Differentialgeometrie 1

Leipzig, Wintersemester 2017/18

Dr. Gabriele Benedetti — Prof. Dr. Hans-Bert Rademacher

Aufgaben Serie 13, 22.01.2018

13-1 Für eine nach der Bogenlänge parametrisierte Kurve $c:(0,1)\longrightarrow \mathbb{R}^3$ sei die Abbildung

$$f: (t,s) \in (0,1) \times (0,\infty) \longmapsto f(t,s) = c(t) + sc'(t) \in \mathbb{R}^3$$

gegeben.

- (a) Geben Sie eine Bedingung an die Kurve an, unter der die Abbildung die Parametrisierung einer Fläche in \mathbb{R}^3 definiert.
- (b) Bestimmen Sie in diesem Fall die erste Fundamentalform, die Hauptkrümmungen und die Hauptkrümmungsrichtungen. Was ist die Gauß-Krümmung von f?
- 13-2 Es sei $f: \mathbb{R}^2 \to \mathbb{R}^3$ das Flächenstück f(u, v) = (u, v, uv).
 - (a) Berechnen Sie die partiellen Ableitungen $\frac{\partial f}{\partial u}$ und $\frac{\partial f}{\partial v}$ und zeigen Sie somit, dass die Abbildung d $f: \mathbb{R}^2 \to \mathbb{R}^3$ vollen Rang besitzt. Berechnen Sie die Gauß-Abbildung $\nu: \mathbb{R}^2 \to \mathbb{R}^3$ der Fläche.
 - (b) Berechnen Sie die erste und die zweite Fundamentalform.
 - (c) Berechnen Sie die Gauß-Krümmung und die mittlere Krümmung in allen punkten der Fläche.
 - (d) Berechnen Sie die Hauptkrümmungen und die Hauptkrümmungsrichtungen in (u, v) = (0, 0).
- 13-3 Es sei M ein parametrisiertes Flächenstück in \mathbb{R}^3 . Das heißt, dass M die Bildmenge einer Immersion $f:U\to\mathbb{R}^3$ ist. Weiter sei $\nu:U\to S^2$ das Einheitsnormalenfeld von M. Zeigen Sie:
 - (a) ν ist konstant genau dann, wenn M in einer Ebene enthalten ist.
 - (b) Es gibt eine Konstante $\rho \neq 0$ mit der Eigenschaft, dass d $f = \rho d\nu$ genau dann, wenn M Teilmenge einer Sphäre mit Radius $|\rho|$ ist.
- 13-4 Es sei M ein parametrisiertes Flächenstück in \mathbb{R}^3 mit Parametrisierung $f:U\to\mathbb{R}^3$. Es sei angenommen, dass jedes $p\in M$ ein Nabelpunkt ist. Das heißt, dass für jedes $p\in M$ die Weingarten-Abbildung $S=\mathrm{d}\nu\circ(\mathrm{d}_pf)^{-1}:T_pM\to T_pM$ ein Vielfaches der Identität ist:

$$S_p \cdot X = \lambda(p)X, \quad \forall X \in T_pM.$$

Zeigen Sie, dass die Funktion $\lambda:U\to\mathbb{R}$ konstant ist.

Hinweis: Schreiben Sie die Gleichung für $X=\frac{\partial f}{\partial x^1}$ bzw. $X=\frac{\partial f}{\partial x^2}$ auf und leiten Sie nach x^2 bzw. x^1 ab.

Folgern Sie dann aus der Aufgabe 2, dass M in einer Ebene oder in einer Sphäre enthalten ist.

13-5 Es sei $c:I\to\mathbb{R}^3$ eine nach der Bogenlänge parametrisierte Kurve mit nirgends verschwindender Krümmung κ , die in einem Flächenstück M enthalten ist. Zeigen Sie, dass c eine Geodätische ist genau dann, wenn

$$\mathbf{n}(t) = \nu(c(t)), \quad \forall t \in I,$$

wobei **n** der Normalenvektor von c ist und $\nu:M\to S^2$ die Gauß-Abbildung ist.

- 13-6 (a) Es sei $c: I \to M$ eine Geodätische auf einer Fläche in \mathbb{R}^3 und sei angenommen, dass die Krümmung κ von c nirgends verschwindet. Zeigen Sie, dass c genau dann eben ist, wenn c eine Krümmungslinie ist. (Nämlich ist für jedes $t \in I$ die Geschwindigkeit c'(t) eine Hauptkrümmungsrichtung.)
 - (b) Ist eine
ebene Krümmungslinie eine Geodätische? ${\it Hinweis: Rotations-fläche.}$
 - (c) Finden Sie eine Fläche M in \mathbb{R}^3 und eine Gerade $L\subset M$, die keine Krümmungslinie ist. Hinweis: Aufgabe 2.
- 13-7 Es sei $f: \mathbb{R}^2 \to \mathbb{R}^3$ das Ennepersche Flächenstück:

$$f(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, u^2 - v^2\right).$$

- (a) Berechnen Sie die partiellen Ableitungen $\frac{\partial f}{\partial u}$ und $\frac{\partial f}{\partial v}$ und zeigen Sie somit, dass die Abbildung d $f:\mathbb{R}^2\to\mathbb{R}^3$ vollen Rang in jedem Punkt besitzt. Berechnen Sie die Gauß-Abbildung $\nu:\mathbb{R}^2\to\mathbb{R}^3$ der Fläche.
- (b) Berechnen Sie die erste und die zweite Fundamentalform.
- (c) Berechnen Sie die Hauptkrümmungen, die Gauß-Krümmung und die mittlere Krümmung in allen punkten der Fläche.
- (d) Finden Sie die Krümmungslinien.
- 13-8 Für welche reellen Zahlen a, b gibt es eine Fläche in \mathbb{R}^3 , so dass die 1. und 2. Fundamentalform I, II bezüglich einer Parametrisierung die folgende Gestalt haben?

$$I = \left(\begin{array}{cc} 41 & 0 \\ 0 & 41 \end{array} \right), \qquad II = \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right).$$