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Abstract

Coxter groups arose as a natural generalization of reflection groups.
J. Tits defined them in a simple way using generators and relations,
that is, using a group presentation W ∼= 〈S | R〉. Coxeter groups have
a wide range of applications; for example, every Weyl group may be
realized as a finite, irreducible Coxeter group.

The Davis complex Σ is a geometric realization of Coxeter groups,
which is CAT(0) for every Coxeter group. It has therefore been one
of the first classes of examples for CAT(0) spaces. We first provide
a general introduction to Coxeter groups and the Davis complex, and
continue discussing when the Davis complex has so called flats.

Flats are convex subsets which are isometric to Rn. We say that Σ
has isolated flats if there exists a collection F of flats in Σ, satisfyingthe
isolated property:

(A) There is a constant D < ∞ such that each flat F of Σ lies in a
tubular D-neighborhood of some C ∈ F.

(B) For each positive r <∞, there is a constant ρ = ρ(r) <∞ so that
for any two distincit elements C,C ′ ∈ F we have diam(Nr(C) ∩
Nr(C ′)) < ρ, where Nr(C) denotes the tubular r-neighborhood
of C.

Given a Coxeter group and a set of generators S, we can read from
the Coxeter diagram if the resulting Davis complex has isolated flats.
This classification is due to work by P. Caprace. We introduce the
necessary concepts and give examples of Coxeter groups where Σ has
isolated flats.
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1 Coxeter groups

Coxeter groups can be realized in a straightforward combinatorial fashion,
wherin the presentation of the group is of central importance, and analysis
for the group is frequently performed with little reference to the group’s
geometric structure. The combinatorial viewpoint will facilitate the proofs
of many results.

Note. For a detailed treatment on free groups and group presentations, see
[Elements, Loeh].

Definition 1.1. Let S be a set, F (S) the free group over S, and R = (rj)j∈J
a family of words in F (S). A group presentation is then defined by 〈S |
R〉 := F (S)/〈〈R〉〉, where 〈〈R〉〉 is the smallest normal subgroup containing
R.

A group G is finitely presented if there exists a finite generating set
S and a finite set R ⊂ F (S) of relators such that G ∼= 〈S | R〉. A classical
example of a finitely presented group is given by the following:

Example 1.2 ([Massey, §5.3]). The fundamental group of an orientable
surface Σn with genus n (i.e. the connected sum of n tori) is given by the
finite presentation:

π1(Σn) ∼=
〈
a1, b1, . . . , an, bn | a1b1a

−1
1 b−1

1 · · · anbna
−1
n b−1

n

〉
.

Definition 1.3 ([Davis, Definition 3.3.2]). Let I be an indexing set, and let
S = {si}i∈I . Let M = (mij)i,j∈I be a matrix such that

• mii = 1 for all i ∈ I;

• mij = mji for all i, j ∈ I; and

• mij ∈ {2, 3, 4, . . .} ∪ {∞} for all distinct i, j ∈ I.

Then M is called a Coxeter matrix. The Coxeter group W = WM

associated to a Coxeter matrix M is the finite presentation:

W ∼=
〈
S | s2

i = 1 ∀i ∈ I, and (sisj)
mij = 1 ∀i 6= j

〉
.

The pair (W,S) is a Coxeter system and S is the set of Coxeter
generators. The cardinality of S is called the rank of (W,S). If for i 6= j
we have mij ∈ {2,∞}, then (W,S) is called right-angled.

Remark 1.4.

• Throughout our discussion, we will assume that the indexing set I is
finite. For example, we wish that the group W acts cocompactly on
a certain geometric realisation (the Davis complex ). This is only the
case when W is finitely generated (that is, when I is finite.)
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• There is a one-to-one correspondence between Coxeter matrices and
Coxeter systems, as demonstrated by the following proposition. It is
proved using a faithful linear representation σ : W → GLn(R), the
Tits representation. (See section 2.)

Proposition 1.5. Suppose M is a Coxeter matrix, and W the group with
generating set S defined by the presentation associated to M .

1. For each i ∈ I, the element si is an involution.

2. Each si is a distinct group element in W .

3. sisj has order mij.

An element of order 2 is also called an involution. The next lemma
shows, directly from the presentation, that each s ∈ S is an involution in
the group W . The other properties may be shown with a faithful linear
representation σ : W ↪→ GLn(R), where σ(s)2 = id and (σ(s)σ(t))mst = id.

Lemma 1.6. Let (W,S) be a Coxeter system. There is an epimorphism
ε : W → Z�2Z induced by ε(s) = −1 for all s ∈ S.

Proof. By definition,W ∼= F (S)�R. By the universal property of free groups,
we have a unique homomorphism

F (S)→ Z�2

extending ε. This homomorphism factors throughW , because ε ((sisj)
mij ) =

((−1)(−1))mij = 1.

S
ε //� _

��

Z�2Z

F

∃!
==

, F (S)
ε //

π
��

Z�2Z

F (S)�R

;;

Remark 1.7 ([Abramenko, Exercise 2.55]). LetM be a matrix as in Definition
1.3, but which is not symmetric. Then there are elements s, t ∈ S such that
the order of the image of st in (W,S) is not m(s, t).

Note that with an appropriately chosen generator set S′ and Coxeter
matrix M ′, (W,S′) is still a Coxeter system.

Proof. Let M be non-symmetric. Then there are some s, t ∈ S such that
mst 6= mts, that is (st)n = (ts)m = 1 withm 6= n. Without loss of generality,
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let m < n. Assume by contradiction that (st)n = 1 with (st)i 6= 1 for all
i ∈ {1, . . . , n− 1}. There then holds

st · · · st = 1

⇔ s(ts · · · ts)n−1t = 1

⇔ s (ts)m︸ ︷︷ ︸
=1

(ts)n−1−mt = 1

⇔ (st)n−m = 1

with n−m < n, a contradiction.

Example 1.8 (Infinite dihedral groups). Let s1 and s2 be the reflections of
the real line R in the points 0 and 1, respectively. (Note any point on the
line is a hyperplane.)

The composition s1s2 is a translation by 2 units to the left; hence 〈s1, s2〉
is infinite cyclic. The group generated by these reflections has the presenta-
tion:

W := D∞ = 〈s1, s2 | s2
1 = s2

2 = 1〉

and Coxeter matrix
(

1 ∞
∞ 1

)
. The action of W on R1 induces a tesse-

lation of the line by closed intervals which are in bijection with the elements
of W .

Figure 1: The infinite dihedral group

Example 1.9 (Euclidean triangle group). Let s1, s2 and s3 be the reflections
in the plane R2 through sides of equilateral triangles. The composition s1s2

is a flip upwards followed by a flip to the left. The group generated by these
reflections has the presentation:

W := (3, 3, 3) = 〈s1, s2, s3 | s2
i = 1 ∀i, (sisj)

3 = 1 ∀i 6= j〉

and Coxeter matrix

1 3 3
3 1 3
3 3 1

. W induces a tesselation of the plane

by equilateral triangles which are in bijection with the elements of W .
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Figure 2: The Euclidean triangle group (3, 3, 3)

1.1 Coxeter diagrams

Before giving further examples of Coxeter groups, we define the Coxeter
graph which allows to directly read properties of Coxeter groups from a
certain graph.

Definition 1.10 ([Davis, §3.5.1]). Suppose thatM = (mij)i,j∈I is a Coxeter
matrix on a set I. We associate to M a graph Γ = ΓM called its Coxeter
graph. The vertex set of Γ is I, representing generators (si)i∈I .

• Distinct vertices i and j are connected by an edge if and only ifmij ≥ 3.

• The edge {i, j} is labeled by mij ≥ 4. (If mij = 3, the edge is left
unlabeled.)

The graph Γ together with the labeling of its edges is called the Coxeter
diagram associated to M . The vertices of Γ are often called the nodes of
the diagram.

Example 1.11.

• The dihedral group D2m of order 2m (the isometry group of a regular
polygon with 2m sides) has Coxeter matrix and diagram:(

1 m
m 1

)
, • m • if m ≥ 4, or • • if m = 3,

or • • if m = 2.
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• The infinite dihedral group D∞ is given by:(
1 ∞
∞ 1

)
, • ∞ •.

• The (3, 3, 3) triangle group is given by:1 3 3
3 1 3
3 3 1

 , •

• •.

• ([Suter, p.8]) The Coxeter system with diagram:

• • ∞ •

is isomorphic to PGL2(Z), defined as the quotient group

GL2(Z)/
{

( 1 0
0 1 ) ,

(−1 0
0 −1

)}
with generators:

R =

[
0 1
1 0

]
, S =

[
1 1
0 −1

]
, T =

[
1 0
0 −1

]
.

Remark 1.12 ([Thomas, 1.19.4]). A given Coxeter group may have more
than one (conjugacy class of) generating set, that is, more than one Coxeter
system. This is reflected by different Coxeter diagrams, as the following
example shows.

Example 1.13. Let W = D12 be the isometry group of a 12-gon. We
consider the following diagrams:

(
1 6
6 1

)
, •1 6 •2 , (1)

1 3 2
3 1 2
2 2 1

 , •1 3 •2 •3 . (2)

In the first diagram, the element w = (s1s2)3, a rotation by the angle
π about the origin, is a central involution. (That is, an involution which
commutes with all elements in W .)

The group (1) then splits as the direct product of 〈w〉 ∼= Z2 and a copy of
D6, generated by the reflections s1 and s2s1s2. Setting t1 = s1, t2 = s2s1s2

and t3 = w results in the group (2).
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Remark 1.14. By replacing an axis of reflection with an axis of rotation, we
get a third presentation of the D12:

G = 〈s, t | s6 = 1, st = ts−1〉.

The finite presentation G is not a Coxeter system. We can write it as
the following semi-direct product: [Loeh, Example 2.3.5]

D12 ←→ Z6 oϕ Z2

s 7−→ ([1], 0)

t 7−→ (0, [1]),

where ϕ : Z/2Z→ Aut Z�2Z is given by multiplication by −1. Similarly,
the dihedral group D∞ is isomorphic to Zoϕ Z2.

Definition 1.15. We call a Coxeter system (W,S) irreducible if the Cox-
eter graph is connected.

Remark 1.16. If W is reducible with connected components I and J , then
W allows a direct product composition:

WT ×WT ′ , T = (si)i∈I , T ′ = (sj)j∈J ,

where the subgroups WT and WT ′ in W are generated by T and T ′,
respectively.

We delay the proof of this remark to section 3, after we have established
properties on subgroups of Coxeter systems. A simple example is given by
D∞ ×D∞, which has Coxeter diagram:

• ∞ • • ∞ •

1.2 The length function

In this section, we consider the length function of a word in a Coxeter system
(W,S). As a method commonly used for establishing properties of Coxeter
systems, we demonstrate some of its basic properties.

Definition 1.17. Let (W,S) be a Coxeter system. We define the length
function

` : W −→ Z≥0

w 7−→ min{n | ∃s1, . . . , sn ∈ S with w = s1 · · · sn}.

By definition, `S(1) = 0. If `S(w) = n ≥ 1 and w = s1 · · · sn then the
corresponding word (s1, . . . , sn) is variously called a reduced expression,
a reduced word or a minimal word for g.
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Proposition 1.18 ([Bjorner, Proposition 1.4.2]). Let (W,S) be a Coxeter
system with u,w ∈W . Let ε : W → Z/2Z, s 7→ −1 be the epimorphism from
Lemma 1.6. The length function satisfies the following properties.

1. ε(w) = (−1)`(w).

2. `(uw) ≡ `(u) + `(w) mod 2.

3. `(w−1) = `(w).

4. |`(u)− `(w)| ≤ `(uw) ≤ `(u) + `(w).

5. `(ws) = `(w)± 1, for all s ∈ S.

6. `(u−1w) is a metric on W , the word metric dS.

7. dS(hw, hw′) = dS(w,w′) for all h,w,w′ ∈W .

That is, the left action of W on itself is an action by isometries with
respect to the word metric dS.

Proof.

1. Let w = s1 · · · sn be a reduced expression in W . As ε is a homomor-
phism, there holds ε(w) = ε(s1) · · · ε(sn) = (−1)n.

2. Let u = s1 · · · sn and w = t1 · · · tm be reduced expressions in W . Then
(−1)`(uw) = ε(uw) = ε(u)ε(w) = (−1)`(u)(−1)`(w) = (−1)`(u)+`(w) or
equivalently, `(uw) ≡ `(u) + `(w) mod 2.

3. If w = s1 · · · sn is a reduced expression, then w−1 = (s1 · · · sn)−1 =
s−1
n · · · s−1

1 = sn · · · s1 as each si is an involution. Therefore `(w−1) ≤
n = `(w). Similarly, if w−1 = t1 · · · tm is a reduced expression, then
(w−1)−1 = w = tm · · · t1, and `(w) ≤ m = `(w−1).

4. Let u = s1 · · · sn and w = t1 · · · tm be reduced expressions in W . As
uw = s1 · · · snt1 · · · tm there holds `(uw) ≤ n + m = `(u) + `(w). In
particular, `(u) = `(((uw)w−1) ≤ `(uw) + `(w−1), and by 4. |`(u) −
`(w)| ≤ `(uw).

5. By 4. there holds `(w) − 1 = `(w) − `(s) ≤ `(ws) ≤ `(w) + `(s) =
`(w) + 1. Assume `(ws) = `(w). Then ws = s1 · · · sns = t1 · · · tn with
ti ∈ S. As w was reduced, we have ε(ws) = ε(w)ε(s) = (−1)n+1,
but ε(t1 · · · tn) = (−1)n; a contradiction. Thus `(ws) = `(w) − 1 or
`(ws) = `(w) + 1.

6. Let dS(u,w) := `(u−1w). If u 6= w, then u−1w 6= 1 and `(u−1w) > 0
by definition, so dS is positive definite. For symmetry, dS(w, u) =
`(w−1u) ≤ `(w−1) + `(u) = `(w) + `(u) and dS(u,w) = `(u−1w) ≤
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`(u) + `(w) by 3, thus dS(w, u) = dS(u,w). For the triangle inequality,
by 4. there holds dS(u,w) = `(u−1zz−1w) ≤ `(u−1z) + `(z−1w) =
dS(u, z) + dS(z, w) for any z ∈W .

7. There holds dS(hw, hw′) = `(w−1h−1hw′) = `(w−1w′) = dS(w,w′).

1.2.1 The Exchange Condition

Two important combinatorial properties of Coxeter systems are given by the
Exchange Condition and Deletion Condition. They will allow us to derive
properties of special subgroups of (W,S), or groups WT generated by subsets
T ⊂ S. (Section 3)

Theorem 1.19. Suppose a group W is generated by a set of distinct invo-
lutions S. Then the following are equivalent:

1. The pair (W,S) is a Coxeter system.

2. The pair (W,S) satisfies the deletion condition:

If (s1, . . . , sk) is a word in S with `(s1 · · · sk) < k, then there are indi-
cies i < j such that

s1 · · · sk = s1 · · · ŝi · · · ŝj · · · sk,

where ŝi means we delete this letter.

3. Te pair (W,S) satisfies the exchange condition:

If (s1, . . . , sk) is a reduced expression for w ∈ W , then for any s ∈ S,
either `(sw) = k + 1, or there is an index i such that

w = ss1 · · · ŝi · · · sk.

There are several ways to prove the above theorem. For a purely combi-
natorial proof, see [Bjorner, Theorem 1.5.1]. For an approach using Cayley
graphs, see [Thomas, Theorem 2.14]. A purely geometric approach can be
achieved with van-Kampen diagrams, where group relations are presented
through a certain 2-complex. See [Ol’shanskii, 4. Diagrams over groups]
and [Bahls, 1.3.4. The Deletion Condition] for an introduction to this topic.

Remark. The equivalence above holds for groups generated by involutions.
There exist groups generated by elements of infinite order satisfy the Deletion
Condition, or Artin groups. [Bahls, Exercise 17]

We can derive the following properties from the Deletion and Exchange
condition:
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Corollary 1.20 ([Bjorner, Corollary 1.4.8]). Let (W,S) be a Coxeter system.

1. Any expression w = s1 · · · sk contains a reduced expression for w as a
subword, obtainable by deleting an even number of letters.

2. Suppose w = s1s2 · · · sk = s′1s
′
2 · · · s′k are two reduced expressions.

Then, the set of letters appearing in the word s1s2 · · · sk equals the
set of letters appearing in s′1s

′
2 · · · s′k.

3. S is a minimal generating set for W . That is, no Coxeter generator
can be expressed in terms of the others.

1.3 Finite Coxeter groups

In our later discussion of the Davis complex Σ corresponding to a Coxeter
group (W,S), we wish to derive, directly from the Coxeter diagram Γ(W,S),
if Σ has certain geometric properties. (In particular, if Σ has isolated flats;
see Definition 6.7.) The first step to achieve this is classifying the finite,
affine and hyperbolic Coxeter groups.

Proposition 1.21 ([Bjorner, Exercise 1.4]). Let (W,S) be a finite, irre-
ducible Coxeter system. The Coxeter diagram Γ satisfies the following re-
quirements:

1. Γ is a tree.

2. Γ has at most one vertex of degree 3 and none of higher degree.

3. Γ has at most one marked (i.e., label ≥ 4) edge.

4. If Γ has a degree 3 vertex, then all edges are unmarked.

Example. The triangle group (3, 3, 3) is an infinite irreducible Coxeter sys-
tem, with a circuit as Coxeter diagram.

We can prove the above properties, as well as classify all finite Cox-
eter groups, using the Cosine matrix associated to a Coxeter matrix M .
[Humphreys, 2.7 Classification of graphs of positive type] We will discuss
this together with the affine Coxeter groups.

An alternative, purely combinatorial approach to proving Proposition
1.21 are so-called braid moves. They were used by J. Tits to find a solution
to the word problem1 in Coxeter groups.

1The conjugation problem for a finitely generated group G asks for the existence
of an algorithm which can determine if two elements in G are conjugates. The word
problem considers if any given element in G is the neutral element. [Loeh, Definition
7.4.1]
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1.3.1 Braid moves

If mst < ∞ represents the order of st in a Coxeter system (W,S), then
clearly sts · · · = tst · · · for any word of length mst. The terminology “braid
move” comes from the defining relation in the presentation

B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉

of the braid group on three strands. See [Loeh, Exercise 2.E.26] for details
on braid groups.

Definition 1.22 ([Thomas, Definition 2.20]). Let W be a group generated
by a set of involutions S, and letmst be the order of st, s 6= t inW . Ifm(s, t)
is finite, a braid move on a word w ∈ W swaps a subword (s, t, s, . . . )
containing mst letters with a subword (t, s, t, . . . ) containing mst letters.

Theorem 1.23 ([Davis, Theorem 3.4.2]). (Tits) Suppose a group W is gen-
erated by a set of distinct involutions S and the exchange condition holds.

1. A word (s1, . . . , sk) in S is reduced if and only if it cannot be shortened
by a sequence of

(a) deleting a subword (s, s), s ∈ S, or
(b) carrying out a braid move.

2. Two reduced expressions in S represent the same group element w ∈W
if and only if they are related by a finite sequence of braid moves.

Example. Let (W, {s1, s2, s3}) be the Coxeter system with diagram •−•−•.
The possible braid moves in W are given by:

(s1, s3)↔ (s3, s1)

(s1, s2, s1)↔ (s2, s1, s2)

(s2, s3, s2)↔ (s3, s2, s3)

Then the word (s1s2s3) has order 4, as can be seen by carrying out braid
moves:

s1s2s3 s1s2s3 s1s2s3 → s1s2s1 s3s2s3 s1s2s3

→ s2s1 s2 s2︸ ︷︷ ︸
=1

s3s2 s1s2s3

→ · · ·
→ s2s2︸︷︷︸

=1

s3s2s1

⇔ (s1s2s3)4 = s3s2s1s1s2s3 = 1
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For illustrative purposes, we use braid moves to show that for a finite,
irreducible Coxeter system, the diagram Γ(W,S) is a tree. The idea is to
find an element of infinite order. The other properties in Proposition 1.21
can be proved similarly.

Proof of Proposition 1.21.1. Let (W,S) be a finite and irreducible Coxeter
system. By definition, Γ(W,S) is connected. Assume by contradiction that
Γ contains a circuit (i, i + 1, . . . , i + n), n ≥ 2. Assume the element w :=
sisi+1 · · · si+n is of finite order. Then there is somem ∈ N such that wm = 1.
The possible braid moves in W are given by:

(sj , sj+1, sj , · · · )↔ (sj+1, sj , sj+1, · · · )

for subwords with msjsj+1 letters. By assumption, sisi+k 6= si+ksi for
all k ∈ N (otherwise m(si, si+k) = 2 and si, si+k are not connected by an
edge). Thus we can perform no braid move on the word wm. In particular,
`(wm) > 1; a contradiction.

1.4 Affine Coxeter groups

For the sake of brevity, we consider affine Coxeter groups as (cocompact) Eu-
clidean reflection groups generated by affine transformations in the Euclidean
space En.2 We first recall some results on group actions.

1.4.1 Geometric actions

Coxeter groups are defined as groups with a certain finite presentation. It is
known that every finitely presented group acts geometrically (that is, prop-
erly and cocompactly by isometries) on some simply-connected, geodesic
space. The Davis complex is an example of such a space. Reversely, every
group with such an action is finitely presented. [Bridson, §8.11]

Definition 1.24 ([Davis, Definition 5.1.5]). Suppose G is discrete. A G-
action on a Hausdorff space Y is proper (or properly discontinuous) if
the following three conditions hold.

1. Y/G is Hausdorff.

2. For each y ∈ Y , the isotropy subgroup Gy = {g ∈ G | gy = y} is finite.

3. Each y ∈ Y has a Gy-stable neighborhood Uy such that gUy ∩ Uy = ∅
for all g ∈ G−Gy.

2The affine Coxeter groups are (up to the choice of a root system) the affine Weyl
groups, defined through coroot lattices. See [Humphreys, 4. Affine reflection groups]
for details on this construction. A nice visual representation is through so-called Stiefel
diagrams. [Hall, 13.6 The Stiefel Diagram]

13



Definition 1.25. Let G be a group acting on a topological space X. The
action is cocompact if the quotient space G\X is compact with respect to
the quotient topology.

Definition 1.26. Suppose a group G acts on a topological spaceX by home-
omorphisms. Write Gx for the G-orbit of the point x ∈ X. A fundamental
domain is a closed, connected subset C of X such that Gx∩C 6= ∅ for every
x ∈ X, and Gx ∩ C = {x} for every x in the interior of C. A fundamental
domain C is strict if Gx ∩ C = {x} for every x ∈ C, that is, C contains
exactly one point from each G-orbit.

Example 1.27 ([Thomas, Example 1.8]). The closed interval [0, 1] is a strict
fundamental domain for the action of D∞ on the real line. (Example 1.8)
Any interval [n, n+ 1], where n ∈ Z, is also a strict fundamental domain for
this action.

1.4.2 Geometric reflection groups

Theorem 1.28 ([Thomas, Theorem 1.9]). Let P = Pn be a simple convex
polytope in Xn, where n ≥ 2 and Xn = Sn, En or Hn. Let {Fi}i∈I be the
collection of codimension-1 faces of Pn, with each face Fi supported by the
hyperplane Hi.

Suppose that for all i 6= j, if Fi ∩ Fj 6= ∅ then the dihedral angle between
Fi and Fj ist π

mij
for some integer mij ≥ 2. Put mii = 1 for every i ∈ I,

and mij =∞ if Fi ∩ Fj = ∅.
For each i ∈ I, let si be the isometric reflection of Xn across the hyper-

plane Hi. Let W be the group generated by the set of reflections {si}i∈I .
Then:

1. The group W has presentation

W ∼= 〈si | (sisj)mij = 1 ∀i, j ∈ I〉.

2. The group W is a discrete subgroup of Isom(Xn).

3. The convex polytope P is a strict fundamental domain for the action
of W on Xn, and the action of W induces a tesselation of Xn by copies
of P .

Example 1.29. For more examples, see [Thomas, pp. 10-15].

• If P is the closed interval [0, 1], then W is the infinite dihedral group
D∞.

• If P is a triangle with vertex angles π
p ,

π
q and π

r , W is the triangle
group (p, q, r).
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• There is a convex polytope P ⊂ H3 which is a dodecahedron with all
dihedral angles π

2 , hence a hyperbolic reflection group W generated by
the reflections in the sides of P .

We can give a presentation of W as follows. The dodecahedron P has
12 sides, thus S = {s1, . . . , s12}. Each face Fi of P has precisely 5
adjacent faces Fj1 , . . . , Fj5 . (Compare Figure 4.) By Theorem 1.28,
it follows that mijk = 2 for k ∈ {1, . . . , 5} (the intersection Fi ∩ Fjk is
an edge, thus non-empty), and mij =∞ otherwise (Fi and Fj are not
adjacent, or Fi ∩ Fj = ∅).

Figure 3: Tiling of H3 by right-angled dodecahedra.

Definition 1.30. A group W is a geometric reflection group if W is either a
finite dihedral group, an infinite dihedral group or is as in the statement of
Theorem 1.28. A geometric reflection group W acting on Xn is spherical,
Euclidean or hyperbolic as Xn is Sn, En or Hn respectively. A group W
is an affine Coxeter group if W is an Euclidean (Xn = En) geometric
reflection group.

1.4.3 Cosine matrix

We turn to the classification of affine Coxeter groups (Euclidean reflection
groups) and hyperbolic reflection groups.

15



Figure 4: Example Schlegel diagram for P . Each face has 5 adjacent faces.

Definition 1.31. Suppose M = (mij) is a Coxeter matrix on a set I. The
cosine matrix associated to M is the I × I matrix (cij) defined by

cij = − cos
π

mij

When mij = ∞ we interpret π
∞ to be 0, and − cos π

∞ = − cos(0) = −1.
Note that all diagonal entries of (cij) are − cos π1 = 1.

Definition 1.32. Let A = (aij) be a square n× n matrix. The k-th prin-
cipal submatrix of A is the matrix obtained by deleting the k-th row and
k-th column of A.

Definition 1.33. Let A = (aij) be a square n× n matrix. A is reducible
(or decomposable) if there is a nontrivial partition of the index set as
{1, . . . , n} = I ∪ J , so that aij = aji = 0 whenever i ∈ I, j ∈ J . Otherwise,
it is irreducible (or indecomposable).

Theorem 1.34 ([Davis, Theorem 6.8.12]). Let M = (mij) be a Coxeter
matrix over I, W the associated Coxeter group, and C = (cij) the associated
cosine matrix. Suppose that no mij is ∞. Then:

1. W can be represented as a spherical reflection group generated by the
reflections across the faces of a spherical simplex if and only if C is
positive definite.

2. Suppose, in addition, thatM is irreducible. ThenW can be represented
as a Euclidean reflection group generated by the reflections across the
faces of a Euclidean simplex if and only if C is positive semidefinite of
corank 1.

3. W can be represented as a hyperbolic reflection group generated by the
reflections across the faces of a hyperbolic simplex if and only if C is

16



nondegenerate of type (n, 1) and each principal submatrix is positive
definite.

We can restate the classification of finite Coxeter groups in terms of the
first property.

Theorem 1.35 ([Davis, 6.12.9]). Suppose M = (mij) is a Coxeter matrix
on a set I, that (cij) is its associated cosine matrix, and that (W,S) is its
associated Coxeter system. Then the following statements are equivalent:

1. W is a reflection group on Sn, n = |I| − 1, so that the elements of S
are represented as the reflections across the codimension-one faces of
a spherical simplex σ.

2. (cij) is positive definite.

3. W is finite.

1.5 Hyperbolic Coxeter groups

Let W be a hyperbolic reflection group where the convex polytope P is a
simplex. Such groups exist only in ranks 3 to 10, and there are only finitely
many in each of ranks 4 to 10. If the action of W on Hn is cocompact (W
is a compact hyperbolic group), such groups exist only in ranks 3, 4 and 5.
[Humphreys, 6.9 List of hyperbolic Coxeter groups]

The difference between compact and non-compact hyperbolic groups can
be characterized through the Coxeter diagram: if for a Coxeter system (W,S)
we remove a vertex (representing a generator s ∈ S) in the diagram Γ(W,S),
then the resulting diagram either represents a finite (in the compact case)
or an affine Coxeter group (in the non-compact case). [Humphreys, 6.8
Hyperbolic Coxeter groups]This leads us to the following definition:

Definition 1.36 ([Caprace]). Let (W,S) be a Coxeter system (with S finite).
We say that J is minimal hyperbolic if it is non-spherical and non-affine,
but every proper subset is spherical or irreducible affine.
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2 The Tits representation

The Tits representation is a commonly used tool in the theory of Coxeter
groups. It allows us to easily verify the order of generators in Coxeter groups,
derive properties of special subgroups, and helps define a metric on the Davis
complex. It may also be used as an aid in the classification of finite Coxeter
groups.

Theorem 2.1. Let (W,S) be a Coxeter system. Let V :=
⊕

s∈S Res be
an |S|-dimensional real vector space with canonical basis {es}s∈S. Define a
symmetric bilinear form B on V by:

B(es, et) =

{
− cos π

mst
mst 6=∞

−1 mst =∞

There exists a faithful action (the Tits representation or canonical
representation)

σ : W → GL(V )

s 7→ (σs : λ 7→ λ− 2B(es, λ)es)

where s ∈ S. The map σs represents the reflection across es to the
hyperplane

Hs := {λ ∈ V | B(es, λ) = 0}

and has the following properties:

1. σs is linear with fixed set Hs.

2. σs preserves the bilinear form B, that is B(σs(λ), σs(µ)) = B(λ, µ) for
all λ, µ ∈ V .

3. σs(es) = −es.

4. σ2
s = id for each s ∈ S.

5. σsσt has order mst for all distinct s, t ∈ S.

Proof. (Sketch) Properties 1 to 4 are clear. To determine the order of σsσt,
we distinguish the cases mst < ∞ and mst = ∞ (by definition of B). Let
Vst := Res⊕Ret. The bilinear form B is symmetric, and B is positive definite
on Vst if and only if mst <∞. In this case, (Vst, B|Vst) is an Euclidean plane,
and the subgroup of GL(V ) generated by σs and σt is a dihedral group of
order 2mst. [Elements, V.4.2] When mst =∞, B is positive semidefinite on
Vst, but σsσt(es) = es + 2(es + et); by induction, σsσt has infinite order on
Vst.
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With σ2
s = id and (σsσt)

mst = id, we extend S → GL(V ), s 7→ σs
to a homomorphism σ : W → GL(V ) by setting σ(w) := σs1 · · ·σsn for
w = s1 · · · sn ∈W .

It remains to show that the action σ is faithful. We proceed by consid-
ering the dual representation σ∗ : W → GL(V ∗), given by

(σ∗(w)(ϕ))(v) = ϕ(σ(w−1)(v)),

with ϕ ∈ V ∗, w ∈W and v ∈ V . If the dual σ∗ is faithful, then σ is also
faithful. The key to proving this is considering chambers

C := {ϕ ∈ V ∗ | ϕ(ei) ≥ 0 ∀i ∈ I},

and their interiors C̊. A theorem by Tits then says that if σ∗(w)C̊ ∩ C̊
is nonempty, then w = 1. The claim then follows: if σ∗(w) = 1, then
σ∗(w)(C) = C, or w = 1. The proof of the theorem uses the length ` of
w ∈ W (relative to the generating set S). See [Elements, V.4.4] for a full
description. For a combinatorial view on the dual representation σ∗, see
[Bjorner, 4.3 The numbers game].

Figure 5: The case mst <∞

An alternative way in proving that the Tits representation is faithful is
so-called root systems. [Suter, Corollary 4.7]

We are now able to prove the remaining properties in Proposition 1.5.

Proof of 1.5. We have already shown that each generator s ∈ S is an invo-
lution. Denote by ws the image of s in W . The composition s 7→ ws 7→ σs is
injective by Theorem 2.1.5 (if s 6= t, then σsσt has order ≥ 2), thus s 7→ ws
is also injective. This shows that each s ∈ S is distinct in W .
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It remains to show that each st has order mst. An element wst has at
most order mst, and σst has precisely order mst. It follows that wst has
precisely order mst, which shows the claim.

Remark 2.2. The matrix for the bilinear form B(es, et)s,t∈S is precisely the
Coxeter matrix C defined in Section 1.4.3. In particular, a Coxeter system
(W,S) of finite rank is finite, if and only if the canonical bilinear form is
positive-definite.

2.1 Coxeter polytopes

The Tits representation gives us a first geometric realisation of (finite) Cox-
eter groups, the Coxeter polytopes. Later on, we will paste together these
polytopes to get a piecewise Euclidean geometric realisation of an arbitrary
Coxeter group, called the Davis complex.

Let (W,S) be a finite Coxeter system with |S| = n. By Remark 2.2,
we can then identify V ∗ with Euclidean space En, and the chamber C is a
closed Euclidean simplicial sector cut out by hyperplanes. Choose a point x
in the interior of the chamber C. We call such an x a generic point (x is
determined by specifying its distance to each of the bounding hyperplanes,
i.e. by specifying an element of (0,∞)n.
Notation. From here on, write wC̊ for σ∗(w)C̊, w ∈W .

Definition 2.3 ([Davis, Definition 7.3.1]). Let (W,S) be a finite Coxeter
system. A Coxeter polytope (or Coxeter cell) associated to W is the
convex polytope CW defined as the convex hull of Wx (a generic W -orbit).

Lemma 2.4. Let C be chamber associated to a finite Coxeter system (W,S).
Then W acts simply transitively on the set WC̊ = {wC̊ | w ∈ W}. In
particular, for a generic point x ∈ C̊, |Wx| = |W |.

Proof. The action of W is transitive by construction. It remains to show
that it is free. Assume there are w 6= w′ in W such that wC̊ = w′C̊.
Then ww′−1C̊ = w′w′−1C̊ = C̊, in particular, ww′−1C̊ ∩ C̊ 6= ∅. By Tits,
ww′−1 = 1; a contradiction.

Example 2.5.

1. If W = Z2, then CW is the interval [−x, x].

2. If W = Dm, then C is a 2m-gon. (It is regular if the generic point x
is equidistant from the two rays which bound the fundamental sector
containing x.)

3. If (W,S) is reducible and decomposes as W = W1 × W2, then CW
decomposes as CW = CW1 × CW2 . In particular, if W = (Z2)n, then
CW is a product of intervals. (If x is equidistant from the bounding
hyperplanes, then CW is a regular n-cube.)
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Figure 6: A Coxeter polytope for W ∼= D6

Figure 7: A Coxeter polytope for W ∼= Z2 × Z2
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3 Special subgroups

We now turn to subgroups of Coxeter groups and state some of their impor-
tant properties.

Definition 3.1. For T ⊆ S, let WT be the subgroup of W generated by the
set T . We call subgroups of Coxeter systems (W,S) of this form special
subgroups.3 If the subgroup WT is finite, we call it spherical.4

We show the following properties of special subgroups.

Proposition 3.2 ([Bjorner, Proposition 2.4.1]). Let (W,S) be a Coxeter
system, and WT resp. WT ′ the subgroups generated by T ⊆ S resp. T ′ ⊆ S.
There holds:

1. (WT , T ) is a Coxeter system.

2. `T (w) = `(w) for all w ∈WT , where `T (w) denotes the length function
with respect to WT .

3. WT ∩WT ′ = WT∩T ′ .

4. 〈WT ∪WT ′〉 = WT∪T ′ .

5. If WT = WT ′, then T = T ′.

Proof.

1. [Humphreys, 5.5 Parabolic subgroups] Let M be the Coxeter matrix
associated to the Coxeter system (W,S) with S = {sj}j∈J . Let T =

{ti}i∈I , I ⊆ J be a subset of S. We define (W̃T , T̃ ) as the Coxeter
system associated to the (restricted) Coxeter matrix M |J×J , with T̃ =
{t̃}j∈J a copy of T .

If (WT , T ) is a Coxeter system, then the epimorphism W̃T � WT

(sending a word t̃ = t̃1 · · · t̃n in W̃T to an element t = t1 · · · tn in WT )
must be an isomorphism.

Let σT denote the canonical representation for W̃T with VT ⊆ V and
σ the canonical representation for W . We have the following diagram:

W̃T
� � σT //

## ##

GL(VT ) �
� // GL(V )

WT
� � //

σ|WT

OO

W
?�

σ

OO

3These groups are often called “(standard) parabolic”, after Bourbaki and relations to
parabolic subgroups in Lie theory resp. algebraic groups. We call them “special”, as the
strong algebraic properties in Proposition 3.2 do not hold for (finitely presented) groups
in general.

4The reason for the term “spherical” is that if (W,S) is an irreducible Coxeter system
with W finite, then W acts naturally on the sphere. [Davis, Theorem 6.12.9]
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The right diagram commutes, thus σ|WT
is a monomorphism. The

left diagram also commutes, thus it follows that W̃T → WT is an
isomorphism, and that (WT , T ) is a Coxeter system.

2. Let w ∈ WT . Let w = s1 · · · sq with `T (w) = q and s1, . . . , sq ∈ T . By
Theorem 1.19, if `(w) < q there are indices i < j such that s1 · · · sq =
s1 · · · ŝi · · · ŝj · · · sk. Since all si were already in T and `T (w) is minimal,
`(w) = q must hold.

3. The inclusion WT∩T ′ ⊆ WT ∩WT ′ is clear. Conversely, let w ∈ WT ∩
WT ′ . Then w has reduced expressions w = s1 · · · sn, si ∈ T and
w = t1 · · · tm, tj ∈ T ′ in WT and WT ′ , respectively By 2, `T (w) =
`(w) = `T ′(w), thus n = m. By Corollary 1.20.2, the set of letters in
(tj) matches the set of letters in (si), and w = s1 · · · sn, si ∈ T ∩ T ′ is
a reduced expression in WT∩T ′ .

4. As every element in 〈T ∪ T ′〉 is a finite product of elements in T ∪ T ′,
the claim follows.

5. Let T 6= T ′ be subsets of S, with s ∈ T and s /∈ T ′. If s ∈WT ′ , then by
2. there holds `(s) = 1 = `T ′(s), such that s ∈ T ′. Therefore s /∈WJ .

Corollary 3.3. Let (W,S) be a Coxeter system. The assignment of WI to I
defines a bijective, inclusion-preserving map between the collection of subsets
of S and the collection of subgroups WI of W . In particular, the partially
ordered set of subsets of S is isomorphic to the partially ordered set of special
subgroups of W .

Corollary 3.4 ([Davis, Theorem 4.1.6.(iii)]). Let (W,S) be a Coxeter sys-
tem. Let T, T ′ be subsets of S and w,w′ elements ofW . Then wWT ⊂ w′WT ′

(resp. wWT = w′WT ′) if and only if w−1w′ ∈ WT ′ and T ⊂ T ′ (resp.
T = T ′).

Parabolic closure By Proposition 3.2, the subgroup generated by the
intersection of subsets T ∩ T ′ ⊂ S is equal to the subgroup WT ∩WT ′ . That
means we can define the special closure (or parabolic closure) of an arbitrary
subset R ⊂W :

Definition 3.5. Let (W,S) be a Coxeter system, and R ⊂ W a subset.
The special closure of R is defined as the smallest special subgroup of W
containing R:

Pc(R) :=
⋂

T⊂S,R⊂WT

WT .
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3.1 Diagrams for special subgroups

We now consider Coxeter diagrams for special subgroups. The Coxeter dia-
gram for (WT , T ) is obtained by removing all nodes in S\T and their inci-
dent edges from the diagram for (W,S). Consider paths of shortest length
(geodesic paths) joining nodes in T to nodes in S\T . The number of edges
of such a path defines the distance between these nodes (or ∞ if there is no
such path.)

We can make this statement made precise through the set J⊥. Before
defining this set, we prove Remark 1.16.

Remark 3.6. If there is no edge between i and j in the Coxeter diagram,
then mij = 2 (or sisj = sjsi) by definition. This implies that if i and j are
in different connected components of the Coxeter diagram, they commute.

Remark (1.16). If W is reducible with connected components I and J , then
W allows a direct product composition:

WT ×WT ′ , T = (si)i∈I , T ′ = (sj)j∈J ,

where the subgroups WT and WT ′ in W are generated by T and T ′,
respectively.

Proof of Remark 1.16. By assumption, T and T ′ consist of elements in the
connected components I and J , respectively. Thus, T ∩T ′ = ∅ and T ∪T ′ =
S. By Proposition 3.2 there then holds:

WT ∩WT ′ = WT∩T ′ = W∅ = {1},
〈WT ∪WT ′〉 = WT∪T ′ = W.

Since elements of T and T ′ commute by Remark 3.6, we have W ∼=
WT ×WT ′ .

Definition 3.7. Let (W,S) be a Coxeter group and T ⊂ S a subset. We
define:

J⊥ := (S\T ) ∩ ZW (WT ) = {s ∈ S\T | sw = ws, ∀w ∈WT },

where ZW (WT ) denotes the centralizer of WT in W .

Lemma 3.8. Generators s ∈ S commute with all group elements w ∈ W if
and only if they commute with all generators t ∈ S. It follows that we may
rewrite J⊥ as:

J⊥ = {s ∈ S\T | st = ts, ∀t ∈ T}

Proof. For the first statement, proceed by induction of the length of w. By
Remark 3.6, these are exactly the vertices s ∈ S\T in the Coxeter diagram
with distance > 1 to vertices in T .
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Figure 8: The Coxeter group E6 (vertices of T in blue, vertices of J⊥ in red)
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4 Cayley graphs

In Section 5.2, we will define the 1-skeleton as the Cayley graph of a the
system (W,S). Here, we explain what Cayley graphs are, and how they can
be metricized.
Note. For an overview on (combinatorial) graphs, see [Groupes, IV. Annexe].
For details on Cayley graphs, see [Loeh, 3. Cayley graphs] or [Thomas, 2.2
Cayley graphs of Coxeter systems].

Definition 4.1. Let G be a group and let S ⊂ G be a generating set of G.
Then the Cayley graph of G with respect to the generating set S is the
graph Cay(G,S) whose set of vertices is G, and whose set of edges is

{{g, gs} | g ∈ G, s ∈ (S ∪ S−1)\{e}}.

If s ∈ S is an involution, put a single undirected edge between g ∈ G and
gs = gs−1.

Remark 4.2 (Action of G on Cay(G,S)).

1. The word metric dS on G (see Proposition 1.18) extends to the path
metric on Cay(G,S), that is, the metric in which each edge of Cay(G,S)
is a unit interval, and the distance between any two points in the graph
is given by the length of a shortest path between them.

2. The groupG acts by graph isomorphisms on the Cayley graph Cay(G,S)
via left translation:

G −→ Aut(Cay(G,S))

g 7−→ (h 7→ g · h);

This map is well-defined and a group homomorphism. It is an action
by isometries with respect to the path metric.

Example 4.3 (Examples of Cayley graphs).

1. The Cayley graph of D∞ = 〈s1, s2 | s2
i = 1〉 is the infinite regular tree

of degree 2. (That is, an infinite two-sided path.) The same holds for
the Cayley graph of (Z, {1}).

2. The Cayley graph of the additive group Z × Z with respect to the
generating set {(1, 0), (0, 1)} looks like the integer lattice in R2.

3. The Cayley graph of the cyclic group Z�6Z looks like a cycle graph.

4. The Cayley graph of the free group in two generators is the infinite
regular tree of degree 4.

Similarly, the Cayley graph of D∞ ×D∞ ∼= (Z2 oε Z)2 is dual to the
induced tesselation of R2 by squares.
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5. The Cayley graph of the finite dihedral group D6 (with respect to the
generating set S = {s1, s2}) is a hexagon.

6. The Cayley graph of the (3, 3, 3) triangle group (with respect to the
set of reflections in the sides of an equilateral triangle in R2) is dual to
the induced tesselation of R2.

Figure 9: The Cayley graph Cay(Z2, {(1, 0), (0, 1)})

Remark 4.4 (Properties of Cayley graphs).

• Cayley graphs are connected. Indeed, every vertex g can be reached
by the vertex of the neutral element by a path corresponding to a word
of minimal length.

• If Cayley graphs are isomorphic as graphs, their corresponding groups
are not isomorphic in general. [Loeh, Outlook 3.2.4] (In Example 4.3,
both Cay(D∞, {s1, s2}) and Cay(Z, {1}) are a line, but Z and D∞ ∼=
Z2 oε Z are not isomorphic.)

• The Cayley graph Cay(FS , S) of a free group FS is a tree. (Since each
element of FS can be written uniquely as a reduced word in S ∪ S−1,
there is a unique edge path connecting any given element to 1. Hence,
Cay(FS , S) contains no circuits.)

The converse is not true in general. (In Example 4.3, Cay(Z, {1}) is a
tree, but Z is not a free group.)

By definition, there holds:

• Every vertex has the same number |(S ∪ S−1)\{e}| of neighbours.
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Figure 10: The Cayley graph Cay(〈s1, s2 |〉, {s1, s2})

• Cayley graphs are locally finite (that is, every vertex has only finitely
many neighbours) if and only if the generating set S is finite.

Definition 4.5. A graph is simple if the end points of each edge are distinct
vertices (that is, the graph has no loops), and there is at most one edge
between any pair of vertices (that is, the graph has no multiple edges).

Lemma 4.6. Let (W,S) be a Coxeter system. Then Cay(W,S) is a con-
nected simple graph.

Proof. It remains to show that Cay(W,S) is simple. By Proposition 1.5.1, S
consists of involutions, hence 1 /∈ S. It follows that Cay(W,S) has no loops.

By our convention, the edges of Cay(W,S) are undirected edges of the
form {w,ws} for w ∈ W and s ∈ S. By Proposition 1.5.2, the elements of
S are pairwise distinct group elements in W , so there is at most one edge
between any two vertices of Cay(W,S).

4.1 Products in the Cayley graph

Recall that the direct product group
∏
i∈I Gi of (Gi)i∈I is the group whose

underlying set is the cartesian product
∏
i∈I Gi, and whose composition is

given by pointwise composition ((gi)i∈I , (hi)i∈I) 7→ (gi · hi)i∈I .
The aim of this section is to show that the Cayley graph of a direct

product of groups
∏
i∈I(Gi, Si) is the Cartesian product of the Cayley graphs
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Figure 11: Cayley graphs of the additive group Z

Cay(Gi, Si)i∈I . We follow [Imrich, 1.4 The Cartesian product] for basic terms
and definitions.

Definition 4.7. The Cartesian product Γ�Γ′ of two graphs Γ and Γ′

is defined on the Cartesian product V (Γ) × V (Γ′) of the vertex set of the
factors. The set of edges E(Γ�Γ′) is given by:

E(Γ�Γ′) = {{(u, v), (x, y)} | u = x, {v, y} ∈ E(Γ′), or,
{u, x} ∈ E(Γ), v = y}.

Since the Cartesian product of graphs is associative (that is, Γ1�(Γ2�Γ3) ∼=
(Γ1�Γ2)�Γ3) [Imrich, Proposition 1.36], it suffices to consider products of
two graphs.

Lemma 4.8. Let (W,S) and (W ′, S′) be Coxeter systems with corresponding
Cayley graphs Cay(W,S) and Cay(W ′, S′).

Then the Cartesian product Cay(W,S)�Cay(W ′, S′) is given by the Cay-
ley graph of the product (W ×W ′, StS′), where StS′ ∼= {1}×S′∪S×{1}.

Proof. First note that S t S′ is a generating set for the group W ×W ’, for
W and W ′ are generated by S and S′ respectively, and the composition in
W ×W ′ is pointwise.

By definition, the vertex set of Cay(W,S)�Cay(W ′, S′) is given by:

V (Cay(W,S))× V (Cay(W ′, S′)) = W ×W ′

= V (Cay(W ×W ′, S t S′).

The edge set of Cay(W,S)�Cay(W ′, S′) is given by:

{(w, v), (w · s, v) = (w · s, v · 1)}, w, v ∈W, s ∈ S,
{(w′, v′), (w′, v′ · s′) = (w′ · 1, v′ · s′)}, w′, v′ ∈W ′, s′ ∈ S′.

These are precisely the edges of Cay(W ×W ′, {1} × S′ ∪ S × {1}).
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Example 4.9. Let C6 denote the cyclic graph in 6 vertices, K2 the complete
graph on two vertices (an edge), K1,4 the complete bipartite graph on 1 and
4 vertices, and P3 the path on 3 vertices. Then the products C6�K2 and
K1,4�P3 are given as in Figure 12.

Figure 12: The products C6�K2 and K1,4�P3
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5 The Davis complex

The Davis complex gives an important class of examples for CAT(0) spaces.
Each Coxeter system (W,S) has a corresponding Davis complex Σ on which
it acts. There are three (up to homeomorphism) equivalent definitions of the
Davis complex, which may be used to demonstrate different properties; here
we will focus on the definition as CW complex.

Let (W,S) be a Coxeter system. The Davis complex may be defined
as follows:

• As a basic construction, a certain quotient space.

• As geometric realisation of a partially ordered set.

• As a CW-complex.

The last definition is efficient, in the sense that that there are no “topolog-
ically unimportant” cells. We introduce the Davis complex as a partially
ordered set and as a CW-complex. For details on the basic construction, see
[Davis, 5. The Basic Construction].

We show that Σ is a complete CAT(0) space (or Hadamard space) using
the following properties:

1. Σ is connected.

2. Σ is simply connected.

3. Σ is a complete geodesic space. For this we will use the Tits represen-
tation of a Coxeter group to define an appropriate metric.

4. Σ is locally CAT(0), i.e. of curvature 0.

As Σ is a complete CAT(0) space, we have in particular: (see [Davis, §12.3.4])

1. Σ is contractible.

2. The word and conjugation problems are solvable for W . (Recall that
the conjugation problem for a finitely generated group G asks for the
existence of an algorithm which can determine if two elements in G are
conjugates. The word problem considers if any given element in G is
the neutral element; see Problem 1.1.)

5.1 Geometric realization of a poset

In this section, we introduce the notion of a geometric realization of a par-
tially ordered set, a special case of the (standard) geometric realization of
an abstract simplicial complex. This will give us the first definition of the
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Davis complex Σ for a Coxeter system (W,S). For details on simplicial com-
plexes and partially ordered sets, see [Davis, Appendix A] or [Abramenko,
Appendix A.1]. For the closely related notion of the nerve, see [Davis, 7.1
The Nerve of a Coxeter System].

Definition 5.1. Given a partially ordered set (or poset) P and en element
p ∈ P, put

P≤p := {x ∈ P | x ≤ p}.

Define P≥p, P<p and P>p similarly.

Example 5.2.

• Given a convex polytope P , let ˜F(P ) denote its set of faces (including
the empty face), partially ordered by inclusion. Let F(P ) = F̃(P )>∅
denote the poset of nonempty faces. If ∆n is an n-simplex, then
F̃(∆n) ∼= P(In+1), where P(In+1) denotes the power set of In+1 =
{1, . . . , n+ 1}.

• Let (W,S) be a Coxeter system. Recall that a subset T of S is spherical
if WT is a finite subgroup of W . Let S(W,S) (or S) denote the poset
of all spherical subsets of S, ordered by inclusion.

Definition 5.3. An abstract simplicial complex consists of a set V ,
possibly infinite, called the vertex set, and a collection X of finite subsets
of V , such that

1. {v} ∈ X for all v ∈ V ; and

2. if ∆ ∈ X and ∆′ ⊆ ∆, then ∆′ ∈ X.

An element of X is called a simplex. If ∆ is a simplex and ∆′ ( ∆, then ∆′

is a face of ∆. The dimension of a simplex ∆ is dim ∆ = Card(∆)−1, and
a k-simplex is a simplex of dimension k. A 0-simplex is sometimes called a
vertex and a 1-simplex is sometimes called an edge.

Example 5.4 ([Davis, Example 7.1.5]). Let (W,S) be a Coxeter system and
S(W,S) the poset of spherical subsets. Suppose (W,S) decomposes as

(W,S) = (W1 ×W2, S1 t S2)

where the elements of S1 commute with those of S2. A subset T = T1∪T2,
Ti ⊂ Si, is spherical if and only if T1 and T2 are both spherical. It follows
that

S(W,S) ∼= S(W1, S1)× S(W2, S2)

Definition 5.5. A convex cell complex is a collection Λ of convex poly-
topes in an affine space A such that
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1. if P ∈ Λ and F is a face of P , then F ∈ Λ and

2. for any two polytopes P and Q in Λ, either P ∩ Q = ∅ or P ∩ Q is a
common face of both polytopes.

The elements of Λ are called cells. A subset Λ′ of Λ is a subcomplex if it
satisfies (1). If each cell of Λ is a simplex, then Λ is a simplicial complex.
The underlying space of Λ is, as a set, given by

X(Λ) :=
⋃
P∈Λ

P.

If Λ is locally finite (that is, each cell in Λ is a face of only finitely many
other cells in Λ), then X(Λ) is given the induced topology as a subspace of
A. Otherwise, it is topologized as the direct limit of the underlying spaces
of its finite subcomplexes.

Definition 5.6. A space X is a polyhedron if it is homeomorphic to (the
underlying space of) a convex cell complex.

Example 5.7. Given a convex polytope P , the set of all its nonempty faces
is a convex cell complex (also denoted as P ).

The boundary complex ∂P consists of all proper faces. If P is n-dimensional,
then the underlying space of P is an n-disk and the underlying space of ∂P
is an (n− 1)-sphere.

Definition 5.8. The standard n-simplex ∆n is the convex hull of the
standard basis e1, . . . , en+1 in Rn+1, that is,

∆n =

{
n+1∑
i=1

λiei | λi ≥ 0,
n+1∑
i=1

λi = 1

}

of the standard basis e1, . . . , en+1 in Rn+1.
Let X be an abstract simplicial complex with vertex set V . We asso-

ciate to X a convex cell complex Geom(X) by identifying each n-simplex ∆
in X with the standard n-simplex ∆n; this gives the n-cells in the associ-
ated simplicial cell complex. We call Geom(X) the standard geometric
realisation of X.

Definition 5.9. Let P be a partially ordered set. A chain is a totally
ordered subset of P. The flag complex (or order complex) Flag(P) of P
is the abstract simplicial complex of all finite chains in P.

The geometric realization of a poset P is the geometric realization
of Flag(P),

|P| := Geom(Flag(P)).

That is, we map finite chains in |P| with (n+1) elements to an n-simplex,
and the elements of P are vertices of |P|.

33



Definition 5.10. Let K denote the geometric realization of the poset S.
Let WS denote the poset

WS :=
⊔
T∈S

W/WT = {wWT | w ∈W, T ⊆ S spherical}

partially ordered by inclusion A ⊆ B. (Note that the poset WS is a
disjoint union: by Corollary 3.4, wWT = w′WT ′ if and only if T = T ′ and
w−1w′ ∈WT ′ .)

Definition 5.11. The Davis complex Σ is the geometric realization |WS|.
The group W acts on the poset WS by

W ×WS −→WS,
(w,w′WT ) 7−→ (ww′)WT ,

which induces an action of W on the geometric realization Σ = |WS|:

W × |WS| −→ |WS|,w, ∑
Ti⊆T

λi(w
′WTi)

 7−→ ∑
Ti⊆T

λi(ww
′WTi).

Remark 5.12. The projectionWS → S given by wWT → T induces a simpli-
cial projection π : Σ→ K. (Notice that by Corollary 3.4, the map WS → S
is well-defined.)

Similarly, the inclusion S ↪→WS given by T →WT induces an inclusion
ı : K ↪→ Σ. We identify K with its image ı(K), and call it (as well as any of
its translates by an element of W ) a chamber of Σ.

Proposition 5.13. Let (W,S) be a Coxeter system with Davis complex
Σ(W,S). Then the action of W on Σ is proper and cocompact.

Proof. By definition, Σ is locally finite and given the induced topology as a
subspace of Rn. Consider the orbit space

W\Σ = {[WT ] | T ⊆ S spherical}.

W\Σ is homeomorphic to the chamber K (compare [Davis, p.64], [Davis,
Theorem 7.2.4]). Because S is finite, K is compact. It follows that W\Σ is
compact, that is, W acts cocompactly on Σ. The remaining properties are
clear.
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Figure 13: Davis-Komplex for D6 (as poset)

Figure 14: Davis-Komplex for D∞ (as poset)

5.2 The Davis complex as CW complex

We now wish to endow the Davis complex Σ with a cell structure, coarser
than its simplicial structure, such that each cell is a Coxeter polytope.

Definition 5.14. A CW complex is a filtration

∅ = X(−1) = X(0) ⊂ X(1) ⊂ · · · ⊂ X(n) = X, n ∈ N

which is defined inductively over:

• X(0) =
⊔
{Pt}, equipped with the discrete topology;

• X(j) := X(j−1)
⊔
αD

j
α�x ∼ fα(x) with the quotient topology defined

by the attaching map

fα : δDj
α → X(j−1),

where Dj are j-dimensional balls. X(j) is called the j-skeleton.

The following Lemma shows that when a Coxeter group W is finite, we
can identify the simplicial complex Σ(W,S) with the barycentric subdivision
of the associated Coxeter polytope. That is, Σ(W,S) is topologically a cell.
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Lemma 5.15 ([Davis, Lemma 7.3.3]). Suppose W is finite and that C is
its associated Coxeter polytope. Let F(C) be its face poset, and x a generic
point. Then the correspondence w → wx induces an isomorphism of posets,
WS ∼= F(C). In other words, a subset of W corresponds to the vertex set of
a face of C if and only if it is a coset of a special subgroup of W .

In caseW is infinite, since the poset (WS)≤wWT
is isomorphic toWT (S≤T ),

the face corresponding to S≤wWT
is isomorphic to the barycentric subdivision

of a Coxeter cell of type WT . So we can put a cell structure on Σ, coarser
than its simplicial structure, by identifying each such barycentric subdivision
with the corresponding Coxeter cell.

Proposition 5.16 ([Davis, Proposition 7.3.4]). Let (W,S) be a Coxeter sys-
tem. The Davis complex Σ is given inductively by:

• 0-cells: {wW∅} where W∅ = 1. It follows:

Σ(0) = {w | w ∈W}

• To construct the 1-skeleton Σ(1), consider the cosets:

{wW{s} | w ∈W, s ∈ S}, wW{s} = {w,ws}.

Attach 1-dimensional balls (i.e. intervals) to each pair (of 0-cells)
{w,ws}. As S generates W , it follows that Σ(1) is the (geometric
realisation of) Cay(W,S).

• To construct the n-skeleton Σ(n), consider the cosets:

U := {wWT | w ∈W, T ⊆ S spherical, |T | = n}.

Attaching n-dimensional balls to u ∈ U in Σ(n−1) then results in the
n-skeleton Σ(n).

Remark. Since the generating set S of a Coxeter system (W,S) is finite, we
have Σ = Σ(n) for some n < ∞. In general, Σ may however have infinitely
many cells, for example when W is infinite.

The Davis complex is simply connected, as stated by the following propo-
sition.

Proposition 5.17 ([Thomas, Lemma 5.26], [Davis, 7.3.5]). Σ is simply con-
nected, i.e. Σ is path-connected and π1(Σ) is the trivial group.

Example 5.18. LetW ∼= D6. The 0-skeleton Σ(0) is given by {1, s, st, sts, ts, t}.
For every coset wW{s} and wW{t} we have the intervals:
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{1, s}
{s, st}
{st, sts}
{sts, ts}
{t, ts}
{1, t}

Table 1: 1-cells for D6

We attach these intervals to the corresponding vertices. In the 2-skeleton
we have a disc D2, attached to the vertices W{s,t} = W . (“Fill the Cayley
graph”)

Figure 15: Davis complex for D6 (as CW-Komplex)

In general, ifW is finite, there is an |S|-dimensional cell, |W | 0-dimensional
cells, and |T |-dimensional sells for all subsets T ⊆ S.

5.3 The CAT(0) inequality

The definition of Σ as a CW complex has allowed us to easily derive its
topological properties. We however have little information on the attaching
maps. We now wish to define a metric on the Davis complex Σ, such that
this metric satisfies the CAT(0) inequality.

Definition 5.19. A triangle ∆ in a metric space X is a configuration
of three geodesic segments (“edges”) connecting three points (“vertices”) in
pairs.

A (Euclidean) comparison triangle for ∆ is a triangle ∆∗ in R2 with
the same edge lengths. (Such comparison triangles always exist.)

If ∆∗ is a comparison triangle for ∆, then for each edge of ∆ there is a
well-defined isometry, denoted by x → x∗, which takes the given edge of ∆
onto the corresponding edge of ∆∗.
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Figure 16: The CAT(0)-inequality

Definition 5.20. A metric space X satisfies the CAT(0) inequality (or
is a CAT(0)-space) if the following two conditions hold:

1. X is a geodesic space;

2. For any triangle ∆, and any two points x, y ∈ ∆, we have:

d(x, y) ≤ d∗(x∗, y∗)

where x∗, y∗ are the corresponding points in the comparison triangle
∆∗, and d∗ is the distance in R2.

Remark 5.21. Similarly, a geodesic metric space X is CAT(-1) if geodesic
triangles in X are “no fatter” than comparison triangles in H2.

A metric space X is CAT(1) if all points in X at distance < π are
connected by geodesics, and all geodesic triangles in X with perimeter < 2π
are “no fatter” than comparison triangles in a hemisphere of S2.

Example 5.22.

• Pre-Hilbert spaces are CAT(0).

• When endowed with the induced metric, a convex subset of Euclidean
space Rn is CAT(0).

• Hyperbolic space Hn is CAT(0). Generally, we can show that CAT(-1)
spaces are CAT(0) and CAT(1).

5.4 The Davis complex is CAT(0)

We will add a metric to Σ as follows. First we will define a Coxeter polytope
through the Tits representation of (W,S). We will then assign a (fixed)
polytope of this type to every cell in Σ, turning Σ into a polyhedral complex.
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Definition 5.23. A (euclidean) polyhedral complex is a (finite-dimensional)
CW complex, where every n-cell is metrised as a convex polytope in Rn, and
the restrictions of the attaching maps to codimension-1 faces are isometries.

Theorem 5.24 ([Bridson, I.7.19]). If a connected polyhedral complex X has
finitely many isometry types of cells, then X is a complete geodesic space.

We wish to show:

Theorem 5.25. Σ is a complete CAT(0) space.

Proof. We show how to endow Σ with a piecewise Euclidean metric. Choose
a sequence of positive real numbers d = (ds)s∈S with each ds > 0. For every
finite WT , let

σT : WT → GLn(R), n = |T |

denote the Tits representation. For every t ∈ T , the reflection σt fixes the
hyperplane Ht with unit normal vector et, and for t, t′ ∈ T , the hyperplanes
Ht, Ht′ meet at dihedral angle π

m , where 〈t, t′〉 ∼= D2m. Let CT be the
chamber given by

CT = {x ∈ Rn | B(x, et) ≥ 0 ∀t ∈ T}.

Then there is a unique xT = xT (d) such that d(xT , Ht) = dt > 0 for any
t ∈ T . We now identify every cell of Σ with vertex set wWt with the Coxeter
polytope of CT , i.e. the convex hull of the WT orbit of xT .

Figure 17: Coxeter polytope for the action of W = D4

If we set ds = 1
2 for all s ∈ S, then every edge in the 1-skeleton has length

1. This implies:

• Σ is a polyhedral complex.

• There are only finitely many isometry classes of cells.

By Theorem 5.24, Σ is then a complete geodesic space. Furthermore, Σ is
simply connected by Proposition 5.17. (In particular, Σ equals its universal
cover Σ̃.) By the Cartan-Hadamard theorem for CAT(0) spaces, it
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then suffices to show that Σ is locally CAT(0). For details, see [Davis, Section
12.1].

Theorem 5.26 (Cartan-Hadamard theorem for CAT(0) spaces, [Bridson,
II.4.1]). Let X be a complete, connected geodesic metric space. If X is locally
CAT(0), then the universal cover of X is CAT(0).

Remark 5.27. In general polyhedral complexes are not CAT(0). Let X de-
note the 2-skeleton of a cube in R3. Geodesic triangles in X which contain
a vertex x are “thicker” than comparison triangles in R2.

Figure 18: A polyhedral complex which is not CAT(0).
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6 Flats in the Davis complex

In general, the Davis complex is not a manifold. As with symmetric spaces,
we study flat subspaces (flats) in the Davis complex, that is, spaces which are
isometric to Rn for some n ∈ N. In particular, we are interested in collections
of flats with isolated elements. We recall a few basic definitions in CAT(0)
geometry before expanding on this statement.

Definition 6.1. A subset Y of a CAT(0) space (X, d) is called convex if
the geodesic segment joining any two points of Y is entirely contained in Y .
A map f : X → R is a convex map if for each geodesic ρ : I → X, the
composed map f ◦ ρ : I → R is convex. In that case, sublevel sets of f are
convex subsets of X.

Clearly, a convex subset of a CAT(0) space is itself a CAT(0) space when
endowed with the induced metric.

Lemma 6.2 ([Bridson, Cor. II. 2.5]). Given a complete convex subset Y ⊂
X, the distance to Y , namely

dY : X −→ R

x 7−→ d(x, Y ) = inf
y∈Y

d(x, y)

is a convex map. Its sublevel sets are called tubular neighborhoods of
Y and denoted by Nr(Y ) = d−1

Y ([0, r]).

6.1 Products in the Davis complex

Recall that a group virtually has some property if a subgroup of finite
index has the property. For example, a finite group is virtually trivial. Since
Coxeter groups have faithful linear representations, they are virtually torsion
free. [Davis, Corollary D.1.4] In this section, we characterize when Coxeter
groups are virtually abelian, and the consequences for the Davis complex.

Theorem 6.3 ([Davis, Theorem 12.3.5], [Vinberg]). Let (W,S) be an ir-
reducible Coxeter system. Then W is virtually abelian if and only if W is
either a finite or an affine Coxeter group.

Corollary 6.4. Let (W,S) be a Coxeter system, and T ⊂ S a subset such
that WT is virtually abelian. Then Σ(WT , T ) is a product of En (for some
n ∈ N) and compact polyhedra P .

Proof.

• LetW be finite. Then by definition, the Davis complex Σ is a compact
polyhedron.
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• Let W be an affine Coxeter group. Then Σ is a tesselation of En by a
simple convex polytope P .

• Suppose that W decomposes as (W,S) = (W1 ×W2, S1 t S2). Then
S(W,S) = S(W1,W2) × S(W2, S2) by Example 5.4, and a Coxeter
polytope CWT

decomposes as CWT1
×CWT2

by Example 2.5.3. It follows
that Σ(W,S) decomposes as Σ(W1, S1)× Σ(W2, S2).

• By Theorem 6.3, WT is the product of affine and finite Coxeter groups.
By the above, the claim then holds.

Example 6.5. Consider W := (Z2 ∗Z2 ∗Z2)× (Z2 ∗Z2) with generating set
S := {s1, s2, s3} t {t1, t2} and Coxeter diagram:

• ∞

∞

•

∞

•

• ∞ •

The Cayley graph is given by the Cartesian product of the Cayley graphs of
the direct factors C∗32 and C∗22 . Thus we know the 1-skeleton. Furthermore,
as |S| = 5 and W is an infinite group, we have at most spherical subgroups
of rank 4. We consider the different cases:

Case 1. |T | = 2, that is

T = {s1, t1} ∨ {s1, t2} ∨ {s1, s2} ∨ {s1, s3} ∨ {s2, s3}
∨ {t1, t2} ∨ {s2, t1} ∨ {s2, t2} ∨ {s3, t1} ∨ {s3, t2}

W{s1,s2},W{t1,t2},W{s2,s3} andW{s1,s3} are infinite dihedral groups.
This leaves the groups W{si,tj}, i ∈ {1, 2, 3} and j ∈ {1, 2}. The
si and tj commute by definition, thus the corresponding groups
are finite:

〈s1, t1〉 = {1, s1, t1, s1t1}, 〈s1, t2〉 = {1, s1, t2, s1t2},
〈s2, t1〉 = {1, s2, t1, s2t1}, 〈s2, t2〉 = {1, s2, t2, s2t2},
〈s3, t1〉 = {1, s3, t1, s3t1}, 〈s3, t2〉 = {1, s3, t2, s3t2}.

These are precisely the (vertex sets of the) cells of the “filled in”
Cayley graph.

Case 2. |T | = 3, then either WT must contain an infinite dihedral sub-
group, or WT = 〈s1, s2, s3〉 which is infinite. The case |T | = 4 is
similar.
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6.2 Flat subspaces

Definition 6.6. Let (W,S) be a Coxeter system. A flat subspace in the
Davis complex Σ is a subset F ⊆ Σ which is isometric to Rn for some n ≥ 2.
We call a flat subspace special if there exists a special subgroup WT for
T ⊆ S such that 〈J〉 is virtually abelian.

Definition 6.7. Let F be a collection of closed convex subsets of Σ. We say
the elements of F are isolated in Σ if the following conditions:

(A) There is a constant D < ∞ such that each flat F of Σ lies in a D-
tubular neighborhood of some C ∈ F.

(B) For each positive r < ∞ there is a constant ρ = ρ(r) < ∞ so that for
any two distinct elements C,C ′ ∈ F we have

diam(Nr(C) ∩Nr(C ′)) < ρ,

where Nr(C) denotes the r-tubular neighborhood of C.

If F consists of flats, we say that Σ has isolated flats.

The main result for isolated flats is given by the following theorem.

Proposition 6.8. Let (W,S) be a Coxeter system. The following assertions
are equivalent:

1. For all non-spherical J1, J2 ⊂ S such that [J1, J2] = 1, the group 〈J1 ∪
J2〉 is virtually abelian.

2. For each minimal hyperbolic J ⊂ S, the set J⊥ is spherical.

Proof. We show the equivalence ¬(i)⇔ ¬(ii).

• ¬(i)⇒ ¬(ii).

Let J1, J2 ⊂ S such that 〈J1 ∪ J2〉 is not virtually abelian. Note that
[J1, J2] = 1 implies that J2 ⊂ J⊥1 (*), and that J is the direct product
〈J1〉 × 〈J2〉. Then either J1 or J2 is non-affine and non-spherical by
Theorem 6.3. Denote this set by J .

By assumption both J1 and J2 are non-spherical, thus by (*) J⊥ is non-
spherical as well. Any minimal non-spherical and non-affine subset I
of J is minimal hyperbolic, and since I ⊂ J we have I⊥ ⊃ J⊥. In
particular, I⊥ is non-spherical, failing (ii).

• ¬(ii)⇒ ¬(i).

Assume there is some minimal hyperbolic J ⊂ S such that J⊥ is non-
spherical. Then J is non-spherical, [J, J⊥] = 1 and the group 〈J ∪J⊥〉
is the direct product of a non-spherical, non-affine Coxeter group with
a non-spherical Coxeter group, failing (i).
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Theorem 6.9 ([Caprace, Corollary D]). Let (W,S) be a Coxeter system.
The Davis complex Σ has isolated flats if and only the assertions in Propo-
sition 6.8 are satisfied.

Using the above criterion, we give an example of a Coxeter system (W,S)
where the Davis complex has isolated flats.

Example 6.10. Let W := Z2 ∗ (3, 3, 3) with Coxeter diagram

•
∞

•

•
∞

•
∞

We show that W satisfies the conditions of Theorem 6.9. First note
that (W,S) is not minimally hyperbolic – none of the possible diagrams
for minimally hyperbolic groups of rank 4 match. We thus look at rank
≤ 3 subsets J ⊂ S which may be. (Note there are no hyperbolic groups of
rank ≤ 2. In particular • • and • ∞ • are dihedral groups, resp.
spherical and affine.) By symmetry, it suffices to consider the subdiagram:

•

•

∞

•

∞

The set J⊥ is given by all vertices with distance d > 1 to J :

•
∞

•

•
∞

d=1

•
∞

d=1

It follows that J⊥ = ∅, thus WJ⊥ = {1}. In particular, J⊥ is spherical.
By the theorem, the Davis complex Σ(W,S) has isolated flats.

We now give an example of a Coxeter group where the Davis complex Σ
does not have isolated flats.

Example 6.11. Let W ′ := (Z2 ∗ Z2 ∗ Z2)× (Z2 ∗ Z2) be the Coxeter group
from Example 6.5. We first compute which special subgroups result in flat
subspaces in Σ.
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Case 1. |T | = 3. The “ladders” 〈si, t1, t2〉, i ∈ {1, 2, 3} are homeomorphic
to R× [0, 1] and equipped with a piecewise Euclidean metric. As
[0, 1] is compact, these spaces cannot be homeomorphic (in par-
ticular, not isometric) to R2. The cases 〈si, sj , tk〉 with k ∈ {1, 2}
are similar.

Case 2. |T | = 4. The groups 〈si, sj , t1, t2〉 are isometric to R2, and thus
result in a flat subspace in Σ(W,S). Note that 〈s1, s2, s3, tk〉 are
homeomorphic to [0, 1]× R2 and thus not isometric to R3.

Now assume that Σ has isolated flats. In particular, there is a collection
of flats F which satisfies condition (B). Let r = 1 and consider the tubular
neighborhoods N1(Σ(W1, S1)) and N1(Σ(W2, S2)). Then these neighbour-
hoods intersect in the “ladder” Σ(〈s1, t1, t2〉), which has infinite diameter; a
contradiction.

We could read directly from the diagram that W ′ does not have isolated
flats, again by 6.9. Let J1 := {s1, s2, s3} and J2 := {t1, t2}. Then clearly
[J1, J2] = 1 and J1, J2 are non-spherical. However, 〈J1 ∪ J2〉 = W ′ is not
virtually abelian, as the factor WJ1 is not an affine Coxeter system.
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