have a look at the continuous cohomology H•(G,Rε). By Corollary II.3.2 we have
H•(G,Rε) ∼= H•(Ω•(Hn,Rε)

G). It turns out that the hyperbolic volume form ωn ∈ Ωn(Hn,Rε) is
G-equivariant. Indeed, the orientation on Hn is given by the volume form and an isometry g ∈ G
is by definition orientation preserving resp. reversing, if and only if g∗ωn = ωn resp. g∗ωn = −ωn.
That is g∗ωn = ε(g) · ωn or equivalently

g · ωn = ε(g) · (g−1)∗ωn = ε(g) · ε(g−1) · ωn = ωn

for every g ∈ G. As ωn is in top-degree, it is a cocycle for trivial reasons and hence defines a class
in cohomology.
We may now apply the van Est isomorphism Φ : Ωn(Hn,Rε)

G → C((Hn)n+1,Rε)
G and get a

continuous function

Voln(x0, . . . , xn) := Φ(ωn)(x0, . . . , xn) =

∫
str(x0,...,xn)

ωn, ∀(x0, . . . , xn) ∈ Hn
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which yields another representative of the same cohomology class in the complex C((Hn)•+1,Rε)
G.

By abuse of notation we refer to both cocycles Voln and ωn as the volume cocycle and to the corre-
sponding cohomology classes [ωn] and [Voln] as the volume class, identifyingHn(C((Hn)•+1,Rε)

G) ∼=
Hn(Ω•(Hn,Rε)

G) ∼= Hn
c (G,Rε). If there is no ambiguity we shall also denote by ωn the volume

class.
We will now see that Voln may be interpreted as the signed volume of the convex hull of the

points x0, . . . , xn ∈ Hn.

Lemma II.3.14. Let v0, . . . , vn ∈ Dn ∼= Hn. Then

Voln(v0, . . . , vn) = sgn(D(v0, . . . , vn)) · vol(conv(v0, . . . , vn))

where

D(v0, . . . , vn) = det

 | |
v1 − v0 · · · vn − v0

| |


is the determinant of the matrix with column vectors v1 − v0, . . . , vn − v0 and

sgn(t) =


+1 , t > 0

0 , t = 0

−1 , t < 0

for every t ∈ R. In particular

|Voln(v0, . . . , vn)| = vol(conv(v0, . . . , vn))

and Voln is alternating, i.e. for any permutation σ ∈ Sn+1 we have that

Voln(vσ(0), . . . , vσ(n)) = sgn(σ) ·Voln(v0, . . . , vn)

Remark II.3.15. In order to prove the lemma we want to introduce a different notion of a straight
simplex in the projective disk model Dn. For any v0, . . . , vn ∈ Dn ∼= Hn define the projective straight
simplex str′(v0, . . . , vn) : ∆n → Dn via

str′(v0, . . . , vn)(t1, . . . , tn) :=

(
1−

n∑
i=1

ti

)
· v0 + t1 · v1 + · · ·+ tn · vn

for every (t1, . . . , tn) ∈ ∆n. Recall that in the projective disk model geodesics are just straight lines
and a set is convex with respect to the hyperbolic metric if and only if it is convex in the standard
euclidean sense. Therefore the image of str′(v0, . . . , vn) is the convex hull conv(v0, . . . , vn). It
is worth noting, that when we compare the projective disk model with the hyperboloid model for
hyperbolic n-space Hn by applying the gnomonic projection the two notions of straight simplices do
not coincide. However this is almost the case, since they have the same image and are just different
parametrizations which also induce the same orientation. Because when integrating a differential
form over a straight simplex only the orientation and not the concrete parametrization matters, we
may replace our original definition of a straight simplex with the new one. We will do that in the
following without any further comment.

Proof of Lemma II.3.14. Let v0, . . . , vn ∈ Dn ∼= Hn and consider str(v0, . . . , vn) : ∆n → Dn. Then
the Jacobian matrix of str(v0, . . . , vn) is given by

Jstr(v0,...,vn)(t1, . . . , tn) =

(v1 − v0)
T

...
(vn − v0)

T


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where the rows are just the (transposed) vectors v1 − v0, . . . , vn − v0. Note that therefore

D(v0, . . . , vn) = det
(
Jstr(v0,...,vn)(t1, . . . , tn)

)
for every (t1, . . . , tn) ∈ ∆n. Further recall, that the volume form in the projective disk model is
given by

ωn = f · dx1 ∧ . . . ∧ dxn
where

f(x) =
1

(1− |x|2)(n+1)/2

for every x ∈ Dn ⊂ Rn (cf. [Rat06]).
Now we compute

Voln(v0, . . . , vn) =
∫

str(v0,...,vn)
ωn

=

∫
∆n

str(v0, . . . , vn)∗ωn

=

∫
∆n

f ◦ str(v0, . . . , vn) · str(v0, . . . , vn)∗(dx1 ∧ . . . ∧ dxn)

=

∫
∆n

f ◦ str(v0, . . . , vn) · det
(
Jstr(v0,...,vn)

)
· dt1 ∧ . . . ∧ dtn

= sgn(D(v0, . . . , vn)) ·
∫
∆n

f(str(v0, . . . , vn)(t1, . . . , tn))|D(v0, . . . , vn)| dt1 . . . dtn

= sgn(D(v0, . . . , vn)) ·
∫

conv(v0,...,vn)
f(x1, . . . , xn) dx1 . . . dxn

= sgn(D(v0, . . . , vn)) · vol(conv(v0, . . . , vn))

where we have used the transformation rule for Lebesgue integration in the second last line and
the fact, that we have for the hyperbolic measure µ in the projective disk model

dµ

dλ
= f

where λ denotes the Lebesgue measure on Dn ⊂ Rn, in the last line.

Recall that by Theorem I.7.4 the volume of a n-simplex in Hn, that is the convex hull of n + 1
points in Hn, is bounded by the volume of a regular ideal n-simplex. Therefore the above lemma
shows, that Voln is in fact a bounded continuous function in Cb((Hn)n+1,Rε)

G ⊂ C((Hn)n+1,Rε)
G.

Hence Voln represents a class in bounded cohomology, which we will also call the volume class and
denote it by ωb

n ∈ Hn
cb(G,Rε). Corollary II.2.45 now readily implies, that the comparison map

sends ωb
n to ωn, i.e. c(ωb

n) = ωn.
Our next objective is to show, that we can think of Voln as a cocycle in L∞((∂Hn)n+1,Rε)

G too.
Since both sgn(D(v0, . . . , vn)) and vol(conv(v0, . . . , vn)) are also defined on (D

n
)n+1 ∼= (Hn

)n+1,
we can use the previous lemma to enlarge the domain of Voln(·) to Hn by setting

Voln(v0, . . . , vn) := sgn(D(v0, . . . , vn)) · vol(conv(v0, . . . , vn))

for every (v0, . . . , vn) ∈ (D
n
)n+1 ∼= (Hn

)n+1.
We will now use Theorem I.7.7 and Theorem I.7.8 to deduce some regulartiy properties of

Voln : (Hn
)n+1 → R.
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Proposition II.3.16. We have

(i) Vol2 : (H2)3 ∪ (H2
)[3] → R is continuous, where (H2

)[3] denotes the set of all triples of points
which are not contained in a proper hyperbolic subspace (cf. Theorem I.7.8).

(ii) Let n ≥ 3. Then the map Voln : (Hn
)n+1 → R is continuous.

Proof. We will prove (ii) first. Let n ≥ 3, let (v0, . . . , vn) ∈ (D
n
)n+1 ∼= (Hn

)n+1 and let {(v0j , . . . , vnj)}j∈N ⊂
(D

n
)n+1 be a sequence converging to it. Consider the open set

(D
n
)[n+1] := {(v0, . . . , vn) ∈ (D

n
)n+1 : v0, . . . , vn are not contained in a proper hyperbolic subspace }

= {(v0, . . . , vn) ∈ (D
n
)n+1 : D(v0, . . . , vn) 6= 0}

Assume first, that (v0, . . . , vn) ∈ (D
n
)n+1 − (D

n
)[n+1]. Then Voln(v0, . . . , vn) = 0 and

lim
j→∞

|Voln(v0j , . . . , vnj)−Voln(v0, . . . , vn)| = lim
j→∞

|Voln(v0j , . . . , vnj)|

= lim
j→∞

vol(conv(v0j , . . . , vnj)) = 0

by Theorem I.7.7.
Now if (v0, . . . , vn) ∈ (D

n
)[n+1], then by continuity of D(·)

lim
j→∞

D(v0j , . . . , vnj) = D(v0, . . . , vn) 6= 0

such that for j large enough sgn(D(v0j , . . . , vnj)) = sgn(D(v0, . . . , vn)). Therefore

lim
j→∞

Voln(v0j , . . . , vnj) = sgn(D(v0, . . . , vn)) · lim
j→∞

vol(conv(v0j , . . . , vnj))

= sgn(D(v0, . . . , vn)) · vol(conv(v0, . . . , vn)) = Voln(v0, . . . , vn)

by Theorem I.7.7.
The proof of (i) is essentially the same. One just has to take into account the discontinu-

ities of vol(conv(·)) in dimension 2. Let (v0, v1, v2) ∈ (D2)3 ∪ (D
2
)[3] ∼= (H2)3 ∪ (H2

)[3] and let
{(v0j , v1j , v2j)}j∈N ⊂ (D2)3 ∪ (D

2
)[3] be a sequence converging to it.

If (v0, v1, v2) ∈ (D2)3 then also (v0j , v1j , v2j) ∈ (D2)3 for j large enough. If D(v0, v1, v2) = 0 then
also Vol2(v0, v1, v2) = 0 and

lim
j→∞

|Vol2(v0j , v1j , v2j)−Vol2(v0, v1, v2)| = lim
j→∞

|Vol2(v0j , v1j , v2j)|

= lim
j→∞

vol(conv(v0j , v1j , v2j)) = 0

by Theorem I.7.8. IfD(v0, v1, v2) 6= 0 then asD(v0j , v1j , v2j) → D(v0, v1, v2) we have sgn(D(v0j , v1j , v2j)) =
sgn(D(v0, v1, v2)) for j large enough. Thus

lim
j→∞

Vol2(v0j , v1j , v2j) = sgn(D(v0, v1, vn)) · lim
j→∞

vol(conv(v0j , v1j , v2j))

= sgn(D(v0, v1, v2)) · vol(conv(v0, v1, v2)) = Vol2(v0, v1, v2)

by Theorem I.7.8.
If (v0, v1, v2) ∈ (D

2
)[3], then D(v0, v1, v2) 6= 0. Since D(v0j , v1j , v2j) → D(v0, v1, v2), we have for

j large enough sgn(D(v0j , v1j , v2j)) = sgn(D(v0, v1, v2)). Thus again by Theorem I.7.8

lim
j→∞

Vol2(v0j , v1j , v2j) = sgn(D(v0, v1, vn)) · lim
j→∞

vol(conv(v0j , v1j , v2j))

= sgn(D(v0, v1, v2)) · vol(conv(v0, v1, v2)) = Vol2(v0, v1, v2)
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Next we need to see that Voln is G-equivariant.

Proposition II.3.17. Voln : (Hn
)n+1 → Rε is G-equivariant, i.e.

ε(g) ·Voln(g−1x0, . . . , g
−1xn) = Voln(x0, . . . , xn)

for every g ∈ G and (x0, . . . , xn) ∈ (Hn
)n+1.

Remark II.3.18. Note that n ≥ 2 in the whole of this section if not otherwise stated.

Proof. Assume first that n ≥ 3.
Let g ∈ G, (x0, . . . , xn) ∈ (Hn

)n+1 and {(x(j)0 , . . . , x
(j)
n )}j∈N ⊂ (Hn)n+1 a sequence converging

to it. Then {(g−1x
(j)
0 , . . . , g−1x

(j)
n )}j∈N ⊂ (Hn)n+1 converges to (g−1x0, . . . , g

−1xn) and we get by
continuity of Voln : (Hn

)n+1 → R

ε(g) ·Voln(g−1x0, . . . , g
−1xn) = lim

j→∞
ε(g) ·Voln(g−1x

(j)
0 , . . . , g−1x(j)n )

= ε(g) ·Voln(g−1x0, . . . , g
−1xn)

= Voln(x0, . . . , xn)

Now consider the case n = 2. Again we want to use the continuity of Voln. Let g ∈ G and let
(x0, x1, x2) ∈ (D

2
)3 − (D

2
)[3]. Then x0, x1, x2 are contained in a proper hyperbolic subspace and

so are g−1x0, g
−1x1, g

−1x2. Therefore

ε(g) ·Vol2(g−1x0, g
−1x1, g

−1x2) = 0 = Vol2(x0, x1, x2)

Let (x0, x1, x2) ∈ (D
2
)[3] and let {(x(j)0 , x

(j)
1 , x

(j)
2 )}j∈N ⊂ (D2)3 be a sequence converging to it.

Then as before by continuity

ε(g) ·Vol2(g−1x0, g
−1x1, g

−1x2) = lim
j→∞

ε(g) ·Vol2(g−1x
(j)
0 , g−1x

(j)
1 , g−1x

(j)
2 )

= lim
j→∞

ε(g) ·Vol2(g−1x
(j)
0 , g−1x

(j)
1 , g−1x

(j)
2 )

= Vol2(x0, x1, x2)

It is now immediate that restricting Voln to (∂Hn)n+1 yields a G-equivariant bounded measurable
function, i.e. Voln ∈ B∞((∂Hn)n+1,Rε)

G ⊂ L∞((∂Hn)n+1,Rε)
G. Indeed for n ≥ 3 it is continuous

and for n = 2 it is continuous on the full measure subset (∂H2)[3] = (∂H2)(3) of triples of distinct
boundary points. Note that Vol2 is actually locally constant on (∂H2)(3), since Isom(H2) acts
3-transitively on its boundary, such that any two ideal triangles are congruent.
The next proposition asserts, that it is in fact a cocycle and hence represents a cohomology class

in Hn(L∞((∂Hn)•+1,Rε)
G) ∼= Hn

cb(G,Rε).

Proposition II.3.19. Voln ∈ B∞((∂Hn)n+1,Rε)
G ⊂ L∞((∂Hn)n+1,Rε)

G is a cocycle, i.e.

dVoln ≡ 0

Proof. Consider (ξ0, . . . , ξn+1) ∈ (∂Hn)n+2 − (∂Hn)(n+2). Then ξj = ξk for some j 6= k. Because

(dVoln)(ξ0, . . . , ξn+1) =

n+1∑
i=0

Voln(ξ0, . . . , ξ̂i, . . . , ξn+1)
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and Voln is alternating we may assume without loss of generality, that ξ0 = ξ1. Thus

n+1∑
i=0

Voln(ξ0, . . . , ξ̂i, . . . , ξn+1) = Voln(ξ1, ξ2, . . . , ξn+1)−Voln(ξ0, ξ2, . . . , ξn+1) = 0

For (ξ0, . . . , ξn+1) ∈ (∂Hn)(n+2) let {(x(j)0 , . . . , x
(j)
n+1)}j∈N ⊂ (Hn)n+2 be a sequence converging to

it. Then

(dVoln)(ξ0, . . . , ξn+1) =

n+1∑
i=0

(−1)iVoln(ξ0, . . . , ξ̂i, . . . , ξn+1)

=

n+1∑
i=0

(−1)i lim
j→∞

Voln(x(j)0 , . . . , x̂
(j)
i , . . . , x

(j)
n+1)

= lim
j→∞

n+1∑
i=0

(−1)iVoln(x(j)0 , . . . , x̂
(j)
i , . . . , x

(j)
n+1)

= lim
j→∞

(dVoln)(x(j)0 , . . . , x
(j)
n+1) = 0

and the assertion is proven.

We have now encountered several different cocycles all coming from Voln :
(
Hn)n+1 → R:

• V1 = [Voln] ∈ Hn
cb(G,Rε) where Voln ∈ Cb((Hn)n+1,Rε)

G

• V2 = [Voln] ∈ Hn
cb(G,Rε) where Voln ∈ L∞((Hn)n+1,Rε)

G

• V3 = [Voln] ∈ Hn
cb(G,Rε) where Voln ∈ L∞((∂Hn)n+1,Rε)

G

Although they all come from restrictions of the same function, it is apriori not clear, that they
all represent the same cohomology class in Hn

cb(G,Rε). We will now see, that they in fact do. It
is easy to see that V1 = V2 as the isomorphism H•(Cb((Hn)•+1,Rε)

G) → H•(L∞((Hn)•+1,Rε)
G)

is induced by the inclusion ι : Cb((Hn)•+1,Rε)
G → L∞((Hn)•+1,Rε)

G at the cochain level (cf.
subsection II.3.2).
The following proposition asserts, that also V2 = V3. By further abuse of notation we will

therefore always speak of the volume class ωb
n and mean the cohomology class represented by one

of the above cocycles. If the corresponding complex is understood we shall also speak of the volume
cocycle.

Proposition II.3.20. Let x ∈ Hn and ξ ∈ ∂Hn and denote by K = Gx the stabilizer of x and by
P = Gξ the stabilizer of ξ. Further let

p∗K : H•(L∞((Hn)•+1,Rε)
G) → H•(L∞(G•+1,Rε)

G)

and
p∗P : H•(L∞((∂Hn)•+1,Rε)

G) → H•(L∞(G•+1,Rε)
G)

be the corresponding isomorphisms from subsection II.3.2. Then

p∗K([Voln]) = p∗P ([Voln])

and therefore V2 = V3 with the above notation.
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In particular the volume class in Hn(L∞(G•+1,Rε)
G) is represented by the cocycle

Vy : Gn+1 → R
(g0, . . . , gn) 7→ Voln(g0y, . . . , gny)

for any basepoint y ∈ Hn.

Proof. Let x ∈ Hn and ξ ∈ ∂Hn. Recall that the above isomorphisms are given at the cochain level
by precomposition with the continuous maps

pK : G→ G/K ∼= Hn, g 7→ gx

and
pP : G→ G/P ∼= ∂Hn, g 7→ gξ

Thus p∗K([Voln]) is represented by

(g0, . . . , gn) 7→ Voln(g0x, . . . , gnx)

and p∗P ([Voln]) is represented by

(g0, . . . , gn) 7→ Voln(g0ξ, . . . , gnξ)

Consider the function f : Gn → R given by

f(g0, . . . , gn−1) :=
n−1∑
i=0

(−1)iVoln(g0ξ, . . . , giξ, gix, . . . , gn−1x)

for every (g0, . . . , gn−1) ∈ Gn. Clearly f ∈ L∞(Gn,Rε)
G. We claim that

Voln(g0x, . . . , gnx)−Voln(g0ξ, . . . , gnξ) = (df)(g0, . . . , gn)

for almost every (g0, . . . , gn) ∈ Gn+1.
In an intermediate step let us first see that for every x′ ∈ Hn the function f ′ : Gn → R given by

f ′(g0, . . . , gn−1) :=
n−1∑
i=0

(−1)iVoln(g0x′, . . . , gix′, gix, . . . , gn−1x) (II.7)

satisfies

Voln(g0x, . . . , gnx)−Voln(g0x′, . . . , gnx′) = (df ′)(g0, . . . , gn) (II.8)

for every (g0, . . . , gn) ∈ Gn+1. The claim will then follow by discussing the cases n ≥ 3 and n = 2
separately, and using a by now familiar continuity argument. A coboundary construction similar
to (II.7) will be important later.
Because Voln ∈ C((Hn)n+1,Rε)

G is a cocycle, we have that

0 = (dVoln)(x0, . . . , xn+1) =

n+1∑
i=0

(−1)iVoln(x0, . . . , x̂i, . . . , xn+1)
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for all x0, . . . , xn+1 ∈ Hn. Thus

0 =
n∑

i=0

(−1)i(dVoln)(g0x′, . . . , gix′, gix, . . . , gnx)

=
n∑

i=0

(−1)i
{ ∑

j≤i−1

(−1)jVoln(g0x′, . . . , gj−1x
′, gj+1x

′, . . . , gix
′, gix, . . . , gnx)

+ (−1)iVoln(g0x′, . . . , gi−1x
′, gix, . . . , gnx)

+ (−1)i+1Voln(g0x′, . . . , gix′, gi+1x, . . . , gnx)

+
∑

i+2≤j

(−1)jVoln(g0x′, . . . , gix′, gix, . . . , gj−2x, gjx, . . . , gnx)

}

=

n∑
i=0

{
Voln(g0x′, . . . , gi−1x

′, gix, gi+1x, . . . , gnx)

−Voln(g0x′, . . . , gix′, gi+1x, . . . , gnx)

}
+

n∑
i=0

(−1)i
{ ∑

j≤i−1

(−1)jVoln(g0x′, . . . , gj−1x
′, gj+1x

′, . . . , gix
′, gix, . . . , gnx)

+
∑

i+2≤j

(−1)jVoln(g0x′, . . . , gix′, gix, . . . , gj−2x, gjx, . . . , gnx)

}
= Voln(g0x, . . . , gnx)−Voln(g0x′, . . . , gnx′)

+

n∑
i=0

(−1)i
{ ∑

j≤i−1

(−1)jVoln(g0x′, . . . , gj−1x
′, gj+1x

′, . . . , gix
′, gix, . . . , gnx)

+
∑

i+2≤j

(−1)jVoln(g0x′, . . . , gix′, gix, . . . , gj−2x, gjx, . . . , gnx)

}
for every (g0, . . . , gn) ∈ Gn+1, i.e.

Voln(g0x, . . . , gnx)−Voln(g0x′, . . . , gnx′)

= −
n∑

i=0

(−1)i
{ ∑

j≤i−1

(−1)jVoln(g0x′, . . . , gj−1x
′, gj+1x

′, . . . , gix
′, gix, . . . , gnx)

+
∑

i+2≤j

(−1)jVoln(g0x′, . . . , gix′, gix, . . . , gj−2x, gjx, . . . , gnx)

}

=

n∑
i=0

(−1)i
{ ∑

0≤j≤i−1

(−1)j+1Voln(g0x′, . . . , gj−1x
′, gj+1x

′, . . . , gix
′, gix, . . . , gnx)

+
∑

i+1≤j≤n

(−1)jVoln(g0x′, . . . , gix′, gix, . . . , gj−1x, gj+1x, . . . , gnx)

}
On the other hand

(df ′)(g0, . . . , gn) =

n∑
j=0

(−1)jf ′(g0, . . . , gj−1, gj+1, . . . , gn)

=
n∑

j=0

(−1)j
{ ∑

0≤i≤j−1

(−1)iVoln(g0x′, . . . , gix′, gix, . . . , gj−1x, gj+1x, . . . , gnx)
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+
∑

j≤i≤n−1

(−1)iVoln(g0x′, . . . , gj−1x
′, gj+1x

′, . . . , gi+1x
′, gi+1x, . . . , gnx)

}

=

n∑
j=0

(−1)j
{ ∑

0≤i≤j−1

(−1)iVoln(g0x′, . . . , gix′, gix, . . . , gj−1x, gj+1x, . . . , gnx)

+
∑

j+1≤i≤n

(−1)i+1Voln(g0x′, . . . , gj−1x
′, gj+1x

′, . . . , gix
′, gix, . . . , gnx)

}

for every (g0, . . . , gn) ∈ Gn+1. By comparing both double sums it is immediate that they consist of
the same terms with the same signs and hence are equal. Therefore we have in fact, that relation
(II.8) holds.
In order to prove our claim let us first consider the case n ≥ 3. Let (g0, . . . , gn) ∈ Gn+1 and

(xj)j∈N ⊂ Hn a sequence of points converging to ξ ∈ ∂Hn. Consider the sequence of functions
fj : G

n → R given by

fj(g0, . . . , gn−1) :=

n−1∑
i=0

(−1)iVoln(g0xj , . . . , gixj , gix, . . . , gn−1x)

for every (g0, . . . , gn−1) ∈ Gn. As we have just shown

Voln(g0x, . . . , gnx)−Voln(g0xj , . . . , gnxj) = (dfj)(g0, . . . , gn)

for all j ∈ N. By definition of (fj)j∈N and by continuity of Voln : (Hn
)n+1 → R we get

Voln(g0x, . . . , gnx)−Voln(g0ξ, . . . , gnξ) = lim
j→∞

{Voln(g0x, . . . , gnx)−Voln(g0xj , . . . , gnxj)}

= lim
j→∞

(dfj)(g0, . . . , gn)

= lim
j→∞

n∑
i=0

(−1)iVoln(g0xj , . . . , gixj , gix, . . . , gnx)

=

n∑
i=0

(−1)i lim
j→∞

Voln(g0xj , . . . , gixj , gix, . . . , gnx)

=

n∑
i=0

(−1)iVoln(g0ξ, . . . , giξ, gix, . . . , gnx)

= (df)(g0, . . . , gn)

which proves our claim for n ≥ 3.
Let us now turn to the case of n = 2. Let (g0, g1, g2) ∈ G3. We want to use again the above

continuity argument. However since Vol2 is only continuous on (H2)3 ∪ (H2
)[3] and

(df)(g0, g1, g2) = f(g1, g2)− f(g0, g2) + f(g0, g2)

= {Vol2(g1ξ, g1x, g2x)−Vol2(g1ξ, g2ξ, g2x)}
− {Vol2(g0ξ, g0x, g2x)−Vol2(g0ξ, g2ξ, g2x)}
+ {Vol2(g0ξ, g0x, g1x)−Vol2(g0ξ, g1ξ, g1x)}
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this will only work for triples (g0, g1, g2) ∈ G3 such that all of the following triples are in (H2)[3]:

(g0ξ, g1ξ, g2ξ),

(g1ξ, g1x, g2x), (g1ξ, g2ξ, g2x)

(g0ξ, g0x, g2x), (g0ξ, g2ξ, g2x)

(g0ξ, g0x, g1x), (g0ξ, g1ξ, g1x)

Denote the set of these triples by F . Then

F = Ac ∩ (Bc
0 ∩ Cc

0) ∩ (Bc
1 ∩ Cc

1) ∩ (Bc
2 ∩ Cc

2)

where A denotes the set of triples (g0, g1, g2) such that g0ξ, g1ξ, g2ξ are contained in a proper
hyperbolic subspace (i.e. are not pairwise distinct), Bi denotes the set of triples (g0, g1, g2) such
that gjξ, gjx, gkx (j 6= i and k 6= j, i) are contained in a proper hyperbolic subspace, and Ci denotes
the set of triples (g0, g1, g2) such that gjξ, gjξ, gkx (j 6= i and k 6= j, i) are contained in a proper
hyperbolic subspace. We claim that A, Bi and Ci (i = 0, 1, 2) are null sets in G3, such that F has
full measure.
Let P denote the stabilizer of ξ ∈ ∂H2. Clearly we have A = A0 ∪A1 ∪A2 where

A0 = {(g0, g1, g2) ∈ G3 : g−1
2 g1 ∈ P}

A1 = {(g0, g1, g2) ∈ G3 : g−1
1 g0 ∈ P}

A2 = {(g0, g1, g2) ∈ G3 : g−1
2 g0 ∈ P}

As an example we will show that A0 is a null set. One may show mutatis mutandis that A1 and
A2 are null sets too. The characteristic function of A0 is

χA0(g0, g1, g2) = χP (g
−1
2 g1)

for every (g0, g1, g2) ∈ G3 where χP : G → R is the characteristic function of P . Let µ⊗3 denote
the product measure of some Haar measure µ on G. Then we compute

µ⊗3(A0) =

∫
G3

χA0(g0, g1, g2) dµ
⊗3(g0, g1, g2)

=

∫
G

∫
G

∫
G
χP (g

−1
2 g1) dµ(g1) dµ(g2) dµ(g0)

=

∫
G

∫
G

∫
G
χP (g1) dµ(g1) dµ(g2) dµ(g0) = 0

since P is a proper closed subgroup in G hence a proper submanifold and thus a null set (cf.
Proposition A.3.7). Analogously for A1 and A2 such that all in all µ⊗3(A) = 0.
As an example we will now show that B0 is a null set. Analogous arguments can be carried out

for B1 and B2. Clearly (g0, g1, g2) ∈ B0 if and only if g−1
1 g2x is on the geodesic γ : R → H2 from

x to ξ. Let µH denote the hyperbolic volume measure on H2 and µ a Haar measure on G and
p : G→ H2, g 7→ gx. Then since µH(γ) = 0 we get that also µ(p−1(γ)) = 0 where we have confused
γ with its image (cf. Proposition A.4.13 and Lemma I.4.10). Denote by χγ the characteristic
function of p−1(γ) ⊂ G. Then we have for the characteristic function of B0

χB0(g0, g1, g2) = χγ(g
−1
1 g2)
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and thus ∫
G3

χB0(g0, g1, g2) dµ
⊗3(g0, g1, g2) =

∫
G

∫
G

∫
G
χγ(g

−1
1 g2) dµ(g2) dµ(g1) dµ(g0)

=

∫
G

∫
G

∫
G
χγ(g2) dµ(g2) dµ(g1) dµ(g0)

= 0

for every (g0, g1, g2) ∈ G3, i.e. B0 is a null set in G3. Skipping the analogous arguments for B1 and
B2 we hence have that B is a null set.
Finally we will now show as an example that C0 is a null set. Similarly this can be proven for

C1 and C2. Now (g0, g1, g2) ∈ G3 is in C0 if and only if g−1
2 g1ξ is one of the endpoints ξ, ξ′ of the

geodesic γ through x and ξ. The argument is now basically the same as for B0. The set {ξ, ξ′} is
a null set in ∂H2 and thus µ(p−1({ξ, ξ′})) = 0 where p : G→ ∂H2, g 7→ gξ. Let χ′

γ : G→ R denote
the characteristic function of p−1({ξ, ξ′}). Then∫

G3

χC0(g0, g1, g2) dµ
⊗3(g0, g1, g2) =

∫
G

∫
G

∫
G
χ′
γ(g

−1
2 g1) dµ(g1) dµ(g2) dµ(g0)

=

∫
G

∫
G

∫
G
χ′
γ(g2) dµ(g1) dµ(g2) dµ(g0)

= 0

for every (g0, g1, g2) ∈ G3, i.e. C0 is a null set in G3. Skipping the analogous arguments for C1 and
C2 we hence have that C is a null set. This finishes the proof of the claim that F has full measure.
Now let (xj)j∈N ⊂ H2 a sequence of points converging to ξ ∈ ∂H2 and as in the case of n ≥ 3

fj(g0, g1) := Vol2(g0xj , g0x, g1x)−Vol2(g0xj , g1xj , g1x)

for every (g0, g1, g2) ∈ G3. Then

Vol2(g0x, g1x, g2x)−Vol2(g0ξ, g1ξ, g2ξ) = lim
j→∞

{Vol2(g0x, g1x, g2x)−Vol2(g0xj , g1xj , g2xj)}

= lim
j→∞

(dfj)(g0, g1, g2)

= lim
j→∞

{
[Vol2(g1xj , g1x, g2x)−Vol2(g1xj , g2xj , g2x)]

− [Vol2(g0xj , g0x, g2x)−Vol2(g0xj , g2xj , g2x)]

+ [Vol2(g0xj , g0x, g1x)−Vol2(g0xj , g1xj , g1x)]
}

= [Vol2(g1ξ, g1x, g2x)−Vol2(g1ξ, g2ξ, g2x)]
− [Vol2(g0ξ, g0x, g2x)−Vol2(g0ξ, g2ξ, g2x)]
+ [Vol2(g0ξ, g0x, g1x)−Vol2(g0ξ, g1ξ, g1x)]

= (df)(g0, g1, g2)

for every (g0, g1, g2) ∈ F , i.e.
p∗KVol2 − p∗PVol2 = df

in L∞(G3,Rε)
G. This concludes the proof.

We have now seen several representations of the volume class ωb
n ∈ Hn

cb(G,Rε). Adding to
the ambiguity of the terms ”volume cocycle” and ”volume class” we can also pull them back to
Hn

c(b)(G
+,R) and will refer to their images also as volume cocycle and volume class respectively.

The next proposition justifies this as it shows that one gets the pullback of the volume cocycle by
simply forgetting its G-equivariance and interpreting it as only a G+-invariant cocycle.
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Proposition II.3.21. (i) In continuous cohomology the pullback i∗ : H•
c (G,Rε) → H•

c (G
+,R)

along i : G+ → G is given at the cochain level by the inclusions

ι1 : Ω
•(Hn,Rε)

G ↪→ Ω•(Hn,R)G
+

and
ι2 : C((Hn)•+1,Rε)

G ↪→ C((Hn)•+1,R)G
+

under the respective canonical isomorphisms. In particular thinking of ωn and Voln as G+-
invariant cocycles yields their image under the pullback i∗ (under the respective canonical
isomorphisms).

(ii) In bounded cohomology the pullback i∗ : H•
cb(G,Rε) → H•

cb(G
+,R) along i : G+ → G is given

at the cochain level by the inclusions

ι3 : Cb((Hn)•+1,Rε)
G ↪→ Cb((Hn)•+1,R)G

+
,

ι4 : L
∞((Hn)•+1,Rε)

G ↪→ L∞((Hn)•+1,R)G
+

and
ι5 : L

∞((∂Hn)•+1,Rε)
G ↪→ L∞((∂Hn)•+1,R)G

+

under the respective canonical isomorphisms. In particular thinking of Voln as a G+-invariant
cocycle in one of the respective cochain complexes yields its image under the pullback i∗ (via
the respective canonical isomorphisms).

Proof. There are two ways of proving this result both of which are equally evident. First, one can
use the previously described isomorphisms: van Est and p∗K for continuous cohomology; p∗K , p∗P
for continuous bounded cohomology. All computations are trivial and we leave them out. The
assertion then follows by the naive definition of the pullback map for continuous cohomology and
Corollary II.2.35 for bounded cohomology.
Second, one can see this on a more conceptual level and show, that all inclusions at the level of

resolutions are extensions of the identity id : R → R and hence the result follows from Proposition
II.2.33 and Remark II.2.34.

Finally we want to understand the pullback ρ∗(ωb
n) of the volume class, since this will be very

important in the proof of the volume rigidity theorem later on. We will do so by applying Corollary
II.2.42 and Corollary II.2.41.

Corollary II.3.22. Let H < G be a closed subgoup (e.g. a lattice) and ρ : H → G a continuous ho-
momorphism. Then the pullback of the volume class ρ∗ωb

n is represented in Hn(L∞(H•+1,Rερ)
H) ∼=

Hn
cb(H,Rερ) by the cocycle

ρ∗Vy : Hn+1 → R
(h0, . . . , hn) 7→ Voln(ρ(h0)y, . . . , ρ(hn)y)

for any y ∈ Hn.

Proof. Due to Proposition II.3.20 the volume class ωb
n is represented in L∞(Gn+1,Rε) by the cocycle

Vy : Gn+1 → R
(g0, . . . , gn) 7→ Voln(g0y, . . . , gny)

for any y ∈ Hn. Note that Vy : Gn+1 → R is actually in B∞(Gn+1,R). Hence by Corollary II.2.42
we know, that ρ∗ωb

n is represented in Hn(L∞(H•+1,Rερ)
H) by the cocycle ρ∗Vy as asserted.
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Corollary II.3.23. Let H < G be a closed subgroup (e.g. a lattice) and ρ : H → G a con-
tinuous group homomorphism. Moreover let ϕ : ∂Hn → ∂Hn be an a.e.-ρ-equivariant bound-
ary map (cf. Corollary II.2.41). Then the pullback of the volume class ρ∗ωb

n is represented in
Hn(L∞((∂Hn)•+1,Rερ)

H) ∼= Hn
cb(H,Rερ) by the cocycle

ϕ∗Voln : (∂Hn)n+1 → R
(ξ0, . . . , ξn) 7→ Voln(ϕ(ξ0), . . . , ϕ(ξn))

Proof. Recall that ∂Hn = G/P is an amenable regular G-space, since P – the stabilizer of some
boundary point – is amenable (cf. Proposition C.2.7). Now by Proposition II.3.19 Voln is already
in B∞((∂Hn)n+1,Rε)

G. Therefore by Corollary II.2.41 the assertion follows.

II.3.4. Some Computations
Using the previously introduced volume class ωn we will be able to compute some cohomology
groups in this subsection. First we shall compute H•

c (G
+,R). In particular we will see, that

Hn
c (G

+,R) is generated by the pullback of the volume class ωn. After this computation we will see,
that H•

c(b)(G
+,R) ∼= H•

c(b)(G,R) ⊕ H•
c(b)(G,Rε), which yields that Hn

c (G,Rε) is generated by the
volume class ωn. Finally we will use a simple lemma to deduce that c : Hn

cb(G,Rε) → Hn
c (G,Rε) is

in fact an isomorphism; recall that G = Isom(Hn).
The next proposition gives us H•

c (G
+,R).

Proposition II.3.24. Let q ∈ N0. Then

Hq
c (G

+,R) ∼=


R, if q = 0

R ∼= 〈[ωn]〉 ∼= 〈[Voln]〉, if q = n

0, else

where [ωn] denotes the cohomology class of the volume cocycle in Hn(Ω•(Hn,R)G+
) which is

also represented by the cohomology class of the volume cocycle [Voln] ∈ Hn(C((Hn)•+1,R)G+ ∼=
Hn(Ω•(Hn,R)G+

) via the van Est isomorphism (cf. subsection II.3.3).

Proof. For brevity we will simply write Ω•(Hn) instead of Ω•(Hn,R).
We know that

H•
c (G

+,R) ∼= H•(Ω•(Hn)G
+
)

where the right hand side denotes the cohomology of the cocomplex of G+-invariant differential
forms on Hn. We shall first prove that

Ωq(Hn)G
+
= {0}

for all 0 < q < n. Hence let 0 < q < n and ω ∈ Ωq(Hn)G
+ . Because G+ operates transitively on

Hn and ω is G+-invariant, it suffices to show that ωp ≡ 0 for one p ∈ Hn. We shall see that for
p = 0 in the Poincaré ball model Bn. Because of the multilinearity of ω0 it is enough to see that
for an arbitrary basis v1, . . . , vn ∈ T0B

n ∼= Rn the expression ω0(vi1 , . . . , viq) vanishes for every
subcollection {vi1 , . . . , viq} of the basis. For simplicity we take the standard basis e1, . . . , en ∈
T0B

n ∼= Rn. Now for any subcollection ei1 , . . . , eiq and some j ∈ {1, . . . , n} − {i1, . . . , iq} consider
the matrix given by A(ei) = ei for every i 6= i1, j and A(ei1) = −ei1 , A(ej) = −ej . Then A ∈ O(n)
and because

detA = (−1)2 = 1
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we have that A ∈ SO(n), i.e. A ∈ G+
0 . Again by the G+-invariance we get

ω0(ei1 , . . . , eiq) = ω0((dA)0(ei1), . . . , (dA)0(eiq)) = ω0(A(ei1), . . . , A(eiq))

= ω0(−ei1 , ei2 , . . . , eiq) = −ω0(ei1 , . . . , eiq)

and hence ω0(ei1 , . . . , eiq) = 0. Thus ω ≡ 0 and Ωq(Hn)G
+
= {0} as asserted.

It follows immediately that for every 0 < q < n

Hq(Ω•(Hn)G
+
) = 0

For q = 0 we have

H0(Ω•(Hn)G
+
) = ker{d : Ω0(Hn)G

+ → Ω1(Hn)G
+}

= {f : Hn → R constant} = R

For q = n:

Hn(Ω•(Hn)G
+
) =

ker(d)
im(d)

= ker(d) = Ωn(Hn)G
+

Clearly the volume form in Ωn(Hn) is G+-invariant. It remains to see that Ωn(Hn)G
+ is one

dimensional, i.e. for any two ω, ω′ ∈ Ωn(Hn)G
+ there is a λ ∈ R such that ω ≡ λω′. It suffices to

find a λ ∈ R such that for every p ∈ Hn and some basis v1, . . . , vn ∈ TpHn

ωn(v1, . . . , vn) = λω(v1, . . . , vn)

Because of ω0, ω
′
0 ∈ Altn(T0Hn,R) ∼= R we find a λ ∈ R such that

ω0(e1, . . . , en) = λω′
0(e1, . . . , en)

For any other p ∈ Hn there is a g ∈ G+ such that g(0) = p and hence

ωp((dg)0(e1), . . . , (dg)0(en)) = ω0(e1, . . . , en) = λω′
0(e1, . . . , en)

= λω′
p((dg)0(e1), . . . (dg)0(en))

Since g is a diffeomorphism {(dg)0(e1), . . . (dg)0(en)} is a basis of TpHn and the assertion follows.

The next proposition establishes a link between the equivariant (bounded) cohomologyH•
c(b)(G,Rε)

and the invariant (bounded) cohomology H•
c(b)(G

+,R). As a corollary we will get, that in fact
Hn

c (G
+,R) ∼= Hn

c (G,Rε) = 〈ωn〉.
Proposition II.3.25 (cf. [BBI13, Proposition 1, p. 7]). Let τ ∈ G−G+ be an orientation reversing
isometry. Then the map

(p, p̄) : H•
c(b)(G

+,R) → H•
c(b)(G,R)⊕H•

c(b)(G,Rε)

is an isomorphism, where at the cochain level the maps

p : C(b)((Hn)q+1,R)G
+ → C(b)((Hn)q+1,R)G

p̄ : C(b)((Hn)q+1,R)G
+ → C(b)((Hn)q+1,Rε)

G

are given by

p(f)(x0, . . . , xq) :=
1

2
(f(x0, . . . , xq) + f(τx0, . . . , τxq))

p̄(f)(x0, . . . , xq) :=
1

2
(f(x0, . . . , xq)− f(τx0, . . . , τxq))

for every f ∈ C(b)((Hn)q+1,R)G+, x0, . . . , xq ∈ Hn. Moreover these maps do not depend on the
choice of τ ∈ G−G+.
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Proof. Observe that we have with respect to the left regular representation p(f) = 1/2 (f + τ−1 ·f)
and p̄(f) = 1/2 (f − τ−1 · f) for every f ∈ C(b)((Hn)q+1,R).
First of all we need to check that p and p̄ are well defined, i.e. the image of p resp. p̄ is in

C(b)((Hn)q+1,R)G resp. C(b)((Hn)q+1,Rε)
G. If f is continuous (and bounded), then so is p(f) and

p̄(f). It is also clear from the definition that p and p̄ are linear.
Thus we have to verify, that p(f) is G-invariant and p̄(f) is G-equivariant. We shall only show

the simple calculation for the latter. If g ∈ G is orientation preserving, we have

g · p̄(f) = 1

2
(g · f − gτ−1 · f) = 1

2
(f − τ−1(τgτ−1) · f)

=
1

2
(f − τ−1 · f) = ε(g) p̄(f)

Similarly for g ∈ G orientation reversing

g · p̄(f) = 1

2
(g · f − gτ−1 · f) = 1

2
(τ−1(τg) · f − f)

= −1

2
(f − τ−1 · f) = ε(g) p̄(f)

Hence p̄(f) is G-equivariant.
Now we want to see, that p and p̄ do not depend on the choice of τ ∈ G\G+. If ρ ∈ G\G+ is

another orientation reversing isometry and we define p′ and p̄′ exactly like p and p̄ resp. with τ
replaced by ρ, we calculate (again only for p̄′)

p̄′(f) =
1

2
(f − ρ−1 · f) = 1

2
(f − τ−1(τρ−1) · f)

=
1

2
(f − τ−1 · f) = p̄(f)

So our definition is independent of the choice of τ .
Next we need to show, that p and p̄ are morphisms of complexes, i.e. they commute with the

homogeneous coboundary operator. Again we shall only verify this by a simple calculation for p̄(f)

d(p̄(f)) =
1

2
(df − d(τ−1 · f))

=
1

2
(df − τ−1 · df) = p̄(d(f))

since the G-action commutes with the homogeneous coboundary operator. Thus p and p̄ induce a
map at the cohomology level in every degree

(p, p̄) : H•
c(b)(G

+,R) → H•
c(b)(G,R)⊕H•

c(b)(G,Rε)

We will now show the bijectivity of the above map by giving an inverse at the cochain level. First
observe that

C(b)((Hn)q+1,R)G ⊂ C(b)((Hn)q+1,R)G
+ and C(b)((Hn)q+1,Rε)

G ⊂ C(b)((Hn)q+1,R)G
+

96



II.3. Applications to G = Isom(Hn)

because G+ is a subgroup of G and ε|G+ ≡ 1. Hence the map

Φ : C(b)((Hn)q+1,R)G ⊕ C(b)((Hn)q+1,Rε)
G → C(b)((Hn)q+1,R)G

+

given by Φ(f1, f2) := f1 + f2 is well defined and is clearly a morphism of complexes. For all
f1 ∈ C(b)((Hn)q+1,R)G, f2 ∈ C(b)((Hn)q+1,Rε)

G we have

p(f1 + f2) =
1

2
(f1 + f2 + τ−1 · f1 + τ−1 · f2) =

1

2
(f1 + f2 + f1 − f2) = f1

p̄(f1 + f2) =
1

2
(f1 + f2 − (τ−1 · f1 + τ−1 · f2)) =

1

2
(f1 + f2 − f1 + f2) = f2

So (p, p̄)(Φ(f1, f2)) = (f1, f2). Further it is clear that p(f)+ p̄(f) = f for all f ∈ C(b)((Hn)q+1,R)G+

and thus Φ(p(f), p̄(f)) = f .

Remark II.3.26. Although we did not mention transfer maps, we want to remark, that p̄ can be
interpreted as the transfer map

trans : H•
cb(G

+,R) → H•
cb(G,Rε)

which is a left inverse of the pullback map

i∗ : H•
cb(G,Rε) → H•

cb(G
+,R)

We will encounter transfer maps in a different situation in the next chapter. For more details we
refer to [Mon01, Proposition 8.6.2, p. 106].

Corollary II.3.27. Let q ∈ N0. We have

Hq
c (G

+,R) ∼=


H0

c (G,R) ∼= R, if q = 0

Hn
c (G,Rε) ∼= R ∼= 〈[Voln]〉, if q = n

0, else

where [Voln] denotes the cohomology class of the volume cocycle in Hn(C((Hn)•+1,Rε)
G).

Proof. First of all the cases of q 6= n follow immediately from Proposition II.3.25 and the compu-
tation of H•

c (G
+,R) in Proposition II.3.24.

Applying the isomorphism from Proposition II.3.25

(p, p̄) : H•
c(b)(G

+,R) → H•
c(b)(G,R)⊕H•

c(b)(G,Rε)

to the volume cocycle Voln ∈ C((Hn)n+1,R)G+ we get

p(Voln)(x0, . . . , xn) =
1

2
(Voln(x0, . . . , xn) +Voln(τx0, . . . τxn)) = 0

and

p̄(Voln)(x0, . . . , xn) =
1

2
(Voln(x0, . . . , xn)−Voln(τx0, . . . τxn)) = Voln(x0, . . . , xn)

for every (x0, . . . , xn) ∈ (Hn)n+1. In view of the above remark this is not surprising since Voln ∈
C((Hn)n+1,R)G+ is by definition the pullback via i∗ : H•

cb(G,Rε) → H•
cb(G

+,R) of the volume
cocycle Voln ∈ C((Hn)n+1,Rε)

G. This settles the case of q = n and the assertion follows.
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The next lemma asserts, that all G-equivariant cochains vanish in degree less than n. It will then
be easy to deduce that the comparison map is an isomorphism.

Lemma II.3.28 (cf. [BBI13, Lemma 1, p. 8]). For q < n we have

C(b)((Hn)q+1,Rε)
G = 0,

L∞((Hn)q+1,Rε)
G = 0,

L∞((∂Hn)q+1,Rε)
G = 0.

Proof. Let f be in one of the above function spaces (the argument will be the same for all of them).
Now observe that any q + 1 ≤ n points x0, . . . , xq in Hn or ∂Hn either lie on a proper hyperbolic
subspace P ⊂ Hn or on the boundary of such a proper hyperbolic subspace. Taking τ ∈ G as the
reflection along this subspace τ is orientation reversing and fixes every point x0, . . . , xq on P . Since
f is G-equivariant, it follows that

f(x0, . . . , xq) = −f(τx0, . . . , τxq) = −f(x0, . . . , xq)

Hence f ≡ 0.

Proposition II.3.29 (cf. [BBI13, Proposition 2, p. 8]). The comparison map induces an isomor-
phism in top degree

c : Hn
cb(G,Rε) −→ Hn

c (G,Rε)

In conjunction with our previous computation of Hn
c (G,Rε) this means, that Hn

cb(G,Rε) is gen-
erated by the (bounded) volume class ωb

n.

Proof. Due to Lemma II.3.28 there are no cochains in degree n−1 and so there are no coboundaries
in degree n. Thus the cohomology groups Hn

cb(G,Rε) and Hn
c (G,Rε) are equal to their correspond-

ing spaces of cocycles, i.e. the kernels of the homogeneous coboundary operator. So we obtain the
following commutative diagram

Hn
cb(G,Rε) ∼= Hn(Cb((Hn)•+1,Rε)

G) ker{d : Cb((Hn)n+1,Rε)
G → Cb((Hn)n+2,Rε)

G}

R ∼= 〈ωn〉 = Hn(C((Hn)•+1,Rε)
G) ker{d : C((Hn)n+1,Rε)

G → C((Hn)n+2,Rε)
G}

c

Clearly the map on the right is an inclusion and hence also c is injective. Further c is surjective since
ωn is represented by Voln and Voln is also bounded, i.e. ωn = c[Voln]. Recall that c : Hn

cb(G,Rε) →
Hn

c (G,Rε) is given by the above inclusion due to Corollary II.2.45.

Because there are no coboundaries in degree n due to Lemma II.3.28, the norm ‖ωb
n‖ is equal

to the norm of the volume cocycle which represents it (cf. [BBI13, Corollary 3, p. 9]). As we have
mentioned in chapter I this is equal to the volume of a regular ideal simplex in Hn (cf. Theorem
I.7.4).
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III. Volume Rigidity of Hyperbolic Lattice
Representations

In this final chapter we will prove the volume rigidity theorem. In an attempt of being motivational
we first state the volume rigidity theorem and deduce two classical versions of the Mostow rigidity
theorem from it in section III.1. Since the volume rigidity theorem relies on the notion of the volume
of a representation, we will introduce it in section III.2. The rest of the section will then elaborate
on transfer maps in bounded cohomology in order to finally deduce some important properties of
the volume of a representation. The last section of this chapter is then devoted to the proof of
the volume rigidity theorem. The first assertion of the volume rigidity theorem will follow directly
from the properties of the volume of a representation, that we have deduced in section III.2. The
last assertion is much harder to prove, whence its proof is divided into three steps.

III.1. The Volume Rigidity Theorem
Let us state the main result of [BBI13] here; the volume rigidity theorem. The theorem uses the
notion of the volume of a representation which we will give in section III.2.

Theorem III.1.1 (Volume Rigidity Theorem; cf. [BBI13, Theorem 1, p. 4]). Let n ≥ 3. Let
i : Γ ↪→ Isom+(Hn) be a lattice embedding and let ρ : Γ → Isom+(Hn) be any representation. Then:

|Vol(ρ)| ≤ |Vol(i)| = Vol(M)

with equality, if and only if ρ is conjugated to i by an isometry. Here M denotes the quotient
i(Γ)\Hn.

For the rest of this chapter we shall fix the notation of Theorem III.1.1.

Taking in particular ρ to be another lattice embedding of Γ, we immediately recover Mostow’s
rigidity theorem for hyperbolic lattices:

Corollary III.1.2 (Mostow Rigidity – Algebraic Version; cf. [BBI13, Corollary 1, p. 4]). Let
Γ1,Γ2 < Isom+(Hn) be two isomorphic lattices. Then there exists an isometry g ∈ Isom(Hn)
conjugating Γ1 to Γ2.

This may be translated to the following geometric version of Mostow’s rigidity theorem:

Corollary III.1.3 (Mostow Rigidity – Geometric Version). Let n ≥ 3 and let M1,M2 be two finite
volume hyperbolic n-manifolds with respective fundamental groups Γi = π1(Mi) (i = 1, 2). If the
fundamental groups Γ1 and Γ2 are isomorphic, then M1 and M2 are already isometric.

Proof. Note that we can identify Γi\Hn ∼= Mi (i = 1, 2). With this identification Γi < Isom+(Hn)
(i = 1, 2) is a lattice (cf. section I.4) and both lattices are isomorphic by hypothesis Γ1

∼= Γ2. Thus
by the previous corollary there is an isometry h ∈ Isom(Hn) conjugating both, i.e. h ·Γ1 ·h−1 ∼= Γ2.
In particular h : Hn → Hn induces a map h̄ : Γ1\Hn ∼= M1 → Γ2\Hn ∼= M2 given by h̄(π1(x)) =
π2(h(x)) for every x ∈ Hn, where πi : Hn → Γi\Hn denotes the universal covering.
It is easy to check that h̄ : M1 → M2 is well-defined and bijective. It is even an isometry, since

it commutes with π1 and π2 which are local isometries. Hence M1 and M2 are isometric.
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III. Volume Rigidity of Hyperbolic Lattice Representations

III.2. The Volume of a Representation
Let us turn to the volume of a lattice representation Vol(·) as it occurs in the volume rigidity
theorem. In subsection III.2.1 we give the definition of Vol(·). Before we can deduce some of its
important properties in subsection III.2.3 we need to introduce transfer maps in cohomology and
relate them to ideas of relative cohomology in subsection III.2.2. The properties of Vol(·) will then
imply the first assertion of the volume rigidity theorem concerning the inequality as we will discuss
more thoroughly in section III.3.

III.2.1. Definition
We will define the volume Vol(ρ) of the representation ρ : Γ → G+ in several steps. First suppose
that Γ is torsion-free. This has the advantage, that M = i(Γ)\Hn is indeed a manifold, since Γ
now acts freely on Hn.
We have already seen that the (continuous) cohomology of Γ is isomorphic to the singular coho-

mology of M (cf. Corollary II.3.3). Further if M is compact, by Poincaré duality the cohomology
groups Hn

c (Γ,R) ∼= Hn(M) in top degree are canonically isomorphic to R and the isomorphism is
given by the evaluation on the fundamental class [M ] ∈ Hn(M) (cf. section D.1). We define the
volume Vol(ρ) by

Vol(ρ) = 〈ρ∗(ωn), [M ]〉

where ρ∗ : Hn
c (G

+,R) → Hn
c (Γ,R) ∼= Hn(M) denotes the pullback via ρ and ωn ∈ Hn

c (G
+,R) is

the volume class as discussed in subsection II.3.3.
However if M is non-compact, the above definition fails, since Hn(M) = 0 such that there

is no fundamental class to evaluate on (cf. [Hat02, Proposition 3.29, p. 239]). We can fix this
defect by considering bounded cohomology. This is in a way natural, since ωn = c(ωb

n), where
ωb
n ∈ Hn

cb(G,Rε) is the (bounded) volume class. Again we may pull it back along ρ : Γ → G+ and
get ρ∗(ωb

n) ∈ Hn
cb(Γ,R). As before – but for bounded cohomology – we have Hn

cb(Γ,R) ∼= Hn
b (M)

(cf. Corollary II.3.12), such that we may think of ρ∗(ωb
n) as in Hn

b (M). In analogy to the case of
compact M we would like to interpret ρ∗(ωb

n) as a class on some sensible compact subspace of M .
Because M is a finite volume hyperbolic manifold, it admits a compact core N ⊂ M which is the
complement of the disjoint union of finitely many cusps E1, . . . , Ek (cf. Corollary I.6.5).
We now get the following long exact sequence in bounded cohomology (cf. section D.3 in the

appendix)

. . .→ H•−1
b (M −N) → H•

b (M,M −N) → H•
b (M) → H•

b (M −N) → . . .

Our goal is to establish, that the map in the middle H•
b (M,M −N) → H•

b (M) is an isomorphism
allowing us to interpret ρ∗(ωb

n) ∈ Hn
cb(Γ,R) ∼= Hn

b (M) as a class in Hn
b (N, ∂N) ∼= Hn

b (M,M −N);
recall that singular bounded cohomology is a homotopy invariant (cf. section D.3). We have

M −N =

k⊔
i=1

Ei

and each cusp Ei is homeomorphic to Vi × R, where Vi is a compact euclidean manifold. By
Bieberbach’s Theorem I.6.7 each Vi is finitely covered by a torus and hence has a virtually abelian
and therefore amenable fundamental group π1(Vi) (cf. Proposition C.1.7). Again by Corollary
II.3.12 we have H•

b (Ei) ∼= H•
b (π1(Vi × R)) ∼= H•

b (π1(Vi)) = 0 and hence

H•
b (M −N) = H•

b (tk
i=1Ei) ∼=

k⊕
i=1

H•
b (Ei) = 0.
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III.2. The Volume of a Representation

Therefore we really get an isomorphism in the middle and may interpret ρ∗(ωb
n) ∈ Hn

b (N, ∂N).
Applying the comparison map c : Hn

b (N, ∂N) → Hn(N, ∂N) and evaluating on the relative
fundamental class [N, ∂N ] ∈ Hn(N, ∂N) then gives the definition of the volume of ρ

Vol(ρ) = 〈c(ρ∗(ωb
n)), [N, ∂N ]〉.

Since any two compact cores are homotopically equivalent this definition does not depend on the
choice of N . It clearly coincides with the one for compact M , since the middle map is then simply
the identity due to N =M .
The case of torsion-free Γ < G+ being settled, we only need to define Vol(ρ) in the case that

Γ has torsion. By Selberg’s Lemma we can find a torsion-free subgroup Λ < Γ with finite index
|Γ : Λ| <∞ (cf. Proposition I.4.21). We now set

Vol(ρ) := Vol(ρ|Λ)
|Γ : Λ|

.

However this is apriori not well-defined, since it seems to depend on the choice of the finite-index
torsion-free subgroup Λ < Γ. The next lemma will show, that the definition is indeed independent
of the choice of Λ.

Lemma III.2.1. Let i : Λ′ ↪→ Γ be a torsion-free subgroup and j : Λ ↪→ Λ′ a torsion-free subgroup
of Λ′. Then

Vol(ρ ◦ i ◦ j) = |Λ : Λ′| ·Vol(ρ ◦ i)

It follows that Vol(ρ) is well-defined also for non-torsion-free Γ.

Proof. By definition we have

Vol(ρ ◦ i ◦ j) = 〈(c ◦ j∗ ◦ i∗ ◦ ρ∗)(ωb
n), [NΛ, ∂NΛ]〉

where [N, ∂N ] is the fundamental class of a compact core N of M = Λ\Hn.
Let p : Λ\Hn = M → Λ′\Hn = M ′ be the canonical |Λ : Λ′|-sheeted covering map. As we have

already seen the pullback j∗ : Hn
cb(Λ

′,R) → Hn
cb(Λ,R) is realized in singular bounded cohomology

by the pullback via p, that is p∗ : Hn
b (Λ

′\Hn,R) → Hn
b (Λ\Hn,R) (cf. Corollary II.2.36). Further

the pullback commutes with the comparison map by definition and hence

〈(c ◦ p∗ ◦ i∗ ◦ ρ∗)(ωb
n), [N, ∂N ]〉 = 〈(p∗ ◦ c ◦ i∗ ◦ ρ∗)(ωb

n), [N, ∂N ]〉.

Using the fact that p :M →M ′ is a locally isometric covering one easily verifies, that p−1(M ′
[ε,∞)) ⊂

M[ε,∞), where ε is smaller than the n-th Margulis constant (cf. section I.6). This implies, that
M ′

[ε,∞) ⊂ p(M[ε,∞)). Let us further choose 0 < ε ≤ εn so small that a compact core of M resp. M ′

deformation retracts toM[ε,∞) resp.M ′
[ε,∞). We may now find two compact coresM[ε,∞) ⊂ N ⊂M

and M ′
[ε,∞) ⊂ N ′ ⊂M ′, such that

M ′
[ε,∞) ⊂ p(M[ε,∞)) ⊂ p(N) ⊂ N ′.

For such N and N ′ we get a homotopy equivalence of pairs (p(N), p(∂N)) → (N ′, ∂N ′) and thus
we may think of p as a map from (N, ∂N) to (N ′, ∂N ′).
We now compute

〈(c ◦ j∗ ◦ i∗ ◦ ρ∗)(ωb
n), [N, ∂N ]〉 = 〈(c ◦ p∗ ◦ i∗ ◦ ρ∗)(ωb

n), [N, ∂N ]〉
= 〈(p∗ ◦ c ◦ i∗ ◦ ρ∗)(ωb

n), [N, ∂N ]〉
= 〈(c ◦ i∗ ◦ ρ∗)(ωb

n), p∗([N, ∂N ])〉
= 〈(c ◦ i∗ ◦ ρ∗)(ωb

n), |Λ : Λ′| · [N ′, ∂N ′]〉,
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III. Volume Rigidity of Hyperbolic Lattice Representations

where we have used that the degree of a covering map is the number of its sheets. The last line is
equal to |Λ : Λ′| ·Vol(ρ ◦ i) and we have proven the assertion

Vol(ρ ◦ i ◦ j) = |Λ : Λ′| ·Vol(ρ ◦ i).

Let us now conclude that Vol(ρ) is well-defined. For that let i1 : Λ1 ↪→ Γ and i2 : Λ2 ↪→ Γ be
two finite-index torsion-free subgroups. It is a basic algebraic fact, that we can find a common
torsion-free subgroup of finite index Λ < Λ1,Λ2 with canonical embeddings ji : Λ ↪→ Λi(i = 1, 2).
Since Λ is a common subgroup we clearly have that i1 ◦ j1 = i2 ◦ j2. Using the just proven relation
we obtain

Vol(ρ|Λ1)

|Λ1 : Γ|
=

Vol(ρ ◦ i1)
|Λ1 : Γ|

=
Vol(ρ ◦ i1 ◦ j1)
|Λ : Λ1| · |Λ1 : Γ|

=
Vol(ρ ◦ i2 ◦ j2)
|Λ : Λ2| · |Λ2 : Γ|

=
Vol(ρ ◦ i2)
|Λ2 : Γ|

=
Vol(ρ|Λ2)

|Λ2 : Γ|

We used in the equality from the first to the second line the fact that

|Λ : Λ1| · |Λ1 : Γ| = |Λ : Γ| = |Λ : Λ2| · |Λ2 : Γ|

III.2.2. Transfer Maps and Relative Cohomology
Before we can show some properties of Vol(·) we need to introduce the so called transfer maps in
cohomology. There will occur several of these maps in the following depending on which cochain
complex we are considering, but they all follow essentially the same idea of orbit averaging. The
upshot is, that they all ”behave well” and commute in a sense that is specified in Proposition III.2.6
and its proof.
In an exception to the rest of this chapter we keep the notation of the definition of Vol(·) here.

That means Γ < G+ is a torsion-free lattice subgroup and ρ : Γ → G+ a representation, i.e.
a (continuous) homomorphism. Further we denote by M = Γ\Hn the finite volume hyperbolic
quotient manifold and by N ⊂M a compact core of M . That is N is a compact submanifold of M
with boundary and its complement M −N is the disjoint union of finitely many cusps E1, . . . , Ek.

The Transfer Map transΓ : H•
cb(Γ,R) → H•

cb(G,Rε)

We define the transfer map at the cochain level as a map

transΓ : FΓ
q → FG

q

where Fq is one of Cb((Hn)q+1,R), L∞((Hn)q+1,R), L∞((∂Hn)q+1,R) or L∞(Gq+1,R) (the defini-
tion will be the same in all cases). For c ∈ FΓ

q we set

transΓ(c)(x0, . . . , xq) :=
∫
Γ\G

ε(ġ−1) · c(ġx0, . . . , ġxq) dµ(ġ) (III.1)

where µ is the invariant measure on Γ\G normalized such that µ(Γ\G) = 1. Note that this
construction is only possible because Γ is a lattice and hence admits such an invariant probability
measure.
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Proposition III.2.2. The map transΓ as above is well-defined and induces a map in cohomology

transΓ : H•
cb(Γ,R) → H•

cb(G,Rε)

which is norm non-increasing and a left-inverse of i∗ : H•
cb(G,Rε) → H•

cb(Γ,R), i.e.

transΓ ◦ i∗ = id

Remark III.2.3. Transfer maps play also a role in the broader context of continuous bounded
cohomology as left-inverses of pullbacks. For more details we refer to [Mon01].

Proof. Let q ∈ N0. We check that transΓ is indeed well-defined. This encompasses several steps.
First, we need to see, that transΓ indeed maps into the prescribed spaces. We will only show this
for transΓ : Cb((Hn)q+1,R)Γ → Cb((Hn)q+1,Rε)

G. The other cases can be treated similarly.
Let c ∈ Cb((Hn)q+1,R)Γ. We want to show, that transΓ(c) is indeed continuous. This will follow

from the theorem on parameter integrals as it is treated in any textbook on Lebesgue integration.
For that consider the map

F : (Hn)q+1 × Γ\G→ R

given by
F ((x0, . . . , xq), ġ) = ε(ġ−1) · c(ġx0, . . . , ġxq)

for every (x0, . . . , xq) ∈ (Hn)q+1, ġ ∈ Γ\G. This function is clearly well-defined, since c is Γ-invariant
and Γ < G+ such that also ε is Γ-invariant. Moreover one readily checks, that it is measurable
in the second argument for every (x0, . . . , xq) ∈ (Hn)q+1 and continuous in the first argument for
every ġ ∈ Γ\G. Finally

|F ((x0, . . . , xq), ġ)| = |c(ġx0, . . . , ġxq)| ≤ ‖c‖ <∞

for every (x0, . . . , xq) ∈ (Hn)q+1, ġ ∈ Γ\G. This shows that it is also integrable for every
(x0, . . . , xq) ∈ (Hn)q+1 as Γ\G has finite measure and that there is an integrable upper bound
given by the constant function h : Γ\G → R, ġ 7→ ‖c‖. From the theorem on parameter integrals
we deduce that transΓ is indeed continuous.
transΓ(c) is also bounded as one computes directly:∣∣∣∣∣

∫
Γ\G

ε(ġ−1) · c(ġx0, . . . , ġxq) dµ(ġ)

∣∣∣∣∣ ≤
∫
Γ\G

‖c‖ dµ(ġ) = ‖c‖ (III.2)

for every (x0, . . . , xq) ∈ (Hn)q+1, because of the normalization µ(Γ\G) = 1.
We now check, that transΓ(c) is in fact G-equivariant, i.e. transΓ(c) ∈ Cb((Hn)q+1,Rε)

G. This
follows from the invariance of the measure µ as we may compute

(g · transΓ(c))(x0, . . . , xq) = ε(g) · transΓ(g−1x0, . . . , g
−1xq)

=

∫
Γ\G

ε(g)ε(ġ−1) · c(ġg−1x0, . . . , ġg
−1xq) dµ(ġ)

=

∫
Γ\G

ε((ġg−1)−1) · c(ġg−1x0, . . . , ġg
−1xq) dµ(ġ)

=

∫
Γ\G

ε(ġ−1) · c(ġx0, . . . , ġxq) dµ(ġ)

= transΓ(c)(x0, . . . , xq)

for every (x0, . . . , xq) ∈ (Hn)q+1, g ∈ G. Hence transΓ is indeed G-equivariant.
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Let us now show, that transΓ : FΓ
q → FG

q is indeed a map of complexes, i.e. commutes with the
homogeneous coboundary operator. This follows from the next direct computation.

(d transΓ)(x0, . . . , xq+1) =

q+1∑
i=0

(−1)itransΓ(c)(x0, . . . , x̂i, . . . , xq+1)

=

∫
Γ\G

ε(ġ−1) ·
q+1∑
i=0

(−1)ic(ġx0, . . . , ġxi−1, ġxi+1, . . . , ġxq+1) dµ(ġ)

= transΓ(dc)(x0, . . . , xq+1)

We need to see that all these definitions for the various possible Fq result in the same map in co-
homology. We will use the concrete isomorphisms from Proposition II.3.13 to H•(L∞(Gq+1,Rπ)

H)
where H = Γ or G and π ≡ 1 or ε respectively. As an example we will show, that the following
diagram commutes

L∞(G•+1,R)Γ L∞(G•+1,Rε)
G

L∞((Hn)•+1,R)Γ L∞((Hn)•+1,Rε)
G

transΓ

p∗K

transΓ

p∗K

All other different possibilities for Fq are treated in the very same way and the computations are
almost identical. Let c ∈ L∞((Hn)q+1)Γ, (g0, . . . , gq) ∈ Gq+1 and x ∈ Hn. Then we have

transΓ(p∗K(c))(g0, . . . , gq) =

∫
Γ\G

ε(ġ−1) · p∗K(c)(ġg0, . . . , ġgq) dµ(ġ)

=

∫
Γ\G

ε(ġ−1) · c(ġg0x, . . . , ġgqx) dµ(ġ)

On the other hand

p∗K(transΓ(c))(g0, . . . , gq) = transΓ(c)(g0x, . . . , gqx)

=

∫
Γ\G

ε(ġ) · c(ġg0x, . . . , ġgqx) dµ(ġ)

which shows that they coincide and that the above diagram is commutative. Hence all definitions
of transΓ result in the same map in cohomology.
Finally we need to check, that transΓ is norm non-increasing and a left-inverse of the pullback

i∗ : H•
cb(G,Rε) → H•

cb(Γ,R). Because all discussed resolutions yield isometrically isomorphic coho-
mologies, we may work in any of them to check, that the map transΓ is norm non-increasing. We
use Cb((Hn)•+1,R), because we have already computed the estimate (III.2), which shows that the
transfer map transΓ : Cb((Hn)•+1,R)Γ → Cb((Hn)•+1,Rε)

G is norm non-increasing at the cochain
level. It now follows for the cohomology

‖transΓ([c])‖ = inf{‖f‖ : f ∈ [transΓ(c)]}
≤ inf{‖transΓ(c′)‖ : c′ ∈ [c]}
≤ inf{‖c′‖ : c′ ∈ [c]}
= ‖[c]‖
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for every [c] ∈ H•(Cb((Hn)•+1,R)Γ), i.e. transΓ is also at the cohomology level norm non-increasing.
The pullback i∗ : H•

cb(G,Rε) → H•
cb(Γ,R) corresponding to the canonical inclusion i : Γ → G is

given at the cochain level by the inclusion

ι : L∞(G•+1,Rε)
G → L∞(G•+1,R)Γ

as we have already shown in Corollary II.2.35. Let c ∈ L∞(G•+1,Rε)
G. Then

transΓ(ι(c))(g0, . . . , gq) =
∫
Γ\G

ε(ġ−1) · c(ġg0, . . . , ġgq) dµ(ġ)

=

∫
Γ\G

c(g0, . . . , gq) dµ(ġ)

= c(g0, . . . , gq)

for every (g0, . . . , gq) ∈ Gq+1, because c is G-equivariant. This already shows at the cochain level,
that transΓ is a left-inverse of the pullback.

The Transfer Map τdR : H•(N, ∂N) → H•
c (G,Rε)

A similar transfer map can be given from H•(N, ∂N) to H•
c (G,Rε). Recall that by homotopy

invariance H•(N, ∂N) ∼= H•(M,M−N) and by de Rham’s theorem H•(M,M−N) ∼= H•
dR(M,M−

N) (cf. Theorem D.4.2). By lifting forms along the universal covering π : Hn → Γ\Hn ∼=M we can
further identify H•

dR(M,M − N) ∼= H•(Ω•(Hn, U)Γ), where U = π−1(M − N) is a disjoint union
of horoballs.
Let q ∈ N0. We define the transfer map at the cochain level by sending a differential q-form

α ∈ Ωq(Hn, U)Γ to the form transdR(α) ∈ Ω•(Hn,Rε)
G which is given pointwise by

transdR(α)(v1, . . . , vq) :=

∫
Γ\G

ε(ġ−1) · (ġ∗α)(v1, . . . , vq) dµ(ġ)

for every x ∈ Hn and v1, . . . , vq ∈ TxHn. Here µ is again as in (III.1).

Remark III.2.4. In fact one can use a more abstract integration theory for functions with values
in a LCTVS to define the transfer map directly as

transdR(α) =

∫
Γ\G

ε(ġ−1) · (ġ∗α) dµ(ġ)

However the result would be the same as for our pointwise definition as above, which is why we
prefer our basic approach.

Proposition III.2.5. The map transdR : Ω•(Hn, U)Γ → Ω•(Hn,Rε)
G is well-defined and induces

a map in cohomology τdR via the following diagram

H•(N, ∂N) H•
c (G,Rε)

H•(Ω•(Hn, U)Γ) H•(Ω•(Hn,Rε)
G) Ω•(Hn,Rε)

G

∼=
transdR =

∼=

τdR
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where the left vertical arrow is the previously discussed identification and the right vertical arrow
denotes the van Est isomorphism.
Moreover we have

transdR(ωN,∂N ) = ωn ∈ Ωn(Hn,Rε)
G ∼= Hn

c (G,Rε)

where ωN,∂N ∈ Hn(M,M − N) is the unique class with 〈ωN,∂N , [N, ∂N ]〉 = Vol(M) and ωn the
hyperbolic volume form. In particular τdR is an isomorphism in top degree.

Proof. First we want to see that the map is well defined, i.e. the integral exists and defines a
G-equivariant differential q-form.
Let q ∈ N0, α ∈ Ωq(Hn, U)Γ ⊂ Ωq(Hn) and let V1, . . . , Vq ∈ V(Hn) be smooth vectorfields on Hn.

Denote by F : Γ\G×Hn → R the map given by

F (ġ, x) = ε(ġ−1) · (ġ∗α)(V1(x), . . . , Vq(x))

for every ġ ∈ Γ\G, x ∈ Hn. Note that this map is well-defined, since α is Γ-invariant and ε is too
as Γ < G+.
Clearly the map is smooth, since it lifts via the covering G × Hn → Γ\G × Hn to a smooth

function; note that the given map is a covering, since Γ acts freely and properly discontinuously
on G×Hn. We want to apply the theorem on differentiable paramter integrals to deduce that the
integral exists and defines in fact a smooth function. Let Ui ⊂ Hn be a sequence of open subsets
such that

U i ⊂ Ui+1 is compact for every i ∈ N and
⋃
i∈N

Ui = Hn.

We will show, that transdR(α)(V1, . . . , Vq) is smooth on Ui for every i ∈ N. Let i ∈ N. By identifying
Ω•(M,M −N) ∼= Ω•(Hn, U)Γ we see that F (ġ, x) = 0 if π(gx) /∈ N ⊂M . By Proposition I.4.8 the
map ψ : Γ\G×Hn →M ×Hn , (ġ, x) 7→ (π(gx), x) is proper and thus the set

Ci = {ġ ∈ Γ\G : ∃x ∈ U i s.t. π(gx) ∈ N} = pr1ψ−1(N × U i)

is compact. Therefore the integral is already realized by integration over Ci for every x ∈ U i:

transdR(α)(V1(x), . . . , Vq(x)) =

∫
Ci

F (ġ, x) dµ(ġ)

By smoothness of F it now follows easily, that every derivative is uniformly bounded on Ui ⊂ U i.
The theorem on differentiable parameter integrals implies, that transdR(α)(V1, . . . , Vq) is indeed
smooth on Ui. Because i ∈ N was arbitrary, we get that transdR(α)(V1, . . . , Vq) is smooth on Hn.
It is clear, from the definition that transdR(α)x ∈ Altq(TxHn) for every x ∈ Hn. In summary

transdR(α) is a differential q-form.
An easy computation shows, that it is also G-equivariant. Indeed, let x ∈ Hn, v1, . . . , vq ∈ TxHn

and g ∈ G, then

(g · transdR(α))(v1, . . . , vq) = ε(g) · ((g−1)∗transdR(α))(v1, . . . , vq)

= ε(g) · transdR(α)(dg
−1(v1), . . . , dg

−1(vq))

=

∫
Γ\G

ε((ġg−1)−1) · ((ġg−1)∗α)(v1, . . . , vq) dµ(ġ)

=

∫
Γ\G

ε(ġ) · (ġ∗α)(v1, . . . , vq) dµ(ġ)

= transdR(α)(v1, . . . , vq).
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Moreover transdR is a morphism of complexes, i.e. commutes with exterior differentiation. The
key point is that we may differentiate under the integral by the theorem on differentiable parameter
integrals. We will use the invariant formula for the exterior derivative of a q-form

dα(V0, . . . , Vq) =

q∑
i=0

(−1)iVi(α(V0, . . . , V̂i, . . . , Vq))

+
∑
i<j

(−1)i+jα([Vi, Vj ], V0, . . . , V̂i, . . . , V̂j , . . . , Vq)

for all V0, . . . , Vq ∈ V(Hn), where a hat indicates omission of the variable underneath (cf. [Lee13,
Proposition 14.32, p. 370]).

(dtransdR(α))(V0, . . . , Vq) =
∑
i

(−1)iVi

(
transdR(α)(V0, . . . , V̂i, . . . , Vq)

)
+
∑
i<j

(−1)i+jtransdR(α)([Vi, Vj ], V0, . . . , V̂i, . . . , V̂j , . . . , Vq)

=
∑
i

(−1)iVi

(∫
Γ\G

ε(ġ−1)(ġ∗α)(V0, . . . , V̂i, . . . , Vq) dµ(ġ)

)

+
∑
i<j

(−1)i+j

(∫
Γ\G

ε(ġ−1)(ġ∗α)([Vi, Vj ], V0, . . . , V̂i, . . . , V̂j , . . . , Vq) dµ(ġ)

)

=

∫
Γ\G

(
ε(ġ−1)

∑
i

(−1)iVi

(
(ġ∗α)(V0, . . . , V̂i, . . . , Vq)

)
+
∑
i<j

(−1)i+jε(ġ−1)(ġ∗α)([Vi, Vj ], V0, . . . , V̂i, . . . , V̂j , . . . , Vq)

)
dµ(ġ)

On the other hand

(transdR(dα))(V0, . . . , Vq) =

∫
Γ\G

ε(ġ−1) · ġ∗(dα)(V0, . . . , Vq) dµ(ġ)

=

∫
Γ\G

ε(ġ−1) · d(ġ∗α)(V0, . . . , Vq) dµ(ġ)

=

∫
Γ\G

(
ε(ġ−1)

∑
i

(−1)iVi

(
(ġ∗α)(V0, . . . , V̂i, . . . , Vq)

)
+
∑
i<j

(−1)i+jε(ġ−1)(ġ∗α)([Vi, Vj ], V0, . . . , V̂i, . . . , V̂j , . . . , Vq)

)
dµ(ġ)

This shows that dtransdR = transdRd as asserted.
Finally we need to show, that transdR(ωN,∂N ) = ωn where ωN,∂N is the unique singular coho-

mology class such that 〈ωN,∂N , [N, ∂N ]〉 = Vol(M). First of all we may represent ωN,∂N by the
cohomology class of a top form in Ωn(M,M−N). The volume form vn onM is a nowhere vanishing
top form on M and hence we may write the representative of ωN,∂N as f · vn, where f : M → R
is a smooth function vanishing on M − N . Lifting this form via π : Hn → M = Γ\Hn yields
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π∗(f · vn) = f ◦ π · ωn. Therefore we are left with the following computation. Let x ∈ Hn and
v1, . . . , vn ∈ TxHn.

transdR(f ◦ π · ωn)(v1, . . . , vn) =

∫
Γ\G

ε(ġ−1) · ġ∗(f ◦ π · ωn)(v1, . . . , vn) dµ(ġ)

=

∫
Γ\G

f(π(ġx)) · ε(ġ−1) · (ġ∗ωn)(v1, . . . , vn) dµ(ġ)

=

∫
Γ\G

f(π(ġx)) · ωn(v1, . . . , vn) dµ(ġ)

=

∫
Γ\G

f(π(ġx)) dµ(ġ) · ωn(v1, . . . , vn)

where we have used the fact, that ωn ∈ Ωn(Hn,Rε)
G is G-equivariant.

Denote by K = Gx the stabilizer of x ∈ Hn. Note that we can normalize the Haar measure κ on
K such that ∫

Γ\G
ϕ(ġ) dµ(ġ) =

∫
Γ\G/K

∫
K
ϕ(ḡk) dκ(k) dv(ḡ)

for every ϕ ∈ Cc(Γ\G), where v corresponds to the measure on Γ\G/K induced by the volume form
vn on M under the identification Γ\G/K → M, ḡ 7→ π(ḡx) (cf. Lemma A.4.11 and Proposition
I.4.11, or [Rat06, p. 574]). Because µ(Γ\G) = 1 and v(Γ\G/K) = Vol(M), we compute the
normalization constant via

1 =

∫
Γ\G

1 dµ(ġ) =

∫
Γ\G/K

∫
K
1 dκ(k) dµ(ḡ) = κ(K) ·Vol(M)

Hence we have to choose the unique Haar measure on K, which gives κ(K) = Vol(M)−1.
Now we compute ∫

Γ\G
f(π(ġx)) dµ(ġ) =

∫
M

∫
K
f(π(ḡkx)) dκ(k) dv(ḡ)

= κ(K) ·
∫
M
f(π(ḡx)) dv(ḡ)

= Vol(M)−1 ·
∫
M
f(y) dv(y)

= Vol(M)−1 ·
∫
M
f · vn

= Vol(M)−1 ·
∫
N
f · vn

= Vol(M)−1 · 〈ωN,∂N , [N, ∂N ]〉
= 1

where we have used Lemma D.4.3.
This shows, that indeed

transdR(ωN,∂N )(v1, . . . , vn) = ωn(v1, . . . , vn)

Because x ∈ Hn and v1, . . . , vn ∈ TxHn were arbitrary, the assertion follows.
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Commutativity of the Transfer Maps

The following proposition shows, that the previously defined transfer maps actually commute with
the comparison map.

Proposition III.2.6 (cf. [BBI13, Proposition 3, p. 12]). We have the following commutative dia-
gram

H•
cb(Γ,R)

H•
b (N, ∂N) H•

cb(G,Rε)

H•(N, ∂N) H•
c (G,Rε)

transΓ∼=

c

τdR

c

Proof. In order to prove the commutativity of the above diagram we will decompose it into smaller
diagrams. We will try to motivate this approach. A sensible first step would be to understand the
composition

Hq
b (N, ∂N) ∼= Hq

b (M,M −N) Hq
b (M) Hq

cb(Γ,R) Hq
cb(G,Rε)

∼= ∼= transΓ

Here the first isomorphismH•
b (M,M−N) ∼= H•

b (M) is given by inclusion at the cochain level. We
already have several concrete expressions for transΓ such that we are left to understand H•

b (M) ∼=
H•

cb(Γ,R). Recall that H•
b (M) ∼= H•(S•

b (Hn,R)Γ) via the pullback along π : Hn →M (cf. Corollary
II.3.12). Our goal is to construct an isomorphism

H•(S•
b (Hn,R)Γ) → H•(L∞((Hn)•+1,R)Γ)

at the cochain level. Because both (ε, S•
b (Hn,R)) and (ε, L∞((Hn)•+1,R) are strong augmented

resolutions of the trivial module R by relatively injective Banach Γ-modules, it will be enough to
give an extension of the identity id : R → R between those resolutions (cf. Lemma II.2.15).
For 1 ≤ j ≤ k, pick a point bj ∈ Ej in each cusp ofM and b0 ∈ N in the compact core. We define

the map β′ : M → {b0, b1, . . . , bk} as the (measurable) map sending every point in N to b0 and
every point in each cusp Ei to bi. Now we lift β′ to a map β : Hn −→ π−1({b0, b1, . . . , bk}) ⊂ Hn

as follows. Choose points b̃j ∈ π−1(bj) for every j = 0, 1, . . . , k. Further choose a (measurable)
fundamental set Dj 3 b̃j for the Γ-action on π−1(Ej) for each j = 1, . . . , k and – similarly – choose
a fundamental set D0 3 b̃0 for the Γ-action on π−1(N). Now define β(γDj) := γb̃j for every γ ∈ Γ.
In particular β maps each horoball π−1(Ei) into itself.
This gives rise to the map

β∗ : Sq
b (H

n,R) −→ L∞((Hn)q+1,R)

defined by
β∗(c)(x0, . . . , xq) := c(str(β(x0), . . . , β(xq)))

for every (x0, . . . , xq) ∈ (Hn)q+1. In fact β∗ is the extension we were looking for as the next lemma
asserts.
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Lemma III.2.7. The above map β∗ is a Γ-morphism of complexes extending id : R → R between
the resolutions (ε, S•

b (Hn,R)) and (ε, L∞((Hn)•+1,R)). In particular it induces the isomorphism
H•(S•

b (Hn,R)Γ) ∼= H•(L∞((Hn)•+1,R)Γ).

Proof. Let q ∈ N0. It is immediate, that β∗ is linear and continuous. In fact ‖β∗(c)‖ ≤ ‖c‖ for
every c ∈ Sq

b (H
n,R).

Further it is a Γ-morphism because

γ · (β∗c)(x0, . . . , xq) = (β∗c)(γ−1x0, . . . , γ
−1xq)

= c(str(β(γ−1x0), . . . , β(γ
−1xq)))

= c(str(γ−1β(x0), . . . , γ
−1β(xq)))

= c(γ−1
∗ str(β(x0), . . . , β(xq)))

= ((γ−1)∗c)(str(β(x0), . . . , β(xq)))
= β∗(γ · c)(x0, . . . , xq)

for every c ∈ Sq
b (H

n,R) and all (x0, . . . , xq) ∈ (Hn)q+1.
Finally it is completely straight forward to check, that it is indeed a morphism of complexes and

an extension of id : R → R. We leave out the details here and refer to a similar computation we
made in section II.3.1 for the van Est isomorphism.

Due to what we have said before the composition

Hq
b (N, ∂N) Hq

cb(Γ,R) Hq
cb(G,Rε)

∼= transΓ

is given at the cochain level by the map

transb = transΓ ◦ β∗ : Sq
b (H

n, U)Γ −→ L∞((Hn)q+1,Rε)
G

That is
transb(c)(x0, . . . , xq) =

∫
Γ\G

ε(ġ−1) · (β∗c)(ġx0, . . . , ġxq) dµ(ġ)

for every c ∈ Sq
b (H

n, U)Γ and all (x0, . . . , xq) ∈ (Hn)q+1.
The above transfer map is also defined on the ordinary singular cochain complex

trans : Sq(Hn, U)Γ → C((Hn)q+1,Rε)
G

by the very same formula, namely

trans(c)(x0, . . . , xq) :=
∫
Γ\G

ε(ġ−1) · (β∗c)(ġx0, . . . , ġxq) dµ(ġ)

for every c ∈ Sq(Hn, U)Γ and all (x0, . . . , xq) ∈ (Hn)q+1.

Lemma III.2.8. The above map trans : Sq(Hn, U)Γ −→ C((Hn)q+1,Rε)
G is well defined and

induces a map in cohomology. Moreover transb : Sq
b (H

n, U)Γ −→ L∞((Hn)q+1,Rε)
G ranges actually

in Cb((Hn)q+1,Rε)
G and we have the following commutative diagram

Sq
b (H

n, U)Γ Cb((Hn)q+1,Rε)
G

Sq(Hn, U)Γ C((Hn)q+1,Rε)
G

transb

trans
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where both vertical arrows are the canonical inclusions, i.e. induce the comparison map in coho-
mology.

Proof. Let c ∈ Sq(Hn, U)Γ.
Intuitively speaking the reason for our gain in regularity is the fact that β∗c is locally constant

almost everywhere. Indeed, observe that β : Hn → Hn is locally constant on π−1(M − ∂N), such
that also

β∗(c)(x0, . . . , xq) = c(str(β(x0), . . . , β(xq)))

is locally constant for (x0, . . . , xq) ∈ π−1(M − ∂N).
Now let (x0, . . . , xq) ∈ (Hn)q+1 and let {(x(j)0 , . . . , x

(j)
q )}j∈N ⊂ (Hn)q+1 be a sequence converging

to it. Consider the set

L :={ġ ∈ Γ\G : π(ġxi) ∈M − ∂N ∀i = 0, . . . , q}

∪ {ġ ∈ Γ\G : π(ġx
(j)
i ) ∈M − ∂N ∀j ∈ N ∀i = 0, . . . , q}

We claim that it has full measure. The complement is

Lc =

q⋃
i=0

{ġ ∈ Γ\G : π(ġxi) ∈ ∂N}

∪
q⋃

i=0

⋃
j∈N

{ġ ∈ Γ\G : π(ġx
(j)
i ) ∈ ∂N}


=

q⋃
i=0

q−1
xi

(∂N) ∪
q⋃

i=0

⋃
j∈N

q−1

x
(j)
i

(∂N)



where qy : Γ\G→M, ġ 7→ π(ġy) for some y ∈ Hn. By Proposition I.4.11 a subset A ⊂M is a null
set if and only if q−1

y (A) ⊂ Γ\G is a null set. Therefore Lc is indeed a null set as the countable
union of such; recall that ∂N is the finite union of codimension one submanifolds and hence a null
set.
In summary we get, that the functions

Fj(ġ) := ε(ġ−1) · (β∗c)(ġx(j)0 , . . . , ġx(j)q )

converge pointwise to the function

F (ġ) := ε(ġ−1) · (β∗c)(ġx0, . . . , ġxq)

for every ġ ∈ L, i.e. almost everywhere.
In order to see, that also ∫

Γ\G
Fj(ġ) dµ(ġ) →

∫
Γ\G

F (ġ) dµ(ġ)

as j → ∞, which is nothing but the continuity of trans(c) at (x0, . . . , xn), we want to apply
Lebesgue’s dominated convergence theorem. Therefore it will be sufficient to find an uniform
upper bound on the values of |Fj | for all j ∈ N. In fact we will show, that they adopt only finitely
many values.
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Set
D := max{sup

j∈N
max

i=1,...,q
d(x

(j)
0 , x

(j)
i ), max

i=1,...,q
d(x0, xi)} <∞

and consider the compact D-neighborhood ND of N in M . Let j ∈ N, ġ ∈ Γ\G and suppose that
π(ġx

(j)
0 ) ∈ El−ND is in one of the cusps outside the D-neighborhood of N . Then also π(ġx(j)i ) ∈ El

for all i = 1, . . . , q. Furthermore for every γ ∈ Γ the points γgx(j)0 , . . . , γgx
(j)
q are all in the same

horoball over El. This implies that also γ β(gx(j)0 ), . . . , γβ(gx
(j)
q ) are in the same horoball over El.

Because horoballs are convex, the entire straight simplex γ str(β(gx(j)0 ), . . . , β(gx
(j)
q )) lies in the

same horoball over El which is in turn contained in U . Thus Fj(ġ) vanishes for all j ∈ N, ġ ∈ Γ\G
with π(ġx(j)0 ) ∈M −ND. This implies that⋃

j∈N
{ġ ∈ Γ\G : Fj(ġ) 6= 0} ⊆

⋃
j∈N

{ġ ∈ Γ\G : π(ġx
(j)
0 ) ∈ ND}

⊆ pr1ψ−1(ND × C)

where C :=
⋃

j∈N{x
(j)
0 }∪{x0} ⊂ Hn is compact and ψ : Γ\G×Hn −→M×Hn, (ġ, y) 7→ (π(gy), y) is

a proper map (cf. Proposition I.4.8). BecauseND×C is compact so isK := pr1ψ−1(ND×C) ⊆ Γ\G.
Because the quotient map r : G→ Γ\G is a covering andK is compact there is a compact setK ′ ⊂

G such that r(K ′) = K. Consider now the compact set C ′ =
⋃

j∈N{(x
(j)
0 , . . . , x

(j)
q )}∪{(x0, . . . , xq)}

and the continuous map A : G× (Hn)q+1 → (Hn)q+1 given by the diagonal action of G on (Hn)q+1.
By Γ-invariance of c and the definition of Fj it is clear that all possible values of all |Fj | are at
most all the possible values of |β∗c| on the compact set Q := A(K ′ ×C ′) ⊂ (Hn)q+1. By definition
of β∗c the number of these values is bounded from above by the number of intersections of Q with
the elements of the decomposition{

γ0Di0 × · · · × γqDiq : i0, . . . , iq ∈ {0, . . . , k}, γ0, . . . , γq ∈ Γ
}

of (Hn)q+1. It is easy to see that these can only by finitely many because Q is compact.
The maximum of all these finitely many values is now an uniform upper bound for all |Fj |. By

Lebesgue’s dominated convergence theorem the continuity of trans(c) follows.
It follows immediately from the G-invariance of µ on Γ\G, that trans(c) is G-equivariant as we

have already seen in the case of the two previous transfer maps. Further it is easy to check that
trans : S•(Hn, U)Γ → C((Hn)•+1,Rε)

G is indeed a morphism of complexes, i.e. commutes with
the coboundary operators, and thus induces a map in cohomology. We omit the straightforward
computations.
Now let c ∈ Sq

b (H
n, U)Γ be a bounded invariant singular cochain. Because Sq

b (H
n, U)Γ ⊂

Sq(Hn, U)Γ, it follows that transb(c) = trans(c) is continuous. All that remains to be checked
is that transb(c) is indeed bounded. We do so by the following short computation.

|transb(c)(x0, . . . , xq)| ≤
∫
Γ\G

|(β∗c)(ġx0, . . . , ġxq)| dµ(ġ)

≤
∫
Γ\G

|c(str(β(ġx0), . . . , β(ġxq)))| dµ(ġ)

≤ ‖c‖

This concludes the proof.
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However we already have another transfer map τdR : H•(N, ∂N) → H•
c (G,Rε) by Proposition

III.2.5. Summarizing this in a diagram in cohomology we get

H•
cb(Γ,R)

H•
b (N, ∂N) H•

cb(G,Rε)

H•(N, ∂N) H•
c (G,Rε)

H•(Ω•(Hn, U)Γ) H•(Ω•(Hn,Rε)
G)

transΓ∼=

transb

c ctrans

τdRΨ

transdR

Φ

where Ψ is the de Rham isomorphism and Φ is the van Est isomorphism.
All that is left to be proven, is that trans and τdR are the same map in cohomology.

Lemma III.2.9. The maps trans : H•(N, ∂N) → H•
c (G,Rε) and τdR : H•(N, ∂N) → H•

c (G,Rε)
are identical.

Proof. Let q ∈ N0.
By definition of τdR in Proposition III.2.5 we have that Φ ◦ transdR = τdR ◦ Ψ, i.e. the lower

square in the above diagram commutes for τdR. Because Φ and Ψ are isomorphisms we are done,
if we can show that also Φ ◦ transdR = trans ◦Ψ.
First we will investigate both sides at the cochain level. Let α ∈ Ωq(Hn, U)Γ and x0, . . . , xq ∈ Hn.

Then

trans(Ψ(α))(x0, . . . , xq) =

∫
Γ\G

ε(ġ−1) ·Ψ(α)(str(β(ġx0), . . . , β(ġxq))) dµ(ġ)

=

∫
Γ\G

ε(ġ−1) ·

(∫
str(β(ġx0),...,β(ġxq))

α

)
dµ(ġ)

On the other hand

Φ(transdR(α))(x0, . . . , xq) =

∫
str(x0,...,xq)

transdR(α)

=

∫
str(x0,...,xq)

(∫
Γ\G

ε(ġ−1) · (ġ∗α) dµ(ġ)

)

=

∫
∆q

(∫
Γ\G

ε(ġ−1) · (str(x0, . . . , xq)∗ġ∗α)(∂/∂t1, . . . , ∂/∂tq) dµ(ġ)

)
dt1 . . . dtq

=

∫
Γ\G

ε(ġ−1) ·
(∫

∆q

(str(x0, . . . , xq)∗ġ∗α)(∂/∂t1, . . . , ∂/∂tq) dt1 . . . dtq
)
dµ(ġ)
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=

∫
Γ\G

ε(ġ−1) ·

(∫
ġ∗str(x0,...,xq)

α

)
dµ(ġ)

=

∫
Γ\G

ε(ġ−1) ·

(∫
str(ġx0,...,ġxq)

α

)
dµ(ġ)

where we have used Fubini’s theorem from line three to line four.
Let us now assume that dα = 0, i.e. α is a cocycle representing a cohomology class. We claim

that the function f : (Hn)q → R given by

f(x0, . . . , xq−1) :=

q−1∑
i=0

(−1)i
∫
Γ\G

ε(ġ−1) ·

(∫
str(β(ġx0),...,β(ġxi),ġxi,...,ġxq−1)

α

)
dµ(ġ)

for every (x0, . . . , xq−1) ∈ (Hn)q is in C((Hn)q,Rε)
G and for its coboundary we have

df = Φ(transdR(α))− trans(Ψ(α)) (III.3)

This will readily imply our assertion, that trans and τdR give the same map in cohomology.
One can easily modify the argument used in Lemma III.2.8 to show that f is indeed continuous.

We leave out the details here. It is also easy to show, that f is G-equivariant. Indeed

(g · f)(x0, . . . , xq−1)

=

q−1∑
i=0

(−1)i
∫
Γ\G

ε((ġg−1)−1) ·

(∫
str(β(ġg−1x0),...,β(ġg−1xi),ġg−1xi,...,ġg−1xq−1)

α

)
dµ(ġ)

=

q−1∑
i=0

(−1)i
∫
Γ\G

ε(ġ−1) ·

(∫
str(β(ġx0),...,β(ġxi),ġxi,...,ġxq−1)

α

)
dµ(ġ)

= f(x0, . . . , xq−1)

for every g ∈ G, x0, . . . , xq−1 ∈ Hn, where we have used the right-invariance of µ again.
Thus we are left to prove relation (III.3). The proof of this is analogous to our proof of relation

(II.8) in Proposition II.3.20.
We will adopt the following abbreviated notation

T (y0, . . . , yq) = Φ(α)(y0, . . . , yq) =

∫
str(y0,...,yq)

α

for all y0, . . . , yq ∈ Hn. Using this notation we can write

Φ(transdR(α))(x0, . . . , xq) =

∫
Γ\G

ε(ġ−1) · T (ġx0, . . . , ġxq))dµ(ġ)

trans(Ψ(α))(x0, . . . , xq) =

∫
Γ\G

ε(ġ−1) · T (β(ġx0), . . . , β(ġxq)) dµ(ġ)

f(x0, . . . , xq−1) =

q−1∑
i=0

(−1)i
∫
Γ\G

ε(ġ−1) · T (β(ġx0), . . . , β(ġxi), ġxi, . . . , ġxq−1)) dµ(ġ)

for every x0, . . . , xq ∈ Hn. Note that

(dT )(y0, . . . , yq+1) = dΦ(α)(y0, . . . , yq+1) = Φ(dα)(y0, . . . , yq) = 0
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for all y0, . . . , yq+1 ∈ Hn, since α is closed. Thus

0 =

q∑
i=0

(−1)i
∫
Γ\G

ε(ġ−1) · (dT )(β(ġx0), . . . , β(ġxi), ġxi, . . . , ġxq) dµ(ġ)

=

q∑
i=0

(−1)i
∫
Γ\G

ε(ġ−1) ·
{ ∑

j≤i−1

(−1)jT (β(ġx0), . . . , β(ġxj−1), β(ġxj+1), . . . , β(ġxi), ġxi, . . . , ġxq)

+ (−1)iT (β(ġx0), . . . , β(ġxi−1), ġxi, . . . , ġxq)

+ (−1)i+1T (β(ġx0), . . . , β(ġxi), ġxi+1, . . . , ġxq)

+
∑

i+2≤j

(−1)jT (β(ġx0), . . . , β(ġxi), ġxi, . . . , ġxj−2, ġxj , . . . , ġxq)

}
dµ(ġ)

=

∫
Γ\G

ε(ġ−1) ·
q∑

i=0

{
T (β(ġx0), . . . , β(ġxi−1), ġxi, ġxi+1, . . . , ġxq)

− T (β(ġx0), . . . , β(ġxi), ġxi+1, . . . , ġxq)

}
+

q∑
i=0

(−1)i
{ ∑

j≤i−1

(−1)jT (β(ġx0), . . . , β(ġxj−1), β(ġxj+1), . . . , β(ġxi), ġxi, . . . , ġxq)

+
∑

i+2≤j

(−1)jT (β(ġx0), . . . , β(ġxi), ġxi, . . . , ġxj−2, ġxj , . . . , ġxq)

}
dµ(ġ)

=

∫
Γ\G

ε(ġ−1) · T (ġx0, . . . , ġxq) dµ(ġ)−
∫
Γ\G

ε(ġ−1) · T (β(ġx0), . . . , β(ġxq)) dµ(ġ)

+

∫
Γ\G

ε(ġ−1) ·
q∑

i=0

(−1)i
{ ∑

j≤i−1

(−1)jT (β(ġx0), . . . , β(ġxj−1), β(ġxj+1), . . . , β(ġxi), ġxi, . . . , ġxq)

+
∑

i+2≤j

(−1)jT (β(ġx0), . . . , β(ġxi), ġxi, . . . , ġxj−2, ġxj , . . . , ġxq)

}
dµ(ġ)

for all x0, . . . , xq ∈ Hn, i.e.

Φ(transdR(α))(x0, . . . , xq)− trans(Ψ(α))(x0, . . . , xq)

= −
∫
Γ\G

ε(ġ−1) ·
q∑

i=0

(−1)i
{ ∑

j≤i−1

(−1)jT (β(ġx0), . . . , β(ġxj−1), β(ġxj+1), . . . , β(ġxi), ġxi, . . . , ġxq)

+
∑

i+2≤j

(−1)jT (β(ġx0), . . . , β(ġxi), ġxi, . . . , ġxj−2, ġxj , . . . , ġxq)

}
dµ(ġ)

=

∫
Γ\G

ε(ġ−1) ·
q∑

i=0

(−1)i
{ ∑

j≤i−1

(−1)j+1T (β(ġx0), . . . , β(ġxj−1), β(ġxj+1), . . . , β(ġxi), ġxi, . . . , ġxq)

+
∑

i+1≤j

(−1)jT (β(ġx0), . . . , β(ġxi), ġxi, . . . , ġxj−1, ġxj+1, . . . , ġxq)

}
dµ(ġ)

On the other hand

(df)(x0, . . . , xq) =

q∑
j=0

(−1)jf(x0, . . . , xj−1, xj+1, . . . , xq)
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=

∫
Γ\G

ε(ġ−1) ·
q∑

j=0

(−1)j
{ ∑

0≤i≤j−1

(−1)iT (β(ġx0), . . . , β(ġxi), ġxi, . . . , ġxj−1, ġxj+1, . . . , ġxq)

+
∑

j≤i≤q−1

(−1)iT (β(ġx0), . . . , β(ġxj−1), β(ġxj+1), . . . , β(ġxi+1), ġxi+1, . . . , ġxq)

}
dµ(ġ)

=

∫
Γ\G

ε(ġ−1) ·
q∑

j=0

(−1)j
{ ∑

0≤i≤j−1

(−1)iT (β(ġx0), . . . , β(ġxi), ġxi, . . . , ġxj−1, ġxj+1, . . . , ġxq)

+
∑

j+1≤i≤q

(−1)i+1T (β(ġx0), . . . , β(ġxj−1), β(ġxj+1), . . . , β(ġxi), ġxi, . . . , ġxq)

}
dµ(ġ)

for all x0, . . . , xq ∈ Hn.
A quick comparison of both double sums under the integral shows, that they contain precisely

the same summands with the same sign. This concludes the proof.

Therefore we have also proven Proposition III.2.6.

III.2.3. Properties of Vol(·)

After these preparations we can now deduce some properties of the volume of a representation. We
will from now on work with the hypothesis of the volume rigidity theorem III.1.1. These are the
same as in the previous subsection except that Γ is not necessarily torsion-free anymore. In order
to remedy this, we will frequently use the fact, that we may find a torsion-free subgroup of finite
index in Γ (cf. Proposition I.4.21), and that the volume of a representation is multiplicative with
respect to taking finite index subgroups.
Let us start with a ”normalization” lemma. It shows, that for lattice embeddings the volume is

equal to the volume of the corresponding quotient (orbifold).

Lemma III.2.10 (cf. [BBI13, Lemma 2, p. 15]). Let i : Γ ↪→ G+ < G be a lattice embedding. Then

Vol(i) = Vol(M)

where M = i(Γ)\Hn is the quotient and Vol(M) refers to the quotient measure ν/µΓ.

Proof. Both sides are multiplicative with respect to finite index subgroups (cf. Theorem I.4.20), so
we may suppose without loss of generality that Γ is torsion-free. By definition we have

Vol(M) = 〈ωN,∂N , [N, ∂N ]〉
Vol(i) = 〈(c ◦ i∗)(ωb

n), [N, ∂N ]〉

The desired equality would thus clearly follow from ωN,∂N = (c◦ i∗)(ωb
n). Because the transfer map

τdR : Hn(N, ∂N) → Hn
c (G) is an isomorphism in top degree it is enough to check that

τdR(ωN,∂N ) = (τdR ◦ c ◦ i∗)(ωb
n)

But as we have already seen in Proposition III.2.5 τdR(ωN,∂N ) = ωn. Using the commutativity of
the diagram in Proposition III.2.6 and the fact that transΓ is a left inverse of i∗ we calculate the
right-hand-side

(τdR ◦ c ◦ i∗)(ωb
n) = (c ◦ transΓ ◦ i∗)(ωb

n) = c(ωb
n) = ωn

This concludes the proof.
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We know by Proposition II.3.29, that Hn
cb(G,Rε) is generated by ωb

n. Further the transfer map
transΓ : Hn

cb(Γ,R) → Hn
cb(G,Rε) is a left-inverse of the pullback i∗ : Hn

cb(G,Rε) → Hn
cb(Γ,R)

induced by the canonical inclusion i : Γ → G+ < G, i.e. transΓ ◦ i∗ = id. But what happens if
we replace i∗ with the pullback ρ∗ along some other representation ρ : Γ → G+ < G? The next
proposition gives an answer to that question.

Proposition III.2.11 (cf. [BBI13, Proposition 4, p. 15]). The composition

R ∼= Hn
cb(G,Rε) Hn

cb(Γ,R) Hn
cb(G,Rε) ∼= R

ρ∗ transΓ

is equal to λ · id with

λ =
Vol(ρ)
Vol(M)

and |λ| ≤ 1.

Proof. As the quotient
Vol(ρ)
Vol(M)

is invariant by passing to finite index subgroups (cf. Theorem I.4.20), we can without loss of
generatliy suppose that Γ is torsion-free. Since Hn

cb(G,Rε) is generated by ωb
n we get a real number

λ ∈ R such that

(transΓ ◦ ρ∗)(ωb
n) = λ · ωb

n (III.4)

Applying the comparison map c we get

(c ◦ transΓ ◦ ρ∗)(ωb
n) = λ · c(ωb

n) = λ · ωn = λ · τdR(ωN,∂N )

By the commutativity of the diagram in Proposition III.2.6 the first expression is equal to (τdR ◦ c ◦ ρ∗)(ωb
n).

Since τdR is injective in top degree, we get

(c ◦ ρ∗)(ωb
n) = λ · ωN,∂N

Evaluating on the fundamental class we obtain

Vol(ρ) = 〈(c ◦ ρ∗)(ωb
n), [N, ∂N ]〉 = λ · 〈ωN,∂N , [N, ∂N ]〉 = λ ·Vol(M)

In order to estimate the absolute value of λ we simply take norms in equation (III.4) and get

|λ| = ‖(transΓ ◦ ρ∗)(ωb
n)‖

‖ωb
n‖

Since the maps transΓ and ρ∗ are norm non-increasing we finally get as desired |λ| ≤ 1.

A good definition of the volume of a representation should indicate, when a representation is
”not very complicated”. As we have already seen in section I.3 elementary subgroups of G have a
quite simple structure, such that a representation is certainly ”not very complicated”, if its image
is elementary. The next proposition shows, that our definition of the volume of a representation
reflects this ”simplicity” by being zero for representations with elementary image.

Proposition III.2.12. Vol(ρ) = 0 if ρ has elementary image.
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Proof. Without loss of generality we may assume that Γ is torsion-free. Let M = Γ\G and N ⊂M
a compact core as in the definition of Vol(ρ).
We will distinguish three cases according to which type of elementary group ρ(Γ) is. Recall that

the pullback of the volume class ρ∗ωb
n is represented in Hn(L∞(Γ•+1,R)Γ) by the cocycle ρ∗Vy for

any y ∈ Hn (cf. Corollary II.3.22).
1) Assume that ρ(Γ) is of elliptic type. Then ρ(Γ) fixes a point x ∈ Hn. Hence

ρ∗(Vx)(γ0, . . . , γn) = Voln(ρ(γ0)x, . . . , ρ(γn)x) = Voln(x, . . . , x) = 0

for all γ0, . . . , γn ∈ Γ. Thus ρ∗ωb
n = [ρ∗Vx] = 0 and

Vol(ρ) = 〈c(ρ∗(ωb
n)), [N, ∂N ]〉 = 0

2) Assume that ρ(Γ) is of parabolic type. Then ρ(Γ) fixes a point ξ ∈ ∂Hn. Hence as before

ρ∗(Vξ)(γ0, . . . , γn) = Voln(ρ(γ0)ξ, . . . , ρ(γn)ξ) = Voln(ξ, . . . , ξ) = 0

for all γ0, . . . , γn ∈ Γ and Vol(ρ) = 0.
3) Finally assume that ρ(Γ) is of hyperbolic type. Then ρ(Γ) preserves a set {ξ1, ξ2} ⊂ ∂Hn.

Then conv(ρ(γ0)ξ1, . . . , ρ(γn)ξ1) is contained in the geodesic between ξ1 and ξ2. Because n ≥ 2, we
have again

ρ∗(Vξ1)(γ0, . . . , γn) = Voln(ρ(γ0)ξ1, . . . , ρ(γn)ξ1) = 0

for all γ0, . . . , γn ∈ Γ and thus Vol(ρ) = 0.

Finally, the volume of a representation behaves well with respect to conjugation.

Lemma III.2.13. Let g ∈ G be an isometry. Then we have for the conjugated representation
g · ρ · g−1 : Γ → G+ < G

Vol(g · ρ · g−1) = ε(g) ·Vol(ρ)

Proof. Let g ∈ G and y ∈ Hn be fixed by g.
Due to Proposition II.3.20 the volume class in Hn(L∞(G•+1,Rε)

G) is represented by the cocycle
Vy : Gn+1 → R, (g0, . . . , gn) 7→ Voln(g0y, . . . , gny)
By Corollary II.3.22 the pullback (g · ρ · g−1)∗(ωb

n) of the volume class is represented by

(g · ρ · g−1)∗Vy(γ0, . . . , γn) = Vy(g · ρ(γ0) · g−1, . . . , g · ρ(γn) · g−1)

= Voln(gρ(γ0)g−1y, . . . , gρ(γn)g
−1y)

= ε(g) ·Voln(ρ(γ0)y, . . . , ρ(γn)y)
= ε(g) · ρ∗Vy(γ0, . . . , γn)

for every γ0, . . . , γn ∈ Γn+1. Hence (g · ρ · g−1)∗(ωb
n) = ε(g) · ρ∗(ωb

n).
The assertion now follows from the definition of Vol(ρ).
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III.3. Proof of the Volume Rigidity Theorem
The first part of Theorem III.1.1 about the inequality now follows from the properties of Vol(·).
Indeed by Lemma III.2.10 we have that Vol(i) = Vol(M) and by Proposition III.2.11 we know that
in particular ∣∣∣∣ Vol(ρ)

Vol(M)

∣∣∣∣ ≤ 1

Thus
|Vol(ρ)| ≤ |Vol(i)| = Vol(M)

as asserted.
Hence all that remains to be proven is, that if |Vol(ρ)| = Vol(M) then ρ is conjugated to i by an

isometry. Note that we may assume without loss of generality, that ρ : Γ → G+ has non-elementary
image. Indeed if ρ had elementary image, then Vol(ρ) would vanish due to Proposition III.2.12
and hence it could not be maximal.
We will do this in three steps. As in other proofs of the Mostow Rigidity Theorem, e.g. [Thu] or

[BP92], we will construct an equivariant boundary map in the first step. Step two of the proof will
then show, that any such equivariant boundary map sends regular simplices to regular simplices by
proving Theorem III.3.6. The proof of this theorem is quite technical and is hence subdivided into
several lemmas. In step three we simply apply what we have said about boundary maps in section
I.8 and conclude that ϕ must be induced by some isometry conjugating the two representations.

III.3.1. Step 1: The Equivariant Boundary Map
The following quite general lemma provides us with a preliminary boundary map.

Lemma III.3.1 (cf. [BBI13, Lemma 3, p. 17]). Let G be a locally compact group, Γ < G a
lattice and P an amenable subgroup. Let X be a compact metrizable space with a Γ-action by
homeomorphisms. Then there is a Γ-equivariant measurable boundary map ϕ′ : G/P → M1(X)

Proof. Let C(X) denote the space of continuous real valued functions on X. The space

L1
Γ(G,C(X)) :=

{
f : G→ C(X) : f is measurable, Γ-equivariant and

∫
Γ\G

‖f(ġ)‖dµ(ġ) <∞

}
is a separable Banach space whose dual is the space L∞

Γ (G,C(X)∗) of measurable Γ-equivariant
essentially bounded maps from G to C(X)∗ (the dual space of C(X)); for details concerning this
duality we refer to [Bou04a, No. 6, §2, VI.32]. Observe that since C(X) is separable the notion
of measurability of a function G → C(X)∗ is the same as to whether C(X)∗ is endowed with the
weak-∗ topology or the norm topology (cf. [Mon01, Lemma 3.3.3, p. 29]). Using Corollary A.2.13
it is easy to verify that L∞

Γ (G,M1(X)) is a convex compact subset (with respect to the weak-∗
topology) of the unit ball of L∞(G,C(X)∗) that is right P -invariant. Since P is amenable, there
exists a P -fixed point, that is nothing but the map ϕ′ : G/P → M1(X).

As we have already seen in Lemma I.2.15 the stabilizer of a boundary point P is amenable. If
we let Γ operate on X = ∂Hn via the representation ρ : Γ → G+ < G then the hypothesis of the
previous lemma is fulfilled and we get an a.e.-ρ-equivariant measurable map ϕ′ : ∂Hn → M1(∂Hn)
identifying ∂Hn ∼= G/P as usual.
Nevertheless that is not quite what we want. We are actually interested in an a.e.-ρ-equivariant

boundary map ϕ : ∂Hn → ∂Hn (cf. Definition II.2.38). However we can get such a map from ϕ′

by mapping x ∈ ∂Hn to the ”point of highest concentration” of ϕ′(x). The following lemma makes
this idea precise.
Before we delve into the details we need some terminology:
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Definition III.3.2. Let A≥1/2 ⊂ M1(∂Hn) denote the subset of all probability measures which
have exactly one atom of mass ≥ 1/2. Further let A=1/2 denote the subset of all probability
measures with two distinct atoms of mass equal to 1/2. Finally let A<1/2 denote the subset of all
probability measures with no atom of mass ≥ 1/2, that is, every measure has only atoms of mass
< 1/2 whence the notation.
Observe that we thus get the following decomposition into disjoint subsets

M1(∂Hn) = A≥1/2∪̇A=1/2∪̇A<1/2

Lemma III.3.3. Let ϕ′ : ∂Hn → M1(∂Hn) be an a.e.-ρ-equivariant measurable map as before.
Then:

(i) A≥1/2,A=1/2,A<1/2 ⊂ M1(∂Hn) are (Borel) measurable and G-invariant.

(ii) ϕ′(x) ∈ A≥1/2 for almost every x ∈ ∂Hn.

(iii) The map
ψ : A≥1/2 → ∂Hn, µ 7→ the unique atom of mass ≥ 1/2 of µ

is continuous and G-equivariant; in particular measurable.

Proof. To (i): BecauseG acts by homeomorphisms on ∂Hn it is easy to see thatA≥1/2,A=1/2,A<1/2 ⊂
M1(∂Hn) areG-invariant. Since we have thatM1(∂Hn) is the disjoint union ofA≥1/2,A=1/2,A<1/2

it suffices to show that A≥1/2 and A=1/2 are measurable.
Clearly we have that

A≥1/2 = A′
≥1/2 −A=1/2

where

A′
≥1/2 := {µ ∈ M1(∂Hn) : ∃1/2 ≤ λ ≤ 1, ν ∈ M(∂Hn), x ∈ ∂Hn s.t. µ = λδx + ν}

that is the set of all probability measures with one atom of mass ≥ 1/2 (not necessarily exactly
one!). Obviously A=1/2 can be written as

A=1/2 = {1/2 δx + 1/2 δy : x, y ∈ ∂Hn, x 6= y}

We shall now prove the following claims:

(a) A′
≥1/2 is closed in M1(∂Hn)

(b) A=1/2 ∪̇ {δx : x ∈ ∂Hn} = A=1/2.

To see (a) let µn = λnδxn + νn with λn ∈ [1/2, 1], xn ∈ ∂Hn and νn ∈ M(∂Hn) be a sequence
in A′

≥1/2 converging to some µ ∈ M1(∂Hn). We need to see that its limit can also be written
as µ = λδx + ν for some λ ∈ [1/2, 1], x ∈ ∂Hn and ν ∈ M(∂Hn). Since [1/2, 1] ⊂ R and ∂Hn

are compact, there is a subsequence (µnk
) such that λnk

→ λ and xnk
→ x as k → ∞ for some

λ ∈ [1/2, 1] and x ∈ ∂Hn. Define ν = µ− λδx. Obviously λnk
δxnk

→∗ λδx in M(∂Hn) as k → ∞.
We get

νnk
= µnk

− λnk
δxnk

→∗ µ− λδx (k → ∞)

and because M(∂Hn) is closed in C(∂Hn)∗ with the weak-* topology we have that ν ∈ M(∂Hn).
Thus µnk

→∗ λδx + ν as k → ∞. Because (µn) converges to µ also every subsequence converges to
µ and

µ = lim
k→∞

µnk
= lim

k→∞
(λnk

δxnk
+ νnk

) = λδx + ν
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So µ has the required form.
Now to (b): Let µ ∈ A=1/2 and µn = 1/2 δxn + 1/2 δyn be a sequence in A=1/2 converging to

it in M(∂Hn). Since ∂Hn is compact there is again a subsequence (µnk
) such that xnk

→ x and
ynk

→ y as k → ∞ for some x, y ∈ ∂Hn. Let f ∈ Cc(∂Hn) = C(∂Hn). Then∫
f dµnk

= 1/2 f(xnk
) + 1/2 f(ynk

) → 1/2 f(x) + 1/2 f(y) =

∫
f d(1/2 δx + 1/2 δy) (k → ∞)

and hence µnk
→∗ 1/2 δx + 1/2 δy = µ as k → ∞. If x = y then µ = δx, else µ = 1/2 δx + 1/2 δy.

This proves (b).
Due to (b) we have that A=1/2 = A=1/2 − {δx : x ∈ ∂Hn}. Clearly {δx : x ∈ ∂Hn} is also closed

and hence A=1/2 is measurable. Therefore also A≥1/2 is.

To (ii): Let A≥1/2, A=1/2, A<1/2 ⊂ ∂Hn denote the preimages ofA≥1/2,A=1/2,A<1/2 ⊂ M1(∂Hn)
under ϕ′ : ∂Hn → M1(∂Hn) respectively. Then A≥1/2∪̇A=1/2∪̇A<1/2 = ∂Hn and each of them is
Γ-invariant since ϕ′ is equivariant. Because Γ acts (doubly) ergodically on ∂Hn one of them has
full measure. We shall see that it will lead to a contradiction if A=1/2 or A<1/2 has full measure.
First assume that A<1/2 has full measure in ∂Hn. Then we are in a position to apply Douady-

Earle’s barycenter construction for every x, y ∈ A<1/2 (cf. appendix E) and consider the points
bary(ϕ′(x)) and bary(ϕ′(y)). Due to the G-equivariance of Douady-Earle’s barycenter construction
and the G-invariance of the hyperbolic metric d : Hn ×Hn → R we have that the map

A<1/2 ×A<1/2 → R, (x, y) 7→ d(bary(ϕ′(x)),bary(ϕ′(y)))

is Γ-invariant and clearly measurable. Because Γ acts ergodically on A<1/2 ×A<1/2 ⊂ ∂Hn × ∂Hn

there is a full measure subset A ⊂ A<1/2 × A<1/2 such that D = d(bary(ϕ′(x)),bary(ϕ′(y))) is
constant for every (x, y) ∈ A. We want to see that there are points (x, y) ∈ A such that for
every γ ∈ Γ also (x, γy) ∈ A. First observe that because of Fubini’s theorem and the fact that
A ⊂ ∂Hn × ∂Hn has full measure, there has to be a point x ∈ ∂Hn such that A[x] = {y ∈ ∂Hn :
(x, y) ∈ A} has full measure in ∂Hn. Now consider the set

AΓ
[x] =

⋂
γ∈Γ

γA[x] ⊂ A[x]

Recall that Γ is countable, since it is a discrete subgroup of the second countable group G+ =
Isom+(Hn), and the fact that the Γ action on ∂Hn preserves null sets. Therefore AΓ

[x] is Γ-invariant
and has also full measure in ∂Hn. In particular it is non-empty so there is a y ∈ AΓ

[x]. Because of
the Γ-invariance of AΓ

[x] also γy ∈ AΓ
[x] ⊂ A[x] and thus (x, γy) ∈ A for every γ ∈ Γ. Hence

D = d(bary(ϕ′(x)),bary(ϕ′(γx))) = d(bary(ϕ′(x)), ρ(γ)bary(ϕ′(y)))

for every γ ∈ Γ. Hence the orbit ρ(Γ)bary(ϕ′(y)) is bounded and the limit set L(ρ(Γ)) is empty.
By Theorem I.3.8 this implies that ρ(Γ) is elementary of elliptic type; a contradiction!
Now let us assume that A=1/2 ⊂ ∂Hn has full measure. Here we are going to distinguish three

cases. We consider the sets

A2 := {(x, y) ∈ A=1/2 : |supp (ϕ′(x)) ∩ supp (ϕ′(y))| = 2}
A1 := {(x, y) ∈ A=1/2 : |supp (ϕ′(x)) ∩ supp (ϕ′(y))| = 1}
A0 := {(x, y) ∈ A=1/2 : |supp (ϕ′(x)) ∩ supp (ϕ′(y))| = 0}

Obviously they give a decomposition of A=1/2 into disjoint subsets and due to the equivariance of
ϕ′ they are also Γ-invariant. We claim that they are measurable.
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Indeed, it is easy to see that A2 = {(x, y) ∈ A=1/2 : ϕ
′(x) = ϕ′(y)} = (ϕ′ × ϕ′)−1(∆) where ∆ ⊂

M1(∂Hn)×M1(∂Hn) denotes the diagonal which is closed since M1(∂Hn) is Hausdorff. For A1 we
see that A1 = {(x, y) ∈ A=1/2 : ϕ

′(x)− ϕ′(y) ∈ C} where C = {1/2 δx − 1/2 δy : x, y ∈ ∂Hn, x 6= y}.
Completely analogously to the case of A=1/2 one verifies that C is measurable and therefore A1 is
measurable. Finally because A=1/2 is the disjoint union of A2, A1, A0 also A0 is measurable.
Now we can again use the double ergodicity of the diagonal action of Γ on ∂Hn × ∂Hn to deduce

that one of these sets must have full measure. Let us consider the following cases.
1) A2 has full measure: As before we find x ∈ ∂Hn such that A2,[x] = {y ∈ ∂Hn : (x, y) ∈ A2} has

full measure and observe that AΓ
2,[x] =

⋂
γ∈Γ γA2,[x] ⊂ A2,[x] is a Γ-invariant subset of full measure.

Hence there is again a y ∈ ∂Hn such that (x, γy) ∈ A2 for all γ ∈ Γ. If {x1, x2} = supp (ϕ′(x))
then

{x1, x2} = supp (ϕ′(x)) = supp (ϕ′(γy)) = ρ(γ)supp (ϕ′(y))

= ρ(γ)supp (ϕ′(x)) = ρ(γ){x1, x2}

for every γ ∈ Γ. Therefore ρ(Γ)x1 is a finite orbit in Hn in contradiction to ρ(Γ) being non-
elementary.
2) A1 has full measure: Then we find again x ∈ ∂Hn such that A1,[x] = {y ∈ ∂Hn : (x, y) ∈ A1}

has full measure. Then also A′
1,[x] = A1,[x] × A1,[x] ∩ A1 has full measure. Iterating the previous

argument one more time we can find y ∈ ∂Hn such that A′
1,[x],[y] = {z ∈ ∂Hn : (y, z) ∈ A′

1,[x]} has
full measure. Observe that

z ∈ A′
1,[x],[y] ⇐⇒ (y, z) ∈ A′

1,[x] = A1,[x] ×A1,[x] ∩A1

⇐⇒ (y, z) ∈ A1 and (x, y) ∈ A1 and (x, z) ∈ A1

If we denote supp (ϕ′(x)) = {x1, x2} and supp (ϕ′(y)) = {y1, y2} with – say – ξ := x2 = y2, then
we either have supp (ϕ′(z)) = {x1, y1} or supp (ϕ′(z))∩supp (ϕ′(x))∩supp (ϕ′(y)) = {ξ} for every
z ∈ A′

1,[x],[y] (cf. Figure III.1).

(a) supp (ϕ′(z)) = {x1, y1} (b) supp (ϕ′(z)) ∩ supp (ϕ′(x)) ∩ supp (ϕ′(y)) = {ξ}

Figure III.1.: The two different cases for the position of supp (ϕ′(z)) = {z1, z2}

Now we consider once more A′′
1,[x],[y] = A′

1,[x],[y] × A′
1,[x],[y] ∩ A1, which has also full measure.

Consider (z, z′) ∈ A′′
1,[x],[y] and denote supp (ϕ′(z)) = {z1, z2}, supp (ϕ′(z′)) = {z′1, z′2} with ζ :=

z2 = z′2.

122



III.3. Proof of the Volume Rigidity Theorem

If supp (ϕ′(z)) = {x1, y1}, then clearly ζ = x1 or ζ = y1. If ζ = x1 then z′1 has to be in
supp (ϕ′(y)) = {y1, ξ}, since z′ ∈ A′

1,[x],[y] and thus (y, z′) ∈ A1. But this means, that either
supp (ϕ′(z′)) = supp (ϕ′(z)) or supp (ϕ′(z′)) = supp (ϕ′(y)); both result in a contradiction. The
case of ζ = y1 can be treated in exactly the same way (just exchange x and y in the previous
argument).
Hence we must have supp (ϕ′(z)) ∩ supp (ϕ′(x)) ∩ supp (ϕ′(y)) = {ξ}. We shall argue that the

only possible position for supp (ϕ′(z′)) is one such that ζ = ξ. If ζ 6= ξ then either ζ = x1 or
ζ = y1. Without loss of generality we may assume that ζ = x1 (the other case can again be treated
analogously). Now it is easy to see that z1 = y1 must hold and z′1 = ξ or z′1 = y1. In both
cases we have again a contradiction, because then supp (ϕ′(z′)) = supp (ϕ(x)) or supp (ϕ′(z′)) =
supp (ϕ(z)) respectively.
Thus we have seen that {ξ} = {ζ} = supp (ϕ(z)) ∩ supp (ϕ(z′)) for all (z, z′) ∈ A′′

1,[x],[y]. This
also holds for the full measure Γ-invariant subset B :=

⋂
γ∈Γ γA

′′
1,[x],[y]. Thus for (z, z′) ∈ B, also

(γ · z, γ · z′) ∈ B and we obtain

{ξ} = supp (ϕ′(γ · z)) ∩ supp (ϕ′(γ · z′)) = ρ(γ) · supp (ϕ′(z)) ∩ supp (ϕ′(z′)) = {ρ(γ) · ζ}

for all γ ∈ Γ; in contradiction to ρ(Γ) being non-elementary.
3) A0 has full measure: Let gx, gy denote the geodesics with endpoints supp ϕ′(x), supp ϕ′(y)

respectively. By double ergodicity we get, that the distance D := d(gx, gy) is constant for almost
every (x, y) ∈ A0.
If D = 0 then gx and gy intersect in at least one point. If they intersect in more than one

point, then gx = gy which would imply that supp (ϕ′(x)) = supp (ϕ′(y)); a contradiction. Let us
now denote by θ(x, y) ∈ (0, π/2] the unique acute angle in which gx and gy meet. It is easy to
see that θ(x, y) depends measurably on (x, y) ∈ A0, since the angle depends continuously on the
respective geodesics. By double ergodicity one gets again, that θ(x, y) is essentially constant, say
θ(x, y) = θ for almost every (x, y) ∈ A0. Just as several times before we may now find four points
x1, . . . , x4 ∈ ∂Hn with respective geodesics g1 := gx1 , . . . , g4 := gx4 such that they meet pairwise in
the acute angle θ. Because every geodesic meets every other geodesic in one point they all have
to lie in a two dimensional hyperbolic subspace of Hn, such that we may assume without loss of
generality, that they are all in H2. Further we may assume, that g1 is the imaginary axis in the
upper half plane model. Now g2, g3, g4 intersect g1 at heights y2, y3, y4 and at least two of them
meet g1 in the same oriented angle (θ or π− θ), say these two are g2 and g3 (cf. Figure III.2). But
by construction g2 has to intersect g3 as well, which is only possible for y2 = y3. That in turn
implies however g2 = g3; a contradiction.
If D > 0, let γ ∈ ρ(Γ) be a hyperbolic element whose fixed points are not the endpoints of gx or

gy. Then iterates of γ send any geodesic g into an arbitrarily small neighborhood of its attractive
fixed point. Contradicting that gx is at fixed distance from gy. The existence of such a hyperbolic
element is guaranteed by Proposition I.3.9.
To (iii): The G-equivariance is clear by definition, so we only need to show the continuity. Let

µn = λnδxn + νn be a sequence in A≥1/2 converging to µ = λδx+ ν ∈ A≥1/2, where λn, λ ∈ [1/2, 1],
νn, ν ∈ M(∂Hn) and xn, x ∈ ∂Hn (n ∈ N). Then ψ(µn) = xn and ψ(µ) = x. Assume that (xn)
does not converge to x, i.e. there is ε > 0 and a subsequence (xnk

) such that d(xnk
, x) ≥ ε for every

k ∈ N.
Because ∂Hn and [1/2, 1] are compact we can find subsubsequences, that we will also denote

by (xnk
) and (λnk

), such that xnk
→ x̂ ∈ ∂Hn and λnk

→ λ̂ ≥ 1/2 as k → ∞. Then clearly
λnk

δxnk
→∗ λ̂δx̂ as k → ∞ and if we set ν̂ := µ− λ̂δx̂

νnk
= µnk

− λnk
δxnk

→∗ µ− λ̂δx̂ = ν̂ (k → ∞)
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Figure III.2.: The case D = 0 with geodesics g1, . . . , g4 meeting each other at an acute angle θ.

Hence

µ = lim
n→∞

µn = lim
k→∞

µnk
= lim

k→∞
(λnk

δxnk
+ νnk

) = λ̂δx̂ + ν̂

That is x̂ is also an atom of µ of mass λ̂ ≥ 1/2. By uniqueness we must have that x = x̂ but that
contradicts d(xnk

, x) ≥ ε for all k ∈ N!

As an immediate consequence we get that the map ϕ := ψ ◦ ϕ′ : ∂Hn → ∂Hn is a measurable
a.e.-ρ-equivariant boundary map. Thus we have proven the following proposition.

Proposition III.3.4. Let Γ < G+ be a lattice and ρ : Γ → G+ a representation with non-elementary
image. Then there is a measurable a.e.-ρ-equivariant boundary map ϕ : ∂Hn → ∂Hn.

Finally we want to prove, that such a boundary map ϕ : ∂Hn → ∂Hn is injective almost every-
where. We will use this fact in the second step of our proof. However the proof fits better into our
current context, such that we prepone it.

Proposition III.3.5. Let ϕ : ∂Hn → ∂Hn be a measurable a.e.-ρ-equivariant boundary map. Then
ϕ(x) 6= ϕ(y) for almost every (x, y) ∈ ∂Hn × ∂Hn.

Proof. Let us consider the measurable set A := {(x, y) ∈ ∂Hn × ∂Hn : ϕ(x) = ϕ(y)}. Then clearly
A is Γ-invariant and due to the double ergodicity of the Γ-action it has either full measure or
measure zero. If A had full measure then we could again find x ∈ ∂Hn such that A[x] = {y ∈ ∂Hn :

(x, y) ∈ A} had full measure. Hence also AΓ
[x] =

⋂
γ∈Γ γA[x] had full measure and were therefore
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non-empty. We could thus find a y ∈ AΓ
[x] and for such y the full orbit Γy were in A by construction.

That is
ϕ(x) = ϕ(γy) = ρ(γ)ϕ(y)

for all γ ∈ Γ and thus ρ(Γ) were elementary; a contradiction.
Therefore A must have measure zero, i.e. ϕ(x) 6= ϕ(y) for almost every (x, y) ∈ ∂Hn × ∂Hn.

III.3.2. Step 2: Mapping Regular Simplices to Regular Simplices

Before we proceed let us observe, that we may assume without loss of generality that Vol(ρ) ≥ 0.
Indeed, in order to change the sign of Vol(ρ) we may simply conjugate it by some orientation
reversing isometry τ ∈ G−G+ (cf. Lemma III.2.13).
The next theorem will enable us to prove, that an a.e.-ρ-equivariant boundary map sends regular

simplices to regular simplices.

Theorem III.3.6 (cf. [BBI13, Theorem 2, p. 4]). Let i : Γ ↪→ G+ < G be a lattice embedding
and let ρ : Γ → Isom+(Hn) = G+ be any representation with non-elementary image. Further let
ϕ : ∂Hn → ∂Hn be an a.e.-ρ-equivariant measurable map. Then for every (n + 1)-tuple of points
ξ0, . . . , ξn ∈ ∂Hn∫

Γ\G
ε(ġ−1)Voln(ϕ(ġξ0), . . . , ϕ(ġξn)) dµ(ġ) =

Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn) (III.5)

where µ is the invariant probability measure on Γ\G.

Remark III.3.7. The above formula is actually a very concrete version of formula (2.12) in [BI09,
Proposition 2.44, p. 27]. As we have already mentioned in the introduction Burger and Iozzi succeed
in proving Mostow’s rigidity theorem in dimension 3 by applying their formula in [BI09, Section
3.1., pp. 29].

Because the proof of this theorem is quite technical, we want to prove the following important
corollary first.

Corollary III.3.8. If in the notation of Theorem III.3.6 ρ has maximal volume, that is Vol(ρ) =
Vol(M) with M = Γ\Hn, then ϕ sends the vertices of almost every regular ideal simplex to the
vertices of a regular ideal simplex of the same orientation.

Proof. By assumption we have for every (ξ0, . . . , ξn) ∈ (∂Hn)n+1

Voln(ξ0, . . . , ξn) =
Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn)

=

∫
Γ\G

ε(ġ−1)Voln(ϕ(ġξ0), . . . , ϕ(ġξn)) dµ(ġ)

=

∫
D
ε(g−1)Voln(ϕ(gξ0), . . . , ϕ(gξn)) dµG(g)

where D is a measurable fundamental set for the left action of Γ on G and µG is a Haar measure on
G (cf. Theorem A.4.20 and Proposition A.4.21). If we choose η̄ = (η0, . . . , ηn) ∈ (∂Hn)(n+1) to be
the vertices of a positively oriented regular (ideal) simplex, then we know, that Voln(η0, . . . , ηn) ≥ 0
is maximal (cf. Theorem I.7.4) and hence

Voln(η0, . . . , ηn) ≥ ε(g−1)Voln(ϕ(gη0), . . . , ϕ(gηn))
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for all g ∈ D. Thus we must have

Voln(η0, . . . , ηn) = ε(g−1)Voln(ϕ(gη0), . . . , ϕ(gηn))

for all g ∈ L ⊂ D, where L is a set of full measure.
Now observe that if g ∈ L and γ ∈ Γ then

ε((γg)−1)Voln(ϕ(γgη0), . . . , ϕ(γgηn)) = ε(g−1) ε(γ−1)︸ ︷︷ ︸
=1

Voln(ρ(γ)ϕ(gη0), . . . , ρ(γ)ϕ(gηn))

= ε(g−1) ε(ρ(γ))︸ ︷︷ ︸
=1

Voln(ϕ(gη0), . . . , ϕ(gηn))

= Voln(η0, . . . , ηn)

Thus equality holds for every g ∈ ΓL. But ΓL has full measure, because

µG(G− ΓL) = µG(Γ(D − L)) ≤
∑
γ∈Γ

µG(γ(D − L)) =
∑
γ∈Γ

µG(D − L) = 0

Using the identification Φη̄ : G→ T, g 7→ (gη0, . . . , gηn), where T denotes as in chapter I the set
of all regular ideal simplices, we can conclude that for almost every (ξ0, . . . , ξn) ∈ T

Voln(η0, . . . , ηn) = ε(Φ−1
η̄ (ξ0, . . . , ξn))Voln(ϕ(ξ0), . . . , ϕ(ξn)) (III.6)

We already see, that (ϕ(ξ0), . . . , ϕ(ξn)) is a regular ideal simplex since these are exactly the sim-
plices, that achieve maximal volume such as (η0, . . . , ηn). The only thing left to show, is that the
orientation is also preserved.
Observe that

ε(Φ−1
η̄ (ξ0, . . . , ξn)) =

{
+1, if (ξ0, . . . , ξn) has the same orientation as (η0, . . . , ηn)
−1, if (ξ0, . . . , ξn) has the opposite orientation as (η0, . . . , ηn)

for every (ξ0, . . . , ξn) ∈ T .
Hence by equation (III.6), if (ξ0, . . . ξn) is positively oriented (as (η0, . . . , ηn) is), then

Voln(η0, . . . , ηn) = Voln(ϕ(ξ0), . . . , ϕ(ξn))

and (ϕ(ξ0), . . . , ϕ(ξn)) is a positively oriented regular ideal simplex; if (ξ0, . . . ξn) is negatively
oriented, then

Voln(η0, . . . , ηn) = −Voln(ϕ(ξ0), . . . , ϕ(ξn))

and (ϕ(ξ0), . . . , ϕ(ξn)) is a negatively oriented regular ideal simplex. Thus ϕ : ∂Hn → ∂Hn maps the
vertices of almost every positively (resp. negatively) oriented regular ideal simplex to the vertices
of a positively (resp. negatively) oriented regular ideal simplex.

Let us now turn to the proof of Theorem III.3.6. It will be easy to deduce the integral equality
(III.5) for almost every (n + 1)-tuple of points ξ0, . . . , ξn ∈ ∂Hn from Proposition III.2.11.
However note that the subset of vertices of regular ideal simplices T ⊂ (∂Hn)n+1 has measure zero,
such that we really need equation (III.5) to hold for all tuples (ξ0, . . . , ξn) ∈ (∂Hn)n+1.

Proof of Theorem III.3.6. We shall first see that the equality holds almost everywhere. The theo-
rem will then follow from Proposition III.3.9, which states, that this suffices in order to conclude
that, the equality holds everywhere.
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By Proposition III.2.11 we know that at the cohomology level the equality

transΓ ◦ ρ∗ = Vol(ρ)
Vol(M)

· id (III.7)

holds. Because all cochains vanish in degree < n by Lemma II.3.28 this equality is actually
an equality for cocycles in degree n. By Corollary II.3.23 ρ∗(ωb

n) is represented by ϕ∗Voln in
L∞((∂Hn)n+1,Rε)

G. Therefore

Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn) = transΓ(ϕ∗(Voln))(ξ0, . . . , ξn)

=

∫
Γ\G

ε(ġ−1)ϕ∗(Voln)(ġξ0, . . . , ġξn) dµ(ġ)

=

∫
Γ\G

ε(ġ−1)Voln(ϕ(ġξ0), . . . , ϕ(ġξn)) dµ(ġ)

for almost every (ξ0, . . . , ξn) ∈ (∂Hn)n+1, since this equality holds only in L∞((∂Hn)n+1,Rε)
G.

Proposition III.3.9 (cf. [BBI13, Proposition 5, p. 19]). Let i : Γ → G+ be a lattice embedding,
ρ : Γ → G+ a representation and ϕ : ∂Hn → ∂Hn an a.e.-ρ-equivariant measurable map. If∫

Γ\G
ε(ġ−1) ·Voln(ϕ(ġξ0), . . . , ϕ(ġξn)) dµ(ġ) =

Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn) (III.8)

holds for almost every (ξ0, . . . , ξn) ∈ (∂Hn)n+1, then the equality holds everywhere.

As several times before we will use the following notation. (∂Hn)(n+1) denotes the G-invariant
open subset of (∂Hn)n+1 consisting of all (n + 1)-tuples of pairwise distinct points (ξ0, . . . , ξn).
Because any ideal simplex contained in a proper hyperbolic subspace has no volume, we see that
the volume cocycle Voln vanishes on (∂Hn)n+1 − (∂Hn)(n+1), such that equation (III.8) holds on
this set trivially.

Proof of Proposition III.3.9. Identifying ∂Hn ∼= Sn−1 ⊂ Rn, let us consider the function ϕ : ∂Hn →
∂Hn as a function ϕ : ∂Hn → Rn and denote by ϕj its coordinates for j = 1, . . . , n. Since
∂Hn ∼= G/P , where P is a minimal parabolic, let ν be the quasi-invariant measure on ∂Hn obtained
from the decomposition of the Haar measure µG on G with respect to the Haar measure µP on P ,
i.e. there is a strictly positive continuous function q : G→ R+ such that∫

G
f(g)q(g) dµG(g) =

∫
∂Hn

(∫
P
f(ġξ) dµP (ξ)

)
dν(ġ)

for every integrable function f on G (cf. Theorem A.4.16).
By applying Lusin’s Theorem A.2.6 to ϕj for every j = 1, . . . , n we find for every δ > 0 a

measurable set Bj,δ ⊂ ∂Hn with measure ν(Bj,δ) ≤ δ and a continuous function f ′j,δ : ∂Hn → R
such that ϕj ≡ f ′j,δ on ∂Hn − Bj,δ. Set f ′δ := (f1,δ, . . . , fn,δ) : ∂Hn → Rn and consider the
composition fδ := r ◦ f ′δ with the retraction r : Rn → Bn to the closed unit ball Bn in Rn. Then,
by setting Bδ :=

⋃n
j=1Bj,δ, ϕ coincides on ∂Hn −Bδ with the continuous function fδ : ∂Hn → Bn

and ν(Bδ) ≤ nδ.
Let D ⊂ G be a measurable fundamental set for the action of Γ on G (cf. Theorem A.4.20 and

Proposition A.4.21). For every measurable subset E ⊂ D, any measurable map ψ : ∂Hn → Bn and
any point (ξ0, . . . , ξn) ∈ (∂Hn)n+1, we use the notation

J (ψ,E, (ξ0, . . . , ξn)) :=

∫
E
ε(g−1)Voln(ψ(gξ0), . . . , ψ(gξn)) dµG(g)
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Thus our goal is to show that if

J (ϕ,D, (ξ0, . . . , ξn)) =
Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn) (III.9)

for almost every (ξ0, . . . , ξn) ∈ (∂Hn)n+1, then the equality holds everywhere. As we have pointed
out before it is in fact enough to show equation (III.9) only for all (ξ0, . . . , ξn) ∈ (∂Hn)(n+1).
Fix ε > 0 and let Kε ⊂ D be a compact subset such that µG(D−Kε) < ε. The rest of the proof

is broken up in two lemmas, that we state and use, but whose proof we postpone.
Replacing ϕ with fδ in equation (III.9), we get an estimate for the made error by the following

lemma.

Lemma III.3.10 (cf. [BBI13, Lemma 5, p. 21]). With the notations as above, there exists a function
Mε(δ) with the property limδ→0Mε(δ) = 0, such that

|J (ϕ,Kε, (ξ0, . . . , ξn))− J (fδ,Kε, (ξ0, . . . ξn))| ≤Mε(δ) (III.10)

for all (ξ0, . . . , ξn+1) ∈ (∂Hn)n+1.

Observe that by definition

|J (ϕ,D, (ξ0, . . . , ξn))− J (ϕ,Kε, (ξ0, . . . , ξn))|

=

∣∣∣∣∫
D
ε(g−1)Voln(ϕ(gξ0), . . . , ϕ(gξn)) dµ(g)−

∫
Kε

ε(g−1)Voln(ϕ(gξ0), . . . , ϕ(gξn)) dµ(g)
∣∣∣∣

≤
∫
D−Kε

|Voln(ϕ(gξ0), . . . , ϕ(gξn))|dµ(g) ≤ µ(D −Kε)‖Voln‖ = ε‖Voln‖

holds for all (!) (ξ0, . . . , ξn) ∈ (∂Hn)[n+1]. Now we only need a suitable estimate for∣∣∣∣J (fδ,Kε, (ξ0, . . . , ξn))−
Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn)
∣∣∣∣

This is achieved by the following lemma.

Lemma III.3.11 (cf. [BBI13, Lemma 6, p. 22]). There exists a function L(ε, δ) such that

lim
ε→0

lim
δ→0

L(ε, δ) = 0

and ∣∣∣∣J (fδ,Kε, (ξ0, . . . , ξn))−
Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn)
∣∣∣∣ ≤ L(ε, δ) (III.11)

for all (ξ0, . . . , ξn+1) ∈ (∂Hn)(n+1).

Putting these ”everywhere-estimates” together we get

∣∣∣∣J (ϕ,D, (ξ0, . . . , ξn))−
Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn)
∣∣∣∣

≤ |J (ϕ,D, (ξ0, . . . , ξn))− J (ϕ,Kε, (ξ0, . . . , ξn))|
+ |J (ϕ,Kε, (ξ0, . . . , ξn))− J (fδ,Kε, (ξ0, . . . , ξn))|

+

∣∣∣∣J (fδ,Kε, (ξ0, . . . , ξn))−
Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn)
∣∣∣∣

≤ ε‖Voln‖+Mε(δ) + L(ε, δ)
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for all (ξ0, . . . , ξn) ∈ (∂Hn)(n+1). Because ε, δ > 0 were arbitrary we can consider the limit

∣∣∣∣J (ϕ,D, (ξ0, . . . , ξn))−
Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn)
∣∣∣∣

= lim
ε→0

lim
δ→0

∣∣∣∣J (ϕ,D, (ξ0, . . . , ξn))−
Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn)
∣∣∣∣

≤ lim
ε→0

lim
δ→0

(ε‖Voln‖+Mε(δ) + L(ε, δ))

= lim
ε→0

(ε‖Voln‖+ lim
δ→0

L(ε, δ)) = 0

and assuming the unproven lemmas the assertion follows.

We shall now prove the previously used lemmas. However we need yet another technical lemma
to proceed:

Lemma III.3.12 (cf. [BBI13, Lemma 4, p. 21]). With the above notations,

µG({g ∈ Kε : gξ ∈ Bδ}) ≤ σε(δ) (III.12)

where σε(δ) does not depend on ξ ∈ ∂Hn and σε(δ) → 0 for δ → 0.

Proof of Lemma III.3.12. Recall that ∂Hn = G/P where P is the stabilizer of one point at the
boundary. As we have shown in Lemma I.2.16 there is a measurable section η : G/P → G of
the canonical projection π : G → G/P such that F := η(G/P ) is relatively compact. Now let
B̃δ := η(Bδ) and for ξ ∈ Bδ set ξ̃ := η(ξ) ∈ B̃δ. We claim that

{g ∈ Kε : gξ ∈ Bδ} = {g ∈ Kε : there exists p ∈ Cε with gξ̃p ∈ B̃δ}

where Cε := P ∩ F−1(Kε)
−1F .

First consider the ⊇ inclusion. Let g ∈ Kε such that gξ̃p ∈ B̃δ for some p ∈ Cε. Then

gξ = gπ(ξ̃) = π(gξ̃p) ∈ π(B̃δ) = Bδ

Now consider the other inclusion ⊆. Let g ∈ Kε such that gξ ∈ Bδ. Then

π(gξ̃) = gπ(ξ̃) = gξ = π(η(gξ))

and there is a p ∈ P such that η(gξ) = gξ̃p, i.e. p ∈ P ∩F−1(Kε)
−1F = Cε, because η(gξ), ξ̃ ∈ F =

η(G/P ). Hence the claim is proven and we get

{g ∈ Kε : gξ ∈ Bδ} = {g ∈ Kε : there exists p ∈ Cε with gξ̃p ∈ B̃δ}
= {g ∈ Kε ∩ B̃δp

−1ξ̃−1 for some p ∈ Cε} ⊂ Kε ∩ B̃δC
−1
ε ξ̃−1

Thus
µG({g ∈ Kε : gξ ∈ Bδ}) ≤ µG(Kεξ̃ ∩ B̃δC

−1
ε ) ≤ µG(B̃δC

−1
ε )

where we have also used the fact that G is unimodular in the first inequality (cf. Proposition I.2.17).
Recall that we have for every integrable function f on G∫

G
f(g)q(g) dµG(g) =

∫
∂Hn

(∫
P
f(gξ) dµP (ξ)

)
dν(ġ)
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for some strictly positive continuous function q : G→ R+ and a positive measure ν on ∂Hn.
We may assume that µG(B̃δC

−1
ε ) 6= 0 (otherwise we are done). Then, since q is continuous and

strictly positive and the integral is on a relatively compact set, there exists a constant 0 < α <∞
such that

αµG(B̃δC
−1
ε ) =

∫
∂Hn

(∫
P
χB̃δC

−1
ε

(gξ) dµP (ξ)

)
dν(ġ)

By construction we have, that if g ∈ B̃δ, then gξ ∈ B̃δC
−1
ε if and only if ξ ∈ C−1

ε . Indeed if
ξ ∈ C−1

ε this is obvious. If gξ ∈ B̃δC
−1
ε then gξ = η(g1)s where g1 ∈ Bδ, s ∈ C−1

ε ⊂ P . Since
g ∈ B̃δ we have g = η(g0) for some g0 ∈ Bδ. Now

gξ = η(g0)ξ = η(g1)s =⇒ π(η(g0)ξ) = π(η(g1)s) =⇒ π(η(g0)) = π(η(g1))

=⇒ g0 = g1 =⇒ ξ = s ∈ C−1
ε

Thus ∫
P
χB̃δC

−1
ε

(ġξ) dµP (ξ) = µP (C
−1
ε )

and hence
αµG(B̃δC

−1
ε ) = ν(Bδ)µP (C

−1
ε )

Since ν(Bδ) < nδ, inequality (III.12) is proven with

σε(δ) :=
1

α
µP (C

−1
ε )nδ

Proof of Lemma III.3.10. Let us fix (ξ0, . . . , ξn) ∈ (∂Hn)n+1. Then we have

|J (ϕ,Kε, (ξ0, . . . , ξn))− J (fδ,Kε, (ξ0, . . . ξn)|
≤ |J (ϕ,Kε,0, (ξ0, . . . , ξn))− J (fδ,Kε,0, (ξ0, . . . , ξn))|
+ |J (ϕ,Kε,1, (ξ0, . . . , ξn))− J (fδ,Kε,1, (ξ0, . . . , ξn))|

where

Kε,0 :=
n⋂

j=0

{g ∈ Kε : gξj ∈ (∂Hn −Bδ)} and Kε,1 = Kε −Kε,0

However
J (ϕ,Kε,0, (ξ0, . . . , ξn)) = J (fδ,Kε,0, (ξ0, . . . , ξn))

since fδ(x) = ϕ(x) for all x ∈ ∂Hn − Bδ and gξj ∈ ∂Hn − Bδ for all g ∈ Kε,0 and j = 0, . . . , n by
definition. Further

µG(Kε,1) = µG

Kε ∩
n⋃

j=0

{g ∈ Kε : gξj ∈ Bδ}

 ≤ (n+ 1)σε(δ)

Now

|J (ϕ,Kε,1, (ξ0, . . . , ξn))− J (fδ,Kε,1, (ξ0, . . . , ξn))|
≤ |J (ϕ,Kε,1, (ξ0, . . . , ξn))|+ |J (fδ,Kε,1, (ξ0, . . . , ξn))|
≤ 2‖Voln‖µG(Kε,1) ≤ 2‖Voln‖(n+ 1)σε(δ) =:Mε(δ)

and inequality (III.10) is proven with the above definition of Mε(δ).
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Proof of Lemma III.3.11. Observe that by Lemma III.3.10 and the almost everywhere validity of
equation (III.9) ∣∣∣∣J (fδ,Kε, (ξ0, . . . , ξn))−

Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn)
∣∣∣∣

≤ |J (fδ,Kε, (ξ0, . . . , ξn))− J (ϕ,Kε, (ξ0, . . . , ξn))|
+ |J (ϕ,Kε, (ξ0, . . . , ξn))− J (ϕ,D, (ξ0, . . . , ξn))|

+

∣∣∣∣J (ϕ,D, (ξ0, . . . , ξn))−
Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn)
∣∣∣∣

≤Mε(δ) + ε‖Voln‖

for almost every (ξ0, . . . , ξn) ∈ (∂Hn)(n+1). We shall call the set of full measure where the above
estimate holds L for later reference.
We want to use the continuity of Voln on (∂Hn)(n+1) to prove the inequality (cf. Proposition

II.3.16). In order to estimate the error, that we make by only concerning these tuples, we need to
estimate for every (ξ0, . . . , ξn) ∈ (∂Hn)(n+1) the measure of the set

E(ξ0, . . . , ξn) := {g ∈ Kε : fδ(gξ0), . . . , fδ(gξn) are pairwise distinct}

By Proposition III.3.5 we know that the set {(ξ, ξ′) ∈ ∂Hn × ∂Hn : ϕ(ξ) = ϕ(ξ′)} has measure
zero. Because fδ coincides with ϕ on ∂Hn−Bδ = Bc

δ the set F := {(ξ, ξ′) ∈ Bc
δ×Bc

δ : fδ(ξ) = fδ(ξ
′)}

has measure zero. Therefore also the set {g ∈ G : g(ξ, ξ′) ∈ F} has µG-measure zero for arbitrary
(ξ, ξ′) ∈ ∂Hn × ∂Hn (cf. Proposition A.4.13). Additionally

Kε − E(ξ0, . . . , ξn) = {g ∈ Kε : ∃i 6= j s.t. fδ(gξi) = fδ(gξj)}
= {g ∈ Kε : ∃i 6= j s.t. fδ(gξi) = fδ(gξj) and (gξi, gξj) ∈ Bc

δ ×Bc
δ}

∪ {g ∈ Kε : ∃i 6= j s.t. fδ(gξi) = fδ(gξj) and (gξi ∈ Bδ or gξj ∈ Bδ)}

⊂
⋃
i 6=j

{g ∈ Kε : g(ξi, ξj) ∈ F} ∪
n⋃

j=0

{g ∈ Kε : gξj ∈ Bδ}

We thus get the estimate

µG(Kε − E(ξ0, . . . , ξn)) ≤
∑
i 6=j

µG({g ∈ Kε : g(ξi, ξj) ∈ F}) +
n∑

j=0

µG({g ∈ Kε : gξj ∈ Bδ})

=
n∑

j=0

µG({g ∈ Kε : gξj ∈ Bδ}) ≤ (n+ 1)σε(δ)

where we have also used Lemma III.3.12.
Now back to our above set L. Because L has full measure it is dense in (∂Hn)(n+1) (cf. Corollary

A.4.17 and Proposition A.3.3). Hence for an arbitrary (ξ0, . . . , ξn) ∈ (∂Hn)(n+1) there is a sequence
of points (ξ(k)0 , . . . , ξ

(k)
n ) ∈ L converging to it. Then for every g ∈ E(ξ0, . . . , ξn)

lim
k→∞

Voln(fδ(gξ
(k)
0 ), . . . , fδ(gξ

(k)
n )) = Voln(fδ(gξ0), . . . , fδ(gξn)).

If we apply the dominated convergenc theorem to the sequence hk(g) := Voln(fδ(gξ
(k)
0 ), . . . , fδ(gξ

(k)
n )),

we get
lim
k→∞

J (fδ, E(ξ0, . . . , ξn), (ξ
(k)
0 , . . . , ξ(k)n )) = J (fδ, E(ξ0, . . . , ξn), (ξ0, . . . , ξn))
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Now we are in a position to put everything together and get∣∣∣∣J (fδ,Kε, (ξ0, . . . , ξn))−
Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn)
∣∣∣∣

≤ |J (fδ,Kε, (ξ0, . . . , ξn))− J (fδ, E(ξ0, . . . , ξn), (ξ0, . . . , ξn))|

+
∣∣∣J (fδ, E(ξ0, . . . , ξn), (ξ0, . . . , ξn))− J (fδ, E(ξ0, . . . , ξn), (ξ

(k)
0 , . . . , ξ(k)n ))

∣∣∣
+
∣∣∣J (fδ, E(ξ0, . . . , ξn), (ξ

(k)
0 , . . . , ξ(k)n ))− J (fδ,Kε, (ξ

(k)
0 , . . . , ξ(k)n ))

∣∣∣
+

∣∣∣∣J (fδ,Kε, (ξ
(k)
0 , . . . , ξ(k)n ))− Vol(ρ)

Vol(M)
Voln(ξ(k)0 , . . . , ξ(k)n )

∣∣∣∣
+

∣∣∣∣ Vol(ρ)
Vol(M)

Voln(ξ(k)0 , . . . , ξ(k)n )− Vol(ρ)
Vol(M)

Voln(ξ0, . . . , ξn)
∣∣∣∣

for all (ξ0, . . . , ξn) ∈ (∂Hn)(n+1).
The first and third lines after the inequality sign are each ≤ (n+1)‖Voln‖σε(δ) as we have shown

above; the second line is less than δ if k is large enough; the fourth line is ≤Mε(δ)+ ε‖Voln‖ since
(ξ

(k)
0 , . . . , ξ

(k)
n ) ∈ L for all k ∈ N and finally the last line is also less than δ if k is large enough.

Hence the assertion is proven with

L(ε, δ) := 2δ + 2(n+ 1)‖Voln‖σε(δ) +Mε(δ) + ε‖Voln‖

III.3.3. Step 3: The Boundary Map is an Isometry
In the last step we can now piece together what we have proven before. By Corollary III.3.8 we
know that ϕ : ∂Hn → ∂Hn maps almost every regular ideal simplex to a regular ideal simplex with
the same orientation. By Proposition I.8.3 we know, that ϕ : ∂Hn → ∂Hn is hence essentially equal
to an isometry h ∈ Isom(Hn) on ∂Hn, i.e.

ϕ(ξ) = h(ξ)

for almost every ξ ∈ ∂Hn. Because ϕ is a.e.-ρ-equivariant the same holds for h and we get

h(i(γ) · ξ) = ρ(γ) · h(ξ) (III.13)

for almost every ξ ∈ ∂Hn and every γ ∈ Γ. Recall that isometries act via homeomorphisms on
the boundary ∂Hn such that in equation (III.13) all maps and actions are continuous. Because
equation (III.13) holds on a full measure subset and every full measure subset of ∂Hn is dense, we
get by a simple continuity argument that the equality holds for every ξ ∈ ∂Hn.
Since isometries are completely determined by their action on the boundary we get

h · i(γ) = ρ(γ) · h

for every γ ∈ Γ, which is nothing but

h · i(γ) · h−1 = ρ(γ)

Therefore we have found an isometry h that conjugates i and ρ and the proof of Theorem III.1.1
is finished.
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A.1. General Results
We assume that the reader is already familiar with the basic notions of measures and related
theorems and topics, e.g. Fubini’s Theorem, Dominated Convergenc Theorem, Fatou’s Lemma,
Lp-spaces etc. There are many good textbooks on these topics such as [Rud09], [AE01]. Therefore
we will just focus on less commonly treated results in standard lectures on measure theory and
analysis, and introduce some conventions.
We want to stress here again, that we follow [Bou89] in the definition of a locally compact space,

i.e. it is automatically Hausdorff.

Definition A.1.1. Let (X,A, µ) be a measure space. A subset N ⊂ X is called a null set or
(µ-)negligible, if there is a measurable set N ′ ∈ A such that N ⊂ N ′ and µ(N ′) = 0. A subset
A ⊂ X is called conull, if its complement is a null set.

Definition A.1.2. A measure space (X,A, µ) is called complete, if every subset of a µ-negligible
set is already contained in A.

The following theorem puts us in the comfortable position, that we may assume without loss of
generality that every measure space is complete.

Theorem A.1.3 (Completion of measures). Let (X,A, µ) be a measure space and let N the system
of all µ-negligible sets. Set

A∗ = {A ∪N : A ∈ A, N ∈ N}

and define µ∗ : A∗ → [0,∞] by
µ∗(A ∪N) := µ(A)

for every A ∈ A, N ∈ N.
Then:

(i) A∗ is a σ-algebra, µ∗ is well-defined and (X,A∗, µ∗) is a complete measure space. µ∗ is the
only extension of µ to a content on A∗.

(ii) Every extension ρ of µ is an extension of µ∗.

Proof. See [Els11, 6.3 Satz, p. 64].

Recall the notion of a measure space being σ-finite:

Definition A.1.4 (σ-finite). A measure space (X,A, µ) is called σ-finite, if there is a sequence
{En}n∈N of sets En ∈ A such that µ(En) <∞ and

⋃∞
n=1En = X.

Let us now prove a slight generalization of the dominated convergence theorem.

Theorem A.1.5 (General Lebesgue Dominated Convergence Theorem). Let (X,A, µ) be a σ-finite
complete measure space. Let (fn) be a sequence of measurable functions on X that converge a.e.
pointwise to some function f . Suppose there is a sequence (gn) of integrable functions on X

133



A. Measure Theory

that converge pointwise a.e. to an integrable function g such that |fn| ≤ gn for all n ∈ N. If
limn→∞

∫
X gn =

∫
X g, then

lim
n→∞

∫
X
|fn − f | = 0

In particular f is integrable and

lim
n→∞

∫
X
fn =

∫
X
f

This is [RF10, Theorem 19, p. 89]. Since the theorem is only stated in the real version and there
is no proof given in the book, we transfer it to the realm of more general measure spaces and give
a proof based on the well known Fatou Lemma.

Proof. Since |fn| ≤ |gn| pointwise a.e. for all n ∈ N, we have in the limit |f | ≤ g pointwise almost
everywhere. This implies

|fn − f | ≤ gn + g

pointwise a.e. for every n ∈ N. We can now apply Fatou’s Lemma to the non-negative function
gn + g − |fn − f | ≥ 0 and get

lim inf
n→∞

∫
gn + g − |fn − f | dµ ≥

∫
lim inf
n→∞

(gn + g − |fn − f |) dµ

The right-hand-side is equal to 2
∫
g dµ by hypothesis. The left-hand-side can be computed to

lim inf
n→∞

∫
gn + g − |fn − f |dµ = lim inf

n→∞

∫
gn dµ+

∫
g dµ− lim sup

n→∞

∫
|fn − f | dµ

= 2

∫
g dµ− lim sup

n→∞

∫
|fn − f | dµ

This in turn implies that

lim sup
n→∞

∫
|fn − f | dµ ≤ 0

such that
0 ≤ lim inf

n→∞

∫
|fn − f | dµ ≤ lim sup

n→∞

∫
|fn − f | dµ ≤ 0

Hence the limit exists and we have

lim
n→∞

|fn − f | dµ = 0

which concludes the proof.

Definition A.1.6 (Absolute continuity). Let (X,A) be a measurable space with measures µ and
ν on A. Then µ is said to be absolutely continuous with respect to ν if µ(A) = 0 for every set A ∈ A
such that ν(A) = 0. We will denote the relation of absolute continuity by ”�”, i.e.

µ� ν ⇐⇒ (∀A ∈ A : ν(A) = 0 =⇒ µ(A) = 0)

Definition A.1.7 (Equivalence). Let (X,A) be a measurable space with measures µ and ν on A.
µ and ν are said to be equivalent if µ � ν and ν � µ, i.e. if they are absolutely continuous with
respect to each other. Any equivalence class of measures is then called a measure class.
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A.2. Measures on Topological Spaces
Definition A.2.1 (Borel measurable). Let X be a topological space. The σ-algebra generated by
all open sets of X is called the Borel σ-algebra of X. We denote it by B(X) or sometimes only B
if there is no ambiguity. Elements of B are called (Borel) measurable.
Let X,Y be topological spaces and f : X → Y be a map. Then f is called (Borel) measurable if it

is a measurable map between the measurable spaces (X,B(X)), (Y,B(Y )), i.e. for every B ∈ B(Y )
is f−1(B) ∈ B(X).

Remark A.2.2. Note that our notion of a measurable function as simply being a Borel measurable
function is not always the most natural or effective one. Problems arise with Borel measurable
functions when the target space is too large. Thus [Bou04a] and [RS00] take a different and more
technical approach to circumvent these issues.
However in a geometric situation where all topological spaces are locally compact and second

countable both notions coincide (cf. [Bou04a, Proposition 1, No. 1 §5 IV.59] and Lusin’s Theorem
A.2.6 below).

In the following let X be a Hausdorff space and let O, C, K denote the systems of open resp.
closed resp. compact subsets of X. Further we set B = B(X) as before.

Definition A.2.3. Let A ⊃ B be a σ-algebra and µ : A → [0,∞] a measure.

(i) µ is called locally finite if for every x ∈ X there is an open neighborhood U about x such
that µ(U) <∞. A locally finite measure µ : B → [0,∞] is called a Borel measure.

(ii) µ is called inner regular, if

µ(A) = sup{µ(K) : K ⊂ A,K ∈ K}

for every A ∈ A.

(iii) µ is called a Radon measure, if it is an inner regular Borel measure.

(iv) µ is called outer regular, if

µ(A) = inf{µ(U) : U ⊃ A,U ∈ O}

for every A ∈ A.

(v) µ is called regular, if it is inner and outer regular.

Remark A.2.4. The above definitions are not consistently used in the literature! For example in
[Rud09] a Borel measure is simply a measure on B(X) without any further properties. However
we follow here [Els11, 1.1 Definition, p. 313].

Lemma A.2.5 (Regularity of Borel measures). Let X be a locally compact second countable
(Hausdorff) space. Then every Borel measure on B(X) is regular.

Proof. See [Els11, 1.12 Korollar, p. 319].

Theorem A.2.6 (Lusin’s Theorem). Let X,Y be Hausdorff spaces, let Y be further second count-
able, let µ : B(X) → [0,∞] be a σ-finite regular Borel measure and let f : X → Y be a map. Then
the following are equivalent:

(i) There is a (Borel) measurable function g : X → Y such that f = g µ-a.e.
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(ii) For every U ⊂ X open with µ(U) <∞ and for every δ > 0 there is K ⊂ U compact such that
µ(U −K) < δ and f restricted to K is continuous.

(iii) For every A ∈ B(X) with µ(A) < ∞ and every δ > 0 there is K ⊂ A compact such that
µ(A−K) < δ and f restricted to K is continuous.

(iv) For every T ⊂ X compact and every δ > 0 there is K ⊂ T compact such that µ(T −K) < δ
and f restricted to K is continuous.

Proof. See [Els11, 1.18 Satz, p. 323].

Definition A.2.7. Let X be a topological space. A linear form I : Cc(X) → R is called positive, if

f ≥ 0 =⇒ I(f) ≥ 0

for every f ∈ Cc(X). Here Cc(X) denotes the space of continuous real-valued functions on X with
compact support.

Theorem A.2.8 (Riesz representation theorem). LetX be a locally compact (Hausdorff) topological
space and I : Cc(X) → R a positive linear form. Then there is exactly one Radon measure
µ : B(X) → [0,∞], such that

I(f) =

∫
X
f dµ

for every f ∈ Cc(X). Further we have that

µ(K) = inf{I(f) : f ∈ Cc(X), f ≥ χK}, ∀K ∈ K

Proof. See [Els11, 2.5 Darstellungssatz von F. Riesz, p. 335].

Recall that Cc(X) is a locally convex topological vector space with its topology given by uniform
convergence on compact subsets.

Theorem A.2.9. Let X be a locally compact space. Then every positive linear form I : Cc(X) → R
is continuous.

Proof. Let I : Cc(X) → R be a positive linear form and let K ⊂ X be compact. Then there is
a continuous mapping f0 ∈ Cc(X, [0, 1]) such that f0(x) = 1 for every x ∈ K. Thus we have for
every continuous function g : X → R with support in K

−‖g‖ · f0 ≤ g ≤ ‖g‖ · f0

and hence |I(g)| ≤ ‖g‖ · I(f0) which proves the theorem.

This theorem in conjunction with the Riesz representation theorem A.2.8 allows us to identify
all Radon measures on a locally compact space with the subset M(X) ⊂ Cc(X)∗ of all continuous
positive linear forms on Cc(X). Indeed, every Radon measure µ on X induces a positive linear
form I : Cc(X) → R by integration I(f) =

∫
X f dµ (f ∈ Cc(X)). Note that not every measure

is so well behaved, that continuous functions with compact support are integrable. On the other
hand by the Riesz representation theorem every (continuous) positive linear form I : Cc(X) → R
amounts to a Radon measure.

Remark A.2.10. The above identification is implicitly used in [Bou04a] as they define a (positive)
real measure as a positive continuous linear form on Cc(X).
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Because we are only concerned with geometric situations in which all the occuring spaces are
locally compact we come to the following convention.

Convention A.2.11. From now on we will always mean by a measure on a locally compact
(Hausdorff) space X a Radon measure µ and identify it with an element of M(X) ⊂ Cc(X)∗. Thus
we will sometimes write µ(f) instead of

∫
X f dµ (f ∈ Cc(X), µ ∈ M(X)). Further we will always

complete the resulting measure space (cf. Theorem A.1.3).

Recall that Cc(X)∗ – as the dual of Cc(X) – can be equipped with the weak-* topology. Because
M(X) ⊂ Cc(X)∗ this induces a topology on the space of all measures on X. We call this topology
the weak-* topology or the vague topology on M(X). A sequence {µn}n∈N in M(X) converges to
µ ∈ M(X) if and only if ∫

X
f dµn = µn(f) → µ(f) =

∫
X
f dµ (n→ ∞)

for every f ∈ Cc(X).
This topology has a very neat property. For that recall the following result from linear functional

analysis.

Theorem A.2.12 (Banach-Alaoglu). Let E be a normed linear space. Then the unit ball in E∗

with respect to the norm topology on E∗ is compact with respect to the weak-* topology.

Proof. See [Zim90, Theorem 1.1.28, p. 22].

If X is a compact metric space then Cc(X) = C(X) and C(X) is a normed space. Hence the unit
ball in Cc(X)∗ = C(X)∗ is compact with respect to the weak-* topology. Let M1(X) ⊂ M(X)
denote the set of all probability (Radon) measures on X. We will now see that this space is in fact
compact with respect to the weak-* topology on M(X).

Corollary A.2.13. Let X be a compact metric space. Then the space of all probability measures
M1(X) is compact with respect to the weak-* topology on M(X) ⊂ C(X)∗.

Proof. It will be sufficient to show, that M1(X) is weak-* closed in the normed unit ball C(X)∗1
of C(X)∗. However we have that

|µ(f)| =
∣∣∣∣∫

X
f dµ

∣∣∣∣ ≤ ∫
X
|f | dµ ≤ µ(X) · ‖f‖ = ‖f‖

for every f ∈ C(X) and every µ ∈ M1(X), i.e. M1(X) ⊂ C(X)∗1.
Further

µ ∈ M1(X) ⇐⇒ (∀f ∈ C(X) : f ≥ 0 =⇒ µ(f) ≥ 0) and µ(1) = 1

Thus
M1(X) = {λ ∈ C(X)∗ : λ(1) = 1} ∩

⋂
f∈C(X),f≥0

{λ ∈ C(X)∗ : λ(f) ≥ 0}

which is clearly closed in the weak-* topology.

Definition A.2.14 (Dirac measure). Let X be a locally compact space and x ∈ X. The measure
induced by the positive linear form δx : Cc(X) → R, f 7→ f(x) is called the Dirac measure at x.

Definition A.2.15 (Atom). Let X be a locally compact space. A measure µ ∈ M(X) is said to
have an atom at x ∈ X with weight λ > 0, if there is a measure ν ∈ M(X) such that ν({x}) = 0
and µ = λ · δx + ν (cf. [Bou04a, No. 10 §6 V]).

Definition A.2.16 (Support). If µ is a measure on a locally compact space X, one defines the
support of µ, denoted by supp (µ), to be the closed set complementary to the largest of the open
sets in X on which the restriction of µ is zero.
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A.3. The Canonical Measure Class on an Oriented Smooth Manifold

Let M be an oriented smooth manifold with or without boundary and let ω ∈ Ωn(M) be an
orientation form forM (cf. [Lee13, p. 381]). We can now define a positive linear form µ : Cc(M) → R
by

µω(f) =

∫
M
f · ω.

for every f ∈ Cc(M). Obviously µ is linear and, since ω induces the orientation of M , µ is also
positive. Hence µ defines a measure on M . Note that this construction turns M into a σ-finite
measure space equipped with a regular Borel measure (cf. Lemma A.2.5).

Example A.3.1. In case of an oriented Riemannian manifold M one may take for ω the volume
form. In this way we get the hyperbolic volume measure ν on Hn for instance.

If ω̃ is another orientation form on M , then ω = α · ω̃ for some strictly positive smooth function
α : M → R. This shows, that the measure class of µω does not depend on the orientation form ω
and we can speak of null sets in M without any specification of ω. Whenever we have an oriented
smooth manifold with or withour boundary we will think of it as equipped with this canonical
measure class.
The following lemma gives a neat characterization of the null sets of this canonical measure class.

Lemma A.3.2. Let N ⊂M be measurable. Then N is a null set if and only if for every coordinate
chart (U,ϕ) of M its image ϕ(N ∩U) ⊂ Rn is a Lebesgue null set. Further N ⊂M is a null set, if
ϕi(Ui ∩N) ⊂ Rn is a Lebesgue null set for every i ∈ I, where {(Ui, ϕi)}i∈I is a covering of M by
coordinate charts.

Proof. Without loss of generality we may assume, that every coordinate chart is orientation pre-
serving. Indeed, if a chart is not orientation preserving we may compose it with a reflection and
consider the resulting chart. This is admissible, since Lebesgue null sets in Rn remain null sets
after applying a reflection. We shall choose an orientation form ω of M for the rest of the proof.
Let ϕ : U → V ⊂ Rn be an oriented coordinate chart of M . The measure µω restricted to U is

given by µω|U . The image measure ϕ∗(µω|U ) is given by∫
Rn

f dϕ∗(µω|U ) =

∫
U
f ◦ ϕ · ω

=

∫
V
(ϕ−1)∗(f ◦ ϕ · ω|U)

=

∫
Rn

f · (ϕ−1)∗(ω|U)

for every f ∈ Cc(V ). Then (ϕ−1)∗ω|U = α · dx1 ∧ . . . ∧ dxn for some smooth strictly positive
function α : V → R. Hence ∫

Rn

f dϕ∗(µω|U ) =

∫
Rn

f · αdx1 . . . dxn

for every f ∈ Cc(V ), which shows that ϕ∗(µω|U ) is equivalent to the Lebesgue measure on V ⊂ Rn.
Thus if µω(N) = 0 then also 0 = µω|U (N) = µω|U (N ∩ U) = ϕ∗(µω|U )(ϕ(U ∩ N)), such that

ϕ(U ∩N) is a Lebesgue null set by the equivalence of ϕ∗(µω|U ) and the Lebesgue measure.
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Conversely let ϕ(U ∩N) be a Lebesgue null set for every coordinate chart ϕ : U → Rn and choose
a countable covering {Ui}i∈N of M by oriented coordinate charts ϕi : Ui → Vi ⊂ Rn. Then we
compute

0 ≤ µω(N) ≤
∑
i∈N

µω|Ui
(Ui ∩N) =

∑
i∈N

(ϕi)∗(µω|Ui)(ϕi(Ui ∩N)) = 0

such that N is a null set for µω. The last assertion now follows from what we have shown so
far, since one may always choose a countable subcover from any covering {Ui}i∈I by Lindelöf’s
Theorem.

The above lemma shows, that our notion of null sets on a smooth manifold (with or without
boundary) coincides with the notion of ”sets of measure zero” in [Lee13, pp. 125].

Proposition A.3.3. Let M be a smooth manifold with or without boundary and A ⊂M a null set
in M . Then M −A is dense in M .

Proof. This is [Lee13, Proposition 6.8, p. 128].

Theorem A.3.4. Let M and N be smooth manifolds with or without boundary, F : M → N a
smooth map, and A ⊂M a null set. Then F (A) ⊂ N is a null set.

Proof. This is [Lee13, Theorem 6.9, p. 128].

The following corollary is immediate.

Corollary A.3.5. Let F : M → M be a diffeomorphism and let A ⊂ M be a null set. Then also
F−1(A) and F (A) are null sets.
Thus the canonical measure class of a smooth manifold (with or without boundary) is invariant

under diffeomorphisms.

Corollary A.3.5 will become important, when we consider quasi-invariant measures on homoge-
neous spaces in the next section.

Proposition A.3.6. Let M and N be smooth manifolds with or without boundary and F :M → N
a smooth submersion. Then:

(i) If A ⊂ N is a null set then, F−1(A) is a null set.

(ii) If A ⊂ N is conull, then F−1(A) is conull.

Proof. First of all (i) implies (ii), since

M − F−1(A) = F−1(N)− F−1(A) = F−1(N −A)

Let us turn to (i). Let m = dimM ≥ dimN = n. By the rank theorem (cf. [Lee13, Theorem 4.12
(Rank Theorem), p. 81]), for each point p ∈M , there exist smooth coordinate charts (U,ϕ) for M
centered at p and (V, ψ) for N centered at F (p) such that F (U) ⊂ V , in which F has a coordinate
representation of the form

F̂ (x1, . . . , xn, xn+1, . . . , xm) = (x1, . . . , xn)

Since A ⊂ N is a null set, ψ(A ∩ V ) ⊂ Rn is a Lebesgue null set. Because ϕ(F−1(A) ∩ U) =
ϕ(F−1(A∩ V )) = F̂−1(ψ(A∩ V )) and F̂ is just the projection on the first m coordinates it follows
(by Fubini’s Theorem), that also ϕ(F−1(A) ∩ U) is a Lebesgue null set in Rm.
Because M may be covered by such charts F−1(A) is a null set.
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Finally the next statement is a consequence of Sard’s Theorem (cf. [Lee13, Theorem 6.10, p.
129]).

Proposition A.3.7. Let M be a smooth manifold with or without boundary and S ⊂ M an
immersed submanifold with or without boundary. If dimS < dimM , then S is a null set in M .

Proof. See [Lee13, Corollary 6.12, p. 131].

Remark A.3.8. What we have developed for oriented smooth manifolds may be generalized to
arbitrary smooth manifolds by considering densities instead of differential forms (cf. [Lee13, p.
427]).

A.4. Invariant Measures
Our main reference for this section is [Bou04b, Chapter VII]. Recall that [Bou04b] uses a slightly
different definition of measurable functions as we have already mentioned in Remark A.2.2. However
both notions coincide in all of our geometric applications.

A.4.1. Basic Definitions
Let G be a topological group operating continuously on the left in a locally compact space X; we
write for the action of s ∈ G on x ∈ X simply sx. We denote by γX(s), or γ(s) the homeomorphism
of X onto X defined by

γ(s)x = sx

We have
γ(st) = γ(s)γ(t) ∀s, t ∈ G

If f is a function defined on X, γ(s)f will be defined by the left regular representation

(γ(s)f)(x) = f(s−1x)

If µ ∈ M(X) is a measure, we define γ(s)µ or sometimes s∗µ by

(s∗µ)f = (γ(s)µ)f = µ(γ(s−1)f)

i.e. ∫
X
f d(γ(s)µ)(x) =

∫
X
f(sx) dµ(x)

for every s ∈ G, f ∈ Cc(X).
If A is a measurable set, then s−1A is measurable and

(γ(s)µ)(A) = µ(s−1A)

The measure γ(s)µ may also be defined as the image or pushforward of µ under γ(s).
Instead of writing d(γ(s)µ)(x), it is sometimes useful to write dµ(s−1x), which then yields∫

X
f(x) dµ(s−1x) =

∫
X
f(sx) dµ(x)

for every s ∈ G, f ∈ Cc(X).

Definition A.4.1 (invariance). Let µ be a measure on X.

(i) µ is said to be invariant under G if γ(s)µ = µ for every s ∈ G.
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(ii) µ is said to be relatively invariant under G if γ(s)µ is propotional to µ for every s ∈ G

(iii) µ is said to be quasi-invariant under G if γ(s)µ is equivalent to µ for every s ∈ G.

Remark A.4.2. If µ is quasi-invariant and µ′ is another measure on X equivalent to µ, then
γ(s)µ′ is equivalent to γ(s)µ, hence to µ, hence to µ′, and so µ′ is quasi-invariant. To say that µ
is quasi-invariant under G therefore means that the measure class of µ is invariant under G.
If µ is quasi-invariant, then the support of µ is invariant under G.

The above can be analogously transferred to the case of a right action of G on X. Thus let G be
a topological group operating continuously on the right in a locally compact space X; we write for
the action of s ∈ G on x ∈ X simply xs. We denote by δX(s), or δ(s), the homeomorphism of X
defined by

δ(s)x = xs−1

We have
δ(st) = δ(s)δ(t) ∀s, t ∈ G

As before we define for every s ∈ G, x ∈ X, f ∈ Cc(X) and measurable set A ⊂ X.

(δ(s)f)(x) = f(xs)

(δ(s)µ)(f) = µ(δ(s−1)f)∫
X
f(x) d(δ(s)µ)(x) =

∫
X
f(xs−1) dµ(x)

(δ(s)µ)(A) = µ(As)

We agree to write dµ(xs) in place of d(δ(s)µ)(x) which then yields∫
X
f(x) dµ(xs) =

∫
X
f(xs−1) dµ(x)

A.4.2. Haar Measure and Modulus
Let G be a locally compact group. It operates on itself by left an right translation, according to
the formulas γ(s)x = sx, δ(s)x = xs−1 for all x, s ∈ G. Then

γ(s)δ(t) = δ(t)γ(s) ∀s, t ∈ G

All of the foregoing is applicable here, thus we have on G the concepts of measures that are
left-invariant, right-invariant, relatively left-invariant, relatively right-invariant, left quasi-invariant,
right quasi-invariant.

Definition A.4.3 (Haar measure). LetG be a locally compact group. A nonzero (positive) measure
on G that is left (resp. right) invariant is called a left (resp. right) Haar measure on G.

Theorem A.4.4. On every locally compact group, there exists a left (resp. right) Haar measure,
and, up to a constant factor, there exists only one.

Proof. See [Bou04b, Theorem 1, VII.6 §1].

Let µ be a left Haar measure on G For every s ∈ G, δ(s)µ is also left invariant, therefore there
exists a unique number ∆G(s) > 0 such that δ(s)µ = ∆G(s)µ. This number is independent of the
choice of µ by Theorem A.4.4.
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Definition A.4.5 (Modular function ∆G). The function ∆G on G is called the modulus or modular
function of G. If ∆G ≡ 1, the group G is said to be unimodular.

Corollary A.4.6. The modular function ∆G : G→ R∗
+ is a continuous representation.

Proof. See [Bou04b, No. 3 §1 VII.10].

Proposition A.4.7. Let G be unimodular locally compact group. Then:

(i) If f is µ-integrable on G, then the functions x 7→ f(sx), x 7→ f(xs) and x 7→ f(x−1) are all
µ-integrable and their integrals coincide:∫

f(sx) dµ(x) =

∫
f(xs) dµ(x) =

∫
f(x−1) dµ(x) =

∫
f(x) dµ(x)

(ii) If A is a measurable subset of G, then sA, As and A−1 are measurable and they have the
same measure:

µ(sA) = µ(As) = µ(A−1) = µ(A)

Proof. See [Bou04b, 4), VII.12 §1].

Proposition A.4.8. If G is discrete, compact or abelian then G is unimodular.

Proof. See [Bou04b, Corollary, VII.12 §1].

In case of a discrete group G a Haar measure is clearly given, by the measure, which assigns each
point of G the mass 1. This particular Haar measure is then called the normalized Haar measure
on G. Similarly if G is compact every Haar measure is finite and there is only one Haar measure µ
on G such that µ(G) = 1. Again this particular Haar measure is then called the normalized Haar
measure on G. One immediately notices, that both definitions do not coincide in case of a compact
discrete (i.e. finite) group G. Thus we will always explicitly specify what is meant by normalized
Haar measure in this situation.

A.4.3. Invariant Measures on Quotients X/H

Now we turn to measures on quotients by group actions. We follow here [Bou04b, VII §2]. Let X
be a locally compact space in which a locally compact group H operates on the right continuously
and properly. Then X/H is Hausdorff and we denote by π : X → X/H the canonical quotient
map. Let us further fix a left Haar measure β on H.
Let f be a continuous numerical function on X whose support has compact intersection with the

saturation of every compact subset of X. The formula

f [(π(x)) =

∫
H
f(xξ) dβ(ξ)

defines a continuous function f [ on X/H. If f ∈ Cc(X), then f [ ∈ Cc(X/H). The mapping f 7→ f [

of Cc(X) into Cc(X/H) is linear and the image of Cc(X) is Cc(X/H).

Proposition A.4.9 (Quotient measures). (i) Let λ be a measure on X/H. There exists one
and only one measure λ] on X such that∫

X/H
f [ dλ =

∫
X
f dλ] (A.1)

for all f ∈ Cc(X). One has δ(ξ)λ] = ∆H(ξ)λ] for all ξ ∈ H.
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(ii) Conversely, let µ be a measure on X such that δ(ξ)µ = ∆H(ξ)µ for all ξ ∈ H. Then there
exists one and only one measure λ on X/H such that µ = λ].

Proof. See [Bou04b, Proposition 4, VII.31 §2].

Definition A.4.10. With hypotheses and notations as in Proposition A.4.9, λ is called the quotient
of µ by β and is denoted µ

β or µ/β. Further whenever λ is a measure on X/H we will denote by λ]

the unique measure from Proposition A.4.9. We will call λ] the lifted measure corresponding to λ.

The formula (A.1) may, by analogy with the usual notation for double integrals, be written as∫
X
f(x) dλ](x) =

∫
X/H

∫
H
f(xξ) dβ(ξ) dλ(ẋ), (ẋ = π(x)) (A.2)

This involves an abuse of notation, the integral
∫
H f(xξ) dβ(ξ) being regarded as a function of ẋ

and not of x; this manner of writing will be used frequently provided no confusion can arise.

Lemma A.4.11. Assume that µ is a measure on X, such that δ(ξ)µ = ∆H(ξ)µ for every ξ ∈ H.
Then the quotient measures (α · µ)/β and µ/(α · β) exist and the following formulas hold:

(α · µ)
β

= α · µ
β

and µ

α · β
= α−1 · µ

β

Proof. In order to show, that the quotient measures above exist, we need to check that δ(ξ)(α ·µ) =
∆H(ξ)(α · µ). Note that we already know that δ(ξ)µ = ∆H(ξ)µ for every ξ ∈ H, such that the
quotient measure µ/(α · β) exists. Now we compute

δ(ξ)(α · µ) = α · δ(ξ)µ = α∆H(ξ)µ = ∆H(ξ)(α · µ)

for every ξ ∈ H.
Let f ∈ Cc(X). We compute∫

X
f(x) d(α · µ)(x) =

∫
X/H

∫
H
f(xξ) dβ(ξ) d(α · µ/β)(ẋ)

But also ∫
X
f(x) d(α · µ)(x) = α ·

∫
X
f(x) dµ(x)

= α ·
∫
X/H

∫
H
f(xξ) dβ(ξ) d(µ/β)(ẋ)

=

∫
X/H

∫
H
f(xξ) dβ(ξ) d(α · µ/β)(ẋ)

By the uniqueness of quotient measures we get as asserted (α · µ)/β = α · (µ/β).
Analogously ∫

X
f(x) dµ(x) =

∫
X/H

∫
H
f(xξ) d(α · β)(ξ) d(µ/(α · β))(ẋ)

and ∫
X
f(x) dµ(x) =

∫
X/H

∫
H
f(xξ) dβ(ξ) d(µ/β)(ẋ)

=

∫
X/H

∫
H
f(xξ) d(α · β)(ξ) d(α−1 · (µ/β))(ẋ)

Again by uniqueness, we get µ/(α · β) = α−1 · (µ/β) as asserted.
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The following proposition gives formula (A.1) for the general case of integrable functions.

Proposition A.4.12. Let λ be a (positive) measure on X/H and let f be a λ]-integrable function
on X, with values in a Banach space or in R. Then the set of ẋ ∈ X/H such that ξ 7→ f(xξ) is
not β-integrable is λ-negligible; the function f [ on X/H defined almost everywhere by the formula

f [(ẋ) =

∫
H
f(xξ) dβ(ξ), (ẋ = π(x)) (A.3)

is λ-integrable, and ∫
X/H

f [ dλ =

∫
X
f dλ] (A.4)

and ∫
X/H

|f [| dλ ≤
∫
X
|f | dλ] (A.5)

Proof. This is c) in [Bou04b, Proposition 5, VII.33 §2].

As for formula (A.1) we will write formula (A.4) as∫
X
f(x) dλ](x) =

∫
X/H

∫
H
f(xξ) dβ(ξ) dλ(ẋ), (ẋ = π(x)) (A.6)

by abuse of notation.
The next proposition gives useful criteria for negligible sets and measurable resp. integrable

functions on the quotient X/H.

Proposition A.4.13. Let λ be a positive measure on X/H. Then:

(i) Let N be a subset of X/H. For N to be locally λ-negligible, it is necessary and sufficient that
π−1(N) is locally λ]-negligible.

(ii) Let g be a function on X/H, with values in a Banach space or in R. For g to be measurable,
it is necessary and sufficient that g ◦ π be measurable.

(iii) Let h be a function on X/H, with values in a Banach space or in R. For h to be λ-integrable,
it is necessary and sufficient that g ◦ π be λ]-integrable.

Proof. This is c) in [Bou04b, Proposition 6, VII.34 §2].

Recall the following definition of locally negligible sets (cf. [Bou04a, Definition 3, IV.61 §5]).

Definition A.4.14 (locally negligible). Let X be a locally compact space with a measure µ. A
set A ⊂ X is said to be locally negligible (or locally µ-negligible) if for every x ∈ X there exists a
neighborhood V of x such that V ∩A is negligible.

Note that in the applications we consider X is always second countable, such that every locally
negligible set is automatically negligible and vice versa.
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A.4. Invariant Measures

A.4.4. Quasi-invariant Measures on Homogeneous Spaces G/H

We will further need some results on homogeneous spaces; we follow [Bou04b, No. 5 §2 VII]. There-
fore let G be a locally compact group and H a closed subgroup of G. Consider the homogeneous
space G/H of left cosets with respect to H, on which G acts coninuously on the left. We are going
to show, that there is one and only one class of nonzero quasi-invariant measures on G/H.
Note that H operates on G continuously and properly by right translation; and the quotient

space G/H is paracompact.

Theorem A.4.15. Let G be a locally compact group, H a closed subgroup of G.
Then any two nonzero quasi-invariant measures on G/H are equivalent; the subsets of G/H

locally negligible for these measures are those whose inverse image in G is locally negligible for a
Haar measure.

Proof. This is a) of [Bou04b, Theorem 1, VII.40 §2].

Theorem A.4.16. Let G be a locally compact group, H a closed subgroup of G, µ a left Haar
measure on G, and β a left Haar measure on H. Then:

(i) There exist functions q continuous and > 0 on G, such that

q(xξ) =
∆H(ξ)

∆G(ξ)
q(x)

for all x ∈ G and ξ ∈ H.

(ii) Given such a function q, one can form the measure λ = (q · µ)/β on G/H (cf. Definition
A.4.10), and λ is a nonzero measure quasi-invariant under G.

(iii) Let f be a q · µ-integrable function on G, with values in a Banach space or in R. Then,
the set of ẋ ∈ G/H such that ξ 7→ f(xξ) is not β-integrable is λ-negligible; the function
ẋ 7→

∫
H f(xξ) dβ(ξ) is λ-integrable and∫

G
f(x)q(x) dµ(x) =

∫
G/H

∫
H
f(xξ) dβ(ξ) dλ(ẋ)

Proof. (i) resp. (ii) are a) resp. b) of [Bou04b, Theorem 2, VII.41 §2]. (iii) is c) of [Bou04b, VII.42
§2].

Corollary A.4.17. Let G be a Lie group and H a closed subgroup of G. Then the quotient G/H
is a smooth manifold such that G acts smoothly from the left on it. The canonical measure class on
G/H as a smooth manifold is the unique quasi-invariant measure class on G/H given by Theorem
A.4.16.

Proof. By Corollary A.3.5 the canonical measure class on G/H is preserved by diffeomorphisms.
Because G acts via diffeomorphisms on G/H also the canonical measure class is quasi-invariant
under G. By Theorem A.4.15 any two quasi-invariant measures on G/H are equivalent such that
the canonical measure class on G/H coincides with the measure class given by Theorem A.4.16.

Remark A.4.18. It is worth noting, that what we have stated so far in subsections A.4.3 and
A.4.4 is equally true (mutatis mutandis) for left actions instead of right actions.
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A. Measure Theory

A.4.5. Integration on a Fundamental Set
In case of a discrete group action we can realize the integration on the coset space by integration
on a measurable fundamental set. We follow here [Bou04b, No. 10 §2 VII], but consider left actions
instead of right actions as we will only be interested in this case. Let X be a locally compact
space and H a discrete group operating on the left continuously and properly in X. Let π be the
canonical mapping of X onto the right coset space H\X. For every x ∈ X, we denote by Hx the
stabilizer of x in H; this is a finite subgroup of H; its order will be denoted by n(x). For every
s ∈ H, Hsx = sHxs

−1, therefore n(sx) = n(x). There exists an open neighborhood U of x such
that U ∩ sU = ∅ for s /∈ Hx; for y ∈ U , one has Hy ⊂ Hx; thus the function n on X is upper
semi-continuous. When X is second countable, H is countable; for, let K1,K2, . . . be a covering of
X by a sequence of compact subsets, and let x0 ∈ X; the set of s ∈ H such that sx0 ∈ Ki is finite,
whence our assertion.

Definition A.4.19 (fundamental set). Let F ⊂ X. One says that F is a fundamental set (for
H) if the restriction of π to F is a bijection of F onto H\X. In other words, F is a system of
representatives for the equivalence relation defined by H.

Theorem A.4.20. Let X be a locally compact space that is σ-compact, H a discrete group operating
continuously and properly on the left in X, π the canonical mapping of X onto H\X, µ a measure
on X invariant under H, β the normalized Haar measure of H, and λ = µ/β. Further let F be a
measurable fundamental set and let k be a function on H\X. Then:
For k to be measurable (resp. λ-integrable), it is necessary and sufficient that n−1 ·χF · (k ◦ π) be

measurable (resp. µ-integrable); and, if k is λ-integrable then∫
H\X

k dλ =

∫
F
n−1 · (k ◦ π) dµ

Proof. This is c) in [Bou04b, Theorem 4, VII.52 §3].

Recall that a locally compact space X is said to be σ-compact or countable at infinity if it is a
countable union of compact subsets; in particular every second countable locally compact space is
countable at infinity.

Proposition A.4.21. Let G be a locally compact second countabel group with a discrete subgroup
Γ. Then there exists a measurable fundamental set for the left action of Γ on G.

We give the proof of [Tor]:

Proof. The canonical projection π : G → Γ\G is a local homeomorphism. Combined with second-
countability, this implies the existence of an open cover {Un}n∈N of G such that π : Un → π(Un) is
a homeomorphism for every n ∈ N. We set F1 = U1 and define

Fn = Un − Un ∩ π−1

(
π

(⋃
k<n

Uk

))

Then F :=
⋃

n∈N Fn is a measurable fundamental set for the left action of Γ on G.
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B. G-modules and Banach G-modules

We want to give a brief exposition of the basic notions of G-modules and Banach G-modules here.
These are the central objects of continuous cohomology and continuous bounded cohomology as
discussed in chapter II.
Let H,G be topological groups. Every vector space will be over the field of real numbers R.

B.1. G-modules
We follow essentially [Gui80].

B.1.1. Basics
Definition B.1.1. A locally convex topological vector space (LCTVS) is a real vector space E such
that its topology is given by a family {‖.‖α}α∈A of seminorms, i.e. a subbasis for the topology is
given by all ‖.‖α-balls Bα,r(x) = {y ∈ E : ‖x− y‖α < r} with x ∈ E, r > 0, α ∈ A.
A continuous linear map α : E → F of two LCTVS is called a morphism of LCTVS or simply a

morphism.

Remark B.1.2. Indeed, locally convex topological vector spaces form a category with continuous
linear maps between them, such that the above terminology is justified. However we will not use
the language of category theory too much in the following.

Definition B.1.3. A G-module is a pair (π,E), where E is a LCTVS and π : G → Aut(E) is
a group homomorphism into the group of continuous linear automorphisms of E, such that the
structure map

G× E → E

(g, v) 7→ π(g)v

is (jointly) continuous. If π is understood, we shall frequently omit it and refer to (π,E) just by
E. We then simply write g · v or gv instead of π(g)v for all g ∈ G, v ∈ E.
Let E and F be G-modules and α : E → F a morphism. We call α a G-morphism, if it is

G-equivariant, i.e.
α(g · v) = g · α(v)

for all g ∈ G and v ∈ E.

Example B.1.4. The most basic but yet important example is R as a trivial G-module (via the
trivial representation).

Definition B.1.5. Let E be a G-module. The subspace of invariants is the subspace

EG := {v ∈ E : g · v = v}

Lemma B.1.6. Let α : E → F be a G-morphism of G-modules. Then α restricts to a morphism
between the subspaces of invariants α : EG → FG

Proof. This follows immediately from the definitions.
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B.1.2. Pullback Structure

Let (π,E) be a Banach G-module and ρ : H → G a continuous group homomorphism. We can
think of E as a Banach H-module via the representation π ◦ ρ : H → G→ Aut(E). This structure
is called the pullback structure on E and we denote the resulting H-module by ρ∗E.
If H is a subgroup of G this allows us to think of any Banach G-module E via the pullback

structure induced by the inclusion i : H ↪→ G. In this case, however, we will also write E instead
of i∗E for simplicity and just speak of E as a Banach H-module.

Lemma B.1.7. Let (π1, E) and (π2, F ) be two G-modules and α : E → F a G-morphism. Then
α : ρ∗E → ρ∗F is an H-morphism, i.e. compatible with the pullback structure.

Proof. This is a simple calculation. We have

α(π1(ρ(h))v) = π2(ρ(h))α(v)

for all v ∈ E and h ∈ H, since α is a G-morphism and ρ(h) ∈ G.

B.2. Banach G-modules
We follow essentially [Mon01].

B.2.1. Basics

Definition B.2.1. A real vector space E with a norm ‖.‖ is called a Banach space, if it is complete
with respect to ‖.‖.
A continuous linear map α : E → F of Banach spaces is called a morphism of Banach spaces

or simply a morphism. The space L(E,F ) of all continuous linear maps becomes itself a Banach
space with the operator norm

‖α‖ = sup
v∈E,v 6=0

‖α(v)‖
‖v‖

, α ∈ L(E,F )

A morphism is called isometric, if it preserves the norm.

Remark B.2.2. Indeed, Banach spaces form a category with continuous linear maps between them,
such that the above terminology is justified. However we will not use the language of category theory
too much in the following.

Definition B.2.3. A Banach G-module is a pair (π,E), where E is a Banach space and π : G →
Iso(E) is a group homomorphism into the group of isometric linear automorphisms of E. If π is
understood, we shall frequently omit it and refer to (π,E) just by E. We then simply write g · v or
gv instead of π(g)v for all g ∈ G, v ∈ E.
Let E and F be Banach G-modules and α : E → F a morphism (of Banach spaces, i.e. a

continuous linear map). We call α a G-morphism, if it is G-equivariant, i.e.

α(g · v) = g · α(v)

for all g ∈ G and v ∈ E.

Remark B.2.4. We stress, that there is apriori no continuity assumption on the homomorphism
π : G→ Iso(E)!
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B.2. Banach G-modules

Example B.2.5. The most basic but yet important example is R as a trivial Banach G-module
(via the trivial representation).

Definition B.2.6. Let E be a Banach G-module. The subspace of invariants is the subspace

EG := {v ∈ E : g · v = v}

Lemma B.2.7. Let α : E → F be a G-morphism of Banach G-modules. Then α restricts to a
morphism between the subspaces of invariants α : EG → FG

Proof. This follows immediately from the definitions.

Definition B.2.8. The Banach G-module (π,E) is continuous if the structure map

G× E → E

(g, v) 7→ π(g)v

is continuous, where G × E is endowed with the product topology (whence the occasional use of
the expression jointly continuous).

Remark B.2.9. It is clear from the definition, that a continuous Banach G-module is also a
G-module.

The following lemma shows that due to the isometric action of G on E it actually suffices to
consider the orbit maps in order to check for continuity.

Lemma B.2.10. A Banach G-module (π,E) is continuous if and only if its orbit maps

G→ E

g 7→ π(g)v

are continuous at e ∈ G (the neutral element of G) for every v ∈ E.

Proof. See [Mon01, Lemma 1.1.1, p. 10].

Definition B.2.11. Let (π,E) be a Banach G-module. We define its maximal continuous submod-
ule

CπE := {v ∈ E : G→ E, g 7→ gv is continuous}

If the representation π is understood, we shall drop the subscript and simply denote it by CE.

The terminology is justified by the following lemma.

Lemma B.2.12. The Banach G-module E induces on the set CE the structure of a continuous
Banach G-module. Moreover, CE contains all continuous Banach G-submodules of E.

Proof. See [Mon01, Lemma 1.2.3, p. 15].

Lemma B.2.13. Any G-morphism α : E → F of Banach G-modules restricts to CE → CF .

Proof. See [Mon01, Lemma 1.2.4, p. 15].

Lemma B.2.14. Let E be a Banach G-module. Then

EG ⊆ CE.

In particular EG = CEG.

Proof. For every v ∈ EG we have that the orbit map g 7→ gv is constant and therefore continuous,
i.e. v ∈ CE.
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B.2.2. Pullback Structure
Let (π,E) be a Banach G-module and ρ : H → G a continuous group homomorphism. We can
think of E as a Banach H-module via the representation π ◦ ρ : H → G→ Aut(E). This structure
is called the pullback structure on E and we denote the resulting H-module by ρ∗E.
If H is a subgroup of G this allows us to think of any Banach G-module E via the pullback

structure induced by the inclusion i : H ↪→ G. In this case, however, we will also write E instead
of i∗E for simplicity and just speak of E as a Banach H-module.

Lemma B.2.15. Let (π1, E) and (π2, F ) be two Banach G-modules and α : E → F a G-morphism.
Then α : ρ∗E → ρ∗F is an H-morphism, i.e. compatible with the pullback structure.

Proof. The proof for oridnary G-modules works verbatim.

Lemma B.2.16. For any Banach G-module (π,E) we have

CπE ⊂ CπρE

Proof. By definition
CπE = {v ∈ E : g 7→ π(g)v is continuous}

and
CπρE = {v ∈ E : h 7→ π(ρ(h))v is continuous}

If G → E, g 7→ π(g)v is continuous, then so is H → E, h 7→ π(ρ(h))v and the asserted inclusion
follows.
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C. Amenability

We want to give a brief introduction to amenable groups and amenable actions here. They play
an important role in the study of continuous bounded cohomology; in particular in the context of
L∞-resolutions.
We follow in essence [Mon01, II.5]. In the following G is a locally compact second countable

topological group.

C.1. Amenable Groups
Definition C.1.1 (Amenable Group). G is called amenable if one of the following equivalent
conditions is satisfied (cf. [Mon01, II.5, p. 46]):

(i) (fixed point property) For every (jointly) continuous linear G-action on a Hausdorff locally
convex topological vector space F and every non-empty compact convex G-invariant subset
K ⊂ F , there is a G-fixed point in K.

(ii) (invariant mean property) There is an invariant mean on L∞(G,R), that is a norm one
G-morphism m : L∞(G,R) → R such that m(1G) = 1, where R is the trivial Banach G-module
and 1G denotes the constant function with value 1 on G. Here G is equipped with a Haar
measure.

Proposition C.1.2. Every compact group is amenable.

Proof. Recall that if G is a compact group, then every function in L∞(G,R) is integrable, since
the Haar measure µ on G is finite. We can normalize µ, such that µ(G) = 1.
An invariant mean m : L∞(G,R) → R is now given by integration

m(f) :=

∫
G
f(g) dµ(g), ∀f ∈ L∞(G,R)

as one readily checks.

Proposition C.1.3. Every finite group is amenable.

Proof. This follows from the previous proposition, since every finite group is compact with respect
to its discrete topology.

Proposition C.1.4. Every abelian group is amenable.

Proof. This is a consequence of the above fixed point property and the Markov-Kakutani fixed
point theorem. For details see [Pat88, (0.14) Proposition, p. 13].

Proposition C.1.5. Let N / G be a normal subgroup. Then G is amenable if and only if N and
G/N are amenable.

Proof. See [Pat88, (1.13) Proposition, p. 31].

Proposition C.1.6. Every locally compact solvable group is amenable.
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Proof. Let G be a locally compact solvable group. Then it admits a finite derived series

1 = G(k) C G(k−1) C · · · C G(1) C G(0) := G

where G(i+1) = [G(i), G(i)], i.e. the quotient group G(i)/G(i+1) is abelian, for every i = 0, . . . , k− 1.
We get the following short exact sequences

1 → G(i) → G(i−1) → G(i−1)/G(i) → 1

for every i = 1, . . . , k. Starting from i = k, where G(k) = 1 is clearly amenable one deduce
succesively that every G(i) is amenable by Proposition C.1.5. Hence G(0) = G is amenable too.

Proposition C.1.7. Let H < G be an amenable subgroup with finite index [G : H] = m < ∞.
Then G is also amenable, i.e. any virtually amenable group is amenable.

Proof. Let F be a Hausdorff LCTVS on which G acts jointly continuous and linear. Further let
K ⊂ F be a G-invariant compact convex subset. By restricting the action of G to H we get a
jointly continuous linear action of H on F and K remains H-invariant. Thus by the amenability
of H there is a fixed point fH of the H-action in K.
Now consider a representational system {gi : i = 1, . . . ,m} of the left cosets of H in G, i.e.

G =
m⊔
i=1

giH

We set

fG :=

m∑
i=1

1

m
· gifH

and claim that fG is indeed a fixed point of the G-action in K. As K is convex and
∑m

i=1
1
m = 1,

we have that fG is indeed in K.
Now to any g ∈ G and i ∈ {1, . . . ,m} there is a unique ϕg(i) ∈ {1, . . . ,m} such that ggi ∈ gϕg(i)H.

We denote this bijection by ϕg : {1, . . . ,m} → {1, . . . ,m}. Thus there is also a unique h(i, g) ∈ H
such that ggi = gϕg(i)h(i, g). Hence for every g ∈ G we get

gfG =

m∑
i=1

1

m
ggifH =

m∑
i=1

1

m
gϕg(i)h(i, g)fH =

m∑
i=1

1

m
gϕg(i)fH = fG

i.e. fG is indeed a G-fixed point in K.
Therefore G is amenable by the fixed point property.

C.2. Amenable Actions
Definition C.2.1 (Standard Borel space). A measurable space (X,A) is called standard if (X,A)
is isomorphic to some compact metric space with the Borel σ-algebra.

Definition C.2.2 (Regular G-space). A regular G-space is a standard Borel space S on which G
acts measurably, together with a G-invariant measure class with the following property:
The measure class contains a probability measure µ turning (S, µ) in a standard probability space

such that the natural isometric G-action λ[ on L1(µ)

(λ[(g)ϕ)(s) = ϕ(g−1s)
dg−1µ

dµ
(s), (ϕ ∈ L1(µ), s ∈ S)

is continuous, where dg−1µ/dµ is the Radon-Nikodym derivative.
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Example C.2.3. The following are some examples given in [Mon01, Example 2.1.2, p. 18]:

(i) G itself as a locally compact second countable topological group is a regular G-space with its
Haar measure class. More generally, for any closed subgroup H < G the homogeneous space
G/H with the class of the natural quasi-invariant measures is a regular G-space.

(ii) The product of finitely many or countably many regular G-spaces is still a regular G-space
when endowed with the product structure.

(iii) If S is a regular G-space, H another topological group and H → G a continuous homomor-
phism, then by pullback S is a regular H-space.

Definition C.2.4 (Amenable Action, Amenable G-space). Let S be a regular G-space. The
G-action on S is called amenable if there is a G-equivariant conditional expectation L∞(G× S) →
L∞(S) (cf. [Mon01, Theorem 5.3.2, p. 48]). In this case we call S also an amenable regular G-space.

Definition C.2.5 (Conditional Expectation). A conditional expectation m : L∞(G×S) → L∞(S)
is a norm one linear continuous map such that

(i) m(1G×S) = 1S

(ii) for all f ∈ L∞(G× S) and each measurable subset A ⊂ S one has m(f · 1G×A) = m(f) · 1A

Remark C.2.6. There is also a definition of amenable action more related to the fixed point
property of amenable groups in Definition C.1.1. However we do not need it here and refer to
[Mon01, pp. 48] for more details.

We now state some properties of such amenable G-spaces

Proposition C.2.7. Let H < G be a closed subgroup. Then the G-action on G/H is amenable if
and only if H is an amenable group.

Proof. See [Zim84, Proposition 4.3.2, p. 78].

Proposition C.2.8. If S, T are regular G-spaces and the G-action on S is amenable, then the
diagonal G-action on S × T is amenable.

Proof. See [Zim84, Proposition 4.3.4, p. 79].

Lemma C.2.9. Let H < G be a closed subgroup and S an amenable regular G-space. The
restriction to H of the action on S is amenable.

Proof. See [Mon01, Lemma 5.4.3, p. 53].
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D. Classical Cohomology

We will assume that the reader is already familiar with classical (co)homology theories such as
singular (co)homology and de Rham cohomology. The objective of this appendix is to fix some
notation and to recall some results from topology. However we also give an introduction to singular
bounded cohomology and its relative version, which admits a long exact sequence just as ordinary
singular cohomology. Finally we define relative de Rham cohomology and prove a relative version
of de Rham’s theorem, that we were unable to find in the standard literature.
There are already many good books on algebraic and differential topology. Our main references

are [Hat02] and [Lee13].

D.1. Singular Homology
Let n ∈ N0. We define the standard n-simplex ∆n in Rn as the subset

∆n :=

{
(t1, . . . , tn) ∈ Rn : 0 ≤ ti ≤ 1 and

n∑
i=1

ti ≤ 1

}

For any (n+ 1) points v0, . . . , vn in some euclidean space Rm we can now define the affine map

[v0, . . . , vn] : ∆
n −→ Rm

given by

[v0, . . . , vn](t1, . . . , tn) :=

(
1−

n∑
i=1

ti

)
v0 + t1v1 + · · ·+ tnvn

for all (t1, . . . , tn) ∈ ∆n.
With this notation the boundary faces of ∆n can be parametrized via the maps

Fi,n = [e0, . . . , êi, . . . , en] : ∆
n−1 −→ ∆n

where e0 = 0 ∈ Rn, e1, . . . , en ∈ Rn is the standard basis and as usual a hat over a variable indicates
its omission.
LetM be a topological space. A singular n-simplex is a continuous map σ : ∆n →M . We denote

by Sn(M) the free abelian group generated by all singular n-simplices and call it the singular chain
group. Actually it is customary to define the singular chain groups with coefficients in an arbitrary
ring and not only Z-coefficients, but we will not need this here.
We can define boundary maps

∂ : Sn(M) → Sn−1(M)

via

∂σ =

n∑
i=0

(−1)i · (σ ◦ Fi,n)

for every singular n-simplex σ : ∆n →M .
Because ∂ ◦ ∂ = 0. This gives us a chain complex
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· · · Sn−1(M) Sn(M) Sn+1(M) · · ·∂∂

The singular n-cycles are the elements of

Zn(M) = ker{∂ : Sn(M) → Sn−1(M)}

and the singular n-boundaries are the elements of

Bn(M) = im{∂ : Sn−1(M) → Sn(M)}

The n-th singular homology group is the quotient

Hn(M) =
Zn(M)

Bn(M)

It is also possible to define relative singular homology. For that consider a subspace N ⊂M and
set

Sn(M,N) = Sn(M)/Sn(N)

We call these groups the relative singular chain groups. We get the following short exact sequence
of chain complexes. Observe that one can identify Sn(M,N) with the free abelian group generated
by all singular n-simplices in M whose image is not entirely contained in N . Therefore we get the
following split short exact sequence.

0 S•(N) S•(M) S•(M,N) 0
ι∗

where i∗ : Sn(N) → Sn(M) is the map induced by the inclusion i : N ↪→M .
The quotient

Hn(M,N) =
ker{∂ : Sn(M,N) → Sn−1(M,N)}
im{∂ : Sn+1(M,N) → Sn(M,N)}

is then called the n-th relative singular homology group. It is worth noting, thatH•(M, ∅) = H•(M).
By the familiar snake lemma one gets a natural long exact sequence in homology

· · · Hn(N) Hn(M) Hn(M,N) Hn−1(N) · · ·
i∗ ∂∗

with connecting homomorphisms ∂∗ : H•(M,N) → H•−1(N).
The (relative) singular homology groups enjoy many nice properties, e.g. homotopy invariance,

excision etc…; for details we refer to [Hat02].
We will adopt the following notation for another subspace A ⊂M

Hn(M |A) = Hn(M,M −A)

and for a point in x ∈M we simply write

Hn(M |x) = Hn(M |{x}) = Hn(M,M − {x})

Now assume that M is a closed oriented topological n-manifold. Then there is an element
[M ] ∈ Hn(M) such that the restriction Hn(M) → Hn(M |x) maps [M ] to the given orientation at
each point x ∈M (cf. [Hat02, Theorem 3.26, p. 236]). This element is called the fundamental class
of M .
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Similarly if M is a compact oriented topological n-manifold with boundary ∂M , there is an
element [M,∂M ] ∈ Hn(M,∂M) restricting to the given orientation at each pont x ∈M − ∂M (cf.
[Hat02, p. 253]). Then this element is also called the (relative) fundamental class of M .
If M admits a triangulation, it is possible to give a concrete depiction of the fundamental class.

Indeed, let {σi : ∆n →M} be the set of all characterstic functions of the triangulation of M . Then
the fundamental class of M is represented by the sum

∑
i kiσi, where ki = +1 if σi : ∆n → M

is orientation preserving, and ki = −1 if it is not (cf. [Hat02, p. 238], [BP92, Proposition C.3.1.,
p. 104]). This is for example the case if M is a smooth manifold with or without boundary (see
[Mun66, 10.6 Theorem, p. 103]).
In view of the de Rham theorem we are about to state later it will be important to observe, that

we can compute the singular homology groups of a smooth manifold M on the chain complex of
smooth simplices. We follow essentially [Lee13, Chapter 18], but we generalize the results to the
case of a smooth manifold with boundary. The fact that a smooth manifold M with boundary ∂M
is homotopy equivalent to its interior intM =M − ∂M as the following theorem states, will be of
frequent use for our generalizations.

Theorem D.1.1. Let M be a smooth manifold with nonempty boundary and let i : intM → M
denote the inclusion. There exists a proper smooth embedding R : M → intM such that both
i ◦ R : M → M and R ◦ i : intM → intM are smoothly homotopic to the respective identity maps.
Therefore i is a homotopy equivalence.

Proof. The proof uses the familiar collar theorem. For details see [Lee13, Theorem 9.26., p. 223].

Let M be a smooth manifold with or without boundary in the following.
A map σ : ∆n → M is called a smooth singular n-simplex if it is a smooth mapping between

smooth manifolds with corners, i.e. if every point of ∆n admits an open neighborhood on which
σ has a smooth extension. For more details on smooth manifolds with corners we refer to [Lee13,
Chapter 16, pp. 415].
Let us denote by S∞

n (M) the set of all smooth singular n-simplices on M . Clearly the usual
boundary operator ∂ : Sn(M) → Sn−1(M) restricts to ∂ : S∞

n (M) → S∞
n−1(M), thus giving us a

chain complex

· · · S∞
n−1(M) S∞

n (M) S∞
n+1(M) · · ·∂∂

We will call the n-th homology group of this chain complex

H∞
n (M) =

ker{∂ : S∞
n (M) → S∞

n−1(M)}
im{∂ : S∞

n+1(M) → S∞
n (M)}

the n-th smooth singular homology group. Note that the canonical inclusion ι : S∞
• (M) → S•(M)

of chain complexes commutes with the boundary maps and hence induces a map in homology.
It is also possible to define relative smooth singular homology groups. For that let i : N ↪→ M

be an embedded submanifold and set

S∞
n (M,N) = S∞

n (M)/S∞
n (N)

We call these groups the relative smooth singular chain groups. We get the following short exact
sequence of chain complexes. Observe that one can identify S∞

n (M,N) with the free abelian group
generated by all smooth singular n-simplices in M whose image is not entirely contained in N .
Therefore we get the following split short exact sequence.
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0 S∞
• (N) S∞

• (M) S∞
• (M,N) 0

i∗

where i∗ : S∞
n (N) → S∞

n (M) is the map induced by the (smooth) inclusion i : N ↪→M .
The quotient

H∞
n (M,N) =

ker{∂ : S∞
n (M,N) → S∞

n−1(M,N)}
im{∂ : S∞

n+1(M,N) → S∞
n (M,N)}

is then called the n-th relative smooth singular homology group. It is worth noting, thatH∞
• (M, ∅) =

H∞
• (M).
By the familiar snake lemma one gets a natural long exact sequence in homology

· · · H∞
n (N) H∞

n (M) H∞
n (M,N) H∞

n−1(N) · · ·
i∗ ∂∗

with connecting homomorphisms ∂∗ : H∞
• (M,N) → H∞

•−1(N).
It turns out that (relative) smooth and singular homology groups coincide as the next theorem

states.

Theorem D.1.2. Let M be a smooth manifold with or without boundary and i : N ↪→ M an
embedded submanifold. Denote by ι : S∞

• (M,N) ↪→ S•(M,N) the canonical inclusion of chain
complexes.
Then the map induced by the inclusion of chain complexes ι∗ : H∞

• (M,N) → H•(M,N) is an
isomorphism.

Proof. In case of non-relative homology groups and a smooth manifold without boundary this is
precisely [Lee13, Theorem 18.7, p. 474]. We will generalize this result following a usual pattern in
algebraic topology. First we prove it in the non-relative case for smooth manifolds with boundary
using Theorem D.1.1. Then we generalize it further to the relative case by using the long exact
sequence and the familiar five lemma.
Let us denote by j : intM ↪→ M the canonical inclusion. By Theorem D.1.1 this is a (smooth)

homotopy equivalence and hence induces an isomorphism in both smooth and singular homology
j∗ : H

(∞)
• (intM) → H

(∞)
• (M). The inclusion of chain complexes ι and the map i∗ induced by

the previous inclusion commute at the chain level and hence give a commutative diagram of the
homology complexes

H∞
• (M) H•(M)

H∞
• (intM) H•(intM)

ι∗

ι∗

∼= ∼=

This settles the case of M having a boundary.
Now the inclusion of ι : S∞

• (M,N) → S•(M,N) constitute a morphism of short exact sequences
of complexes

0 S∞
• (N) S∞

• (M) S∞
• (M,N) 0

0 S•(N) S•(M) S•(M,N) 0

i∗

i∗

ι∗ ι∗ ι∗
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which yield a long exact sequence in homology by the snake lemma.

· · · H∞
n (N) H∞

n (M) H∞
n (M,N) H∞

n−1(N) H∞
n−1(M) · · ·

· · · Hn(N) Hn(M) Hn(M,N) Hn−1(N) Hn−1(M) · · ·

∼= ∼= ι∗ ∼= ∼=

By the five lemma the map in the middle is then also an isomorphism and the assertion follows.

D.2. Singular Cohomology
We will only consider singular cohomology with real coefficients here. Again let M be a topological
space.
By dualizing the singular chain groups Sn(M) we get the so called singular cochain groups

Sn(M,R) = Sn(M)∗ = Hom(Sn(M),R)

In what follows we will not mention the coefficient ring R and simply write Sn(M).
By taking adjoints we get coboundary maps δ = ∂∗ : Sn(M) → Sn+1(M), i.e.

(δα)(σ) = α(∂σ)

for every α ∈ Sn(M) and every singular (n + 1)-simplex σ : ∆n+1 → M . By these coboundary
maps we get the singular cochain complex

· · · Sn−1(M) Sn(M) Sn+1(M) · · ·δ δ

The n-th cohomology group of this cochain complex

Hn(M) =
ker{δ : Sn(M) → Sn+1(M)}
im{δ : Sn−1(M) → Sn(M)}

is called the n-th singular cohomology group.
Just as for singular homology we can define relative singular cohomology groups. For that

consider a subspace N ⊂M . By dualizing the split short exact sequence for relative singular chain
complexes we get the following split short exact sequence of cochain complexes.

0 S•(M,N) S•(M) S•(N) 0
ι∗

where ι∗ : Sn(M) → Sn(M) is the map induced by the inclusion ι : N → M and Sn(M,N) ⊂
Sn(M) is generated by the singular n-cochains that vanish on singular n-simplices σ : ∆n → M
whose image is completely contained in N .
The Sn(M,N) are called relative singular cochain groups. The quotient

Hn(M,N) =
ker{δ : Sn(M,N) → Sn+1(M,N)}
im{δ : Sn−1(M,N) → Sn(M,N)}

is then called the n-th relative singular cohomology group.
By the familiar snake lemma one gets a natural long exact sequence in cohomology

159



D. Classical Cohomology

· · · Hn(M,N) Hn(M) Hn(N) Hn+1(M,N) · · ·ι∗ δ∗

with connecting homomorphisms δ∗ : H•(M,N) → H•+1(N). It is worth noting that H•(M, ∅) =
H•(M).
Just as singular homology also singular cohomology enjoys many nice properties, e.g. homotopy

invariance, excision etc…; for details see [Hat02].
We can define a product 〈., .〉 : Sn(M,N)× Sn(M,N) → R by evaluation, i.e.

〈α, c〉 := α(c)

It is easy to see, that this product is well-defined and even induces a product

〈., .〉 : Hn(M,N)×Hn(M,N) → R

This is called the Kronecker product. The universal coefficient theorem ([Hat02, Theorem 3.2, p.
195]) implies, that this product in fact induces an isomorphism

Hn(M,N) → Hom(Hn(M,N),R)

since we are only concerned with real coefficients.
Now let M be a smooth manifold with or without boundary and i : N ↪→ M an embedded

submanifold. We can also get a smooth version of singular cohomology by dualizing the smooth
singular chain complex. Set

S•
∞(M,N) = S∞

• (M,N)∗ = Hom(S∞
• (M,N),R)

and define S•
∞(M) = S•

∞(M, ∅). These are called the (relative) smooth singular cochain groups.
They constitute the (relative) smooth singular cochain complex via the usual coboundary maps and
its n-th cohomology group

Hn
∞(M,N) =

ker{δ : Sn
∞(M,N) → Sn+1

∞ (M,N)}
im{δ : Sn−1

∞ (M,N) → Sn
∞(M,N)}

is called the n-th (relative) smooth singular cohomology group.
Completely analogously one gets the familiar short exact sequence at the cochain level inducing a

long exact sequence in cohomology. We also get by the same definition as for singular cohomology
a Kronecker product

〈., .〉 : Hn
∞(M,N)×H∞

n (M,N) → R

which in turn induces by the universal coefficient theorem of homological algebra an isomorphism

Hn
∞(M,N) → Hom(H∞

n (M,N),R)

By naturality of the short exact sequence in the universal coefficient theorem and Theorem D.1.2
one immediately deduces, that the adjoint map ι∗ : S•(M,N) → S•

∞(M,N) induces an isomorphism
ι∗ : H•(M,N) → H•

∞(M,N).

D.3. Singular Bounded Cohomology
As before let M be a topological space. Note that we can think of Sn(M) as the set of real valued
functions on all singular n-simplices σ : ∆n →M . Thus we can define a norm on Sn(M) by setting

‖α‖ = sup{|α(σ)| : σ singular n-simplex}
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for every α ∈ Sn(M).
The subspace of all cochains, which are bounded with respect to this norm is called the singular

bounded cochain group
Sn
b (M) = {α ∈ Sn(M) : ‖α‖ <∞}

It is immediate, that the usual singular coboundary maps δ : Sn(M) → Sn+1(M) restrict to
δ : Sn

b (M) → Sn+1
b (M). Thus we get the singular bounded cochain complex

· · · Sn−1
b (M) Sn

b (M) Sn+1
b (M) · · ·δ δ

The n-th cohomology group of this cochain complex

Hn
b (M) =

ker{δ : Sn
b (M) → Sn+1

b (M)}
im{δ : Sn−1

b (M) → Sn
b (M)}

is called the n-th singular bounded cohomology group. We can now define the quotient seminorm
on cohomology via

‖[α]‖ = inf{‖β‖ : β ∈ [α]}

for every cohomology class [α] ∈ Hn
b (M).

For a subspace N ⊂ M we can again define a relative version of singular bounded cohomology.
Indeed consider the subspace Sn

b (M,N) of all bounded singular cochains that vanish on simplices
completely contained in N . Again we get a short exact sequence of cochain complexes

0 S•
b (M,N) S•

b (M) S•
b (N) 0

i∗

where i∗ : Sn(M) → Sn(M) is the map induced by the inclusion i : N →M . By the snake lemma
from homological algebra we get a long exact sequence in bounded cohomology

· · · Hn
b (M,N) Hn

b (M) Hn
b (N) Hn+1

b (M,N) · · ·ι∗ δ∗

with connecting homomorphisms δ∗ : H•
b (M,N) → H•+1

b (N).
Observe that the canonical inclusion of complexes i• : S•

b (M) → S•(M) is in fact a morphism of
complexes, i.e. commutes with the coboundary maps. The induced map

c : Hn
b (M) → Hn(M)

is called the comparison map. Further note that the inclusion Sn
b (M) → Sn(M) also restricts to

Sn
b (M,N) → Sn(M,N) and Sn

b (N) → Sn(N). This gives us a morphism of short exact sequences
of cochain complexes

0 S•
b (M,N) S•

b (M) S•
b (N) 0

0 S•(M,N) S•(M) S•(N) 0

i∗

i∗

By naturality of the connecting homomorphisms we get that the comparison maps constitute a
morphism of long exact sequences in cohomology
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· · · Hn
b (M,N) Hn

b (M) Hn
b (N) Hn+1

b (M,N) · · ·

· · · Hn(M,N) Hn(M) Hn(N) Hn+1(M,N) · · ·

i∗ δ∗

i∗ δ∗

c c c c

It is important to note, that singular bounded (relative) cohomology is a homotopy invariant.
Indeed, let f, g : M1 → M2 be two homotopic continuous maps between topological spaces. The
proof of homotopy invariance for usual singular (co)homology uses a prism operator P : S•(M2) →
S•−1(M1) providing a cochain homotopy f∗ − g∗ = δP + Pδ, where P is the dual of the prism
operator in [Hat02, Theorem 2.10, p. 111]. It is not hard to see, that this prism operator restricts
to the bounded cochain complex (see also [Iva87, 1. Introduction, p. 1091]).

D.4. De Rham Cohomology
Let M be a smooth manifold with or without boundary. Recall that the de Rham cohomology of
M is defined by the cohomology of the cochain complex of differential forms

· · · Ωn−1(M) Ωn(M) Ωn+1(M) · · ·d d

where the coboundary maps d : Ω•(M) → Ω•+1(M) are the exterior derivatives. We denote the
n-th de Rham cohomology group by

Hn
dR(M) =

ker{d : Ωn(M) → Ωn+1(M)}
im{d : Ωn−1(M) → Ωn(M)}

Now let i : N ↪→M be an embedded submanifold. Define

Ωn(M,N) := ker{ι∗ : Ωn(M) → Ωn(N)} ⊂ Ωn(M)

which is the set of all n-forms vanishing when restricted to the submanifold N . It is immediate,
that the coboundary maps restric to d : Ωn(M,N) → Ωn+1(M,N) and hence we get the relative
de Rham cochain complex

· · · Ωn−1(M,N) Ωn(M,N) Ωn+1(M,N) · · ·d d

Its n-th cohomology group

Hn
dR(M,N) =

ker{d : Ωn(M,N) → Ωn+1(M,N)}
im{d : Ωn−1(M,N) → Ωn(M,N)}

is called the n-th relative de Rham cohomology group.
Further we get the following short exact sequence of cochain complexes

0 Ω•(M,N) Ω•(M) Ω•(N) 0
i∗

Indeed i∗ is surjective, since one can extend any differential form on N via a covering of submanifold
charts for N in M and a smooth partition of unity to a differential form in M restricting to the
given one in N .
The snake lemma from homological algebra yields a long exact sequence in de Rham cohomology
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· · · Hn
dR(M,N) Hn

dR(M) Hn
dR(N) Hn+1

dR (M,N) · · ·i∗ d∗

with connecting homomorphisms d∗ : Hn
dR(N) → Hn+1

dR (M,N). It is worth noting thatH•
dR(M, ∅) =

H•(M).

D.4.1. The de Rham Isomorhism
As before let M be a smooth manifold with or without boundary and i : N ↪→ M an embedded
submanifold.
Before we will define the de Rham isomorphism in the following, we need to understand how to

integrate a smooth n-simplex Let σ : ∆n → M be a smooth n-simplex and ω ∈ Ωn(M) a smooth
n-form. The integral of ω over σ is now defined as∫

σ
ω =

∫
∆n

σ∗ω

in the sense of integration theory for smooth manifolds with corners (cf. [Lee13]). We extend this
definition linearly to all smooth singular n-cochains c =

∑k
i=1 ciσi ∈ S∞

n (M), i.e. the integral of ω
over c is defined as ∫

c
ω =

k∑
i=1

ci

∫
σi

ω

The following chain version of Stokes’ Theorem holds.

Theorem D.4.1. Let c ∈ S∞
n (M) and ω ∈ Ωn−1(M). Then∫

∂c
ω =

∫
c
dω

Proof. The proof for a smooth manifold without boundary given in [Lee13, Theorem 18.12, p. 481]
works verbatim for a smooth manifold with boundary.

This theorem enables us to define a map of cochain complexes Ψ : Ωn(M) → Sn
∞(M) via

Ψ(ω)(c) =

∫
c
ω

for every ω ∈ Ωn(M) and c ∈ S∞
n (M). Ψ clearly commutes with the coboundary maps of the

respective cochain complexes by Theorem D.4.1 and hence induces a map in cohomology

Ψ : H•
dR(M) −→ H•

∞(M) ∼= H•(M)

By standard homological algebra Ψ also induces a map in relative cohomology

0 Ω•(M,N) Ω•(M) Ω•(N) 0

0 S•
∞(M,N) S•

∞(M) S•
∞(N) 0

i∗

i∗

Ψ ΨΨ

The map Ψ : H•
dR(M,N) −→ H•

∞(M,N) ∼= H•(M,N) is then called the de Rham isomorphism
due to the next theorem.
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Theorem D.4.2. Let M be a smooth manifold with or without boundary and i : N ↪→ M an
embedded submanifold. Then the map

Ψ : H•
dR(M,N) −→ H•

∞(M,N) ∼= H•(M,N)

is a natural isomorphism.

Proof. Naturality follows as in the proof of [Lee13, Proposition 18.13, p. 482].
By [Lee13, Theorem 18.14, p. 484] (and the universal coefficient theorem) we know that Ψ :

H•
dR(M) → H•

∞(M) is an isomorphism if M has empty boundary. We will generalize this following
the same pattern as in the proof of Theorem D.1.2.
Let us first proof it for non-relative cohomology if M has a boundary. Denote by j : intM ↪→M

the canonical inclusion. Clearly Ψ commutes with the induced pullback maps j∗ and hence we get
the following commutative diagram in cohomology

H•
dR(M) H•

∞(M)

H•
dR(intM) H•

∞(intM)

Ψ

Ψ

j∗ j∗

Because j is a smooth homotopy equivalence it induces isomorphisms in cohomology. Thus Ψ :
H•

dR(M) → H•
∞(M) is also an isomorphism if M has a boundary.

Turning to the relative case we get by the previous diagram of short exact sequences, that Ψ
induces a map between the two long exact cohomology sequences

· · · Hn
dR(M) Hn

dR(M) Hn
dR(M,N) Hn+1

dR (M) Hn+1
dR (N) · · ·

· · · Hn
∞(M) Hn

∞(M) Hn
∞(M,N) Hn+1

∞ (M) Hn+1
∞ (N) · · ·

∼= ∼= Ψ ∼= ∼=

By the five lemma the map in the middle is then also an isomorphism and the assertion follows.

Finally the next lemma shows, that for an oriented compact smooth manifold with (or without)
boundary M evaluation on the fundamental class [M,∂M ] corresponds to integration over M via
the de Rham isomorphism.

Lemma D.4.3. Let M be an oriented compact smooth manifold with or without boundary of
dimension n and let [M,∂M ] ∈ Hn(M,∂M) be its fundamental class. Further let [ω] ∈ Ωn(M,∂M)
be a cohomology class in top degree. Then

〈Ψ([ω]), [M,∂M ]〉 =
∫
M
ω

Proof. As we have already mentioned before M admits a smooth triangulation by simplices σi :
∆n →M . Further its fundamental class [M,∂M ] is represented at the chain level by the sum

c =

k∑
i=1

kiσi
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where ki = +1 if σi is orientation preserving and ki = −1 if it is not.
Therefore we can compute directly

〈Ψ([ω]), [M,∂M ]〉

= Ψ(ω)(c) =

∫
c
ω

=

k∑
i=1

ki

∫
σi

ω =

k∑
i=1

∫
∆n

kiσ
∗
i ω

=

∫
M
ω

where the last equality follows from [Lee13, Proposition 16.8, p. 408].
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The objective of this chapter is to introduce Douady-Earle’s barycenter construction. This con-
struction associates equivariantly to every ”nice” probability measure on the boundary ∂Hn its
”barycenter” in Hn. Furthermore the barycenter depends continuously on the measure, when the
subspace of all ”nice” proabability measures in M1(∂Hn) is equipped with the induced weak-*
topology.
Historically Douady and Earle introduced this construction first in their joint paper [DE86] for

dimension two. Later Besson, Courtois and Gallot generalized it to universal covering spaces of
compact Riemannian manifolds with strictly negative curvature and diffuse boundary measures
in [BCG95, Appendice A, p. 781]. Although the barycenter construction is stated in [FK06] and
[BCG99] for probability measures with no atom of mass greater than 1/2 on the boundary of
hyperbolic n-space, we were unable to find an appropriate reference. A possible reason might be,
that we were unable to access [BCG96]. However the result for non-atomic measures is not sufficient
for our purposes, such that we rediscover a proof here. We hope that some of the readers find this
convenient.
Since the proof makes heavy use of Busemann functions we will first introduce them and demon-

strate some of their properties.

E.1. Busemann Functions
Definition E.1.1. For x ∈ Hn and γ : R → Hn a unit speed geodesic we define the Busemann
function

b(x, γ) := lim
t→∞

(d(γ(t), x)− t)

where d(·, ·) denotes the hyperbolic distance.

Intuitively the Busemann function measures the relative distance from x to γ(∞).

Remark E.1.2. The Busemann function b(x, γ) is well defined. This is due to the fact that
t 7→ d(γ(t), x)− t) is bounded

d(γ(t), x)− t ≤ d(γ(t), γ(0))︸ ︷︷ ︸
=t

+d(γ(0), x)− t = d(γ(0), x) <∞

and monotone

d(γ(t+ s), x)− (t+ s)− (d(γ(t), x)− t) ≥ d(γ(t+ s), γ(t))︸ ︷︷ ︸
=s

−s ≥ 0

Hence the limit as t→ ∞ exists.

The Busemann function has the following transformation behaviour.

Lemma E.1.3. For all x ∈ Hn, γ : R → Hn a unit speed geodesic and g ∈ Isom(Hn) we have

b(g(x), g ◦ γ) = b(x, γ)
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Proof. Let x ∈ Hn, γ : R → Hn a unit speed geodesic and g ∈ Isom(Hn). Then by definition

b(g(x), g ◦ γ) = lim
t→∞

(d(g(γ(t)), g(x))− t) = lim
t→∞

(d(γ(t), x)− t) = b(x, γ)

By fixing a certain point o in Hn as ”the origin” we can define for x ∈ Hn and θ ∈ ∂Hn

bo(x, θ) := lim
t→∞

(d(γ(t), x)− t)

where γ : R → Hn is now the unique unit speed geodesic with γ(0) = o and γ(∞) = θ. In this
case we shall call bo(x, θ) also a Busemann function. The above transformation behaviour then
translates naturally to

bo(x, θ) = bg(o)(g(x), g(θ))

for every x ∈ Hn, θ ∈ ∂Hn and g ∈ Isom(Hn). For the upper half space model Un and the
Poincaré ball model Bn we shall take as origins en ∈ Un and 0 ∈ Bn respectively and denote the
corresponding Busemann functions with bUn(x, θ) and bBn(x, θ). Note that the Cayley transform
exchanges en and 0 such that this choice is in a way consistent.
Next we will compute bUn(x, θ) for arbitrary x ∈ Un and θ ∈ ∂Un = Rn−1 × {0} ∪ {∞}.

Proposition E.1.4. We have:

(i) For all x = (x1, . . . , xn) ∈ Un

bUn(x,∞) = − ln(xn) = − ln(〈x, en〉)

(ii) For all x ∈ Un, θ ∈ Rn−1 × {0}

bUn(x, θ) = − ln
(
1 + |θ|2

|x− θ|2
xn

)

Proof. To (i): Let x = (x1, . . . , xn) ∈ Un. Recall for the hyperbolic distance in the upper half space
model

dUn(x, y) = arccosh
(
1 +

|x− y|2

2xnyn

)
∀x, y ∈ Un

(cf. [Rat06]). We shall also use the following formula

arccosh(z) = ln(z +
√
z2 − 1) ∀z ∈ R

Since we have fixed o = en as our origin and the unique unit speed geodesic γ : R → Un with
γ(0) = en and γ(∞) = ∞ is γ(t) = eten, we need to calculate

bUn(x,∞) = lim
t→∞

(dUn(γ(t), x)− t) = lim
t→∞

(
arccosh

(
1 +

|x− γ(t)|2

2xnγn(t)

)
− t

)
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Observe that
|x− γ(t)|2

2xnγn(t)
=
x21 + . . .+ x2n−1

2xnγn(t)
+

(xn − γn(t))
2

2xnγn(t)

=
x21 + . . .+ x2n−1

2xnγn(t)
+

x2n
2xnγn(t)

− 2xnγn(t)

2xnγn(t)
+

γn(t)
2

2xnγn(t)

=
x21 + . . .+ x2n−1

2xnγn(t)
+

xn
2γn(t)︸ ︷︷ ︸

=:R(t)→0 (t→∞)

+
γn(t)

2xn
− 1

= R(t) +
γn(t)

2xn︸ ︷︷ ︸
=:T (t)→∞ (t→∞)

−1

Hence

arccosh
(
1 +

|x− γ(t)|2

2xnγn(t)

)
− t = arccosh(T (t))− t

= ln(T (t) +
√
T (t)2 − 1)− t

= ln(T (t)) + ln(1 +
√
1− T (t)−2)︸ ︷︷ ︸

=:S(t)→ln(2) (t→∞)

−t

= ln(et/2xn)− ln(et/2xn) + ln(et/2xn +R(t)) + S(t)− t

= t− ln(2xn) +
∫ et/2xn+R(t)

et/2xn

1

x
dx︸ ︷︷ ︸

=:I(t)→0 (t→∞)

+S(t)− t

= − ln(xn)− ln(2) + I(t) + S(t)

Thus as asserted

bUn(x,∞) = lim
t→∞

(
arccosh

(
1 +

|x− γ(t)|2

2xnγn(t)

)
− t

)
= − ln(xn)− ln(2) + lim

t→∞
I(t) + lim

t→∞
S(t)

= − ln(xn)− ln(2) + ln(2) = − ln(xn)

To (ii): Let x ∈ Un, θ ∈ Rn−1. We shall use (i) and the transformation behaviour of bUn . Let’s
consider the inversion

iθ,α(x) = α
x− θ

|x− θ|2
+ θ

where α = ‖θ‖2 + ‖en‖2 = ‖θ‖2 + 1. Then iθ,α exchanges ∞ with θ and leaves the sphere centered
at θ with radius

√
α invariant; in particular iθ,α(en) = en. Let γθ : R → Un denote the unit speed

geodesic with γθ(0) = en and γθ(∞) = θ and γ∞(t) = eten the unit speed geodesic from en to ∞.
Then γθ = iθ,α ◦ γ∞ and hence by the transformation behaviour (and i2θ,α = id)

bUn(x, θ) = bUn(i2θ,α(x), (iθ,α(∞)) = − ln(〈iθ,α(x), en〉)

= − ln
(
1 + |θ|2

|x− θ|2
xn

)

where we have used in the last equality that 〈θ, en〉 = 0, since θ ∈ Rn−1 × {0}.
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We can use this formula to investigate what happens when we change our base point from en to
some o = (o1, . . . , on−1, on) ∈ Un.

Lemma E.1.5. Let o = (o1, . . . , on−1, on) ∈ Un.
Then

bo(x,∞)− ben(x,∞) = ln(on)
for every x ∈ Un, and

bo(x, θ)− ben(x, θ) = − ln(on) + ln
(

1 + |θ|2

1 + o−2
n |θ − p(o)|2

)
for every x ∈ Un, θ ∈ Rn−1, where p : Un → Rn−1 denotes the canonical projection on the first
(n− 1)-coordinates. In particular these differences do not depend on x!

Proof. This will follow from the transformation behaviour and the explicit formulas from the pre-
vious proposition. Note that the map g : Un → Un, x 7→ on · x + p(o) is an isometry taking en to
o, that fixes θ. Its inverse is g−1(x) = o−1

n · x− o−1
n · p(o) as one readily checks.

Let x ∈ Un. We compute

bo(x,∞)− ben(x,∞) = ben(g
−1(x),∞)− ben(x,∞)

= − ln(〈o−1
n · x− o−1

n · p(o), en〉) + ln(xn)
= ln(on)

Now let θ ∈ Rn−1 × {0}. Then

bo(x,∞)− ben(x,∞) = ben(g
−1(x), g−1(θ))− ben(x, θ)

= − ln
(

1 + |θ|2

|g−1(x)− g−1(θ)|2
〈g−1(x), en〉

)
+ ln

(
1 + |θ|2

|x− θ|2
xn

)
= ln

(
1 + |θ|2

1 + |g−1(x)|2
· |g

−1(x)− g−1(θ)|2

|x− θ|2
· xn
〈g−1(x), en〉

)
= . . . = − ln(on) + ln

(
1 + |θ|2

1 + o−2
n |θ − p(o)|2

)

Now we want to see the Busemann functions also in the Ball model Bn. Recall that we can switch
between the upper half space model Un and the Poincaré ball model Bn by inversion i = i−en,2

at the circle of radius
√
2 with center −en; the (inverse) Cayley transform. Therefore we get the

following formula.

Proposition E.1.6. For every x ∈ Bn and θ ∈ ∂Bn = Sn−1

bBn(x, θ) = − ln
(
1− |x|2

|x− θ|2

)
Proof. By applying the transformation behaviour to the isometry i = i−en,2 we get for every x ∈ Bn

and every θ ∈ ∂Bn

bBn(x, θ) = bUn(i(x), i(θ))

Note that the respective fixed origins are mapped to each other by i. We shall only verify the above
identity for i(θ) ∈ Rn−1×{0} ⊂ ∂Un. The special case for i(θ) = ∞ (i.e. θ = −en) is easily verified
in the very same way. Let x ∈ Bn and θ ∈ Sn−1\{−en}. We have

bUn(i(x), i(θ)) = − ln
(

1 + |i(θ)|2

|i(x)− i(θ)|2
〈i(x), en〉

)
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Computing each occuring term separately

1 + |i(θ)|2 = 1 +

∣∣∣∣2 θ + en
|θ + en|2

− en

∣∣∣∣2
= 1 +

4

|θ + en|2
− 4

〈θ + en, en〉
|θ + en|2

+ 1

= 2− 4
〈θ, en〉
|θ + en|2

= 2|θ + en|−2(|θ + en|2 − 2〈θ, en〉)

= 4|θ + en|−2

|i(x)− i(θ)|2 =
∣∣∣∣2 x+ en
|x+ en|2

− en −
(
2
θ + en
|θ + en|2

− en

)∣∣∣∣2
= 4|x+ en|−4|θ + en|−4

∣∣(x+ en)|θ + en|2 − (θ + en)|x+ en|2
∣∣2

= 4|x+ en|−2|θ + en|−2
(
|x+ en|2 − 〈x+ en, θ + en〉+ |x+ en|2

)
= 4|x+ en|−2|θ + en|−2|x− θ|2

〈i(x), en〉 =
〈
en, 2

x+ en
|x+ en|2

− en

〉
= −1 + 2

〈x+ en, en〉
|x+ en|2

= |x+ en|−2(−|x|2 − 2〈x, en〉 − 1 + 2 + 2〈x, en〉)
= |x+ en|−2(1− |x|2)

Hence as asserted
bBn(x, θ) = − ln

(
1− |x|2

|x− θ|2

)

Remark E.1.7. It is now easy to see, that the Busemann function bBn(x, θ) is smooth in x and
continuous in θ. By the transformation behaviour the same is true for bUn.

The Busemann function has the additional nice property that it is geodesically convex.

Proposition E.1.8. Let γ : R → Un be a geodesic and θ ∈ ∂Un. Then

∂2t bUn(γ(t), θ) ≥ 0 ∀t ∈ R

and equality holds if and only if θ ∈ {γ(∞), γ(−∞)}.

Proof. Let ϕ ∈ Isom(Un) be an isometry such that ϕ(γ(t)) = eλten for some λ > 0 and every t ∈ R.
Then we have

bUn(γ(t), θ) = bUn(ϕ(γ(t)), ϕ(θ)) = bUn(e
λten, ϕ(θ))

First consider the case ϕ(θ) = ∞ = (ϕ ◦ γ)(∞), that is θ = γ(∞). We get

bUn(eλten,∞) = − ln(eλt) = −λt

and hence
∂2t bUn(γ(t), θ) = 0 ∀t ∈ R
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Otherwise if ϕ(θ) ∈ Rn−1 × {0} we get

bUn(eλten, ϕ(θ)) = − ln

(
1 + |ϕ(θ)|2

|eλten − ϕ(θ)|2
eλt

)
= −λt− ln(1 + |ϕ(θ)|2) + ln

(
e2λt + |ϕ(θ)|2

)
Thus

∂tbUn(eλten, ϕ(θ)) = −λ+
2λe2λt

e2λt + |ϕ(θ)|2

and

∂2t bUn(eλten, ϕ(θ)) =
4λ2e2λt

(
e2λt + |ϕ(θ)|2

)
− 2λe2λt

(
2λe2λt

)
(e2λt + |ϕ(θ)|2)2

=
4λ2e2λt|ϕ(θ)|2

(e2λt + |ϕ(θ)|2)2
≥ 0

for every t ∈ R. The last inequality is only an equality if ϕ(θ) = 0 = (ϕ ◦ γ)(−∞) that is
θ = γ(−∞).

E.2. The Barycenter Construction
After our discussion of the Busemann function in the previous section we are now ready to introduce
Douady-Earle’s barycenter construction. This will allow us to associate G-equivariantly to each
”nice” measure µ on ∂Hn a unique point in Hn called the barycenter of µ. Recall that the action
of Isom(Hn) on the measures on the boundary ∂Hn is given by

(g · µ)(A) = g∗(µ)(A) = µ(g−1A)

for every g ∈ Isom(Hn), µ ∈ M(∂Hn) and A ⊆ ∂Hn measurable. For a concise exposition of the
measure theory we are going to need, we refer to appendix A.
A natural way to construct such a map would be to take the point in Hn which has in average

the minimal distance to every point of ∂Hn, where we average according to our boundary measure.
However by definition every point of Hn has infinite distance to the boundary. That is why we have
to consider Busemann functions, which intuitively measure the relative distance of a point to the
boundary given an origin. The averaged relative distance is then given by the following function
in the upper half space model Un

Bµ(x) :=

∫
∂Un

bUn(x, θ) dµ(θ)

for every µ ∈ M1(∂Un) and x ∈ Un. It is now easy to see using the theorem about parameter
integrals, that Bµ is in fact a smooth function. Due to the ease of computations in the upper half
space model Un we shall stick to it for the rest of this section.
The next theorem tells us that Bµ has in fact a unique minimum, if the boundary measure is not

too concentrated.

Theorem E.2.1 (Barycenter Construction). Let µ ∈ M1(∂Un) be a probability measure that has
no atoms of mass ≥ 1/2. Then Bµ is geodesically strictly convex and has a unique minimum
bary(µ) in Un called the barycenter of µ.
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Remark E.2.2. It is trivial, to see that one may in fact define the barycenter for any finite (positive)
measure on ∂Hn by normalization. The barycenter is not affected by scaling the respective measure.

Proof. Strict convexity: It suffices to show that for every geodesic γ : R → Un

∂2t Bµ(γ(t)) > 0

for every t ∈ R.
Let t ∈ R. By Proposition E.1.8 we have

∂2t Bµ(γ(t)) = ∂2t

∫
∂Un

bUn(γ(t), θ) dµ(θ)

=

∫
∂Un

∂2t bUn(γ(t), θ) dµ(θ)

=

∫
∂Un\{γ(∞),γ(−∞)}

∂2t bUn(γ(t), θ) dµ(θ)

Now
µ(∂Un\{γ(∞), γ(−∞)}) = µ(∂Un)− µ({γ(∞)})︸ ︷︷ ︸

<1/2

−µ({γ(−∞)})︸ ︷︷ ︸
<1/2

> 0

Further ∂2t bUn(γ(t), θ) > 0 for every θ ∈ ∂Un\{γ(∞), γ(−∞)} and ∂2t bUn(γ(t), θ) is continuous in
θ. Thus there is a compact set V ⊂ ∂Un\{γ(∞), γ(−∞)} by inner regularity and ε > 0 such that
µ(V ) > 0 and ∂2t bUn(γ(t), θ) ≥ ε for every θ ∈ V . Therefore we get

∂2t Bµ(γ(t)) ≥
∫
V
∂2t bUn(γ(t), θ) dµ(θ) ≥ µ(V ) · ε > 0

and Bµ is geodesically strictly convex. Hence if a minimum of Bµ exists it is unique.
Existence of a minimum: Observe that bUn(en, θ) = 0 for all θ ∈ ∂Un and hence also

Bµ(en) =

∫
∂Un

bUn(en, θ) dµ(θ) = 0

If there is a minimum it thus has to be contained in the geodesically convex closed set A := {x ∈
Un : Bµ(x) ≤ 0} 3 en. We need to see that A is also bounded.
It will be sufficient to show, that Bµ(γ(t)) → ∞ as t → ∞ where γ : R → Un is any geodesic

with γ(0) = en. Indeed if A is unbounded there is a geodesic γ : R → Un starting from o such that
γ(t) ∈ A for all t ≥ 0. But then Bµ(γ(t)) ≤ 0 for all t ≥ 0 in contradiction to Bµ(γ(t)) → ∞ as
t→ ∞.
Let γ : R → Un be a geodesic with γ(0) = en. By applying an isometry ϕ ∈ Stab(en) we can

assume that γ(t) = eten since

Bµ(ϕ(γ(t))) =

∫
∂Un

bUn(ϕ(γ(t)), θ) dµ(θ) =

∫
∂Un

bUn(γ(t), ϕ−1(θ)) dµ(θ)

=

∫
∂Un

bUn(ϕ(γ(t)), θ) dϕ∗µ(θ)

and ϕ∗µ is also in M1(∂Un) with no atom of mass ≥ 1/2.
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For x = (0, . . . , 0, xn) ∈ R en ⊂ Un we have

Bµ(x) = − ln(xn)µ({∞}) +
∫
Rn−1

− ln
(
1 + |θ|2

|x− θ|2
xn

)
dµ(θ)

= − ln(xn)µ({∞}) +
∫
Rn−1

ln

xn + |θ|2
xn

1 + |θ|2

 dµ(θ)

= − ln(xn)µ({∞}) +
∫
B(0,R)c

ln

xn + |θ|2
xn

1 + |θ|2


︸ ︷︷ ︸

≥− ln(xn)

dµ(θ) +

∫
B(0,R)

ln

xn + |θ|2
xn

1 + |θ|2

 dµ(θ)

where R > 0 is arbitrary, B(0, R) ⊂ Rn−1 denotes the euclidean ball of radius R and center 0
and the estimate for the first integral can be easily verified by some fairly standard analysis of the
integrand. Since µ({∞}) < 1/2 there is R > 0 and 0 < α < 1 such that

α · µ(B(0, R))− µ(B(0, R)c)− µ({∞}) > 0

Thus

Bµ(x) ≥ − ln(xn) (µ({∞}) + µ(B(0, R)c)) +

∫
B(0,R)

ln

xn + |θ|2
xn

1 + |θ|2

 dµ(θ)

Further

ln

xn + |θ|2
xn

1 + |θ|2

 = α ln(xn) · ln
(
x1−α
n + x−1−α

n |θ|2

1 + |θ|2

)

and for every θ ∈ B(0, R)

ln
(
x1−α
n + x−1−α

n |θ|2

1 + |θ|2

)
≥ ln

(
x1−α
n

1 +R2

)
→ ∞ (xn → ∞)

Thus – if xn is large enought – we may assume that this last expression is ≥ 1.
Piecing this together we get

Bµ(x) ≥ − ln(xn) (µ({∞}) + µ(B(0, R)c)) + α ln(xn) · µ(B(0, R))

= ln(xn) (α · µ(B(0, R))− µ({∞})− µ(B(0, R)c)︸ ︷︷ ︸
>0

→ ∞

as xn → ∞ and we are done.

Remark E.2.3. Note that we have proven that the set {x ∈ Un : Bµ(x) ≤ 0} is compact for every
prabability measure µ on ∂Un with no atoms of mass greater than 1/2. From now on we shall
denote this set of measures by A<1/2. We will use this notation also in chapter III, when we are
going to proof the volume rigidity theorem.

The next example shows, that Bµ does not need to have a unique minimum if µ /∈ A<1/2.
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Example E.2.4. Let µ = 1/2 δ0 + 1/2 δ∞ ∈ M1(∂Un), which has two atoms: one at 0 and one at
∞. We compute

Bµ(x) = −1

2

(
ln(xn) + ln

(
xn
|x|2

))
= − ln

(
xn
|x|

)
.

Since xn ≤ |x|, we get that Bµ(x) ≥ 0. However for every x ∈ Un with x = xn · en for some xn > 0
we have xn = |x| such that Bµ(x) = 0. Hence Bµ(x) assumes its minimum at every point of the
positive n-th coordinate axis, such that there is no unique minimum and therefore no barycenter.
Also observe that Bµ(x) = − ln(xn/|x|) is invariant under scaling by some λ > 0 and rotations

around the n-th coordinate axis. This already hints towards the G-equivariance of the barycenter
construction, that we are going to prove in the next proposition.

Finally, the barycenter map is indeed G-equivariant and continuous with respect to the induced
weak-* topology on A<1/2 as the next proposition asserts.

Proposition E.2.5. The map

bary : A<1/2 → Un, µ 7→ bary(µ)

is G-equivariant and continuous, where A<1/2 ⊂ C(∂Un)∗ is equipped with the induced weak-*
topology.

Proof. First, bary(µ) : A<1/2 → Un is G-equivariant. Indeed, let µ ∈ A<1/2, g ∈ G and x =
bary(µ), i.e. the unique minimum of Bµ(x) =

∫
∂Hn ben(x, θ) dµ(θ) in Un. Then by the transformation

behaviour of the Busemann function b we get

Bg∗µ(gy) =

∫
∂Un

ben(gy, θ) dg∗µ(θ)

=

∫
∂Un

ben(gy, gθ) dµ(θ)

=

∫
∂Un

bg−1en(y, θ) dµ(θ)

=

∫
∂Un

ben(y, θ) + C(g, θ) dµ(θ)

=

∫
∂Un

ben(y, θ) dµ(θ) + Cµ(g)

= Bµ(y) + Cµ(g)

for every y ∈ Hn, where C(g, θ) = ben(x, θ)−bg−1en(x, θ) is the difference between the two Busemann
functions, which does not depend on x (cf. Lemma E.1.5), and Cµ(g) =

∫
∂Un C(g, θ) dµ(θ).

Thus we have
Bg∗µ(gx) = Bµ(x) + Cµ(g) ≤ Bµ(g

−1y) + Cµ(g) = Bg∗µ(y)

for every y ∈ Un, which shows that gx is the unique minimum of Bg∗µ. That is

bary(g∗µ) = gx = g bary(µ)

as asserted.
Now to continuity:
Let (µn)n∈N ∈ AN

<1/2 be a sequence converging to some µ ∈ A<1/2 in the weak-* topology. Hence
for every x ∈ Hn

Bµn(x) =

∫
∂Un

b(x, θ)dµn(θ) →
∫
∂Un

b(x, θ)dµ(θ) = Bµ(x) (n→ ∞)
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pointwise.
Let xn := bary(µn) and x := bary(µ). As we have already seen Bν(en) = 0 and the set {x ∈ Un :

Bν(x) ≤ 0} ⊂ Un is compact and convex for every ν ∈ A<1/2. Therefore the set

C :=
⋂
n∈N

{x ∈ Un : Bµn(x) ≤ 0} ∩ {x ∈ Un : Bµ(x) ≤ 0}

is non-empty, compact, convex and contains the respective minima {xn : n ∈ N} ∪ {x} ⊂ C. Now
we shall see that the family {Bµn : n ∈ N} has a uniform Lipschitz bound on C. Let x, y ∈ C and
γ : [0, d(x, y)] → C the geodesic segment joining x and y. We get

|Bµn(x)− Bµn(y)| ≤
∫
∂Un

|b(x, θ)− b(y, θ)| dµn(θ)

=

∫
∂Un

∣∣∣∣∣
∫ d(x,y)

0

d

ds
b(γ(s), θ) ds

∣∣∣∣∣ dµn(θ)
=

∫
∂Un

∣∣∣∣∣
∫ d(x,y)

0
〈gradxb(γ(s), θ), γ̇(s)〉 ds

∣∣∣∣∣ dµn(θ)
≤
∫
∂Un

∫ d(x,y)

0
‖gradxb(γ(s), θ)‖γ(s) ds dµn(θ)

≤
∫
∂Un

d(x, y) ·M(C) dµn(θ) = d(x, y) ·M(C)

where M(C) = sup{‖gradxb(x′, θ)‖x′ : x′ ∈ C, θ ∈ ∂Un} <∞.
Now we argue by contradiction. Assume that the sequence (xn) does not converge to x. Then

there is ε > 0 and a subsequence (xnk
) such that d(xnk

, x) ≥ ε for every k ∈ N. Since C\B(x, ε)
is compact there is a subsequence of this subsequence, which we shall again denote by (xnk

), such
that (xnk

) converges to some y ∈ C\B(x, ε). Because of the uniform Lipschitz bound we get

|Bµnk
(xnk

)− Bµ(y)| ≤ |Bµnk
(xnk

)− Bµnk
(y)|+ |Bµnk

(y)− Bµ(y)|
≤M(C) d(xnk

, y) + |Bµnk
(y)− Bµ(y)|

and thus limk→∞ Bµnk
(xnk

) = Bµ(y). But because all (xnk
) are the respecitve minima of Bµnk

we
also have for every ξ ∈ Un

Bµnk
(xnk

) ≤ Bµnk
(ξ)

Taking the limit k → ∞ on both sides we obtain

Bµ(y) ≤ Bµ(ξ)

for every ξ ∈ Un. Thus y must be the unique minimum x of Bµ which is a contradiction to
y ∈ C\B(x, ε).

E.3. Visualization of Bµ
In this last section we want to give some plots of Bµ for different probability measures µ ∈ M1(∂B2).
For the plots we used the Python script in Listing E.3 using Python version 2.7.9, Matplotlib version
1.3.1 and NumPy version 1.8.1.
Let us assume that µ ∈ M1(∂B2) is absolutely continuous with respect to the angle measure λ on

S1 ∼= ∂B2. Therefore we can write dµ = f̂ dλ for some positive f̂ ∈ L1
loc(S

1) by the Radon-Nikodym
Theorem. Note that ∫

S1

f̂ dλ = 1
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since µ is supposed to be a probability measure.
In order to compute

Bµ(x) =

∫
∂B2

bB2(x, θ) dµ(θ)

for x ∈ B2, we further identify S1 ∼= [0, 2π) as measure spaces via the restricted exponential
mapping exp : [0, 2π) → S1, t 7→ exp(it), whence

Bµ(x) =

∫ 2π

0
bB2(x, exp(it)) · f(t) dt

where f(t) = f̂(exp(it)) is some ”density function” on [0, 2π) (cf. Listing E.3). Thus given such an
f we can compute values of Bµ using the concrete formula for Busemann functions in Proposition
E.1.6.
We will first use the following family of density functions

fa(t) :=

{
1

a·2π , if π − a · π ≤ t ≤ π + a · π
0, else

depending on some parameter 0 < a ≤ 1 (cf. Listing E.3, line 27). These are normalized
step functions with just one bump of diameter a · 2π around π. Note that we get for a = 1 the
equidistributional measure on S1, i.e. λ/2π. Figure E.1, Figure E.2 and Figure E.3 depict the
different shapes of Bµ and fa for a = 1.0, a = 0.5 and a = 0.1 respectively. As one would expect
the ”denser” it gets at −1 ∈ S1 ⊂ C the more the barycenter tends towards −1.
The next family of density functions we want to consider are stepfunctions with two bumps of

respective diameter a · π around π
2 and 3π

2

fa(t) :=


1

a·2π , if π
2 − a · π

2 ≤ t ≤ π
2 + a · π

2
1

a·2π , if 3π
2 − a · π

2 ≤ t ≤ 3π
2 + a · π

2

0, else

depending on some parameter 0 < a ≤ 1 (cf. Listing E.3, just replace the previous definition of
f with the commented definition in line 35). Again for a = 1 we recover the equidistributional
measure on S1. Figure E.4 and Figure E.5 show the cases for a = 0.5 and a = 0.1 respectively.
As a → 0 it is easy to see, that the measures induced by fa converge to µ = 1/2 δi + 1/2 δ−i.

However µ admits no unique minimum, i.e. has no barycenter (cf. Figure E.6). Observe that
this is Example E.2.4 transferred from the upper half plane model U2 to the Poincaré ball model
B2. This is no contradiction to the continuity of bary : A<1/2 → Hn, because the limit measure
µ = 1/2 δi + 1/2 δ−i is not in A<1/2!
Finally, we depict in Figure E.7 the shape of Bµ corresponding to a more exoticly shaped density

function
f(t) =

1

6π
(sin(3t) + sin(2t) + sin(t) + cos(3t) + cos(2t) + cos(t) + 3).

Listing E.1: Code to plot Bµ in ball model B2

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pickle
4

5 from matplotlib.colors import Normalize
6

7 # Define a new normalizer for a nicer color output:
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8

9 class SigmoidNormalize(Normalize):
10 def __init__(self, alpha=1.0, vmin=None, vmax=None, clip=False):
11 self.alpha=alpha
12 Normalize.__init__(self,vmin,vmax,clip)
13

14 def sigmoid(self,t):
15 x=np.exp(-self.alpha*t)
16 x=1/(1+x)
17 return x
18

19 def __call__(self,value,clip=None):
20 return np.ma.masked_array(self.sigmoid(value))
21

22

23 # Define a density function f:
24

25 def f(x):
26 a=1.0 # scaling factor
27 i f (np.pi - np.pi*a <= x) and (x <= np.pi + np.pi*a) :
28 return (1.0/(a*2*np.pi))
29 else:
30 return 0
31

32 """
33 def f(x):
34 a=1.0 #scaling factor
35 if (np.pi/2 - a*np.pi/2 <= x) and (x < np.pi/2 + a*np.pi/2):
36 return 1.0/(a*2*np.pi)
37 elif (3*np.pi/2 - a*np.pi/2 <= x) and (x < 3*np.pi/2 + a*np.pi/2):
38 return 1.0/(a*2*np.pi)
39 else:
40 return 0.0
41 """
42

43 """
44 def f(x):
45 return (np.sin(3*x) + np.sin(2*x) + np.sin(x) +
46 np.cos(3*x) + np.cos(2*x) + np.cos(x) + 3)/(6.0*np.pi)
47 """
48

49 # Define the Busemann function in the disk model
50

51 def buse(x,y,thetax,thetay):
52 return np.log(((x-thetax)**2+(y-thetay)**2)/(1-x**2-y**2))
53

54 # Integrate the busemann function with
55 # respect to the given density in order to
56 # get the function B(.,.):
57

58 def B(x,y):
59 M=100 # number of steps for the numerical integration
60 delta=2*np.pi/M
61

62 X=np.arange(0.0, 2*np.pi, delta)
63

64 # Define a vectorial version of the integran:
65 busexy = np.vectorize(lambda t: f(t)*buse(x,y,np.cos(t),np.sin(t)))
66 Y=busexy(X)
67

68 # We use the trapez rule for numerical integration:
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69 return np.trapz(Y,X)
70

71 '''
72 # Integrate the Busemann function with respect to the measure
73 # $\mu = 0.5 \delta_{\theta_1} + 0.5 \delta_{\theta_2}$
74 # where $\theta_1 = (\cos(\pi/2), \sin(\pi/2))$ and
75 # $\theta_2 = (\cos(3 \pi/2), \sin(3 \pi/2))$
76

77 def B(x,y):
78 theta1x = np.cos(np.pi/2)
79 theta1y = np.sin(np.pi/2)
80

81 theta2x = np.cos(3.0*np.pi/2)
82 theta2y = np.sin(3.0*np.pi/2)
83

84 return 0.5*buse(x,y,theta1x,theta1y) + 0.5*buse(x,y,theta2x,theta2y)
85 '''
86

87 ################## Main Script ##################
88

89 # file name for temporary storage of the graph of B(.,.)
90 PATH_DATA='bary_data'
91

92 # indicates whether the graph of B(.,.) needs to be recomputed
93 RECOMPUTE=True
94

95 # number of intermediate steps for each axis, i.e. N^2= "number of pixels"
96 N=400
97

98

99

100

101 i f RECOMPUTE:
102 # compute the graph of B(.,.):
103

104 delta=2.0/N # Step size
105 grid = np.ma.zeros((N,N)) # raw image
106

107 # Print how many % of the computation is already done:
108 print "Progress:␣"
109 l=0
110

111 # Compute the value of B(.,.) at each pixel:
112 for i in range(0,N):
113 for j in range(0,N):
114 x=-1+i*delta
115 y=-1+j*delta
116 # B(.,.) takes by definition only values in the disk
117 i f x**2+y**2<1:
118 grid[j,i]=B(x,y)
119 else:
120 grid[j,i]=np.ma.masked
121 # mask other pixels outside the disk
122 l=l+1
123 print 100.0*l/(N**2) # print progress
124

125 # Store image in temp file:
126 datafile=open(PATH_DATA ,'w')
127 p=pickle.Pickler(datafile)
128 p.dump(grid)
129 datafile.close()
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130 else:
131 # Don't compute but load image from temp file:
132

133 datafile=open(PATH_DATA ,'r')
134 up = pickle.Unpickler(datafile)
135 grid = up.load()
136 datafile.close()
137

138 # Find minimum aka "the barycenter"
139 j0,i0 = np.unravel_index(grid.argmin(),grid.shape)
140

141 minx = 2*float(i0)/N - 1
142 miny = 2*float(j0)/N - 1
143

144 #Open figure for plot of B(.,.)
145 fig = plt.figure()
146 ax = fig.add_subplot(111)
147

148 #Plot B(.,.)
149 im=ax.imshow(grid,
150 norm=SigmoidNormalize(alpha=0.4),
151 extent=(-1,1,-1,1),
152 origin='lower')
153

154 #Plot barycenter as black little hexagon
155 ax.plot(minx,miny,marker='H',color='black')
156

157 #Plot colorbar
158 fig.colorbar(im)
159

160 #Open new figure to plot density function f(.)
161 fig = plt.figure()
162 ax=fig.add_subplot(111)
163

164 T = np.arange(0,2*np.pi,2*np.pi/N)
165 vf = np.vectorize(f, otypes=[np.float])
166 Y = vf(T)
167

168 #specify ticks on x-axis as fractions of pi
169 unit = np.pi/2
170 l=2*np.pi/unit
171 x_tick = np.arange(0, 5)
172 x_label = [r"$0$", r"$\frac{\pi}{2}$", r"$\pi$",
173 r"$\frac{3␣\pi}{2}$",r"$2␣\pi$"]
174

175 ax.set_xticks(x_tick*unit)
176 ax.set_xticklabels(x_label,fontsize=15)
177

178

179 ax.plot(T,Y)
180

181 plt.show()
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E.3. Visualization of Bµ

(a) Plot of Bµ

(b) Plot of fa

Figure E.1.: Case a = 1: Equidistribution. The barycenter is depicted as a little black hexagon.
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(a) Plot of Bµ

(b) Plot of fa

Figure E.2.: Case a = 0.5: One bump of diameter a · 2π. The barycenter is depicted as a little
black hexagon.
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E.3. Visualization of Bµ

(a) Plot of Bµ

(b) Plot of fa

Figure E.3.: Case a = 0.1: One bump of diameter a · 2π. The barycenter is depicted as a little
black hexagon.
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(a) Plot of Bµ

(b) Plot of fa

Figure E.4.: Case a = 0.5: Two bumps of resp. diameter a ·π. The barycenter is depicted as a little
black hexagon.
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E.3. Visualization of Bµ

(a) Plot of Bµ

(b) Plot of fa

Figure E.5.: Case a = 0.1: Two bumps of resp. diameter a ·π. The barycenter is depicted as a little
black hexagon.
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Figure E.6.: Plot of Bµ for µ = 1/2 δi + 1/2 δ−i. No Barycenter!
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E.3. Visualization of Bµ

(a) Plot of Bµ

(b) Plot of f

Figure E.7.: A more involved density function f(t) = 1
6π (sin(3t)+sin(2t)+sin(t)+cos(3t)+cos(2t)+

cos(t) + 3).

187





Bibliography

[AE01] H. Amann and J. Escher. Analysis III. Birkhäuser Verlag, Basel - Boston - Berlin, first
edition, 2001.

[BBI13] M. Bucher, M. Burger, and A. Iozzi. A dual interpretation of the Gromov-Thurston
proof of Mostow rigidity and volume rigidity for representations of hyperbolic lattices. In
Trends in harmonic analysis, volume 3 of Springer INdAM Ser., pages 47–76. Springer,
Milan, 2013.

[BCG95] G. Besson, G. Courtois, and S. Gallot. Entropies et rigidités des espaces localement
symétriques de courbure strictement négative. Geom. Funct. Anal., 5(5):731–799, 1995.

[BCG96] G. Besson, G. Courtois, and S. Gallot. Minimal entropy and Mostow’s rigidity theorems.
Ergodic Theory Dynam. Systems, 16(4):623–649, 1996.

[BCG99] G. Besson, G. Courtois, and S. Gallot. Lemme de Schwarz réel et applications
géométriques. Acta Math., 183(2):145–169, 1999.

[BI02] M. Burger and A. Iozzi. Boundary maps in bounded cohomology. Appendix to: “Contin-
uous bounded cohomology and applications to rigidity theory” [Geom. Funct. Anal. 12
(2002), no. 2, 219–280; MR1911660 (2003d:53065a)] by Burger and N. Monod. Geom.
Funct. Anal., 12(2):281–292, 2002.

[BI07] Marc Burger and Alessandra Iozzi. Bounded differential forms, generalized Milnor-Wood
inequality and an application to deformation rigidity. Geom. Dedicata, 125:1–23, 2007.

[BI09] M. Burger and A. Iozzi. A useful formula from bounded cohomology. In Géométries
à courbure négative ou nulle, groupes discrets et rigidités, volume 18 of Sémin. Congr.,
pages 243–292. Soc. Math. France, Paris, 2009.

[BIW03] M. Burger, A. Iozzi, and A. Wienhard. Surface group representations with maximal
Toledo invariant. C. R. Math. Acad. Sci. Paris, 336(5):387–390, 2003.

[BIW10] M. Burger, A. Iozzi, and A. Wienhard. Surface group representations with maximal
Toledo invariant. Ann. of Math. (2), 172(1):517–566, 2010.

[BM00] M.B. Bekka and M. Mayer. Ergodic theory and topological dynamics of group actions on
homogeneous spaces, volume 269 of London Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 2000.

[BM02] M. Burger and N. Monod. Continuous bounded cohomology and applications to rigidity
theory. Geom. Funct. Anal., 12(2):219–280, 2002.

[Bou89] N. Bourbaki. General Topology Chapters 1-4. Springer, second edition, 1989.

[Bou04a] N. Bourbaki. Integration Chapters 1-6. Springer, 2004.

[Bou04b] N. Bourbaki. Integration Chapters 7-9. Springer, 2004.

189



Bibliography

[Bow93] B.H. Bowditch. Geometrical finiteness for hyperbolic groups. Journal of Functional
Analysis, (113):245–317, 1993.

[BP92] R. Benedetti and C. Petronio. Lectures on hyperbolic geometry. Universitext. Springer-
Verlag, Berlin, 1992.

[Bre93] G.E. Bredon. Topology and Geometry. Graduate Texts in Mathematics. Springer-Verlag,
1993.

[dC92] M.P. do Carmo. Riemannian Geometry. Mathematics: Theory & Applications.
Birkhäuser, second edition, 1992.

[DE86] A. Douady and C.J. Earle. Conformally natural extension of homeomorphisms of the
circle. Acta Math., 157(1-2):23–48, 1986.

[Dun99] N.M. Dunfield. Cyclic surgery, degrees of maps of character curves, and volume rigidity
for hyperbolic manifolds. ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–The
University of Chicago.

[Els11] J. Elstrodt. Maß- und Integrationstheorie. Springer, 7., korrigierte und aktualisierte
auflage edition, 2011.

[FK06] S. Francaviglia and B. Klaff. Maximal volume representations are Fuchsian. Geom.
Dedicata, 117:111–124, 2006.

[Gro82] M. Gromov. Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math.,
(56):5–99 (1983), 1982.

[Gui80] A. Guichardet. Cohomologie des groupes topologiques et des algèbres de Lie, volume 2 of
Textes Mathématiques [Mathematical Texts]. CEDIC, Paris, 1980.

[Hat02] A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.

[Iva87] N.V. Ivanov. Foundations of the theory of bounded cohomology. J. of Soviet Mathematics,
37:1090–1115, 1987.

[Kap09] M. Kapovich. Hyperbolic manifolds and discrete groups. Modern Birkhäuser Classics.
Birkhäuser Boston, Inc., Boston, MA, 2009. Reprint of the 2001 edition.

[Lee13] J.M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathemat-
ics. Springer, New York, second edition, 2013.

[Lü10] A. Lücker. Approaches to mostow rigidity in hyperbolic space. http://wiki.epfl.ch/
grtr/documents/lucker2010.pdf, 2010. Accessed: 23/11/2015.

[Mon01] N. Monod. Continuous bounded cohomology of locally compact groups, volume 1758 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2001.

[Mun66] J.R. Munkres. Elementary differential topology, volume 1961 of Lectures given at Mas-
sachusetts Institute of Technology, Fall. Princeton University Press, Princeton, N.J.,
1966.

[Pat88] A.L.T. Paterson. Amenability, volume 29 of Mathematical Surveys and Monographs.
American Mathematical Society, 1988.

190



Bibliography

[Rat06] J.G. Ratcliffe. Foundations of hyperbolic manifolds, volume 149 of Graduate Texts in
Mathematics. Springer, New York, second edition, 2006.

[RF10] H.L. Royden and P.M. Fitzpatrick. Real Analysis. Pearson, fourth edition, 2010.

[RS00] H. Reiter and J.D. Stegeman. Classical Harmonic Analysis and Locally Compact Groups.
Oxford University Press, second edition, 2000.

[Rud09] W. Rudin. Reelle und Komplexe Analysis. Oldenbourg Verlag München, second edition,
2009.

[Thu] W.P. Thurston. The geometry and topology of three-manifolds. http://library.msri.
org/books/gt3m/. Accessed: 07/04/2015.

[Thu97] W.P. Thurston. Three-Dimensional Geometry and Topology, volume 1 of Princeton Math-
ematical Series. Princeton University Press, 1997.

[Tor] S. Tornier. Haar measures. http://www.math.ethz.ch/~torniers/download/2014/
haar_measures.pdf. Accessed: 21/09/2015.

[Wie04] A. Wienhard. Bounded cohomology and geometry. http://arxiv.org/abs/math/0501258,
2004. Accessed: 22/11/2015.

[Zim84] R.J. Zimmer. Ergodic theory and semisimple groups, volume 81 of Monographs in Math-
ematics. Birkhäuser Verlag, Basel, 1984.

[Zim90] R.J. Zimmer. Essential Results of Functional Analysis. The University of Chicago Press,
1990.

191


