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Abstract

In any Coxeter group the conjugate of elements in its Coxeter generating set are
called reflections. The length of an element with respect to this expanded generating
set is its reflection length. This thesis conjectures an explicit formula to compute
reflection length in affine Coxeter groups and gives a proof for all groups of rank 1
and 2. Also, it provides a proof for one inequality of the formula in affine Coxeter
groups of arbitrary rank.

Zusammenfassung

In einer beliebigen Coxeter Gruppe sind Spiegelungen die zu Coxeter Erzeu-
gern konjugierten Elemente. Die Länge eines Elements unter diesem erweiterten
Erzeugendensystem heißt Spiegelungslänge. Die vorliegende Arbeit betrachtet die
Spiegelungslänge in affinen Coxeter Gruppen. Es wird eine explizite Formel vermutet
und ein Beweis dieser für alle Gruppen von Rang 1 und 2 gegeben. Außerdem wird die
eine Ungleichung der Formel für affine Coxeter Gruppen beliebigen Ranges gezeigt.
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Introduction
A Coxeter group W is a group generated by elements of order two, and thus can be
seen as ’abstract reflection group’. Define a reflection in W as any element conjugate
to a generator. The collection R of all reflections is another natural generating set of
W as it contains any minimal generating set and is invariant under conjugation. The
reflection length of an element w ∈ W is the minimal number of reflection necessary to
express w. For proper definitions of these terms see Section 1. Studying the reflection
length in Coxeter groups is a direct consequence of introducing the set R of reflections as
generating set.

This thesis considers reflection length in spherical and affine Coxeter groups. Those can
be constructed using the notion of a root system. A root system Φ is a finite collection
of vectors α called roots fulfilling some technicalities (for details see Section 2). For
each root α there is a reflection rα across the hyperplane Hα orthogonal to α. These
reflections rα generate a spherical Coxeter group W0. Reflection length in these finite
Coxeter groups has been studied for example in [Car70].

Affine Coxeter groups are closely related to root systems as well. They are constructed
as follows: Take for each root α a family of parallel hyperplanes Hα,j , j ∈ Z each
orthogonal to α. The reflections rα,j across all those hyperplanes Hα,j then generate an
affine Coxeter group W . For a detailed description of affine Coxeter groups and related
terms see Section 3.

The underlying root system Φ captures the structure of some elements in W . Obtain a
coroot α∨ by rescaling a root α with 2

(α,α) where the denominator is the inner product of
α with itself. These coroots form the coroot system Φ∨ of Φ. If tλ ∈ W is a translation
by the vector λ, then λ lies in the Z-lattice L(Φ∨) spanned by Φ∨.

Each w ∈ W allows several translation-elliptic factorisations. That is, it can be written
as the product w = tλu of a translation tλ ∈ W and an elliptic element u ∈ W . Also, one
can associate an elliptic and a differential dimension to w ∈ W . Then the dimension of
an element w ∈ W is defined as the sum of its elliptic and differential dimensions and if
w is a translation tλ one writes dim(λ) for the dimension of tλ. These different notions of
dimensions are used in [LMPS19] to compute the reflection length in an arbitrary affine
Coxeter group W .

In this thesis we identify W as a semidirect product W = ToW0. Here, T is isomorphic
to Zn where n is the rank of W and W0 is a spherical Coxeter group over the same root
system as W . This identification corresponds to a ’choice of origin’ in the hyperplane
arrangement of W . It also gives a unique inclusion ι : W0 ↪→ W and thereby the elements
of W0 can be regarded as elements of W . Then each w ∈ W can be written in normal
form w = tλu which is a translation-elliptic factorisation with tλ ∈ T and u ∈ W0.

Observe that such a normal form is, in most cases, not a minimal length factorisation
of w. For example w = tα∨sα is a normal form using three reflections but has reflection
length 1. A minimal reflection factorisation is given by w = sα,1 which is, in general, not
a normal form for any choice of identification W = T oW0.

This motivates the following.
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Conjecture A (Schwer). Let W = T oW0 be an affine Coxeter group with spherical
Coxeter group W0 over the same root system Φ. Let w ∈ W be an arbitrary element of
W with normal form w = tλu. Then the reflection length of w can be written as

`R(w) =
1

2
`R(tλ) + min

v∈Vλ

`R(vu) = dim(λ) + min
v∈Vλ

`R(vu).

Here, the set Vλ consists of compositions vλ = rα1 · · · rαk
∈ W0 where the coroots

α∨
1 , . . . , α

∨
k appear in a minimal integral combination of λ (for details see Definition 4.1).

The formula in Conjecture A would allow to compute the reflection length in an
affine Coxeter group by computing the reflection lengths of a translation and elements
in a spherical Coxeter group. Both are well understood, see [MP11, Prop. 4.3] and
Theorem 2.23 and thus this formula would highly contribute to understanding reflection
length in affine Coxeter groups.

Conjecture A is indeed fulfilled in some special cases.

Theorem B. Conjecture A is true in affine Coxeter groups of rank 1 and 2.

This work provides a detailed proof for Theorem B by considering the structure of
normal forms in groups of types affine A1, A2, B2 and G2. This might also help to prove
the conjecture in groups of higher rank.

Theorem C (Upper bound). With the same notation as in Conjecture A holds

`R(w) ≤ dim(λ) + min
v∈Vλ

`R(vu).

For the latter Theorem a rather short and technical proof is given. Both proofs can be
found in Section 4.

The last section names open problems and gives suggestions for further investigations.
In the end Appendix A addresses the creation of the TikZ images throughout the

thesis.
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1. Coxeter groups and reflections
This section starts with the definition of Coxeter groups definition and some examples
that will be revisited throughout the thesis. In the next step Coxeter and Cayley graphs
are introduced which both encode some structure of the associated Coxeter group.

Then reflections and the reflection length of an element are defined and basic properties
of the reflection length reviewed. The last subsection describes when a Coxeter group
is reducible or irreducible and resolves that it suffices to study the reflection length of
irreducible Coxeter groups to compute it in arbitrary Coxeter groups.

Definition 1.1 (Coxeter group). A group W with finite generating set S = {s1, . . . , sn}
is called Coxeter group if the defining relations are of the form s2i = 1 for all i and
(sisj)

mij = 1 for all i 6= j with mij ∈ {2, 3, . . . } ∪ {∞}. That is

W = 〈 s1, . . . , sn | s2i , (sisj)
mij for all i 6= j 〉

Infinite order of sisj is indicated by mij = ∞, meaning there is no relation (sisj)
k = 1.

The tuple (W,S) consisting of a Coxeter group W and its Coxeter generating set S is
called Coxeter system. Its Coxeter matrix MW is the n×n−matrix with diagonal entries
all 1 and mij in the ith row and jth column for i 6= j.

Coxeter groups can be considered as abstract reflection groups as they are generated
by elements of order two. The following examples illustrate this.

Example 1.2. (a) The group Z/2Z = 〈 s | s2 〉 is the smallest non-trivial example of a
Coxeter group. Its Coxeter matrix is the 1× 1−matrix (1).

(b) The infinite Dihedral group D∞ is generated by two reflections s, t of the real line R
through two distinct points, say 0 and 1 like in Figure 1. Thus their composition
is a translation to the left or right and hence has infinite order. Thus the Coxeter
presentation and Coxeter matrix of D∞ are

D∞ = 〈 s, t | s2, t2 〉 and MD∞ =

(
1 ∞
∞ 1

)
.

−5 −4 −3 −2 −1 2 3 4 50 1

s t

Figure 1: The infinite dihedral group D∞ acting on the real line.
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(c) The symmetric group of an equilateral triangle or equivalently the set {1, 2, 3} is

S3 = {id, (12), (13), (23), (123), (132)}.

It can be generated by the reflections (12) and (23), whose compositions are the
rotations (132) and (321) of order three. Thus the group has Coxeter presentation

S3 = 〈 s, t | s2, t2, (st)3 〉.

(12)

(23)

(13)

1

23

(123) (321)

1

23

Figure 2: The symmetry group of an equilateral triangle.

(d) Consider the real plane R2 spanned by the standard basis ε1, ε2. Analogous to (a)
take s, t the reflections along 〈ε1〉R stabilising the origin and ε1, respectively. Further,
take a third reflection r that reflects about the diagonal 〈ε1 + ε2〉R and stabilises the
origin, see Figure 3.

s tr

Figure 3: The group WB = 〈s, t, r | s2, t2, r2, (sr)4, (tr)4〉.
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The composition st is a translation as in (a) and both sr, tr are rotations of order four.
Thus the group generated by s, t, r is a Coxeter group with the following Coxeter
presentation and Coxeter matrix.

WB = 〈 s, t, r | s2, t2, r2, (sr)4, (tr)4 〉 and MW =

 1 ∞ 4
∞ 1 4
4 4 1

 .

The group action of WB on the real plane induces a tessellation with triangles that
are in one-to-one correspondence with the elements of W .

Next, assign two graph Γ and Cay(W,S) to a Coxeter system with both encode some
of the groups structure.

Definition 1.3 (Coxeter graph). Given a Coxeter system (W,S) define a graph ΓW

with vertex set S = {s1, . . . , sn} and si, sj joined by an edge labelled mij if mij ≥ 3. By
convention, the label mij = 3 is omitted. Γ is the Coxeter graph of (W,S)

Example 1.4. The Coxeter graphs of the groups from the last Example 1.2 are

ΓZ/2Z ΓD∞

∞
ΓS3 ΓWB

∞

4 4

Definition 1.5 (Cayley graph). Let (W,S) be a Coxeter system. Define a graph
Cay(W,S) by taking W as vertex set and joining w, v ∈ W by an edge with label s ∈ S
if w = sv. This graph is called the Cayley graph of W with respect to S.

Note that the Cayley graph of W changes with the choice of a generating set S.

Cay(Z/2Z,{s})

s
1 s

Cay(S3,{(12), (23)})

1
(12) (23)

(321) (123)
(13)

(23) (12)

(23)(12)

(23)(12)

Cay(D∞,{s, t})

· · · · · ·t t ts s s

1s tst tssts tst

Figure 4: Cayley graphs with respect to S.

Before moving on to the notion of reflection length in the next subsection consider a
special kind of element called Coxeter elements.
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Definition 1.6 (Coxeter elements). Let W be a Coxeter group with standard min-
imal generating set S = {s1, . . . , sn}. A Coxeter element in W is any element w =
sπ(1) · · · sπ(n) ∈ W with π ∈ Sn a permutation.

If the set S consist of two generators all Coxeter elements are either rotations or
translations.

Example 1.7. (a) The reflections (12), (23) form a standard minimal generating set
of the group S3. Thence both rotations (123) = (12)(23) and (321) = (23)(12) are
Coxeter elements in S3.

(b) Consider the infinite dihedral group D∞ with standard minimal generating set {s, t}
as above in Example 1.2(b). Then both translations st and ts are Coxeter elements
in D∞.

1.1. Reflection length
This subsection introduces reflections as another generating set of W. It then defines the
length and in particular reflection length of an element and finally reviews some facts
about reflection length in arbitrary Coxeter groups.

Definition 1.8 (Reflections). Given a Coxeter system (W,S), a reflection is any element
in W conjugate to an element in S. Let R denote the set of all reflections in W , that is

R = {wsw−1 | s ∈ S, w ∈ W }.

All generators s ∈ S of a Coxeter system (W,S) are reflections (by choosing w = 1).
Thus R is another generating set for its Coxeter group W . Note that W is infinite
whenever R is. The converse is also true by definition of R, as W acts by conjugation.

As R generates W every element w ∈ W can be written with reflections only. Asking
for the shortest such representation for a given w is then a natural consequence.

Definition 1.9 (Reflection length). Let G be a group with generating set S. Define the
length of an element g ∈ G with respect to S as

`S(g) := min{k | g = s1 · · · sk with all si ∈ S}.

Note that by definition `S(1) = 0. In a Coxeter group with reflections R the length `R is
called reflection length.

In other words, `R is the combinatorial distance to 1 in the Cayley graph Cay(W,R)
of W with respect to R.

Example 1.10. Consider the group

S3 = 〈(12), (23)〉 = {id, (12), (23), (13), (123), (321)}

from Example 1.2(c). Here, the set of reflections is R = {(12), (13), (23)} since

(13) = (12)(23)(12) = (23)(12)(23).

9



Thus, the element (13) has standard length `S((13)) = 3 and reflection length 1. Both
rotations (123) = (12)(23) and (321) = (23)(12) have reflection length two, because
they can be written with two reflections and are neither the identity nor in the set of
reflections.

One can also read these calculations from the Cayley graph shown in Figure 5.

Cay(S3,R)

1
(12) (23)

(321) (123)
(13)

Figure 5: The Cayley graph of S3 with respect to R (without edge labels).

Proposition 1.11 (Basic properties). Let W be a Coxeter group. Then for v, w ∈ W :

(a) `R(vw) = `R(v) + `R(w) mod 2 (parity restriction)
and in particular `R(rw) = `R(w)± 1 for all r ∈ R;

(b) `R(v)− `R(w) ≤ `R(vw) ≤ `R(v) + `R(w); (triangle inequality)

(c) `R(w) = `R(w
−1);

(d) `R(vw) = `R(wv).

Proof. For (a) consider the homomorphism ϕ from W onto Z/2Z sending each reflection
to the non-identity element. As reflection length is invariant under conjugation ϕ sends w
to the identity element if and only if `R(w) = 0 mod 2. Thus the statement (a) follows
because ϕ is a homomorphism.

Both (b) and (c) are based on the fact that `R is the combinatorial distance in the
Cayley graph of W with generating set R.

(d) holds as `R is constant on conjugacy classes since R =
⋃

w∈W wSw−1 and thus
`R(vw) = `R(wvww

−1) = `R(wv).

Definition 1.12 (Reflection factorisation). Let W be a Coxeter group and w ∈ W . The
representation w = r1 · · · rn is called reflection factorisation if all ri are reflections. It is
a minimal length factorisation of w if in addition n = `R(w).

Example 1.13 (Continuing Example 1.10). The rotation (123) has reflection factorisa-
tions (123) = (12)(23) and (123) = (23)(12)(23)(12). Only the first is a minimal length
factorisation as `R((123)) = 2.
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There are many reflection factorisations for a given w ∈ W . Some of them can be
rewritten into others.

Lemma 1.14 (Rewriting reflection factorisations [MP11, Lem. 3.5]). Let w = r1 · · · rl
be a reflection factorisation of an element w of a Coxeter group. For any selection
1 ≤ i1 < i2 < · · · < im ≤ l of positions, there is a length-l reflection factorisation of w
whose first m reflections are ri1ri2 · · · rim and another length-l reflection factorisation of
w where these are the last m reflections.

Remark 1.15 (Hurwitz moves). The proof on this lemma uses the so called Hurwitz moves.
Those are given by replacing the reflection product rs by s(srs) or (rsr)r thereby moving
s further to the beginning or r further to the end while the reflection length remains
invariant.

It is known that the reflection length is unbounded whenever W is neither spherical
(for a definition see Section 2) or affine (see Section 3)[Dus12]. This thesis focusses on
the affine case which is closely related to the spherical one.

There are also results in arbitrary Coxeter groups, like the following.

Theorem 1.16 ([Dye01, Thm. 1.1]). Let (W,S) be a Coxeter system and w ∈ W . For
any expression w = s1 · · · sn with si ∈ S for all i and `S(w) = n one has

`R(w) = min
p

{1 = s1 · · · ŝi1 · · · ŝip · · · sn with 1 ≤ i1 ≤ · · · ≤ ip}

where a hat in this formula indicates that the respective generator is omitted.

1.2. Irreducibility
By taking free or direct product one can obtain new Coxeter groups. Conversely, any
Coxeter group can be decomposed as the direct product of so called irreducible Coxeter
groups. This section addresses these concepts.

Example 1.17. Consider the product of the infinite dihedral group with itself W =
D∞ ×D∞. It has the following Coxeter matrix and Coxeter graph.

MW =


1 ∞ 2 2
∞ 1 2 2
2 2 1 ∞
2 2 ∞ 1

 and
ΓW ∞

∞

W acts on R2 and tessellates the plane with rectangles that are in bijection with W ’s
elements.

Definition 1.18. A Coxeter group W is called irreducible if its Coxeter graph is connec-
ted, that is for each two vertices v, u of ΓW exists a path in ΓW with starting at v and
ending at u. Otherwise W is said to be reducible.

11



s t

s′

t′

Figure 6: The group D∞ ×D∞.

Proposition 1.19 ([Hum90, Section 6.1]). Let W be a Coxeter group. There are
irreducible Coxeter groups W1, . . . ,Wr such that W = W1 × · · · ×Wr.

Example 1.20. The group D∞ ×D∞ is reducible and S3 is irreducible.

Proposition 1.21 ([MP11, Prop. 1.2]). Let W be a reducible Coxeter group. Then the
reflection length of w ∈ W is the sum of the reflection lengths of its factors.

Thus it suffices to study the reflection length in irreducible Coxeter groups.
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2. Root systems and spherical Coxeter groups
In this section root systems are defined which give rise to spherical Coxeter groups.
As their name suggests they are a special case of Coxeter groups. Also, root systems
and spherical Coxeter groups are closely related to affine Coxeter groups which will be
examined in Section 3. Thus in this section the interaction between a root system and
its spherical Coxeter group is studied.

The sections starts with the definitions of a root system, the associate coroot system
and some basic properties. Then bases are considered as generating sets and positivity
and height of roots are defined. In the next subsection reducibility of root systems is
considered and special kinds of subsystems and subgroups are studied. The last subsection
gives an overview about reflection length in spherical Coxeter groups.

Throughout this section consider examples in dimension one and two. Those will play
a prominent role in Section 4 when proving Theorem B.

2.1. Roots and coroots
This subsection starts with the fundamental notions of roots, spherical Coxeter groups
and coroots.

Definition 2.1 (Root systems and spherical Coxeter groups). A subset Φ of a finite-
dimensional real vector space V is called an root system in V if the following properties
are satisfied:

(R1) Φ is finite, 0 6∈ Φ and 〈Φ〉R = V ;

(R2) if c ∈ R is such that α, cα ∈ Φ, then c = ±1;

(R3) for each α ∈ Φ there exists a reflection sα ∈ GL(V ) along α stabilising Φ;

(R4) for α, β ∈ Φ, sα.β − β is an integral multiple of α (crystallographic condition).

Then, the elements of Φ are called roots and dimension of V is called the rank of Φ. The
group W0 = W0(Φ) := 〈 sα | α ∈ Φ 〉 is called the spherical Coxeter group of Φ. In other
contexts, W0 is also referred to as Weyl group of Φ.

Example 2.2. (a) There is only one rank-one root system {α,−α} with α ∈ R1 (up to
rescaling), therefore denote it with Φ1. Its spherical Coxeter group is the Coxeter
group Z/2Z.

(b) The root system ΦA = {±α,±β,±γ} ⊆ R2 with all roots of equal length as shown
in Figure 7 has spherical Coxeter group D3 = S3.

(c) Roots can also have different length as in the root system ΦB = {±α,±β,±γ,±δ} ⊆
R2 also drawn below. Its spherical Coxeter group is the Coxeter group D4.

(d) There is another interesting two-dimensional root system denoted with ΦG consisting
of the roots {±α,±β,±γ,±δ,±ε,±ζ}. It also has different root lengths. Its spherical
Coxeter group is D6 and it is illustrated below as well.
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α

−β−γ

−α

β γ γ

−α

−δ −γ −β

α

β δ

α

−β
−γ

−δ

−ε
−ζ

−α

β
γ

δ

ε
ζ

sα
sβsγ

(a)

sαsδ

sγ

sβ

(b)

sα
sγsε

(c)

Figure 7: The root systems ΦA (a), ΦB (b) and ΦG (c) are reflection groups of an
equilateral triangle, a square and a hexagon, respectively.

Remark 2.3 (Types of root systems). The names ΦA,ΦB and ΦG above are chosen because
the respective root system ΦX is said to be of type X2. The index 2 indicates the rank of
the root system. This is needed because root systems in other dimensions may have the
same kind of type. For example Φ1 is of type A1 and has rank one. There are only four
types of root systems of rank two, namely A1 ×A1, A2, B2 and G2 [MT11, Prop. A.17].

Spherical Coxeter groups are indeed Coxeter groups (as its generators have order two).
The converse is not true in general, for example D5 is a non-spherical Coxeter group. It
is a Coxeter group acting on R2 but does not appear as the spherical Coxeter group of a
root system of type X2, X = A,B,C or A1 ×A1.

The interaction between a root system and its spherical Coxeter group is very beautiful.
The reflections of W0 in the sense of Definition 1.8 are precisely the elements sα for
α ∈ Φ. Also, the following is true:

Proposition 2.4 ([MT11, Lem. A.4]). Let Φ be a root system with spherical Coxeter
group W0. Then for all α ∈ Φ and all u ∈ W0 it is

usαu
−1 = su.α.

Let Φ be a root system of V . Assume V is equipped with an W0-invariant inner
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product (·, ·). This exists since W0 is finite and stabilises the finite set Φ generating V .
With V an inner product space, we can speak of lengths of and angles between vectors.

Proposition 2.5. Let s = sα ∈ W0 be a generating reflection. Then for any v ∈ V

sα.v = v − 2
(v, α)

(α, α)
α.

Proof. [MT11, Prop. A.1] Denote the eigenspace of s for the eigenvalue 1 with H ⊂ V ,
that is H is the fixed space of s. As (·, ·) is invariant under s this yields for any v ∈ H
that (v, α) = (sα.v, sα.α) = (v,−α). Hence (v, α) = 0 holds for any v ∈ H. With
V = H ⊕ 〈α〉R and s.α = −α = α− 2 (α,α)

(α,α)α this gives the claimed statement.

Therefore sα.v can be expressed with v and α only, given the inner product on V . This
motivates the following. Identify V with its dual space V ∗ = Hom(V,R) via v 7→ (·, v)
where (·, v) : V → R, u 7→ (u, v). Further, put α∨ := 2α/(α, α). Then

sα.v = v − 2
(v, α)

(α, α)
α = v − (v, α∨)α = v − α∨(v)α.

Definition 2.6 (Coroot system). Let Φ be a root system. Define the coroot system of Φ
as the set Φ∨ := {α∨ | α ∈ Φ}.

Note that Φ∨ is indeed a root system.

Example 2.7. The coroot system Φ∨
A of ΦA is the same as ΦA up to rescaling all roots

with the same factor.
In ΦB and ΦG there are short and long roots. As a coroot α∨ is a scaled α by 2/(α, α)

the long roots give short coroots and conversely the short roots give long coroots. This
correlation is illustrated in Figure 8.

γ

−α

−δ −γ −β

α

β δ

(a)

γ∨

−α∨

−δ∨

−γ∨

−β∨

α∨

β∨
δ∨

(b)

Figure 8: The root system ΦB (a) with its coroot system Φ∨
B (b).
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Definition 2.8 ((Co-)root lattices). Let Φ be a root system. The Z-span L(Φ) = 〈Φ〉Z
of Φ is called root lattice. The coroot lattice of Φ∨ is defined analogously.

Note that both the root and coroot lattice of Φ are isomorphic to Zn where n is the
rank of Φ.

Roots, coroots and the coroot lattice play an important roll also in the structure of
affine Coxeter groups. For details see Section 3.2.

2.2. Bases, positive systems and height
Here, the term base is introduced as a generating system for a root system. Then, positive
systems and the height of a root are defined. Finally, the highest root of a root system is
introduced.

Definition 2.9 (Bases and positive systems). A subset ∆ ⊂ Φ is called a base of Φ if it
is vector space basis of V and any β ∈ Φ is a linear combination β =

∑
α∈∆ cαα with

either all cα ≥ 0 or all cα ≤ 0. For a given base of Φ define the positive system Φ+ as
the collection of the roots with all cα ≥ 0. A root in Φ+ is a positive root.

It can be shown that the coefficients cα are integrals [MT11, Cor. A.12].

Example 2.10. {α, β} ⊂ Φi is a base of Φi for i = A,B,G, compare Figure 9.

α

−β−α− β

−α

β α+ β

(a)

α+ β

−α

−2α− β −α− β −β

α

β 2α+ β

(b)

α

−β
−α− β

−3α− 2β

−2α− β
−3α− β

−α

β
α+ β

3α+ 2β

2α+ β
3α+ β

(c)

Figure 9: Bases of the root systems ΦA (a), ΦB (b) and ΦG (c).

In the running examples the spherical Coxeter groups W0(ΦA) = S3, W0(ΦB) = D4

and W0(ΦG) = D6 are generated by the simple reflections sα with α ∈ ∆.
This concept is true in general, that is if ∆ is a base, then W0 = 〈 sα | α ∈ ∆ 〉.

Furthermore, for every α ∈ ϕ there is u ∈ W0 such that u.α ∈ ∆. Also, any two bases of
a root system Φ are conjugate under W0 [MT11, Prop. A.9 and Prop. A.11].

Next, we shortly considers the height of a root.
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Definition 2.11 (Height and the highest root). Let ∆ be a base of the root system Φ. The
height of a root β =

∑
α∈∆ cαα ∈ Φ (with respect to ∆) is defined as ht(β) :=

∑
α∈∆ cα.

There is a unique root α0 ∈ Φ with largest height [MT11, Prop. B.5] which is called
highest root.

In an indecomposable root system, the coefficients cα of α0 =
∑

α∈∆ cαα can be found
in [MT11, Table B.1].

Example 2.12. The highest roots in Φi, i = A,B,G with respect to {α, β} are α+ β ∈
ΦA, 2α+ β ∈ ΦB and 3α+ 2β ∈ ΦG, respectively. They are shown in Figure 10.

α

β α+ β

(a)

α+ β

α

β 2α+ β

(b)

α

β
α+ β

3α+ 2β

2α+ β
3α+ β

(c)

Figure 10: The highest roots of ΦA (a), ΦB (b) and ΦG (c) with respect to their respective
base {α, β}.

Note that in general (α0)
∨ 6= (α∨)0. That is, the coroot (α0)

∨ of highest root α0 of a
root system Φ is not necessarily the highest root (α∨)0 in the coroot system Φ∨. Though
the set of coefficients cα ∈ Z6=0 of α0 and (α∨)0 are the same since coroot systems always
have the same type as their associate root system.
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2.3. Decomposition and subsystems
With the notion of a base as generating system for a root system new root systems can
be build from the known ones. In other words, a root system may be decomposed into
smaller disjoint root systems. This section formalises those ideas.

Definition 2.13. A non-empty root system Φ with base ∆ is called decomposable if a
non-trivial partition ∆ = ∆1 t∆2 exists such that (α1, α2) = 0 for all αi ∈ ∆i, i = 1, 2;
if no such decomposition exists Φ is said to be indecomposable.

Example 2.14. The root system ΦB is indecomposable. It has two decomposable
subsystems with bases {α, α+ β} and {β, 2α+ β} which are shown in Figure 11.

α

β 2α+ β

(a)

α

α+ β

(b)

2α+ ββ

(c)

Figure 11: The indecomposable root system ΦB (a) with two decomposable subsystems
in (b) and (c).

Proposition 2.15 ([MT11, Cor. A.16]). Any root system Φ can be decomposed uniquely
(up to reordering) into a disjoint orthogonal union Φ = Φ1 t · · · t Φr of indecomposable
root systems Φi, and then W0(Φ) ∼= W0(Φ1)× · · · ×W0(Φr).

The Φi are called indecomposable components of Φ. A root system Φ ⊂ V is in-
decomposable if and only if its spherical Coxeter group acts irreducibly on V [MT11,
Prop. A.16]. Therefore Φ is indecomposable if and only if W0 is irreducible. Hence a
classification of indecomposable root systems also classifies irreducible spherical Coxeter
groups and vice versa. Such a classification can be found in [Bou02, Plates I to IX].

Proposition 2.16 ([MT11, Cor. A.18 and Lem. B.20]). Let Φ be indecomposable. Then:

(a) There are at most two different root length in Φ. Call the longer ones long roots and
the shorter ones short roots.

(b) All roots of Φ of the same length are conjugate under W0.

(c) If Φ contains roots of two different lengths then Φ is generated by its short roots, that
is, {α |α is a short root }Z ∩ Φ = Φ.

A root system can also have other subsystems than indecomposable components. Those
are again in one-to-one correspondence to subgroups which are spherical Coxeter groups.
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Definition 2.17 (Parabolic subgroups). Let ∆ be a base of Φ and S = { sα | α ∈ ∆} the
simple reflections of W0. For a subset J ⊆ S call W0,J := 〈 s ∈ J 〉 a standard parabolic
subgroup of W0. It is again a spherical Coxeter group with base ∆J := {α ∈ ∆ | sα ∈ J }
and root system ΦJ := ∆JZ ∩ Φ [MT11, Prop. A.25].

Any conjugate of a standard parabolic subgroup is called parabolic subgroup of W0.

Example 2.18. Consider D4 with root system ΦB and base {α, β}. Its simple reflections
are {sα, sβ}. The subgroup 〈sβ〉 is a standard parabolic subgroup with root system
{±β} of type A1. Its conjugate 〈s2α+β〉 is just a parabolic subgroup of type A1. Both
associate subsystems of ΦB are illustrated in Figure 12.

α

β

(a)

β

(b)

2α+ β

(c)

Figure 12: The root system ΦB (a) with the root systems of a standard (b) and non-
standard (c) parabolic subgroup of the spherical Coxeter group D4.

Definition 2.19 (Closed subsystems). Let Φ be a root system. A subset Ψ ⊆ Φ is called
closed if for all α, β ∈ Φ

(C1) sα.β ∈ Ψ and

(C2) if α+ β ∈ Φ then also α+ β ∈ Ψ.

Closed subsets are automatically subsystems [MT11, Prop. B.14].

Example 2.20 (Continuing Example 2.14). The decomposable subsystem {±β, ±(2α+
β) } is closed, but {±α, ±(α+β) } is not because it does not include α+(α+β) = 2α+β.

There exists a explicit classification of maximal closed subsystems of an indecomposable
root system.

Theorem 2.21 (Borel-de Siebenthal [MT11, Thm. B.18]). Let Φ be an indecomposable
root system with base ∆ = {α1, . . . , αn} and highest root α0 =

∑n
i=1 ciαi with respect to

∆. Then the maximal closed subsystems of Φ up to conjugation are those with bases:

(1) ∆ \ {αi} for 1 ≤ i ≤ n with ci = 1 and

(2) ∆ \ {ai} ∪ {α0} for 1 ≤ i ≤ n with ci a prime.
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Note that the subsystems in Theorem 2.21(1) are of rank n− 1 where those in (2) have
rank n, that is, the same rank as Φ. The coefficients of the highest root in indecomposable
root systems of arbitrary rank can be found in [MT11, Table B.1]. Therefore the maximal
closed subsystems are easily obtained with this theorem.

Example 2.22 (Continuing Example 2.20). In ΦB the highest root with respect to
the base {α, β} is 2α+ β. Thus, by Theorem 2.21 {±β, ±(2α+ β) } is the only closed
subsystem of rank two.

For other classifications of non-maximal and/or non-closed subsystems see [MT11,
Appendices A and B].

2.4. Reflection length in spherical Coxeter groups
This section considers reflection length in the case of spherical Coxeter groups. A few
definitions are given which are later generalised for affine Coxeter groups in Section 3.

Theorem 2.23 ([Car70, Lem. 2]). Let (W0, S) be a spherical Coxeter system and u ∈ W0.
Then a reflection factorisation u = rα1 , . . . , rαl

is a minimal length factorisation and
`R(u) = l if and only if α1, . . . , αl are linearly independent.

In particular, `R is bounded by the rank of W0.

Remark 2.24 (Reflection length in rank two). Thus for a given spherical Coxeter group
W0 of rank two the reflection length is bounded by 2. Let u ∈ W0 with reflection
factorisation u = r1 · · · rm. If u is the identity it has reflection length 0. Because of the
parity restriction Proposition 1.11(a) it is `R(u) = 1 if and only if m is odd and `R(u) = 2
if and only if m is even and u 6= id.

Theorem 2.23 can be reformulated by introducing the dimension of an element which
uses the notion of a move-set.

Definition 2.25 (Fixed space and move-set [LMPS19, Def. 1.7]). Let u be an orthogonal
transformation of V . Define the fixed space Fix(u) as the set of vectors λ ∈ V with
u(λ) = λ. The move-set Mov(u) is the set of vectors µ ∈ V for which there is λ ∈ V
such that u(λ) = µ+ λ.

In other words, Fix(u) is the kernel Ker(u− 1) and Mov(u) is the image Im(u− 1).
Since reflections are orthogonal transformations and the latter are closed under com-

position, every element of a spherical Coxeter group is a orthogonal transformation. Thus
their move-set and fixed space ar orthogonal complements in V .

Example 2.26. Consider the reflection (23) ∈ S3 acting on the real vector space R2 by
fixing the origin and mapping ε1 to −ε1. Its move-set is given by Mov((23)) = 〈 ε1 〉R
and its fixed space is Fix((23)) = 〈 ε2 〉R.

The move-set of the rotation (123) ∈ S3 is all R2 and its fixed space consist of the
origin only. They both move-sets and fixed spaces are illustrated in Figure 13.
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(23)

Mov((23))

Fix((23))

Mov((123))(123)

Fix((123))

Figure 13: The fixed space and move-set of (23), (123) ∈ S3.

Definition 2.27 (Dimension of an element). Let W0 be a spherical Coxeter group. The
dimension of u ∈ W0 is defined as dim(u) := dim(Mov(u)).

With this notion we can reformulate:

Theorem 2.28 (Alternative version of Theorem 2.23). Let W0 be a spherical Coxeter
group and u ∈ W0. Then `R(u) = dim(u).

This version is not only shorter but also looks more like Theorem 3.32 we will later see
in the affine case.
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3. Affine Coxeter groups
Affine Coxeter groups are Coxeter groups acting on Euclidean spaces rather than Euclidean
vector spaces. They are closely related to root systems and spherical Coxeter groups. In
this section they and related notions are defined and basic properties studied. The last
Section 3.4 reviews some results about reflection length in affine Coxeter groups.

This section is completely based on [LMPS19, Sections 1.3 to 1.5].

3.1. Points, vectors and affine hyperplanes
In this subsection affine Coxeter groups are defined and consider their connection with
spherical Coxeter groups and root systems. Then, the notion of move-sets and fixed
spaces is generalised to the affine case.

When doing linear algebra fixing a specific coordinate system can disguise an underlying
geometric structure. In the same way working in an affine Coxeter group with a specific
choice of origin can have an disguising effect. To take this into account in the following
is distinguished between points and vectors as in [BM15].

Definition 3.1 (Euclidean space). Let V be an Euclidean vector space. A Euclidean
space is a set E with a unique transitive V-action, that is, for all x, y ∈ E there exists
λ ∈ V sending x to y. In this case write λ+ x = y.

The core idea of E is that it has no well-defined origin, like V . This is also expressed
in the terminology to call the elements of E points and denote them with Roman letters,
such as x and y, whereas the elements of V are called vectors and denoted with Greek
letters, such as λ and µ.

Example 3.2 (Euclidean space vs. Euclidean vector space). The set E := R is a
Euclidean space with the V -action from V := R (as vector space) given by standard
addition. An illustration is given in Figure 14.

· · · · · ·
(a)

· · · · · ·
0

−4.7 −2 −2/3 17/7 4−π
√
2

(b)

Figure 14: Illustration of R as Euclidean space (a) and R as Euclidean vector space (b).

Note that a Euclidean space E can be identified with its Euclidean vector space V by
selecting an origin x ∈ E and sending each vector λ to the point λ+x. This identification
is used to define affine Coxeter groups.
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Definition 3.3 (Affine Coxeter group). Let E be a Euclidean space whose associated
Euclidean vector space V is equipped with a root system Φ. Construct an affine Coxeter
group W from Φ as follows: Fix a point x ∈ E to temporarily identify E with V . Thereby
the inner product (·, ·) on V is induced on E, treating x as the origin. For each root
α ∈ Φ and j ∈ Z denote with Hα,j the (affine) hyperplane in E of points v ∈ E such that
(v, α) = j. The unique non-trivial isometry of E that fixes Hα,j pointwise is a reflection
denoted with rα,j . The set R = {rα,j | α ∈ Φ, j ∈ Z} then generates the affine Coxeter
group W and R are its reflections in the sense of Definition 1.8.

Analogous to the spherical case, the rank of W is the dimension of V .

A minimal generating set S can be obtained from R by restricting to those reflections
reflecting about the facets of a certain polytope in E.

Example 3.4 (Type affine B2). The group WB from Example 1.2(d) is an affine Coxeter
group. It is of type affine B2 as its root system is of type B2. The corresponding
hyperplane arrangement is shown below in Figure 15b.

(a) (b)

(c)

Figure 15: Affine hyperplanes for groups of type affine A2 (a), B2 (b) and G2 (c).

The connection of affine Coxeter groups and root systems can be seen directly from
Definition 3.3. The connection with spherical Coxeter groups can be expressed as follows.

Definition 3.5 (Translations, quotients and subgroups). Given a root system Φ, the
affine Coxeter group W is closely related to the spherical Coxeter group W0. Sending
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the reflection rα,j in W to rα in W0 extends to a group homomorphism p : W � W0.
The kernel of p is a normal abelian subgroup T isomorphic to Zn whose elements are
called translations. Furthermore it is W0

∼= W/T .
Let x ∈ E be the point fixed in the construction of W (the ‘choice of origin’). Then the

map ι : W0 ↪→ W sending rα to rα,0 is a section of the projection p, identifying W0 with
the subgroup of W generated by all reflections fixing x. Thence W may be identified as
a semidirect product W ∼= T oW0 and, once such an identification is chosen, an element
u ∈ W0 may be regarded as an element of W via ι.

Of course, such an identification of W0 with a subgroup of W is non-unique since any
conjugate by elements of T yields another such subgroup.
Remark 3.6 (Geometric interpretation of W , W0 and p). Fix a root system Φ and consider
the affine Coxeter group W and the spherical Coxeter group W0 over Φ.

The spherical group W0 acts on the Euclidean vector space V and the reflection
hyperplanes of W0 divide V into cones. Every such cone can play the role of a fundamental
domain of the action of W0 on V . By choosing one fundamental cone c the elements of
W0 are in bijection with the cones. Here, the fundamental cone c corresponds to the
identity and any u ∈ W0 corresponds to image cone w.c of c under w. One such bijection
is indicated in green in Figure 16 for Φ the root system ΦB of type B2.

The boundary of V is a sphere S whose points are the parallelism classes of geodesic
rays in V . Each reflection hyperplane in V of a reflection in W0 corresponds to a reflection
hyperplane in the sphere S. One can think of such a reflection hyperplane in S as an
equator. These hyperplanes in S divide S into chambers, that is, a chamber is a maximal
connected component in the complement of the reflection hyperplanes in S. Each chamber
is also the parallelism class of a cone in V . Thereby the chambers are in bijection with
the elements in W0.

c

1s

tst

tssts

tststst

1s

tst

tssts

tststst

Figure 16: The elements of W0 of type B2 are in bijection with the cones which again
are in bijection with the chambers in the boundary of V .
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Now consider the affine group W . It acts on the Euclidean space E. The affine
reflection hyperplanes Hα,j divide E: An alcove A is (the closure of) a maximal connected
component in the complement of all reflection hyperplanes Hα,j in the Euclidean space
E. These are the small triangles in Figure 15 like the OliveGreen-coloured triangle
in Figure 17. Analogously to the spherical case, each such triangle can act as the
fundamental domain of the action of W on E. Each choice of a point x ∈ E as origin
and an fundamental alcove Ax having x as vertex determines a bijection between the
elements of W and all alcoves in E. Here, the fundamental alcove corresponds to the
identity in W and every w ∈ W corresponds to the alcove w.AX being the image of Ax

under w.

A y

p

1s

tst

tsC = sts
= p(A)

tststst

Figure 17: The elements of W of type affine B2 are in bijection with the alcoves in the
tessellated plane E. The projection p maps an alcove A to the chamber C in
the boundary of E that points ‘in the same direction’.

The boundary of E is also a sphere S whose points are again the parallelism classes
of geodesic rays. The tessellation of the the Euclidean space E induces a simplicial
structure on the sphere S. Here, a parallelism class of hyperplanes in E corresponds
to a reflection hyperplane in the sphere S. Again the chambers of S are the maximal
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connected components in the complement of the hyperplanes in S. Here, these are
the parallelism classes of simplicial cones in E. Namely, for any of the Red vertices in
Figure 17, say y, the complement of all affine hyperplanes going through y divides E into
simplicial cones. These are called Weyl cones based at y. One of them is indicated in
grey. The parallelism classes of these Weyl cones are in bijection with the chambers in S.

A bijection between the elements of W0 and the chambers of S is obtained from the
action of W as follows. Each element w ∈ W is an affine motion of E mapping parallel
rays to parallel rays. As a result it induces an isometry on (the tessellation of) S where
translations induce the identity on S. One might want the bijection between W0 and the
chambers of S to be compatible with these induced isometries of W on S. This can be
achieved by mapping the identity in W0 to the parallelism class of the unique Weyl cone
based at x containing the alcove Ax.

From this perspective, the projection p : W � W0 can be seen geometrically as the
map sending an element w ∈ W to the induced isometry on S. Using the geometric terms
defined above, this is to map an alcove A with vertex y to the chamber C at infinity that
is the parallelism class of the cone based at y which contains A. This is indicated by the
dotted arrow depicted in Figure 17. One can think of this as ‘walking from y to infinity
in the direction of A’.

More about the correlation between alcoves and chambers can be found in [AP15].
Next, we generalise the notion of move-sets and fixed spaces we have already seen in

the spherical setting (compare Definition 2.25).

Definition 3.7 (Move-set and fixed space). Let w be an Euclidean isometry. The motion
of a point x ∈ E under w is a vector λ ∈ V such that w(x) = λ+ x. The collection of
the motions of all points x ∈ E forms the move-set Mov(w) of w. The fixed space of w
is the set of all points x ∈ E with w(x) = x, in other words, Fix(w) consists of all points
in E whose motion is the zero-vector. In symbols:

Mov(w) = {λ ∈ V | w(x) = λ+ x for some x ∈ E}
Fix(w) = {x ∈ E | w(x) = x}

The move-set is an (affine) subspace of V [BM15, Prop. 3.2]. If Fix(w) is non-empty it
is an affine subspace of E, that is, there exists an affine subspace U of V , such that the
U -action is transitive on Fix(w) and Fix(w) is closed under it.

Example 3.8 (Move-set and fixed space in type affine B2). To get a better understanding
of the notion of a move-set in the affine setting consider an element in a group of type
affine B2. Assume w = rst with r, s and t the reflections about the lines highlighted
in Figure 18 and suppose x, y and z are the labelled points. The points w(x), w(y) and
w(z) are also indicated.

First, make a (temporary) identification of E and R2. The standard basis vectors ε1
and ε2 of R2 are the vectors that send z to x and z to y, respectively. That is ε1 + z = x
and ε2 + z = y with the notation introduced in Definition 3.1 of an Euclidean space. By
abuse of notation write ε1 = x− z and ε2 = y − z.
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w(y)w(z)

w(x)

Figure 18: The action of w = rst in the affine group of type B2 on the points x, y, z in
the Euclidean plane E.

Having made this identification every point p in E ∼= R2 can be expressed as

p = a(x− z) + b(y − z) + z

for some a, b ∈ R. With this coordinate system rewrite

w(x) = 2(x− z) + 3(y − z) + z = 1(x− z) + 3(y − z) + x

w(y) = 3(x− z) + 2(y − z) + z = 3(x− z) + 1(y − z) + y

w(z) = 2(x− z) + 2(y − z) + z

Now it can be see that the motion of x is the vector (1, 3), that of y is 3, 1 and the
motion of z is (2, 2). To compute the whole move-set, we do this again for an arbitrary
p ∈ E using linearity:

w(p) = aw(x− z) + bw(y − z) + w(z)

= a(w(x)− w(z)) + b(w(y)− w(z)) + w(z)

= a(y − z) + b(x− z) + 2(x− z) + 2(y − z) + z

= (b+ 2)(x− z) + (a+ 2)(y − z) + z

= (b− a+ 2)(x− z) + (a− b+ 2)(y − z) + p

and thus the motion of p is λ = (2, 2) + (a − b)(−1, 1) and hence the move-set of w is
given by the affine line

Mov(w) = (2, 2) + (−1, 1)R.

The fixed space of w is empty because 0 is not in Mov(w) and thence no point has trivial
motion under w.
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3.2. Elliptics and translations
This section considers special kinds of elements in affine Coxeter groups, namely elliptics
and translations and records some of their properties.

Let r be a reflection whose fixed space is the hyperplane H. Then the motion of any
point under r is in a direction orthogonal to H, and the move-set of r is the line through
the origin of V in this direction.

Definition 3.9 (Roots of a reflection). For a reflection r a vector α ∈ V is called a root
of r if Mov(r) = 〈α〉R.

For an affine Coxeter group the fixed spaces of the reflections come in a finite number of
parallel families. For each such family, those fixed spaces are equally spaced hyperplanes
and one can chose a common root α such that its length encodes additional information
like the distance between adjacent parallel hyperplanes. Through normalising all roots
this way a root system Φ in V is obtained, in the sense of Definition 2.1.

Recall that each root system comes with a coroot system Φ∨ and a (co-)root lattice
L(Φ(∨)) which are both isomorphic to Zn (for details see Definition 2.6 and Definition 2.8).

α+ β

−α

−2α− β −α− β −β

α

β 2α+ β

x

α∨ + 2β∨

−α∨

−α∨ − β∨

−α∨ − 2β∨

−β∨

α∨

β∨ α∨ + β∨

y

Figure 19: The action of roots and coroots of type B2 on the points x and y in the
Euclidean plane E.

Example 3.10 (Roots and coroots in type affine B2). Consider the hyperplane ar-
rangement for type affine B2 illustrated in Figure 19. The affine hyperplanes lie in the
Euclidean plane E, that is, the Euclidean space isomorphic to the set R2.

The root system ΦB is a subset of the Euclidean vector space V = R2 and thus acts
on E. The action of all roots on the point x is displayed in Red in the figure. Likewise
the action of all coroots in Φ∨

B on the point y is highlighted in Blue.
It can be seen that the distance between two adjacent parallel affine hyperplanes is

half the length of the perpendicular coroots.
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Moving on to elliptics and translations.

Definition 3.11 (Elliptic part and elliptic elements). Let W be an affine Coxeter group
and w ∈ W . The elliptic part we of w is its image p(w) under the projection p : W � W0.
Also, w is said to be elliptic if its fixed space is non-empty.

Note that the elliptic part of an element in W is an element of W0 and thus acts
naturally on V rather than on E. A characterisation and other nice properties of elliptic
elements are given at the end of this subsection, after some more definitions and examples.

Definition 3.12 (Translations). For every vector λ ∈ V there exists an Euclidean
isometry tλ on E called translation which sends each point x ∈ E to λ+ x.

Let W be an affine Coxeter group acting on E with root system Φ ⊂ V . Then
w ∈ W is a translation in the sense of this definition if and only if it is in the kernel
T of the projection p : W � W0. Thus the notions of a translation in Definition 3.12
and Definition 3.5 are equivalent. Furthermore, the set of vectors in V defining the
translations in T is identical to the coroot lattice L(Φ∨).

Example 3.13 (Translations and elliptics in type affine B2). Consider W of type affine
B2. Let r := sβ,m ∈ W for some m ∈ Z as illustrated in Figure 20. Then r is a reflection
and fixes Hβ,m point-wise. Thus its fixed space is non-empty and elliptic. Its elliptic part
is p(sβ,m) = sβ ∈ W0 and thus r is not a translation.

Next, consider tα∨ = sα,n−1sα,n ∈ W for some n ∈ Z. It is also illustrated in Figure 20.
tα∨ lies in the kernel T and thus is a translation, non-elliptic and has trivial elliptic part.

s r

y

x

sα,n−1 sα,n sα,m

tα∨

Figure 20: Illustration of Examples 3.13 and 3.16.

Definition 3.14 (Translation-elliptic factorisations). Let W be an affine Coxeter group
and w ∈ W . A translation-elliptic factorisation of w is any expression w = tλu as the
product of a translation tλ ∈ W with λ ∈ V and an elliptic element u ∈ W . Given such a
factorisation, tλ is referred to as the translation part and u is called the elliptic part of w.
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For any translation-elliptic factorisation w = tλu the translation part tλ is in the kernel
T of p (as it is a translation) and thus we = ue.

For most elements many possible translation-elliptic factorisations exist. Once an
identification W = T oW0 is chosen, there is a unique inclusion ι : W0 ↪→ W . Through
ι the elements of W0 can be regarded as elements of W . Some of those many possible
translation-elliptic factorisations encode this added structure and are therefore called
normal forms.

Definition 3.15 (Normal forms). Let W be an affine Coxeter group and w ∈ W . For
a given an identification W = T oW0 call the unique translation-elliptic factorisation
w = tλu with u ∈ W0 and tλ ∈ T a normal form of w.

In general, not all translation-elliptic factorisations tλu are also normal forms, in other
words, there exists no identification W = T o W0 such that u ∈ W0. As any such
identification comes with a choice of origin x ∈ E which is fixed by ι(W0) the element u
needs to stabilise such a possible origin x. In general, not all nodes in the hyperplane
arrangement can be an origin x, or in other words, can be fixed by ι(W0). Consider an
example.

Example 3.16 (Translations-elliptic factorizations and normal forms in type affine
B2). Again, put r = sβ,m as in Example 3.13. Then the product tα∨r is a translation-
elliptic factorisation whereas rtα∨ is not. Observe that both tα∨sα,m and sα,mtα∨ are
translation-elliptic factorisations as both compositions are reflections and hence elliptic.

All three of these translation-elliptic factorisations can be realised by choosing x ∈ E
as origin where x is the point indicated in Figure 20.

Assume s is the reflection denoted in the figure as well. The point y is stabilised
by both r and s. Thus their product rs is elliptic and tα∨rs is a translation-elliptic
factorisation. But y can not be chosen as origin because there is no reflection sα,j
stabilising y. Therefore tα∨rs is no normal form.

Until the end of the subsection consider elliptic elements. Start with a characterisation.

Proposition 3.17 (Recognising elliptics [LMPS19, Lem. 1.18 and Prop. 1.24]). Let
w ∈ W be any element of an affine Coxeter group with translation elliptic factorisation
w = tλu. Then the following are equivalent.

(a) w is elliptic

(b) Fix(w) is non-empty;

(c) w is of finite order;

(d) Mov(w) ⊂ V is a linear subspace;

(e) Mov(w) contains the origin;

(f) λ ∈ Mov(u);

(g) Mov(w) = Mov(u) and

(h) Mov(w) = Mov(we).

There is also a statement connecting the reflection length of an elliptic element with
the roots involved in a reflection factorisation of w. Observe the resemblance with
Theorem 2.23 in the spherical setting.
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Proposition 3.18 (Minimum elliptic factorisations). Let W be an affine Coxeter group
and w = r1 · · · rk a product of reflections. Let Hi be the affine hyperplane about which ri
reflects and assume αi is the root orthogonal to Hi.

If w is elliptic and `R(w) = k then the roots α1, . . . , αk are linearly independent.
Conversely, if the roots α1, . . . , αk are linearly independent then w is elliptic, `R(w) = k,
Fix(w) = H1 ∩ · · · ∩Hk and Mov(w) = 〈α1, . . . , αk〉R.

The proof of this proposition uses [BM15, Lemmas 3.6 and 6.4] which states these
facts in the more general setting of the full isometry group of the Euclidean space E
generated by all possible reflections.
Remark 3.19 (Maximal elliptics). Consider an affine Coxeter group W acting cocompactly
on an Euclidean space E. Let u be an elliptic element of reflection length n = dim(E)
(such as a Coxeter element of a maximal parabolic subgroup of W ). Then the move-set
of u is all of V by Proposition 3.18. Thus for any translation tλ ∈ T the element tλu
is again elliptic by the equivalence of (a) and (f) in Proposition 3.17. Particularly,
`R(tλu) = `R(u) = n for every tλ ∈ T .

3.3. Dimensions of an element
In this section the dimension of an element in an affine Coxeter group is introduced as a
generalisation of Definition 2.27 in the spherical case. Thereafter we define the terms of
elliptic and differential dimension.

Like in the spherical setting the dimension of an element is defined using move-sets.
Here, we need the notion of a root space and root dimension as well.

Definition 3.20 (Root spaces). Let V be a Euclidean vector space equipped with a root
system Φ. A subset U ⊆ V is called a root space if it is the span of the roots it contains,
in symbols U = 〈U ∩ Φ 〉R. The collection of all root spaces in V is called the root space
arrangement denoted with Arr(Φ).

Note that U ⊆ V is a root space if and only if it is a linear subspace spanned by a set
of roots or if U has a basis of roots. Therefore, Arr(Φ) is finite since Φ is.

Definition 3.21 (Root dimension). Assume V is a Euclidean vector space equipped
with a root system Φ and let A ⊆ V be an arbitrary subset. Define the root dimension
dimΦ(A) of A as the minimal dimension of a root space containing A, that is,

dimΦ(A) = min{dim(U) | A ⊆ U ∈ Arr(Φ)}.

For a vector λ ∈ V let dim(λ) := dim({λ}).

The root dimension is well-defined for any subset A ⊆ V because V is a root space
and thus the minimum is taken over a non-empty finite set.

Example 3.22 (Root spaces in dimension two). Consider the Euclidean vector space R2

equipped with a root system ΦA of type A2 illustrated in Figure 21. Then any line 〈α〉R
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with α ∈ Φ is a root space of root dimension 1. The line 〈2α+ β〉R illustrated in Blue is
not a root space since 2α+ β 6∈ ΦA and therefore has root dimension two. An affine line
A not containing the origin, for example the one indicated in Thistle in Figure 21, is not
a linear subspace and thus never a root space. Hence it is of root dimension two as well.

Any vector λ distinct from the origin does not give a root space {λ} since it is not a
linear subspace. Its root dimension is 1 or 2 depending on whether it lies in a root line
〈α〉R with α ∈ Φ or not.

A

〈α〉R

〈2α+ β〉R

α

β

λ

λ′

Figure 21: Root spaces and non-root spaces for the root system ΦA ⊂ R2, illustrating
Example 3.22.

Let w ∈ W be an element of an affine Coxeter group W . Then its move-set Mov(w) is
contained in an Euclidean vector space V which is equipped with the corresponding root
system Φ. Thus the root dimension of any move-set is defined.

Definition 3.23 (Dimension of an element). Let W be an affine Coxeter group. The
dimension of w ∈ W is defined as the root dimension of its move-set, that is,

dim(w) := dimΦ(Mov(w)).

Note that in the spherical setting the root dimension of a move-set coincides with its
standard dimension because move-sets are root spaces as a consequence of Proposition 3.18.
Thus Definition 2.27 is a special case of Definition 3.23.

Definition 3.24 (Elliptic and differential dimension). Let W be an affine Coxeter group
and p the projection onto W0. For w ∈ W call the dimension e(w) := dim(we) of its
elliptic part we = p(w) ∈ W0 the elliptic dimension of w.

Then define the differential dimension of w ∈ W as d(w) := dim(w)− dim(we).

Note that dim(w) = d(w)+e(w). With this the dimension of an element can be studied
through its elliptic and differential dimensions. These encode some structure of the group.
In particular, w ∈ W is a translation if and only if d(w) = 0 and it is elliptic if and only
if e(w) = 0) [LMPS19, Prop. 1.31]. Therefore it can be said, roughly speaking, that d(w)
measures how far w is from being a translation and e(w) measures how far w is from
being elliptic.

The reflection length of an element is closely related to its dimensions.
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Proposition 3.25 (Inequalities [LMPS19, Prop. 1.33]). Let W be an affine Coxeter
group and w ∈ W . Then `R(w) ≥ dim(w) ≥ e(w) = dim(we).

The proof of the latter proposition uses the following Lemma.

Lemma 3.26 (Separation [LMPS19, Lem. 1.32]). Let M and U be linear subspaces of
a vector space V and let λ ∈ V be a vector. Then M contains λ+ U if and only if M
contains both U and λ.

For elliptic elements it can be said even more:

Proposition 3.27 (Elliptic equalities [LMPS19, Prop. 1.34]). Let W be an affine Coxeter
group and w ∈ W elliptic. Then `R(w) = dim(w) = dim(we).

Example 3.28 (Euclidean plane). Consider affine Coxeter groups acting on the Euclidean
plane. Then there are five different types of move-sets.

At the start consider the elliptic elements: The identity has the origin as move-set, for a
reflection with root α ∈ Φ the move-set is the root line 〈α〉R and the move-set of any non-
trivial rotation is the whole plane V = R2. For these elements the differential dimension is
0 and the elliptic dimension and reflection length fulfil `R(w) = dim(w) = dim(we) = e(w)
and thus are equal to 0, 1 or 2, respectively.

For a non-trivial translation tλ the move-set consists of the single non-zero vector λ.
Here, the elliptic dimension is 0 and the differential dimension is either 1 (when λ lies in
a root line 〈α〉R) or 2 (in any other case). In both cases the reflection length is twice the
dimension [MP11, Prop. 4.3].

Finally, when w is a glide reflection it has reflection length 3 and its move-set is an
affine line not through the origin. Hence it has elliptic dimension 1 and dimension 2.
Therefore d(w) = 2− 1 = 1.

An overview of these calculations is given in Table 1.

w Mov(w) d(w) e(w) dim(w) `R(w)

identity the origin 0 0 0 0
reflection a root line 0 1 1 1
rotation the plane 0 2 2 2

translation an affine point 1 or 2 0 1 or 2 2 or 4

glide reflection an affine line 1 1 2 3

Table 1: Invariants of the five types of elements in affine Coxeter groups acting on the
Euclidean plane.

To finish this subsection two remarks are given on how to compute dimensions in
general. Let W be an affine Coxeter group and fix an identification W = T oW0. Assume
w ∈ W is given in normal form w = tλu with an elliptic element u ∈ W0 and translation
tλ ∈ T with a vector λ ∈ L(Φ∨) in the coroot lattice.

Computing the elliptic dimension e(w) of w is straight forward.
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Remark 3.29 (Computing elliptic dimension). By Definition 3.24 of the elliptic dimension
e(w) it suffices to compute the root dimension dimΦ of the move-set of its elliptic part
Mov(we). Since w = tλu is in normal form follows u = p(w) = p(w) = we where we
identify W0 with ι(W0). Then e(w) = dim(we) = dimΦ(Mov(we)) = dimΦ(Mov(u)) =
dim(Mov(u)) = `R(u).

Computing the differential dimension d(w) of w is more complicated. However, it can
be reduced to computing the dimension of a point in a simpler arrangement of subspaces
in a lower dimensional space. How much lower depends on the value of e(w).
Remark 3.30 (Computing differential dimension). By Definition 3.24 of the differential
dimension d(w) to compute it one needs to find the minimal dimension of a root space
containing Mov(w) and then subtract the elliptic dimension of this value.

As w = tλu it is Mov(w) = λ + U with U := Mov(u) = Mov(we). By Lemma 3.26
it suffices to consider root spaces containing both λ and U or equivalently, both λ and
λ+U . Thus consider the natural quotient q : V � V/U which is a linear transformation
with kernel U . Under this quotient q the coset λ+ U is sent to a point in V/U denoted
with λ/U and the root spaces in Arr(Φ) containing U are sent to subspaces in V/U we
denote with Arr(Φ/U).

Furthermore, let dimΦ/U (λ/U) denote the minimal dimension of a subspace in Arr(Φ/U)
containing the point λ/U . By going via q from V to V/U all dimensions have been reduced
by dim(U) = e(w). Thus dimΦ/U (λ/U) = d(w) is the wanted differential dimension of w.

3.4. Reflection length in affine Coxeter groups
This section reviews some results for reflection length in affine Coxeter groups.

First, observe that the reflection length in these groups is bounded and this bound is
sharp.

Theorem 3.31 (Optimal upper bound [MP11, Thm. B]). Let W be an affine Coxeter
group of rank n. Then every element of W has reflection length at most 2n and there are
elements in W with reflection length equal to 2n.

The elements of length 2n mentioned above are translations of dimension n [MP11,
Prop. 4.3]. For example the translation t3α∨+β∨ in a Coxeter group of type affine B2

with α, β ∈ Φ has reflection length 4.
There is also a recent result to compute the reflection length of an element with the

means of its elliptic and differential dimensions.

Theorem 3.32 (Computing reflection length [LMPS19, Thm. A]). Let W be an affine
Coxeter group and let p : W � W0 be the projection onto its associated spherical Coxeter
group. Then the reflection length of w ∈ W is

`R(w) = 2 · dim(w)− dim(p(w)) = 2d(w) + e(w).

In the same paper the authors show that for each element w ∈ W exist a translation-
elliptic factorisation of w such that the reflection length of w can be split as the sum of
the reflection lengths of its factors:
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Theorem 3.33 (Factorisation [LMPS19, Thm. B]). Let W be an affine Coxeter group and
w ∈ W . Then a translation-elliptic factorisation w = tλu exists such that `R(tλ) = 2d(w)
and `R(u) = e(w). In particular, `R(w) = `R(tλ) + `R(u) for this specific factorisation of
w.

Note that such a translation-elliptic factorisation as in Theorem 3.33 does not need to
be a normal form. In general, there are elements that do not allow a normal form with
these properties.

Example 3.34 (Normal forms are insufficient – Revisiting Example 3.16). Consider the
affine Coxeter group W of type affine B2. Let r and s be the two reflections indicated in
Figure 22. Then w = rs is translation-elliptic factorisation as in Theorem 3.33, that is,
`R(t0) = 0 = 2d(w) and `R(rs) = 2 = e(w). But rs is not a normal form for w (compare
Example 3.16).

Consider the structure of W in more detail. A standard generating set of W consist
of the elements rα,0, rβ,0 and r2α+β,1 which are also indicated in Figure 22. Hence rβ,0
and r2α+β,1 generate a maximal standard parabolic subgroup of W fixing y which is not
isomorphic to W0. Therefore the subgroup generated by r and s is a parabolic subgroup
of W since it is conjugate to this standard parabolic subgroup. It is not isomorphic to
W0 as well. Since it is generated by r and s the rotation rs is a Coxeter element in this
parabolic subgroup.

Observe that every Coxeter element in such an alternative maximal parabolic subgroup
of W that is not isomorphic to W0 does not allow a normal form with the properties in
Theorem 3.33.

s rr2α+β,1

rβ,0

rα,0

y y′x

Figure 22: The reflections s, r generate a parabolic subgroup that is conjugate to the
standard parabolic subgroup generated by rβ,0, r2α+β,1.

The scenario from the last Example 3.34 can appear in any affine Coxeter group
allowing a maximal parabolic subgroup that is not isomorphic to W0. Thus, in general,
Theorem 3.33 does not contribute to Conjecture A in a straight forward way.

In type affine An there are no maximal parabolic subgroups not isomorphic to W0.
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Corollary 3.35 (Affine symmetric normal form [LMPS19, Cor. 2.5]). Let W be an
affine symmetric group. For a given element w ∈ W there exists an identification of
W as a semidirect product W = T o W0 such that w has normal form w = tλu and
`R(w) = `R(tλ) + `R(u).

This corollary might contribute to a proof of Conjecture A for type affine An.
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4. Proof of main statements
This section provides the main results of this work, split up into four subsections.

The first three subsections combined prove Theorem B by considering all types of
irreducible Coxeter groups with rank smaller or equal to two. The first subsection gives
a proof for affine Coxeter groups of type affine A1 and A2, the second for type affine B2

and the third for type affine G2. The last subsection provides a proof for Theorem C,
that is, for one inequality of the formula in groups of arbitrary rank.

Start with a formal definition of the set Vλ. Recall that the dimension of a vector
λ ∈ V is the root dimension of {λ} (compare Definition 3.21).

Definition 4.1 (The set Vλ). Let W0 be a spherical Coxeter group over the root system
Φ. Let λ be a vector in the coroot lattice L(Φ∨) of dimension k. If λ can be written as
an integral combination of the coroots α∨

1 , . . . , α
∨
k ∈ Φ∨, that is,

λ =

k∑
i=1

ciα
∨
i where all ci ∈ Z6=0.

then denote with vλ = sα1 · · · sαk
the composition of all reflections associated to α1, . . . , αk.

The collection of all vλ obtained in this way is denoted with Vλ.

That is, if λ is of dimension 1 the set Vλ consists of one reflection only. For dim(λ) = 2
it is a subset of all rotations rs ∈ W with reflections r, s ∈ R. Note also that Vλ is closed
under inverses.

The next observation is a short lemma for all elements whose normal form has trivial
translation part.

Lemma 4.2 (Trivial translation parts). Let W = T oW0 be an affine Coxeter group
and w ∈ W with normal form w = tλu. If the translation part tλ is trivial one can write
the reflection length of w as

`R(w) = dim(λ) + min
v∈Vλ

`R(vu).

Proof. If tλ = 1 then dim(λ) = 0 and Vλ = {1}. Also w = u thus `R(w) = 0+`R(1u).

4.1. Proof for types affine A1 and affine A2

Here, a proof for the formula is given in affine Coxeter groups of type affine A1 and A2.
Beginning with type affine A1, in other words, W is an infinite dihedral group.

Proposition 4.3 (Type affine A1). Let W be an affine Coxeter group of type affine A1.
Assume W is identified as W = T oW0 with

T ∼= R and W0
∼= 〈s|s2〉.

Then the reflection length of w ∈ W with normal form w = tλu can be written as

`R(w) = dim(λ) + min
v∈Vλ

`R(vu).
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Proof. For λ = 0 the statement follows directly from Lemma 4.2.
Thus let λ 6= 0. Then λ = cα∨ for some c ∈ Z\{0} hence Vλ = {sα} and tλ = sα,nsα,m

for some n,m ∈ Z. If u = s then w = sα,nsα,msα,0 is a reflection and therefore
`R(x) = 1 = 1 + 0. If u = 1 then w is a translation and therefore `R(x) = 2 = 1 + 1.

Proposition 4.4 (Type affine A2). Let W be an affine Coxeter
group of type affine A2 with Φ∨

A ⊂ R2 the coroot system in Figure 23.
Denote s = sα, t = sβ and assume W is identified as W = T oW0

with
T ∼= R2 and W0

∼= 〈s, t | s2, t2, (st)3〉.

Then the reflection length of w ∈ W with normal form w = tλu can
be written as

`R(w) = dim(λ) + min
v∈Vλ

`R(vu).

α∨

β∨ α∨ + β∨

Figure 23: Φ∨
A.

1

r

s

rs

sr

srs

tα∨1tα∨s

tα∨rs

t−α∨r

t−α∨s

t−α∨rs

t2α∨ · ut−2α∨ · u

tβ∨ · u

t−β∨ · u

t2β∨ · u

t−2β∨ · u

tγ∨ · u

t−γ∨ · u

t2γ∨ · u

t−2γ∨ · u

tα∨+2γ∨ · u
=

t3α∨+2β∨ · u

t2β∨−γ∨ · u
=

t−2α∨+γ∨ · u

t−β∨−γ∨ · u
=

tα∨−sγ∨ · u

Figure 24: The action of W of type affine A2 on the Euclidean plane.

Remark 4.5 (Geometric notes on type affine A2). A group W of type affine A2 acts on
the Euclidean plane and tessellates it with equilateral triangles illustrated in Figure 24.
Those alcoves are in one-to-one correspondence with the elements of W .
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Via the identification W = T oW0 the elements of W0 can be regarded as element of
W , they are situated in the Yellow -coloured hexagon.

All other elements w ∈ W are non-trivial translates tλu of an element u ∈ W0.
The colour of w’s alcove indicates which coroots α∨

i can be used to decompose l as
l =

∑dim(λ)
i=1 α∨

i ci where all ci ∈ Z6=0. Elements with Blue-, MidnightBlue- or BlueViolet-
coloured alcoves are translates with λ of dimension 1, namely in directions α∨, β∨

and γ∨ := α∨ + β∨, respectively. Those elements with Thistle-coloured alcoves have
translation part with dim(λ) = 2 and thus λ can be expressed with any two distinct
positive roots.

Proof. For dim(λ) = 0 the formula holds by Lemma 4.2, thus only the cases dim(λ) = 1
and dim(λ) = 2 are considered.

First, let dim(λ) = 1. Then λ lives in the one dimensional lattice L({±ρ∨}) spanned
by a positive co-root ρ∨ ∈ Φ∨,+

A . All co-roots in Φ∨
A have the same length and Φ∨

A is
indecomposable. Thence all its co-roots are conjugate by Proposition 2.16. As reflection
length is invariant under conjugation assume ρ = α without loss of generality.

Speaking in the geometric terms of Remark 4.5 and Figure 24, consider all elements in
Blue-coloured hexagons. They are illustrated in more detail in Figure 25. The horizontally
hatched alcoves correspond to translates of the identity in W0. The vertically hatched
regions mark translates of the identity element with respect to the parabolic subgroup of
W0 generated by sα.

α∨

sα,−5 sα,−2 sα,0 sα,3

· · ·· · ·

Figure 25: The translates of elements in W0 in α∨-direction.

For ρ∨ = α∨ we obtain Vλ = {sα} = {s}. Hence the formula simplifies to `R(w) =
1 + `R(su) which is quickly verified for all u ∈ W0 in the table below.

It contains a column for each element u ∈ W0. The first entry of each column records
the type of w = tλu, that is, whether it is a translation, rotation, reflection or glide
reflection. Then the reflection length of w = tλu is stated which is known from Table 1.
The second entry considers the element s · u ∈ W0. The composition is computed and its
reflection length is derived from Remark 2.24. In the small images the alcoves of w and
s · u are highlighted. The background colour of the displayed hexagon is the same as in
Figure 24 therefore the background of s · u ∈ W0 is Yellow -coloured. The hatched areas
denote the same as in Figure 25.
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u = 1 u = st u = ts

translation rotation rotation
`R(w) = 2 `R(w) = 2 `R(w) = 2

s · u = s s · u = t s · u = sts
`R(s) = 1 `R(t) = 1 `R(sts) = 1

u = s u = t u = sts

reflection glide reflection glide reflection
`R(w) = 1 `R(w) = 3 `R(w) = 3

s · u = 1 s · u = st s · u = ts
`R(1) = 0 `R(st) = 2 `R(ts) = 2

Let dim(λ) = 2. Thus λ lies in the span of two positive coroots ρ∨, σ∨ ∈ Φ∨,+
A . Those

translates are the Thistle-coloured ones displayed in Figure 24.
Again, all coroots are conjugate. Thus, for a given λ, the coroots ρ∨ and σ∨ could

be any pair of distinct elements in Φ∨,+
A . For the pair α∨, β∨ follows sαsβ = st ∈ Vλ

and the same for its inverse ts. Since those are all elements of W0 with reflection length
two (W0 contains only two rotations) it is Vλ = {st, ts}. Hence it suffices to show
`R(w) = 2 +min{`R(tsu), `R(stu)}.

This is true for all u ∈ W0, as shown in the table below. It is arranged as the table
in the one dimensional case, just that each column has three entries: one for w = tλu
and one for each element in Vλ. As the rotations st and ts do not cancel out with both
elements of Vλ the cancelling combination is highlighted in Blue.

u = 1 u = st u = ts

translation rotation rotation
`R(w) = 4 `R(w) = 2 `R(w) = 2

st · u = st st · u = ts st · u = 1

`R(st) = 2 `R(ts) = 2 `R(1) = 0

ts · u = ts ts · u = 1 ts · u = st
`R(ts) = 2 `R(1) = 0 `R(st) = 2

u = s u = sts u = t

glide reflection glide reflection glide reflection
`R(w) = 3 `R(w) = 3 `R(w) = 3

st · u = sts st · u = t st · u = s
`R(sts) = 1 `R(t) = 1 `R(s) = 1

ts · u = t ts · u = s ts · u = sts
`R(t) = 1 `R(s) = 1 `R(sts) = 1
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4.2. Proof for type affine B2

This subsection gives a proof of the conjecture in type affine B2 and considers the action
of W of this type on the Euclidean plane.

Proposition 4.6 (Type affine B2). Let W be an affine Coxeter
group of type affine B2 with Φ∨

B ⊂ R2 the coroot system in Figure 26.
Denote s = sα, t = sβ and assume W is identified as W = T oW0

with
T ∼= R2 and W0

∼= 〈s, t | s2, t2, (st)4〉.

Then the reflection length of w ∈ W with normal form w = tλu can
be written as

`R(w) = dim(λ) + min
v∈Vλ

`R(vu).

α∨

β∨

α∨ + 2β∨

Figure 26: Φ∨
B.

Figure 27: The action of W of type affine B2 on the Euclidean plane.

Remark 4.7 (Geometric notes on type affine B2). The action of W of type affine B2 on
the Euclidean plane tessellates it with triangles as shown in Figure 27. Those alcoves are
not equilateral triangles like for type affine A2 but still they are in bijection with the
elements of W . Chose the horizontally hatched alcove as fundamental alcove. Thus this
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triangle corresponds to the identity in W .
Again, the elements of W0 are considered as elements of W by the identification

W = T oW0 and their alcoves are highlighted in Yellow .
Unlike the root system of type A2, Φ∨

B has roots of different length. Translates of
elements from W0 in the direction of a long coroot α∨ or α∨ + β∨ are coloured in Blue
and MidnightBlue, respectively. Conversely, translates by multiples of a short coroots β∨

or 2α∨ + β∨ are the OliveGreen- or ForestGreen-coloured alcoves.
Consider the translates of an element in W0 by a vector λ of dimension two. If λ can

be expressed using any two distinct positive coroots in Φ∨,+
B it is coloured in Lavender.

Otherwise λ can only be written with specific pairs of two distinct positive coroots in Φ∨
B .

For example not with the pair consisting of both long coroots α∨ and α∨ + 2β∨. Those
element’s alcoves are Thistle.

Proof. Again, the case dim(λ) = 0 is tackled by Lemma 4.2 and only the cases dim(λ) = 1
and dim(λ) = 2 are considered here.

Start with dim(λ) = 1. Then λ lies in the one dimensional lattice L({±ρ∨}) spanned
by a positive co-root ρ∨ ∈ Φ∨,+

B . Here, ρ∨ can be a short or a long co-root. By applying
Proposition 2.16 ρ∨ is conjugate to either the long coroot α∨ or the short coroot β∨.
With the invariance of reflection length under conjugation it thence suffices to consider
the cases ρ∨ = α∨ and ρ∨ = β∨, without loss of generality.

These are precisely those elements whose alcoves are highlighted with Blue or Olive-
Green in Figure 27. For ρ∨ = α∨ they are illustrated in Figure 28 with more details.
The horizontally hatched alcoves denote the identity in W0 or translates of it. The areas
vertically hatched are translates of the identity in the parabolic subgroup of W0 generated
by sα.

α∨

sα,−5 sα,−2 sα,0 sα,4

· · ·· · ·

Figure 28: The translates of u ∈ W0 in α−direction.

With ρ∨ = α∨ it is Vλ = {sα} = {s} and for ρ∨ = β∨ we have Vλ = {sβ} = {t}. Thus
the latter case can be deduced from the first by exchanging s and t below as they generate
W0. That is, assuming ρ∨ = α∨ reduces the statement to `R(w) = 1+ `R(su). This holds
for all u ∈ W0 as checked in the table below. Its scheme is the same as for type affine A2

and the reflection lengths are again determined with Table 1 and Remark 2.24.
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u = 1 u = st u = stst u = ts

translation rotation rotation rotation
`R(w) = 2 `R(w) = 2 `R(w) = 2 `R(w) = 2

s · u = s s · u = t s · u = tst s · u = sts
`R(s) = 1 `R(t) = 1 `R(t) = 1 `R(sts) = 1

u = s u = sts u = tst u = t

reflection glide refl. glide refl. glide refl.
`R(w) = 1 `R(w) = 3 `R(w) = 3 `R(w) = 3

s · u = 1 s · u = ts s · u = stst s · u = st
`R(1) = 0 `R(ts) = 2 `R(stst) = 2 `R(st) = 2

Let λ be of dimension two.
Then either it can be written with any two distinct positive coroots and is illustrated

Lavender-coloured in Figure 29. Or some combinations of two distinct positive coroots
are not possible, then it is coloured in Thistle.

Figure 29: Translates with λ of dimension two.

Since α∨ and β∨ are a base of Φ∨,+
B one can integrally combine λ with these two. That

is, sα, sβ = st ∈ Vλ and so does its inverse ts. Further, as the short coroots β∨ and α∨+β∨

generate Φ∨,+
B by Proposition 2.16 any λ can be expressed as an integral combination of

these two coroots. Therefore sβ∨sα∨+2β∨ = t · sts ∈ Vλ which is self-inverse.
There are only three rotations in W0, in other words, elements of order two. Thus

Vλ = {st, stst, ts} and the equation simplifies to `R(w) = 2 + minv∈{sr,rs,srsr} `R(v · u).
This is checked below for all u ∈ W0.
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u = 1 u = st u = stst u = ts

translation rotation rotation rotation
`R(w) = 4 `R(w) = 2 `R(w) = 2 `R(w) = 2

stu = st stu = stst stu = ts stu = 1

`R(st) = 2 `R(stst) = 2 `R(ts) = 2 `R(1) = 0

ststu = stst ststu = ts ststu = 1 ststu = st
`R(stst) = 2 `R(ts) = 2 `R(1) = 0 `R(st) = 2

tsu = ts tsu = 1 tsu = st tsu = stst
`R(ts) = 2 `R(1) = 0 `R(st) = 2 `R(stst) = 2

u = s u = sts u = tst u = t

glide refl. glide refl. glide refl. glide refl.
`R(w) = 3 `R(w) = 3 `R(w) = 3 `R(w) = 3

stu = sts stu = tst stu = t stu = s
`R(sts) = 1 `R(tst) = 1 `R(t) = 1 `R(s) = 1

ststu = tst ststu = t ststu = s ststu = sts
`R(tst) = 1 `R(t) = 1 `R(s) = 1 `R(sts) = 1

tsu = t tsu = s tsu = sts tsu = tst
`R(t) = 1 `R(s) = 1 `R(sts) = 1 `R(tst) = 1

The table is structured as before using Table 1 and Remark 2.24 to determine the
reflection lengths. Like in the case of type affine A2 not all elements of Vλ cancel out with
all rotations and the cases giving the value of the minimum are highlighted in Blue.
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4.3. Proof for type affine G2

In this subsection the action of an affine Coxeter group of type affine G2 on the Euclidean
plane is considered. Also, it provides a proof for the formula for this type.

Proposition 4.8 (Type affine G2). Let W be an affine Coxeter
group of type affine G2 with Φ∨

G ⊂ R2 the coroot system in Figure 30.
Denote s = sα, t = sβ and assume W is identified as W = T oW0

with
T ∼= R2 and W0

∼= 〈s, t | s2, t2, (st)6〉.

Then the reflection length of w ∈ W with normal form w = tλu can
be written as

`R(w) = dim(λ) + min
v∈Vλ

`R(vu).

α∨

β∨

2α∨ + 3β∨

Figure 30: Φ∨
B.

Figure 31: The action of W of type affine A2 on the Euclidean plane.

Remark 4.9 (Geometric notes on type affine G2). A group W of type affine G2 acts
on the Euclidean plane and tessellates it with triangles. This tessellation is illustrated
in Figure 31. Again the triangles are alcoves being in bijection with the elements
of W = T o W0 and coloured depending on λ in their normal form tλu. Chose the
horizontally hatched alcove as fundamental alcove being in correspondence with the
identity in W .

If λ = 0 then w’s alcove is among the Yellow -coloured triangles. For λ of dimension
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one we again distinguish between translations along short and long coroots. Hence those
elements with λ in the span of a short coroot are situated in the ’greenish rays’ coloured
in OliveGreen, ForestGreen and LimeGreen, Respectively, if λ is in the root lattice of
a long coroot w’s alcove can be found in the ’dotted blueish rays’ coloured in Blue,
MidnightBlue and BlueViolet, respectively

As in type affine B2 elements with λ of dimension two are coloured either in Lavender
or Thistle.

Proof. Consider only dim(λ) 6= 0 since again the case dim(λ) = 0 is tackled by Lemma 4.2.
Begin with the case dim(λ) = 1. Then λ is an integral multiple of a positive co-root

ρ∨ ∈ Φ∨,+. Analogue to this case in type affine B2 only consider the case ρ∨ = α∨,
without loss of generality.

α∨

sα,−6 sα,−2 sα,0 sα,3 sα,5

Figure 32: The translates of elements in W0 in α∨-direction.

In this case Vλ = {sα} = {s} and it suffices to show `R(w) = 1 + `R(su). This is
fulfilled for all u ∈ W0 as shown below. The table is organised as in type affine A2 and
the reflection lengths are obtained with Table 1 and Remark 2.24.

u = sr u = s u = 1 u = r

rotation reflection translation glide reflection
`R(w) = 2 `R(w) = 1 `R(w) = 2 `R(w) = 3

s · u = r s · u = 1 s · u = s s · u = sr
`R(r) = 1 `R(1) = 0 `R(s) = 1 `R(sr) = 2

u = srsr u = srs u = rs u = rsr

rotation glide reflection rotation glide reflection
`R(w) = 2 `R(w) = 3 `R(w) = 2 `R(w) = 3

s · u = rsr s · u = rs s · u = srs s · u = srsr
`R(rsr) = 1 `R(rs) = 2 `R(srs) = 1 `R(srsr) = 2

u = srsrsr u = srsrs u = rsrs u = rsrsr

rotation glide reflection rotation glide reflection
`R(w) = 2 `R(w) = 3 `R(w) = 2 `R(w) = 3

s · u = rsrsr s · u = (rsrs) s · u = srsrs s · u = srsrsr
`R(rsrsr) = 1 `R(rsrs) = 2 `R(srsrs) = 1 `R(srsrsr) = 2
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Now, let λ have dimension two.
Then either λ can be written with any two distinct positive coroots and w’s alcove

is illustrated in Lavender in Figure 33. Or some combinations of two distinct positive
coroots are not possible, then the alcove is indicated Thistle-coloured.

Figure 33: All translates with λ of dimension two.

To determine the set Vλ note that both α∨ and β∨ generate Φ∨
G and so does any pair

of distinct short coroots. The latter follows with the fact that any two short coroots
generate a sub-root system of type A2 and all these short coroots together generate ΦG

by Proposition 2.16. Thence λ is an integral combination of both α∨, β∨ and any pair of
positive short coroots in Φ∨,+

B . The first gives st, ts ∈ Vλ (the rotations about ±π/3) and
the latter stst, tsts ∈ Vλ (the rotations about ±2π/3). Finally, ststst ∈ Vλ since every
translation can be written with two orthogonal coroots where one is short and the other
long.

Thus Vλ = {st, stst, ststst, tsts, ts} consists of all length-2 elements and the equation
reads

`R(w) = 2 + min
v∈{st,stst,ststst,tsts,ts}

`R(v · u)

This is true for all u ∈ W0 as shown below. The table is structured as before using
Table 1 and Remark 2.24 to compute the reflection lengths. The in Blue-highlighted cells
indicate elements v ∈ Vλ for which the minimum is taken.
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u = st u = s u = 1 u = t

rotation glide reflection translation glide reflection
`R(w) = 2 `R(w) = 3 `R(w) = 2 `R(w) = 3

stu = stst stu = sts stu = st stu = s
`R(stst) = 2 `R(sts) = 1 `R(st) = 2 `R(s) = 1

(st)2u = ststst (st)2u = ststs (st)2u = stst (st)2u = sts
`R(ststst) = 2 `R(ststs) = 1 `R(stst) = 2 `R(sts) = 1

(st)3u = tsts (st)3u = tstst (st)3u = ststst (st)3u = ststs
`R(tsts) = 2 `R(tstst) = 1 `R(ststst) = 2 `R(ststs) = 1

(st)4u = ts (st)4u = tst (st)4u = tsts (st)4u = tstst
`R(ts) = 2 `R(tst) = 1 `R(tsts) = 2 `R(tstst) = 1

(st)5u = 1 (st)5u = t (st)5u = ts (st)5u = tst
`R(1) = 0 `R(t) = 1 `R(ts) = 2 `R(tst) = 1

u = stst u = sts u = ts u = tst

rotation glide reflection rotation glide reflection
`R(w) = 2 `R(w) = 3 `R(w) = 2 `R(w) = 3

stu = ststst stu = ststs stu = 1 stu = t
`R(ststst) = 2 `R(ststs) = 1 `R(1) = 0 `R(t) = 1

(st)2u = tsts (st)2u = tstst (st)2u = st (st)2u = s
`R(tsts) = 2 `R(ststs) = 1 `R(st) = 2 `R(s) = 1

(st)3u = ts (st)3u = tst (st)3u = stst (st)3u = sts
`R(ts) = 2 `R(sts) = 1 `R(stst) = 2 `R(sts) = 1

(st)4u = 1 (st)4u = t (st)4u = ststst (st)4u = ststs
`R(1) = 0 `R(t) = 1 `R(ststst) = 2 `R(ststs) = 1

(st)5u = st (st)5u = s (st)5u = tsts (st)5u = tstst
`R(st) = 2 `R(s) = 1 `R(tsts) = 2 `R(tstst) = 1

u = ststst u = ststs u = tsts u = tstst

rotation glide reflection rotation glide reflection
`R(w) = 2 `R(w) = 3 `R(w) = 2 `R(w) = 3

stu = tsts stu = (tstst) stu = ts stu = tst
`R(tsts) = 2 `R(tstst) = 1 `R(ts) = 2 `R(tst) = 1

(st)2u = ts (st)2u = (tst) (st)2u = 1 (st)2u = t
`R(ts) = 2 `R(tst) = 1 `R(1) = 0 `R(t) = 1

(st)3u = 1 (st)3u = (t) (st)3u = st (st)3u = s
`R(1) = 0 `R(t) = 1 `R(st) = 2 `R(s) = 1

(st)5u = st (st)5u = (s) (st)5u = stst (st)5u = sts
`R(st) = 2 `R(s) = 1 `R(stst) = 2 `R(sts) = 1

(st)4u = stst (st)4u = (sts) (st)4u = ststst (st)4u = ststs
`R(stst) = 2 `R(sts) = 1 `R(ststst) = 2 `R(ststs) = 1
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4.4. Proof of the upper bound
This subsection gives a proof for one inequality of the formula in groups of arbitrary
rank. We give the statement of Theorem C again in detail.

Theorem C (Upper bound). Let W be an affine Coxeter group of arbitrary rank. Assume
W is identified as W = T oW0 and let w ∈ W with normal form w = tλu. Then the
reflection length of w is bounded from above:

`R(w) ≤
1

2
`R(tλ) + min

v∈Vλ

`R(vu)

= dim(λ) + min
v∈Vλ

`R(vu).

Proof. Denote by k the dimension of λ. Then there exist linearly independent positive
roots α1, . . . , αk and c1, . . . , ck ∈ Z6=0 such that λ =

∑k
i=1 ciα

∨
i . Write tλ = t1 · · · tk with

ti a translation in αi-direction.
Those translations ti can be expressed as the product ti = siri of reflections si := sαi ∈

W0 and ri := rαi,ci/2 ∈ W . Thus tλ = s1r1s2r2 · · · skrk. Applying Lemma 1.14 to this
reflection factorization of tλ we can rewrite it as tλ = y · s1s2 · · · sk with y ∈ W of length
k = 1

2`R(tl) = dim(λ). Hence with v := s1 · · · sk ∈ Vλ this gives

`R(w) = `R(tλu)

= `R(s1r1s2r2 · · · skrku)
= `R(y · s1s2 · · · sku)
≤ `R(y) + `R(s1s2 · · · sku)

=
1

2
`R(tλ) + `R(vu)

= dim(λ) + `R(vu)

This holds for any choice of coroots α1, . . . , αk and any order of s1, . . . , sk as the
translations t1, . . . , tk commute. Thus `R(w) ≤ dim(λ) + `R(vu) for any v ∈ Vλ and
hence the statement.

This technical proof makes essential use of the formula’s shape and thus its approach
does not suffice to show equality in general.
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Outlook
Can the other inequality of the formula in Conjecture A be proven in general?
An option could be to use induction on the rank of W and use Theorem B as base case.
The induction step could then deduce the formula in W from affine Coxeter subgroups of
W with smaller rank. Though for this to work it is necessary to verify the compatibility
of the reflection length in appearing subgroups with the reflection length in all W .

Does Conjecture A hold in groups of type affine An?
It might be easier to prove the conjecture for this type only. One reason is the result
from Corollary 3.35, that is, any translation-elliptic factorisation is a normal form (for
the right choice of origin). Another reason is that because root systems of type An have
only one root length every subgroup is closed and thus maximal subgroups are given by
Theorem 2.21. Since the coefficients of the highest root are all 1 these subsystems are
of rank n − 1 and type An−1 or Al × Ak. This might be useful for an approach using
induction.

50



References
[AP15] Marcelo Aguiar and T. Kyle Petersen. The Steinberg torus of a Weyl group as

a module over the Coxeter complex. J. Algebraic Combin., 42(4):1135–1175,
2015.

[BM15] Noel Brady and Jon McCammond. Factoring Euclidean isometries. Internat.
J. Algebra Comput., 25(1-2):325–347, 2015.

[Bou02] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 4–6. Elements of
Mathematics (Berlin). Springer-Verlag, Berlin, 2002. Translated from the
1968 French original by Andrew Pressley.

[Car70] R. Carter. Conjugacy classes in the Weyl group. In Seminar on Algeb-
raic Groups and Related Finite Groups (The Institute for Advanced Study,
Princeton, N.J., 1968/69), pages 297–318. Springer, Berlin, 1970.

[Dus12] Kamil Duszenko. Reflection length in non-affine Coxeter groups. Bull. Lond.
Math. Soc., 44(3):571–577, 2012.

[Dye01] Matthew J. Dyer. On minimal lengths of expressions of Coxeter group elements
as products of reflections. Proc. Amer. Math. Soc., 129(9):2591–2595, 2001.

[Hum90] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1990.

[LMPS19] Joel Brewster Lewis, Jon McCammond, T. Kyle Petersen, and Petra Schwer.
Computing reflection length in an affine Coxeter group. Trans. Amer. Math.
Soc., 371(6):4097–4127, 2019.

[MP11] Jon McCammond and T. Kyle Petersen. Bounding reflection length in an
affine Coxeter group. J. Algebraic Combin., 34(4):711–719, 2011.

[MT11] Gunter Malle and Donna Testerman. Linear algebraic groups and finite groups
of Lie type, volume 133 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 2011.

51



A. The illustrations
All pictures in this thesis were drawn with TikZ and this appendix gives a short insight
in how the drawings were created. The code for Figure 31 is considered exemplarily. This
image is composed of many small hexagons using the symmetry of the action of W on
the Euclidean plane. One such hexagon looks like this:

\begin{tikzpicture}
\GHexagonPlain{-3}{3}{\ColrDirLongA}
\end{tikzpicture}

Figure 34: One of the many hexagons from Figure 31 with its code.

Of course \GHexagonPlain{-3}{3}{\ColrDirLongA} is only a command to plot the
entire hexagon. The numbers −3 and 3 specify the position of the hexagon and
\ColrDirLongA colours the background in OliveGreen!50. The complete code for just
one hexagon reads as follows:

\newcommand{\GHexagonPlain}[3]{
% #1 :: x-coordinate
% #2 :: y-coordinate
% #3 :: backgroundcolor of hexagon

\fill [color=#3] (-0.5*\hexasize+#1,-\hexaside+#2) --
( 0.5*\hexasize+#1,-\hexaside+#2) -- ( \hexasize+#1, 0+#2) --
( 0.5*\hexasize+#1, \hexaside+#2) --
(-0.5*\hexasize+#1, \hexaside+#2) -- (-\hexasize+#1, 0+#2);

% background divisions
\draw [color=\ColrGridLinesBackground, ultra thin]

( 0+#1, -\hexaside+#2)--( 0+#1, \hexaside+#2)
( 0.75*\hexasize+#1, -0.5*\hexaside+#2)--(-0.75*\hexasize+#1, 0.5*\hexaside+#2)
(-0.75*\hexasize+#1, -0.5*\hexaside+#2)--( 0.75*\hexasize+#1, 0.5*\hexaside+#2)
( -\hexasize+#1, 0+#2)--( \hexasize+#1, 0+#2)
( 0.5*\hexasize+#1, -\hexaside+#2)--( -0.5*\hexasize+#1, \hexaside+#2)
( -0.5*\hexasize+#1, -\hexaside+#2)--( 0.5*\hexasize+#1, \hexaside+#2);

% frame around hexagon
\draw [color=\ColrGridLinesFrame]

(-0.5*\hexasize+#1,-\hexaside+#2) -- ( 0.5*\hexasize+#1,-\hexaside+#2) --
( \hexasize+#1, 0+#2) -- ( 0.5*\hexasize+#1, \hexaside+#2) --
(-0.5*\hexasize+#1, \hexaside+#2) -- (-\hexasize+#1, 0+#2) --
(-0.5*\hexasize+#1,-\hexaside+#2) -- ( 0.5*\hexasize+#1,-\hexaside+#2);

}

The numbers \hexasize= 0.6 and \hexaside=
√
3
2 0.6 are defined globally. Also

the colours of the grid lines \ColrGridLinesBackground and \ColrGridLinesFrame
are defined globally and can be redefined locally to yield different behaviour. For
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example Figure 33 uses the same hexagons, some of them with white background and
\ColrGridLinesFrame set to grey and ultra thin.

Since some of the hexagons are situated at the borders there are versions of \GHexagon
that only plot a partial hexagon. Also there are non-Plain versions plotting more inform-
ation like the hatched areas or highlighted elements used in the proofs for Theorem B.

The full code for Figure 31 reads:

\def\LocalSide{1.5*\hexasize}
\def\LocalUp{\hexaside}

%%% lambda of dimension 0 %%%
\GHexagon{0*\LocalSide}{0*\LocalUp}{\ColrDirNo}

%%% lambda of dimension 1 %%%
% bluish rays ie using one long coroot
% in alpha direction
\foreach \x in {-3,...,3}{

\GHexagonPlain{-\x*2*\LocalSide}{0*\LocalUp}{\ColrDirShortA}
}
% other long coroots
\foreach \x in {-2,...,2}{

\GHexagonPlain{ \x*\LocalSide}{-\x*3*\LocalUp}{\ColrDirShortB}
\GHexagonPlain{ \x*\LocalSide}{ \x*3*\LocalUp}{\ColrDirShortC}

}

% greenish rays ie using one short coroot
% up
\foreach \x in {-4,...,4}

{\GHexagonPlain{0*\LocalSide}{-\x*2*\LocalUp}{\ColrDirLongB}}
% other short coroots (beta and alpha+beta)
\foreach \x in {-7,...,7}{

\GHexagonPlain{ \x*\LocalSide}{-\x*\LocalUp}{\ColrDirLongA}
\GHexagonPlain{-\x*\LocalSide}{-\x*\LocalUp}{\ColrDirLongC}

}

% half or partial hexagons at the boarders:
\GHexagonPlainTop{ 3*\LocalSide}{-3*3*\LocalUp}{\ColrDirShortB}
\GHexagonPlainBottom{-3*\LocalSide}{ 3*3*\LocalUp}{\ColrDirShortB}
\GHexagonPlainTop{ -3*\LocalSide}{-3*3*\LocalUp}{\ColrDirShortC}
\GHexagonPlainBottom{ 3*\LocalSide}{ 3*3*\LocalUp}{\ColrDirShortC}

\GHexagonPlainLeft{ 8*\LocalSide}{ 0*\LocalUp}{\ColrDirShortA}
\GHexagonPlainRight{-8*\LocalSide}{ 0*\LocalUp}{\ColrDirShortA}
\GHexagonPlainLeft{ 8*\LocalSide}{-8*\LocalUp}{\ColrDirLongA}
\GHexagonPlainRight{-8*\LocalSide}{ 8*\LocalUp}{\ColrDirLongA}
\GHexagonPlainLeft{ 8*\LocalSide}{ 8*\LocalUp}{\ColrDirLongC}
\GHexagonPlainRight{-8*\LocalSide}{-8*\LocalUp}{\ColrDirLongC}
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%%% lambda of dimension 2 %%%
% complete hexagons sorted by y-coordinate
\foreach \f in {-1,1}

\foreach \g in {-1,1}{
\foreach \x in {3,5,7}{

\GHexagonPlain{ \x*\LocalSide*\f}{ 1*\LocalUp*\g}{\ColrDirLongOther}}
\foreach \x in {4,6}{

\GHexagonPlain{ \x*\LocalSide*\f}{ 2*\LocalUp*\g}{\ColrDirLongOther}}
\foreach \x in {5,7}{ % other colour

\GHexagonPlain{ \x*\LocalSide*\f}{ 3*\LocalUp*\g}{\ColrDirShortOther}}
\foreach \x in {2,6}{

\GHexagonPlain{ \x*\LocalSide*\f}{ 4*\LocalUp*\g}{\ColrDirLongOther}}
\foreach \x in {1,3,7}{

\GHexagonPlain{ \x*\LocalSide*\f}{ 5*\LocalUp*\g}{\ColrDirLongOther}}
\foreach \x in {4}{ % other colour

\GHexagonPlain{ \x*\LocalSide*\f}{ 6*\LocalUp*\g}{\ColrDirShortOther}}
\foreach \x in {1,3,5}{

\GHexagonPlain{ \x*\LocalSide*\f}{ 7*\LocalUp*\g}{\ColrDirLongOther}}
\foreach \x in {2,4,6}{

\GHexagonPlain{ \x*\LocalSide*\f}{ 8*\LocalUp*\g}{\ColrDirLongOther}}
}

% half or partial hexagons at the borders:
\foreach \f in {-1,1}

\foreach \x in {1,5,7}{ % other colour
\GHexagonPlainTop{ \x*\LocalSide*\f}{-9*\LocalUp}{\ColrDirShortOther}
\GHexagonPlainBottom{ \x*\LocalSide*\f}{ 9*\LocalUp}{\ColrDirShortOther}

}
\foreach \g in {-1,1}{

\foreach \y in {2,4}{
\GHexagonPlainLeft{ 8*\LocalSide}{ \y*\LocalUp*\g}{\ColrDirLongOther}
\GHexagonPlainRight{-8*\LocalSide}{ \y*\LocalUp*\g}{\ColrDirLongOther}}

\foreach \y in {6}{ % other colour
\GHexagonPlainLeft{ 8*\LocalSide}{ \y*\LocalUp*\g}{\ColrDirShortOther}
\GHexagonPlainRight{-8*\LocalSide}{ \y*\LocalUp*\g}{\ColrDirShortOther}}

}
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