A REMARK ON THE EXISTENCE OF $K(\pi, 1)$'s OVER THE RATIONALS

Patrick Forré and Jochen Gärtner

November 17, 2009

Abstract

Let p be an odd prime number and S a finite set of prime numbers $\equiv 1 \bmod p$. In [Lab06], J. Labute showed that there exists set S_{0} of prime numbers $\equiv 1 \bmod p$ with $\left|S_{0}\right|=|S|$ such that the group $G_{S \cup S_{0}}(p)$ is a mild pro-p-group. In particular we have $\operatorname{cd}\left(G_{S \cup S_{0}}(p)\right)=2$ and the scheme $\operatorname{Spec}(\mathbb{Z}) \backslash\left(S \cup S_{0}\right)$ is a $K(\pi, 1)$ for p. In [Sch07] and in more generality in [Sch08], A. Schmidt extended this result to arbitrary number fields k. We will show that if $k=\mathbb{Q}$ it is always possible to enlarge a given set S of prime numbers $\equiv 1 \bmod p$ by two prime numbers $\equiv 1$ mod p such that the resulting group is mild. Moreover in many cases it is sufficient to add one single prime. Finally we give analogous result in the case $p=2$.

1 Construction of strongly free sequences

We make use of the following general criterion by A. Schmidt, cf. [Sch07], Th. 5.5.
(1.1) Proposition. Let k be a field and $L(X)$ the free Lie algebra over $X=$ $\left\{\xi_{1}, \ldots, \xi_{d}\right\}$. Furthermore let $\rho_{1}, \ldots, \rho_{r} \in L(X)$ be given such that

$$
\rho_{i}=\sum_{1 \leq k<l \leq d} a_{i k l}\left[\xi_{k}, \xi_{l}\right]
$$

for all $i=1, \ldots, r$ with $a_{i k l} \in k$. Assume that there exists a natural number a, $1 \leq a<d$ such that
(i) $a_{i k l}=0$ for $a<k<l \leq d$ and all $i=1, \ldots, r$,
(ii) the $r \times a(d-a)$-matrix

$$
\left(a_{i k l}\right)_{i,(k, l)}, 1 \leq i \leq r, 1 \leq k \leq a<l \leq d
$$

has rank r.
Then the sequence $\rho_{1}, \ldots, \rho_{r}$ is strongly free.

Applying this criterion we will prove the following lemma:
(1.2) Lemma. Let k be a field, $n \geq 2$ and $L(X)$ the free Lie algebra over $X=\left\{\zeta_{1}, \ldots, \zeta_{n+2}\right\}$. Let $\rho_{1}, \ldots, \rho_{n+2} \in L(X)$ be given such that

$$
\begin{aligned}
\rho_{i} & =\sum_{1 \leq k<l \leq n} a_{i k l}\left[\zeta_{k}, \zeta_{l}\right]+b_{i}\left[\zeta_{i}, \zeta_{n+1}\right]+c_{i}\left[\zeta_{i}, \zeta_{n+2}\right], i=1, \ldots, n \\
\rho_{n+1} & =d\left[\zeta_{n+1}, \zeta_{2}\right] \\
\rho_{n+2} & =e\left[\zeta_{n+2}, \zeta_{1}\right]
\end{aligned}
$$

where $a_{i l}, b_{i}, c_{i} \in k$, such that
(i) $d, e, b_{1}, c_{2} \neq 0$ and
(ii) $b_{i} \neq 0$ or $c_{i} \neq 0$ for $i=3, \ldots, n$.

Then the sequence $\rho_{1}, \ldots, \rho_{n+2}$ is strongly free.
Proof. We apply (1.1) with $a=n$. Since the commutator $\left[\zeta_{n+1}, \zeta_{n+2}\right]$ doesn't occur in any of the $\rho_{i}, i=1, \ldots, n+2$ condition (i) of (1.1) holds. Furthermore the matrix of condition (ii) of (1.1) is of the form

$$
\left(\begin{array}{ccccccccc}
& {\left[\xi_{1}, \xi_{n+1}\right]} & {\left[\xi_{2}, \xi_{n+1}\right]} & \ldots & {\left[\xi_{n}, \xi_{n+1}\right]} & {\left[\xi_{1}, \xi_{n+2}\right]} & {\left[\xi_{2}, \xi_{n+2}\right]} & \ldots & {\left[\xi_{n}, \xi_{n+2}\right]} \\
\rho_{1} & b_{1} & 0 & \ldots & 0 & c_{1} & 0 & \cdots & 0 \\
\rho_{2} & 0 & b_{2} & \ldots & 0 & 0 & c_{2} & \cdots & 0 \\
\vdots & & & \vdots & & & & & \vdots \\
\rho_{n} & 0 & 0 & \ldots & b_{n} & 0 & 0 & \cdots & c_{n} \\
\rho_{n+1} & 0 & -d & \ldots & 0 & 0 & 0 & \cdots & 0 \\
\rho_{n+2} & 0 & 0 & \cdots & 0 & -e & 0 & \cdots & 0
\end{array}\right) .
$$

This matrix has rank $n+2$ which follows immediately from the assumptions. This completes the proof.

Roughly spoken, the above lemma states the following: If $n \geq 2, L(X)$ is the free Lie Algebra on $X=\left\{\zeta_{1}, \ldots, \zeta_{n}\right\}$ and a sequence $\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}$ of homogeneous elements of degree 2 in $L(X)$ is given, then by adding two generators ζ_{n+1}, ζ_{n+2} one can obtain a strongly free sequence $\rho_{1}, \ldots, \rho_{n+2}$ in $L\left(X \cup\left\{\zeta_{n+1}, \zeta_{n+2}\right\}\right)$ such that for $i=1, \ldots, n$ we have $\rho_{i} \equiv \rho_{i}^{\prime} \bmod \left\langle\zeta_{n+1}, \zeta_{n+2}\right\rangle$ (here $\left\langle\zeta_{n+1}, \zeta_{n+2}\right\rangle$ denotes the ideal of $L\left(X \cup\left\{\zeta_{n+1}, \zeta_{n+2}\right\}\right)$ generated by $\left.\left\{\zeta_{n+1}, \zeta_{n+2}\right\}\right)$. Under certain conditions one can obtain a strongly free sequence by adding one single extra generator. The precise statement is the following:
(1.3) Lemma. Let k be a field, $n \geq 3$ and $L(X)$ the free Lie algebra over $X=\left\{\xi_{1}, \ldots, \xi_{n+1}\right\}$. Let $\rho_{1}, \ldots, \rho_{n+1} \in L(X)$ be given by

$$
\begin{aligned}
\rho_{i} & =\sum_{1 \leq l \leq n} a_{i l}\left[\xi_{i}, \xi_{l}\right]+b_{i}\left[\xi_{i}, \xi_{n+1}\right], i=1, \ldots, n, \\
\rho_{n+1} & =\sum_{1 \leq l \leq n} c_{l}\left[\xi_{n+1}, \xi_{l}\right]
\end{aligned}
$$

where $a_{i l}, b_{i}, d \in k$, such that
(i) $a_{1 n}, a_{n 2}, c_{1} \neq 0, c_{n}=0$ and
(ii) $b_{i}=0$ if and only if $i \in\{1, n\}$.

Then the sequence $\rho_{1}, \ldots, \rho_{n+1}$ is strongly free.
Proof. We apply (1.1) with $a=n-1$. Since $b_{n}=c_{n}=0$ condition (i) of (1.1) holds and the $(n+1) \times 2(n-1)$-matrix of conditon (ii) is of the form

$$
\left(\begin{array}{ccccccccc}
& {\left[\xi_{1}, \xi_{n}\right]} & {\left[\xi_{2}, \xi_{n}\right]} & \ldots & {\left[\xi_{n-1}, \xi_{n}\right]} & {\left[\xi_{1}, \xi_{n+1}\right]} & {\left[\xi_{2}, \xi_{n+1}\right]} & \cdots & {\left[\xi_{n-1}, \xi_{n+1}\right]} \\
\rho_{1} & \mathbf{a}_{\mathbf{1 n}} & 0 & \ldots & 0 & 0 & 0 & \cdots & 0 \\
\rho_{2} & 0 & a_{2 n} & \ldots & 0 & 0 & \mathbf{b}_{\mathbf{2}} & \cdots & 0 \\
\vdots & & & \ddots & & & & \ddots & \\
\rho_{n-1} & 0 & 0 & \ldots & a_{n-1, n} & 0 & 0 & \cdots & \mathbf{b}_{\mathbf{n}-\mathbf{1}} \\
\rho_{n} & -a_{n 1} & -\mathbf{a}_{\mathbf{n} 2} & \ldots & -a_{n, n-1} & 0 & 0 & \cdots & 0 \\
\rho_{n+1} & 0 & 0 & \ldots & 0 & -\mathbf{c}_{\mathbf{1}} & -c_{2} & \cdots & -c_{n-1}
\end{array}\right)
$$

where the bold coefficients are non-zero by assumption. This matrix clearly has rank $n+1$ and the claim follows.

2 Arithmetic Results

We want to deduce some arithmetic consequences for p-extensions with tame ramification over \mathbb{Q}. We start by recalling some notation:

We fix an odd prime number p. Let $S=\left\{q_{1}, \ldots, q_{n}\right\}$ be a finite set of prime numbers $\equiv 1 \bmod p$. Let $G_{S}(p)$ denote the Galois group of the maximal pro- p-extension of \mathbb{Q} unramified outside S. Then $\operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(G_{S}(p), \mathbb{Z} / p \mathbb{Z}\right)=$ $\operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(G_{S}(p), \mathbb{Z} / p \mathbb{Z}\right)=n$ and $G_{S}(p)$ admits a minimal presentation of Koch type, i.e. a presentation

$$
1 \rightarrow R \rightarrow F \rightarrow G_{S}(p) \rightarrow 1
$$

where F is the free pro- p-group on generators x_{1}, \ldots, x_{n} and R is generated by $\rho_{1}, \ldots, \rho_{n}$ as a normal subgroup of F with

$$
\rho_{i} \equiv x_{i}^{q_{i}-1} \cdot \prod_{j=1, \ldots, n}\left[x_{i}, x_{j}\right]^{a_{i j}} \quad \bmod F_{3}, i=1, \ldots, n,
$$

where $a_{i j} \in \mathbb{F}_{p}, a_{i i}=0$, for $i \neq j$ we have $a_{i j}=0$ if and only if q_{i} is a p-th power modulo q_{j} (cf. [Koc02], ch. 11.3) and $\left(F_{i}\right)_{i \geq 1}$ denotes the descending p-central series of F. The numbers $a_{i j}$ are called linking numbers of S with respect to p. We denote by $\Gamma_{S}(p)$ the associated linking diagram of S with respect to p (cf. [Lab06]).
We make the following notational convention for all upcoming statements in this section:
(2.1) Notation. A prime q is a prime number $q \equiv 1 \bmod p$.
(2.2) Proposition. Let $S=\left\{q_{1}, \ldots, q_{n}\right\}$ be a finite set of primes. Then there exists a prime q_{n+1} with the additional edges of $\Gamma_{S \cup\left\{q_{n+1}\right\}}(p)$ arbitrarily prescribed. Precisely if $d_{i}, e_{i} \in\{0,1\}, i=1, \ldots, n$ are given, then there exists a prime q_{n+1} such that for the linking numbers $a_{i j}$ of $S \cup\left\{q_{n+1}\right\}$ with respect to p we have $a_{i, n+1}=0$ if and only if $d_{i}=0$ and $a_{n+1, i}=0$ if and only if $e_{i}=0$.

Proof. See [Lab06], Prop. 6.1.
We can now proof the following

(2.3) Theorem.

(i) Let $n \geq 3$ and $S=\left\{q_{1}, \ldots, q_{n}\right\}$ a finite set of primes. Suppose there exist pairwise distinct $i_{1}, i_{2}, i_{3} \in\{1, \ldots, n\}$ such that for the linking numbers $a_{i j}$ of S with respect to p we have $a_{i_{1} i_{2}}, a_{i_{2} i_{3}} \neq 0$. Then there exists a prime q_{n+1} such that the group $G_{S \cup\left\{q_{n+1}\right\}}(p)$ is mild.
(ii) Let $n \geq 2$ and $S=\left\{q_{1}, \ldots, q_{n}\right\}$ a finite set of primes. Then there exist two primes q_{n+1}, q_{n+2} such that the group $G_{S \cup\left\{q_{n+1}, q_{n+2}\right\}}(p)$ is mild.
(For the definition of a mild pro-p-group we refer to [Lab06].)
Proof. (i) We may assume that $i_{1}=1, i_{2}=n, i_{3}=2$. By (2.2) there is a prime q_{n+1} such that $a_{1, n+1}=a_{n, n+1}=a_{n+1, n}=0, a_{i, n+1} \neq 0$ for $i=2, \ldots, n-1$ and $a_{n+1,1} \neq 0$. Now (1.3) (ii) applies and $G_{S \cup\left\{q_{n+1}, q_{n+2}\right\}}(p)$ is mild.
(ii) If $n \geq 2$ and $S=\left\{q_{1}, \ldots, q_{n}\right\}$ is an arbitrary set of primes, then by (2.2) we can find a prime q_{n+1} such that $a_{1, n+1}, a_{n+1,2}$ are both non-zero. Now the claim follows by applying (i) to the set $S \cup\left\{q_{n+1}\right\}$. Note that one can also directly show this claim by applying the more general lemma (1.2).
(2.4) Remark. Using arithmetic properties of $G_{S}(p)$, in [Sch06], Th. 2.1 A. Schmidt proofs the following result: Let S be a finite set of primes and assume there is a subset $T \subseteq S$ such that $\Gamma_{T}(p)$ is a non-singular circuit and for each $q \in S \backslash T$ there is a directed path in $\Gamma_{S}(p)$ starting in q and ending with a prime in T. Using (2.2) again, from this one can easily deduce that for a given set $S=\left\{q_{1}, \ldots, q_{n}\right\}$ two primes q_{n+1}, q_{n+2} can be found such that we have $c d G_{S \cup\left\{q_{n+1}, q_{n+2}\right\}}(p)=2$. Note that in (2.3) we obtain the slightly stronger statement that $G_{S \cup\left\{q_{n+1}, q_{n+2}\right\}}(p)$ is a mild pro-p-group.

We want to give an example for $p=3$.
(2.5) Example. Let $p=3$ and $S=\left\{q_{1}, \ldots, q_{4}\right\}$ where

$$
q_{1}=7, q_{2}=181, q_{3}=673, \text { and } q_{4}=3037
$$

The linking diagram of S with respect to p has no edges, i.e. we have $a_{i j}=0$ for all $i, j \in\{1, \ldots, 4\}$. In particular we do not know whether $c d\left(G_{S}(3)\right)=2$. Now by (2.3) we can find two primes $q_{5}, q_{6} \equiv 1 \bmod 3$ such that $G_{S \cup\left\{q_{5}, q_{6}\right\}}(3)$ is mild. First we are looking for a prime q_{5} such that the linking numbers satisfy $a_{15}, a_{52} \neq 0$. For example, such a prime is given by $q=13$. Finally we'd like to find a prime q_{6} such that $a_{16}=a_{56}=a_{65}=0$ and $a_{26}, a_{36}, a_{46}, a_{61} \neq 0$. We may
choose $q_{6}=2131$. More precisely the resulting linking diagram $\Gamma_{S \cup\left\{q_{5}, q_{6}\right\}}(3)$ is of the form

and (1.3) applies. Note that the primes $\{7,13,3037,2131\}$ form a non-singular circuit and since there are edges starting in 181 and 673 respectively and ending in 2131, [Sch06], Th. 2.1 also applies (cf. (2.4)).

3 The case $p=2$

Now we consider the case $p=2$. By quadratic reciprocity clearly proposition (2.2) cannot hold anymore in this case. However we can prove the following analogue of theorem (2.3):

(3.1) Theorem.

(i) Let $n \geq 3$ and $S=\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$ a finite set of odd prime numbers. Suppose that there exist pairwise distinct $i_{0}, i_{1}, i_{2}, i_{3} \in\{0, \ldots, n\}$ such that the following holds:
$-q_{i_{0}}, q_{i_{1}} \equiv 3 \bmod 4$,
$-q_{i_{3}} \equiv 1 \bmod 4$,
$-q_{i_{3}}$ is a square $\bmod q_{i_{0}}$ but is not a square $\bmod q_{i_{1}}$ and $q_{i_{2}}$.
Then there exists a prime number $q_{n+1} \equiv 1 \bmod 4$ such that the group $G_{S \cup\left\{q_{n+1}\right\}}(2)$ is a mild pro-2-group.
(ii) Let $n \geq 2$ and $S=\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$ a finite set of odd prime numbers containing at least two prime numbers $\equiv 3 \bmod 4$. Then there exist two prime numbers $q_{n+1}, q_{n+2} \equiv 1 \bmod 4$ such that $G_{S \cup\left\{q_{n+1}, q_{n+2}\right\}}(2)$ is a mild pro-2-group.
(3.2) Corollary. Let S be a finite set of odd prime numbers. We set $S_{0}:=\{q \in S \mid q \equiv 3 \bmod 4\}$ and

$$
\delta:= \begin{cases}3, & \text { if } S=\varnothing \\ 2, & \text { if } S \neq \varnothing, S_{0}=\varnothing \\ 1, & \text { if } \# S_{0}=1 \\ 0, & \text { else }\end{cases}
$$

Then there exist $k:=2+\delta$ odd prime numbers q_{1}, \ldots, q_{k} such that the group $G_{S \cup\left\{q_{1}, \ldots, q_{k}\right\}}(2)$ is a mild pro-2-group. In particular if S is non-empty, there are always four odd primes q_{1}, \ldots, q_{4}, such that $G_{S \cup\left\{q_{1}, \ldots, q_{4}\right\}}(2)$ is mild.

In order to give a proof of (3.1) we need a slight generalization of (1.1) involving quadratic terms. The desired result is the following:
(3.3) Proposition. Let G be a pro-2-group that admits a presentation

$$
1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1
$$

where F is the free pro-p-group on generators x_{1}, \ldots, x_{d} and as R is generated by $\rho_{1}, \ldots, \rho_{r}$ as a normal subgroup of F with

$$
\rho_{i} \equiv \prod_{j=1}^{d}\left(x_{j}^{2}\right)^{a_{i j}} \cdot \prod_{1 \leq k<l \leq d}\left[x_{k}, x_{l}\right]^{a_{i k l}} \quad \bmod F_{3}, i=1, \ldots, r
$$

where $a_{i j}, a_{i k l} \in \mathbb{F}_{2}$ and $\left(F_{i}\right)_{i \geq 1}$ denotes the lower 2 -central-series of F. Moreover, suppose that there is a natural number a satisfying $1 \leq a<d$ such that the following conditions hold:
(i) $a_{i j}=0$ for $a<j \leq d$ and all $1 \leq i \leq r$,
(ii) $a_{i k l}=0$ for $a<k<l \leq d$ and all $i=1, \ldots, r$,
(iii) the $r \times a(d-a)$-matrix

$$
\left(a_{i k l}\right)_{i,(k, l)}, 1 \leq i \leq r, 1 \leq k \leq a<l \leq d
$$

has rank r.
Then G is a mild pro-2-group with generator rank d and relation rank r. In particular we have $c d G \leq 2$.

Proof. This is a direct reformulation of [LM09], Th. 1.1. In order to see this, first note that $\operatorname{dim}_{\mathbb{F}_{p}} H^{1}(G)=d$ since $R \subseteq F_{2}$. Now let $\chi_{1}, \ldots, \chi_{d} \in H^{1}(G)$ be the corresponding dual basis of the images of x_{1}, \ldots, x_{d} in $G^{a b} / p$. Then we have $a_{i j}=\bar{\rho}_{i}\left(\chi_{j} \cup \chi_{j}\right)$ and $a_{i k l}=\bar{\rho}_{i}\left(\chi_{k} \cup \chi_{l}\right)$. Here $\bar{\rho}_{i}$ denotes the image of ρ_{i} under the map

$$
R \longrightarrow R / R^{2}[R, F] \xrightarrow{\psi} H^{2}(G)^{*}
$$

where ψ is the inverse map of the dual of the transgression isomorphism tg: $H^{1}\left(R / R^{2}[R, F]\right) \xrightarrow{\sim} H^{2}(G)(c f$. [NSW08], Th. 3.9.13). Note that by condition (iii) we have $\operatorname{dim}_{\mathbb{F}_{p}} H^{2}(G)=\operatorname{dim}_{\mathbb{F}_{p}}\left(R / R^{2}[R, F]\right)=r$, so $\left\{\rho_{i}, i=1, \ldots, r\right\}$ is a minimal system of defining relations of G. Let U, V be the subspaces of $H^{1}(G)$ generated by $\chi_{1}, \ldots, \chi_{a}$ and $\chi_{a+1}, \ldots, \chi_{d}$ respectively. Then by conditions (i) and (ii), the cup product is trivial on $V \times V$ and maps $U \times V$ surjectively onto $H^{2}(G)$ by condition (iii). Thus G is mild by [LM09], Th. 1.1. (A proof using a different approach from that in [LM09] can also be found in [For10], Cor. 6.5.)

Proof of (3.1). For the proof of (i) we may assume that $i_{0}=0, i_{1}=1, i_{2}=2$ and $i_{3}=n$. Now we can choose a prime number q_{n+1} such that the following holds:
$-q_{n+1} \equiv 1 \bmod 4$,
$-q_{n+1}$ is not a square $\bmod q_{0}$,
$-q_{n+1}$ is a square $\bmod q_{1}$,
$-q_{n+1}$ is not a square $\bmod q_{i}, i=2, \ldots n$,
$-q_{n+1}$ is a square $\bmod q_{n}$.
Let $G:=G_{S \cup\left\{q_{n+1}\right\}}(2)$. Since S contains a prime number $\equiv 3 \bmod 4$, the group B_{S} and hence also the group $\mathrm{B}_{S \cup\left\{q_{n+1}\right\}}$ vanishes and G has the presentation $G=\left\langle x_{0}, \ldots, x_{n+1} \mid \rho_{0}, \ldots, \rho_{n+1}, \rho\right\rangle$, where

$$
\begin{aligned}
\rho_{i} & \equiv\left(x_{i}^{2}\right)^{a_{i}} \prod_{j=0}^{n+1}\left[x_{i}, x_{j}\right]^{a_{i j}^{\prime}} \bmod F^{\prime \prime}, i=0, \ldots, n+1 \\
\rho & \equiv \prod_{i=0}^{n+1} x_{i}^{a_{i}} \bmod F^{\prime}
\end{aligned}
$$

with $a_{i}, a_{i j}^{\prime} \in \mathbb{F}_{2}$ such that $a_{i}=0$ if and only if $q_{i} \equiv 1 \bmod 4$ and $a_{i j}^{\prime}=0$ if and only if q_{i} is a square $\bmod q_{j}$. Thus since $q_{0} \equiv 3 \bmod 4$, we may omit the generator x_{0}. Furthermore, we may omit the relation ρ_{0} and obtain a minimal presentation $G=F / R=\left\langle x_{1}, \ldots, x_{n+1} \mid \rho_{1}^{\prime}, \ldots, \rho_{n+1}^{\prime}\right\rangle$ where

$$
\rho_{i} \equiv\left(x_{i}^{2}\right)^{a_{i}} \prod_{j=1}^{n+2}\left[x_{i}, x_{j}\right]^{a_{i j}} \bmod F^{\prime \prime}, i=1, \ldots, n+2
$$

with

$$
a_{i j}=a_{i j}^{\prime}+a_{i 0}^{\prime} a_{j}, i, j=1, \ldots, n+2
$$

(cf. [Koc02], Ex. 11.12). By the assumptions made and by construction of q_{n+1} we have $a_{1, n}=a_{n, 1}=a_{2, n}=a_{n, 2}=1, a_{1, n+1}=0$ and $a_{i, n+1}=1$ for all $i=2, \ldots, n-1$. Furthermore $a_{n+1,1}=1$ and for $i=2, \ldots, n-1$ we have $a_{n+1, i}=0$ if and only if $q_{i} \equiv 3 \bmod 4$. We will now apply (3.3) with $a=n-1$. Since $q_{n} \equiv q_{n+1} \equiv 1 \bmod 4$, we have $a_{n}=a_{n+1}=0$ and hence condition (i) holds. Furthermore we have $a_{n, n+1}=a_{n+1, n}=0$, hence also condition (ii) is fulfilled. Finally the $(n+1) \times 2(n-1)$-matrix of condition (iii) is of the form

$$
\left(\begin{array}{ccccccccc}
& {\left[x_{1}, x_{n}\right]} & {\left[x_{2}, x_{n}\right]} & \ldots & {\left[x_{n-1}, x_{n}\right]} & {\left[x_{1}, x_{n+1}\right]} & {\left[x_{2}, x_{n+1}\right]} & \ldots & {\left[x_{n-1}, x_{n+1}\right]} \\
\rho_{1} & 1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\rho_{2} & 0 & 1 & \ldots & 0 & 0 & 1 & \ldots & 0 \\
\vdots & & & \ddots & & & & \ddots & \\
\rho_{n-1} & 0 & 0 & \ldots & a_{n-1, n} & 0 & 0 & \ldots & 1 \\
\rho_{n} & 1 & 1 & \ldots & a_{n, n-1} & 0 & 0 & \ldots & 0 \\
\rho_{n+1} & 0 & 0 & \ldots & 0 & 1 & a_{n+1,2} & \ldots & a_{n+1, n-1}
\end{array}\right)
$$

and clearly has rank $n+1$. Thus we obtain (i).
For the proof of (ii) let $n \geq 2$ and $S=\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$ a finite set of odd prime numbers where we may assume $q_{0} \equiv q_{1} \equiv 3 \bmod 4$. Then we can find a prime $q_{n+1} \equiv 1 \bmod 4$ such that q_{n+1} is a square $\bmod q_{0}$ but is not a square $\bmod q_{1}$ and q_{2}. Now the claim follows by applying (i) to the set $S \cup\left\{q_{n+1}\right\}$.

References

[For10] Patrick Forré. Strongly free sequences and pro-p-groups of cohomological dimension 2. to appear in J. Reine u. Angew. Mathematik, 2010.
[Koc02] Helmut Koch. Galois Theory of p-Extensions. Springer, 2002.
[Lab06] John Labute. Mild Pro- p-Groups and Galois Groups of p-Extensions of \mathbb{Q}. J. Reine u. Angew. Mathematik, 596, 2006.
[LM09] John Labute, and Ján Mináč. Mild pro-2-groups and 2-extensions of \mathbb{Q} with restricted ramification. preprint, 2009.
[NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of Number Fields. second edition. Springer, 2008.
[Sch06] Alexander Schmidt. Circular sets of prime numbers and p-extensions of the rationals. J. Reine u. Angew. Mathematik, 596, 2006.
[Sch07] Alexander Schmidt. Rings of integers of type $k(\pi, 1)$. Doc. Math., 12, 2007.
[Sch08] Alexander Schmidt. Über Pro-p-Fundamentalgruppen markierter arithmetischer Kurven. to appear in J. Reine u. Angew. Mathematik, 2008.

