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Abstract
In the first part of this thesis we consider the horofunction compactification of finite-
dimensional normed real spaces and show that the boundary of the compactification has
the shape of the dual unit ball if the norm of the space is polyhedral. We will characterise
the sequences converging to some Busemann point and see that only the limiting direction
and an eventual parallel shift of the sequence have influence on this Busemann point.
In the second part of the thesis we examine symmetric spaces with Finsler metrics and
their horofunction compactification by using the results of the first part and we make a
short comparison with the Furstenberg compactification.

Zusammenfassung
In dem ersten Teil dieser Arbeit befassen wir uns mit der Horofunktions-Kompaktifizierung
von endlich dimensionalen normierten reellen Räumen und zeigen, dass der Rand der
Kompaktifizierung die Form des dualen Einheitsballs hat, wenn die Norm auf dem Raum
polyederförmig ist. Wir geben eine Charakterisierung der Folgen an, die gegen einen
Busemannpunkt konvergieren und sehen, dass nur die beschränkende Richtung und eine
eventuelle Parallelverschiebung der Folge Einfluss auf diesen Busemannpunkt haben.
Im zweiten Teil der Arbeit untersuchen wir symmetrische Räume mit Finsler-Metrik und
deren Horofunktions-Kompaktifizierung, indem wir die Ergebnisse des ersten Teils ver-
wenden, und geben einen kurzen Ausblick auf die Fürstenberg-Kompaktifizierung.
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1 Introduction

This thesis deals with horofunction compactifications of certain manifolds.
Let X be a topological space. If X is not compact, there are several possibilities to

compactify it. One of the most basic compactifications is the (Alexandroff) one-point
compactification. But there are far more ways to compactify X, some of them homeomor-
phic to each other, some not.
In this thesis we will consider spaces with additional structure, namely finite-dimensional

normed real spaces and symmetric spaces. We will examine their horofunction compactifi-
cation. It is also called “Busemann compactification”, if every point of the horoboundary
is a Busemann point.

This thesis can be split into three main parts. The first part (chapters 2 and 3) intro-
duces the basic concepts needed such as the horofunction compactification and Busemann
points of a metric space (X, d), following [Wal10]. Most of the background knowledge
presented consists of convex analysis and the presentation is based on the books [Bee93]
and [Roc70]. Other important concepts are the definition of extreme sets of a convex set
and the construction of the dual unit ball B◦ of a polyhedral unit ball B defining the norm
of our space.
The horofunction compactification is defined by the embedding of X into the space of
continuous functions C(X) via the map

ψ : X −→ C(x)
z 7−→ ψz

where ψz(x) := d(x, z) − d(p0, z) and p0 is a basepoint of X. There are some special ho-
rofunctions, called Busemann points, which can be realised as limits of almost-geodesics.

The next two chapters (4 and 5) deal with the horofunction compactification of finite-
dimensional normed spaces. We will explain a paper of Walsh ([Wal07]) where he proves
the following two results:

Theorem 4.0.32 Let (V, ‖·‖) be a finite-dimensional normed space. Then the set of
Busemann points of V is the set {f∗E,p | E is a proper extreme set of B◦, p ∈ V }, where
f∗ denotes the Legendre-Fenchel transform of f .

Theorem 4.0.33 Let (V, ‖·‖) be a finite-dimensional normed space. Then every horo-
function of V is a Busemann point if and only if the set of extreme sets of the dual unit
ball B◦ is closed in the Painlevé-Kuratowski topology.

The functions fE,p in the first theorem are special affine functions on V ∗. In this sense
the first theorem gives us a way of finding the Busemann points of a compactification
explicitly by computing the functions f∗E,p. As mentioned above, every Busemann point
is a horofunction but not necessarily vice versa. The nice point of the second theorem is
that it gives a criterion when they coincide and when not.
After these rather theoretical results, we will apply them to many examples in which we de-
termine the horofunction compactification. Most of the time we will consider R2 equipped
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2 Chapter 1. Introduction

with a polyhedral norm or a norm induced by fixing the convex unit ball. I went this way
and gained enough intuition to see the general behaviour of sequences converging in the
horofunction compactification and a way to construct the boundary geometrically. This
work resulted in the formulation of Theorem 5.6.7, a classification of these sequences and
their corresponding Busemann points. The theorem is presented after plenty of examples
which shall help the reader to get a feeling for the procedure.

In the last two chapters (chapters 6 and 7) we will temporarily leave the finite-dimensional
normed spaces and turn to symmetric spaces with Finsler metrics. That means we will
consider classical symmetric spaces, that is, Riemannian manifolds with a certain symme-
try, which are provided with an additional Finsler structure. As we are mainly dealing
with the Lie theoretical description of symmetric spaces, in most of the cases it does not
make any difference whether we have a Riemannian structure or not.
In saying this we already mentioned one of the great benefits of symmetric spaces:

besides being a Riemannian manifold with symmetry, each symmetric space M is diffeo-
morphic to some G/K, the set of left cosets of the group G of isometries on M and a
certain closed subgroup K ⊆ G. As the group G carries the structure of a Lie group, we
can consider its Lie algebra g. Moreover the treatment of symmetric spaces can be turned
into a treatment of Lie algebras and we get the Cartan decomposition g = p ⊕ k with
p ∼= Tp0M and k the Lie algebra of K. By the root space decomposition with respect to
a maximal abelian subalgebra a of p, we obtain the Weyl group W and the Weyl cham-
bers of a. As a subspace of p, a is a finite-dimensional normed space where the norm, a
W -invariant convex ball, stands in one-to-one correspondence with the Finsler metric on
M . At this point we come back to our results of the first part. We will use them to com-
pactify SL(3,R)/SO(3) and Sp(4,R)/U(4) and see (related to [GJT98]) which choice of
Finsler structure leads to a horofunction compactification isomorphic to the Furstenberg
compactification.

I would like to thank my advisor, Professor Anna Wienhard, for all her help and her
intensive and motivating mentoring during the last year and additionally for this really
interesting subject of my thesis I immersed myself deeper and deeper with steadily grow-
ing enthusiasm. Her lecture about symmetric spaces and the talks with her have also
contributed to it. This thesis wouldn’t have been like this and it wouldn’t have been such
a nice time working on it without the personal, technical and corrective help of my friends,
especially of Eike Fokken, who had to endure long discussions especially about converging
sequences. Thank you all.



2 Preliminaries

2.1 Painlevé-Kuratowski Topology
We will follow [Bee93] and [Roc70] for an introduction on convex analysis.

Definition 2.1.1 A set Λ is called directed by a relation ≥ if the relation is reflexive,
transitive and for each pair {λ1, λ2} ⊆ Λ there is a λ3 ∈ Λ such that λ3 ≥ λ1 and λ3 ≥ λ2.
A net in a set X based on a directed set Λ is a function a : Λ −→ X. In particular a
sequence is a net where Λ = N 1 ordered as usual.
We will write aλ for a(λ) and 〈aλ〉λ∈Λ for the net.

Definition 2.1.2 Let Λ be a directed set. A subset Σ ⊆ Λ is called

(i) residual ⇔ ∃λ ∈ Λ ∀σ ∈ Λ : (σ ∈ Σ⇔ σ ≥ λ).

(ii) cofinal ⇔ ∀λ ∈ Λ ∃σ ∈ Σ : λ ≤ σ.

Example 2.1.3 A residual set in Z is a set which consists of all numbers bigger than
some λ ∈ Z. A subset of Z is cofinal if and only if it is unbounded above.

Definition 2.1.4 Let X be a Hausdorff space and 〈Aλ〉λ∈Λ a net of subsets of X. Let
x0 ∈ X be a point. Then

(i) x0 is called a limit point of 〈Aλ〉λ∈Λ if each neighbourhood of x0 intersects Aλ for
all λ in some residual subset of Λ.

(ii) x0 is called a cluster point of 〈Aλ〉λ∈Λ if each neighbourhood of x0 intersects Aλ for
all λ in some cofinal subset of Λ.

(iii) LiAλ := {limit points of 〈Aλ〉} is called the lower closed limit of 〈Aλ〉.

(iv) LsAλ := {cluster points of 〈Aλ〉} is called the upper closed limit of 〈Aλ〉.

Obviously we have LiAλ ⊆ LsAλ.

Example 2.1.5 Let X be the real line R. Define

An :=
{

[−n,− 1
n ] for n ∈ N even;

[ 1
n , n] for n ∈ N odd.

We already saw that a residual subset of N consists of all numbers greater or equal to
some λ ∈ N. Therefore LiAn = {0}, because for each neighbourhood of 0, there is an
N ∈ N big enough such that the neighbourhood intersects all An with n ≥ N . There
cannot be another limit point x in LiAn, because x would have a neighbourhood not
intersecting either the positive or the negative intervals.
Since a cofinal subset of N is an arbitrary subset unbounded above, LsAn = R, because
for each y ∈ R every neighbourhood of y intersects all intervals An with n either even or
odd and big enough.
1In this thesis, 0 /∈ N.
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4 Chapter 2. Preliminaries

Proposition 2.1.6 ([Bee93, Prop. 5.2.2]) Let X be a Hausdorff space and 〈Aλ〉λ∈Λ
be a net of sets in X. Then

LiAλ =
⋂

Σ⊆Λ cofinal
cl(
⋃
λ∈Σ

Aλ)

and
LsAλ =

⋂
Σ⊆Λ residual

cl(
⋃
λ∈Σ

Aλ).

Hence LiAλ and LsAλ are both closed sets.

Definition 2.1.7 LetX be a Hausdorff space and 〈Aλ〉 a net of sets inX. Let furthermore
A be a closed set in X.
We say 〈Aλ〉 is Painlevé-Kuratowski convergent to A, if LiAλ = LsAλ = A.
In this case, we write A = K-limAλ or Aλ

K−→ A.

Lemma 2.1.8 ([Bee93, Lemma 5.2.4]) Let A be a closed subset of a Hausdorff space
X and let 〈Aλ〉 be a net of subsets of X.
Then Aλ

K−→ A if and only if A ⊆ LiAλ and LsAλ ⊆ A.

Lemma 2.1.9 ([Bee93, Prop. 5.2.9]) Let X be a Hausdorff space, 〈An〉n∈N a net of
subsets and A a closed set.
Then An

K−→ A if and only if the following conditions both hold:

• ∀x ∈ A : ∃xn ∈ An : xn → x.

• if (nk)k∈N ⊆ N is a subsequence of N with nk < nk+1 and xk ∈ Ank ∀k ∈ N then
(xk)→ x implies that x ∈ A.

2.2 Convex Analysis

In the following let X always be a finite-dimensional normed linear space over R.

Definition 2.2.1 A subset A ⊆ X is called convex if αa+ (1− α)b ∈ A for all α ∈ [0, 1]
and a, b ∈ A.

Theorem 2.2.2 ([Bee93, Thm. 1.4.1]) Let X and Y be normed linear spaces.

(i) The sum of two convex subsets of X is convex.

(ii) Let A ⊆ X be convex and α be a scalar. Then αA, clA and intA are also convex.

(iii) Let f : X → Y be an affine function and A ⊆ X be convex. Then the image
f(A) ⊆ Y is also convex.

(iv) Let {Ai | i ∈ I} be a family of convex subsets of X. Then the intersection
⋂
i∈I Ai

is also convex.

(v) Let {Ai | i ∈ I} be a family of convex subsets of X. If ∀i, j ∈ I ∃k ∈ I : Ai∪Aj ⊆ Ak
(i.e. {Ai} is directed by inclusion), then

⋃
i∈I Ai is convex.

Definition 2.2.3 Let A ⊆ X be a subset. The convex hull of A is the smallest convex
subset of X containing A. We will denote this set by convA.



2.2. Convex Analysis 5

Lemma 2.2.4 Let X be a normed linear space and A ⊆ X a non-empty subset. Then

convA =
{

k∑
i=1

µiai

∣∣∣∣∣ k ∈ N, ai ∈ A,µi ≥ 0 and
k∑
i=i

µi = 1
}

Proof. We set M := {
∑k
i=1 µiai | k ∈ N, ai ∈ A,µi ≥ 0 and

∑k
i=i µi = 1}.

“⊆” We show that M is convex and contains A. As convA is the smallest subset of X
containing A, it follows that convA ⊆M by definition of the convex hull.
For convexity of M let m1,m2 ∈ M be arbitrary. Then ∃ai, bj ∈ A; µi, νj ≥ 0,
i = 1, . . . , k, j = 1, . . . , l with

∑k
i=1 µi = 1;

∑l
j=1 νj = 1 such that

m1 =
k∑
i=1

µiai; m2 =
l∑

j=1
νjbj .

We have to show, that αm1 + (1− α)m2 ∈M ∀α ∈ [0, 1]. Let α ∈ [0, 1].

αm1 + (1− α)m2 = α
k∑
i=1

µiai + (1− α)
l∑

j=1
νjbj

=
k+l∑
i=1

γici

with
γi :=

{
αµi for i = 1, . . . , k;
(1− α)νi−k for i = k + 1, . . . , k + l.

and
ci :=

{
ai for i = 1 . . . k;
bi−k for i = k + 1 . . . k + l.

As γi ∈ [0, 1], ci ∈ A ∀i = 1 . . . k + l and

k+l∑
i=1

γi = α
k∑
i=1

µi + (1− α)
l∑

j=1
νj = α+ 1− α = 1,

our last sum lies in M .
It is obvious that A ⊆ M . Altogether M is convex and contains A, so convA ⊆ M
as stated above.

“⊇” Proof by induction over the length of the sum k, the case k = 1 is clear.
For k = 2 let m = µ1a1 + µ2a2 ∈M .
As µ2 = 1− µ1, it is m = µ1a1 + (1− µ1)a2 ∈ convA since convA is convex.
Assume now that

∑k
i=1 µiai ∈ convA for all µi ∈ [0, 1] and ai ∈ A where i = 1, . . . , k.

Let m =
∑k+1
i=1 µiai ∈ M , that is ai ∈ A, µi ≥ 0 and

∑k+1
i=1 µi = 1. Without loss of

generality let all µi > 0. Define

s :=
k∑
i=1

µi.

Then
k∑
i=1

µi
s

= 1 and µi
s
∈ [0, 1] ∀i = 1, . . . , k
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and

m =
k+1∑
i=1

µiai

=
k∑
i=1

µiai + µk+1ak+1

= s

(
k∑
i=1

µi
s
ai

)
+ µk+1ak+1

= sc+ (1− s)ak+1 ∈ convA

with c :=
∑k
i=1

µi
s ai ∈ convA by induction and µk+1 = 1−

∑k
i=1 µi = 1− s. The last

sum lies in convA by definition of the convex hull.

Definition 2.2.5 LetK be an non-empty convex set. ThenK is called a cone, if whenever
x ∈ K and α ≥ 0, then αx ∈ C.
Let C ⊆ Rm be a convex set then we define

KC := {x ∈ Rm | x = αc α ≥ 0, c ∈ C}

to be the smallest cone containing C.

We now want to state an important fact of convex analysis: the separation theorem.
Let X be a finite-dimensional normed linear space2, X∗ its dual space, y∗ ∈ X∗ nonzero
and α ∈ R.

Definition 2.2.6 The sets {x ∈ X | y∗(x) ≤ α} and {x ∈ X | y∗(x) ≥ α} are called
closed half-spaces determined by the hyperplane (y∗)−1(α).

Definition 2.2.7 An oriented hyperplane H ⊆ X is called a supporting hyperplane of a
convex set A ⊆ X, if the following conditions are satisfied:

(i) A ∩H 6= ∅

(ii) A lies completely in one of the two closed half-spaces of X determined by H.

The supporting hyperplane H is called non-trivial if A is not contained in H.

Remark 2.2.8 A convex set A must have at least one point in its boundary to have a
supporting hyperplane H. In particular, whenever A has a supporting hyperplane H, then
A ∩H ⊆ ∂A.

Remark 2.2.9 We can describe a supporting hyperplane H to a convex set A in Rn as

H = {x ∈ Rn | 〈x|b〉 = α}

with b ∈ Rn, b 6= 0, and α ∈ R such that 〈x|b〉 ≤ α for all x ∈ A and 〈x|b〉 = α for at least
one x ∈ A.

Definition 2.2.10 Let A,B ⊆ X be two convex sets.
We say that the hyperplane (y∗)−1(α) separates A and B if A ⊆ {x ∈ X | y∗(x) ≤ α} and
B ⊆ {x ∈ X | y∗(x) ≥ α} or vice versa.
We say that y∗ strongly separates A andB if the set {α ∈ R | (y∗)−1(α) separates A and B}
is an interval [α0, α1] with α0 6= α1.



2.2. Convex Analysis 7

(y∗)−1(α)

A

B

Figure 2.1: Separation

(y∗)−1(α)

A

B

Figure 2.2: Strong separation

Remark 2.2.11 In the situation of the definition, the hyperplane (y∗)−1(β) strongly
separates A and B for any β with α0 < β < α1 .

We are now able to state the first separation theorem:

Theorem 2.2.12 ([Bee93, p. 22]) Let (X, ‖· ‖) be a finite-dimensional normed linear
space and A,B ⊆ X non-empty convex subsets with intB 6= ∅.
If A ∩ intB = ∅, then there is a continuous linear functional on X separating A and B.
Dually, let B ⊆ X∗ be convex such that intB 6= ∅ and ∅ 6= A ⊆ X∗ another convex subset.
If A ∩ intB = ∅, then there is an x ∈ X such that x separates A and B.

Definition 2.2.13 Let M ⊆ Rn. M is said to be an affine set, if (1− λ)x+ λy ∈ M for
all x, y ∈M and λ ∈ R.

Definition 2.2.14 Let A ⊆ Rn. The affine hull affA is defined as the smallest affine set
in Rn containing A.

Definition 2.2.15 The relative interior riA of a set A ⊆ Rn is the interior which results
when A is regarded as a subset of its affine hull affA:

riA := {x ∈ aff A | ∃ ε > 0 : Bε(x) ∩ aff A ⊆ A}.

In the same way we define the relative boundary of A as

∂relA := (clA) \ (riA).

The important part in the definition of riA is that the interior is regarded as a subset
of affA and not of Rn. This makes the difference between the relative and the normal
interior. Here is a simple example to see that riA 6= intA.

Example 2.2.16 Let A = {(t, 0) ∈ R2 | − 2 ≤ t ≤ 2} be as in the figure below.

−2 2
A

x

y

Figure 2.3: riA 6= intA

Then affA is the x-axis and riA = {(t, 0) ∈ R2 | − 2 < t < 2}, whereas intA = ∅.

2More generally, the following definitions also hold when X is a locally convex Hausdorff space, see [Bee93]
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Remark 2.2.17 aghu

(i) If A ⊆ Rn is an n-dimensional convex subset3, then affA = Rn.

(ii) The relative interior of a point is the point itself.

With this preparation we can now state another version of the separation theorem:

Theorem 2.2.18 ([Roc70, Thm. 11.6]) Let C be a convex set and D ⊆ C a convex
subset. Then D ∩ riC = ∅ if and only if there exists a non-trivial supporting hyperplane
to C containing D.

Definition 2.2.19 Let X be a metric space4, x0 ∈ X and f : X −→ R ∪ {±∞}.
f is called lower semi-continuous at x0 if for all ε > 0 there is a neighbourhood U of x0
such that f(x) ≥ f(x0)− ε ∀x ∈ U .
f is called lower semi-continuous if f is lower semi-continuous at every x0 ∈ X.

f(xo)

x0
x

f(x0)− ε

f(xo)

x0
x

f(x0)− ε

Figure 2.4: f lower semi-continuous at x0 (left) and not semi-continuous (right)

Remark 2.2.20 In a metric space X with E ⊆ X, x0 ∈ E and f : E −→ R∪{±∞}, this
definition is equivalent to5:

lim inf
x→x0

f(x) ≥ f(x0)

Lemma 2.2.21 ([Roc70, Thm. 7.1]) Let f : X −→ R ∪ {±∞}. Then:

f is lower-semi continuous ⇐⇒ all lower level sets {x ∈ X | f(x) ≤ a} for a ∈ R are closed.
⇐⇒ {x ∈ X | f(x) > a} ⊆ X is open ∀a ∈ R.

Definition 2.2.22 Let f : X −→ R be a function. The epigraph of f is defined as

epi(f) := {(x, µ) ∈ X × R | µ ≥ f(x)} ⊆ X × R.

Definition 2.2.23 A function f : X −→ R ∪ {±∞} is called convex, if epi f is a convex
set of X × R.

Lemma 2.2.24 ([Bee93, Thm. 1.3.3 and §5.3]) Let f : X −→ R ∪ {±∞}. Then:

(i) f is lower semi-continuous ⇐⇒ epi f ⊆ X × R is closed.

(ii) a sequence of lower semi-continuous functions converges to some lower semi-continuous
function⇐⇒ the associated sequence of epigraphs converges in the Painlevé-Kuratowski
topology.

3A subset is called n-dimensional, if it cannot be embedded into an (affine) hyperplane.
4This definition also holds for a topological space X.
5lim infx→x0 f(x) := sup { inf{f(x) | x ∈ E ∩ U \ {x0}}|U open , x0 ∈ U, E ∩ U \ {x0} 6= ∅} .
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2.3 Legendre-Fenchel Transformation
Let X be a Banach space and f : X −→ R ∪ {∞} a function. The Legendre-Fenchel
transform f∗ of f is defined as:

f∗ : X∗ −→ R ∪ {±∞}; f∗(y) = sup
x∈X

(〈y|x〉 − f(x))

We will give a geometrical interpretation of the transformation of convex functions. A
closed convex set can be uniquely described by its supporting hyperplanes. Analogously
a convex function is uniquely determined by its lower supporting hyperplanes, which are
exactly the hyperplanes defining the epigraph of our function (which is a convex set as
noted above).

For a better understanding consider the one-dimensional case:
Let f : R −→ R be convex. As R∗ ∼= R, we have f∗ : R −→ R ∪ {∞} (in particular
f∗(y) <∞ for all y ∈ R by convexity) and for m ∈ R:

f∗(m) = sup
x∈R

[mx− f(x)]

As epif ⊆ R × R ∼= R2, the mx-part defines a straight line with slope m, hence a
hyperplane of dimension 1. We now have to find the point x0 ∈ R where the (positive)
distance between the straight line mx and the graph of the function (the boundary of the
epigraph) is maximal. Then f∗(m) is equal to this maximal distance. Because of

sup
x∈X

[〈y|x〉 − f(x)] = − inf
x∈X

[f(x)− 〈y|x〉]

this is equivalent to searching for the point where the distance is minimal and then take
the negative of this value. In the example in figure 2.5 the latter is more convenient, as
f(x) ≥ mx.
One can also say that the value of the Legendre-Fenchel transform at m is the negative up
or down shift of the supporting hyperplane to epi f at the point f(x0) such that it passes
through the origin.

x

f(x)

mx

x0

−f∗(m)

Figure 2.5: The Legendre-Fenchel transform f∗(m) is the negative of the minimal y-axis
intercept of a supporting hyperplane to epi f .

In higher dimensions, the main idea remains the same, with the sole difference that the
straight line becomes a hyperplane of dimension n− 1.

Remark 2.3.1 The Legendre-Fenchel transformation induces a bijection between the set
of proper lower semi-continuous convex functions and itself. It is continuous with respect
to the epigraph topology6.
6A sequence of functions fn is said to converge in the epigraph topology if epi(fn) converges in the
Painlevé-Kuratowski topology.
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2.4 Extreme Sets and Exposed Faces

We will follow [Roc70, Chapter 18] for an introduction on extreme sets and exposed faces.
Let C be a convex set. Generally speaking there are two kinds of representations of C:

internal and external ones.
The first one is to express C as convex combinations of the elements of some point set S
with convS = C. For a given convex set C there might be several point sets S with this
property.
The external representation describes C as the intersection of some collection of half
spaces7.

Definition 2.4.1 Let E ⊆ C be convex sets. Let La,b := {λa + (1 − λ)b | λ ∈ [0, 1]}
with a, b ∈ C be a straight line. Then E is called an extreme set8 of C if and only if
riLa,b ∩ E 6= ∅ implies that a, b ∈ E. Extreme points are extreme sets which consists of a
single point.

The empty set and C itself are the trivial extreme sets of C. From this definition we
can directly deduce the following lemma:

Lemma 2.4.2 ([Roc70, p.162]) The point x ∈ C is an extreme point of C if and only
if we can not find any a, b ∈ C with a, b 6= x such that x = (1− λ)a+ λb with 0 < λ < 1.

Lemma 2.4.3 ([Roc70, p.163]) The property “extreme set” is transitive: if F ⊆ E and
E ⊆ C are both extreme sets, then F ⊆ C is an extreme set.

Definition 2.4.4 Let C be a convex set. A non-empty proper subset F ⊆ C is said to
be an exposed face of C if there is a nontrivial supporting hyperplane H to C such that
F = C ∩H. An exposed point of C is an exposed face which consists of a single point.

Remark 2.4.5 Let C be a convex set. An exposed point of C is a point through which
there is a supporting hyperplane containing no other point of C.

Lemma 2.4.6 ([Roc70, p.163]) Let E be an exposed face of C. Then E is also an
extreme set of C.

Remark 2.4.7 Consider the following example to see that not all extreme sets are ex-
posed.

Example 2.4.8 Let C ⊆ R2 be the convex set given in figure 2.6.

−1 p

x

y

1

Figure 2.6: The point p is extreme but not exposed

The point p = (1,−1) is an extreme but not an exposed point of C.

7A closed convex set C is the intersection of the closed half-spaces containing it. [Roc70, Thm. 11.5]
8Note that Rockafellar [Roc70, p.162] calls an extreme set a “face”, but in my opinion this name is
confusing because of the term “exposed faces”. Other authors like Walsh use the name “extreme set”.
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2.5 The Dual Unit Ball

The content of this section, especially the geometrical construction and Lemmata 2.5.15
and 2.5.16, is of great technical importance and will be used in the examples (section 5).

Definition 2.5.1 Let C ⊆ Rn be convex. Then C is called a polyhedral convex set if C
can be expressed as the intersection of finitely many closed half-spaces.
A polytope is the convex hull of a finite set of points. A polytope in three dimensions is
often called a polyhedron.

Theorem 2.5.2 ([Roc70, Thm. 19.1]) Let C ⊆ Rn be a convex set. Then the following
statements are equivalent:

(i) C is polyhedral.

(ii) C is closed and has only finitely many extreme sets.

(iii) C is finitely generated, that is C is the convex hull of finitely many points and
directions (points at infinity).

Remark 2.5.3 The vertices, edges and faces of a polyhedron P are extreme sets of P .

Definition 2.5.4 Let X be a normed linear space and C ⊆ X. The polar C◦ of C is
defined as

C◦ := {y∗ ∈ X∗ | 〈y∗|x〉 ≥ −1 ∀x ∈ C} ⊆ X∗.

Remark 2.5.5 Several authors define the polar with the condition “〈y∗|x〉 ≤ 1”. For
consistency with the rest of this work and [Wal07], we will use the above definition instead.
If C is symmetric9, both definitions amount to the same object.

Remark 2.5.6 ([Roc70, p.125]) The polar C◦ of C ⊆ X is always closed and contains
the origin.

Lemma 2.5.7 ([Roc70, Cor. 19.2.2]) The polar of a polyhedral convex set is polyhe-
dral.

Theorem 2.5.8 ([Roc70, Thm. 14.5.1]) Let C ⊆ Rn.

(i) C◦◦ = cl(conv(C ∪ {0}))

(ii) If C is a closed convex set containing the origin {0} then the polar C◦ is also closed
convex, contains {0} and C◦◦ = C.

Definition 2.5.9 Let (X, ‖·‖) be a finite-dimensional normed space where the norm is
not necessarily symmetric10. The unit ball B is defined as

B := {x ∈ X | ‖x‖ ≤ 1}.

The dual unit ball is defined as the polar of B:

B◦ : = {y∗ ∈ X∗ | 〈y∗|x〉 ≥ −1 ∀x ∈ B}.

9That is, symmetric with respect to the origin.
10That is, we have the condition ‖λx‖ = λ‖x‖ for all λ ≥ 0 but not for negative λ.
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Definition 2.5.10 Let B ⊆ X be an n-dimensional polytope containing the origin as an
interior point. Then B defines a possibly non-symmetric norm on X by

‖x‖B := inf{α ≥ 0 | x ∈ αB}

for any x ∈ X. We call such a B a polyhedral unit ball, especially if we consider its
corresponding norm.

Remark 2.5.11 If B is symmetric, then so is ‖·‖B.

Theorem 2.5.12 ([Roc70, Cor. 15.1.1 and Thm. 15.2]) Let ‖·‖B be the norm
defined by the polytope B. Then ‖·‖B◦ defines a norm on X∗.

Lemma 2.5.13 ([Roc70, Cor. 15.3.2]) Let V = Rn and ‖·‖p be the p-norm11. If B is
the unit ball with respect to this p-norm, then the dual unit ball B◦ is the unit ball with
respect to the q-norm where 1

p + 1
q = 1.

Lemma 2.5.14 Let K,L be two subsets of a real vector space V , then:

(i) (K ∪ L)◦ = K◦ ∩ L◦.

(ii) K ⊆ L⇒ L◦ ⊆ K◦.

If K and L are both closed convex and contain the origin {0}, then we also have:

(iii) (K ∩ L)◦ = cl conv(K◦ ∪ L◦).

Proof. gu

(i) An easy calculation shows:

(K ∪ L)◦ = {y ∈ V ∗ | 〈x|y〉 ≥ −1 ∀x ∈ K ∪ L}
= {y ∈ V ∗ | 〈x|y〉 ≥ −1 ∀x ∈ K and 〈x|y〉 ≥ −1 ∀x ∈ L}
= K◦ ∩ L◦

(ii) Clear as {y ∈ V ∗ | 〈x|y〉 ≥ −1 ∀x ∈ L} ⊆ {y ∈ V ∗ | 〈x|y〉 ≥ −1 ∀x ∈ K ⊆ L}.

(iii) As K and L are both closed conxev and contain {0}, we know by Theorem 2.5.8 (ii)
that K◦◦ = K and L◦◦ = L. Therefore by using (i) of Theorem 2.5.8

(K ∩ L)◦ = (K◦◦ ∩ L◦◦)◦

= [(K◦)◦ ∩ (L◦)◦]◦

(i)= [K◦ ∪ L◦]◦◦

= cl conv[(K◦ ∪ L◦) ∪ {0}]
= cl conv[K◦ ∪ L◦].

In the last step we used that K◦ and L◦ already contain {0}.

Lemma 2.5.15 Let B ⊆ Rn be a polyhedral unit ball with k vertices a1, . . . , ak and l
n− 1-dimensional facets. Then there are unique b1, . . . , bl ∈ (Rn)∗ such that

B = conv{a1, . . . , ak} (2.1)
= {x ∈ Rn | 〈bi|x〉 ≥ −1 ∀i = 1, . . . , l}. (2.2)

11‖x‖p = (
∑n

i=1 |xi|
p)

1
p .
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Proof. Definition of the bj :
Let aj1 , . . . , ajn be n neighbouring vertices which span a facet, that is they determine the
hyperplane Lj containing this facet. Determine bj such that

〈bj |Lj〉 = −1.

This is a uniquely solvable n× n linear system of equations as we have the condition that
the vertices ai span a facet of the convex polytope B. From this follows unique existence.

“⊆” Fix one arbitrary bj . We defined the hyperplane Lj by

Lj = {x ∈ Rn | 〈bj |x〉 = −1}.

Then Lj = aff(aj1 , . . . , ajn) and it contains the facets spanned by the ajk used to
define bj . Lj divides Rn into the two closed half-spaces S1 := {x | 〈bj |x〉 ≤ −1} and
S2 := {x | 〈bj |x〉 ≥ −1}. The origin {0} is contained in S2. As Lj is a supporting
hyperplane to B, B lies completely in one of the two half-spaces and we know that
this has to be S2 because of {0} ∈ B. Therefore

〈bj |ai〉 ≥ −1 ∀i = 1, . . . , k.

Now let x ∈ conv{a1, . . . , ak} be arbitrary. Then there are ti ∈ [0, 1] (i = 1, . . . , k)
with

∑
ti = 1 and x =

∑k
i=1 tiai. Then

〈bj |x〉 =
k∑
i=1

ti 〈bj |ai〉︸ ︷︷ ︸
≥−1

≥ −
k∑
i=1

ti = −1

and as j was chosen arbitrarily, x ∈ {x ∈ Rn | 〈bi|x〉 ≥ −1 ∀i = 1, . . . , l}.

“⊇” Let y ∈ Rn with 〈bi|y〉 ≥ −1 for all i = 1, . . . , l. As B is a polyhedral unit ball, there
is an x ∈ ∂B and an s ≥ 0 such that y = sx. As x lies on the boundary of B, it is
contained in an exposed face and therefore there is a bi such that 〈bi|x〉 = −1. Then

−1 ≤ 〈bi|y〉 = s〈bi|x〉 = −s

and so s ≤ 1 which means that y ∈ B because B is convex.

We are now prepared to formulate a useful lemma for calculating the dual unit ball. As
its proof is similar to the proof of the previous lemma, we will give it in the appendix on
page 91.

Lemma 2.5.16 Let B be as above. Then

B◦ = conv{b1, . . . , bl}.

Geometrical Construction of B◦ in R2

Based on our calculation above, there is an easy way to construct and draw the dual unit
ball B◦ of a given unit ball B in the two-dimensional case. Let

B = conv{a1, . . . , ak}
= {x ∈ R2 | 〈bj |x〉 ≥ −1 ∀j = 1, . . . , k}
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be a unit ball with vertices ai ∈ R2 and bj ∈ (R2)∗ ∼= R2 (i, j = 1, . . . , k). We already
know that

B◦ = conv{b1, . . . , bk}.

Hence an easy way to draw the dual unit ball is to draw the k points bi and connect them.
If the bi are not known (and you do not want to calculate them), there is another, rather
constructive way to obtain the dual unit ball: Let li be the straight line through the origin
and the vertex ai. For each i = 1, . . . , k let qi ∈ R2 be such that 〈qi|ai〉 = −1. qi is not
uniquely determined and we can choose it as simple as possible. For ai = (a(1)

i , a
(2)
i ) define

ci :=
(
−a(2)

i

a
(1)
i

)
.

Then 〈ai|ci〉 = a
(1)
i a

(2)
i − a

(2)
i a

(1)
i = 0 ∀i = 1, . . . , k 12. Define the hyperplane13

hi := 〈ci〉 = Rci.

This is a hyperplane through the origin perpendicular to the line li. As we need the line
for which the dual pairing is −1, we have to shift hi by qi and therefore define

Hi := hi + qi.

Then the dual unit ball is the area surrounded by these hyperplanes.

For drawing this, we first draw the lines li through the origin and the vertices. We show
here as an example the construction of the dual unit ball of the L∞-norm:

a1a2

a3 a4

x

y

l1

l4

l2

l3

O

B
a1 = (1, 1)
a2 = (−1, 1)
a3 = (−1,−1)
a4 = (1,−1)

Figure 2.7: Step 1 of the construction: drawing the lines li passing through the vertices ai

After calculating and drawing the points qi, we draw the shifted hyperplanes Hi through
the points qi perpendicular to the lines li, which have been extended into the negative
direction.

12For n > 2 and without loss of generality a(1)
i 6= 0 we have ai = (a(1)

i , a
(2)
i , . . . , a

(n)
i ) and we then have to

define cji := (−a(j)
i , 0, . . . , 0, a(1)

i , 0, . . .) ∀j = 2, . . . , n. Then we have 〈ai|c(j)
i 〉 = 0 ∀j = 2, . . . , n.

13In higher dimensions we actually have a hyperplane, namely hi := 〈c(2)
i , . . . , c

(n)
i 〉. In two dimensions it

is only a straight line.
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a1a2

a3 a4

x

y

l1

l4

l2

l3

O

B◦

q1 q2

q3
q4

H1 H2

H3H4

q1 = (−1, 0)
q2 = (1, 0)
q3 = (0, 1)
q4 = (0, 1)

Figure 2.8: Step 2 of the construction: the hyperplanes Hi enclose the dual unit ball B◦

The dual unit ball, here grey-shaded, is the area surrounded by the hyperplanes Hi. We
see that in this example ‖·‖B◦ = ‖·‖1. This fits with Lemma 2.5.13. We will need this
result later in section 5.1.





3 Introduction to the Horofunction
Boundary

In the next sections we want to explore the horofunction compactification, especially for
finite-dimensional normed spaces. We will strongly follow the second section of the paper
The horoboundary and isometry group of Thurstons Lipschitz metric [Wal10]. We will
introduce horofunctions and show how to use them to compactify a metric space under
several conditions. In the end we will also define Busemann points.

Let (X, d) be a possibly non-symmetric metric space, which means that d has all prop-
erties of a metric except maybe symmetry. The topology on X shall be induced by the
symmetric metric

dsym(x, y) := d(x, y) + d(y, x) ∀x, y ∈ X.

For a point z ∈ X and some basepoint p0 ∈ X consider the map

ψz : X −→ R (3.1)
x 7−→ ψz(x) := d(x, z)− d(p0, z). (3.2)

Let C(X) be the space of continuous real valued functions on X endowed with the
topology of uniform convergence on bounded sets with respect to dsym. Now consider the
map

ψ : X −→ C(X);
z 7−→ ψz.

Proposition 3.0.17 The map ψ is continuous and injective.

Proof. The proof of is lemma this based on the triangle inequality and is shown in the
appendix.

This is already enough preparation to define the horoboundary.

Definition 3.0.18 The horofunction boundary is defined as

X(∞) := (cl{ψz|z ∈ X}) \ {ψz|z ∈ X} ⊆ C(X).

Its elements are called horofunctions.

Lemma 3.0.19 If we choose an alternative base point p′0 ∈ X, then the corresponding
horofunction boundaries are homeomorphic.

Proof. The maps referring to the alternative base point p′0 will be denoted by ψ′z and ψ′.
Then

ψ′z(·) = d(·, z)− d(p′0, z) = d(·, z)− d(p0, z)− d(p′0, z) + d(p0, z) = ψz(·)− ψz(p′0).

The map ψz 7→ ψ′z is a homeomorphism as can be seen with the help of (8.1) on page 92.
Therefore Xp0(∞) ' Xp′0

(∞).

17
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Remark 3.0.20 The relation shown for ψz also holds for the horofunctions. Let ξ ∈
Xp0(∞) be a horofunction with respect to the base point p0 and ξ′ ∈ Xp′0

(∞). Then

ξ′(·) = ξ(·)− ξ(p′0)

by a standard convergence argument.

Definition 3.0.21 A metric d is called proper if every closed ball is compact.

Lemma 3.0.22 If the metric dsym is proper, then uniform convergence on bounded sets
is equivalent to uniform convergence on compact sets.

Lemma 3.0.23 Let z ∈ X. Then it holds:

ψz(x) ≤ d(x, y) + ψz(y) ∀x, y ∈ X

and for all horofunctions ξ ∈ X(∞) we have

ξ(x) ≤ d(x, y) + ξ(y) ∀x, y ∈ X.

From this follows that all elements of cl{ψz|z ∈ X} are 1-Lipschitz with respect to dsym.
Hence uniform convergence on bounded sets is equivalent to pointwise convergence.

The main aim of this work is to study the horofunction compactification, which is also
the subject of this important lemma:

Lemma 3.0.24 If the metric dsym is proper, then cl{ψz|z ∈ X} is compact and is called
the horofunction compactification.

The proof, explicitly shown in the appendix, is based on the Theorem of Ascoli-Arzelà,
see page 93.

Definition 3.0.25 Let (X, d) be a possibly non-symmetric metric space. A map γ : I −→
X from a closed interval I ⊆ R is called a geodesic, if

d(γ(s), γ(t)) = t− s ∀s, t ∈ I with s < t.

We now want to make some useful assumptions we partially already used before:

(A) The metric dsym is proper.

(B) Between any pair of points in X, there exists a geodesic with respect to d.

(C) For any point x ∈ X and any sequence xn in X we have

d(xn, x) −→ 0⇐⇒ d(x, xn) −→ 0.

Proposition 3.0.26 Assume (A), (B) and (C) hold. Then ψ is an embedding of X into
C(X). In other words, there is a homeomorphism X ' ψ(X).

Outline of the proof1. By Proposition 3.0.17 it remains to show that ψ−1 is also contin-
uous. So we have to show that if ψzn −→ ψy for some sequence (ψzn), then zn −→ y.
This will be shown by contraposition: if zn −→ ∞, then there is no subsequence of (ψzn)
converging to some ψy with y ∈ X.
We assume that ψzn −→ ξ ∈ cl{ψz|z ∈ X} as n→∞. Let y ∈ X be arbitrary.
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• The first step is to define a geodesic segment γn : [0, bn] −→ X connecting y and zn
for each n ∈ N.

• We then show with assumption (C) that the function

h : [0, bn] −→ R
t 7−→ h(t) := dsym(y, γn(t))

is continuous for every n ∈ N.

• The third step is to show that there is an x ∈ X with γn(tn) −→ x as n −→ ∞
where tn ∈ R+ such that

dsym(y, γn(tn)) = r

for some fixed r > d(p0, y) + ξ(y). Then dsym(y, x) = r and we set xn := γn(tn).

• As γn is geodesic, ψzn(xn) − ψzn(y) = −d(y, xn) and by taking the limit we obtain
ξ(x) = ξ(y)− d(y, x).

• The last and most important step of the proof is to show that

ψy 6= ξ ∀y ∈ X,

which can be deduced from ψy(x)− ξ(x) = r − d(p, y)− ξ(y) > 0.

From now on, we will identify
X ∼ ψ(X).

Proposition 3.0.27 Assume (A), (B) and (C) hold. Let xn be a sequence inX converging
to a horofunction. Then only finitely many points of xn lie in any closed ball of dsym.

Proof. Suppose (xn)n∈N is a sequence in X such that some subsequence of dsym(p0, xn)
is bounded (if necessary, take a subsequence) and assume that xn −→ x ∈ X. Then by
Proposition 3.0.26 ψxn −→ ψx and therefore xn does not converge to a horofunction.

We will now define Busemann points, which are special horofunctions. It is an interesting
question whether a horofunction is also a Busemann point or not and we will give an
answer to this question in the case where X is a finite-dimensional normed space in the
next section.

Definition 3.0.28 Let T ⊆ R+ be unbounded and 0 ∈ T . A map γ : T −→ X is called
an almost geodesic, if

∀ε > 0 ∃N ∈ N ∀s, t ∈ T, t ≥ s ≥ N : |d(γ(0), γ(s)) + d(γ(s), γ(t))− t| < ε.

Rieffel [Rie02] showed that every almost geodesic converges to a limit in X(∞).

Definition 3.0.29 A horofunction is called a Busemann point if there is an almost
geodesic converging to it. We set

XB(∞) := {Busemann points in X(∞)}.

Remark 3.0.30 An isometry f : X −→ X ′ of (possibly non-symmetric) metric spaces
induces a homeomorphism f : ψ(X) −→ ψ(X ′) which extends to a homeomorphism of the
horofunction compactifications.
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Proposition 3.0.31 Let (X, d) and (X ′, d′) be possibly non-symmetric metric spaces
with base points p0, p

′
0. Let f : X −→ X ′ be an isometry. Then for all horofunctions ξ of

X and x′ ∈ X ′ the extension is given by:

f(ξ)(x′) = ξ(f−1(x′))− ξ(f−1(p′0))

with f(ξ)(x′) := limn→∞[d′(x′, f(xn))− d′(p′0, f(xn))]

Proof. Let xn be a sequence in X with ψxn −→ ξ as n −→∞. Then

f(ξ)(x′) = lim
n→∞

[d′(x′, f(xn))− d′(p′0, f(xn))]
f isometry= lim

n→∞
[d(f−1(x′), xn)− d(p0, xn)︸ ︷︷ ︸

ψxn (f−1(x′))

+ d(p0, xn)− d(f−1(p′0), xn)︸ ︷︷ ︸
−ψxn (f−1(p′0))

]

= ξ(f−1(x′))− ξ(f−1(p′0)).



4 The Case of Finite-Dimensional
Normed Spaces

In his paper The horofunction boundary of finite-dimensional normed spaces, [Wal07],
Walsh proves two helpful theorems concerning Busemann points and horofunctions. We
will present this paper here in a slightly different order and with some more elaborate
proofs. In the section afterwards we will consider several examples. The norms considered
are not necessarily symmetric.
Before discussing these theorems, we have to introduce the following map: Let V be a
finite-dimensional normed vector space, B the unit ball and B◦ the dual unit ball. For
some extreme set E of B◦ and p ∈ V define

fE,p : V ∗ −→ [0,∞] (4.1)
q 7−→ fE,p(q) := IE(q) + 〈q|p〉 − inf

y∈E
〈y|p〉 (4.2)

with the indicator function

IE(q) :=
{

0 if q ∈ E;
∞ if q /∈ E.

Now we are prepared to formulate the theorems:

Theorem 4.0.32 Let (V, ‖·‖) be a finite-dimensional normed space. Then the set of
Busemann points of V is the set {f∗E,p|E is a proper extreme set of B◦, p ∈ V }, where f∗
denotes the Legendre-Fenchel transform of f .

Theorem 4.0.33 Let (V, ‖·‖) be a finite-dimensional normed space. Then every horo-
function of V is a Busemann point if and only if the set of extreme sets of the dual unit
ball B◦ is closed in the Painlevé-Kuratowski topology.

These theorems are very useful when dealing with horofunction or Busemann compact-
ifications. The first one allows us to calculate the horofunctions explicitly and we will see
in the next sections that based on this theorem we only have to know the dual unit ball
to determine the Busemann compactification. The second theorem gives us a criterion
to distinguish between Busemann points and horofunctions or to see when there is no
difference between them.

4.1 Preparation

In the last section we used the metric d to define the horofunction boundary with respect
to some base point p0. As we are now dealing with normed spaces, we can use the norm
instead and we will choose the origin O = 0 as base point. By Lemma 3.0.19 we know that
the resulting horofunction compactifications will be homeomorphic. Therefore we define:

ψz(y) := ‖z − y‖ − ‖z‖ ∀y, z ∈ V (4.3)

21
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We will need the following sets of maps and their Legendre-Fenchel transforms:

D := {ψz | z ∈ V } = {‖z − ·‖ − ‖z‖ | z ∈ V } (4.4)
∗D := {f∗ | f ∈ D} = {ψ∗z |z ∈ V }
∗A := {fE,p | E is an extreme set of B◦, p ∈ V }
A := {f∗ | f ∈ ∗A} = {f∗E,p | E is an extreme set of B◦, p ∈ V }

∗A is the set of functions that are affine on some extreme set of B◦ and take the value
+∞ outside the extreme set and have infimum 0.

Some Technical Lemmata

Lemma 4.1.1 For y ∈ V ∗ we have

ψ∗0(y) = IB◦(y).

Proof. Let y ∈ V ∗. Then with the definition of the dual unit ball (page 11) and of the
Legendre-Fenchel transformation (page 9) we obtain

ψ∗0(y) = (‖−·‖∗)(y)
= sup

x∈V
(〈y|x〉 − ‖−x‖)

= sup
x∈V

(−[〈y| − x〉+ ‖−x‖])

= − inf
x∈V

(‖−x‖(〈y|e−x〉+ 1)),

where e−x denotes the unit vector in the direction of −x. Therefore e−x ∈ B for all x ∈ V
and we have

c := 〈y|e−x〉 =
{
< −1 if y /∈ B◦ and for some x ∈ V
≥ −1 if y ∈ B◦ and for every x ∈ V

and thus

c+ 1 =
{
< 0 if y /∈ B◦ and for some x ∈ V
≥ 0 if y ∈ B◦ and for every x ∈ V .

So we get

ψ∗0(y) = − inf
x∈V

(‖−x‖ · (c+ 1)) = −
{
−∞ if y /∈ B◦
0 if y ∈ B◦

= IB◦(y).

Lemma 4.1.2 For all z ∈ V there holds:

‖z‖ = − inf
y∈B◦
〈y|z〉.

Proof. Let z ∈ V be arbitrary. Then

‖z‖ = (‖·‖∗)∗(z) = (ψ∗0(−·))∗(z) = (IB◦(−·))∗(z)
= sup

y∈V
(〈−z|y〉 − IB◦(y))
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= sup
y∈B◦
〈−z|y〉

= − inf
y∈B◦
〈y|z〉.

To achieve the supremum in the second line, IB◦(y) has to be 0. From this follows y ∈ B◦
in the third line.

Lemma 4.1.3 Let y ∈ V ∗ and z ∈ V . Then

ψ∗z(y) = IB◦(y) + 〈y|z〉 − inf
x∈B◦
〈x|z〉

= fB◦,z(y).

Proof. We have ψz(·) = ψ0(· − z)−‖z‖, because ψ0(x− z) = ‖0− (x− z)‖ = ‖z− x‖. We
use this to calculate

ψ∗z(y) = (ψ0(· − z)− ‖z‖)∗(y)
= sup

x∈V
[〈y|x〉 − ψ0(x− z) + ‖z‖]

= sup
x∈V

[〈y|x− z〉 − ψ0(x− z)] + 〈y|z〉+ ‖z‖

= sup
h∈V

[〈y|h〉 − ψ0(h)]︸ ︷︷ ︸
=ψ∗0(y)=IB◦ (y)

+〈y|z〉+ ‖z‖︸︷︷︸
− infx∈B◦ 〈x|z〉

= IB◦(y) + 〈y|z〉 − inf
x∈B◦
〈x|z〉.

From the relation ψ∗z = fB◦,z shown in the last lemma follows

ψ∗z ∈ ∗A ∀z ∈ V

because B◦ is an extreme set of itself. Or in other words with ψz = f∗B◦,z:

D ⊆ A.

As defined above, the horofunction compactification of V is exactly the closure of D in
the topology of uniform convergence on compact sets. Our aim now is to have a closer
look at this closure. The elements of clD are limits of sequences of convex 1-Lipschitz
functions and therefore they are also convex and 1-Lipschitz. Since the functions in D are
equi-Lipschitzian, uniform convergence of such functions on compact sets is equivalent to
convergence in the epigraph topology1 2. So clD in the topology of uniform convergence
on compact sets is also clD in the epigraph topology.

1Let (X, d) be a metric space. Suppose g1, g2, . . . is a sequence is LSC(X), the space of proper lower
semi-continuous extended real functions, and let g ∈ LSC(X) such that g is real valued. If (gn)n −→ g
uniformly on bounded subsets of X, then g = τAWρ -lim gn, where τAWρ denotes the Attouch-Wets-
topology ([Bee93, Lemma 7.1.2]). As we are dealing with finite-dimensional normed linear spaces, the
metric induced by the norm is proper and therefore the Attouch-Wets-topology coincides with the
Painlevé-Kuratowski topology, see also Lemma 2.2.24 and [Bee93, p. 235].

2Let(X, d) be a metric space and f0, f1, f2, . . . be a sequence of lower semi-continuous real valued functions
on X such that f0 is finite-valued and Lipschitz continuous on bounded subsets of X and such that
(fn)n is eventually equi-Lipschitz continuous on bounded subsets ofX. Suppose that f0 = τAWρ -lim fn.
Then (fn)n −→ f0 uniformly on bounded subsets of X ([Bee93, Prop. 7.1.3]).
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4.2 Proof of Theorem 4.0.32
For this proof, we will use the following result from [AGW05] without proof:

Lemma 4.2.1 A horofunction is a Busemann point if and only if it is not the minimum
of two 1-Lipschitz functions each different from it.

Lemma 4.2.2 Each Busemann point is contained in A \D

Proof. Let g ∈ (clD) \ A. Then g is convex and 1-Lipschitz, as noted above. From this
follows with Lemma 4.1.3 that the Legendre-Fenchel transform g∗ takes the value +∞
outside of B◦.
As g /∈ A, it is g∗ /∈ ∗A.

We claim: g∗ /∈ ∗A if and only if we can find x, y, z ∈ B◦, λ ∈ (0, 1) such that

y = (1− λ)x+ λz (4.5)

and

g∗(y) < (1− λ)g∗(x) + λg∗(z).

Proof of the claim:

“=⇒” Because g∗ is convex, it is g∗(y) ≤ (1 − λ)g∗(x) + λg∗(z) for any x, y, z ∈ B◦ and
λ ∈ (0, 1) with y = (1 − λ)x + λz. Let x, z ∈ B and yλ = (1 − λ)x + λz for
some λ ∈ (0, 1). Assume there is no λ ∈ (0, 1) satisfying the condition “<”, then
g∗(yλ) = (1 − λ)g∗(x) + λg∗(z) for all λ ∈ (0, 1). We show that this implies g∗ ∈
∗A which is a contradiction. For this we have to show that g∗ is an affine function,
that the set E := {y ∈ V ∗ | g∗(y) <∞} is an extreme set of B◦ and that inf g∗ = 0.
Affinity follows just by definition and as g∗ takes the value +∞ outside of B◦,
E ⊆ B◦. For extremality of E we show that whenever an interior point of a straight
line lies in E, then the endpoints also do: let y ∈ E and x, z ∈ B◦, λ ∈ (0, 1) such that
y = (1−λ)x+λz. Then g∗(y) = (1−λ)g∗(x) +λg∗(z) and therefore g∗ is finite on x
and z, that is x, z ∈ E. At last we show inf g∗ = 0. As g ∈ clD = cl{ψz|z ∈ V } and
ψz(0) = ‖z−0‖−‖z‖ = 0 for all z ∈ V we conclude that g(0) = 0. Because g is convex
epi g is a convex set with a boundary point in 0. Therefore there is a supporting
hyperplane to epi g through 0. By definition g∗(m) = supx∈V (〈x|m〉 − g(x)) and as
g(0) = 0 we see that inf g∗ ≥ 0 and therefore the supporting hyperplane lies below
epi g and touches it at the origin. All in all inf g∗ = 0.

“⇐=” We show that we cannot find such points x, y, z ∈ B or a parameter λ ∈ (0, 1)
satisfying the condition if g∗ ∈ ∗A. Assume g∗ ∈ ∗A. Then there is an extreme set
E of B◦, p ∈ V such that g∗ = fE,p.
Let y /∈ E. Then g∗(y) = IE(y)︸ ︷︷ ︸

∞

+〈y|p〉 − inf
q∈E
〈q|p〉︸ ︷︷ ︸

>−∞

= ∞ which would make the

inequality impossible.
Let y ∈ E. Then also x, z ∈ E, because E is an extreme set. Thus we have

g∗(y) = fE,p(y) = IE(y)︸ ︷︷ ︸
0

+〈y|p〉 − inf
q∈E
〈q|p〉

= (1− λ)〈x|p〉+ λ〈z|p〉 − inf
q∈E
〈q|p〉
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= (1− λ)IE(x) + (1− λ)〈x|p〉 − (1− λ) inf
q∈E
〈q|p〉

+ λIE(z) + λ〈z|p〉 − λ inf
q∈E
〈q|p〉

= (1− λ)g∗(x) + λg∗(z),

so we would have g∗(y) = (1−λ)g∗(x)+λg∗(z) which contradicts the inequality too.

Back to the original proof:
By completeness of R, we can also say that there are a, b ∈ R with a < g∗(x), b < g∗(z)

such that g∗(y) < (1− λ)a+ λb. From g∗(y) = supq∈V [〈y|q〉 − g(q)] ≥ 〈y|p〉 − g(p) ∀p ∈ V
we get

〈y|p〉 − g(p) ≤ g∗(y) < (1− λ)a+ λb ∀p ∈ V (4.6)

Define

Π1 := {p ∈ V |〈x|p〉 − a ≥ g(p)}
Π2 := {p ∈ V |〈z|p〉 − b ≥ g(p)}

We now want to show, that Π1 ∩ Π2 = ∅. Let p ∈ Π1. Equation (4.5) yields x = y−λz
1−λ .

Hence

p ∈ Π1 ⇐⇒ 〈x|p〉 − a ≥ g(p)
⇐⇒ 1

1−λ〈y|p〉 −
λ

1−λ〈z|p〉 − a ≥ g(p)
(4.6)=⇒ 1

1−λ〈y|p〉 −
λ

1−λ〈z|p〉 − a > 〈y|p〉 − (1− λ)a− λb
⇐⇒ 〈y|p〉 − (1− λ)〈y|p〉 − λ〈z|p〉 > (1− λ)a− (1− λ)2a− λ(a− λ)b
⇐⇒ λ〈y|p〉 − λ〈z|p〉 > λ(−a+ 2a+−λa− b+ λb)
λ6=0=⇒ 〈y|p〉 − 〈z|p〉 > (1− λ)(a− b)
=⇒ (1− λ)a+ λb+ g(p)− 〈z|p〉 > 〈y|p〉 − 〈z|p〉 > (1− λ)(a− b)
(4.6)⇐⇒ λb+ g(p)− 〈z|p〉 > (λ− 1)b
⇐⇒ g(p) > 〈z|p〉 − b
⇐⇒ p /∈ Π2

Thus Π1 ∩Π2 = ∅.
We now define

g1 := max(g, 〈x|·〉 − a)
g2 := max(g, 〈z|·〉 − b)

Both functions are 1-Lipschitz, because g is 1-Lipschitz and x, z ∈ B◦.

We claim: g = min(g1, g2)

Proof of this claim:
Let p ∈ Π1:

g1(p) = max(g(p), 〈x|p〉 − a) = 〈x|p〉 − a
g2(p) = max(g(p), 〈z|p〉 − b) = g(p)

}
⇒ g(p) = g2(p) ≤ g1(p).

Now let p ∈ Π2:

g1(p) = max(g(p), 〈x|p〉 − a) = g(p)
g2(p) = max(g(p), 〈z|p〉 − b) = 〈z|p〉 − b

}
⇒ g(p) = g1(p) ≤ g2(p).
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Together we have g = min(g1, g2).

Back to the original proof:
We want to apply Lemma 4.2.1 to show that g cannot be a Busemann point. We already

found two functions g1 and g2 whose minimum is g. We now have to show that g 6= g1
and g 6= g2.
Let p be in the sub-differential of g∗ at x 3. This means that 〈q − x|p〉 + g∗(x) ≤ g∗(q)
∀q ∈ V ∗. If we look at the Legendre-Fenchel transform, we get g(s) ≤ I{p}(s)+〈x|p〉−g∗(x)
∀s ∈ V . Evaluation at s = p results in g(p) ≤ 〈x|p〉 − g∗(p) and therefore g(p) < 〈x|p〉 − a
where we used that −g∗(x) < a (a was just defined by this). So

g1(p) = max(g(p), 〈x|p〉 − a) = 〈x|p〉 − a 6= g(p)

and therefore g1 6= g. In the same way, one can show that g2 6= g. All together we have

g = min(g1.g2), g 6= g1, g 6= g2.

and g1, g2 are 1-Lipschitz.

So with the criterion Lemma 4.2.1 from [AGW05], g cannot be a Busemann point.

There is a rather elegant and convenient way express the function f∗E,p by some kind of
a “pseudo-norm”:

Definition 4.2.3 Let C ⊆ V ∗ be a convex subset and p ∈ V . Define

|p|C := − inf
q∈C
〈q|p〉. (4.7)

Remark 4.2.4 In general, this is not a norm. But it is

| · |B◦ = − inf
q∈B◦
〈q|·〉 = ‖·‖

as shown in 4.1.2.

Lemma 4.2.5 Let E be an extreme set of B◦ and p ∈ V . Then

f∗E,p(·) = |p− ·|E − |p|E .

Proof. With fE,p(·) = IE(·) + 〈·|p〉 − infq∈E〈q|p〉 we obtain for all y ∈ V :

f∗E,p(y) = sup
x∈V ∗

(〈x|y〉 − fE,p(x))

= sup
x∈V ∗

(〈x|y〉 − IE(x)− 〈x|p〉+ inf
q∈E
〈q|p〉)

= sup
x∈E

(〈x|y − p〉) + inf
q∈E
〈q|p〉

= − inf
x∈E

(〈x|p− y〉) + inf
q∈E
〈q|p〉

= |p− y|E − |p|E
3The subdifferential of a convex function f : X −→ R (X a Banach space) at a point x ∈ X is the set
∂f(x) := {x∗ ∈ X∗ | f(q)− f(x) ≥ 〈x∗|q − x〉 ∀q ∈ X}. By the theory of supporting hyperplanes, it is
not empty if f is continuous and convex.
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Corollary 4.2.6 D = {f∗B◦,z | z ∈ V }

Proof. Follows from Lemma 4.1.3.

Lemma 4.2.7 Let C ⊆ V be a convex subset of a finite-dimensional vector space V . A set
E is an extreme set of C if and only if there is a finite sequence of convex sets F0, . . . , Fn,
such that F0 = C,Fn = E and Fi+1 is an exposed face of Fi for all i = 0, . . . , n− 1.

Proof. vhj

“=⇒” Let E be an extreme set of C.
If E contains a relative interior point of C, then E = C by extremality of E.
If E is contained entirely within the relative boundary of C, then E ∩ riC = ∅. So
by the second separation Theorem 2.2.18, there is a supporting hyperplane H1 to C
containing E. Define F1 := H1 ∩ C, then by definition, F1 is an exposed face of C
containing E. E is an extreme set of F1, since E ⊆ F1 ⊆ C and E is an extreme
set of C. If we apply this procedure several times, we receive the required sequence
of sets. As an exposed face is the intersection of the set with a hyperplane, we are
losing one dimension in each step which guarantees that our sequence will be finite.

“⇐=” We now assume that such a sequence exists. Because of the transitivity of the
property of being an extreme set (Lemma 2.4.3) and because every exposed face is
also an extreme set (Lemma 2.4.6), Fn = E is an extreme set of F0 = C.

Lemma 4.2.8 Let C ⊆ V ∗ be a compact convex set and F an exposed face of C. Suppose
there exists a sequence (pn)n∈N in V and an ε > 0 such that

(i)
∑n−1
i=0 |pi+1 − pi|F ≤ |pn − p0|F + ε ∀n ∈ N

(ii) |pn − ·|F − |pn|F
n→∞−→ g pointwise

where g is a lower semi-continuous convex function.
Then there is a sequence (qn)n∈N in V and an ε′ > 0 such that

(I)
∑n−1
i=0 |qi+1 − qi|C ≤ |qn − q0|C + ε′ ∀n ∈ N

(II) |qn − ·|C − |qn|C
n→∞−→ g pointwise

Proof. The proof of this lemma is quite technical and long so it will be shown in the
appendix in detail.

Lemma 4.2.9 Let (qn)n∈N be a sequence in V satisfying

n−1∑
i=0
||qi+1 − qi|| ≤ ||qn − q0||+ ε

for all n ∈ N and some ε > 0. Then the sequence (qn)n∈N is an almost geodesic.

Proof. In [AGW05] an almost geodesic is defined in a very different way, but it it shown in
Corollary 7.12 of the same paper that this definition and the one given in this thesis lead
to the same Busemann points. A sequence as stated in the lemma satisfies the conditions
of an almost geodesic in the sense of [AGW05].
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Lemma 4.2.10 Every function in A \D is a Busemann point.

Proof. Let g ∈ A \D. That means that there exists an extreme set E of B◦ and a point
p ∈ V such that g = f∗E,p = |p − ·|E − |p|E , but that there is no point z ∈ V such that
g = ‖z − ·‖ − ‖z‖ = |z − ·|B◦ − |z|B◦ . (This results in the condition of E being a proper
extreme set of B◦ in Theorem 4.0.32.) As E is an extreme set, we know from Lemma
4.2.7 that there is a finite sequence F0, . . . , Fn of convex sets with F0 = B◦, Fn = E and
Fi+1 is an exposed face of Fi for every i ∈ {0, . . . , n− 1}. Take F = E, C = Fn−1, ε = 0
and g = f∗E,p with the sequence pn = p ∀n ∈ N. Then all conditions of Lemma 4.2.8 are
satisfied and by applying this lemma several times, we obtain a sequence (qn)n∈N in V and
an ε′ > 0 satisfying the assertion of the lemma with C = B◦. Thus we also have

|qn − ·|B◦ − |qn|B◦ −→ f∗E,p = g as n −→∞

which means that f∗E,p is a horofunction. Because f∗E,p 6= ‖z − ·‖ − ‖z‖ for all z ∈ V , g
really lies only in the boundary of the compactification. With Lemma 4.2.9 we see that
(qn) is an almost geodesic and therefore g is a Busemann point.

Proof of Theorem 4.0.32. The theorem now follows directly from Lemma 4.2.2, Lemma
4.2.10 and Corollary 4.2.6.

4.3 Proof of Theorem 4.0.33
We now come to the proof of the second theorem about the distinction between Busemann
points and horofunctions.

Lemma 4.3.1 If A is closed, then the set of extreme subsets of B◦ is closed in the
Painlevé-Kuratowski topology.

Proof. Let (En)n∈N be a sequence of extreme sets of B◦ converging to E. We have to show
that E also is an extreme set of B◦. As En −→ E we also have IEn −→ IE as n −→∞4.
IEn ∈ ∗A ∀n ∈ N as fEn,0(q) = IEn(q) + 0 + 0 = IEn(q) ∀q ∈ V ∗. From this and because
A is closed, it follows that also IE ∈ ∗A, so E is an extreme set of B◦.

Lemma 4.3.2 If the set of extreme sets of B◦ is closed in the Painlevé-Kuratowski topol-
ogy, then A is closed.

Proof. We know from Lemma 4.2.10 that every function in A \ D is a Busemann point
and consequently also a horofunction. By definition the horofunctions are clD \D, from
which we obtain

D ⊆ A ⊆ clD.

To show that A is closed, it is enough to prove that if (fn)n∈N is a sequence in ∗D, then
f := limn→∞ fn ∈ ∗A.
For this we will use the following criterion shown as a claim in the proof of Lemma 4.2.2.
If f ∈ cl(D) then:

f ∈ ∗A⇐⇒ if y = (1− λ)x+ λz then f(y) = (1− λ)f(x) + λf(z).

Let x, z ∈ B◦, x 6= z and y = (1 − λ)x + λz with λ ∈ (0, 1). With the remark above,
we have to show that f(y) = (1 − λ)f(x) + λf(z). As f is convex, meaning f(y) ≤
(1− λ)f(x) + λf(z), we have nothing to show if f(y) =∞.
4See also Lemma 2.2.24.
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Let f(y) <∞ and | · | be any norm on V ∗.
We claim5 that there exists a sequence (yn)n∈N of points in B◦ and a constant δ > 0 such
that:

(i) yn −→ y

(ii) fn(yn) −→ f(y)

(iii) ∀n ∈ N the point yn is in some extreme set En and |yn − ∂relEn| ≥ δ

where ∂relEn denotes the relative boundary of En.

With this claim and the fact that fn ≥ 0 ∀n ∈ N, it follows that fn is Lipschitz-
continuous on En with Lipschitz constant fn(yn)

δn
. Because fn(yn)

δn
−→ f(y)

δ as n goes to ∞,
we can find a constant l such that for each n ∈ N the function fn is l-Lipschitzian.
Let F be a limit point of the sequence En, so by our assumption that the set of extreme
sets is closed in the Painlevé-Kuratowski topology, F is an extreme set. Now assume that
En −→ F as n −→ ∞, if necessary by taking a subsequence. From yn ∈ En∀n ∈ N
and yn −→ y we see that y ∈ F . So by extremality of F also x and z are elements of
F . Therefore we can find sequences (xn)n∈N, (zn)n∈N with xn −→ x and zn −→ z and
xn, zn ∈ En for each n ∈ N, satisfying fn(xn) −→ f(x) and fn(zn) −→ f(z) as n −→∞.
Define

y′n := (1− λ)xn + λzn ∀n ∈ N.

By extremality of En and the fact that xn, zn ∈ En, we know that

y′n ∈ En ∀n ∈ N

and
y′n −→ (1− λ)x+ λz = y as n −→∞.

So the fn are all l-Lipschitzian in En and yn and y′n have the same limit, namely y.
Therefore

lim
n→∞

fn(y′n) = lim
n→∞

fn(yn) = f(y).

With this we have

f(y) = lim
n→∞

fn(y′n)

= lim
n→∞

((1− λ)f(xn) + λfn(zn))

= (1− λ)x− λz.

We conclude that the set {x ∈ V ∗ | f is finite on x} is an extreme set and f is affine on
it. Therefore f ∈∗ A.

Lemma 4.3.3 The set A is closed in the epigraph topology if and only if the set of
extreme subsets of B◦ is closed in the Painlevé-Kuratowski topology.

Proof. The proof of this lemma is a direct consequence of the two lemmata before which
show one direction each.

5The proof can be found in the appendix on page 95.
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Proof of Theorem 4.0.33. hjk

“⇐=” Let the set of extreme sets of B◦ be closed in the Painlevé-Kuratowski topology.
Then by Lemma 4.3.3 A is closed. From the proof of Lemma 4.3.2 we know that
D ⊆ A ⊆ clD. So A being closed means that A = clD. Therefore A \D = clD \D
which is equivalent to every horofunction being a Busemann point.

“=⇒” If every Busemann point is a horofunction, then A \D = clD \D. Therefore A =
clD which tell us that A is closed and with Lemma 4.3.3 the assertion follows.



5 Examples: Horocompactifications of Rm

In this section we treat some examples to illuminate the findings of the previous section.
As the examples are computationally extensive, we will only show four of them here in
the main part, the others are given in the appendix. The reader is nevertheless invited to
have a look at them to get an intuition for the horofunction compactification.
The structure of the examples is always the same. After determining the dual unit ball
B◦ of B we calculate the functions fE,p for each extreme set E of B◦. Afterwards we
compute their Legendre-Fenchel transform f∗E,p. In the last step we find sequences zn in
X, such that ψzn −→ f∗E,p as n −→∞. The interesting part then is to see which sequences
converge to the same functions, that is, which sequences determine the same point in the
horofunction compactification, and to find out the geometrical meaning of the unit and
the dual unit ball. In the examples we will only consider sequences (zn)n∈N which follow
a straight line. We will give a characterisation of the converging sequences at the end of
this section and explain why we are allowed to limit ourselves to straight lines.
In most of the examples we will consider polyhedral norms. For these the set E of extreme
sets of B◦ is finite and hence closed in the Painlevé-Kuratowski topology. So we know by
Theorem 4.0.33 that every horofunction is a Busemann point and sometimes speak of the
Busemann compactification. In the examples with a curved unit sphere (section 5.4 and
sections 8.4.3 and 8.4.4 in the appendix) E is not finite, but nevertheless, in the considered
cases it is closed in this topology, so here we also have a Busemann compactification.

Before we start with the examples, we will show two simple lemmata concerning extreme
sets, which contain exactly one point or all of B◦.

Lemma 5.0.4 Let X be a finite-dimensional normed space with unit ball B and let
E = {e} be an extreme point of the dual unit ball B◦. Then for all p ∈ X:

fE,p = IE (5.1)

and

f∗E,p(·) = 〈e|·〉. (5.2)

Proof. Let E = {e} and p ∈ X. Then we have for all q ∈ X∗

fE,p(q) = I{e}(q) + 〈q|p〉 − inf
y∈{e}

〈y|p〉

=
{

0 if q = e
∞ if q 6= e

+ 〈q|p〉 − 〈e|p〉

=
{

0 + 〈e|p〉 − 〈e|p〉 if q = e
∞+ 〈q|p〉 − 〈e|p〉 if q 6= e

=
{

0 if q = e
∞ if q 6= e

= IE(q).

31
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For all y ∈ X∗∗ ∼= X the transform of fE,p = IE is

f∗E,p(y) = sup
x∈R∗

(〈x|y〉 − fE,p(x))

= sup
x∈R∗

(〈x|y〉 − I{e}(x)︸ ︷︷ ︸
∈{0,∞}

)

= 〈e|y〉.

Corollary 5.0.5 If the extreme set E ⊆ B◦ consists of a single point, then f∗E,p is inde-
pendent of p.

Lemma 5.0.6 Let X be a finite-dimensional normed space with unit ball B and let E be
a one-dimensional extreme set of the dual unit ball B◦. Let a, b ∈ ∂B◦ be the two vertices
in the relative boundary of E. Then for p ∈ V arbitrary:

fE,p(q) = IE(q) + 〈q|p〉 −min{〈a|p〉, 〈b|p〉} (5.3)

and

f∗E,p(y) = max{〈a|y − p〉, 〈b|y − p〉}+ min{〈a|p〉, 〈b|p〉} (5.4)

for all q ∈ V ∗ and y ∈ V .

Proof. Let x ∈ E. Then there is a λ ∈ [0, 1] such that x = λa+ (1− λ)b. Therefore

inf
x∈E
〈x|p〉 = inf

λ∈[0,1]
〈λa+ (1− λ)b|p〉

= inf
λ∈[0,1]

(λ〈a− b|p〉+ 〈b|p〉)

= 〈b|p〉+ inf
λ∈[0,1]

λ〈a− b|p〉

= 〈b|p〉+
{

0 if 〈a− b|p〉 ≥ 0
〈a− b|p〉 if 〈a− b|p〉 < 0

=
{
〈b|p〉 if 〈a|p〉 ≥ 〈b|p〉
〈a|p〉 if 〈a|p〉 < 〈b|p〉

= min{〈a|p〉, 〈b|p〉}.

So all together we have for q ∈ V ∗:

fE,p(q) = IE(q) + 〈q|p〉 − inf
x∈E
〈x|p〉

= IE(q) + 〈q|p〉 −min{〈a|p〉, 〈b|p〉}.

For the Legendre-Fenchel transform we obtain by a similar calculation:

f∗E,p(y) = sup
x∈V ∗

(〈x|y〉 − fE,p(x))

= sup
x∈V ∗

(〈x|y〉 − IE(x)− 〈x|p〉+ min{〈a|p〉, 〈b|p〉})

= sup
x∈E

(〈x|y − p〉) + min{〈a|p〉, 〈b|p〉}

= sup
λ∈[0,1]

(〈λa+ (1− λ)b|y − p〉) + min{〈a|p〉, 〈b|p〉}

= max{〈a|y − p〉, 〈b|y − p〉}+ min{〈a|p〉, 〈b|p〉}

where we used that we can write every x ∈ E as x = λa+ (1− λ)b for some λ ∈ [0, 1].
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Actually we are only interested in the proper extreme sets of B◦. But here is a nice
little result we have for B◦ as an extreme set of itself.

Lemma 5.0.7 Let B◦ be the dual unit ball of a finite-dimensional normed space X. Then
for some p ∈ X it is

f∗B◦,p = ψp

with ψp as defined in (4.4) on page 22.

Proof. Let y ∈ X. By Lemma 4.2.5 we already know that f∗E,p(y) = |p − y|E − |p|E for
every extreme set E of B◦ and p ∈ V . So now we have

f∗B◦,p(y) = |p− y|B◦ − |p|B◦ = ‖p− y‖ − ‖p‖ = ψp(y).

5.1 X = Rm with L1-Metric

We will start with the example of Rm equipped with the L1-norm1. This example is rather
basic, as we already know the dual unit ball B◦ and the norm induced by B which saves
ourselves several calculations. Another advantage of the L1-norm is its symmetry which
allows us to generalise it easily to higher dimensions. We will show the two-dimensional and
the general case here in the main part. Although the three-dimensional case is contained
in the general result, it is shown in the appendix on page 102 for those who would like to
see another concrete example.

The Case of m = 2

The dual of the unit ball B = {x ∈ R2 | ‖x‖1 ≤ 1} is

B◦ = {y ∈ R2 | 〈y|x〉 ≥ −1 ∀x ∈ B}
= {y ∈ R2 | 〈y|x〉 ≤ 1∀x ∈ B}
= {y ∈ R2 | max(|y1|, |y2|) ≤ 1}
= {y ∈ R2 | ‖y‖∞ ≤ 1}

by Lemma 2.5.13. A picture of B and B◦ is given in figure 5.1.

x

y

-1

1

1

-1

B

E1E2

E3 E4

x

y

F1

F2

F3

F4

1

1

−1

−1

B◦

Figure 5.1: B and B◦ of the L1-norm

1For x = (x1, . . . , xm) ∈ Rm it is ‖x‖1 := |x1|+ . . .+ |xm|.
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The proper extreme sets of B◦ are:

E1 := {e1} := {(1, 1)} E2 := {e2} := {(−1, 1)} E3 := {e3} := {(−1,−1)} E4 := {e4} := {(1,−1)}

F1 :=
{(

1
t

)∣∣∣∣∣ |t| ≤ 1
}

= conv(E1, E4) F2 :=
{(

t
1

)∣∣∣∣∣ |t| ≤ 1
}

= conv(E1, E2)

F3 :=
{(
−1
t

)∣∣∣∣∣ |t| ≤ 1
}

= conv(E2, E3) F4 :=
{(

t
−1

)∣∣∣∣∣ |t| ≤ 1
}

= conv(E3, E4)

Let E be the set of extreme sets of B◦,

E := {Ei, Fi | i = 1, . . . , 4}.

Let p = (p1, p2) ∈ R2 be an arbitrary point.

From Lemma 5.0.4 we already know the form of the fE,p-functions of the extreme points,
namely

fEi,p(q) = IEi(q) ∀i ∈ {1, 2, 3, 4}, q ∈ (R2)∗.

Now to the one-dimensional extreme sets Fi:
We will calculate the deduce the expression for the fE,p-function for the extreme set F1
using equation (5.3) on page 32. As F1 is the convex hull of the points e1 = (1, 1) and
e4 = (1,−1) we first have to calculate for an arbitrary p ∈ R2

min{〈e1|p〉, 〈e4|p〉} = min {〈(1, 1)| p〉 , 〈(1,−1)| p〉}
= min{p1 + p2, p1 − p2}
= min{p2,−p2}+ p1

= −|p2|+ p1.

With this we get easily

fF1,p(q) = IF1(q) + 〈q|p〉 −min{〈e1|p〉, 〈e4|p〉}
= IF1(q) + 〈q|p〉+ |p2| − p1

=
{
p1 + tp2 − p1 + |p2| if q = (1, t) ∈ F1 for some |t| ≤ 1
∞ if q /∈ F1

=
{
tp2 + |p2| if q = (1, t) ∈ F1 for some |t| ≤ 1
∞ if q /∈ F1

In the same way, we get:

fF2,p(q) = 〈q|p〉 − p2 + |p1|+ IF2(q)
fF3,p(q) = 〈q|p〉+ p1 + |p2|+ IF3(q)
fF4,p(q) = 〈q|p〉+ p2 + |p1|+ IF4(q).

Let y = (y1, y2) ∈ R2. Then for the Legendre-Fenchel transform of the extreme sets
consisting of only one point we have by Lemma 5.0.4:

f∗E1,p(y) = y1 + y2 = 〈(1, 1) | y〉,

and in the same way

f∗E2,p(y) = −y1 + y2 = 〈(−1, 1) | y〉 = 〈e2|y〉
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f∗E3,p(y) = −y1 − y2 = 〈(−1,−1) | y〉 = 〈e3|y〉
f∗E4,p(y) = y1 − y2 = 〈(1,−1) | y〉 = 〈e4|y〉.

As expected, f∗Ei,p is independent of p.
Now to the one-dimensional extreme sets. We use the notation e1 = (1, 1) and e4 = (1,−1)
and equation (5.4) to derive:

f∗F1,p(y) = max{〈e1|y − p〉, 〈e4|y − p〉}+ min{〈e1|p〉, 〈e4|p〉}
= max {〈(1, 1)| y − p〉 , 〈(1,−1)| y − p〉}+ min {〈(1, 1)| p〉 , 〈(1,−1)| p〉}
= max{y1 − p1 + (y2 − p2), y1 − p1 − (y2 − p2)}+ min{p1 + p2, p1 − p2}
= y1 − p1 + max{y2 − p2,−(y2 − p2)}+ p1 + min{p2,−p2}
= y1 + |y2 − p2| − |p2|.

And for the extreme sets we get:

f∗F2,p(y) = |y1 − p1|+ y2 − |p1|
f∗F3,p(y) = |y2 − p2| − y1 − |p2|
f∗F4,p(y) = |y1 − p1| − y2 − |p1|.

We see that f∗Fi,p is either dependent on p1 or on p2, a fact that will fall into context after
we found sequences converging to these functions.

The Geometric Interpretation We now need a sequence (zn)n∈N in R2 such that
ψzn −→ f∗E,p as n −→∞. It is

ψzn(y) = ‖zn − y‖1 − ‖zn‖1 = |zn,1 − y1|+ |zn,2 − y2| − |zn,1| − |zn,2|,

where the second index denotes the component.
If zn,1, zn,2 −→ −∞ then there is an N ∈ N such that zn,1 < y1 and zn,2 < y2 ∀n ≥ N .
For these n we have |zn,1 − y1| = y1 − zn,1 and |zn,2 − y2| = y2 − zn,2. Therefore

|zn,1 − y1|+ |zn,2 − y2| − |zn,1| − |zn,2| = y1 − zn,1 + y2 − zn,2 + zn,1 + zn,2

= y1 + y2.

If our sequence is following a straight line which is shifted to pass through a point
p = (p1, p2), we have the sequence zn = (−k,−l) ·n+ (p1, p2) −→ (−∞,−∞) with k, l > 0
and we obtain

‖zn − y‖1 − ‖zn‖1 = | − kn+ p1 − y1|+ | − ln+ p2 − y2| − | − kn+ p1| − | − ln+ p2|
n�0= kn− p1 + y1 + ln− p2 + y2 − kn+ p1 − ln+ p2

= y1 + y2

and therefore
ψzn −→ f∗E1,p,

independent of the point p.
In the same way we get

zn =
(
−k
−l

)
· n+

(
p1
p2

)
−→

(
−∞
−∞

)
yields ψzn −→ f∗E1
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zn =
(
k
−l

)
· n+

(
p1
p2

)
−→

(
∞
−∞

)
yields ψzn −→ f∗E2,p

zn =
(
k
l

)
· n+

(
p1
p2

)
−→

(
∞
∞

)
yields ψzn −→ f∗E3,p

zn =
(
−k
l

)
· n+

(
p1
p2

)
−→

(
−∞
∞

)
yields ψzn −→ f∗E4,p.

For the one-dimensional extreme sets we need one of the two components to remain con-
stant. This will give us the point p = (p1, p2) of f∗E,p.
Let zn = (−1, 0) · n+ (p1, p2) −→ (−∞, p2) be a sequence in R2. Then

ψzn(y) = ‖zn − y‖ − ‖zn‖
= | − n+ p1 − y1|+ |p2 − y2| − | − n+ p1| − |p2|
n�0= n− p1 + y1 + |p2 − y2| − n+ p1 − |p2|
= |p2 − y2| − |py|+ y1 = f∗F1,p(y).

And similarly for the other extreme sets. So in the end we have

zn =
(
−1
0

)
· n+

(
p1
p2

)
−→

(
−∞
p2

)
yields ψzn −→ f∗F1,p

zn =
(

0
−1

)
· n+

(
p1
p2

)
−→

(
p1
−∞

)
yields ψzn −→ f∗F2,p

zn =
(

1
0

)
· n+

(
p1
p2

)
−→

(
∞
p2

)
yields ψzn −→ f∗F3,p

zn =
(

0
1

)
· n+

(
p1
p2

)
−→

(
p1
∞

)
yields ψzn −→ f∗F4,p.

We already noticed that f∗Fi,p depends on one component of p only and now we see
that it is the one which defines the left-right respectively the up-down shift of the straight
line with respect to the origin. These four lines here are exactly those going through an
extreme point of B if they are not shifted. So the directions of the straight line gives us
the extreme set E whereas the parallel shift determines the p of f∗E,p.

The General Case

For simplicity we say that a sequence (zn)n∈N following a straight line is converging to
the extreme set E ⊆ ∂B◦ if ψzn −→ f∗E,p for some p ∈ Rm. The treatment of the three
dimensional case can be found in the appendix and I will refer to it in the following. Its
main result can be split into two aspects which fit with our deductions from the two-
dimensional case. The first is the fact that the extremal set a sequence is converging to
lies in some manner on the opposite side (with respect to the origin O) of the intersection
point of ∂B with the straight line the sequence is following. The second result is that if the
extremal set E is not only a single point, then parallel lines lead to different horofunctions
(different p), but of the same extremal set E. Only the direction of the sequence has
influence on the E of f∗E,p.
The last step now is to generalise our calculations to m dimensions. In both the two- and
three-dimensional examples, especially in the three-dimensional one, we remarked that
there are three types of sequences for each component of zn to consider, those going to
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either +∞ or −∞ and those remaining constant.
Let D = {1, . . . ,m}. Let {P,M, T}2 be a partition of D, that is P ∪M ∪ T = D and
P,M, T are pairwise disjoint. Define the following set:

EPMT := {x ∈ Rm | xi = 1 ∀i ∈ P ; xj = −1 ∀j ∈M ; xk = tk with |tk| ≤ 1 ∀k ∈ T}.

For example, if m = 3 and P = {2}, M = {3} and T = {1}, then (cf. page 104)

EPMT = {(t, , 1,−1)||t| ≤ 1} = F4.

With this definition, the set of extreme sets of B◦ is

E := {EPMT | D = P
·
∪M

·
∪ T}.

Now one can easily conclude that #Ext(B◦) = 3m.
Let E := EPMT be an extreme set of B◦ for some sets P,M and T and p ∈ Rm. Then

fE,p(q) = IE(q) + 〈q|p〉 − inf
y∈E
〈y|p〉

= IE(q) + 〈q|p〉 −
∑
i∈P

pi +
∑
j∈M

pj − inf

∑
k∈T

tkpk | |tk| ≤ 1


= IE(q) + 〈q|p〉 −

∑
i∈P

pi +
∑
j∈M

pj −
∑
k∈T

inf
|tk|≤1

(tkpk)

= IE(q) + 〈q|p〉 −
∑
i∈P

pi +
∑
j∈M

pj +
∑
k∈T
|pk|,

which is in accordance with the 2- and the 3- dimensional case.
The Legendre-Fenchel transform then is:

f∗E,p(y) = sup
x∈Rm

(〈x|y〉 − fE,p(x))

= sup
x∈Rm

〈x|y〉 − IE(x)− 〈x|p〉+
∑
i∈P

pi −
∑
j∈M

pj −
∑
k∈T
|pk|


= sup

x∈E
[〈x|y − p〉] +

∑
i∈P

pi −
∑
j∈M

pj −
∑
k∈T
|pk|

=
∑
i∈P

(yi − pi)−
∑
j∈M

(yj − pj) + sup

∑
k∈T

tk(yk − pk)

∣∣∣∣∣∣ |tk| ≤ 1


+
∑
i∈P

pi −
∑
j∈M

pj −
∑
k∈T
|pk|

=
∑
k∈T

sup
|tk|≤1

[tk(yk − pk)]−
∑
k∈T
|pk|+

∑
i∈P

(yi − pi + pi)−
∑
j∈M

(yj − pj + pj)

=
∑
i∈P

yi −
∑
j∈M

yj +
∑
k∈T

(|yk − pk| − |pk|).

For the geometrical interpretation, let (zn)n∈N be a sequence in Rm with its components
defined as:

zn,i =


−kin if i ∈ P
kin if i ∈M
pi if i ∈ T,

2P stands for “plus”, M stands for “minus” and T for the parameter “t”.
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where ki > 0 for all i ∈ P ∪M . Then we have for a fixed y ∈ Rm and n large enough such
that kin > |yi| for all i ∈ P ∪M :

ψzn(y) = ‖zn − y‖1 − ‖zn‖1

=
n∑
i=1

(|zn,i − yi| − |zn,i|)

=
∑
i∈P

(| − kin− yi| − | − kin|) +
∑
j∈M

(|kjn− yj | − |kjn|) +
∑
k∈T

(|pk − yk| − |pk|)

=
∑
i∈P

(kin+ yi − kin) +
∑
j∈M

(kjn− yj − kjn) +
∑
k∈T

(|pk − yk| − |pk|)

=
∑
i∈P

yi −
∑
j∈M

yj +
∑
k∈T

(|yk − pk| − |pk|),

which shows that
ψzn −→ f∗E,p as n −→∞.

So independent of the dimension, the result is the same: the direction of the sequence
determines the extreme set E and if E contains more than one point, the parallel shift of
the line determines p. The only thing not really clear yet is how to find E. We already
know that this has to do with the extreme sets opposite of the intersection point of the
sequence with B◦, but the precise result will be presented later in section 5.6.

5.2 X = R2 with a Symmetric Polyhedral Unit Ball
In this example we will limit ourselves to two dimensions and consider the Busemann
compactification of R2 equipped with a norm induced by an arbitrary polytope B. We
recall that the norm induced by B for x ∈ R2 was defined by:

‖x‖B = inf{α > 0 | x ∈ αB}.

By definition, B is the unit ball of this norm.

Consider the following convex set in R2 (compare figure 5.2):

B := conv{(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1)}

a1

a2a3

a4

a5 a6

x

y

p

θ

Figure 5.2: B as a hexagonal polytope

Then B is a bounded, convex, open and centrally symmetric set and therefore it defines
a norm. The first difference to the example before is that we have to find an expression
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for the norm ‖p‖B of some point p ∈ R2. We will use that the shape of B is a mixture of
the unit balls of the L1- and the L∞-norm.
Let p ∈ R2 be a point and let θ ∈ [−π, π] be the angle between p 6= 0 and the positive
x-axis, namely as seen in figure 5.2. Then the norm of p is symmetric and given by

‖p‖B =


max{|p1|, |p2|} if θ ∈ [0, π2 )
|p1|+ |p2| if θ ∈ [π2 , π]
‖−p‖B if θ ∈ (−π, 0).

We now follow [Wal07] to calculate the horofunctions of R2 with this metric. So we first
have to determine the extremal sets of the dual unit ball B◦ and therefore we have to find
B◦.

The Dual Unit Ball The vertices of B are:

a1 = a7 = (1, 0) a2 = (1, 1) a3 = (0, 1)
a4 = (−1, 0) a5 = (−1,−1) a6 = (0,−1).

For the dual unit ball B◦, defined by the condition B◦ = {y ∈ R2 | 〈y|x〉 ≥ −1 ∀x ∈ B},
we have to find points bi ∈ (R2)∗ for i = 1, . . . , 6 such that

〈bi|ai〉 = 〈bi|ai+1〉 = −1 ∀i = 1, . . . , 6.

Therefore we get:

b1 = (−1, 0) b2 = (0,−1) b3 = (1,−1)
b4 = (1, 0) b5 = (0, 1) b6 = (−1, 1).

And so by Lemma 2.5.16

B◦ = conv{(1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (1,−1)}.

E1

E2E3

E4

E5 E6

x

y

F1

F2

F3

F4

F5

F6

Figure 5.3: B◦ of our polyhedral B

The proper extreme sets of B◦ are (see figure 5.3):
Points:

E1 := {e1} := {(1, 0)} E2 := {e2} := {(0, 1)} E3 := {e3} := {(−1, 1)}
E4 := {e4} := {(−1, 0)} E5 := {e5} := {(0,−1)} E6 := {e6} := {(1,−1)}
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Facets:

F1 :=
{(

t
−t+ 1

)∣∣∣∣∣ 0 ≤ t ≤ 1
}

= conv(e1, e2) F2 :=
{(

x
1

)∣∣∣∣∣− 1 ≤ x ≤ 0
}

= conv(e2, e3)

F3 :=
{(
−1
y

)∣∣∣∣∣ 0 ≤ y ≤ 1
}

= conv(e3, e4) F4 :=
{(

t
−t− 1

)∣∣∣∣∣− 1 ≤ t ≤ 0
}

= conv(e4, e5)

F5 :=
{(

x
−1

)∣∣∣∣∣ 0 ≤ x ≤ 1
}

= conv(e5, e6) F6 :=
{(

1
y

)∣∣∣∣∣− 1 ≤ y ≤ 0
}

= conv(e1, e6)

Second Step: the fE,p-Functions From Lemma 5.1, we already know the form of fE,p
if E is a set consisting of a single point. So we have:

fEi,p = IEi ∀i ∈ {1, . . . , 6}.

For the facets we calculate for some point p = (p1, p2) ∈ R2 using equation (5.3):

fF1,p(q) = IF1(q) + 〈q|p〉 −min{〈e1|p〉, 〈e2|p〉}
= IF1(q) + 〈q|p〉 −min {〈(1, 0)| p〉 , 〈(0, 1)| p〉}
= IF1(q) + 〈q|p〉 −min{p1, p2}.

We find the functions for the other extreme sets in the same way. So in the end we have:

fF1,p(q) = IF1(q) + 〈q|p〉 −min{p1, p2}
fF2,p(q) = IF2(q) + 〈q|p〉 − p2 + max{p1, 0}
fF3,p(q) = IF3(q) + 〈q|p〉+ p1 −min{0, p2}
fF4,p(q) = IF4(q) + 〈q|p〉+ max{p1, p2}
fF5,p(q) = IF5(q) + 〈q|p〉+ p2 −min{p1, 0}
fF6,p(q) = IF6(q) + 〈q|p〉 − p1 + max{0, p2}

Comparing these functions, we notice that for each i ∈ {1, 2, 3} the expressions of fFi,p(q)
and fFi+3,p(q) are quite similar. Looking at the picture we see that these are exactly the
pairs for which the facets are parallel.

Third Step: the f∗E,p-Functions In this step, we have to calculate the Legendre-
Fenchel transforms of our functions above. For the extremal points Ei = {ei} (i ∈
{1, . . . , 6}) we know by Lemma 5.2

f∗Ei,p(y) = 〈ei|y〉,

and therefore

f∗E1,p(y) = y1

f∗E2,p(y) = y2

f∗E3,p(y) = −y1 + y2

f∗E4,p(y) = −y1

f∗E5,p(y) = −y2

f∗E6,p(y) = y1 − y2.



5.2. X = R2 with a Symmetric Polyhedral Unit Ball 41

Now to the one-dimensional extremal sets, the Fi, i ∈ {1, . . . , 6}. The calculations by
using equation (5.4) are as follows:

f∗F1,p(y) = max{〈e1|y − p〉, 〈e2|y − p〉}+ min{〈e1|p〉, 〈e2|p〉}
= max {〈(1, 0)| y − p〉 , 〈(0, 1)| y − p〉}+ min{p1, p2}
= max{y1 − p1, y2 − p2}+ min{p1, p2}.

For the other functions we get by similar calculations:

f∗F2,p(y) = −min{y1 − p1, 0} −max{p1, 0}+ y2

f∗F3,p(y) = max{0, y2 − p2}+ min{0, p2} − y1

f∗F4,p(y) = −min{y1 − p1, y2 − p2} −max{p− 1, p2}
f∗F5,p(y) = max{y1 − p1, 0}+ min{p1, 0} − y2

f∗F6,p(y) = −min{0, y2 − p2} −max{0, p2}+ y1

Here again the transforms of the sets parallel to each other are very similar.
As max{x} = −min{−x}, the relation between these functions is

f∗Fi,p(y) = f∗Fi+3,−p(−y) ∀i ∈ {1, 2, 3}.

The Geometrical Part As in the examples above, we now want to find sequences
(zn)n∈N ⊆ R2, such that

ψzn(y) = ‖zn − y‖B − ‖zn‖B −→ f∗E,p(y) as n −→∞

where E denotes a proper extreme set of B◦.
Just like before, we start with sequences which converge to some f∗Ei,p. Inspired by

the first example we will therefore consider sequences (zn)n∈N along a straight line in
the direction of a facet of B, possibly shifted by p. Let zn = (k, 1) · n + (p1, p2) with
k > 0, k 6= 1. Then (zn)→ (∞,∞) as n −→∞. So

θ(zn) = arctan
(1
k

)
∈
(

0, π2

)
for n large enough such that zn lies in the first quadrant. Then

‖zn‖B = max{|kn+ p1|, |n+ p2|} = max{kn+ p1, n+ p2} =
{
kn+ p1 if k ≥ 1
n+ p2 if k < 1

and for n large enough (such that zn − y lies in the first quadrant)

‖zn − y‖B = max{|kn+ p1 − y1|, |n+ p2 − y2|}
= max{kn+ p1 − y1, n+ p2 − y2}

=
{
kn+ p1 − y1 if k ≥ 1
n+ p2 − y2 if k < 1.

Hence for k > 1 and n large enough we obtain

ψzn(y) = ‖zn − y‖B − ‖zn‖B
= kn+ p1 − y1 − kn− p1

= −y1 = f∗E4,p(y).
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For k < 1 and again n large enough it is

ψzn(y) = ‖zn − y‖B − ‖zn‖B
= n+ p2 − y2 − n− p2

= −y2 = f∗E5,p(y).

So for k > 1

zn =
(
k
1

)
· n+

(
p1
p2

)
−→

(
∞
∞

)
yields ψzn −→ f∗E4,p

zn =
(

1
k

)
· n+

(
p1
p2

)
−→

(
∞
∞

)
yields ψzn −→ f∗E5,p.

In contrast to the examples before, the angle of the straight line the sequence is following
within the first quadrant is important now. The straight line through the origin and
a2 is just the line dividing the two areas in which each sequence converges to the same
Busemann point.
With similar calculations we find for the other extreme sets:

zn =
(
−k
1

)
· n+

(
p1
p2

)
−→

(
−∞
∞

)
yields ψzn −→ f∗E6,p for k > 0

zn =
(
−k
−1

)
· n+

(
p1
p2

)
−→

(
−∞
−∞

)
yields ψzn −→ f∗E1,p for k > 1

zn =
(
−1
−k

)
· n+

(
p1
p2

)
−→

(
−∞
−∞

)
yields ψzn −→ f∗E2,p for k > 1

zn =
(
k
−1

)
· n+

(
p1
p2

)
−→

(
∞
−∞

)
yields ψzn −→ f∗E3,p for k > 0.

We notice that all these sequences are independent of p and depend only on the angle θ
as the pictures 5.4 and 5.5 illustrate.

We now fix a point p = (p1, p2) ∈ R2 and consider sequences parallel to those straight
lines through the vertices of B, for example the sequence (zn)n∈N with

zn = (1, 0) · n+ (p1, p2).

Then for p2 ≥ 0, zn lies in the first quadrant and for p2 < 0 it lies in the forth. Therefore

‖zn‖B =
{

max{|n|, |p2|} if p2 ≥ 0
|n|+ |p2| if p2 < 0

=
{
n if p2 ≥ 0 and for n big enough
n− p2 if p2 < 0

= n−min{0, p2}.

And we have

‖zn − y‖B =
∥∥∥∥∥
(
n− y1
p2 − y2

)∥∥∥∥∥
B

=
{

max{|n− y1|, |p2 − y2|} if p2 − y2 ≥ 0
|n− y1|+ |p2 − y2| if p2 − y2 < 0
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=
{
n− y1 if p2 − y2 ≥ 0
n− y1 + y2 − p2 if p2 − y2 < 0

}
for n� 0.

So together we get for n� 1

ψzn(y) = ‖zn − y‖B − ‖zn‖B

=
{
n− y1 − n+ min{0, p2} if y2 − p2 ≤ 0
n− y1 + y2 − p2 − n+ min{0, p2} if y2 − p2 > 0

= −y1 + max{0, y2 − p2}+ min{0, p2}
= f∗F3,p(y).

With similar calculations we obtain the following result:

zn =
(

0
1

)
· n+

(
p1
p2

)
−→

(
p1
∞

)
yields ψzn −→ f∗F5,p

zn =
(

0
−1

)
· n+

(
p1
p2

)
−→

(
p1
−∞

)
yields ψzn −→ f∗F2,p

zn =
(

1
0

)
· n+

(
p1
p2

)
−→

(
∞
p2

)
yields ψzn −→ f∗F3,p

zn =
(
−1
0

)
· n+

(
p1
p2

)
−→

(
−∞
p2

)
yields ψzn −→ f∗F6,p

zn =
(

1
1

)
· n+

(
p1
p2

)
−→

(
∞
∞

)
yields ψzn −→ f∗F4,p

zn =
(
−1
−1

)
· n+

(
p1
p2

)
−→

(
−∞
−∞

)
yields ψzn −→ f∗F1,p

.

The following picture illustrates the result. Straight lines in a coloured area of the left
picture converge to a Busemann point f∗E,p where E can be found in the right picture with
the same colour.

B

a1

a2a3

a4

a5 a6

x

y

B◦

E1

E2E3

E4

E5 E6

x

y

Figure 5.4: Sequences along a straight line in the direction of a facet of B converge to a
Busemann point f∗E,p where E is a single point.
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B

a1

a2
a3

a4

a5 a6

x

y

B◦

E1

E2E3

E4

E5 E6

x

y

F1

F2

F3

F4

F5

F6

Figure 5.5: Sequences along straight lines through vertices of B converge to Busemann
points f∗E,p where E is one-dimensional.

Lines through an extreme set F of B but not through an extreme point converge all
to the same Busemann point f∗E,p where E is an extreme point of B◦ lying in some way
on the opposite side of F and orthogonal to it. The point p has no influence in this case,
only the direction counts. If the sequence runs parallel to a straight line through a vertex
of B, then p denotes this parallel shift and the sequence converges to a Busemann point
belonging to a one-dimensional extreme set of B◦.

5.3 X = R2 with a Non-Symmetric Polyhedral Unit Ball
In the examples before we always considered a polyhedral symmetric convex set as unit
ball. We will now look at an example where the unit ball is still convex and polyhedral but
not symmetric. The introduction to horofunction compactification in section 3 deals with
a possibly non-symmetric metric and symmetry is not required in section 4 to determine
the Busemann points.
We will need the result of this example later in section 7.1 when we examine the horo-
function compactification of SL(3,R)/SO(3).

Let B be the convex hull of

a1 = (1, 0); a2 = (−1
2 ,

1
2
√

3); a3 = (−1
2 ,−

1
2
√

3).

a1

a2

a3

y

x
1−1

1

−1

B

Figure 5.6: Unit ball B as a triangle
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The Norm Induced by B Let Ci,j := Kconv(ai,aj) be the cone generated by the line
between ai and aj . We first calculate the norm ‖x‖B for every x in the cone C1,2. The
line l, on which every point has norm 1, can be described as

l =
{(

s
− 1√

3s+ 1√
3

)
∈ R2

∣∣∣∣∣ s ∈
[
−1

2 , 1
]}

.

Let 0 6= x = (a, b) ∈ C1,2. Then there is a k > 0 and an s ∈
[
−1

2 ,
√

3
]
such that(

a
b

)
= k ·

(
s

− 1√
3s+ 1√

3

)
.

From this it follows a = ks and therefore from the second component
√

3b = −ks+ k = −a+ k.

So
‖x‖B =

∥∥∥∥∥
(
a
b

)∥∥∥∥∥
B

= a+
√

3b ∀x ∈ C1,2.

Because of the symmetry of B with respect to the x-axis we know that

‖x‖B =
∥∥∥∥∥
(
a
b

)∥∥∥∥∥
B

= a−
√

3b ∀x ∈ C3,1.

The norm of the point in the last cone C2,3 is just twice the negative first component
‖x‖B = −2a. All together we have for some x = (a, b) ∈ R2

‖x‖B =
∥∥∥∥∥
(
a
b

)∥∥∥∥∥
B

=
{
a+
√

3|b| if a ≥ 0 or |b| ≥ −
√

3a;
−2a if a < 0 and |b| < −

√
3a. (5.5)

The Dual Unit Ball We did not require B to be symmetric in the proofs of Lemma
2.5.15 and Lemma 2.5.16, so we can use them now to determine the dual unit ball B◦. At
first we need bi,j ∈ R2 such that 〈bi,j |ai〉 = 〈bi,j |aj〉 = −1. We calculate

b1,2 = (−1,−
√

3); b2,3 = (−2, 0); b3,1 = (−1,
√

3),

and so we know
B◦ = conv

{(
2
0

)
,

(
−1√

3

)
,

(
−1
−
√

3

)}
.

In this special case the dual unit ball has the same shape as B but twice as big as illustrated
in figure 5.7.
The extreme sets of B◦ are:

E1 := {e1} := {(2, 0)}; E2 := {e2} := {(−1,
√

3)}; E3 := {e3} := {(−1,−
√

3)};

and

F1 :=
{(

t
− 1√

3 t+ 2√
3

)∣∣∣∣∣− 1 ≤ t ≤ 2
}

= conv(e1, e2);

F2 :=
{(
−1
t

)∣∣∣∣∣−√3 ≤ t ≤
√

3
}

= conv(e2, e3);

F3 :=
{(

t
1√
3 t−

2√
3

)∣∣∣∣∣− 1 ≤ t ≤ 2
}

= conv(e1, e3).
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E1

E2

E3

F1

F2 F3

y

x
1−1

1

−1

B◦

Figure 5.7: B◦ of our triangular B

Calculation of fE,p As we already know the result for the extreme points of B◦ we will
start directly with the one-dimensional extreme sets of B◦. For some p ∈ R2 and q ∈ (R2)∗
we have with the notations above:

min{〈e1|p〉, 〈e2|p〉} = min{〈(2, 0)|p〉, 〈(−1,
√

3)|p〉}
= min{2p1,−p1 +

√
3p2}

= 2p1 + min{0,−3p1 +
√

3p2}
= 2p1 −max{3p1 −

√
3p2, 0}

and therefore

fF1,p(q) = IF1(q) + 〈q|p〉 −min{〈e1|p〉, 〈e2|p〉}
= IF1(q) + 〈q|p〉 − 2p1 + max{3p1 −

√
3p2, 0}.

For the other facets we get by similar calculations:

fF2,p(q) = IF2(q) + 〈q|p〉+ p1 +
√

3|p2|
fF3,p(q) = IF3(q) + 〈q|p〉 − 2p1 + max{3p1 +

√
3p2, 0}.

The Legendre-Fenchel Transform f∗E,p We know by Lemma 5.0.4 that for Ei = {ei},
i = 1, . . . , 3, the Legendre-Fenchel transform at y ∈ R is

f∗Ei,p(y) = 〈ei|y〉,

independent of the point p.
For the other extreme sets we calculate using Lemma 5.0.6

f∗F1,p(y) = max{〈e1|y − p〉, 〈e2|y − p〉}+ min{〈e1|p〉, 〈e2|p〉}
= max{〈(2, 0)|y − p〉, 〈(−1,

√
3)|y − p〉}+ 2p1 −max{3p1 −

√
3p2, 0}

= 2(y1 − p1) + max{0,−3(y1 − p1) +
√

3(y2 − p2)}+ 2p1 −max{3p1 −
√

3p2, 0}
= 2y1 + max{3(p1 − y1)−

√
3(p2 − y2), 0}+ max{3p1 −

√
3p2, 0}.

In the same way we get

f∗F2,p(y) =
√

3|y2 − p2| −
√

3|p2| − y1

f∗F3,p(y) = max{3(p1 − y1) +
√

3(p2 − y2), 0} −max{3p1 +
√

3p2, 0}+ 2y1.
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The Geometrical Part Just as in the previous examples, we want to find sequences
(zn)n∈N such that ψzn −→ f∗E,p (n→∞) for some extreme set E ⊆ ∂B◦ and p ∈ R2. We
already saw (for polyhedral unit balls) that if a sequence following a parallel to a straight
line passing through the origin and an extreme set F of B with dimF = k converges to a
Busemann point f∗E,p, then dimE = n− 1− k. Furthermore, the extreme set the sequence
is converging to is perpendicular to the straight line. We will check whether it is also like
this in the non-symmetric case.
At first we take a straight line of direction a1, say zn = (1, 0) · n + (p1, p2). Then with
y ∈ R2 and n large, we calculate

ψzn(y) = ‖zn − y‖B − ‖zn‖B

=
∥∥∥∥∥
(
n+ p1 − y1
p2 − y2

)∥∥∥∥∥
B

−
∥∥∥∥∥
(
n+ p1
p2

)∥∥∥∥∥
B

= n+ p1 − y1 +
√

3|p2 − y2| − n− p1 −
√

3|p2|
=
√

3|p2 − y2| −
√

3|p2| − y1 = f∗F2,p(y).

If we take a sequence parallel to a straight line through a2 we have to be careful which
norm to take. So we obtain with zn = (−1,

√
3) · n+ (p1, p2):

ψzn(y) = ‖zn − y‖B − ‖zn‖B

=
∥∥∥∥∥
(
−n+ p1 − y1√
3n+ p2 − y2

)∥∥∥∥∥
B

−
∥∥∥∥∥
(
−n+ p1√

3n+ p2

)∥∥∥∥∥
B

=
{
−n+ p1 − y1 +

√
3(
√

3n+ p2 − y2) if p1 − y1 ≥ − 1√
3(p2 − y2);

2n− 2p1 + 2y1 if p1 − y1 < − 1√
3(p2 − y2)

−
{
−n+ p1 +

√
3(
√

3n+ p2) if p1 ≥ − 1√
3p2;

2n− 2p1 if p1 < − 1√
3p2

=
{

2n+ p1 − y1 +
√

3(p2 − y2) if 3(p1 − y1) +
√

3(p2 − y2) ≥ 0;
2n− 2p1 + 2y1 if 3(p1 − y1) +

√
3(p2 − y2) < 0

−
{

2n+ p1 +
√

3p2 if 3p1 +
√

3p2 ≥ 0;
2n− 2p1 if 3p1 +

√
3p2 < 0

= max{3(p1 − y1) +
√

3(p2 − y2), 0} −max{3p1 +
√

3p2, 0} − 2p1 + 2y1 + 2p1

= f∗F3,p(y).

The calculation for the straight line trough a3 goes similarly and we obtain for a sequence
zn = (−1,−

√
3) · n+ (p1, p2):

ψzn(y) = f∗F1,p(y)

for n large enough.
If we take a sequence in the direction of an one-dimensional extreme set of B but not in
the direction of a vertex, then we know that this sequence will converge to a Busemann
point associated to an extreme point of B◦ and therefore we don’t have to care about
the point p. If n is large enough, then zn and zn − y will be in the same cone Ci,j and
therefore we don’t have to distinguish between the norms within one calculation. So we
get for zn = (k, l) · n and n large enough independent of p:

ψzn(y) =
∥∥∥∥∥
(
kn− y1
ln− y2

)∥∥∥∥∥
B

−
∥∥∥∥∥
(
kn
ln

)∥∥∥∥∥
B
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=


kn− y1 +

√
3(ln− y2)− kn −

√
3ln if (k, l) ∈ C1,2;

−2(kn− y1) + 2kn if (k, l) ∈ C2,3;
kn− y1 −

√
3(ln− y2)− kn+

√
3ln if (k, l) ∈ C3,1

=


−y1 −

√
3y2 if (k, l) ∈ C1,2;

2y1 if (k, l) ∈ C2,3;
−y1 +

√
3y2 if (k, l) ∈ C3,1

=


〈(−1,−

√
3)|y〉 if (k, l) ∈ C1,2;

〈(2, 0)|y〉 if (k, l) ∈ C2,3;
〈(−1,

√
3)|y〉 if (k, l) ∈ C3,1

=


f∗E3,p

(y) if (k, l) ∈ C1,2;
f∗E1,p

(y) if (k, l) ∈ C2,3;
f∗E2,p

(y) if (k, l) ∈ C3,1.

We see that it makes no difference whether the unit ball is symmetric or not, the connection
between the shape of B and B◦ and the Busemann points is always the same.

5.4 R2 Equipped with a Lens-Shaped Norm
We come now to norms whose unit spheres are curved. The cases of R2 equipped with the
usual Euclidean norm as well as with the L

3
2 -norm can be found in the appendix3. There

the boundary of the unit ball is differentiable everywhere. Conversely we consider now
the following lens-shaped region B, whose boundary is differentiable everywhere except
for two points. B can be described as an intersection of two discs with radius 2 centred
at ±
√

3.

1

1

B

α

√
3

√
3

x

d
x

y

Figure 5.8: Lens-shaped unit ball B

There are two ways to describe B. On the one hand we can describe it as the intersection
of the two circles as mentioned above:

B =
{(

x
y

)
∈ R2

∣∣∣∣∣ (x−√3)2 + y2 ≤ 4
}
∩
{(

x
y

)
∈ R2

∣∣∣∣∣ (x+
√

3)2 + y2 ≤ 4
}
.

3See page 107 and 109.
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On the other hand we can use polar coordinates. For this we need the angle α as in the
picture above. From tanα = 1√

3 we obtain α = π
6 . With this we can write

B =
{(

r cosα−
√

3
r sinα

)∣∣∣∣∣α ∈
[
−π6 ,

π

6

]
; r ∈ [0, 2]

}
∩
{(
−r cosα+

√
3

r sinα

)∣∣∣∣∣α ∈
[
−π6 ,

π

6

]
; r ∈ [0, 2]

}

The boundary of B is

∂B =
{(
±(2 cosα−

√
3)

2 sinα

)∣∣∣∣∣− π

6 ≤ α ≤
π

6

}
. (5.6)

The Norm Induced by B We now want to calculate the norm on R2 induced by B.
For an arbitrary point x = (a, b) ∈ R2 let d = (d1, d2) ∈ ∂B be the intersection point of
∂B with the straight line from the origin to x. Then the distance

k := ‖x‖B =
∥∥∥∥∥
(
a
b

)∥∥∥∥∥
B

is defined by the equation (
a
b

)
= k

(
d1
d2

)
.

We already know that d is of the form
(
±(2 cosα−

√
3)

2 sinα

)
for some α ∈ [−π

6 ,
π
6 ]. As B is

symmetric, it suffices to consider either the left or the right part of the lens. We will deal
with the right part. This means we have to solve(

a
b

)
= k

(
2 cosα−

√
3

2 sinα

)

for k. From the first component we obtain a = 2k cosα−
√

3k, and from this

cos2 α = (a+
√

3k)2

4k2 .

If we insert this in the equation from the second component using that sin2 α = 1−cos2 α,
we obtain

k2 − 2a
√

3k − (a2 + b2) = 0,

an therefore
k = a

√
3±

√
4a2 + b2.

We have to choose the positive sign for the square root so that the boundary of B really
has norm 1. For the norm of some x = (a, b) ∈ R2 with a > 0 this yields∥∥∥∥∥

(
a
b

)∥∥∥∥∥
B

:= |a|
√

3 +
√

4a2 + b2. (5.7)

Because of the symmetry of the lens, this also holds for a ≤ 0 and we have found the norm
of all x = (a, b) ∈ R2.
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The Dual Unit Ball The most difficult part of this example is to calculate the dual
unit ball B◦ of B as we don’t have a polytope and therefore can’t use the results of section
2.5. We claim that B◦ is the region bounded by

H :=
{(

z
±1

)∣∣∣∣∣−√3 ≤ z ≤
√

3
}
∪
{(
±(z +

√
3)

±1
2
√

4− z2

)∣∣∣∣∣ 0 ≤ z ≤ 2
}
. (5.8)

1

−1

1−1
x

y

−2−
√

3 2 +
√

3

−
√

3
√

3−2
√

3 2
√

3

Figure 5.9: B◦ of the lens shaped norm: a ellipse pulled apart symmetrically

As long as we have not proven this fact, define for notational reasons

D :=
{(

z
±h

)∣∣∣∣∣−√3 ≤ z ≤
√

3; 0 ≤ h ≤ 1
}
∪
{(
±(z +

√
3)

±l
√

4− z2

)∣∣∣∣∣ 0 ≤ z ≤ 2; 0 ≤ l ≤ 1
2

}
.

Then ∂D = H. D is an ellipse cut in the middle and pulled apart symmetrically to
accommodate a rectangle of height 2 and length 2

√
3 in the middle. We now want to

prove, that D = B◦. For this we have to show two things:

1. D ⊆ B◦ : 〈x|y〉 ≥ −1 for all x ∈ B, y ∈ D

2. B◦ ⊆ D : ∀y /∈ D ∃ x ∈ B : 〈x|y〉 < −1.

Proof of 1.
Strategy of the proof: we prove that the minimum of 〈·|·〉 : ∂D×∂B −→ R; (d, b) 7−→ 〈d|b〉
is ≥ −1. Then by bilinearity of the dual pairing this is also true on D ×B.

Let x =
(
± (2 cosα−

√
3)

2 sinα

)
∈ ∂B for some α ∈ [−π

6 ,
π
6 ].

We first show the assumption for the rectangle part. Let therefore y = (z, ± 1) for some
z ∈ [−

√
3,
√

3]. The different colours of the signs mark their relations. Signs of the same
colour are linked, which means that you can choose either the upper or the lower sign for
all of them. The dual pairing of x and y then is

〈x|y〉 =
(
± (2 cosα−

√
3)

2 sinα

)(
z
± 1

)
= ± z(2 cosα−

√
3) ± 2 sinα

≥ −
√

3(2 cosα−
√

3) ± 2 sinα (5.9)

as z ∈ [−
√

3,
√

3]. We now want to find the minimum of this expression with respect to
α, so we set the partial derivative to zero:

∂α(〈x|y〉)|z=−√3 = 2
√

3 sinα ± 2 cosα != 0
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This condition is fulfilled for tan(α) = ∓ 1√
3 from which α = ∓ π

6 follows. If we insert
this into (5.9) we obtain

〈x|y〉 ≥ −
√

3(
√

3−
√

3) ± ∓ 1 = −1.

As {±π
6 } are exactly the boundary points of [−π

6 ,
π
6 ] the first case is shown.

Now we make a similar calculation for the elliptical part of D. Let x be as above and

y =
(
± (z +

√
3)

± 1
2
√

4− z2

)
for some z ∈ [0, 2]. Then

〈x|y〉 =
(
± (2 cosα−

√
3)

2 sinα

)(
± (z +

√
3)

± 1
2
√

4− z2

)
= ± 2z cosα ∓

√
3z ± 2

√
3 cosα ∓ 3︸ ︷︷ ︸

=:A

±
√

4− z2 sinα

= A ±
√

4− z2 sinα. (5.10)

The red sign stems from the combination of the orange and the blue one where we either
choose the same (+) or different (−) signs.
The partial derivatives are

∂α(〈x|y〉) = ∓ 2z sinα ∓ 2
√

3 sinα ±
√

4− z2 cosα != 0

∂z(〈x|y〉) = ± 2 cosα ∓
√

3 ∓ z sinα√
4− z2

!= 0. (5.11)

The second equation yields the condition ± cosα
√

4− z2 = ±
√

3
2
√

4− z2 ± 1
2z sinα

and from this follows √
4− z2 = ± ±

1
2z sinα

(cosα−
√

3
2 )

.

If we insert this into the derivative with respect to α and rewrite the resulting equation,
it is independent of the choice of signs:

z = 2
√

3 2 cosα−
√

3
2
√

3− 3 cosα
. (5.12)

This means that for every x =
(
±(2 cosα−

√
3)

2 sinα

)
there is one choice for the parameter

z in the first component of y such that the dual pairing 〈x|y〉 is extremal. With z as in
(5.12) we calculate

4− z2 = 4− 12 4 cos2 α+ 3− 4
√

3 cosα
12− 12

√
3 cosα+ 9 cos2 α

= 4 · 3
(2
√

3− 3 cosα)2 (− cos2 α+ 1)

= 12 sin2 α

(2
√

3− 3 cosα)2 .

If we insert expression (5.12) for z into (5.11), we see that the condition of being 0 is
fulfilled independently of α. So we have to determine α another way. For this we calculate

A = ± 2z cosα ∓
√

3z ± 2
√

3 cosα ∓ 3
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= ∓ 2 cosα · 2
√

3 2 cosα−
√

3
3 cosα− 2

√
3
±
√

3 · 2
√

3 2 cosα−
√

3
3 cosα− 2

√
3
± 2
√

3 cosα ∓ 3

= ± −8
√

3 cos2 α+ 12 cosα+ 12 cosα− 6
√

3 + 6
√

3 cos2 α− 12 cosα− 9 cosα+ 6
√

3
3 cosα− 2

√
3

= ± 1
N

(−2
√

3 cos2 α+ 3 cosα)

where we set
N := 3 cosα− 2

√
3.

N 6= 0 because 2
√

3
3 > 1.

Using these results we obtain

〈x|y〉 = ± 3 cosα− 2
√

3 cos2 α

3 cosα− 2
√

3
± sinα 2

√
3 sinα

3 cosα− 2
√

3

= 1
N

( ± 3 cosα ∓ 2
√

3 cos2 α ± 2
√

3(1− cos2 α))

= 1
N

[( ∓ 1 ∓ 1)2
√

3 cos2 α ± 3 cosα ± 2
√

3].

Now there are two cases to distinguish. The first one is that we choose the upper or the
lower sign for both red and green. We will mark this case with a subscript “1”. This leads
to

〈x|y〉1 = ± 1
N

(−4
√

3 cos2 α+ 3 cosα+ 2
√

3).

We want to find the minimum of this function with respect to α. Therefore we take the
partial derivative with respect to α and set this equal to zero:

∂α(〈x|y〉1) = ± 4
√

3 sinα
N2 [(

√
3 cosα− 2)2 − 1] != 0.

The expression in squared brackets is never equal to zero, because this would lead either
to the contradiction cosα =

√
3 > 1 or to cosα = 1√

3 . From this would follow α > π
4 >

π
6

which is a contradiction as well. So the only possibility for this term to be zero is for
α = 0. The second derivative 4 of 〈x|y〉1 at α = 0 is negative for + and positive for −. So
in the first case we have a maximum and a minimum in the second case. The two values
of M at these extrema are

〈x|y〉1|α=0 = ± −4
√

3 + 3 + 2
√

3
3− 2

√
3

.

= ± 1

Now let us look at the other case (which gets a subscript “2”) where we choose the upper
sign for one and the lower sign for the other coloured sign. This choice gives us a new blue
sign. We then have:

〈x|y〉2 = ± 3 cosα− 2
√

3
3 cosα− 2

√
3

= ± 1.

4∂2
α(〈x|y〉1) = ± 12

√
3

(3 cosα−2
√

3)3 (15 cos4 α− 22
√

3 cos3 α+ 13 cos2 α+ 14
√

3 cosα− 14).
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It remains to check the dual pairing on the boundary points z ∈ {0, 2} and α = ±π
6 . Easy

calculations show that in all these cases 〈x|y〉 ≥ −1.

So in both cases 〈x|y〉 ≥ −1, which is exactly what we wanted to show.

Proof of 2.
Let y /∈ D. Then y can be written as

y =
(
± (z +

√
3 + a)

± (1
2
√

4− z2 + b)

)

with a, b ≥ 0, not a = b = 0, both not uniquely determined and for some z ∈ [0, 2]. From

the calculation above we know that there is an x =
(
± (2 cosα−

√
3)

2 sinα

)
∈ ∂B (that is

α ∈ [−π
6 ,

π
6 ]) where ± = − ± and sign(sinα) = ∓ with〈

x

∣∣∣∣∣
(
± (z +

√
3)

± 1
2
√

4− z2

)〉
= −1.

Then

〈x|y〉 =
(
∓ (2 cosα−

√
3)

2 sinα

)(
± (z +

√
3 + a)

± 1
2(
√

4− z2 + b)

)
= −1 ∓ ± (2 cosα−

√
3)a ± ∓ 2| sinα|b

< −1.

This shows that we can find an x ∈ B for every y /∈ D such that 〈x|y〉 < −1.
With 1. and 2. together we have shown, that

D = B◦.

Extreme Sets of B◦ Let B◦ be as described above. We have three different kinds of
extreme sets:

E1 := B◦

F± :=
{(

z
±1

)∣∣∣∣∣−√3 ≤ z ≤
√

3
}

= conv
((√

3
±1

)
,

(
−
√

3
±1

))

Es := {s} where s =
(
± (z +

√
3)

± 1
2
√

4− z2

)
for some 0 ≤ z ≤ 2

Computation of the fE,p -Functions As in our examples before, the next step is to
calculate the fE,p-functions5.
As we only need the proper extreme sets of B◦, we don’t have to make the calculation for
E1. So for F± let p = (p1, p2) ∈ R2.

min
{
〈(
√

3,±1)|p〉, 〈(−
√

3,±1)|p〉
}

= min
{√

3p1 ± p2,−
√

3p1 ± p2
}

=
√

3 min {p1,−p1} ± p2

= −
√

3|p1| ± p2

5Remember that fE,p(q) = IE(q) + 〈q|p〉 − infy∈E〈y|p〉, where E is an extreme set of B◦ and p ∈ V .
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and therefore by Lemma 5.0.6:

fF±,p(q) = IF±(q) + 〈q|p〉 −min
{
〈(
√

3,±1)|p〉, 〈(−
√

3,±1)|p〉
}

= IF±(q) + 〈q|p〉+
√

3|p1| ∓ p2

The last type of extreme sets are extreme sets consisting of a single point. We already
know the result for this case from Lemma 5.0.4:

fEs,p(q) = IEs(q).

The Legendre-Fenchel Transforms Using equation (5.4) we get for y ∈ R2

f∗F±,p(y) = max
{
〈(
√

3,±1)|y − p〉, 〈(−
√

3,±1)|y − p〉
}

+ min
{
〈(
√

3,±1)|p〉, 〈(−
√

3,±1)|p〉
}

= max
{√

3(y1 − p1)± (y2 − p2),−
√

3(y1 − p1)± (y2 − p2)
}
−
√

3|p1| ± p2

=
√

3|y1 − p1| ± y2 ∓ p2 −
√

3|p1| ± p2

=
√

3|y1 − p1| −
√

3|p1| ± y2

and by (4.2.5)

f∗Es,p(y) = 〈y|s〉.

The Geometrical Part The last step is to find sequences zn in R2, such that

ψzn(y) = ‖zn − y‖B − ‖zn‖B −→ f∗E,p(y) as n→∞.

Recall that the norm in our example is∥∥∥∥∥
(
a
b

)∥∥∥∥∥
B

=
√

3|a|+
√

4a2 + b2

as calculated in (5.7). Let us first look at sequences following straight lines parallel to the
axes. Let p = (p1, p2) be a point in R2.
Consider the sequence zn = (1, 0) · n+ (p1, p2) −→ (∞, p2) with n ∈ N. Then

ψzn(y) = ‖zn − y‖B − ‖zn‖B

=
√

3|n− y1|+
√

4(n− y1)2 + (p2 − y2)2 −
√

3|n| −
√

4n2 + p2
2

n�y1=
√

3n−
√

3y1 −
√

3n+ 2|n− y1|
√

1 + (p2 − y2)2

4(n− y1)2 − 2n

√
1 + p2

2
4n2

= −
√

3y1 + 2(n− y1)
[
1 + (p2 − y2)2

4(n− y2)2 +O
( 1
n3

)]
− 2n

[
1 + p2

2
4n2 +O

( 1
n3

)]

= −
√

3y1 + 2(n− y1)− 2n+O
( 1
n

)
−→ −

√
3y1 − 2y1 = −

〈(
2 +
√

3
0

)∣∣∣∣∣ y
〉

If we go along the same line to the other direction, we have to be careful with the minus
signs, and obtain after a similar calculation:

ψz−n(y) = ‖z−n − y‖B − ‖z−n‖B
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n>y1=
√

3n+
√

3y1 −
√

3n+ 2(n+ y1)
√

1 + (p2 − y2)2

4(n+ y1)2 − 2n

√
1 + p2

2
4n2

=
√

3y1 + 2(n+ y1)− 2n+O
( 1
n

)
−→
√

3y1 + 2y1 = −
〈(
−(2 +

√
3)

0

)∣∣∣∣∣ y
〉

= f∗Es′ ,p for s′ =
(
−2 +

√
3

0

)
.

(5.13)

We now consider a sequence following a straight line parallel to the y-axis.
Let zn = (0, 1) · n+ (p1, p2) −→ (p1,∞) and again let p = (p1, p2) be any point. Then

ψzn(y) =
∥∥∥∥∥
(
p1 − y1
zn − y2

)∥∥∥∥∥
B

−
∥∥∥∥∥
(
p1
zn

)∥∥∥∥∥
B

=
√

3|p1 − y1|+
√

4(p1 − y1)2 + (z − n− y2)2 −
√

3|p1| −
√

4p2
1 + z2

n

=
√

3|p1 − y1| −
√

3|p1|+ |zn − y2| ·
[
1 + 4(p1 − y1)2

(zn − y2)2 +O
( 1
z3
n

)]

− |zn| ·
[
1 + 4p2

1
z2
n

+O
( 1
z3
n

)]

=
√

3|p1 − y1| −
√

3|p1|+ zn − y2 − zn +O
( 1
zn

)
−→
√

3|p1 − y1| −
√

3|p1| − y2 = f∗E2−,p(y),

and similarly for a sequence in the other direction

ψzn(y) −→ f∗E2+,p(y).

The next sequence follows a straight line not parallel to one of the axes. Let therefore
zn = (k, l) · t + (p1, p2) −→ (∞,∞) as t −→ ∞ with k, l ∈ R, k, l > 0. Then by a long
calculation, carried out in the appendix, we get

ψzn(y) =
∥∥∥∥∥
(
kt+ p1 − y1
lt+ p2 − y2

)∥∥∥∥∥
B

−
∥∥∥∥∥
(
kt+ p1
lt+ p2

)∥∥∥∥∥
B

−→
(
−
√

3− 4k√
4k2 + l2

)
y1 −

l√
4k2 + l2

y2 = −
〈(√

3 + 4k√
4k2+l2

l√
4k2+l2

)∣∣∣∣∣︸ ︷︷ ︸
:=q

y

〉
.

As

∂B◦elliptic =
{(
±(z +

√
3)

±1
2
√

4− z2

)∣∣∣∣∣ 0 ≤ z ≤ 2
}
,

we see by choosing

zq = 4k√
4k2 + l2

that q ∈ ∂B◦elliptic. So for every sequence zn following a line not parallel to the y-axis, ψzn
converges to the dual pairing of a point in the elliptic boundary part of B◦ with y.



56 Chapter 5. Examples: Horocompactifications of Rm

Geometrical Construction There is an easy way to find the point q geometrically
without any calculation.
Claim
We use the notations from above. For a sequence zt following the straight line

ht =
(
k
l

)
· t with k, l ∈ R+, t −→∞,

let g be the line given by

gt =
(
l
−k

)
· t+ b,

that is the vertical line to −h with b ∈ R2 such that the image of g is a supporting
hyperplane, namely a tangent line, to B◦. Then

ψzt −→ f∗Es,p,

where
Es = {s} = gt ∩ ∂B◦

is the point at which g touches B◦. Here s = −
(√

3 + 4k√
4k2+l2

l√
4k2+l2

)
.

1

1

B

√
3

√
3

ht

x

y

1

−1

1−1
x

y

−
√

3
√

3−2
√

3 2
√

3

ht
gt

Es

Figure 5.10: Constructing the hyperplane gt perpendicular to ht to find the extreme set
Es as the intersection of gt with ∂B◦

Proof of the claim
We already know that ψzt −→ f∗Es,p. Let qk,l = gt ∩ ∂B◦ be the intersection point of
the vertical line gt with the dual unit ball. It remains to prove that s = qk,l. The line

gt =
(
l
−k

)
· t has slope −k

l . gt is tangent to B◦elliptic at x ∈ R2 if f ′(x) = −k
l , where

f(x) = −1
2
√

4− x2 describes the boundary of the ellipse in the section of the negative
straight line −ht our sequence is following6. Hence

f ′(x) = − −2x
4
√

4−x2 = x
2
√

4−x2
!= −k

l

⇐⇒ lx = −2k
√

4− x2

⇐⇒ l2x2 = 16k2 − 4k2x2

⇐⇒ (4k2 + l2)x2 = 16k2

⇐⇒ x = ± 4k√
4k2+l2 = ±zq.

6In the strict sense we are considering the ellipse without the rectangle in the middle here, because it
makes no difference in calculating the derivative and the slope. We must not forget to add ±

√
3 to the

x-value in the end.
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Because of the direction of the line ht we have to choose the minus sign in the last equation
and get for the intersection point:

qk,l =
(

x−
√

3
−1

2
√

4− x2

)
= −

(√
3 + 4k√

4k2+l2
l√

4k2+l2

)
= s.

A special case occurs when our sequence is following a straight line parallel to the x-axis,
then ψzt(y) −→ 〈y | ± (2 +

√
3, 0)〉 as calculated above. The points ±(2 +

√
3, 0) are the

only two tangent intersection points of vertical lines parallel to the y-axis with ∂B◦.
A similar result holds for the one-dimensional extreme set. The only difference is that we
have to consider the point p now. Remember that if we take a sequence parallel to the
positive y-axis, zn = (p1, n), we obtained ψzn −→ f∗E2−,p

. If we take the vertical to the
negative straight line, namely to the negative y-axis, such that it is tangent to B◦, we get
gt = (t,−1) and therefore

gt ∩ ∂B◦ = E2−.

We will come back to this in section 5.6.

5.5 Horofunctions 6= Busemann Points
If we want to get an example7 of a horofunction that is not a Busemann point, we have
to go to the three dimensional space. There we define the norm

‖(x, y, z)‖ := max
(
|x|+ |z|,

√
x2 + y2

)
.

Then the unit ball is

B =
{

(x, y, z) ∈ R3
∣∣∣ |x|+ |z| ≤ 1 and x2 + y2 ≤ 1

}
.

As the dual unit ball B◦ is the polar of B and the polar of an intersection is the convex
hull of the polars8, the dual unit ball B◦ is the convex hull of the square with vertices
(±1, 0,±1) and the unit circle in the x− y-plane.

We define the sequence

pn :=

cos 1
n

sin 1
n

0

 for all n ∈ N.

Then every point {pn} is an extreme point of B◦, but the limit (1, 0, 0) for n −→∞ is not
extreme because it can be written as

(1, 0, 0) = 1
2(1, 0, 1) + 1

2(1, 0,−1)

with (1, 0,±1) ∈ B◦, see also Lemma 2.4.2 on page 10. So the set E of extreme sets of B◦
is not closed in the Painlevé-Kuratowski topology and from Theorem 4.0.32 we now know
that there must be a horofunction that is not a Busemann point.
One example is the function

f : R3 −→ R; (x, y, z) 7−→ −x
7Following [Wal07].
8See Lemma 2.5.14.
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We first show that f is a horofunction:
For every n ∈ N the function ‖mpn − ·‖ − ‖mpn‖ converges to the function

ξn : R3 −→ R

q 7−→ −〈pn|q〉 = −q1 cos 1
n
− q2 sin 1

n

as m −→ ∞. Therefore ξn is a horofunction for every n ∈ N. Furthermore ξn −→ f as
n −→∞, so f is also a horofunction.
To show that f is not a Busemann point, we use the criterion of Lemma 4.2.1. That means
that we have to find two 1-Lipschitz functions each different from f whose minimum is f .
The following functions f1, f2 : R3 −→ R sufice:

f1(x, y, z) :=
{
−x+ z if z ≥ 0
−x if z < 0

and

f2(x, y, z) :=
{
−x if z ≥ 0
−x− z if z < 0

Both functions are 1-Lipschitz and f = min(f1, f2). Thus f is a horofunction but not a
Busemann point.

5.6 Deductions from the Examples
In this section we want to find a characterisation of the sequences in Rm defining the
Busemann compactification of Rm equipped with a polyhedral norm.
In the following let B always be a convex polyhedral unit ball in Rm and B◦ its dual.
Before we come to the main result, we have to prove some useful lemmata.

Lemma 5.6.1 For each x ∈ Rm there is a proper extreme set E ⊆ B◦ of the dual unit
ball, such that

‖x‖B = |x|E ,
where |x|C = − infq∈C〈q|x〉 for a convex set C (see (4.7) on page 26).

Proof. Let x ∈ Rm be arbitrary. Then there is a unique x̃ ∈ ∂B such that

x = kx̃

for some k ≥ 0. Clearly ‖x̃‖B = 1 and therefore ‖x‖B = k. By construction of B◦ there is
a y ∈ ∂B◦ such that 〈y|x̃〉 = −1. This means that there is a minimal extreme set E ⊆ ∂B◦
containing y. Hence

‖x‖B = k‖x̃‖B = −k inf
q∈B◦
〈q|x̃〉

= −k inf
q∈E
〈q|x̃〉 = − inf

q∈E
〈q|x〉

= |x|E .

The important point of this proof is to see how the extreme set E depends on the point
x and which role the dual unit ball plays.

Let F ⊆ B be an extreme set of B. As B is polyhedral, F is polyhedral too. We will
denote by F ◦ the extreme set of B◦ for which 〈x|y〉 = −1 for all x ∈ F ◦ and y ∈ F . Then
F ◦ is a polyhedral convex extreme set of B◦.
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Lemma 5.6.2 Let F be a non-empty proper extreme set of B and E := F ◦. Let x ∈ Rm
be such that x

‖x‖B ∈ riF . Let E1, . . . , Ek be the vertices of the convex set E ⊆ B◦, that
is extreme points of B◦, Ei =: {ei} and let Fi := E◦i for all i = 1, . . . , k. Let p ∈ Rm be
small enough such that there is a j ∈ {1, . . . , k} with x+p

‖x+p‖B ∈ Fj . Then

|x+ p|E = |x+ p|Ej .

Remark 5.6.3 If F ⊆ B is not a hyperplane, the Fi are facets of B with F in their
relative boundary. If F is a hyperplane, E consists of a single point and E = Ei for all i.
In this case the lemma is trivial.

Proof of the lemma. Define the function f : E −→ R via f(q) = 〈q|x+p〉. As E is compact
and f is affine, f takes its maximum and its minimum on the boundary of E9. As the
boundary of E is the finite union of several polyhedral convex sets, we can conclude that f
takes its minimum and maximum on the vertices E1, . . . , Ej of E. Because of the duality
Fj = E◦j = {ej}◦ and as x+p

‖x+p‖B ∈ Fj we know that〈
ej

∣∣∣∣ x+ p

‖x+ p‖B

〉
= −1

and 〈
ei

∣∣∣∣ x+ p

‖x+ p‖B

〉
≥ −1 ∀i 6= j.

Therefore we have

−|x+ p|E = inf
q∈E
〈q|x+ p〉

= inf
i=1,...,k

〈ei|x+ p〉

= ‖x+ p‖B inf
i=1,...,k

〈
ei

∣∣∣∣ x+ p

‖x+ p‖B

〉
= ‖x+ p‖B

〈
ej

∣∣∣∣ x+ p

‖x+ p‖B

〉
= 〈ej |x+ p〉
= inf

q∈Ej
〈q|x+ p〉

= −|x+ p|Ej .

Lemma 5.6.4 Let F be a proper extreme set of B and x ∈ Rm such that x
‖x‖B ∈ riF .

Let E = F ◦. Then for all p ∈ Rm

|x+ p|E = ‖x‖B + |p|E .

Proof. As x
‖x‖B ∈ F , we know that for all q ∈ E there holds 〈q| x

‖x‖B 〉 = −1 and therefore
〈q|x〉 = −‖x‖B. With this we obtain

|x+ p|E = − inf
q∈E
〈q|x+ p〉

= − inf
q∈E

[〈q|x〉+ 〈q|p〉]

= ‖x‖B − inf
q∈E
〈q|p〉

= ‖x‖B + |p|E .
9 As f is continuous and E is compact, we can conclude that it takes its minimum and maximum on E.
If they would lie only in the interior of E, the derivative would be 0 at that point. As f is affine, it
would be constant in contradiction to the assumption that it takes its extrema not on the boundary.
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We remind the reader of the following definition:

Definition Let C ⊆ Rm be a convex set. The smallest cone containing C was defined
by

KC := {x ∈ Rm | x = αc for some α > 0, c ∈ C}.

Definition 5.6.5 Let F ⊆ ∂B be an extreme set of B. Let V (F ) be the subspace
generated by the cone KF , that is, the smallest subspace of Rm containing KF and let
V (F )⊥ be its orthogonal complement with respect to the Euclidean scalar product on Rm.
Let ΠF denote the projection onto the subspace V (F ). Let F be the set of extreme sets
of B.

Lemma 5.6.6 Let (yn)n∈N be a sequence in Rm with ‖yn‖B −→ ∞ as n −→ ∞. Then
yn has a subsequence ynk which satisfies the following conditions:
∃F ∈ F , p ∈ V (F )⊥ such that:

(i) ∃N ∈ N ∀nk ≥ N : ΠF (ynk) ∈ KF .

(ii) d (ΠF (ynk), ∂relKF ) −→∞ as n −→∞.

(iii) ‖ynk −ΠF (ynk)− p‖B −→ 0 as n −→∞.

Proof. 10 Every y ∈ Rm can be uniquely written as y = yF + yF with yF ∈ V (F ) and
yF ∈ V (F )⊥. So a lower index denotes the projection onto the space and an upper index
the projection onto the complementary space.
We will use an induction over the dimension m of the space Rm. As the proof gets a
bit complicated in the end, where we have to consider several projections of extreme sets,
we give a picture (see figure 5.11 and 5.12) as an example to get an image for the procedure.

Let m = 1. Then we have two extreme sets F1, F2 of the unit ball, one on each side of
the origin and (yn)n has a subsequence (ynk)nk going to infinity in one of the two cones
(that is in one of the two half-spaces), say in KF1 . Then ΠF1(ynk) = ynk ∈ KF1 which
shows the first and third condition. As the relative boundary of KF1 is the origin, we see
that the second condition is also true.

Let now m > 1 and (yn) a sequence in Rm with ‖yn‖ −→ ∞ as n −→ ∞. Then it has
a subsequence (ynk)nk such that the sequence

(
ynk
‖ynk‖B

)
nk

converges to some point b ∈ B.

Let F ∈ F be the smallest extreme set such that b ∈ F and write ynk = ynk,F + yFnk . Then
ynk,F = ΠF (ynk) ∈ KF for all nk large enough and therefore (i) is satisfied. The second
condition is also satisfied because ynk

‖ynk‖B
−→ b ∈ F and if the distance d(ΠF (ynk), ∂relKF )

would not go to infinity, we would have found another F ∈ F .
If condition (iii) is not already satisfied we have to distinguish two cases. Either the
subsequence (yFnk)nk ⊆ V (F )⊥ is bounded. Then it has a converging subsequence in
V (F )⊥ which fulfils the last condition.
Alternatively, if (yFnk) is not bounded, we have to make use of the induction. Consider
W := V (F )⊥ as our new vector space equipped with the unit norm obtained by projecting
those Fi having F in their relative boundary. Then the norm on W is also polyhedral and
dimW < m. Let a prime ′ at some object denote the object projected onto W = V (F )⊥

10We will follow the idea of the proof of Proposition 3.25 (2) of [GJT98] but with different notations.
Our conditions are equivalent to those in [GJT98] where the polyhedral compactification of a flat is
explained. The polyhedral compactification is isomorphic to the Busemann compactification, see [Bri06,
Beh. 2.16].
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(for example, F ′ denotes the set of extreme sets of B′ in W). By induction we know that
(yFnk)nk has a subsequence (yFnkj )nkj which satisfies all conditions for some F ′1 ∈ F ′ and
p1 ∈ V (F ′1)⊥, the complement taken in W . For the corresponding sequence (ynkj )nkj in
Rm with ynkj = ynkj ,F + yFnkj

we set for convenience xj := ynjk . Then (xFj )j = (yFnkj )nkj
satisfies

(i’) (xFj )F ′1 = ΠF ′1
(xFj ) ∈ KF ′1

(ii’) d
(
(xFj )F ′1 , ∂relKF ′1

)
−→∞

(iii’) ‖xFj − (xFj )F ′1 − p1‖B′ −→ 0

Let F1 ∈ F be such that F ⊆ ∂relKF1 and F ′1 the projection of F1 onto W .
We will show, that xj satisfies all conditions for the extreme set F1.
We can split xj in

xj = xj,F + xFj

= xj,F + (xFj )F ′1︸ ︷︷ ︸+(xFj )F ′1

= xj,F1 + xF1
j

because (xFj )F ′1 = xF1
j , where the orthogonal complement of V (F1) is taken in W . This

follows from the fact that F ⊆ F1 and F ′1 ⊆ V (F )⊥. For the same reasons xj,F + (xFj )F ′1 =
(xj,F )F1 + (xFj )F1 = (xj)F1 = xj,F1 (see also figure 5.11 and 5.12 for an illustration).

F

y

z

x

V (F1)⊥

F1

Figure 5.11: F , F1 and V (F1)⊥

y

z

-1

1

1

-1
F ′1

V (F ′1)

Figure 5.12: V (F )⊥ with F ′1 and V (F ′1)⊥

We will now show that (xj) satisfies the conditions (i)− (iii) with respect to F1.

(i) We have to show that the projection of xj on V (F1) lies in the cone KF1 . We know
that xj,F1 = xj,F + (xFj )F1 and because of the choice of the subsequence at the
beginning, xj,F ∈ KF and KF ⊆ ∂relKF1 . So xj,F1 lies in one or more of the cones in
V (F1) having F in their relative boundary. If the sequence did lie in another cone
than KF1 , the projection to W and V (F ′1) would not lie in KF ′1

which would be a
contradiction to (2′)(i).

(ii) d (xj,F1 , ∂relKF1) −→ ∞ because xj,F1 lies in KF1 and as xj
‖xj‖B −→ b ∈ F , the

sequences goes to infinite distance from all parts of the relative boundary of KF1

aside from maybe those lying next to F . Projecting them to W they become part
of the relative boundary of F ′1 so condition (2′)(ii) guarantees, that these distances
are also unbounded.
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(iii) It is

‖xj − xj,F1 − p1‖B = ‖xF1
j − p1‖B = ‖(xFj )F ′1 − p1‖B′ −→ 0

by the last condition of xFj .

So we finally found a subsequence (xj)j = (ynkj )nkj of (yn)n satisfying all conditions.

We are now approaching the main theorem of this section. We will use the notations of
the chapters before and start with an overview of the maps needed.
Let

fE,p : (Rm)∗ −→ [0,∞)
q 7−→ fE,p(q) = IE(q) + 〈q|p〉 − inf

y∈E
〈y|p〉

be the first of our two considered functions, where IE(q) denotes the indicator function for
the extreme set E ⊆ B◦ (see also (4.1) on page 21). We will need the Legendre-Fenchel
transform of fE,p. In (4.2.5) we already calculated that

f∗E,p(y) = sup
x∈(Rm)∗

(〈y|x〉 − fE,p(x))

= − inf
q∈E
〈q|p− y〉+ inf

q∈E
〈q|p〉

= |p− y|E − |p|E .

The other map we need is

ψz : Rm −→ R≥0

y 7−→ ψz(y) = ‖z − y‖B − ‖z‖B

for each z ∈ Rm. By Lemma 4.1.2 we know that

ψz(y) = ‖z − y‖B − ‖z‖B
= − inf

q∈B◦
〈q|z − y〉+ inf

q∈B◦
〈q|z〉

Theorem 5.6.7 Let B ⊆ Rm be a convex polyhedral unit ball and B◦ its dual. Let F
denote the set of proper extreme sets of B and E those of B◦. Let (zn)n∈N be a sequence
in Rm.
Then ψzn(·) = ‖zn − ·‖B −‖zn‖B converges to the Busemann point f∗E,p with p ∈ Rm and
E ∈ E if and only if the following conditions are satisfied:

(1) ‖zn‖B −→∞ as n −→∞.

(2) ∃F ∈ F , p ∈ V (F )⊥ such that:
(i) ∃N ∈ N ∀n ≥ N : ΠF (zn) ∈ KF .
(ii) d (ΠF (zn), ∂relKF ) −→∞ as n −→∞.
(iii) ‖zn −ΠF (zn)− p‖B −→ 0 as n −→∞.

If ψzn converges, then E = F ◦.
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Proof. hsd

“⇐=” We first show that ψzn converges if the conditions are satisfied, so let (zn)n∈N be a
sequences satisfying (1) and (2). Define the sequence

kn := ΠF (zn)

whose distance from the relative boundary of KF goes to infinity by 2(ii). Let
y ∈ Rm be arbitrary.

I. We first show that ψkn+p −→ f∗E,p with E = F ◦. Let n be large enough such
that there are Fi, Fj ∈ F with dimFi = dimFj = m− 1 satisfying

kn + p− y
‖kn + p− y‖B

∈ Fi;
kn + p

‖kn + p‖B
∈ Fj . (5.14)

As B is polyhedral, each extreme set of B lies in the relative boundary of an
m − 1-dimensional extreme set of B and if n is large enough then the above
mentioned conditions can always be satisfied.
Let Ei = F ◦i ∈ E and Ej = F ◦j ∈ E . Then

ψkn+p(y) = ‖kn + p− y‖B − ‖kn + p‖B
1= |kn + p− y|Ei − |kn + p|Ej
2= |kn + p− y|E − |kn + p|E
3= ‖kn‖B + |p− y|E − ‖kn‖B − |p|E
= |p− y|E − |p|E = f∗E,p(y).

Step 1 follows by Lemma 5.6.1 and with equation (5.14). The second step is a
consequence of Lemma 5.6.2 and the third one of Lemma 5.6.4. The sets Fi, Fj
are chosen precisely such that all these lemmata can be applied.

II. We now show the statement for zn where we will use (I.) and the fact that
‖zn − kn − p‖B −→ 0. Then we have

(ψzn − f∗E,p)(y) = ‖zn − y‖B − ‖zn‖B − f∗E,p(y)
= ‖zn − kn − p+ kn + p− y‖B − ‖zn − kn − p+ kn + p‖B − f∗E,p(y)
≤ ‖zn − kn − p‖B + ‖kn + p− y‖B + ‖zn − kn − p‖B − ‖kn + p‖B − f∗E,p(y)
−→ 0

by the usual and the reverse triangle inequality. Similarly we get

(ψzn − f∗E,p)(y) = ‖zn − kn − p+ kn + p− y‖B − ‖zn − kn − p+ kn + p‖B − f∗E,p(y)
≥ −‖zn − kn − p‖B + ‖kn + p− y‖B − ‖zn − kn − p‖B − ‖kn + p‖B − f∗E,p(y)
−→ 0,

so we have shown that ψzn(y) −→ f∗E,p(y). By section 3 (page 18) we know
that pointwise convergence of ψzn is equivalent to uniform convergence on
bounded sets, which again is equivalent to uniform convergence on compact
sets in C(Rm). Therefore ψzn −→ f∗E,p.
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“=⇒” We have to show that every sequence (zn)n∈N ⊆ Rm with ψzn −→ f∗E,p for some
E ∈ E and p ∈ V (E◦)⊥ satisfies the conditions of the theorem. The proof is based
on Lemma 5.6.6, where we have shown that every sequence converging to infinity
has a subsequence fulfilling conditions (2)(i)− (iii) for some F ∈ F .
Let (zn)n be a sequence with ψzn −→ f∗E,p and let F := E◦. Assume a subsequence
(znk) of (zn) satisfies all conditions for some F1 ∈ F different from F . Then by the
first part of the proof we would have ψznk −→ f∗E1,p

6= f∗E,p as E1 6= E which is a
contradiction. Thus (zn) has a subsequence satisfying all conditions with respect to
F . We have to show that this subsequence can be chosen as the whole sequence.
If not the entire sequence (zn) fulfils condition (1), there are two possibilities. If (zn)
converges to some point in x we get functions in the closure but not in the boundary
of ψ(X), that is, no Busemann points. The other possibility is that (zn) has at least
two subsequences converging to different Busemann points. In both versions ψzn
does not converge. Therefore we can conclude that (zn) satisfies (1) and use Lemma
5.6.6.
If (2)(i) is not fulfilled, we can find two different subsequences, the first one, (zni),
with Πf (zni) ∈ KF and another one, (znj ), with ΠF (znj ) /∈ KF for all nj . Then (nj)
and (znj ) are unbounded and there is a subsequence, also denoted by (znj ), such
that there is an nj ∈ N with ΠF1(znj ) ∈ KF1 and F 6= F1. (znj ) also satisfies the
other conditions and thus ψznj −→ f∗E1,p1

where E1 := F ◦1 . Then ψzn would have
subsequences with different limits and would not converge any more.
If one of the other conditions is not fulfilled, the proof goes similarly. We always have
a subsequence satisfying the conditions and one not satisfying it and get two different
limits in the end. The last condition depends also on the point p. Therefore the
difference between the Busemann points may occur because of different p ∈ V (F )⊥,
for example if we have parallel subsequences.
This shows that a sequence converging to some Busemann point fulfils all these
conditions.

Remark 5.6.8 vgfh

1. We saw that both sequences (kn) in the cone KF (generated by F ∈ F) whose
distance to ∂relKF is unbounded, and sequences (zn) converging to such a sequence
(kn) converge to the same Busemann point. A parallel shift by a constant p ∈ V (F )⊥
determines the point p of f∗E,p. But the only property having influence on the proper
extreme set E ⊆ ∂B◦ of f∗E,p is the direction of the sequence. This is the reason
why we only considered sequences along straight lines in our examples. If zn follows
a straight line h, we can easily determine F : first shift h so that it passes through
the origin. Then F is the smallest extreme set in which h intersects the boundary
of the dual unit ball.

2. It is remarkable that the sequences ψkn(y) become constant if B is polyhedral, that
is ψkn(y) = f∗E,p(y) for n large enough (dependent on y). If B is not polyhedral
but has a curved boundary, we do have sequences that do not become constant but
converge to some f∗E,p, see for example (5.13) on page 55. The reason is that we
cannot find m-dimensional extreme sets Fi, Fj ∈ F such that equation (5.14) holds
for all n ≥ N for some N ∈ N.

Remark 5.6.9 We gave the proof here only for polyhedral norms B. We saw that the
geometrical construction also works for the lens-shaped unit ball and the Euclidean metric.
That is a reason why we only considered sequences following a straight line also in those
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examples. I suppose that a result similar to the theorem also holds for some of the non-
polyhedral norms, especially if every horofunction is a Busemann point, and that it can
be shown by using the continuity of the norm.

Examples to Illustrate the Conditions in Theorem 5.6.7

We will consider three examples of sequences not following a straight line to see what the
conditions given in the theorem mean. Let X = R2 be equipped with the L1-norm (see
also section 5.1 on page 33). The unit ball and its dual with the notations of the extreme
sets used in the following are illustrated in figure 5.13.
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Figure 5.13: B and B◦ of the L1-norm in R2

1) At first we consider the sequence (zn)n∈N with zn =
(
n, 1

2 sin(n) + 1
)
. Then the

first condition is readily verified. The other conditions require the choice of an
extreme set F ∈ F . The only reasonable choices are F = G1, the extreme point,
or F = G2, the extreme facet. If F = G1 then the third condition is not fulfilled,

because ‖zn −ΠG1(zn)− p‖B =
∥∥∥∥∥
(

n
1
2 sin(n) + 1

)
−
(
n
0

)
−
(
p1
p2

)∥∥∥∥∥
B

does not go to 0

as n −→ ∞ for any p ∈ R2. If we take F = G2, then the third condition is satisfied
because ΠG2(zn) = zn, but zn remains in finite distance to ∂relKG2 and therefore the
second condition is not satisfied.Indeed, when we compute ψzn , we get

ψzn(y) = ‖zn − y‖1 − ‖zn‖1

=
∥∥∥∥∥
(

n
1
2 sin(n) + 1

)
−
(
y1
y2

)∥∥∥∥∥
1
−
∥∥∥∥∥
(

n
1
2 sin(n) + 1

)∥∥∥∥∥
1

= |n− y1|+
∣∣∣∣12 sin(n) + 1− y2

∣∣∣∣− |n| − ∣∣∣∣12 sin(n) + 1
∣∣∣∣

n�0= n− y1 +
∣∣∣∣12 sin(n) + 1− y2

∣∣∣∣− n− ∣∣∣∣12 sin(n) + 1
∣∣∣∣

= −y1 +
∣∣∣∣12 sin(n) + 1− y2

∣∣∣∣− ∣∣∣∣12 sin(n) + 1
∣∣∣∣

which does not converge at all, in particular not to a Busemann point.

2) Let us consider the sequence (zn)n∈N with zn = (n, log(n)). Then all conditions are
fulfilled for F = G2 and we have

ψzn(y) = ‖zn − y‖1 − ‖zn‖1
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= |n− y1|+ |log(n)− y2| − |n| − |log(n)|
n�0= n− y1 + log(n)− y2 − n− log(n)
= −y1 − y2 = f∗E3,p(y)

as expected (with an arbitrary p ∈ R2). Rather remarkable is, that zn
‖zn‖B converges

to G1 while E3 is the dual of G2.

3) At last we consider (zn)n∈N with zn = (n, 1
n). Then zn lies completely in KG2 but

converges to KG1 ⊆ ∂relKG2 which is the relevant information as we will see. If
F = G2, then zn converges to the relative boundary of F and therefore the second
condition is not fulfilled. If F = G1 all conditions are satisfied and we suppose that
ψzn −→ f∗F3,p

with p = 0. Indeed

ψzn(y) = ‖zn − y‖1 − ‖zn‖1

= |n− y1|+
∣∣∣∣ 1n − y2

∣∣∣∣− |n| − ∣∣∣∣ 1n
∣∣∣∣

n�0= n− y1 +
∣∣∣∣y2 −

1
n

∣∣∣∣− n− ∣∣∣∣ 1n
∣∣∣∣

n�0= −y1 + |y2| = f∗F3,0(y)

for y ∈ R2.

The next question is how to determine E geometrically, once the direction of the se-
quence is fixed. We already saw one geometrical construction for the lens-shaped norm in
section 5.4 on page 56.

Geometrical Construction

Based on the proof of the theorem above and the lemmata at the beginning of this sec-
tion, there is an easy way to find the extreme set E needed for the horofunction f∗E,p by
construction. We will again only consider sequences (zn)n∈N along straight lines. Let h be
the straight line our sequence is following. Now draw (in the picture of B◦) a hyperplane g
11 perpendicular to −h, such that it is a supporting hyperplane to B◦. Then the extreme
set, which is the intersection of this hyperplane and ∂B◦, is our extreme set E (see also
figure 5.14).

a1

a2a3

a4

a5 a6

B

x

y

h
E1

E2E3

E4

E5 E6

B◦

x

y

−h

h
g

Figure 5.14: Finding the associated extreme set E4 for h geometrically

11That is a straight line in R2.
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If the line h is passing through the extreme set F of B, then we know by Lemma 5.6.1
that we have to find F ◦. The construction of the dual unit ball in section 2.5 tell us that
we obtain exactly E by drawing that perpendicular hyperplane.
Now we can draw such an extreme set for every kind of sequence and we will get the
picture of B◦ in the end. This is clear by comparing this construction with the way we
constructed the dual unit ball.

Remark 5.6.10 Another way to construct the horoboundary geometrically is the “blow
up and shift” technique, explained in [KMN06].

Remark 5.6.11 If we understand the p in fE,p as a coordinate of a point on E, we get
a bijection between B◦ and the horoboundary.





6 Symmetric Spaces

6.1 Some Basic Facts and the Diffeomorphism M ∼= G/K

We start with a definition:

Definition 6.1.1 A symmetric space M is a Riemannian manifold (M, g) such that for
every point p ∈M there is an isometry

sp : M −→M

with

• sp(p) = p

• dsp|p = − idTpM .

Remark 6.1.2 There holds s2
p = idM .

From now on let M denote a symmetric space if not stated otherwise.

Equipped with the compact-open-topology 1 Isom(M, g) becomes a locally compact
topological group and acts as a transformation group on M2. Now fix a φ ∈ OpM , the
orthogonal frame bundle at some p ∈M . By the embedding

Isom(M, g) −→ OM

f 7−→ f∗pφ

of Isom(M, g) into the orthogonal frame bundle, Isom(M, g) gets a smooth structure in-
dependent of the choices of φ and p. This smooth structure is compatible with the group
structure and thus

G := Isom(M, g)

carries the structure of a Lie group (see also [Hel78, Ch. IV, Lem. 3.2]). We set

K := Gp0 = {f ∈ G | f(p0) = p0}

the stabiliser of some point p0 ∈M in G.

Lemma 6.1.3 ([Hel78, Ch.IV, Thm. 2.5]) With the notations above, K is a compact
subgroup of G.

A very important fact is that we can identify our symmetric space M with the space of
left cosets G/K:
1This topology is generated by the open sets W (U,C) := {f ∈ Isom(M, g) | f(C) ⊆ U}, where U ⊆M is
open and C ⊆M is compact .

2A topological group G is called a transformation group ofM , if there is group homomorphism G×M −→
M and if the actions of G on M is continuous.
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Theorem 6.1.4 ([Hel78, Ch. IV, Thm. 3.3]) Let M be a symmetric space. Then
with the notations from above we have

G/K ∼= M

by the analytic diffeomorphism gK 7→ gp0.

Now we will assign a pair of Lie groups to each symmetric space and vice versa. This
correspondence allows us to work with Lie groups and compact subgroups when talking
about symmetric spaces. Therefore we need the following definition.

Definition 6.1.5 Let G be a connected Lie group and H ≤ G a closed subgroup. We call
(G,H) a symmetric pair, if there is an involutive automorphism σ : G −→ G such that

(Gσ)◦ ⊆ H ⊆ Gσ,

where Gσ = {g ∈ G | σ(g) = g} is the set of fixed points of G and (Gσ)◦ is the connected
component of the identity.
If AdG(H) 3 is compact, (G,H) is called a Riemannian symmetric pair.

This definition is motivated by the following theorem:

Theorem 6.1.6 ([Hel78, Ch. IV, Thm. 3.3]) Let M = G/K be a symmetric space
with G = Isom(M, g) and K = Gp0 for some p0 ∈M . Then the mapping

σp0 : G −→ G

g 7−→ sp0 ◦ g ◦ sp0

is an involutive automorphism of G such that

(Gσp0 )◦ ⊆ K ⊆ Gσp0

Furthermore K has no normal subgroup of G apart from {id}.

Proposition 6.1.7 ([Ji05, Prop. 4.4]) If G is a Lie group and K a compact subgroup,
then the homogeneous space G/K admits a left G-invariant Riemannian metric.

The action of G on M is given by the diffeomorphism

τ(g) : G/K −→ G/K

xK 7−→ gxK.

The opposite of the proposition is also true as the following theorem shows.

Theorem 6.1.8 ([Hel78, Ch. IV, Prop. 3.4]) Let (G,K) be a symmetric pair with
involution σ and π : G −→ G/K the usual projection. Denote p0 := π(e) the image of
the identity element of G. Then with any G-invariant Riemannian metric h on G/K, the
manifold G/K is a symmetric space and the geodesic symmetry sp0 is independent of the
choice of h and fulfils

sp0 ◦ π = π ◦ σ
τ(σ(g)) = sp0τ(g)sp0 .

3The adjoint map is defined in (6.4) on page 71.
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As G is a Lie group, we can describe M not only in terms of Lie groups but also by the
associated Lie algebras.
Let therefore σp0 be the involutive automorphism as in Theorem 6.1.6 and let g be the Lie
algebra of G. By the identification g = TeG we obtain the involution

θp0 : g −→ g; θp0 = (dσp0)e.

Then there holds σp0(etX) = etθp0 (X), ∀X ∈ g.
As θ2

p0 = id, θp0 is diagonalisable and the only possible eigenspaces are those to the
eigenvalues 1 and −1. Then4 the Lie algebra of K is given by the positive eigenspace,
namely

k := L(K) = {X ∈ g | θp0(X) = X}. (6.1)

If we set

p := {X ∈ g | θp0(X) = −X} (6.2)

we can write g as the direct sum of vectorspaces

g = k⊕ p.

This decomposition is called the Cartan decomposition of g with Cartan involution θp0 .
As θp0 preserves the Lie bracket, that is θp0 [X,Y ] = [θp0(X), θp0(Y )] ∀X,Y ∈ g, we

have the following relations:

[k, k] ⊆ k

[k, p] ⊆ p

[p, p] ⊆ k.

The usual projection coincides with

π : G −→M

g 7−→ g.p0,

the natural mapping induced by the action ofG onM . Then by the differential (dπ)e : k 7→ {0}
we obtain the isomorphism

p ∼= Tp0M.

We now define some maps of G and g, we will need in the following chapters.

Definition 6.1.9 sdfh

• For h ∈ G we have the conjugation

Int(h) : G −→ G

g 7−→ hgh−1. (6.3)

• By taking the differential of the conjugation at the identity element e we get

Ad : G −→ Gl(g)
h 7−→ Ad(h) (6.4)

with
Ad(h) := dInt(h)|e : g −→ g.

4See [Hel78, Ch. IV, Thm. 3.3].



72 Chapter 6. Symmetric Spaces

• Another differential leads to

ad : g −→ g

X 7−→ ad(X) (6.5)

with

ad(X) :g −→ g

Y 7−→ ad(X)(Y ) = [X,Y ], (6.6)

where [·, ·] denotes the Lie bracket on g.

• At last we have the exponential mapping exp : g −→ G defined by

exp(X) := γX(1)

where γX : R −→ G is the unique analytic homomorphism such that γ̇X(0) = X
(see also [Hel78, Ch. II, Cor. 1.5]).

6.2 Root Space Decomposition of g
In this section we will follow [Ebe96, p.71ff].
As we are interested in compactifications of symmetric spaces, we will only consider sym-
metric spaces of non-compact type.

Definition 6.2.1 Let M be a symmetric space. M is called a symmetric space of non-
compact type, if M is of non-positive sectional curvature, simply connected and not the
Riemannian product of an Euclidean space Rk, k ≥ 1, and another manifold N .

Lemma 6.2.2 ([Ebe96, Prop. 2.1.1]) Let M = G/K be a symmetric space of non-
compact type. Then G is a semisimple Lie group with trivial center.

We already had the Cartan decomposition g = k⊕ p where p was the eigenspace of θp0

to -1 and p ∼= Tp0M . Let a ⊆ p be a maximal abelian subalgebra5.

Lemma 6.2.3 ([Hel78, Ch. V, Lemma 6.3]) bÃďh

(i) All maximal abelian subalgebras of p are conjugate to each other, that is for all
a, a′ ⊆ p maximal abelian there is a k ∈ K such that Ad(k)a = a′.

(ii) Let a be a maximal abelian subalgebra of p. Then p = Ad(K)a =
⋃
k∈K Ad(k)a.

The Cartan decomposition is respected by adjunction, so for g ∈ G and q = g(p0) the
Cartan decomposition of g with respect to q is given by g = Ad(g)k + Ad(g)p. It follows
that the dimension of a maximal abelian subspace of p is independent of our choice of a.
So we will give it a name.

Definition 6.2.4 Let M be a symmetric space and p as above. The rank of M is the
dimension of some maximal abelian subspace of p.

Let κ(X,Y ) = tr(ad(X) ◦ ad(Y )) be the Killing form of g.

Lemma 6.2.5 ([Ebe96, p. 77]) If M is of non-compact type, the Killing form satisfies
5p is not an algebra itself, so when we say that a is an abelian subalgebra of p, we mean that it is a
subspace of p and a subalgebra of g. As [p, p] ∩ p = {0}, a subalgebra of p is automatically abelian.
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(i) κ|k is negative definite,

(ii) κ|p is positive definite,

(iii) κ(k, p) = 0.

We set
Q(X,Y ) := −κ(X, θp(Y )).

Proposition 6.2.6 Q is a positive definite bilinear form on g.

Proof. It is obvious that Q is bilinear, the positive definiteness follows from the previous
lemma.

On p we have Q = κ.

Lemma 6.2.7 ([Ebe96, 2.7.1]) affe

(i) Q(θp(X), θp(Y )) = Q(X,Y ) ∀X,Y ∈ g.

(ii) If X ∈ p, then the map adX : g −→ g is symmetric with respect to Q6.

(iii) Ad(K) preserves Q on g and Ad(φ) ◦ θp = θp◦ Ad(φ) ∀φ ∈ K.

Now let a ⊆ p be a maximal abelian subspace. Then by (ii) of the previous lemma, we
know that the maps ad(X) are symmetric with respect to κ for all X in a. Additionally
a is abelian and so we have

ad(X) ◦ ad(Y ) = ad(Y ) ◦ ad(X) ∀X,Y ∈ a.

By linear algebra, we know now that all maps ad(X), X ∈ a, are simultaneously diago-
nalisable with a κ-orthogonal transformation and their eigenvalues depend on X ∈ a. So
we define for each α ∈ a∗ = Hom(a,R):

gα := {X ∈ g | [H,X] = ad(H)X = α(H)X ∀H ∈ a}.

If α 6= 0 and gα 6= 0, then α ∈ a∗ is called a root. The set of all roots is denoted by Σ:

Σ := {α ∈ a∗ | α is a root }
= {α : a→ R linear | ∃0 6= X ∈ g : ad(H)X = α(H)X ∀H ∈ a} ⊆ g∗.

Σ is non-empty and furthermore we get the root space decomposition

g = g0 ⊕
∑
α∈α

gα.

Remark 6.2.8 As a is abelian, a ⊆ g0.

For α ∈ Σ ⊆ a∗ its kernel

ker(α) = {H ∈ a | α(H) = 0},

is a hyperplane which divides the vector space a into several connected components.
6That is Q(ad(X)Y,Z) = Q(Y , ad(X)Z) ∀Y,Z ∈ g.



74 Chapter 6. Symmetric Spaces

Definition 6.2.9 The connected components of a\
⋃
α∈Σ ker(α) are called Weyl chambers.

An element of a Weyl chamber, that is some H ∈ a with α(H) 6= 0 for all α ∈ Σ, is called
regular. Otherwise it is called singular.
Fix one Weyl chamber a+ of a. Then a root α is called positive (α > 0) if α(H) > 0 for
all H ∈ a+. The set of positive roots is denoted by Σ+.

Definition 6.2.10 A positive root α ∈ Σ+ is called simple, if α is not the sum of two
positive roots. The set of simple roots is denoted by ∆.

We now come to the Weyl group. It acts on the Weyl chambers by permutation. For
its definition we need the following two subgroups of K.

Definition 6.2.11 The normaliser of a in K is defined as

NK(a) := {k ∈ K | Ad(k)a ⊆ a}. (6.7)

It contains the centraliser

CK(a) := {k ∈ K | Ad(k)H = H ∀H ∈ a}

which is a normal subgroup of NK(a).

Definition 6.2.12 The Weyl group is the quotient group

W := NK(a)/CK(a).

Lemma 6.2.13 ([Ebe96, section 2.9]) The Weyl group W satisfies:

(i) W is discrete and finite.

(ii) W is generated by reflections at the hyperplanes ker(α).

(iii) The action of W on the set of Weyl chambers of a is simply transitive.

Let k be the rank of M . Corresponding to maximal abelian subalgebras a of p we have
certain submanifolds of M , so-called k-flats:

Definition 6.2.14 A k-flat F in M is a complete, totally geodesic k-dimensional sub-
manifold of M .
Totally geodesic means that every geodesic in F is also a geodesic in M .

Theorem 6.2.15 ([Ji05, Prop. 4.70]) Let a be a maximal abelian subalgebra of p and
p0 ∈M a chosen basepoint. Let A := exp(a) be the corresponding subgroup of G.

(i) The orbit F := A.p0 is a k-flat in M .

(ii) Any k-flat ofM passing through the basepoint p0 is of the form F = exp(a) for some
maximal abelian subalgebra a ⊆ p.

There is a close relation between maximal abelian subalgebras and k-flats. Thus it is
not surprising that k-flats are also conjugate to each other:

Theorem 6.2.16 ([Ebe96, Prop. 2.10, p.85]) Let F1 and F2 be k-flats in M and
p1 ∈ F1, p2 ∈ F2 points. Then there is a g ∈ G such that g(p1) = p2 and g(F1) = F2.

Lemma 6.2.17 ([Ji05, Lem. 4.80]) With the notations as before, A = exp(a) is a
closed subgroups of G.
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Lemma 6.2.18 ([Hel78, Ch. V, Thm. 6.7 and Ch. IX, Thm. 1.1]) Let A =
exp(a), A+ = exp(a+) the exponential of the positive Weyl chamber and A+ its closure in
G. Then

G = KAK.

Moreover, as the Weyl group acts simply transitive on the set of Weyl chambers and
permutes them, we also have

G = KA+K.

That is, for every g ∈ G there are k1, k2, k3, k4 ∈ K and an a ∈ A or an a+ ∈ A+ such
that g = k1ak2 respectively g = k3a

+k4.
In the second case a+ ∈ A+ is unique.

6.3 Finsler Geometry of Symmetric Spaces
Again Some Convex Analysis

We will follow [Pla95] and [Hol04] for an introduction on Finsler metrics on symmetric
spaces.
We begin this section with a theorem of Kostant, followed by some convex analysis.

Theorem 6.3.1 (Kostant) With the notations from above, let a ⊆ p be a maximal
abelian subspace and π : p −→ a the orthogonal projection with respect to the Killing
form κ. Let W denote the Weyl group and let η ∈ a. Then

π(Ad(K)η) = conv(Wη).

Let B ⊆ a be convex and W -invariant. Set

C := Ad(K)B.

Proposition 6.3.2 C ⊆ p is convex.

Proof. Let ξ ∈ conv(C) be a point. Then ∃ξ1, . . . , ξm ∈ C and ∃t1, . . . , tm ∈ [0, 1] with∑m
i=1 ti = 1 such that

ξ =
m∑
i=1

tiξi.

By the definition of C, we can choose ki ∈ K, ηi ∈ B such that

ξi = Ad(ki)ηi ∀i = 1, . . . ,m.

It is p = Ad(K)a and therefore ∃k ∈ K : Ad(k)ξ ∈ a. So we have

Ad(k)ξ = Ad(k)
m∑
i=1

tiAd(ki)ηi

=
m∑
i=1

tiAd(kki)ηi ∈ a

=
m∑
i=1

tiπ(Ad(kki)ηi)

because π|a = id.
As ηi ∈ B ⊆ a ∀i we can deduce with the Theorem of Kostant:

π(Ad(kki)ηi) ∈ conv(Wηi) ∀i.
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From this it follows that

Ad(k)ξ =
m∑
i=1

ti π(Ad(kki)ηi)︸ ︷︷ ︸
∈conv(Wηi)⊆B

∈ B

because B is assumed to be W -invariant and convex. There is a b ∈ B with

Ad(k)ξ = b.

Applying Ad(k−1) to this equation gives us ξ = Ad(k−1)b ∈ Ad(K)B = C.

Corollary 6.3.3 ghu

(i) C ∩ a = B and π(C) = B

(ii) Let B ⊆ a be a W -invariant convex ball, that is a neighbourhood of the origin.
Then C := Ad(K)B ⊆ p is also a convex ball, that is it contains the origin and is
n-dimensional.

Proof. sdf

(i) Let ξ ∈ C ∩ a. Then π(ξ) = ξ = Ad(k)b for some k ∈ K, b ∈ B and so ξ =
π(ξ) = π(Ad(k)b) ∈ conv(Wb) ⊆ B by the Theorem of Kostant and because B is
W -invariant and convex.
π(C) = B follows in the same way.

(ii) We already know that C is convex so it remains to show that C is a ball. As B is
a W -invariant convex ball of a it defines a norm on a. Let p ∈ p be a point. By
Theorem 6.2.3 there is a k ∈ K and an a ∈ a with p = Ad(k)a. Since B is the unit
ball of a norm on a there is a b ∈ B and a r ∈ R such that a = rb. Together we have

x = Ad(k)rb = rAd(k)b

where Ad(k)b ∈ C. As p was arbitrary, C is a ball.

Finsler Metrics

We provide two equivalent definitions for a Finsler structure on a smooth manifold. See
for example [BCS00, 1.2.B] where the equivalence is shown.
The more elegant way is to define the Finsler metric like [Pla95] by a norm on each tangent
space together with some conditions on the variation of the norm.

Definition 6.3.4 Let N be a differentiable manifold. ‖·‖ : TN −→ R≥0 is called a Finsler
metric on N , if for each vector field X ∈ V(N) the following map is continuous:

N −→ R+

p 7−→ ‖X(p)‖p.

The norm ‖·‖p on TpN does not have to be symmetric.

It is also common, and we will do so in the following, to choose differentiable variations
like the smoothness of the above map on the slit tangent bundle TN−0 =

⋃
p∈N (TpN−0).

The other definition following [Hol04] is not as beautiful but sometimes easier to deal
with because it clearly lists the conditions on the metric.
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Definition 6.3.5 Let N be a smooth manifold. A Finsler metric on N is a continuous
function

F : TN −→ [0,∞)
such that

(1) smoothness: F is smooth on TN − 0.

(2) homogeneity: F (p, λX) = λF (p,X) ∀λ > 0.

(3) strong convexity: let (xi) be a chart of N centered at p such that (xi, Xj = ∂
∂xj

) is
a chart of TN near (p, 0). Then the matrix

gij(p,X) := ∂

∂Xi∂Xj

(1
2F

2
)

(p,X)

is positive definite for all (p,X) ∈ TN − 0.

Lemma 6.3.6 ([Pla95, Ex. 6.1.2]) Let N be homogeneous, that is, there is some
topological group G which acts transitively on N by diffeomorphisms. Let p0 ∈ N be a
point and C ⊆ Tp0N a convex Gp0-invariant ball. Then there is exactly one G-invariant
Finsler metric on N with C as unit ball of this norm ‖·‖p0 .

So the Finsler structure on a smooth manifold can be seen as a generalisation of a
Riemannian metric. Instead of a scalar product on each tangent space, we now have a
(not necessarily symmetric) norm.
In the same way as in Riemannian geometry, we can now define the length of a curve

γ : I −→ N by
L(γ) :=

∫
I
F (γ(t), γ̇(t))dt

and the forward distance between two points p and q by

dF (p, q) := inf
γ∈Ωpq

L(γ),

where Ωp
q is the space of continuously differentiable paths γ : I −→ N with γ(0) = p and

γ(1) = q.

Is is important to distinguish between the forward and the backward distance of two
points, because the homogeneity condition of the norms is only true for positive λ and
hence in general dF (p, q) 6= dF (q, p).

A ball with radius r around the point p

BF (p; r) := {q ∈ N | dF (p, q) < r}

is a differentiable subset of N with continuous boundary. The unit ball is

BF
p := {X ∈ TpN | F (p,X) < 1}, (6.8)

defined separately in each tangent space. The indicatrix is defined to be

IFp := {X ∈ TpN | F (p,X) = 1}. (6.9)

Lemma 6.3.7 ([Run59, p. 11]) The closure BF
p of the unit ball is

{X ∈ TpN | F (p,X) ≤ 1},

which is a convex body, and its boundary is given by the indicatrix.
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A Useful Characterisation

Theorem 6.3.8 Let M be a symmetric space of non-compact type and let p0 ∈M be a
point, G = Isom(M, g) be the group of isometries of M and K = Gp0 . Let p ∼= Tp0M be
defined as in section 6.2 and a ⊆ p be a maximal abelian subspace. Let W be the Weyl
group.
Then there is a bijection between

(1) the W -invariant convex balls B of a

(2) the Ad(K)-invariant convex balls C of p and

(3) the G-invariant Finsler metrices on M .

Proof. Blubb

(1) “⇔” (2) Let B ⊆ a be a W -invariant convex ball. Ad(K)B ⊆ p is an Ad(K)-invariant convex
ball by Corollary 6.3.3.
Let C ⊆ p be given. Then by the same corollary C ∩ a is a convex ball and as the
action of W = NK(a)/CK(a) on a is induced by the action of K, we know that B is
W -invariant. As the maps B 7→ Ad(k)B and C 7→ C ∩ a are inverse to each other
the equivalence is shown.

(2) “⇔” (3) Let C ⊆ p be given. By Lemma 6.3.6 there is exactly one Finsler metric ‖·‖ on M ,
which is G-invariant such that C is the convex unit ball of ‖·‖p0 . Conversely every
Finsler metric has a uniquely defined unit ball C.

Remark 6.3.9 If the rank of the symmetric space is one, that is dim a = 1, then there is
only one G-invariant Finsler-metric on M .

Lemma 6.3.10 If we choose the Euclidean unit sphere with respect to the norm induced
by the Killing form κ as the W -invariant convex ball in a, then the corresponding Finsler
structure on G/K induces a Riemannian metric on g for all V,W ∈ Tp0M by

gp0(V,W ) := 1
2
[
F (p0, V +W )2 − F (p0, V )2 − F (p0,W )2

]
.

The other way round we have

F (V ) :=
√
gp0(V, V ).

6.4 Horofunction Compactification of Symmetric Spaces

In this section we want to examine the Busemann compactification of a symmetric space
equipped with a Finsler metric. We will need everything we did up to now and as usual
we will use the notations introduced in the chapters before.
LetM = G/K be a symmetric space, G = Isom◦(M, g) the identity component of its group
of isometries7 and K = Gp0 for some base point p0 ∈ M . Let g denote the Lie algebra
of G and g = k + p the Cartan decomposition, where p ∼= Tp0M is the eigenspace of the
Cartan involution θp0 to the eigenvalue -1. Let a ⊆ p be a maximal abelian subalgebra

7Just like the entire Isom(M, g) also the identitiy component of the isometry group acts transitively on
M (see [Ji05, Lem. 4.2]). So it suffices to use the identity component only.
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and A := exp(a) the connected subgroup of G.
The obvious action of G on M = G/K, given by left multiplication,

G×M −→M

(g, x) 7−→ g.x

is transitive. Therefore
G.p0 = {g.p0 | g ∈ G} = M.

We can now use the decomposition G = KAK (see Lemma 6.2.18) to see

G.p0 = KAK.p0 = KA.p0 = M. (6.10)

Let now H be a group acting on a metric space (X, d). Then H acts on C(X) via

(h.f)(x) := f(h−1.x)

for all f ∈ C(X), h ∈ H and x ∈ X.
This is applicable to our symmetric spaceM and the group G. Consider the map ψ defined
in (3.1) on page 17:

ψ : M −→ C(M)
z 7−→ ψz with ψz : M −→ R

x 7−→ ψz(x) = d(x, z)− d(p0, z)
(6.11)

Lemma 6.4.1 ψ is K-equivariant:

ψk.z = k.ψz ∀k ∈ K, z ∈M.

Proof. Let z ∈M,k ∈ K and x ∈M . By Lemma 6.1.7 we know that the distance function
d is left invariant and thus we obtain with K = Gp0 :

ψk.z(x) = d(x, k. z)− d(p0, k. z)
= d(k−1.x, z)− d(k−1.p0, z)
= d(k−1.x, z)− d(p0, z)
= ψz(k−1.x) = k.ψz(x).

The horofunction compactification was based on the embedding M ↪→ C(M) via8

{ψz | z ∈M} = ψ(M) ⊆ C(M).

The horofunction boundary was defined by

{ψz | z ∈M} \ {ψz | z ∈M}.

Lemma 6.4.2 With the notations from above

ψ(M) = K.ψ(A.p0).

8For better readability we will denote the closure of a space Y by Y from now on. If needed, the
surrounding space is indicated.
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Proof. G acts on M and therefore g1.(g2.x) = (g1g2).x ∀g1, g2 ∈ G and x ∈ M . Because
K = Gp0 is a subgroup, this also holds for elements of K and we conclude with Lemma
6.4.1

ψ(M) = ψ(K.A.p0) = K.ψ(A.p0)

We now have to show that K can be taken out of the closure:

K.ψ(A.p0) != K.ψ(A.p0).

“⊆” Let f ∈ K.ψ(A.p0). Then there is a sequence (fn)n∈N ⊆ K.ψ(A.p0) such that
fn −→ f , so there are kn ∈ K, an ∈ A for each n ∈ N with

fn = kn.ψ(an.p0).

As K is compact, we can find a converging subsequence (knj ) ⊆ (kn) such that

knj −→ k

for some k ∈ K. Define
gnj := ψ(anj .p0).

Again because of compactness (now of ψ(M)) we take another subsequence, denoted
by n again, such that gn −→ g ∈ ψ(M) for some g. Then

f = lim
nj→∞

fnj = lim
nj→∞

(knj .ψ(anj .p0))

= lim
n→∞

(kn.gn)

= k.g = k. lim
n→∞

ψ(an.p0)︸ ︷︷ ︸
∈ψ(A.p0)

∈ K.ψ(A.p0).

We can calculate the limits separately in the second line, because the action is
continuous.

“⊇” Let f ∈ K.ψ(A.p0), that is ∃k ∈ K and a sequence (fn)n∈N ⊆ ψ(A.p0) such that

k. lim
n→∞

fn = f.

This means that there is a sequence (an)n ⊆ A such that fn = ψ(an.p0). Then
k.fn = k.ψ(an.p0) = ψ(kan.p0) and therefore because of the continuity of the action

f = k. lim
n→∞

fn

= lim
n→∞

k.fn

= limn→∞(k.ψ(an.p0)) ∈ K.ψ(A.p0).

Now we would like to use our knowledge about horofunction compactifications of finite-
dimensional normed spaces to compactify our symmetric space M . This will be done in
the following way.
Take M = G/K as before and find a maximal Abelian subalgebra a ⊆ p ⊆ g. Then a is a
finite-dimensional normed space. When M is endowed with a G-invariant Finsler metric,
there is a unique W -invariant convex ball B of a corresponding to our metric via Theorem
6.3.8. This ball is the unit ball of our norm induced on a and we can find the compact-
ification of a with respect to B by determining B◦ and calculating the f∗E,p-functions as
detailed in Chapter 5.
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Theorem 6.4.3 ([Pla95, Prop. 6.2.2]) The flat A.p0 equipped with the induced Finsler
structure is a normed real space. If a is equipped with the corresponding norm induced
by the convex unit ball B, the restriction

expp0 |a : a −→ A.p0

is an isometry.

So we know that
ψ(a)

homeo∼= a
isometry∼= A.p0

homeo∼= ψ(A.p0).

Therefore C(a) and C(A.p0) are homeomorphic and we obtain the homeomorphism

ψ(a) C(a) ' ψ(A.p0) C(A.p0)
,

where the second closure is taken in C(A.p0) but not in C(M) as needed. But as each
function f in ψ(A.p0) is a linear combination of the distance function d which is defined
on M , f is also defined on M . Among the extensions to M there is a unique one lying in
ψ(M), namely the obvious one given by defining ψ on M . This can be seen by (8.2) on
page 92. Thus

ψ(M) ' K.ψ(A.p0) C(M) ' K.ψ(A.p0) C(A.p0) ' K.ψ(a) C(a) ⊆ C(M).

Although we take the closure with respect to C(A.p0) or C(a), the action of K can only
be understood by treating the closures as subsets of C(M). The point is that there is
no meaningful action of K on ψ(a) because normally (that is if K 6= Nk(a)) there are
k ∈ K with Ad(k−1).H /∈ a for some H ∈ a. But there is an action of NK(a) on ψ(a)
by definition of NK(a), see also (6.7) on page 74. In fact K.ψ(a) is homeomorphic to(
K × ψ(a)

)
/NK(a).

All together we deduced the following theorem:

Theorem 6.4.4 LetM = G/K be a symmetric space of non-compact type equipped with
a Finsler metric F . Let a be a maximal Abelian subalgebra of p. Then the horofunction
compactification of M is homeomorphic to the orbit of the horofunction compactification
of a under K:

ψ(M) ' K.ψ(a).



7 Examples: Horoboundaries of
Symmetric Spaces

7.1 X = SL(3,R)/SO(3)
We will now examine the Busemann compactification of the symmetric spaceM = SL(3,R)/SO(3)
equipped with a Finsler metric. It is

G = SL(3,R)

and
K = SO(3) = {A ∈ SL(3,R) | AT = A−1}.

The Lie algebra g of G is

g = sl(3,R) = {X ∈ Mat(3,R) | trX = 0}.

With the Cartan involution

θp : g −→ g;
X 7−→ −XT

we get the Cartan decomposition g = k⊕ p, where

k = {X ∈ g | θp(X) = X}
= {X ∈ g | XT = −X}
= so(3),

is the Lie algebra of K, and

p = {X ∈ g | θp(X) = −X}
= {X ∈ g | XT = X and trX = 0}.

The set

a =


λ1

λ2
λ3

 ∈ Mat(3,R)

∣∣∣∣∣∣∣
3∑
i=1

λi = 0

 ⊆ p

is a maximal Abelian subalgebra of p of dimension 2. Therefore the rank of our symmetric
space is 2.

Root space decomposition The next step is to determine the root spaces of g. We
recall the definition of such a root space for some root α ∈ a∗ = Hom(a,R):

gα = {X ∈ g | [H,X] = ad(H)X = α(H)X ∀H ∈ a}.

82
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Let therefore H =

λ1
λ2

λ3

 ∈ a and X = (xij)i,j ∈ Mat(3,R) some matrix with

trX = 0. Then

ad(H)X = [H,X] = HX −XH

=

λ1x11 λ1x12 λ1x13
λ2x21 λ2x22 λ2x23
λ3x31 λ3x32 λ3x33

−
λ1x11 λ2x12 λ3x13
λ1x21 λ2x22 λ3x23
λ1x31 λ2x32 λ3x33


=

 0 (λ1 − λ2)x12 (λ1 − λ3)x13
(λ2 − λ1)x21 0 (λ2 − λ3)x23
(λ3 − λ1)x31 (λ3 − λ2)x32 0

 != cX

for some c := α(H) ∈ R.
To get a general result, we take a basis B of g consisting of elemenatry matrices, namely
B = {Ei,j | i, j = 1, . . . , 3} where Ei,j is given by (Ei,j)k,l = δi,kδj,l, the matrix whose only
non-zero component is indicated by its name. Then

ad(H)Ei,j = (λi − λj)Ei,j .

Therefore it is obvious what the roots look like. We define αij ∈ a∗ via

αij


λ1

λ2
λ3


 = λi − λj .

Then ad(H)Ei,j = αijEi,j as required and for the root spaces we get

gαij = REi,j

and
g0 = a.

Therefore ker(αij) = {H ∈ a | λi = λj} and with this

a \
⋃
α∈Σ

ker(α) = {H ∈ a | λi 6= λj ∀i, j = 1, . . . , 3}.

We fix the Weyl chamber

a+ := {H ∈ a | λ1 > λ2 > λ3}.

Then the positive roots are
Σ+ = {α12, α23, α13}.

As α12 + α23 = α13, the two simple roots are

∆ = {σ1 := α12, σ2 := α23}

and they form a basis of a∗. As the Weyl group consists of all reflections of the Weyl
chambers, we can calculate the reflections of the simple roots, the norm of them and the
angle between them as shown in [TY05, Chapter 18]. a∗ with the positive roots and the
Weyl chambers of a are illustrated in figure 7.1.
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α13 = σ1 + σ2

σ1

σ2 ker(σ1): λ1 = λ2

ker(σ2):λ2 = λ3

ker(α13):λ1 = λ3

λ1 > λ2 > λ3

λ1 > λ3 > λ2

λ2 > λ3 > λ1

λ3 > λ2 > λ1

λ2 > λ1 > λ3

λ3 > λ1 > λ2

Figure 7.1: The root lattice of a∗ and the Weyl-Chamber system of a ⊆ sl(3,R).

Compactification We know by Theorem 6.3.8 that every G-invariant Finsler structure
on SL(3,R)/SO(3) induces aW -invariant convex unit ball in a and vice versa. W -invariant
in this setting means, that the unit ball has to be symmetric with respect to the three
hyperplanes. One possibility is to take the Finsler structure onM which is induced by the
Riemannian metric on M , that induces the Killing form on a, which gives the Euclidean
norm on a, which is clearly symmetric. If we start on a there are three possibilities to
choose a unit ball as simple as possible. These choices are to take the extremal points
of the unit ball only on the Weyl chamber walls, that is the hyperplanes, whichare the
kernels of the simple roots. The first option is to take six points on the walls such that
their convex hull is hexagonal, for example take all points to have the same distance1 from
the origin and define the unit ball to be the convex hull of these points. The other two unit
ball possibilities are to take equilateral triangles. Because of the action of the Weyl group
W , if we fix one point on one of the hyperplanes, the other two points are determined in
this case. So there are up to reparametrisation two possibilities for the triangulars, which
are shown in figure 7.2.

Figure 7.2: Hexagon or triangles as W -invariant norms on a.

As a is a finite-dimensional normed space, we know by chapter 5.6 what the Busemann
compactifications of these poytopes look like, namely they look like the dual unit ball of
the norm. For the hexagonal norm it is a hexagon of the same shape rotated by 30◦ such
that the facets are perpendicular to the hyperplanes. The dual unit ball of the triangle
was already calculated in 5.3 and had the same shape as the unit ball, just reparametrised.

Thus all horofunction compactifications of SL(3,R)/SO(3) have the structure SO(3).R2

with some horofunction compactification of R2 compatible with Weyl-group invariance.

1This is the usual distance of R2.It coincides with the distance coming from the Killing form.
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7.2 X = Sp(4,R)/U(2)

The next example is the Busemann compactification of the symmetric space

M := Sp(4,R)/U(2).

It is

G = Sp(4,R) =
{
A ∈ Mat(4,R)

∣∣∣∣∣ATΩA = Ω with Ω =
(

0 12
−12 0

)}

and2

K = U(2) = O(4) ∩GL(2,C) ∩ Sp(4,R)

where GL(2,C) = {A ∈ GL(4,R) | AJ = JA} is the group of complex, invertible matrices
corresponding to the complex structure

J =


0 −1
1 0

0 −1
1 0

 .

The Lie algebra of G is

sp(4,R) = {A ∈ gl(4,R) | ΩA+ATΩ = 0}

=
{(

a b
c −aT

)
∈ Mat(4,R)

∣∣∣∣∣ a, b, c ∈ Mat(2,R); bT = b; cT = c

}

and the Cartan involution is just as in the last example θp(A) = −AT . By some compu-
tation we get the following decomposition of sp(4,R):

k = {A ∈ sp(4,R) | AT = −A}

=
{(

a b
−b a

)
∈ Mat(4,R)

∣∣∣∣∣ a, b ∈ Mat(2,R); aT = −a; bT = b

}

and

p = {A ∈ sp(4,R) | AT = A}

=
{(

a b
b −a

)
∈ Mat(4,R)

∣∣∣∣∣ a, b ∈ Mat(2,R); aT = a; bT = b

}
.

A maximal Abelian subalgebra of p is

a :=



λ1

λ2
−λ1

−λ2

 ∈ Mat(4,R)

∣∣∣∣∣∣∣∣∣λ1, λ2 ∈ R

 ⊆ p.

2Actually K is the intersection of any two groups among these three.
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Root space decomposition of g We have to find roots α ∈ a∗ and X ∈ g such that
[H,X] = α(H)X for all H ∈ a. This means that we have to solve the eigenvalue problem
for ad(H). Consider the following basis of g:

B := {Aij | i, j ≤ 2} ∪ {Bij | i ≤ j ≤ 2} ∪ {Cij | i ≤ j ≤ 2}

with
Aij = (apq)p,q and apq = δpiδqj − δp,j+2δq,i+2
Bij = (bpq)p,q and bpq = δpiδq,j+2 + δpjδq,i+2 − δij
Cij = (cpq)p,q and cpq = δp,i+2δqj + δp,j+2δqi − δij .

Then for some H = diag[λ1, λ2,−λ1,−λ2] ∈ a it is

[H,Aij ] = (λi − λj)Aij
[H,Bij ] = (λi + λj)Bij
[H,Cij ] = −(λi + λj)Cij .

Therefore the roots are

Σ = {αij | , i 6= j; i, j ≤ 2} ∪ {βij | i ≤ j ≤ 2} ∪ {γij | i ≤ j ≤ 2}

with

αij(H) = λi − λj
βij(H) = λi + λj

γij(H) = −(λi + λj).

For the Weyl chambers we get

a \
⋃
α∈Σ

ker(α) = {H ∈ a | λ1 6= ±λ2;λ1 6= 0 6= λ2}

and we fix the Weyl chamber

a+ :=



λ1

λ2
−λ1

−λ2

 ∈ a

∣∣∣∣∣∣∣∣∣λ1 > λ2 > 0

 .
The positive roots then are

Σ+ = {α12, β11, β12, β22}
and the simple ones are only

∆ = {α := α12, β := β22}

because α12 + β22 = β12 and 2α12 + β22 = β11.
Again by [TY05, Chapter 18] we conclude that ||β|| =

√
2||α|| and that the angle between

these two roots is 135◦. So we get the following picture of a and its Weyl chambers (see
figure 7.3).

Compactification We did not choose a Finsler structure yet on M = Sp(4,R)/U(2)
and so we can start from the other side and fix a W -invariant norm on a which stands
in 1-to-1 correspondence to some G-invariant Finsler structure on M . If we want to take
a polyhedral unit ball, there are again three simple choices where the extremal points lie
only on the hyperplanes. These three possibilities are to take an octagon or one of two
possible squares. These possibilities are illustrated in figure 7.4
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α−α

α+ β

−α− β

2α+ β

−2α− β

β

−β

λ1 = λ2

λ1 = −λ2
λ1 = 0

λ2 = 0

Figure 7.3: The root lattice of a∗ and the Weyl chamber system of a ⊆ sp(4,R)

Figure 7.4: W -invariant polytopes as norms on a

Possible Further Projects: Comparison with the Furstenberg Compactification
When we chose a Finsler norm on X by fixing the convex unit ball on a in the examples
above, we took polytopes with extreme points on the hyperplanes only. These hyperplanes
were determined as those subspaces, on which one of the positive roots vanishes.
The Furstenberg compactification of a symmetric space X = G/K is one of the many
other ways to compactify X which are isomorphic in some cases. For detailed explana-
tion and characterisation of the isomorphic compactifications, see [GJT98]. We will also
follow [GJT98] now to introduce the Furstenberg compactification and to motivate the
isomorphism between the Furstenberg and the horofunction compactification of the three
symmetric spaces with Finsler metric determined by the choice of the three unit balls in
figure 7.4.
Besides the Cartan decomposition G = KAK as in Lemma 6.2.18, there is also the Iwa-
sawa decomposition:

G = KAN (7.1)

with A = exp(a) and N the nilpotent Lie group with Lie algebra n :=
∑
α∈Σ+ gα.

Additionally we have

Proposition 7.2.1 ([GJT98, Prop. 2.4]) P := MAN is a closed subgroup of G with
Lie algebra g0 +

∑
α∈Σ+ gα = m+ a+n where M := CK(a) is the centraliser of a in K and

m the centraliser of a in k.

Definition 7.2.2 We call a closed subgroup P ′ of G parabolic, if there is a g ∈ G such
that gPg−1 ⊆ P ′. If P ⊆ P ′, then P ′ is called standard parabolic.

The concept of Furstenberg was to use the natural affine action of G on the compact
convex set of probability measures on the so-called Furstenberg boundary to define a
compactification of X.
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Definition 7.2.3 A compact homogeneous space Y of G is called a boundary of G, if
there is a sequence (gn) for every probability measure µ on Y such that gn · µ converges
to a measure supported by a point.

Lemma 7.2.4 ([GJT98, Thm. 2.8]) The standard parabolic subgroups of G are in
one-to-one-corespondence with the subsets I ⊆ ∆.

Therefore we make the following definition.

Definition 7.2.5 Let P I be the parabolic subgroup of G corresponding to I ⊆ ∆.

Proposition 7.2.6 ([GJT98, Thm. 9.37]) Let G be a semi-simple Lie group with
finite center. Then F = G/P is a boundary. Furthermore, E is a boundary of G if and
only if there exists a parabolic subgroup Q such that E = G/Q.

Let M1(G/P I) denote the set of probability measures on the boundary E = G/P I .
With help of the Iwasawa decomposition (7.1) one can conclude that K acts transitively
on G/P I . So there is a unique K-invariant probability measure on G/P I and we will
denote this by m. The map ν : G −→M1(G/P I); g 7−→ g ·m induces a continuous map

ϕI : G/K −→M1(G/P I)
gK 7−→ g ·m

which is injective if and only if K is the stabiliser of m in G (see also [GJT98, p.68]). In
this case, X can be identified, as a set, with the G-orbit of m under the map ϕI and we
call such a boundary faithful.
There is a useful characterisation for such faithful boundaries:

Lemma 7.2.7 ([GJT98, Lem. 4.50]) If G is simple, then G/P I is a faithful boundary
if and only if P I is a proper parabolic subgroup of G, that is I is a proper subset of ∆.

We are now prepared to define the Furstenberg compactification:

Definition 7.2.8 Let G/P I be a faithful boundary. Then the closure of the image ϕI(M)
inM1(G/P I) is called a Furstenberg compactification of X.

We will illustrate now the isomorphism between the two compactifications by showing
that each of the three convex balls determines uniquely a parabolic subgroup of G and
vice versa.

Definition 7.2.9 Let I be a proper subset of ∆. The Weyl chamber face CI is defined
to be

CI := {H ∈ a+ | αi(H) = 0 if and only if αi ∈ I}.

Considering picture 7.3, we see that the Weyl chamber faces are exactly the hyperplanes
deviding a, that is the relative boundaries of a Weyl chamber.

Lemma 7.2.10 ([GJT98, Prop. 3.9]) The standard parabolic subgroup P I is the
stabilizer of [γ] if γ(t) = exp(tH).p0, with H ∈ CI of unit length.

The equivalence relation on the set of directed unit speed geodesics is given by

γ1 ∼ γ2 :⇐⇒ lim
t→+∞

d(γ1(t), γ2(t)) <∞.

Therefore two geodesics in R2 are equivalent if and only if they are parallel.
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Example 7.2.11 In order to use the lemmata just presented, we have to complexify
our Lie algebra and consider from now on X = Sp(4,C)/SU(4), which has the same
rootspace decompostion. So the simple roots are ∆ = {α := α12, β := β22}. G = Sp(4,C)
is simple Lie group and we know by Lemma 7.2.7 and Definition 7.2.8 that we have
three compactifications of X, namely those corresponding to the proper subsets I0 := ∅,
I1 := {α} and I3 := {β} of ∆.
In the first case when I = ∅, CI = a+ and P I is the stabilizer of all sequences with H in
a+. That means that they all converge to the same Busemann point, in accordance to our
result of section 5.6 and therefore this corresponds to the horofunction compactification
of X with the Finsler metric induced by the octagon in figure 7.4.
In the second case when I = {α} we obtain the unit ball in the middle of picture 7.4,
because CI is the hyperplane where α vanishes, so all parallel sequences in that direction
have to converge to the same boundary point. If I = {β} we obtain the compactification
of X with a Finsler metric determined by the square on the right in picture 7.3.





8 Appendix

8.1 Proof of Lemma 2.5.16

Proof of Lemma 2.5.16

Lemma Let B ⊆ Rn be a polyhedral unit ball with k vertices a1, . . . , ak and l (n − 1)-
dimensional facets. Let b1, . . . , bl ∈ (Rn)∗ such thatB = {x ∈ Rn | 〈bi|x〉 ≥ −1 ∀i = 1, . . . , l}
(as defined in Lemma 2.5.15). Then

B◦ = conv{b1, . . . , bl} =: B̃.

Proof We recall the definition of the dual unit ball:

B◦ = {y ∈ (Rn)∗ | 〈y|x〉 ≥ −1 ∀x ∈ B}.

“⊆” Let y ∈ B◦, that is 〈y|x〉 ≥ −1 ∀x ∈ B. We have to show that y can be written as a
linear combination of the bi with coefficients si ∈ [0, 1] and

∑l
i=1 si = 1.

Consider the straight line g = R≥0y through the origin and y. Let x := g∩∂B̃ be the
intersection point of this line with the boundary of B̃. As B̃ is convex, x is unique.
Then there is an s ∈ R≥0 with

y = sx.

We claim that s ≤ 1. Indeed, assume s > 1. Then as x ∈ ∂B̃, there are boundary
points {bi1 , . . . , bin} ⊆ {b1, . . . bl} ⊆ ∂B̃ all lying in one supporting hyperplane to B̃
and there are ti1 , . . . , tin ∈ [0, 1] such that

∑n
k=1 tik = 1 and

x =
n∑
k=1

tikbik .

Then there is an m ∈ {i1, . . . , in} such that am is the intersection point of the n
hyperplanes defined by bi1 , . . . , bin . Then 〈bik |am〉 = −1 for all k = 1, . . . , n by
construction of the bik . Therefore we get

〈y|am〉 = 〈sx|am〉 = s〈
n∑
k=1

tikbik |am〉

= s
n∑
k=1

tik〈bik |am〉

= −s
n∑
k=1

tik

= −s < −1

which is a contradiction to y ∈ B◦.
So s ≤ 1 and therefore y ∈ conv{b1, . . . , bl}.
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“⊇” Let y ∈ B̃ =conv{b1, . . . , bl}. Then there are ti ∈ [0, 1] (i = 1, . . . , l) with
∑l
i=1 ti = 1

such that

y =
l∑

i=1
tibi.

Let x ∈ B be arbitrary. Then

〈y|x〉 =
j∑
i=1

ti〈bi|x〉

≥ −
l∑

i=1
ti = −1.

This shows that 〈y|x〉 ≥ −1 ∀x ∈ B, which means that y ∈ B◦.

8.2 Proof of Propositions 3.0.17, 3.0.26 and of Lemma
3.0.24

Proof of Proposition 3.0.17

Proposition The map ψ is continuous and injective.

Proof. We first show the continuity of ψ. Let (xn)n∈N be a sequence in X converging to
some x ∈ X. We show continuity of ψ by showing that ψxn −→ ψx uniformly on X and
therefore also on bounded sets.
Let ε > 0 and N ∈ N large enough with dsym(x, xn) ≤ ε for all n ≥ N . By the triangle
inequality, we get

ψx(z)− ψxn(z) = d(z, x)− d(p0, x)− d(z, xn) + d(p0, xn)
≤ d(z, xn) + d(xn, x)− d(p0, x)− d(z, xn) + d(p0, x) + d(x, xn)
= d(xn, x) + d(x, xn)
= dsym(x, xn) (8.1)

In the same way, we also get ψx(z)− ψxn(z) ≥ −dsym(x, xn) and together

|ψx(z)− ψxn(z)| ≤ dsym(x, xn) ≤ ε

independent of z. Therefore ψxn converges uniformly on X from which continuity follows.
Next we show that ψ is injective. Therefore let x, y ∈ X, x 6= y and labelled such that
d(p0, x) ≥ d(p0, y). Then

ψy(x)− ψx(x) = d(x, y)− d(p0, y)− d(x, x) + d(p0, x)
= d(p0, x)− d(p0, y)︸ ︷︷ ︸

≥0

+d(x, y) (8.2)

≥ d(x, y)

So ψy 6= ψx and ψ is injective.



8.2. Proof of Propositions 3.0.17, 3.0.26 and of Lemma 3.0.24 93

Proof of Lemma 3.0.24

For this proof we need the famous Theorem of Ascoli-Arzelà:

Theorem of Ascoli-Arzelà Let X be a locally compact1 topological space and let Y
be a metric space2. Then a subset H ⊆ C(X,Y ) is relatively compact if and only if H is
equicontinuous and H(x) ⊆ Y is relatively compact for all x ∈ X.

Now we can prove the lemma:

Lemma If our metric dsym is proper, then cl{ψz|z ∈ X} is compact.

Proof. In our case we have Y = R, which is a metric space. As X is a metric space
and dsym is proper, any closed ball is a compact neighbourhood for its inner points, so
X is locally compact. Let H = ψ(X) ⊆ C(X,R) = C(X). We have to show, that H is
equicontinuous and H(x) ⊆ R is relatively compact. Then H = cl{ψz|z ∈ X} is compact
by the Theorem of Ascoli-Arzelà.
We first show the equicontinuity: Let z ∈ X and ψz = ψ(z) ∈ ψ(X). Then

|ψz(x)− ψz(y)| = |d(x, z)− d(p0, z)− d(y, z) + d(p0, z)| ≤ dsym(x, y) < ε

independently from z and equicontinuity follows.
Now we show, that H(x) is relatively compact in R for all x ∈ X. Let x, z ∈ X. Then

ψz(x) = d(x, z)− d(p0, z) ≤ d(x, p0) + d(p0, z)− d(p0, z) ≤ dsym(x, p0)
ψz(x) = d(x, z)− d(p0, z) ≥ d(x, z)− d(p0, x)− d(x, z) ≥ −dsym(x, p0)

and therefore |ψz(x)| ≤ dsym(x, p0) for all z ∈ X and so H(x) is bounded. With the
theorem of Heine-Borel we conclude, that H(x) is relatively compact for every x ∈ X and
the assertion follows.

Proof of Proposition 3.0.26

Proposition Assume (A), (B) and (C) (see page 18) hold. Then ψ is an embedding of
X into C(X). In other words, ψ is a homeomorphism from X to ψ(X).

Proof. In Proposition 3.0.17 we already showed that ψ is continuous and injective. It
remains to show that ψ−1 is also continuous. This means, that we have to show that
ψzn −→ ψy for some sequence (ψzn) implies zn −→ y.
We will show the assertion by contraposition: If zn −→ ∞ 3, we show that there is no

subsequence of (ψzn) converging to some ψy with y ∈ X.
Therefore let (zn) be a sequence in X with zn −→ ∞. Without loss of generality, we

assume that ψzn
n→∞−→ ξ ∈ cl{ψz|z ∈ X}.

Because the metric dsym is proper, dsym(y, zn) n→∞−→ ∞ for all y ∈ X.

Let y ∈ X be arbitrary. We define the following geodesic segments with respect to the
metric d:

γn : [0, bn] −→ X

with
γn(0) = y, and γn(bn) = zn ∀n ∈ N.

1A space X is called locally compact, if each point of X has a compact neighbourhood.
2Or a uniform space in general.
3Which means that it eventually leaves and never returns to every compact set.
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Choose and fix r ∈ R with
r > d(p0, y) + ξ(y).

The reason for this choice will become clear later on.
From assumption (C) it follows, that the function

h : [0, bn] −→ R
t 7−→ h(t) := dsym(y, γn(t))

is continuous for every n ∈ N.
Proof of this little assertion: Let ε > 0. Assumption (C) tells us that for all δ > 0 there
is an M ∈ N such that for all m ≥M there holds

d(γn(t), γn(tm)) < δ ⇐⇒ d(γn(tm), γn(t)) < δ,

where tm is a sequence in R converging to t.
Now let m be appropriate such that d(γn(t), γn(tm)) = tm − t < δ := ε

2 . Then

h(tm)− h(t) = dsym(y, γn(tm))− dsym(y, γn(t))
= d(y, γn(tm)) + d(γn(tm), y)− d(y, γn(t))− d(γn(t), y)
≤ d(y, γn(t)) + d(γn(t), γn(tm)) + d(γn(tm), γn(t)) + d(γn(t), y)
− d(y, γn(t))− d(γn(t), y)

= d(γn(t), γn(tm)) + d(γn(tm), γn(t))
< 2δ = ε.

In the same way, one can show that h(tm)− h(t) > −ε. So together we have

|h(tm)− h(t)| < ε

from which continuity of h follows.
Back to the main proof. It is

h(0) = dsym(y, γn(0)) = dsym(y, y) = 0
h(bn) = dsym(y, γn(bn)) = dsym(y, zn),

so for n large enough we can find a tn ∈ R+ with dsym(y, xn) = r where xn := γn(tn).
By construction, all xn lie in a closed ball of radius r around y. Since the metric dsym is
proper, this closed ball is also compact. Therefore there is an x ∈ X such that xn −→ x if
n −→∞ (if necessary we take a subsequence). In particular we also have dsym(y, x) = r.
We come now to the last step of the proof. As γn was a geodesic segment with respect

to d, there holds d(y, xn) + d(xn, zn) = d(y, zn) and from this it follows

ψzn(xn)− ψzn(y) = d(xn, zn)− d(p0, zn)− d(y, zn) + d(p0, zn)
= d(xn, zn)− d(y, zn)
= −d(y, xn).

Written the other way round, it is ψzn(xn) = ψzn(y)− d(y, xn) for every n ∈ N. The ψzn
are 1-Lipschitz with respect to dsym which yields ψzn(xn) −→ ξ(x) and in the limit we
obtain

ξ(x) = ξ(y)− d(y, x). (8.3)
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The essential step now is to proof, that ψy 6= ξ.
We know that ψy(x) = d(x, y)− d(p0, y). Together with the choice r > d(p0, y) + ξ(y) we
get:

ψy(x)− ξ(x) = d(x, y)− d(p0, y)− ξ(y) + d(y, x)
= dsym(y, x)− d(p0, y)− ξ(y)
= r − d(p0, y)− ξ(y)
> 0

As y was arbitrary, ψy 6= ξ ∀y ∈ X.
The conclusion of the proof is as following: Let qn be a sequence in X such that ψqn −→

ψq in ψ(X). As seen above, (qn) can not have any subsequence escaping to infinity
which means that (qn) is bounded in the dsym-metric. That is the sequence (qn) remains
in a closed and therefore compact ball, so we know that is has converging subsequences
(qnk)nk . As ψ is continuous and injective, we can conclude that the limit of each converging
subsequence is q and therefore that qn −→ q.

8.3 Proof of Lemma 4.2.8 and of the Claim in Lemma 4.3.2

Proof of Lemma 4.2.8

For the proof of this lemma, we will need the following two properties of the epigraph
topology:

(P1) Let (fn)n∈N be a sequence of proper lower semi-continuous functions fn : X −→
R∪{∞} with fn −→ f in the epigraph topology and let each function take the value
+∞ outside a fixed bounded region common for all functions.
Then inffn −→ inff . [Bee93, Lemma 7.5.3]

(P2) Let fn and f be as above an let g : X −→ R be a real-valued lower semi-continuous
convex function which is continuous at a point where f is finite. Then fn+g −→ f+g.
[Bee93, Lemma 7.4.5]

Lemma Let C ⊆ V ∗ be a compact convex set and F an exposed face of C. Suppose
there exists a sequence (pn)n∈N in V and an ε > 0 such that

(i)
∑n−1
i=0 |pi+1 − pi|F ≤ |pn − p0|F + ε ∀n ∈ N

(ii) |pn − ·|F − |pn|F
n→∞−→ g pointwise

where g is a lower semi-continuous convex function.
Then there is a sequence (qn)n∈N in V and an ε′ > 0 such that

(I)
∑n−1
i=0 |qi+1 − qi|C ≤ |qn − q0|C + ε′ ∀n ∈ N

(II) |qn − ·|C − |qn|C
n→∞−→ g pointwise

Proof. We first show (I).

There is an affine function4 f : V ∗ −→ R with
{
f(y) = 0 ∀y ∈ F
f(x) > 0 ∀x ∈ C \ F Let f̂ := f−f(0)

4As F is part of a hyperplane H, f can be constructed by setting f(y) = 〈h|y〉−α where h is the normal
to H and α = 〈h|z〉 ∀z ∈ H.
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be the linear functional on V ∗ with the same gradient. Let {zn}n∈N be a sequence of points
in V such that

Z :=
⋃
n∈N
{zn}

is dense in V and contains the origin.
We claim: It is possible to find a sequence of real numbers (λn)n∈N such that if we define
qn := pn + λnf̂ ∀n ∈ N, then there holds:

|qn+1 − qn|C − |qn+1 − qn|F <
1
2n (8.4)

|qn − z|C − |qn − z|F <
1
n

∀z ∈ {z0, . . . , zn}. (8.5)

Proof of the claim: We show (8.5) first. Fix n, then we have to find λn ∈ R. As for every
x ∈ V ∗ and λ ∈ R it is

(λf + IC)(x) = λf(x) + IC(x)

=
{
λf(x) if x ∈ C
∞ if x /∈ C

=


λf(x) = 0 if x ∈ F ⊆ C
λf(x) > 0 if x ∈ C \ F
∞ if x /∈ C

λ→∞−→
{

0 if x ∈ F
∞ if x /∈ F = IF (x),

we have in the epigraph topology

λf + IC −→ IF (λ −→∞).

By the second property (P2) we get λf + IC + 〈·|r〉 −→ IF + 〈·|r〉 (λ −→ ∞) for every
point r ∈ V . With the first one (P1) we obtain

inf(λf − IC + 〈·|r〉) −→ inf(IF + 〈·|r〉) as λ −→∞.

It is
inf(IF + 〈·|r〉) = inf(λf + IF + 〈·|r〉) ∀λ ∈ R,

which follows from

inf
x∈V ∗

(λf(x) + IF (x) + 〈x|r〉) = inf
x∈F

(λf(x) + 〈x|r〉)

= inf
x∈F

(〈x|r〉) because f(y) = 0 ∀y ∈ F

= inf
x∈V ∗

(〈x|r〉+ IF (x)) ∀λ ∈ R, r ∈ V.

So together we get by the identification λf̂ ∈ V ∗∗ ∼= V

lim
λ→∞

(|λf̂ + r|C − |λf̂ + r|F ) = lim
λ→∞

(
− inf
x∈C
〈x|λf̂ + r〉+ inf

y∈F
〈y|λf̂ + r〉

)

= lim
λ→∞

− inf
x∈C

[〈x|r〉+ λf(x)− λf(0)] + inf
y∈F

[〈y|r〉+ λ f(y)︸ ︷︷ ︸
=0

−λf(0)]


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= lim
λ→∞

(
− inf
x∈V ∗

[〈x|r〉+ λf(x) + IC(x)] + inf
y∈V ∗

[〈y|r〉+ IF (y)]
)

= lim
λ→∞

(
− inf
x∈V ∗

[〈x|r〉+ λf(x) + IC(x)]
)

+ inf
y∈V ∗

[〈y|r〉+ IF (y)]

= − inf
x∈V ∗

[IF (x) + 〈x|r〉] + inf
y∈V ∗

[〈y|r〉+ IF (y)]

= 0

By using the equality

|qn − zi|C − |qn − zi|F = |λ(i)
n f̂ + (pn − zi)|C − |λ(i)

n f̂ + (pn − zi)|F −→ 0

as λ(i)
n →∞ for each n ∈ N, we see that for a fixed pn and a zi ∈ {z0, . . . , zn} we can find

a λ(i)
n large enough such that (8.5) is fulfilled. As the set {z0, . . . , zn} is finite we can take

the maximum and set λn := maxi=0,...,n λ
(i)
n .

For equation (8.4), we have to choose λn+1 large enough once λn is fixed.

Back to the original proof. With the identity f(y) = 0 ∀y ∈ F we get

|qi+1 − qi|F = − inf
y∈F
〈y|qi+1 − qi〉

= − inf
y∈F
〈y|pi+1 + λi+1f̂ − pi − λif̂〉

= − inf
y∈F

[〈y|pi+1 − pi〉+ λi+1f(y)− λi+1f(0)− λif(y) + λif(0)]

= − inf
y∈F
〈y|pi+1 − pi〉+ f(0)(λi+1 − λi)

= |pi+1 − pi|F + f(0)(λi+1 − λi) (8.6)

and

|qn − q0|F = − inf
y∈F

(〈y|pn + λnf̂ − p0 − λ0f̂〉)

= − inf
y∈F

[〈y|pn − p0〉+ λnf(y)− λnf(0)− λ0f(y) + λ0f(0)]

= − inf
y∈F
〈y|pn − p0〉+ f(0)(λn − λi)

= |pn − p0|F + f(0)(λn − λ0). (8.7)

Because of F ⊆ C, we have

| · |F ≤ | · |C . (8.8)

Before we calculate the next step, let’s bring together the equations we need for it.

(8.4) |qn+1 − qn|C − |qn+1 − qn|F < 1
2n ∀n ∈ N

(8.8) |qn − q0|C ≥ |qn − q0|F ∀n ∈ N

(8.6) |qi+1 − qi|F = f(0)(λi+1 − λi) + |pi+1 − pi|F

(8.7) |qn − q0|F = f(0)(λn − λ0)− |pn − p0|F

Lemma 4.2.8(ii)
∑n−1
i=0 |pi+1 − pi|F ≤ |pn − p0|F + ε ∀n ∈ N



98 Chapter 8. Appendix

And with these we get
n−1∑
i=0
|qi+1 − qi|C − |qn − q0|C <

n−1∑
i=0

(|qi+1 − qi|F + 1
2n )− |qn − q0|F

=
n−1∑
i=0
|qi+1 − qi|F − |qn − q0|F +

n−1∑
i=0

1
2n

=
n−1∑
i=0

[f(0)(λi+1 − λi)− |pi+1 − pi|F ]− f(0)(λn − λ0)− |pn − p0|F +
n−1∑
i=0

1
2n

=
n−1∑
i=0
|pi+1 − pi|F − |pn − p0|F + f(0)(λn − λ0)− f(0)(λn − λ0) +

n−1∑
i=0

1
2n

< ε+ 2 =: ε′.

The assertion follows with the sequence (qn)n∈N and with ε′ := ε+ 2.

We will now proof (II).
Let |pn − ·|F − |pn|F −→ g pointwise. We have to show that |qn − ·|C − |qn|C −→ g
pointwise with the sequence (qn) as defined above.
Let u ∈ Z =

⋃
n∈N{zn} ⊆ V . If n is large enough, then 0, u ∈ {z0, . . . , zn}. With (8.5)

and | · |C ≥ | · |F we obtain:

|qn − u|C − |qn|C − |qn − u|F + |qn|F ≤
1
n
− |qn|C + |qn|C

= 1
n

(8.9)

|qn − u|C − |qn|C − |qn − u|F + |qn|F ≥ |qn − u|F − |qn − u|F − (|qn − 0|C − |qn − 0|F )

≥ − 1
n

(8.10)

for every n large enough. Furthermore, we have:

|qn − u|F − |qn|F = − inf
y∈F
〈y|pn + λnf̂ − u〉+ inf

x∈F
〈x|pn + λnf̂〉

= − inf
y∈F

[〈y|pn − u〉 − λnf(y)− λnf(0)] + inf
x∈F

[〈x|p〉+ λnf(x)− λnf(0)]

= − inf
y∈F
〈y|pn − u〉+ inf

x∈F
〈x|pn〉

= |pn − u|F − |pn|F −→ g(u) as n −→∞. (8.11)

The equations (8.9), (8.10) and (8.11) together lead to

|qn − u|C − |qn|C ≤
1
n

+ |qn − u|F − |qn|F −→ g(u)

|qn − u|C − |qn|C ≥ −
1
n

+ |qn − u|F − |qn|F −→ g(u)

and therefore
|qn − u|C − |qn|C −→ g(u) as n −→∞ ∀u ∈ Z.

From Lemma 4.2.5 we know that |qn − ·|C − |qn|C = f∗C,qn . If we take the Legendre-
Fenchel transform, we obtain

(|qn − ·|C − |qn|C)∗ = fC,qn = IC + 〈·|qn〉+ |qn|C .

Since this function takes the value +∞ everywhere outside a compact set, |qn−·|C−|qn|C
is 1-Lipschitz with respect to any norm on V . Therefore pointwise convergence on a dense
subset (here: Z) of V implies convergence everywhere, which proofs the assertion.
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Proof of the claim in the proof of Lemma 4.3.2

Claim
There is a sequence (yn)n∈N of points in B◦ and a constant δ > 0 such that:

(i) yn −→ y

(ii) fn(yn) −→ f(y)

(iii) ∀n ∈ N the point yn is in some extreme set En and |yn − ∂relEn| ≥ δ

where ∂relEn denotes the relative boundary of En.

Proof. By [Bee93, Thm. 5.3.5]5 we know that we can find a sequence (an)n∈N in B◦ with
an −→ y and limn→∞ fn(an) = f(y). For all n ∈ N let En be smallest with an ∈ En6 and
define

δn := inf
ω∈∂relEn

|an − ω|,

the distance of an and ∂relEn. Now set

δ := lim sup
n−→∞

δn.

If δ > 0, then there is a subsequence of (an) satisfying the claim.
Let δ = lim supn−→∞ δn = 0. For each n ∈ N choose bn ∈ ∂relEn such that

|an − bn| = δn.

Such a bn exists because ∂relEn is closed. If n −→ ∞, then |an − bn| = δn −→ 0 and
therefore

bn −→ y as n −→∞.

Define cn as the point different from bn, which lies on the intersection of ∂relEn and the
straight line through bn and an7. We now define the following sequence (sn)n∈N of points:

sn :=
{
bn if fn(bn) ≤ fn(an) +

√
δn;

cn otherwise.

Let (ni)i∈N be a sequence of indices for which the first case holds and let (mi)i∈N be one
for which the second case holds.
As lim supi→∞ fni(bni) ≤ lim supi→∞(fni(ani) +

√
δni) = f(y), we also have

lim sup
i→∞

fni(bni) ≤ f(y). (8.12)

Using limn→∞ bn = y and the fact that fn −→ f in the epigraph topology we conclude by
[Bee93, Thm. 5.3.5] (see footnote 5)

lim inf
i−→∞

fni(bni) ≥ f(y)

5 Let X be a first countable Hausdorff space and let f, f1, f2, . . . be a sequence in L(X), the space of
lower semi-continuous functions. Then fn

K−→ f if and only if the following two conditions hold:
• ∃(xn) −→ x with f(x) = limn→∞ fn(xn)
• if (xn) −→ x we have f(x) ≤ lim infn→∞ fn(xn).

6If En is not a singleton, then an /∈ ∂relEn.
7That means that cn lies on the other side of an.



100 Chapter 8. Appendix

and together with (8.12) that
lim
i→∞

fni(bni) = f(y).

Now to the second case. As am, bm and cm lie on a line, there is λ ∈ (0, 1) such that
am = λb+ (1− λ)cm. So it is

cm = 1
1− λ(am − λbm)

from which we obtain

|cm − am| = |
1

1− λam −
λ

1− λbm − am| =
λ

1− λ |am − bm|.

As fm ∈ ∗D we have fm(cm) ≥ 0. A small calculation, using that fm is affine of B◦ yields:

fm(am) ≥ fm(am)− fm(cm)

= fm(am)− 1
1− λfm(am) + λ

1− λfm(bm)

= λ

1− λ(fm(bm)− fm(am))

Together we obtain

fm(am)
|cm − am|

= fm(am)
λ

1−λ |am − bm|

≥
λ

1−λ(fm(bm)− fm(am))
λ

1−λ |am − bm|

= fm(bm)− fm(am)
|am − bm|

>

√
δm
δm

= 1√
δm
,

where the last inequality follows from the fact that we are in the second case (that is
fm(bm) − fm(am) >

√
δm) and from |am − bm| = δm by definition. We know that

limn→∞ fm(am) = f(y) and that δn −→ 0 as n −→ ∞. These two equations lead to
limi→∞ |ami − cmi | = 0 from which we get

lim
i→∞

cmi = lim
i→∞

ami = y.

So
lim inf
i−→∞

fmi(cmi) ≥ f(y).

Because fmi(bmi) > fmi(ami) for all i ∈ N, we have

fmi(cmi) = 1
1− λfmi(ami)−

λ

1− λfmi(bmi)

≤ 1
1− λfmi(ami)−

λ

1− λfmi(ami)

= fmi(ami)

and therefore
lim sup
i−→∞

fmi(cmi) ≤ f(y).
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All together we obtain
fm(cm) −→ f(y)

and
sn −→ y as well as fn(sn) −→ f(y) as n −→∞.

As sn ∈ ∂relEn for all n ∈ N, unless En is a singleton, the smallest extreme set containing
sn has dimension less than the one of En. If we repeat this procedure of constructing (sn)
several times, we obtain a sequence (yn)n∈N either consisting entirely of extreme points or
containing a subsequence satisfying the claim. If the former would hold, then {y} would
be a limit point of the extreme sets {yn}. So by our assumption (that set of extreme sets
of B◦ is closed in the Painlevé-Kuratowski topology) {y} would also be an extreme set.
But this would be a contradiction to y = (1 − λ)x + λz as y 6= x, z. Therefore the other
case holds and the claim is proofed.

8.4 Further Examples
In this section of the appendix I will give some more examples of how to calculate the
horofunctions following [Wal07]. Some of the examples are really additional ones, not
mentioned in the main part, one of them, with the L1-metric, contains the three dimen-
sional case to make is easier to understand the general higher dimensional case dealt with
in the main part. Some of the subsections, like for the lens shaped norm, are only some
of the calculations which were just long but not essential for understanding.

8.4.1 X = R Equipped with the Standard Metric

In the first case let X = R. Let the unit ball be

B = {x ∈ R | − 3 ≤ x ≤ 1},

then

B◦ = {y ∈ R∗ | 〈y|x〉 ≥ −1 ∀x ∈ [−3, 1]}

=
{
y ∈ R∗ | − 1 ≤ y ≤ 1

3

}
.

As B = B◦ if we identify R ∼= R∗, we can illustrate them both in the same picture:

0F−3 F1
x

B

0E−1 E 1
3

x
B◦

Figure 8.1: B◦ and B in R

The norm defined by B is

‖x‖B =
{
x if x ≥ 0
−1

3x if x < 0.

The proper extreme sets of B◦ are:

E−1 := {−1} and E 1
3

:=
{1

3

}
.
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The Functions fE,p and f∗E,p We now have to calculate the functions fE,p and f∗E,p for
each extreme set E. From Lemma 5.0.4 it follows for all q ∈ X:

fE−1,p(q) = IE−1(q)
fE 1

3
,p(q) = IE 1

3
(q),

and

f∗E−1,p(·) = 〈−1|·〉

f∗E 1
3
,p(·) =

〈 1
3

∣∣∣∣ ·〉 .
or in other words

f∗E−1,p = −id

f∗E 1
3
,p = 1

3 id ∀p ∈ R.

From Theorem 4.0.32 we know, that the set of Busemann points of R is {id, 1
3 id }. If

we take any sequence (z±n )n∈N in R ∪ {±∞} converging to ±∞, then

ψz+
n

(y) −→ f∗E−1,p(y)
ψz−n (y) −→ f∗E 1

3
,p(y)

as n −→∞.
Indeed, let (zn) be a sequence in R going to ∞. Then there is an N ∈ N such that zn ≥ y
and zn ≥ 0 for all n ≥ N . With this we get

ψzn(y) = ‖zn − y‖B − ‖zn‖B
= zn − y − zn
= −y = f∗E−1,p(y),

for all n ≥ N and therefore ψzn(y) −→ f∗E−1,p
(y) as n −→∞.

The case zn −→ −∞ follows the same way.

So for X = R there are only two different types of sequences to consider. This gives us
the horofunction compactification by adding {+∞} and {−∞} which in this case is a well
known compactificatioin.

8.4.2 X = R3 with the L1-Norm

We already saw this example in the case where X = R2. In the main part we also
dealt with the general higher dimensional case. This example for n = 3 shall help us
understand this general case because the calculations and notations are very similar and
it is still imaginable and drawable.

B, B◦ and Their Extreme Sets In this case the unit ball is defined as

B : =
{
x = (x1, x2, x3) ∈ R3

∣∣∣∣∣
3∑
i=1
|xi| ≤ 1

}



8.4. Further Examples 103

y

z

x

1

1

1

Figure 8.2: B of the L1-norm in R3

= conv


1

0
0

 ,
−1

0
0

 ,
0

1
0

 ,
 0
−1
0

 ,
0

0
1

 ,
 0

0
−1


 ,

see also figure 8.3.
With an analogous calculations as in the two-dimensional case, we obtain for the dual

unit ball

B◦ = {y = (y1, y2, y3) ∈ R3 | max(|y1|, |y2|, |y3|) ≤ 1)}

= conv


1

1
1

 ,
−1

1
1

 ,
−1
−1
1

 ,
 1
−1
1

 ,
 1

1
−1

 ,
−1

1
−1

 ,
−1
−1
−1

 ,
 1
−1
−1


 .

E1
E4

E8 E5

E2E3

E7
E6

y

z

x

F1F2

F3 F4

F5

F6

F7

F8

F9

F10F11

F12

1

1

1

Figure 8.3: B◦ of the L1-norm in R3

The extreme sets of B◦ are these:

1. Points: the points whose convex hull define the dual unit ball, let’s enumerate them
with E1, . . . , E8 in the same order as above.
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2. Lines:

F1 :=


t1

1


∣∣∣∣∣∣∣ |t| ≤ 1

 F5 :=


1
t
1


∣∣∣∣∣∣∣ |t| ≤ 1

 F9 :=


1

1
t


∣∣∣∣∣∣∣ |t| ≤ 1


F2 :=


 t
−1
1


∣∣∣∣∣∣∣ |t| ≤ 1

 F6 :=


−1
t
1


∣∣∣∣∣∣∣ |t| ≤ 1

 F10 :=


−1

1
t


∣∣∣∣∣∣∣ |t| ≤ 1


F3 :=


 t
−1
−1


∣∣∣∣∣∣∣ |t| ≤ 1

 F7 :=


−1
t
−1


∣∣∣∣∣∣∣ |t| ≤ 1

 F11 :=


−1
−1
t


∣∣∣∣∣∣∣ |t| ≤ 1


F4 :=


 t

1
−1


∣∣∣∣∣∣∣ |t| ≤ 1

 F8 :=


 1
t
−1


∣∣∣∣∣∣∣ |t| ≤ 1

 F12 :=


 1
−1
t


∣∣∣∣∣∣∣ |t| ≤ 1


The lines are numbered in such way, that the first four extreme sets are denoting
parallel lines, as well as the other two groups of four.

3. Faces:

G1 :=


1
s
t


∣∣∣∣∣∣∣ |s|, |t| ≤ 1

 G3 :=


s1
t


∣∣∣∣∣∣∣ |s|, |t| ≤ 1

 G5 :=


st

1


∣∣∣∣∣∣∣ |s|, |t| ≤ 1


G2 :=


−1
s
t


∣∣∣∣∣∣∣ |s|, |t| ≤ 1

 G4 :=


 s
−1
t


∣∣∣∣∣∣∣ |s|, |t| ≤ 1

 G6 :=


 s
t
−1


∣∣∣∣∣∣∣ |s|, |t| ≤ 1


Here also, we number the sets according to parallelism.

4. The last extreme set is of course B◦ itself.

So all together we have 27 extreme sets of B◦.

Calculation of the fE,p-functions For the extreme points we have as usual

fEi,p = IEi ∀i ∈ {1, . . . , 8},

independent of p.
For the one dimensional extreme sets, the edges of the cube, we have

fF1,p(q) = IF1(q) + 〈q|p〉 −min{〈e1|p〉, 〈e2|p〉}
= IF1(q) + 〈q|p〉 −min{p1 + p2 + p3,−p1 + p2 + p3}
= IF1(q) + 〈q|p〉 − p2 − p3 + |p1|

because F1 = conv(E1, E2) with E1 = {e1} and E2 = {e2}.
By similar calculations and symmetry arguments we receive

fF1,p(q) = IF1(q) + 〈q|p〉 − p2 − p3 + |p1|
fF2,p(q) = IF2(q) + 〈q|p〉+ p2 − p3 + |p1|



8.4. Further Examples 105

fF3,p(q) = IF3(q) + 〈q|p〉+ p2 + p3 + |p1|
fF4,p(q) = IF4(q) + 〈q|p〉 − p2 + p3 + |p1|
fF5,p(q) = IF5(q) + 〈q|p〉 − p1 − p3 + |p2|
fF6,p(q) = IF6(q) + 〈q|p〉+ p1 − p3 + |p2|
fF7,p(q) = IF7(q) + 〈q|p〉+ p1 + p3 + |p2|
fF8,p(q) = IF8(q) + 〈q|p〉 − p1 + p3 + |p2|
fF9,p(q) = IF9(q) + 〈q|p〉 − p1 − p2 + |p3|
fF10,p(q) = IF10(q) + 〈q|p〉+ p1 − p2 + |p3|
fF11,p(q) = IF11(q) + 〈q|p〉+ p1 + p2 + |p3|
fF12,p(q) = IF12(q) + 〈q|p〉 − p1 + p2 + |p3|

and

fG1,p(q) = IG1(q) + 〈q|p〉 − p1 + |p2|+ |p3|
fG2,p(q) = IG2(q) + 〈q|p〉+ p1 + |p2|+ |p3|
fG3,p(q) = IG3(q) + 〈q|p〉 − p2 + |p1|+ |p3|
fG4,p(q) = IG4(q) + 〈q|p〉+ p2 + |p1|+ |p3|
fG5,p(q) = IG5(q) + 〈q|p〉 − p3 + |p1|+ |p2|
fG6,p(q) = IG6(q) + 〈q|p〉+ p3 + |p1|+ |p2|

Now it is clear why we chose this numeration of the extreme sets. The sets, no matter if
one or two dimensional, lying parallel to each other have yield to nearly the same functions,
differing only by sign. We will come back to this observation when we calculate the general
n-dimensional case.

The Legendre-Fenchel-transform The next step is to calculate the Legendre-Fenchel
transforms of our functions above. The case of the extreme points is simple and well known
by now. We have for i ∈ {1, . . . , 8}:

f∗Ei,p(y) = 〈ei|y〉 for Ei = {ei}.

For the lines we have

f∗F1,p(y) = max{〈e1|y − p〉, 〈e2|y − p〉}+ min{〈e1|p〉, 〈e2|p〉}
= max{(y1 − p1) + (y2 − p2) + (y3 − p3),−(y1 − p1) + (y2 − p2) + (y3 − p3)}
− |p1|+ p2 + p3

= |y1 − p1|+ y2 − p2 + y3 − p3 − |p1|+ p2 + p3

= |y1 − p1| − |p1|+ y2 + y3.

For the calculation of the transforms of the other functions, we can use the similarity of
them and obtain:

f∗F1,p(y) = |y1 − p1| − |p1|+ y2 + y3

f∗F2,p(y) = |y1 − p1| − |p1| − y2 + y3

f∗F3,p(y) = |y1 − p1| − |p1| − y2 − y3

f∗F4,p(y) = |y1 − p1| − |p1|+ y2 − y3

f∗F5,p(y) = |y2 − p2| − |p2|+ y1 + y3
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f∗F6,p(y) = |y2 − p2| − |p2| − y1 + y3

f∗F7,p(y) = |y2 − p2| − |p2| − y1 − y3

f∗F8,p(y) = |y2 − p2| − |p2|+ y1 − y3

f∗F9,p(y) = |y3 − p3| − |p3|+ y1 + y2

f∗F10,p(y) = |y3 − p3| − |p3| − y1 + y2

f∗F11,p(y) = |y3 − p3| − |p3| − y1 − y2

f∗F12,p(y) = |y3 − p3| − |p3|+ y1 − y2.

For the faces we get:

f∗G1,p(y) = |y2 − p2| − |p2|+ |y3 − p3| − |p3|+ y1

f∗G2,p(y) = |y2 − p2| − |p2|+ |y3 − p3| − |p3| − y1

f∗G3,p(y) = |y1 − p1| − |p1|+ |y3 − p3| − |p3|+ y2

f∗G4,p(y) = |y1 − p1| − |p1|+ |y3 − p3| − |p3| − y2

f∗G5,p(y) = |y1 − p1| − |p1|+ |y2 − p2| − |p2|+ y3

f∗G6,p(y) = |y1 − p1| − |p1|+ |y2 − p2| − |p2| − y3.

We see that every transform consists of an index- and sign permutation of |yi−pi|− |pi|+
|yj − pj | − |pj | ± yk with i, j, k ∈ {1, 2, 3} pairwise distinct.
Before we interpret these results in the next section, we will first have a look at the
geometrical interpretation.

Geometrical part Let (zn)n∈N be a sequence in R3. Then

ψzn(y) = ‖zn − y‖1 − ‖zn‖1 = |zn,1 − y1|+ |zn,2 − y2|+ |zn,3 − y3| − |zn,1| − |zn,2| − |zn,3|
= |zn,1 − y1| − |zn,1|+ |zn,2 − y2| − |zn,3|+ |zn,3 − y3| − |zn,3|

Let one of the components of this sequence, zn,i, i ∈ {1, 2, 3}, tend to ∞. Then there is
an N ∈ N, such that zn,i > max(0, yi) for all n bigger than N . Therefore

|zn,i − yi| − |zn,i| = zn,i − yi − zn,i = −yi ∀n > N.

This means that this part of our sum converges to −yi. Similarly, if zn,j −→ −∞, then
this part of the sum converges to +yj . The third case to consider is, what happens if
zn,k converges to a constant component pk. Then |zn,k − yk| − |zn,k| −→ |pk − yk| − |pk|.
Compared with the end of the last paragraph, we see that each of the three types of
sequences converges to one of the three possibilities we had for a component.
Summarised we have that all 8 variations of the signs of a sequence of the form

zn =

±kn±ln
±n

 −→
∞∞
∞


with k, l > 0 yield the Legendre-Fenchel transforms belonging to the 8 extremal points.
They correspond to sequences through one of the 8 open octants of R3. If we would draw
B and B◦ in the same picture, the extreme point of B◦ they are converging to lies directly
on the opposite site of the open octant with respect to the origin. Here it makes no
difference whether the sequence goes through the origin or not, the only important factor
is the direction, that is the face of B it would intersect with if the sequence would follow
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a line through the origin.
If we fix one of the components, we get a sequence belonging to one of the extremal edges.
Let (zn)n be a sequence with zn,j = pj for one j ∈ {1, 2, 3}. Then ψzn −→ f∗Fj ,p , where
Fj is the extremal set with t in the j-th component and and the signs of the 1 in the other
components are opposite to those of zn. These are exactly the sequences parallel to a line
passing through the origin and through one edge of the octagon B, but not going through
an extreme point of it. The edge the sequence is converging to lies again on the opposite
side with respect to the origin.
The last case, belonging to the faces, are sequences (zn)n with two components fixed,
say zn,i = pi and zn,j = pj , i 6= j ∈ {1, 2, 3}. Here again we see the dependence on the
point p the sequence is passing through. These 6 kinds of sequences (3 possibilities for
choosing the fixed component and for each of them two possibilities for the sign of the
third component) tend to one transform belonging to an extreme face of B◦. These are
the sequences following lines parallel to one of the straight lines going through an extreme
face of B◦.

8.4.3 X = R2 with the Euclidean Norm

As a first step to unit balls with a curved boundary, we have a look at the standard
Euclidean norm in R2. If we identify R2 = (R2)∗, the unit ball and it’s dual are the same,
namely

B = B◦ =
{(

x
y

)
∈ R2

∣∣∣∣∣x2 + y2 ≤ 1
}
.

1

B◦

x

y

zn

α

Eα

Figure 8.4: Euclidean unit ball B and B◦

As the boundary of B◦ is a curved line, every point of the boundary is an extreme point
and these are the only proper extreme sets of B◦. So the set of proper extreme sets of B◦
is {Eα | 0 ≤ α < 2π} where

Eα :=
{(

cosα
sinα

)}
.

Let E = Eα for some α ∈ [0, 2π) and p = (p1, p2) ∈ R2 be a point. As Eα is a one pointed
set, fE,p = IE . Therefore

f∗E,p(y) = sup
x∈E
〈x|y〉 = y1 cosα+ y2 sinα.

We now have to find a sequence (zn) in R2 such that ψzn converges to f∗E,p as n tends
to infinity. Inspired by the examples above, we suppose, that for a given α there will be
exactly one straight line emanating from the origin that converges to f∗Eα,p and that this
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line has to run exactly in the opposite direction of Eα. Therefore we consider the sequence
(zn)n∈N ⊆ R2 with zn = (−n cosα,−n sinα). Then

‖zn − y‖ =
√

(−n cosα− y1)2 + (−n sinα− y2)2

=
√
n2 cos2 α+ n2 sin2 α+ 2n(y1 cosα+ y2 sinα) + y2

1 + y2
2

=
√
n2
(

1 + 2
n

(y1 cosα+ y2 sinα) + 1
n2 (y2

1 + y2
2)
)

= n

√
1 + 2

n
(y1 cosα+ y2 sinα) + 1

n2 (y2
1 + y2

2)

= n

[
1 + 1

2( 2
n

(y1 cosα+ y2 sinα) + 1
n2 (y2

1 + y2
2)) +O

( 1
n2

)]
= n

[
1 + 1

n
(y1 cosα+ y2 sinα) +O

( 1
n2

)]
= n+ y1 cosα+ y2 sinα+O

( 1
n

)
and

‖zn‖ = n.

Here we used the first-order Taylor series approximation of
√

1 + x. As there is an n in the
denominator of each summand in the forth line, we are allowed to use this approximation
by choosing n large enough. Together we obtain

ψzn(y) = ‖zn − y‖ − ‖zn‖

= n+ y1 cosα+ y2 sinα+O
( 1
n

)
− n

= y1 cosα+ y2 sinα+O
( 1
n

)
,

which leads to
ψzn(y) −→ f∗E,p(y) as n −→∞.

The set {Eα | α ∈ [0, 2π)} is closed in the Painlevé-Kuratowski topology, so we know
that every horofunction is a Busemann point.
If we take a sequence (z′n) following a line not emanating from the origin but going through
the point q = (q1, q2), we have to replace y1 and y2 by y1 − q1 and y2 − q2 respectively in
the first calculation. With this we receive (with zn as above)

‖z′n − y‖ = ‖zn + q − y‖ = n+ (y1 − q1) cosα+ (y2 − q2) sinα+O
( 1
n

)
and

‖z′n‖ = ‖zn + q‖ =
∥∥∥∥∥
(
−n cosα+ q1
−n sinα+ q2

)∥∥∥∥∥
=
√
n2 cos2 α+ n2 sin2 α+ q2

1 + q2
2 − 2n(q1 cosα+ q2 sinα)

= n

√
1− 2

n
(q1 cosα+ q2 sinα) + 1

n2 (q2
1 + q2

2)

= n

[
1− 1

2

( 2
n

(q1 cosα+ q2 sinα) +O
( 1
n2

))
+O

( 1
n2

)]
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= n− q1 cosα− q2 sinα+O
( 1
n

)
.

So in this case we get

ψz′n(y) = ‖z′n − y‖ − ‖z′n‖

= n+ (y1 − q1) cosα+ (y2 − q2) sinα+O
( 1
n

)
−
(
n− q1 cosα− q2 sinα+O

( 1
n

))
= y1 cosα+ y2 sinα+O

( 1
n

)
= ‖zn − y‖ − ‖zn‖+O

( 1
n

)
so both converge to the same Busemann point f∗E,p.

We see that it makes no difference whether we take a sequence through the origin or
a parallel one, the only important information is the direction the sequence is following.
As B = B◦, it is easy to draw them both in the same picture (see also figure 8.4) and we
can find out easily, that (if we only consider sequences on lines through the origin) the
extreme set a sequence is converging to is exactly the negative point of the intersection
point of this sequence and B◦.

8.4.4 The Case X = R2 with the L 3
2 - Norm

As another example of a norm with curved unit sphere we consider the 3
2 -norm on R2. We

consider this example because the unit sphere is curved everywhere, just as the euclidean
one, but now B 6= B◦.
So for a point x = (x1, x2) ∈ R2 its distance to the origin is

‖x‖ 3
2

=
(
|x1|

3
2 + |x2|

3
2
) 2

3 .

Therefore the unit ball is

B =
{(

x
y

)
∈ R2

∣∣∣∣∣ |x| 32 + |y|
3
2 ≤ 1

}
,

and it’s dual is by Lemma (2.5.13)

B◦ =
{(

x
y

)
∈ R2

∣∣∣∣∣ |x|3 + |y|3 ≤ 1
}
.

The proper extreme sets of the dual unit ball are the boundary points of B◦. We define
the set of an extreme point as

E±k :=
{(

k

± 3
√

1− |k|3

)}
,

where −1 ≤ k ≤ 1.
Let E := E+

k for some k ∈ [−1, 1]. It is sufficient to consider only those points with
non-negative second component because the other case follows just by changing the signs
of the second component. As all extreme sets are extreme points, we always have

fE,p = IE
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and
f∗E,p(y) = sup

x∈E
〈x|y〉 = ky1 + 3

√
1− |k|3y2.

We now want to find a sequence (zn)n∈N such that ψzn converges to f∗E,p. Inspired by
the examples above, we suppose that one such sequence should follow a straight line
perpendicular to the tangent line at −Ek. Consider the following sequence (zn) with

zn = −
(

k2

(1− k3)
2
3

)
· n

This sequence is indeed perpendicular to the tangent line because ‖z1‖ 3
2

= 1 and 〈z1|Ek〉 =
−1, therefore orthogonality follows by the definition and the construction of B◦. Then we
have

‖zn‖ 3
2

=
{
| − nk2|

3
2 + | − n(1− k3)

2
3 |

3
2
} 2

3

=
(
n

3
2k3 + n

3
2 (1− k3)

) 2
3

= n.

For the calculation of ‖zn − y‖ 3
2
we will need the following formulas for a, b ∈ R small

enough:

(1 + a)
3
2 = 1 + 3

2a+O
(
a2
)

(8.13)

(1 + b)
2
3 = 1 + 2

3b+O
(
b2
)

(8.14)

Then we get:

‖zn − y‖ 3
2

=
{∣∣∣−nk2 − y1

∣∣∣ 3
2 +

∣∣∣−n(1− k3)
2
3 − y2

∣∣∣ 3
2
} 2

3

=
{(
nk2 + y1

) 3
2 +

[
n(1− k3)

2
3 + y2

] 3
2
} 2

3

=

n 3
2k3

(
1 + y1

nk2

) 3
2

+ n
3
2

[(
1− k3

) 2
3 + y2

n

] 3
2


2
3

= n

k3
(

1 + y1
nk2

) 3
2

+
(
1− k3

) [
1 + y2

n(1− k3)
2
3

] 3
2


2
3

= n

{
k3
(

1 + 3y1
2nk2 +O

( 1
n2

))
+
(
1− k3

) [
1 + 3y2

2n(1− k3)
2
3

+O
( 1
n2

)]} 2
3

= n

{
1 + 3

2n
(
ky1 + (1− k3)

1
3
)

+O
( 1
n2

)} 2
3

= n

{
1 + 2

3
3

2n
(
ky1 + (1− k3)

1
3
)

+O
( 1
n2

)}

Together we have

ψzn(y) = ‖zn − y‖ 3
2
− ‖zn‖ 3

2
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= n+ ky1 + 3
√

1− k3y2 +O
( 1
n

)
− n

= ky1 + 3
√

1− k3y2 +O
( 1
n

)
and therefore

ψzn −→ f∗E,p as n −→∞.

If we would have taken E−k and the sequence zn = −
(

k2

−(1− k3)
2
3

)
· n, it would have

been ψzn −→ f∗
E−
k
,p
as n −→∞.

So even if B is not polyhedral and B 6= B◦, we see the same result as in the other examples.
The starting point of the sequence has no influence on the extreme set the sequence is
converging to. Only the direction matters and the extreme set lies in the opposite quadrant
with respect to the origin.

8.4.5 R2 with a Lens-Shaped Norm - Calculation of ψzn

We show here the calculation of ψzn(y) for the sequence zn =
(
k
l

)
· n+

(
p1
p2

)
−→

(
∞
∞

)
as n −→∞ with k, l ∈ R, k, l > 0 and arbitrary y ∈ R2.

ψzn(y) =
∥∥∥∥∥
(
kn+ p1 − y1
ln+ p2 − y2

)∥∥∥∥∥
B

−
∥∥∥∥∥
(
kn+ p1
ln+ p2

)∥∥∥∥∥
B

=
√

3|kn+ p1 − y1| −
√

3|kn+ p1|+
√

4(kn+ p1 − y1)2 + (ln+ p2 − y2)2

−
√

4(kn+ p1)2 + (ln+ p2)2

=
√

3|kn+ p1 − y1| −
√

3|kn+ p1| −
√

(4k2 + l2)n2 + 2(4kp1 + lp2)n+ 4p2
1 + p2

2

+
{

(4k2 + l2)n2 + 2(4kp1 − 4ky1 + lp2 − ly2)n

+4y2
1 + y2

2 + 4p2
1 + p2

2 − 8p1y1 − 2p2y2
} 1

2

n�1= −
√

3y1 − n ·
√

4k2 + l2

√
1 + 2(4kp1 + lp2)

(4k2 + l2)n + 4p2
1 + p2

2
(4k2 + l2)n2

+ n ·
√

4k2 + l2
{

1 + 2(4kp1 − 4ky1 + lp2 − ly2)
(4k2 + l2)n

+4y2
1 + y2

2 + 4p2
1 + p2

2 − 8p1y1 − 2p2y2
(4k2 + l2)n2

} 1
2

= −
√

3y1 − n ·
√

4k2 + l2

[
1 + 1

2

(
2(4kp1 + lp2)
(4k2 + l2)n + 4p2

1 + p2
2

(4k2 + l2)n2

)
+O

( 1
n2

)]

+ n ·
√

4k2 + l2 ·
[
1 + 1

2

(2(4kp1 − 4ky1 + lp2 − ly2)
(4k2 + l2)n

+4y2
1 + y2

2 + 4p2
1 + p2

2 − 8p1y1 − 2p2y2
(4k2 + l2)n2

)
+O

( 1
n2

)]

= −
√

3y1 + n ·
√

4k2 + l2 + 4kp1 − 4ky1 + lp2 − ly2√
4k2 + l2

+O
( 1
n

)
− t ·

√
4k2 + l2 − 4kp1 + lp2√

4k2 + l2
+O

( 1
n

)
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= −
√

3y1 −
4ky1 + ly2√

4k2 + l2
+O

( 1
n

)

−→
(
−
√

3− 4k√
4k2 + l2

)
y1 −

l√
4k2 + l2

y2 = −
〈(√

3 + 4k√
4k2+l2

l√
4k2+l2

)∣∣∣∣∣︸ ︷︷ ︸
:=q

y

〉
.
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