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Poincaré group, Wigner classification

Self-Publishing, 2016



Eberhard Freitag
Universität Heidelberg
Mathematisches Institut
Im Neuenheimer Feld 288
69120 Heidelberg
freitag@mathi.uni-heidelberg.de

This work is subject to copyright. All rights are reserved.
c© Self-Publishing, Eberhard Freitag



Contents

Chapter I. Representations 1

1. The groups that we will treat in detail 1
2. The Lie algebras that will occur 4
3. Generalities about Banach- and Hilbert spaces 8
4. Generalities about measure theory 11
5. Generalities about Haar measures 16
6. Generalities about representations 21
7. The convolution algebra 26
8. Generalities about compact groups 31

Chapter II. The real special linear group of degree two 39

1. The simplest compact group 39
2. The Haar measure of the real special linear group of degree two 39
3. Principal series for the real special linear group of degree two 41
4. The intertwining operator 45
5. Complementary series for the rea lspecial linear group of degree two 48
6. The discrete series 48
7. The space Sm,n 51
8. The derived representation 56
9. Explicit formulae for the Lie derivatives 59
10. Analytic vectors 63
11. The Casimir operator 64
12. Admissible representations 68
13. The Bargmann classification 74
14. Automorphic forms 78
15. Some comments on the Casimir operator 80

Chapter III. The complex special linear group of degree two 82

1. Unitary representations of some compact groups. 82
2. The Lie algebra of the complex linear group of degree two 88



Contents

3. Casimir operators 91
4. The Casimir and explicit formulae 93
5. Structure of the complex special linear group of degree two 99
6. Principal series for the complex special linear group of degree two 101
7. Complementary series for the complex special linear group of degree two106
8. Multiplicity one 109
9. Differentiable and analytic vectors 110
10. Unitary dual of the complex special linear group of degree two 112

Chapter IV. The Poincaré group 121
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Chapter I. Representations

1. The groups that we will treat in detail

Let K be a field. The basic groups are

GL(n,K) = {A ∈ Kn×n; detA 6= 0} (general linear group),

SL(n,K) = {A ∈ Kn×n; detA 6= 0} (special linear group),

in particular
SL(2,R), SL(2,C).

We denote by Ep the p× p unit-matric and by

Epq =

(
−Eq 0

0 Ep

)
.

The orthogonal groups are

O(p, q) =
{
A ∈ GL(n,R); A′EpqA = Epq

}
, p+ q = n

and the unitary groups are

U(p, q) =
{
A ∈ GL(n,C); Ā′EpqA = Epq

}
, p+ q = n

Their subgroups of determinant 1 are denoted by SO(p, q) and SU(p, q) will
be studied in detail. In the case q = 0 we omit q in the notation, O(p) =
O(p, 0), . . .. The main examples we will treat are

SO(2) ⊂ SL(2,R), SU(2) ⊂ SL(2,C).

There will occur some exceptional isomorphisms. Let S1 be the group of com-
plex numbers of absolute value one. Obviously

S1 = U(1).
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There is also the isomorphism

SO(2)
∼−→ S1,

(
a b
c d

)
7−→ a− ib.

Its inverse is given by

ζ = eit 7−→
(

cos t − sin t
sin t cos t

)
.

The Lorentz group is O(3, 1). It contains two subgroups of index two. One is
SO(3, 1), the other (the so-called orthochronous Lorentz group) can be defined
through

O+(3, 1) = {A ∈ O(3, 1); a11 > 0}.

(We will see that this is actually a group). Both subgroups are open and closed.
The intersection

SO+(3, 1) = O+(3, 1) ∩ SO(3, 1)

is called the proper orthochronous Lorentz group. It is a subgroup of index 4
of the Lorentz group. This subgroup is closely related to the group SL(2,C).
We will construct a surjective homomorphism

SL(2,C) −→ SO+(3, 1)

such that each element of SO+(3, 1) has two pre-images which differ only by
the sign. One says that SL(2,C) is a twofold covering of SO+(3, 1) and one
calls this the spin covering and uses the notation Spin(3, 1) = SL(2,C).

The group O(3) can be embedded into the Lorentz group O(3, 1) by means
of

A 7−→
(

1 0
0 A

)
.

It is contained in O+(3, 1), hence SO(3) occurs as subgroup of SO+(3, 1). It
turns out that the subgroup SU(2) ⊂ SL(2,C) maps onto SO(3). Hence

SU(2) −→ SO(3)

is also a surjective homomorphism such that each element of the image has
exactly two pre-images which differ by a sign. This should be considered again
as a spin covering, so the notation Spin(3) = SU(2) looks natural.

The group O(3, 1) is also called the homogeneous Lorentz group. The inho-
mogeneous Lorentz group is the set of all transformations of R4 of the form

v 7−→ A(v) + b
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where A is a Lorentz transformation and b ∈ R4. This group can be identified
with the set O(3, 1)× R4. The group law then is

(g, a)(h, b) = (gh, a+ gb).

We write for the inhomogeneous Lorentz group simply

O(3, 1)R4.

There is an embedding

O(3, 1)R4 −→ GL(5,R), (g, a) 7−→
(
g a
0 1

)
.

This defines an isomorphism of the extended Lorentz group onto a closed sub-
group of GL(5,R).

A variant of the inhomogeneous Lorentz group is the Poincaré group P (3).
As set it is

P (3) = SL(2,C)× R4

and the group law is
(g, a)(h, b) = (gh, a+ gb).

Here one has to use the action of SL(2,C) on R4 that comes from the projection
SL(2,C)→ SO+(3, 1).

There is a natural homomorphism P (3) → SO+(3, 1)R4. It is a twofold
covering in the obvious sense.

The group P (3) can be considered as closed subgroup of SL(7,C), the em-
bedding given by

(G, a) 7−→

G 0 0
0 g a
0 0 1

 ,

where g ∈ SO(3, 1) is the image of G ∈ SL(2,C).

Table of the important groups

S1 ∼= SO(2) ⊂ SL(2,R)

SU(2) ⊂ SL(2,C)

SO(3) ⊂ SO+(3, 1)

↑ ↑
SU(2) ⊂ SL(2,C)

P (3) = SL(2,C)R4
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The four little groups

There are 4 subgroups of SL(2,C) which are called little groups, namely

SL(2,C), SL(2,R), SU(2), Iso(2).

Here

Iso(2) :=

{(
ζ z
0 ζ−1

)
; ζ ∈ S1, z ∈ C

}
is the so-called isobaric spin group.

The classification of the irreducible unitary representations of the Poincaré
group needs the following steps.

Classify all irreducible unitary representations of the little groups. The
easiest case is SU(2), since this is a compact group which implies that the
irreducible unitary representations are finite dimensional. The case SL(2,R) is
already involved. The classification in this case is due to Bargmann, V. (1947).
The case SL(2,C) has been settled be Gelfand, I. and Naimark, M. (1950).
The group Iso(2) is a special case that follows easily from the Mackey theory.

The irreducible unitary representations of the Poincaré group are derived
from the representations of the little groups through an induction procedure.
Irreducible unitary representations of the little groups are lifted in a certain
way to irreducible unitary representations P (3). These are called induced rep-
resentations. This is due to Wigner, E.P. (1938) and has been extended by
Mackey, G. (1978).

In these notes we will touch on all of these topics and some them will be
treated in very detail.

2. The Lie algebras that will occur

A (real or complex algebra) g is a real or complex vector space g together with
a (R- or C-) bilinear map g×g→ g. Every complex algebra has an underlying
real algebra. There is an obvious notion of homomorphism of real or complex
algebras and there is an obvious notion of cartesian product of two (real or
complex) algebras g1 × g2. The product has to be taken componentwise.

[(A1, B1), (A2, B2)] = ([A1, A2], [B1, B2]).

An algebra g is called a real or complex Lie algebra if there exists an injective
R- or C-linear map g→ Cn×n such that the multiplication corresponds to the
Lie bracket

[A,B] = AB −BA.
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Notice that any complex Lie algebra can be considered as a real Lie algebra.

We recall the exponential function for matrices A ∈ C(n,n):

exp(A) =
∞∑
n=0

An

n!
.

It is clear that this series converges absolutely. The rule

B−1 exp(A)B = exp(B−1AB)

is trivial. We need also the rule

det exp(A) = exp(tr(A))

which can be reduced to diagonal matrices (using the previous rule and the
fact that the set of all matrices with n pairwise different eigenvalues is dense
in the set of all matrices).

The rule
exp(A+B) = exp(A) + exp(B)

holds if A,B commute. There are generalizations to the case where A,B do
not commute. To get them one needs the matrix logarithm

− log(E −A) =

∞∑
n=1

An

n

that converges for small A. Hence logA is defined in a small neighbourhood of
the unit matrix. One has

elogA = A, A close to E, log eA = A, A close to 0.

For fixed A,B we now consider.

log
(
exp(tA) exp(tB)

)
.

This is defined when t is sufficiently small It can be expanded into a power
series. One can compute

log
(
exp(tA) exp(tB)

)
= tA+ tB +

1

2
t2[A,B] + · · ·

or

exp(tA) exp(tB) = exp
(
tA+ tB +

1

2
t2[A,B] + · · ·

)
.

This formula is a link between the multiplication in the group and the Lie
bracket.
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In these lectures we deal with matrix groups. Here we understand by a ma-
trix group a topological group G together with an embedding G ↪→ GL(n,C).
This means an topological isomorphism onto a closed subgroup of some
GL(n,C). So matrix groups are locally compact groups.

Let G ↪→ GL(n,C) be a matrix group. We consider the set g of all matrices
A such that exp(tA) ∈ G for all t ∈ R. So we get a map

g −→ G, A 7−→ exp(A).

It can be shown that g is a real Lie algebra. (This does not exclude that in
some cases it is a complex Lie algebra.) This means that g is a real vector
space and that A,B ∈ g implies that [A,B] ∈ g. There is no need to give a
proof, since in all cases that we treat this will be clear.

We give an example. Consider the group SU(2). Its Lie algebra consists
of all 2 × 2-matrices A such that etA is unitary for all real t. This means
eAteĀ

′t = E. We differentiate this formula by t and evaluate at t = 0. By
means of the product formula above we get A + Ā′ = 0. Conversely this
formula implies that etA is unitary for real t. Hence the Lie algebra of SU(2)
consists of all A with the property A + Ā′ = 0. This algebra is denoted by
su(2). Similar notations are used for other groups.

There is another basic fact which we will use in some particular cases where
it will be clear. Let G ⊂ GL(n,C), H ⊂ GL(m,C) be two closed subgroups
and let G → H be a continuous homomorphism. Then there exists a unique
real Lie homomorphism g→ h of the corresponding Lie algebras such that the
diagram

G −→ H
↑ ↑
g −→ h

commutes. If G → H is a topological isomorphism then g → h is an isomor-
phism too. In particular, the Lie algebra of a matrix group G is the same for
all embeddings G → GL(n,C). But there is even a better result. If G → H
is locally topological at the origin then g → h is an isomorphism of Lie alge-
bras. Assume for example that G is an open subgroup of H, then the canonical
inclusion induces an isomorphism of Lie algebras. Please notice that an open
subgroup of a topological group is always a closed subgroup. Hence the groups
O(3, 1), SO(3, 1), O(3, 1), SO+(3, 1) have the same Lie algebras.

A similar result states. Let G → H be a surjective continuous homomor-
phism with discrete kernel. Then g→ h is an isomorphism.

Some Lie algebras

We associate to each group G in the list

GL(n,C), SL(n,C), GL(n,R), SL(n,R), O(p, q), SO(p, q), U(p, q), SU(p, q)
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their Lie algebra g

gl(n,C) = Cn×n,

sl(n,C) = {A ∈ gl(n,C), tr(A) = 0},
gl(n,R) = Rn×n,

sl(n,R) = {A ∈ gl(n,R), tr(A) = 0},
o(p, q) = {A ∈ gl(n,R), A′Ep,q + Ep,qA = 0},
so(p, q) = o(p, q) ∩ sl(p+ q,R)},
u(p, q) = {A ∈ gl(n,C), Ā′Ep,q + Ep,qA = 0},
su(p, q) = u(p, q) ∩ sl(p+ q,C).

We mentioned that we will construct a surjective homomorphism SL(2,C) →
SO+(3, 1) whose kernel consists of two elements ±E. Then the induced homo-
morphism of Lie algebras is an isomorphism,

SL(2,C) −→ SO+(3, 1)
↑ ↑

sl(2,C)
∼−→ so(3, 1)

.

We will construct this isomorphism explicitly later. The groups SL(2,C) and
SO(3, 1) have the same Lie algebra. But these groups are not isomorphic.

Next we investigate the Lie algebra of the extended Lorentz group. In our
setting it arises as set of all real 5× 5 matrices of the form(

A a
0 0

)
, A ∈ so(3, 1), a ∈ R4.

This can identified with the vector space

so(3, 1)× R4

equipped with the Lie bracket

([(A, a), (B, b)] = ([A,B], Ab−Ba).

In this formula a, b are understood as column vector. Similarly the Lie algebra
of the Poincaré group group can identified with the space of all matricesA 0 0

0 B a
0 0 1

 , A ∈ sl(2,C), B its image in so(3, 1), b ∈ R4.

This can be also identified with the pairs (A, a). Hence the Lie algebras of the
extended Lorentz group and the Poincaré group are isomorphic. We take for
the Lie algebra of the Poincaré group the model

p = sl(2,C)R4
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equipped with the Lie bracket

([(A, a), (B, b)] = ([A,B], Ab−Ba).

In all our cases we described concretely a map

exp : g −→ G, exp(A) = eA.

We formulate a general fact which is rather clear in our cases.

2.1 Lemma. In all cases above, the map exp : g→ G is locally topological at
0, i.e. it maps a suitable small open neighborhood of 0 ∈ g onto a small open
neighborhood of the unit element in G.

Proof. The proof is very easy. One constructs an inverse of the exponential
map by means of the matrix logarithm

− log(E −A) =
∞∑
n=1

An

n

which, as we know already, converges in a small neighborhood of A = 0.
tu

(For readers who know the notion of a Lie group we mention that Lemma
2.1 can be used to equip G with a structure as Lie group such that exp : g→ G
is a local diffeomorphism at e. The dimension of G and the (real) dimension
of g is the same. This makes it easy to compute the dimension of a matrix
group.)

3. Generalities about Banach- and Hilbert spaces

Usually, we consider only vector spaces over the field of real or complex num-
bers. If E,F are two vector spaces, we denote by Hom(E,F ) the space of all
(real- or complex-) linear maps. In the case E = F we write Hom(E,E) =
End(E). If we want to point out to the ground field, we write

HomC (E,F ), HomR (E,F ), . . .

The group of all invertible operators in End(E) is denoted by GL(E) (or
GLC (E), GLR (E)).

A seminorm on a vector space E is a real valued function ‖ · ‖ on E with
the properties ‖a‖ ≥ 0 and ‖Ca‖ = |C|‖a‖, ‖a + b‖ ≤ ‖a‖ + ‖b‖ (a, b ∈ E),
C ∈ C (or R)). It is called a norm if ‖a‖ = 0 implies a = 0. For a seminorm
‖ · ‖ on E the set of all vectors of norm 0 is a subspace N ⊂ E. The seminorm
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factors to a norm on E/N . If ‖ · ‖ is a norm, then hen ‖a − b‖ is a metric on
E. The normed space E is called complete, or a Banach space, if every Cauchy
sequence converges. Every normed space E can be embedded into a Banach
space Ē as a dense subspace (with the restricted norm) in an essentially unique
manner. One calls Ē the completion of E. Let F ⊂ E be a linear subspace of
a Banach space. It is a closed subspace if and only if it is a Banach space (with
respect to the restricted norm). The closure of a linear subspace in a Banach
space is a linear subspace and hence a Banach space. It can be identified with
its completion. Since any two norms on a finite dimensional vector space are
equivalent, every finite dimensional normed vector space is a Banach space. As
a consequence, every finite dimensional subspace of a normed vector space is
closed.

A linear map A : E → F between normed vector spaces is called bounded if
there exists a constant C ≥ 0 such that ‖Aa‖ ≤ C‖a‖ for all a ∈ E. Then there
exists a smallest number C with this property. It is called the norm of A and is
denoted by ‖A‖. We mention that A is bounded if and only if it is continuous
(at the origin is enough). Any bounded operator A : E → F extends to a
bounded operator of the completions Ē → F̄ which we usually denote by the
same letter. For finite dimensional E,F each linear map is bounded. Let E
be a normed space and F be a Banach space. The subspace of all bounded
operators

B(E,F ) ⊂ Hom(E,F )

of Hom(E,F ) is a Banach space (equipped with the operator norm). We use
the abbreviation

B(E) = B(E,E).

If F is the ground field (R or C) then E′ = B(E,F ) is the so called dual space.

An important theorem on Banach spaces is the open mapping theorem. It
states that any linear bounded and surjective operator f : E → F of Banach
spaces is open, i.e. the image of an open subset is open. In particular, a
bijective linear bounded operator f : E → F has the property that its inverse
is automatically bounded, hence an invertible element in B(E). We denote
the group of invertible elements by B∗(E). A consequence of this is the closed
graph theorem. It states that a linear map f : E → F between Banach spaces is
bounded if an only of the graph {(x, f(x)); x ∈ E} is a closed subset of E ×F
(equipped with the product topology).

All what we have said so far about Banach spaces can be formulated and
is true for real and complex Banach spaces. Now we consider complex vector
spaces.

A Hermitian form on a complex vector space E is a function 〈·, ·〉 : E×E →
C which is linear in the first variable and which has the property 〈a, b〉 = 〈b, a〉.
It is called semipositive if 〈a, a〉 ≥ 0 and positive definite if 〈a, a〉 = 0 implies
a = 0. For a semipositive Hermitian form ‖a‖ :=

√
〈a, a〉 is a seminorm. It
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is a norm if the Hermitian form is positive definite. Then we call (E, 〈·, ·〉) a
Hermitian space and a Hilbert space if it is a Banach space with this norm.
The completion of a Hermitian space carries not only a structure as Banach
space but also as Hilbert space.

We will make use of the theorem of Riesz:

Let L : H → C be a continuous linear functional on a Hilbert space H. Then
there exists a unique vector a ∈ H such that L(x) = 〈x, a〉 (and each linear
functional of this kind is continuous and has the norm ‖L‖ = ‖a‖).

These special linear forms show that for every vector a ∈ H, a 6= 0, there exists
a continuous linear functional L with the property L(a) 6= 0.

This statement is also true for Banach spaces. From the theorem of Hahn-
Banach follows the following result:

For each non-zero vector a ∈ E of a Banach space there exists a continuous
linear functional L with the property L(a) 6= 0. One can obtain ‖a‖ = ‖L‖.
We will make use of another important result about Hilbert spaces. Let A ⊂ H
be a closed linear subspace (hence a Hilbert space). Denote by

B = {b ∈ H; 〈a, b〉 = 0 for all a ∈ A}

the orthogonal complement of A. This is a closed linear subspace (hence a
Hilbet space) and one has H = A⊕B.

A family (ai)i∈I is called an orthonormal system if any two members with
different indices are orthogonal and if the norm of each member is one. A
Hilbert space basis of a Hilbert space is by definition a maximal orthonormal
system. It is easy to show (using Zorn’s lemma and the above remark about
orthogonal complements) that Hilbert space bases do exist. Even more, every
orthonormal system is contained in a maximal one.

A Hilbert space H is called separable if it contains a countable dense subset.
One can show that this is the case if and only if each (one is enough) Hilbert
space basis is finite or countable.

We recall some basics about infinite series. A series a1 +a2 + · · · in a Banach
space E is called convergent if there exist a such that

‖a−
n∑
ν=1

aν‖ −→ 0 for n −→∞.

A sufficient condition is that
∑
‖aν‖ converges. If this is the case, the se-

ries is called absolutely convergent. But this condition is not necessary for
convergence.

In the special case that E = H is a Hilbert space and that the ai are
pairwise orthogonal one can show the following. The series converges if and
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only if
∑
‖aν‖2 converges. So in this special case convergent and absolutely

convergent are the same.

We give an example of a separable Hilbert space. The space `2 consists of
all sequences (a1, a2, . . .) of complex numbers such that

∑
|an|2 converges. It

can be shown that for two a, b ∈ `2 the series

〈a, b〉 =
∑

anb̄n

converges absolutely and equips `2 with the structure as a Hilbert space. The
usual unit vectors (1 at one place and 0 at the others) give a Hilbert space
basis.

Let nowH be any infinite dimensional separable Hilbert space with a Hilbert
space basis e1, e2, . . .. For each a ∈ `2 the series

∞∑
n=1

anen := lim
N→∞

N∑
n=1

anen

then converges in H. This gives a map

`2
∼−→ H.

This map is actually an isomorphism of Hilbert spaces (which means that
it is an isomorphism of vector spaces which preserves the Hermitian forms).
Hence all infinite dimensional separable Hilbert spaces are isomorphic as Hilbert
spaces. (The same kind of argument shows a standard result of linear algebra,
namely that two finite dimensional Hilbert spaces are isomorphic as Hilbert
spaces if and only if their dimensions agree.)

Assume that H1, H2, . . . is a sequence of pairwise orthogonal closed sub-
spaces of the Hilbert space H. Assume that their algebraic sum is dense in H.
If we choose a Hilbert space basis in each Hi and collect them, we get a Hilbert
space basis of H. This shows that every a ∈ H has a unique representation as
convergent series a = a1 + a2 + · · · where ai ∈ Hi. Recall that this means that∑
i ‖ai‖2 converges. We write this as

H =
⊕̂
i

Hi

and call this a direct Hilbert sum.

There is an abstract version of this. Let Hn be a family of Hilbert spaces.
We define H to be the set of all sequences (hn), hn ∈ Hn such that

∑
‖hn‖2

converges. There is a natural imbedding of Hn into H. The image H̃n consists
of all elements of H such only the nth component can be different from 0. The
space H carries a natural structure as Hilbert space and it is the direct Hilbert
of the H̃n. Usually one identifies H̃n with Hn and calls H the direct Hilbert
sum of the Hn.
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4. Generalities about measure theory

All topological spaces that carry measures are assumed to be Hausdorff, locally
compact and to have a countable basis of the topology. The latter means that
there exists a countable system of open subsets such that each open subset can
be written as a union of sets from this system. Every metric space with an
countable dense subset (for example Cn) has this property. Every subspace
(equipped with the induced topology) keeps this property.

We denote by C(X) the set of complex valued continuous functions on a
locally compact space X and by Cc(X) the subset of all continuous functions
with compact support. A Radon measure is a C-linear functional I : Cc(X)→
C which is real in the sense I(f̄) = I(f) and positive in the sense that I(f) ≥ 0
for real f ≥ 0. Usually one writes

I(f) =

∫
X

f(x)dx.

We assume that the reader is familiar with some way to extend a Radon measure
to the class of integrable functions. We just indicate the steps, how this can be
done.

One introduces R∪{∞} as ordered set (x ≤ ∞ for all x). Every non-empty
set M ⊂ R ∪ {∞} has a smallest upper bound Sup(M) in R ∪ {∞}. One
extends the addition to R ∪{∞} by x+∞ =∞+x = x for all x and similarly
the multiplication with a positive C > 0 by C∞ =∞.

A function f : X → R ∪ {∞} is called a Baire function if there exists an
increasing sequence fn ∈ Cc(X), f1 ≤ f2 ≤ . . . such that f(x) = Sup{fn(x); x ∈
X}. One can show that

IB(f) := Sup{I(fn)}

is independent of the choice of the sequence. We call this the Baire integral
of f . Every f ∈ Cc(X) is a Baire function and in this case IB(f) agrees with
I(f). We mention that the function “constant ∞” is a Baire function. Hence
we can define for an arbitrary nowhere negative function f : X → R ∪ {∞}

Ī(f) = Inf {IB(h); f ≤ h Baire function}.

The general rule Ī(f + g) ≤ Ī(f) + Ī(g) holds.

Now one can define integrable functions:

A function f : X → R is called integrable if there exists s sequence fn ∈ Cc(X)
such that Ī(|f − fn|) is finite and tends to zero.

One can show that then (I(fn)) converges and that the limit

IL(f) = lim
n→∞

I(fn)
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is independent of the choice of fn. This is called the (Daniell-Lebesgue) integral
of f . One can show even more that Baire functions f with finite IB(f) (for
example elements of Cc(X)) are integrable and that IL(f) = IB(f) in this case.
Hence we can simply write I(f) = IB(f) for Baire functions and I(f) = IL(f)
for integrable functions. I(f) = Ī(f) for integrable f . It is easy to see that
the space L1(X, dx) of all integrable functions is a vector space. It has the
property that with f also |f | is integrable. The integral is a linear functional
on L1(X, dx) with the property I(f) ≥ 0 for f ≥ 0.

A function f : X → C is called a zero function if Ī(|f |) = 0. This means
that for each ε > 0 there exists a Baire function h with |f | ≤ h and I(h) < ε.
It is easy to see that zero functions are integrable. A subset of X is called a
zero subset if its characteristic function is a zero function. A function f is a
zero function if an only if {x; f(x) 6= 0} is a zero set. If f is integrable and g
is a function that coincides with f outside a zero set then g is integrable too
and I(f) = I(g).

We recall the basic limit theorems:

4.1 Theorem of Beppo Levi. Assume that f1 ≤ f2 . . . is an increas-
ing sequence of integrable functions such that the sequence of their integrals
is bounded in R. Then the pointwise limit f(x) = lim fn(x) exists outside a
zero set. If one defines f(x) arbitrarily for this zero set, one gets an integrable
function with the property∫

X

f(x)dx = lim
n→∞

∫
X

fn(x)dx.

4.2 Lebesgue’s limit theorem. Let fn(x) be a pointwise convergent se-
quence of integrable functions. Assume that there exists an integrable function
h with the property |fn(x)| ≤ h(x) for all n and x. Then f(x) = lim fn(x) is
integrable and one has ∫

X

f(x)dx = lim
n→∞

∫
X

fn(x)dx.

The subset N ⊂ L1(X, dx) of zero functions is a sub-vector space and the
integral factors through the quotient

L1(X, dx) := L1(X, dx)/N .

(This defines also a seminorm on L1(X, dx) and N is the nullspace of this
seminorm.) From the limit theorems one can deduce that L1(X, dx) gets a
Banach space with the norm

‖f‖1 :=

∫
X

|f(x)|dx.
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Let (fn) be a sequence in L1(X, dx) and f ∈ L(X,x). Assume that fn → f in
the Banach space L1(X, dx). (Usually we will denote the class of an element
f ∈ L1(X, dx) in L(X, dx) by the same letter f . A more careful notation would
be to use a notation like [f ] for the class. For sake of simplicity we avoid this as
long it is clear whether we talk about f or of its class.) Then one can show that
there exists a zero set S and a subsequence of (fn) that converges pointwise to
f . (This is the essential step in the proof that L1(X, dx) is a Banach space).

Let us assume that the Radon measure is non-trivial in the following sense:
Let f ∈ Cc(X) be a non-negative function with the property I(f) = 0. Then
f = 0. For such a measure the natural map

Cc(X) −→ L1(X, dx)

is injective and L1(X, dx) is the completion of C(X) with respect to the norm
‖ · ‖1. Hence integration theory can be understood as a concrete realization of
the completion.

There is another important notion:

A function f : X → C is called measurable if for any non-negative function
h ∈ Cc(X) the function

fh(x) :=
{
f(x) if −h(x) ≤ f(x) ≤ h(x),
0 else

is integrable.

Integrable functions are measurable. All continuous functions are measurable.
Measurability is conserved under all kind of standard constructions of func-
tions which are used in analysis as addition and multiplication of functions but
also taking pointwise limits and constructions as sup, inf, lim sup, lim inf for
sequences of functions. A subset of X is called measurable if its characteristic
function is measurable. Open subsets of X are measurable. Complements of
measurable sets are measurable. Countable unions and intersections of mea-
surable sets are measurable. Hence all sets which can be constructed from open
and closed subsets be taking countable unions and intersections and comple-
ments are measurable with respect to each Radon measure. They are called
Borel sets. The notion of Borel set makes sense in any topological space A.
There is also the notion of a Borel map f : A→ B between topological spaces.
This means that the inverse images of Borel sets are Borel sets.

So the statement “all functions are measurable” is not really true but nearly
true. (Counter examples need sophisticated application of the axiom of choice.)

4.3 Theorem. A function f is integrable if and only if it is measurable and
if Ī(|f |) <∞.
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Together with the previous remark this means that integrability means a kind
of boundedness.

Let p ≥ 1. The spaces Lp(X, dx) consist of all measurable functions f such
that |f |p is integrable. This is the case for zero functions. One defines

‖f‖p := p

√∫
X

|f(x)|pdx.

This is a seminorm which seems that it satisfies the axioms of a norm besides
the definiteness. It induces a norm on the space

Lp(X, dx) = Lp(X, dx)/N

which is a Banach space with this norm. The case p = 2 is of special importance.
One can consider on L2(X, dx) the Hermitian form

〈f, g〉 :=

∫
X

f(x)g(x)dx.

This induces a positive definite form on L2(X, dx) and equips this space with
a structure as separable Hilbert space.

As a special example one can take the space X = N equipped with the
discrete topology and the Radon measure I(a) =

∑
n an. The associated L2-

space is `2.

A function f : X → C is called essentially bounded with respect to a Radon
measure dx if there exists a zero set S and a constant C such that f is bounded
by C outside S. We denote the infimum of all such C by ‖f‖∞. The space of
zero functions is contained in L∞(X, dx). The seminorm ‖f‖∞ factors through

L∞(X, dx) = L∞(X, dx)/N

and equips this space with a structure as Banach space.

There is an extension of measure theory, the Bochner integral. For a Banach
space E we can consider the space of compactly supported continuous functions
Cc(X,E) with values in E.

4.4 Lemma. Let (X, dx) be a Radon measure and E a Banach space. There
exists a unique linear map

Cc(C,E) −→ E, f 7−→
∫
X

f(x)dx,

such that for each continuous linear functional L : E → C one has

L

(∫
X

f(x)dx

)
=

∫
X

L(f(x))dx.
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The uniqueness follows directly from the Hahn-Banach theorem. So the exis-
tence, but not so quite obvious. Since for our purposes it would be sufficient
to treat the case of Hilbert spaces we mention that the existence in this case is
a direct consequence of the theorem of Riesz. In the case the defining formula
reads 〈∫

X

f(x)dx, a
〉

=

∫
X

〈f(x), a〉dx.

There is also the notion of a measurable function. We only need it in the case
where E is separable which means that it contains a countable dense subset.
Then a function f : X → E is measurable if and only if its composition with
all continuous linear forms is measurable. A function f : X → E is called
integrable if it is measurable and if ‖f‖ is integrable. A measurable function
f : X → E is called a zero function if ‖f‖ is a zero function. This means that
f is zero outside a zero set. Now the spaces Lp(X,E, dx) can be defined in the
same way as in the case E = C. They contain the space N of zero functions
and the quotients Lp(X,E, dx) are Banach spaces. If E = H is a Hilbert space,
the space L2(X,H, dx) gets a Hilbert space with an obvious inner product.

Finally we mention the notion of the product measure. Let (X, dx), (Y, dy)
be two locally compact spaces with Radon measures. We consider X × Y
equipped with the product measure. This is also locally compact space. Let
f ∈ Cc(X × Y ). If we fix y we get a function f(x, y) which is contained in
Cc(X). It is easy to see that the integral

∫
f(x, y)dy is contained in Cc(Y ).

Hence we can define the product measure∫
X×Y

f(x, y)dxdy :=

∫
Y

[∫
X

f(x, y)dx

]
dy.

We claim that one can interchange the orders of integration, i.e.∫
Y

[∫
X

f(x, y)dx

]
dy =

∫
X

[∫
Y

f(x, y)dy

]
dx.

This is trivial for splitting functions f(x, y) = α(x)β(y) and follows in general
by means of the Weierstrass approximation theorem. The formula∫

X×Y
f(x, y)dxdy =

∫
Y

[∫
X

f(x, y)dx

]
dy =

∫
X

[∫
Y

f(x, y)dy

]
dx

extends to a broader class of functions and is then called Fubini’s theorem.
One has to assume that f ∈ L1(X × Y, dxdy). But one has to be somewhat
cautious with the interpretation of the formula. One only can say that the
function y 7→ f(x, y) is integrable outside a set of measure zero. Inside this
exceptional set one can take for

∫
X
f(x, y)dy an arbitrary value, for example 0.

There is a variant, the theorem of Tonelli. Assume that f is measurable
and that the iterated outer integral ĪY ĪX |f(x, y)| is finite. Then f is integrable
(and the Fubini formula holds).
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5. Generalities about Haar measures

A topological group G is a group which carries also a topology such that the
maps

G×G −→ G, (g, h) 7−→ gh, G −→ G, g 7−→ g−1,

are continuous. Here G×G has been equipped with the product topology. A
locally compact group is a topological space whose underlying space is locally
compact. We always assume that G has a countable basis of the topology.

Examples of locally groups are GL(n,C). One just takes the induced topol-
ogy of Cn×n. Closed subgroups of a locally group are locally compact groups
as well. Hence SL(n,C), GL(n,R), SL(n,R), O(p, q), U(p, q) are locally com-
pact groups. Also the additive groups Rn, Cn and the inhomogeneous Lorentz
group and the Poincarè group P (3) = SL(2,C) ·R4 are locally compact groups.
(Take the product topology.)

A Haar measure on a locally compact group G is a non-zero left invariant
Radon measure ∫

G

f(x)dx =

∫
G

f(gx)dx (g ∈ G).

We make use of the fact that a non zero Haar measure always exists and is
uniquely determined up to a constant factor.

Of course we can work also with right invariant measures.

5.1 Lemma. If
∫
G
f(x)dx is a left invariant measure then∫

G

f(x−1)dx

is a right invariant measure and conversely.

The usual integral on R is a Haar measure on the additive group R and a Haar
measure on the multiplicative group R∗ is given by∫

R∗
f(t)

dt

t

where dt is the usual measure.

If f ∈ Cc(G) is a function with the properties f ≥ 0 and I(f) = 0. Then
f = 0. Hence we have Cc(G) ↪→ Lp(G, dx).

Let g ∈ G. Then

f 7−→
∫
G

f(xg)dx
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is also left invariant. Hence there exists a positive real number ∆(g) = ∆G(g)
with the property ∫

G

f(xg−1)dx = ∆(g)

∫
G

f(x)dx.

The function ∆ : G → R>0 is of course independent of the choice of dx. It is
called the modular function of G. It is clearly a continuous homomorphism,
∆(gh) = ∆(g)∆(h).

Here we defined the modular function by means of left invariant measures.
But this serves also for right invariant measures. If

∫
G
f(x)dx is right invariant

then ∫
G

f(gx)dx = ∆(g)

∫
G

f(x)dx.

We collect.

5.2 Remark. The modular function ∆ of a locally compact group has the
following properties.

1)

∫
G

f(xg−1)dx = ∆(g)

∫
G

f(x)dx for left invariant measure dx,

2)

∫
G

f(gx)dx = ∆(g)

∫
G

f(x)dx for right invariant measure dx.

We add an another interesting formula.

5.3 Lemma. For every function f ∈ L1(G, dx) the formulas

1)

∫
G

f(x−1)∆(x)−1dx =

∫
G

f(x)dx for left invariant measure dx,

2)

∫
G

f(x−1)∆(x)dx =

∫
G

f(x)dx for right invariant measure dx,

hold.

Proof. One can check that the integral on the left hand side is a Haar mea-
sure. Hence it agrees with the right hand side up to constant a factor C > 0.
Applying the formula twice we get C2 = 1 and hence C = 1. tu

The group G is called unimodular if ∆(g) = 1 for all g. There are 4 obvious
classes of unimodular groups:

1) Abelian groups are unimodular.

2) A group G is unimodular if its commutator subgroup is dense.

3) Compact groups are unimodular, more generally, for arbitrary G the re-
striction of ∆G to any compact subgroup is trivial.

4) Discrete groups are unimodular.

The last statement is true since the only compact subgroup of the multiplicative
group of positive reals is {1}.
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We give an example of a group which is not unimodular. Let P ⊂ SL(2,R)
be the group of all upper triangular matrices of determinant 1 and with positive
diagonal entries. Each p can be written in the form

p = an, a =

(
α 0
0 α−1

)
, n =

(
1 x
0 1

)
(α 6= 0).

Moreover the map

R>0 × R ∼−→ P, (α, n) 7−→ p,

is topological. The measures

da =
dα

α
, dn = dx

are Haar measures on A and N .

5.4 Lemma. Let P ⊂ SL(2,R) be the group of upper triangular matrices
with positive diagonal entries. Let da be a Haar measure on R>0 and dn a
Haar measure on R. Then the measure∫

P

f(p)dp :=

∫
R>0

∫
R
f(an)da dn

is a Haar measure. The modular function is

∆(p) = α−2.

(One can also write
∫ ∫

f(an)dadn for the right hand side, since orders of
integration can be interchanged, but

∫ ∫
f(na)dadn would be false.)

Proof. The proof can be given by a simple calculation which rests on the
formula (

α 0
0 α−1

)(
1 x
0 1

)
=

(
1 α2x
0 1

)(
α 0
0 α−1

)
. tu

We also need quotient measures. Let H ⊂ G be a closed subgroup of a locally
compact group G. Then H is also locally compact. We consider the coset space
H\G that consists of all right cosets Hg. This is the quotient space of G by
the natural action of H (multiplication from the right.) We equip it with the
quotient topology with respect to the natural projection G→ H\G. Then this
projection is continuous and open. We claim that H\G is Hausdorff. Hausdorff
means that the diagonal in H\G×H\G is closed. This means that its inverse
image in G×G is closed. But this inverse image of H with respect to the map
G×G→ G, (x, y) 7→ xy−1.
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Since G → H\G is open, the space H\G is locally compact. There is also
a natural continuous map

(H\G)×G −→ H\G, (Hg1, g2) 7−→ Hg1g2

which as action from the right. A Radon measure dx on X = H\G is called
G-invariant if ∫

H\G
f(xg)dx =

∫
H\G

f(x)dx.

Similarly we can define G/H and the notion of an invariant measure on G/H
(which now means invariance under translation from the left).

5.5 Proposition. Let H ⊂ G be a closed subgroup. Assume that ∆G|H =
∆H . Then there exists a non-zero invariant Radon measure dy on G/H and this
Radon measure is unique up to a positive constant factor. It has the following
property. Let dh be a left invariant measure on H. Then∫

G

f(x)dx =

∫
G/H

[∫
H

f(yh)dh

]
dy

is a left invariant measure on G.

We should mention that the function x 7→
∫
H
f(xh)dh can be considered as a

function on G/H. It is continuous and with compact support there.

The following lemma can be proved by means of the technique of partition
of unity. We omit the details.

5.6 Lemma. The map

Cc(G) −→ Cc(G/H), f 7−→ f ′, f ′(y) =

∫
H

f(yh)dh,

is surjective.

Proof of Proposition 5.5. A function f ′ ∈ Cc(G/H) can be written in the form

f ′(y) =

∫
H

f(yh)dh.

We want to define its integral through∫
G/H

f ′(y)dy =

∫
G

f(x)dx

where dx is a left invariant measure on G. There is a problem. The function
f ′ does not determine f uniquely. Hence one has to prove a lemma.



§6. Generalities about representations 21

5.7 Lemma. Let f ∈ Cc(G). Then∫
H

f(xh)dh = 0 =⇒
∫
G

f(x)dx = 0.

It is a good exercise to do this for a finite group G. The integrals then just are
finite sums. In the general case the condition ∆G|H = ∆H will play a role.

Proof of Lemma 5.7. From the assumption follows∫
G

g(x)

∫
H

f(xh)dhdx = 0 for g ∈ Cc(G).

We interchange the integrations.∫
H

∫
G

g(x)f(xh)dxdh = 0.

In the inner integral we replace x 7→ xh−1. Since dx is left invariant, a factor
∆G(h) arises (Remark 5.2).∫

H

∫
G

f(xh)g(x)dxdh =

∫
H

∆G(h)−1

∫
G

f(x)g(xh−1)f(x)dxdh

By means of the assumption about the modular functions we have ∆G(h) =
∆H(h). Finally we transform h by h−1 applying Lemma 5.3. There occurs a
factor ∆H(h). The two Delta-factors cancel. tu

In this way we get the existence of a measure on G/H such the claimed
formula holds. The invariance of this measure is trivial. The proof of the
uniqueness of the quotient measure is the same as the proof of the uniqueness
of the Haar measure. This finishes the proof of Proposition 5.5. tu

We also mention that the formula in Proposition 5.5 holds for all f ∈
L1(G, dx) with the usual caution: the inner integral exists outside of a set
of measure zero and gives – extended arbitrarily – an integrable function on
H\G.

Instead of G\H one can also consider the space of right cosets H\G and
G acts by multiplication from the right. Proposition 5.5 remains true if one
replaces “right” by “left”.

5.8 Proposition. Let H ⊂ G be a closed subgroup. Assume that ∆G|H =
∆H . Then there exists a non-zero invariant Radon measure dy on H\G and this
Radon measure is unique up to a positive constant factor. It has the following
property. Let dh be a left invariant measure on H. Then∫

G

f(x)dx =

∫
H\G

[∫
H

f(h−1y)dh

]
dy

is a right invariant measure on G.



22 Chapter I. Representations

6. Generalities about representations

A representation π of a group G on a complex vector space is a homomor-
phism π : G → GL(V ) of G into the group of C-linear automorphisms of V .
Frequently we will write g(a) or even simply ga instead of π(g)(a). The map

G× V −→ V, (g, a) 7−→ ga,

then has the properties:

1) ea = a for all a ∈ V (e denotes the unit element of G).
2) (gh)a = g(ha) for all g, h ∈ G, a ∈ V .
3) g(a+ b) = g(a) + g(b), g(Ca) = Cga (C ∈ C).

Conversely, a map with the properties 1)-3) comes from a unique representa-
tion π.

Left and Right

Let G be a group and V simply a set. A map

G× V −→ V, (g, a) 7−→ ga,

with the properties 1)-2) is also called an action of G from the left on V . If
one replaces in 2) the condition by (gh)a = h(g(a)) one gets the notion of an
action from the right. This looks better if one uses the notation ag instead of
ga since then the rule takes the better looking form a(gh) = (ag)h. If ga is
an action from the left then g−1a is an action from the right, and conversely.
Hence there is no essential difference between the two. Keep in mind that due
to our definition representations are actions from the left.

Continuous representations

There are several equivalent ways to define when a representation of a locally
compact group on a Banach space is continuous. A natural way is a follows.

6.1 Definition. A representation of a locally compact group G on a Banach
space E is called continuous if the corresponding map

G× E −→ E

is continuous.

Here G×E of course carries the product topology. For a continuous represen-
tation the operators π(g) : E → E are continuous (hence bounded) and the
map G→ E, g 7→ g(a), is continuous for each a ∈ E.
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6.2 Proposition. A representation π of a locally compact group G on a
Banach space E is continuous if all operators π(g) : E → E are bounded and
if the map

G −→ E, g 7−→ π(g)(a),

is continuous for all a ∈ E.

Hence we can write also G → B∗(E) for a continuous representation. The
proof rests on the theorem of uniform boundedness:

6.3 Theorem. Let E be a Banach space and let M ⊂ B(E) be a set of
bounded operators such that {Aa, a ∈ E} is bounded for each a ∈ E. Then M
is a bounded subset of B(E).

We omit the prove. tu
For the proof of Proposition 6.2 we need another observation.

6.4 Lemma. Let π : G→ GL(E) be a continuous representation and K ⊂ G
a compact subset. Then the set π(K) is bounded in B(E).

Proof. Since π(K)a is compact and hence bounded for all a, the theorem of
uniform boundedness gives the claim. tu
Proof of Proposition 6.2. It is sufficient to prove the π : G×E → E is continuous
at a point (e, a). The proof follows from the lemma and the estimate

‖g(x)− a‖ ≤ ‖g(x)− g(a)‖+ ‖g(a)− a‖. tu
The condition of continuity in the definition of a representation can be further
weakened.

6.5 Lemma. Let π : G → GL(E) be a homomorphism with the following
properties:

1) all π(g) are bounded.
2) There is a neighborhood of the identity whose image in B(E) is bounded.
3) There is a dense subset of vectors a ∈ E such that g 7→ π(g)(a) is continu-

ous.

Then π is a continuous representation.

Proof. We have to show that for fixed a the function x 7→ π(x)a is continuous.
It is obviously enough to proof this at the unit element x = e. Hence we have
to estimate ‖π(x)a− a‖. For some b in the dense subset we use the estimate

‖π(x)a− a‖ ≤ ‖π(x)a− π(x)b‖+ ‖π(x)b− b‖‖b− a‖.
If we choose b close enough to a we obtain the desired result. tu

A natural question is whether there exists a topology on B(E) such that
the representation π : G→ B∗(X) is continuous if and only if it is a continuous
map with respect to the topology on B∗(E) induced from this topology. The
answer is ”‘yes”’. But the topology in question is not the topology induced
by the operator norm. It is the strong operator topology , also called the SOT-
topology that is defined as follows.
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6.6 Definition. Let E by a Banach space. The SOT-topology on B(E) is
the weakest topology such that the functions

B(E) −→ R, A 7−→ ‖A(a)‖

are continuous for all a ∈ E

Clearly this topology is weaker than the norm topology. A sequence An of
operators converges to A in the SOT topology if and only if Ana converges to
Aa for all a ∈ E (with respect to the norm topology of E).

6.7 Remark. A representation π : G → B∗(H) is continuous if and only if
it is a continuous map with respect to the SOT-topology.

Algebraic irreducibility

Let π : G→ GL(V ) be a representation. A subspace W ⊂ V is called invariant
if g ∈ G and a ∈ W implies ga ∈ W . Then we obtain a representation
π′ : G → GL(W ). A representation π : G → GL(V ) is called algebraically
irreducible if V 6= 0 and if besides {0} and V there are no invariant subspaces.
Let W1,W2 be two invariant subspaces of V . Then W1 +W2 and W1 ∩W2 are
also invariant. If W1 and W2 are irreducible then either they are equal or their
intersection is zero.

Topological Irreducibility

Let now π : G → GL(V ) be a continuous representation. It is called topologi-
cally irreducible if there is no closed invariant subspace different from {0} and
V .

For finite dimensional representations (this means that V is finite dimen-
sional) algebraic and topological irreducibility is the same.

A representation of a topological group on a Hilbert spaceH is called unitary
if it is continuous and if all operators π(g) are unitary operators. This means
concretely

〈ga, gb〉 = 〈a, b〉

for a, b ∈ H and g ∈ G. It is enough to demand this for a = b. If we talk about
an irreducible unitary representation, we always mean that it is topologically
irreducible.

We describe a fundamental example of a unitary representation. Let G be
a locally compact group. We consider a closed subgroup H ⊂ G. For sake
of simplicity we assume that both are unimodular. Then dx is left- and right
invariant. We consider the space of right cosets H\G. The group G acts on
H\G by multiplication from the right. This is an action from the right. Let
f : H\G → C be a function and g ∈ G. We define the translate Rgf of f by
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(Rgf)(x) = f(xg). This is an action from the left of G on the set of function
on H\G. This defines a map

R : G −→ GL(L2(H\G, dx)).

By means of Theorem 6.3 one can show that this representation is continuous.
It is obviously a unitary representation. In the special case H = {e} one obtains
the so-called regular representation of G on L2(G).

One of the basic problems of harmonic analysis is the investigation of this
representation and to describe its spectral decomposition. This problem has
been studied for the regular representation of semi simple groupsG (for example
SL(n,R)) by Harish Chandra. In the theory of automorphic forms one studies
the case where H = Γ is a discrete subgroup such that Γ\G has finite volume.

What means “spectral decomposition”? This is not so easy to explain and
not the goal of these notes. Nevertheless it is useful to get an idea of it. We
give two examples. The first example is the group S1 of complex numbers of
absolute value one (circle group). The functions f on S1 correspond to the
periodic functions (period 2π) F on R through

F (t) = f(exp(2πit)).

From the theory of Fourier series one knows that L2(S1) is the direct Hilbert
sum of the one dimensional subspaces H(n) spanned by f(ζ) = ζn (n ∈ Z).
These are invariant subspaces which are pairwise orthogonal. The spectral
decomposition of the regular representation of S1 is

L2(S1) =
⊕̂
n∈Z

H(n).

The second example deals with the regular representation of R. There are also
one dimensional spaces H(t) generated by the function x 7→ e2πitx which are
invariant under translations t 7→ t+ a. Now t can be an arbitrary real number.
But the difference is that now H(t) is not contained in L2(R). Nevertheless the
theory of Fourier transformation shows that all f in a certain dense subspace
of L2(R) can be written in a unique way in the form

f(t) =

∫ ∞
−∞

g(t)e2πitdt.

Hence one is tempted to say that L2(R) is the direct integral of the spaces H(t)
and to write this in the form

L2(R) =

∫ ⊕
R
H(t)dt.

For general G the spectral decomposition will include both types (discrete
and continuous spectra) and the constituents will not be one-dimensional but
irreducible unitary representations (often infinite dimensional).
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Intertwining Operators

A morphism between two continuous representations πi : G→ GL(Ei) on Ba-
nach spaces is a continuous linear map E1 → E2 which is compatible with the
action of G in an obvious sense. Such morphisms are also called “intertwining
operators”. It is clear what it means that an intertwining operator is an iso-
morphism. If F ⊂ E is a closed G-invariant subspace then the natural inclusion
F ↪→ E is a morphism. We call (G,F ) a sub-representation of (G,E).

For unitary representations we will make use of a more restrictive notion
of isomorphy. An isomorphism H1 → H2 between two unitary representations
π : G→ GL(Hi) is called a unitary isomorphism, or an isomorphism of unitary
representations if the isomorphism H1 → H2 is an isomorphism of Hilbert
spaces. This means that it preserves the scalar products.

7. The convolution algebra

let G be a locally compact group with a chosen Haar measure. The convolution
of two functions f, g ∈ Cc(G) is defined by

(f ∗ g)(x) =

∫
G

f(y)g(y−1x)dy.

The convolution defines an associative product on Cc(G). We leave the proof of
the associativity as an exercise. Hence Cc(G) has the structure of an associative
C-algebra.

Let π : G→ GL(H) be a continuous representation on a Banach space. For
any f ∈ Cc(G) and any h ∈ H we can consider the function

G −→ H, x 7−→ f(x)π(x)h.

It is continuous and with compact support. Hence we can define the integral∫
G

f(x)π(x)hdx.

If we vary h, we get an operator H → H. One can check that it is linear and
continuous.

We denote this operator by

π(f) =

∫
G

f(x)π(x)dx.

One verifies
π(f1 ∗ f2) = π(f1) ◦ π(f2).
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What we obtain is an algebra homomorphism

π : Cc(G) −→ End(H).

The image of π consists of continuous linear operators T : H → H.

Now we assume that H is a Hilbert space. We denote the adjoint of an
operator T ∈ End(H) by T ∗. It is defined by the formula 〈Tx, y〉 = 〈x, T ∗y〉.
The existence of T ∗ follows from the Riesz lemma. Of course T ∗ is continuous
as T , and moreover both have the same norm.

We define
f∗(x) := ∆(x−1)f(x−1).

We now assume that π is unitary. It is easy to check in this case that the map
π has the property that

π(f∗) = π(f)∗.

What we obtained is a ∗-algebra representation. We describe briefly what this
means. An algebra A is a vector space (in our case over C) together with a
bilinear map

A×A −→ A, (a, b) 7−→ ab.

We assume that this is associative but we do not assume that A contains a unit
element. An involution on A is a map

A −→ A, a 7−→ a∗,

with the properties

a) (a+ b)∗ = a∗ + b∗, (Ca)∗ = C̄a∗,
b) (ab)∗ = b∗a∗.
c) a∗∗ = a.

7.1 Definition. A ∗-algebra (A, ∗) is an associative algebra (not necessarily
with unit) together with a distinguished involution

An example of a ∗-algebra is the convolution algebra Cc(G) with the involution
defined above. Please notice that the star has a double meaning in this example.
It denotes the product of the algebra and also the involution of the algebra.

Another example of a ∗-algebra is the space B(H) of continuous linear
operators on a Hilbert space H. Multiplication is the composition of operators
and the ∗-operator is given by the adjoint.

By a representation of an algebra A on a vector space V one understands
a linear map A → End(V ) which is compatible with multiplication. By a ∗-
algebra representation of a ∗-algebra A on a Hilbert space H we understand a
homomorphism

A −→ B(H)
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that is also compatible with the star operators. We have seen that a unitary
representation π : G → U(H) induces a ∗-algebra representation π : Cc(G) →
B(H).

There are obvious notions of irreducibility:

A representation A→ End(V ) of an algebra is called algebraically irreducible if
the image of A is not zero and if there is no invariant subspace of V different
form 0 and V .

A ∗-algebra representation A → B(H) is called topologically irreducible if the
image if A is non zero and if there is no closed invariant subspace of H different
from 0 and H.

An example of a finite dimensional algebra representation is the tautological
representation of A = End(V ) on V . It is just the identity map End(V ) →
End(V ). It is clear that this representation is irreducible. A special case of a
fundamental structure theorem of Wedderburn states (in the case of the ground
field C):

7.2 Theorem. Let π : A → End(V ) be an irreducible representation of an
algebra A on a finite dimensional vector space V . Then π is surjective.

We don’t give the proof here and refer to the text book of S. Lang on algebra.
To be honest, we mention that Lang treats only the case where A contains a
unit element. The general case can be reduced by the technique of adjoining a
unit element.

A trivial consequence of Theorem 7.2 is as follows. Let T : V → V be a
linear operator that commutes with all π(a), a ∈ A. Then T is a multiple of the
identity. A basic result states that this carries over to the infinite dimensional
case.

7.3 Theorem (Schur’s lemma for algebra representations). Let π be a
topologically irreducible ∗-representation of a ∗-algebra A on a Hilbert space H.
Assume that T : H → H is a linear and continuous operator that commutes
with all A = π(a), a ∈ A. Then T is a constant multiple of the identity.

Corollary. If A is abelian then H is one-dimensional.

Proof. The proof rests on the spectral theorem for self adjoint operators. This
is explained in the Appendices, Sect.1 and 2. One has to use Lemma VI.2.10.
We give the details. First one can assume that T is self adjoint, since one can
use the decomposition 2T = (T + T ∗) − i(i(T − T ∗)). So we can assume that
T is self adjoint and commutes with all A = π(a). We assume that T is not
a multiple of the identity. Then, by Lemma VI.2.10, there exists a B in the
bi-commutant of T whose kernel is different from 0 and H. Since B commutes
with all A = π(a), its kernel is invariant under all A. This contradicts the
irreducibility. tu
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The same theorem is true for irreducible unitary representations of locally
compact groups. Actually it is a consequence of Theorem 7.3 as we shall point
out. The argument would be very easy if there exists for g ∈ G a Dirac function
δg ∈ Cc(G) which means

δg(x) = 0 for x 6= g and

∫
G

δg(x)dx = 1.

Such a situation is of course rare, but it occurs, namely for finite groups. A
simple computation then gives π(δg) = π(g). From this one can deduce that a
subspace of H is invariant under all π(g), g ∈ G, if and only if it is invariant
under all π(f), f ∈ Cc(G). Actually there is a weak variant of Dirac functions.

7.4 Lemma. For each locally compact group G there exists a sequence of
functions δn ∈ Cc(G) with the following properties.

1) supp(δn+1) ⊂ supp(δn).
2) For each neighborhood U of the identity there exists an n such that

supp(δn) ⊂ U .
3) δn(x−1) = δn(x).
4) δn(x) ≥ 0 and

∫
G
δn(x)dx = 1.

We call (δn) a Dirac sequence.

7.5 Lemma. Let (δn) be a Dirac sequence. Then π(δn) converges to the
identity in the sense

lim
n→∞

‖π(δn)h− h‖ = 0.

(This means pointwise convergence.)

Proof. We have

‖π(δn)h− h‖ ≤
∫
G

δn(x)‖π(x)h− h‖.

Let ε > 0. For n big enough we have ‖π(x)h − h‖ < ε for all x ∈ Un. We
obtain ‖π(δn)h− h‖ < ε. tu

There is an obvious generalization. Let g ∈ G then from Lemma 7.5 we see
that π(fn) ◦ π(g)→ π(g) (pointwise) A simple calculation shows

π(f) ◦ π(g) = π(f̃) where f̃(x) = ∆(g)f(xg−1).

This shows the following result.

7.6 Lemma. Let G→ GL(H) be a unitary representation and let W ⊂ H be a
closed subspace. Assume that there exists a subalgebra A ⊂ Cc(G) that contains
a Dirac sequence and that is invariant under translation f(x) 7→ f(xg) for all
g ∈ G and such that W is invariant under A. Then W is invariant under G.

As an application of Lemma 7.6 we get the following lemma.
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7.7 Lemma. Let π : G → GL(H) be a unitary representation. A closed
subspace W ⊂ H is invariant under G if and only if it is invariant under
Cc(G).

Schur’s lemma now can be formulated also for group representations.

7.8 Theorem (Schur’s lemma for group representations). Let π : G→
GL(H) be an irreducible unitary representation of a locally compact group.
Every linear and continuous operator T : H → H which commutes with all
π(g), g ∈ G, is a multiple of the identity.

Corollary. If G is abelian then H is one-dimensional.

Let π : G→ GL(H) be a unitary representation. We say that another unitary
representation of G occurs in π if it is isomorphic (in the unitary sense) to a
sub-representation of π.

7.9 Lemma. Let π : G → GL(H) be a unitary representations and A,B be
two invariant closed subspaces. Assume that the restriction of π to A is (topo-
logically) irreducible. Then either A is orthogonal to B or the representation
π|A occurs in π|B.

Corollary. If both A and B are irreducible then either they are orthogonal or
isomorphic (as G-representations).

Proof. We assume that A,B are not orthogonal. We consider the pairing
〈·, ·〉 : A × B → C. We first notice that it is non degenerate in the following
sense. For each a ∈ A their exists a b ∈ B such that 〈a, b〉 6= 0 and conversely.
This is clear since the orthogonal complement of B intersected with A is a
closed invariant subspace. Next we construct a linear map f : A → B. By
the Lemma of Riesz there exists for each a ∈ A a unique f(a) in B such that
〈a, b〉 = 〈f(a), b〉 for all b ∈ B. One easily checks that this is an intertwining
operator. tu

7.10 Definition. A unitary representation π : G → GL(H) is called com-
pletely reducible if H can be written as the direct Hilbert sum of pairwise
orthogonal closed invariant subspaces

H =
⊕̂
i

Hi

which are irreducible as G-representations.

In general we denote by Ĝ the set of all isomorphy classes of irreducible uni-
tary representations of G and call it the unitary dual of G. Recall that each
irreducible unitary representation π : G → GL(H) is one dimensional if G is
abelian. Hence it is of the form π(g)(h) = χ(g)h where χ is a character of G.
By definition, this is a continuous homomorphism from G into the group of
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complex numbers of absolute value 1. Unitary isomorphic representations give
the same character. This gives a bijection with Ĝ and the set of all unitary
characters. Characters can be multiplied in an obvious way. Hence, for abelian
G, the set Ĝ is a group as well. One can show that it carries a structure as
locally compact group.

7.11 Proposition. Let π : G → GL(H) a unitary representation which is
completely reducible,

H =
⊕̂
i∈I

Hi, Hi ⊂ H.

Let τ ∈ Ĝ. Then

H(τ) =
⊕̂

i∈I, πi∈τ
Hi

is the closure of the sum of all irreducible closed invariant subspaces of H that
are of type τ . In particular, it is independent of the choice of the decomposi-
tion.

This follows immediately from Lemma 7.9. tu
We call H(τ) the τ -isotypic component of π. This is well-defined. The

irreducible components Hi are usually not well-defined. Look at the example
of the group G that consists only of the unit element. Nevertheless the so-called
multiplicity

m(τ) := #{i ∈ I; πi ∈ τ} ≤ ∞

is independent on the choice of the decomposition. This can be seen as follows.
Let (Hτ , τ) be a realization of τ . We consider the vector space of all intertwining
operators Hτ → H(τ). The space of intertwining operators Hi → Hτ is zero if
πi is not in τ and – by Schur’s lemma – one dimensional otherwise. From this
follows easily the space of intertwining operators Hτ → H(τ) has dimension
m(τ). This shows the invariance of m(τ).

This gives us the following result.

7.12 Proposition. Let π : G → GL(H) be a completely reducible unitary
representation. The multiplicities

m(τ) := #{i ∈ I; πi ∈ τ} ≤ ∞

(in the notation of Proposition 7.11 are well-defined). Two completely reducible
representations are unitary isomorphic if and only of their multiplicities agree.
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8. Generalities about compact groups

In this section we treat some general facts about representations of compact
groups. Readers who are mainly interested in the classification of the irre-
ducible unitary representations of the group SL(2,R) can skip this section,
since the only compact group which occurs in this context is the group SO(2).
This group is not only compact but also abelian which makes the theory rather
trivial.

We need some results of functional analysis. We recall the notion of equicon-
tinuity:

8.1 Definition. A set M of functions on a topological space X is called
equicontinuous at a point a ∈ X if for any point ε > 0 their exists a neighbor-
hood U of a such that

|f(x)− f(a)| < ε for all x ∈ U, f ∈M.

The set is called equicontinuous if this is the case at all a ∈ X.

(The point is the independence of the neighborhood U from f .) We recall a
basic result from functional analysis.

8.2 Theorem (theorem of Arzela-Ascoli). Let X be a locally compact
space with countable basis of the topology. Let M be an equicontinuous set of
functions on X such that the set of numbers f(x), f ∈M, is bounded for every
x ∈ X. Then each sequence of M admits a subsequence that converges locally
uniformly on X.

There are variants of this theorem in which equicontinuity does not appear.
Let for example X ⊂ Rn be an open subset and assume that M is a set of
differentiable functions such that there exists a constant C such that

|f(x)| ≤ C and |(∂f/∂x)(x)| ≤ C for all x ∈ X.

Then the mean value theorem of calculus shows that this set is equicontinuous.

Another main tool will be the spectral theorem for compact operators on
Hilbert spaces. Let H be a Hilbert space. A linear and continuous operator
T : H → H is called compact if the image any bounded set is contained in a
compact set. For example this is the case if the image of T is finite dimensional.
The identity is compact if and only if H is finite dimensional. The set of all
compact operators is closed under the operator norm. So, let T1, T2, . . . be
a sequence of compact operator and T another bounded operator such that
‖Tn − T‖ tends to 0. Then T is compact. We will not give a proof here.

Recall that an operator T is called normal if it commutes with its adjoint,
T ◦ T ∗ = T ∗ ◦ T .
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8.3 Theorem (Spectral theorem for compact operators). Let T : H →
H be a compact and normal operator. The set of eigenvalues is either finite or it
is countable and 0 is the only accumulation point of it. The eigenspaces H(T, λ)
are pairwise orthogonal and for λ 6= 0 they are finite dimensional. The sum of
all eigenspaces is dense in H. Hence we have a Hilbert space decomposition

H =
⊕̂

λ
H(T, λ).

A proof can be found in the Appendices.

We give an example of a compact operator.

8.4 Proposition. Let X be a compact topological space (with countable
basis) and dx a Radon measure. Let K ∈ C(X,X) be a continuous function.
The operator

LK : L2(X, dx) −→ L2(X, dx), LK(f)(x) :=

∫
X

K(x, y)f(y)dy.

is a compact (continuous and linear) operator.

We mention that every square integrable function f on a compact space is
integrable (since one can write f = 1 · f as product of two square integrable
functions). Since K(x, y) for fixed x is an L2-function the existence of the
integral in Proposition 8.4 is clear. Clearly the functions LKf are continuous.
Even more we have

|LX(f)(x)| ≤ c‖f‖2

with some constant c by the Cauchy-Schwarz inequality. This also implies that
LXf ∈ L2(X, dx) and moreover

‖LKf‖2 ≤ C‖f‖2

with some constant C. Hence the operator is linear and also continuous.

But we have a stronger property. It is easy to show that the set of functions

{LKf ; f ∈ L2(X, dx), ‖f‖2 ≤ 1}

is equicontinuous. This implies that LK is a compact operator. For this we have
to prove the following. Let fn ∈ L2(X, dx) be a sequence of functions such that
‖fn‖2 ≤ 1. We have to show that LKfn has a sub-sequence that converges in
L2(X, dx). The theorem of Arzela-Ascoli shows that LKfn converges uniformly.
Hence it converges point-wise and all functions are bounded by a joint constant.
Since X is compact, constant functions are integrable and we can apply the
Lebesgue limit theorem to obtain convergence in L2(X, dx). tu
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8.5 Proposition. Let π : G → GL(H) be a unitary representation of a
locally compact group G on a Hilbert space H. Assume that there exists a
Dirac sequence δn ∈ Cc(G) such that all π(δn) are compact operators. Then the
representation decomposes into irreducibles with finite multiplicities.

Proof. We consider pairs that consist of a closed invariant subspace H ′ ⊂ H
such the restriction of π to H ′ is completely reducible and a distinguished

decomposition H ′ =
⊕̂

i∈IH
′
i into irreducibles. We define an ordering for such

pairs. The pair H ′ =
⊕̂

i∈IH
′
i is less or equal than the pair H ′′ =

⊕̂
j∈JH

′′
j

if each space H ′i equals some H ′′j . (Especially H ′ ⊂ H ′′). From Zorn’s lemma
easily follows that there exists a maximal member. We call its orthogonal
complement U . This space cannot contain any irreducible subspace since this
could be used to enlarge the maximal element. Hence we have to show:

let π be a representation as in the proposition which is not zero. Then there
exists at least one irreducible closed subspace.

To prove this we choose an element f of the Dirac sequence such that π(f)
is not identically zero. This element will kept fixed during the proof. We also
choose an eigenvalue λ 6= 0 of π(f) Let H(f, λ) ⊂ H the eigenspace. This is a
finite dimensional vector space.

There may be invariant closed subspaces which have a non-zero intersection
with H(f, λ). We choose a closed subspace E such that the dimension of
its intersection with H(f, λ) is non-zero and minimal. Then we set W =
E ∩ H(f, λ). There still may exist several closed invariant subspaces H that
share with E the property W = F ∩ H(f, λ). We take the intersection of
all these F and get in this way a smallest closed invariant subspace F ⊂ E
with W = F ∩H(f, λ). We claim that this F is irreducible. For this we take
any orthogonal decomposition F = A ⊕ B. The eigenvalue λ must occur as
eigenvalue of λ in one of the spaces A,B. (The restriction of a compact operator
to a closed invariant subspace remains compact and hence decomposes into
eigen spaces.) Let us assume that it occurs in A. Then A∩H(f, λ) is not zero.
It must agree with W because of the minimality property of dimW . Moreover
it must agree with F because of the minimality property of F . This shows the
irreducibility.

It remains to prove that the multiplicities are finite. Let τ ∈ Ĝ. Let
H1, . . . ,Hm be pairwise orthogonal invariant closed subspaces of type τ . We
claim that m is bounded. There exists an element f = δn from the Dirac
sequence such that π(f) is not zero on H1. There exists a non-zero eigenvalue
λ. This eigenvalue then occurs in all Hi since they are all isomorphic (as
representations). Since the multiplicity of the eigenvalue is finite the number
m must be bounded. tu

A special case of Proposition 8.5 gives the following basic result.

8.6 Theorem. Let K be a compact group. The regular representation of
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K on L2(K) (translation from the right) is completely reducible with finite
multiplicities.

Proof. Let f ∈ C(K). We have to show that the operator Rf is compact.
Recall that Rf is defined as Bochner integral

Rf (h) =

∫
K

f(x)Rx(h)dx, (Rxh)(y) = h(yx).

It looks natural to get this as function by interchanging the evaluation if this
function with integration, i.e. one should expect

Rf (h)(y) =

∫
K

f(x)h(yx)dx.

This is actually true but one has to be careful with the argument since the
evaluation map h 7→ h(y) is not a continuous linear functional on the Hilbert
space L2(K). Instead of this one uses the following argument. Two elements of
a Hilbert space are equal if and only if their scalar products with an arbitrary
vector are equal. Taking scalar product with a vector is a continuous linear
functional which can be exchanged with the Bochner integral. In this way one
obtains the desired formula. We can rewrite the formula as

Rf (h)(x) =

∫
K

f(x−1y)h(y)dy.

This is the integral operator with kernel K(x, y) = f(x−1y). tu
There is a more general result.

8.7 Theorem. Every irreducible unitary representation of a compact group
on a Hilbert space is finite dimensional.

Every unitary representation of a compact group K is completely reducible.

Proof. We choose h ∈ H such that ‖h‖ = 1. Let x ∈ H. Then we consider the
function

K −→ H, k 7−→ 〈x, π(k)h〉π(k)h.

It is continuous, so we can integrate it to get an operator T ∈ B(H),

Tx =

∫
K

〈x, π(k)h〉π(k)h.

This operator has the following remarkable properties.

1) 〈Tx, x〉 ≥ 0,
2) 〈Th, h〉 > 0,
3) T commutes with all π(x),
4) T is a compact operator.
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First we assume that 1)-4) have been proved. Since T is non zero (use 2)),
there exists a non-zero eigenvalue λ. Its eigenspace Hλ is finite dimensional.
From 3) follows that Hλ is invariant under π. So we have shown that every
unitary representation of a compact group has an finite dimensional invariant
subspace. This proves the first part of the theorem, since the irreducibility
implies H = Hλ. But also the second part follows as the following argument
shows.

Consider invariant subspaces H0 ⊂ H which are completely reducible. A
“Zorn’s lemma argument” shows that there exists a maximal one. We have to
show H = H0. If this would not be the case we could find in the orthogonal
complement an irreducible subspace. This contradicts to the maximality of H0.

We still have to prove 1)-4). 1) follows from

〈Tx, x〉 =

∫
K

|〈x, π(k)h〉|2dk ≥ 0.

In the case x = h the integrand is positive at k = e and hence in a full neigh-
bourhood of e. This implies 2). The proof of 3) follows from the calculation

π(x)(Ty) =

∫
K

〈y, π(k)h〉π(xk)hdk =

∫
K

〈y, π(x−1k)h〉π(x)hdx

=

∫
K

〈π(x)y, π(x)h〉π(k)hdk = T (π(x)y).

It remains to prove 4). For this we show that T is the limit (with respect to
the norm-topology on B(H)) of operators with finite dimensional range. Let
ε > 0. We want to construct an operator Tε with finite dimensional range such
that ‖T − Tε‖ < ε. We make use of the continuity of the function k 7→ π(k)h.
Since K is compact, every continuous function is uniformly continuous. Hence
we find a finite open covering U1, . . . , Un of K and points ki ∈ Ui such that

‖π(k)h− π(ki)h‖ <
1

2
ε for k ∈ Ui.

We want to replace the Ui by disjoint sets Ei ⊂ Ui which still cover K. Of
course this can be not done with open sets but Borel sets, in particular by
measurable sets. Now we can define

Tεx =

n∑
i=1

vol(Ei)〈x, π(ki)h〉π(ki)h.

This is clearly an operator with finite dimensional range and the property
‖T − Tε‖aε. This finishes the proof Theorem 8.7. tu



§8. Generalities about compact groups 37

8.8 Proposition. Let π : K → GL(H) be a Banach representation of a
compact group on a Hilbert space H. There exists a Hermitian product on H
whose norm is equivalent to the original one and such that π is unitary.

The proof is easy. One replaces the original Hermitian product 〈·, ·〉 by the new
scalar product ∫

K

〈π(k)(x), π(k)(y)〉.

(This is called Weyl’s unitary trick.) tu
There is a broad structure theory for representations of compact groups,

in particular of compact Lie groups. We need only little of it. Basic for this
theory is the notion of the character of a finite dimensional representation
π : G→ GL(H). It is the following function on G:

χπ : G −→ C, χπ(x) = tr(π(x)).

For a one-dimensional representation this is the usual the underlying character.
The character is a class function. This means

χ(yxy−1) = χ(x).

(But in this context characters are usually not homomorphisms.)

8.9 Peter-Weyl theorem. Let π : K → GL(H) be an unitary representation
of a compact group and let σ be an irreducible unitary representation of K. We
denote by H(σ) the σ-isotypic component of H. We denote by P : H → H(σ)
the projection operator. Then

P = dim(σ)

∫
K

χ(k)π(k).

Proof. A proof can be found in the appendices.

Theorem 8.6 admits the following generalization:

8.10 Theorem. Let G be a unimodular locally compact group and Γ ⊂ G
a discrete subgroup such that Γ\G is compact. Then the representation of G
on L2(Γ\G) (translation from the right) is completely irreducible with finite
multiplicities.

Proof. As in the proof of Theorem 8.6 we can rewrite the operator Rf as an
integral operator∫

G

f(y)h(xy)dy =

∫
G

f(x−1y)h(y)dy =

∫
Γ\G

∑
γ∈Γ

f(x−1γy)dy.
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This is an integral operator with kernel

K(x, y) =
∑
γ∈Γ

f(x−1γy).

Since f has compact support, this sum is locally finite and K is a continuous
function on X × X where X is the compact space Γ\G. So we can apply
Proposition 8.4. tu

This theorem is of great importance for the theory of automorphic forms
and is one reason to study the irreducible representations of G.
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1. The simplest compact group

We study the group
K = SO(2).

So K consists of all real 2× 2 matrices k of determinant 1 with the property

k′k = e.

Because of

k−1 =

(
d −b
−c a

) (
k =

(
a b
c d

))
this means that k is of the form

k =

(
a −b
b a

)
, a2 + b2 = 1.

For k ∈ K the complex number ζ = a+ib is of absolute value 1. Recall that the
set of all complex numbers of absolute value 1 is a group under multiplication.
One easily checks that the map

SO(2)
∼−→ S1, k 7−→ ζ,

is an isomorphisms of locally compact groups. So we see that K is a compact
and abelian group. Hence we know that each irreducible unitary representation
is one-dimensional and corresponds to a character. The characters of S1 are
easy. They correspond to the integers Z. For each integer n we can define

χn(k) = χn(ζ) := ζn.

For an arbitrary unitary representation π : K → GL(H) we can consider the
corresponding isotypic component

H(n) := {h ∈ H; π(g)(h) = χn(g)h}.
Another way to write the elements of SL(2,R) is(

cos θ − sin θ
sin θ cos θ

)
.

Here θ is determined mod 2πiZ. The character χn in this presentation is given
by

χn(k) = e2πinθ.
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2. The Haar measure of the real special linear group of
degree two

We use the following notations:

G = SL(2,R),

A =

{
a =

(
α 0
0 α−1

)
; t ∈ R

}
, α > 0,

N =

{
nx =

(
1 x
0 1

)
; x ∈ R

}
,

K =

{
kθ =

(
cos θ − sin θ
sin θ cos θ

)
; θ ∈ R

}
.

2.1 Lemma (Iwasawa decomposition). The map

A×N ×K −→ G, (a, n, k) 7−→ ank,

is topological.

Proof. The elements of K act as rotations on R2. To any g ∈ G one can find
a rotation k such that gk fixes the x-axis. Then gk is triangular matrix. This
gives the prove of the lemma. tu

One can write the decomposition explicitly (which leads to a new proof):

(
a b
c d

)
=

( 1√
c2+d2

0

0
√
c2 + d2

)
·
(

1 ac+ bd
0 1

)
· 1√

c2 + d2

(
d −c
c d

)
.

We denote the Haar measures on A, N , K by da, dn, dk. Recall

da =
dα

α
, dn = dx.

The measure dk is normalized such that the volume of K is 1.

We first consider the group P = AN of upper triangular matrices in SL(2,R)
with positive diagonal. The map A × N → P is topological (but not a group
isomorphism). Recall that∫

P

f(p)dp :=

∫
A

∫
N

f(an)dnda

is a Haar measure (Lemma I.5.4).
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2.2 Proposition. A Haar measure on G = SL(2,R) can be obtained as
follows ∫

G

f(x)dx =

∫
A

∫
N

∫
K

f(ank) dk dn da.

Proof. Since K is compact we have ∆G|K = ∆K . Hence the invariant quotient
measure on K\G exists. There is a natural topological map P → K\G. The
quotient measure gives a Haar measure on P . The rest comes from defining
properties of a quotient measure (Proposition I.5.5). tu

3. Principal series for the real special linear group of
degree two

We will use the concept of “induced representation”. The basic idea of induced
representations is easy to explain. Let P ⊂ G be a subgroup of a group and
σ : P → GL(H) a representation of the subgroup. We consider the space
Ind(σ) of all functions f : G→ H with the property

f(px) = σ(p)f(x) for p ∈ P, x ∈ G.

Then G acts by right translation on Ind(σ).

An important special case is obtained if one takes for σ a one dimensional
representation. It is given by a quasi character (homomorhism χ : P → C∗).
Then Ind(σ) = Ind(χ) consists of functions f : G→ C with the property

f(px) = χ(p)f(x) for p ∈ P, x ∈ G.

In the case that χ is trivial we obtain the standard representation of G on the
space of all functions on P\G (translation from the right).

Assume that G is a locally compact group and that P is a closed subgroup.
We want to modify this construction in such a way that we get – for unitary σ
– a unitary induced representation.

The easiest case is when G and P are both unimodular. Then there exists
an invariant measure dx on P\G. We consider the one dimensional trivial
representation of P . Then the induced representations consists of all functions
on P\G. We modify this and take L2(P\G, dg). The right translation is a
unitary representation as we realized earlier.

Now we consider G = SL(2,R) and for P we take the group of upper trian-
gular matrices with positive diagonal. We consider the space of all functions

f(pg) = α1+sf(g), p ∈ P, g ∈ G.
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Here s can be an arbitrary complex number. The group G acts on the set
of these functions by translation from the right. The Iwasawa decomposition
shows that such a function is determined by its restriction to K and every
function on K is the restriction of such a function. Hence we defined an action
of G (depending on s) on functions on K. We denote this action by πs(g)f

Now we introduce the space H∞(s) of all differentiable functions on G with
the property

f(pg) = a1+sf(g), p ∈ P, g ∈ G

We have an isomorphism

H∞(s)
∼−→ C∞(K)

We transport the Hermitian product of L2(K, dk) to H∞(s) and we denote
the completion by H(s). So we have an isomorphism

L2(K, dk)
∼−→ H(s)

We have a representation of G on H∞(s) which preserves the scalar product.
This extends to a unitary representation on the completion H(s). A little later
it will be clear that this representation is continuous.

3.1 Proposition (Principal Series Representations). For each complex
s there is a Banach-representation of G = SL(2,R) on the space L2(K, dk)
which can be defined as follows. Take a differentiable function f on K and
extend it to a function on G with the property

f(px) = α1+sf(x) (x ∈ G).

Consider the translation of G from the right and then take the completion.

We will see that the these representations play a fundamental role. They are
not irreducible. We can consider the subspaces Heven(s), Hodd(s) of H(s) that
are defined through f(−g) = ±f(g).

Under the natural isomorphism

H(s)
∼−→ L2(K, dk)

the image of Heven(s) is the Hilbert space with the basis einx, n even, and
similarly the image of Hodd(s) is the Hilbert space with the basis einx, n odd.

3.2 Remark. The principal series is the orthogonal direct sum of the even
and the odd principal series

H(s) = Heven(s)⊕Hodd(s)

which are defined through f(−g) = ±f(g).



§3. Principal series for the real special linear group of degree two 43

We are not interested in Banach representations but in unitary representa-
tions. So we have to investigate for which s the princicpal series gives unitary
representations.

Recall the notations G = SL(2,R), K = SO(2) and also the group P of
upper triangular matrices

p =

(
α ∗
0 α−1

)
with positive diagonal elements. The Iwasawa decomposition gives a natural
bijection

P\G −→ K, pk 7−→ k.

Since G acts on P\G from the right, we get an action of G on K. This can be
described as follows.

Let k ∈ K, g ∈ G. We write the Iwasawa decomposition of kg in the form

kg = p̃g(k)k̃g(k), p̃g(k) ∈ P, k̃g(k) ∈ K.

Then the action of G on K is given by

K ×G −→ K, (k, g) 7−→ k̃g(k).

Let f be a function on K and g ∈ G. Then the transformed function can be
written as

πs(g)f(k) = ∆(p̃g(k))−(1+s)/2f(k̃g(k)).

Let dk be a Haar measure of K. It is not invariant under the action of G.
Otherwise we would get an invariant measure on P\G which cannot exist since
G but not P is unimodular. Instead of this the following transformation formula
holds. Recall that ∆(p) = a−2 is the modular function of P .

3.3 Lemma. Let g ∈ G. We consider the (continuous) maps k̃g : K → K and

p̃g : K → P which are defined by kg = p̃g(k)k̃g(k). Then for each f ∈ Cc(K)
the formula ∫

K

f(k̃g(k))∆(p̃g(k))−1dk =

∫
K

f(k)dk

holds.

(If the ∆-factor were absent, the measure dk on K would be G-invariant.)

Proof. Since G and K are unimodular we can consider on G/K the invariant
quotient measure and this gives a (left invariant) Haar measure dp on P which
we can identify with G/K. We choose an arbitrary function ϕ ∈ Cc(P ) with
the property ∫

P

ϕ(p)dp = 1.
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Then we consider the function F (pk) = ϕ(p)f(k). This is a function in Cc(G).
The defining formula for the quotient measure on G/K is∫

G

F (x)dx =

∫
P

∫
K

F (pk)dkdp =

∫
K

f(k)dk.

We use the right invariance of the Haar measure on G to obtain∫
K

f(k)dk =

∫
G

F (xg)dx =

∫
P

∫
K

F (pp̃g(k)k̃g(k))dkdp.

We first integrate over p. Since the factor p̃g(k) ∈ P is on the right from p we
get∫

K

f(k)dk =

∫
K

∫
P

F (pk̃g(k))∆(p̃g(k))−1dkdp =

∫
K

f(k̃g(k)∆(p̃g(k))−1dk.

tu
We derive a corollary from Lemma 3.3.

3.4 Corollary of Lemma 3.3. Let f : G→ C be a function such that f |K
is integrable and such that

f(pg) = α2f(p) = ∆(p)−1f(p) for all p ∈ P, g ∈ G.

Then for each g ∈ G the function

f̃(x) = f(xg), x ∈ G,

has the same property and we have∫
K

f(x)dx =

∫
K

f̃(x)dx.

Proof. We have∫
K

f(kg)dk =

∫
K

f(p̃g(k)k̃g(k)dk =

∫
K

∆(p̃g(k))−1f(k̃g(k))dk.

Now Lemma 3.3 applies. tu
Let f, g ∈ H(s). Then f(x)g(x) transforms under right translation with the

factor α1+sα1+s̄. In the special case that s is purely imaginary this is α2. Then
the Corollary of Lemma 3.3 shows that

∫
G
f(x)g(x) is invariant under πs. This

gives us the following result.
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3.5 Proposition (unitary principal series). For s ∈ iR the principal
series representation is a unitary representation of G. In these cases the de-
composition

H(s) = Heven(s)⊕Hodd(s)

is an orthogonal decomposition.

We will see later that Heven(s), s ∈ iR, is always irreducible and that Hodd(s),
s ∈ iR, is irreducible for s 6= 0. The odd case s = 0 is exceptional. Here the
representation breaks into an orthogonal sum

Hodd(0) = Hodd(0)+ ⊕Hodd(0)−

of two unitary representations. Inside L2(K, dk) they are generated (as Hilbert
spaces) by einθ where n is odd and n > 0 resp. n < 0. Later we will see that
these two exceptional unitary representations are irreducible. They are called
the Mock discrete series for reasons we will see.

So far we obtained three series of unitary representations which will turn
out to be irreducible.

even principal series Heven(s) (s ∈ iR)
odd principal series Hodd(s) (s ∈ iR, s 6= 0)
mock discrete series Hodd(0)± (2 representations)

derived from the odd principal
series in the case s = 0

4. The intertwining operator

We go back to the principal series representation for arbitrary complex s.

In what follows it is convenient to introduce the subspace H∞(s) ⊂ H(s)
of differentiable functions in H(s). This space corresponds to C∞(K). Clearly
the group G acts on H∞(s). We want to construct an intertwining operator

M(s) : H∞(s)
∼−→ H∞(−s),

in the sense that it is an isomorphism of vector spaces, compatible with the
action of G.

4.1 Lemma. Let f ∈ H(s) be a continuous function. Then the integral∫
N

f(wn)dn, w =

(
0 −1
1 0

)
,

exists for Re s > 0.
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Proof. We have to make use of the Iwasawa decomposition(
0 −1
1 0

)(
1 x
0 1

)
=

( 1√
1+x2

0

0
√

1 + x2

)(
1 x
0 1

)( x√
1+x2

−1√
1+x2

1√
1+x2

x√
1+x2

)
.

It shows

f(wn) =
1

√
1 + x2

1+s f

(
x√

1+x2

−1√
1+x2

1√
1+x2

x√
1+x2

)
, n =

(
1 x
0 1

)
.

Since the function f is bounded on K, we can compare the integral with∫ ∞
1

1

x1+s
dx.

This converges for Re s > 0. tu
We can consider the integral in Lemma 4.1 for f(xg) instead of f(x),∫

N

f(wng)

and consider it as a function on G. For trivial reason we have:

4.2 Remark. Let Re s > 0. The operator

(M(s)f)(x) =

∫
N

f(wnx)dn

is compatible with the action of G.

As we know, L2(K, dk) is a Hilbert space. The functions einθ, n ∈ Z, define an
orthonormal basis. This follows for example from the fact that every function
in C∞(K) admits a Fourier expansion

∞∑
m=0

ame
imθ.

Such a Fourier series occurs if and only if (am) is tempered, i.e. rapidly decaying
which means that amP (m) is bounded for all polynomials P . The Fourier series
and all its derivatives then converge uniformly. Hence they converge also in
L2(K, dk). We denote by

ε(s,m), pk 7−→ a1+seimθ

the corresponding functions in H(s). Considered in H(s) they build an or-
thonormal basis. (Recall that we consider at the moment the Hilbert space
structure on H(s) which is obtained by transportation from L2(K, dk)).
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4.3 Proposition. Let Re s > 0. Then

M(s)ε(s,m) = c(s,m)ε(−s,m)

where

c(s,m) =
21−sπΓ(s)

Γ
(
s+1+m

2

)
Γ
(
s+1−m

2

) .
An inductive formula for c(s,m) is

c(s, 0) =
Γ
(

1
2

)
Γ
(
s
2

)
Γ
(
s+1

2

) , c(s,±1) = ±i
Γ
(

1
2

)
Γ
(
s+1

2

)
Γ
(
s+2

2

) .

c(s,m+ 2) = −s− (m+ 1)

s+ (m+ 1)
c(s,m), c(s,m− 2) = −s+ (m− 1)

s− (m− 1)
c(s,m).

Proof. We have to prove

c(s,m) =

∫
N

ε(s,m)(wn)dn.

Using the Iwasawa decomposition this means∫ ∞
−∞

1
√

1 + x2
1+s

(
x+ i√
1 + x2

)m
dx =

21−sπΓ(s)

Γ
(
s+1+m

2

)
Γ
(
s+1−m

2

) .
This formula is proved and commented in (as far as I know unpublished) notes
of Garret, P. “Irreducibles as kernels of intertwinings among principals” (2009)
and later also in Casselman, B. “Representations” (2020 so far last version).
Both papers can by found on the internet. Casselman says that the proof in
his notes is due to Garret but that this formula already had been known to
Cauchy, who published it 1825 without proof. For the detailed proof we refer
to the two papers above. tu

The Gamma function has a meromorphic extension to the whole plane. The
poles are in 0,−1,−2, . . .. Hence the functions c(s,m) can be holomorphically
extended to the complement of Z in C. It is easy to verify that c(s,m) has
moderate growth for fixed s /∈ Z and for m→ ±∞. We can use this extension
to define the intertwining operator M(s) for all s /∈ Z. This means that

|c(s,m)| ≤ c|m|K

for suitable constants C,K which may depend on s. This implies that
(amc(m, s)) is rapidly decaying if (am) is so. This implies that M(s) can
be defined th rough

M(s)
∑
m

amε(s,m) =
∑
n

amc(s,m)ε(s,m).

So we see that M(s) maps H∞(s) to H∞(−s) Hence we proved the following
proposition.
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4.4 Proposition. The intertwining operator M(s) : H∞(s) → H∞(−s) can
be extended from Re s > 0 to all s /∈ Z by means of the formula

M(s)
∑
m

amε(s,m) =
∑
n

amc(s,m)ε(s,m).

It is compatible with the action of G. For pure imaginary s ist is unitary.

5. Complementary series for the rea lspecial linear group
of degree two

Let f, g ∈ H∞(s). We consider the function h = fM(s)ḡ. It is easy to check
that

h ∈ H∞(2 + s− s̄).

Now we assume that s is real. Now we can consider a pairing on H∞(s).

H∞(s)×H∞(s) −→ C, 〈f, g〉 =

∫
K

f(x)M(s)g(x)dx.

Corollary 3.4 shows that this pairing is compatible with the action of G. The
constants c(s,m) are real for real s. Hence this pairing is a Hermitian form. If
all c(s,m) were positive this form would be positive definit. From the recursion
formula one can deduce that

c(s,m) > 0 for s ∈ (−1, 1), s 6= 0, m even.

We can consider also the subspaces H∞,even(s) = H∞(s) ∩ Heven(s) and simi-
larly for odd. The formula in Proposition 4.4 shows that theses subspaces are
G-invariant. We obtain the following lemma.

5.1 Lemma. Assume s ∈ (−1, 1), s 6= 0. The Hermitian form 〈f, g〉
on H∞,even(s) is positive definit. The action of G on H∞,even(s) is unitary
(compatible with the action of G.

Assume s ∈ (−1, 1). We denote by H̃even(s) the Hilbert space which is obtained
from H∞,even(s) through completion.

5.2 Proposition (Complementary series). For each s ∈ (−1, 1), s 6= 0,
the representation of G on H̃even(s) is a (continuous) unitary representation.
The functions ε(s, n), n even, define an orthonormal basis. Two representa-
tions for s and −s are isomorphic.
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6. The discrete series

Möbius transformations

Let

g =

(
a b
c d

)
∈ GL(2,C)

be a complex invertible 2 × 2-matrix. Denote by C̄ = C ∪ {∞} the Riemann
sphere. The transformation

g(z) =
az + b

cz + d

is defined first outside a finite set of C̄ but can be extended in a natural way
to a bijection C̄ → C̄. This is an action of GL(2,C) on C̄ from the left. It
is well known and easy to check that the subgroup SL(2,R) acts on the upper
half plane H. It is also well known that the Cayley transformation

σ =

(
1 −i
1 i

)
maps the upper half plane unto the unit disk. The inverse transformation is
given by

σ−1 =
1

2i

(
i i
−1 1

)
.

As a consequence the group

σ SL(2,R)σ−1

acts on the unit disk E . This group is also a well-known classical group. We
denote by U(1, 1) the unitary group of signature (1, 1) that is defined through

ḡ′Jg = J where J =

(
1 0
0 −1

)
.

The special unitary group of signature (1, 1) is

SU(1, 1) = U(1, 1) ∩ SL(2,C).

One can check
SU(1, 1) = σ SL(2,R)σ−1.

A very quick proof rests on the fact that a 2× 2-matrix g has determinant 1 if
and only if

g′Ig = I where I =

(
0 −1
1 0

)
.
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Hilbert spaces of holomorphic functions

6.1 Lemma. Let U ⊂ C be an open subset and K ⊂ U a compact subset.
There exists a constant C such that every holomorphic function satisfies the
inequality

|f(a)|2 ≤ C
∫
U

|f(z)|2dz for a ∈ K.

Here dz = dxdy denotes the standard Lebesgue measure.

Proof. There exists r > 0 such that for each a ∈ K the closed disk of radius r
around a is contained in U . We consider the Taylor expansion

f(z) =
∞∑
n=0

an(z − a)n.

By means of ∫
x2+y2≤r2

zmz̄n = 0 for m 6= n

we obtain∫
U

|f(z)|2dz ≥
∫
|z−a|≤r

|f(z)|2dz =
∞∑
n=0

∫
|z−a|2≤r2

|anzn|dz ≥ πr2|f(a)|2.

We can take C = π−1r−2. tu

6.2 Proposition. Let U ⊂ C be an open subset and h : U → R an everywhere
positive continuous function. Consider the measure dω = h(z)dz. Then

L2
hol(U, dω) = {f ∈ L2(U, dω), f holomorphic}

is a closed subspace of L2(U, dω) and hence a Hilbert space.

Proof. Let (fn) be a sequence in L2
hol(U, dω that converges to f in the Hilbert

space L2(U, dω). We have to show that f is holomorphic. This is true since
Lemma 6.1 shows that the sequence converges locally uniformly. tu

We denote by H the upper half plane in the complex plane. Recall that
the group G = SL(2,R) acts on H through (az + b)(cz + d)−1. The measure
dxdy/y2 is invariant under the action of G. We consider more generally for
integers n the measures

dωn = yn
dxdy

y2
.

Then we consider the space

Hn = L2
hol(H, dωn)

of all holomorphic functions which are square integrable with respect to this
measure. We know that this is a Hilbert space. We define an action πn of
G = SL(2,R) on function on Hn by means of the formula

(πn(g)f)(z) = f(g−1z)(cz + d)−n.

This defines a unitary representation of G.
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6.3 Proposition. The Hilbert space Hn = L2
hol(H, dωn) is different from 0

if n ≥ 2. The formula

(πn(g)f)(z) = f(g−1z)(cz + d)−n

defines a unitary representation of G = SL(2,R) on Hn.

Proof. It remains to show that Hn is not zero if n ≥ 2. For this transform
the measure dωn to the unit disk E by means of the Caylay transformation
w = (z − i)(z + i)−1. Its inverse is z = i(1 +w)(1−w)−1. The imaginary part
y of z transforms as

y =
1− |w|2

|1− w|2
.

The formula
dz

dw
=

−2i

(1− w)2

shows that the Euclidian measure dxdy transforms as

dν =
4

|1− w|4
dudv

where dudv is the Euclidean measure of E . This means thatHn can be identified
with the space of all holomorphic functions

f : E −→ C,
∫
E
|f(w)|2

(
1− |w|2

|1− w|2

)n−2

dν <∞ tu

This series is called the holomorphic discrete series. If one considers anti-
holomorphic instead of holomorphic functions one obtains the antiholomorphic
discrete series. Both together are the so-called discrete series.

7. The space Sm,n

We consider the groups

G = SL(2,R) and K = SO(2).

Making use of the Iwasawa decomposition, we can write any function f : G→ R
as functions of the variables a, n, θ

f(g) = g(a, n, θ).

Since g can be considered as a function on R>0 × R × R, it makes sense to
talk about differentiable g and in this way of differentiable f . We denote the
subspace of differentiable functions of Cc(G) by C∞c (G).
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7.1 Definition. The space Sm,n consists of all f ∈ C∞c (G) with the property

f(kθxkθ′) = f(x)e−imθe−inθ′ (x ∈ G).

Let be f ∈ C∞c (G). Then the Fourier coefficient

fm,n(x) =

∫ 2π

0

∫ 2π

0

f(kθxkθ′)e
−imθe−inθ′dθdθ′

is contained in Sm,n. From the theory of Fourier series we obtain

f(kθxkθ′) =
∑
m,n

fm,n(x)eimθeinθ′

where the convergence is absolute and locally uniform in x. We specialize θ = θ′

to obtain
f(x) =

∑
m,n

fm,n(x)

Let supp(f) be the support of f . Then K supp(f)K contains the support of
fm,n. We have proved the following result:

7.2 Lemma. Let be f ∈ C∞c (G) and let be ε > 0. There exists a function g
which is a finite linear combination from functions contained in Sm,n and with
the following property:

a) supp(g) ⊂ K supp(f)K,
b) |f(x)− g(x)| < ε for x ∈ G.

Corollary. The algebraic sum
∑
m,n Sm,n is dense in the space L1(G, dx) with

respect to the norm ‖ · ‖1.

Here dx of course is a Haar measure. Recall that G is a unimodular group,
hence we have to define

f∗(x) = f(x−1).

We study the convolution.

7.3 Lemma. We have

a) Sm,n ∗ Sp,q = 0 if n 6= p.
b) S∗m,n = Sn,m.
c) Sm,n ∗ Sn,q ⊂ Sm,q.
The proof can be given by an easy calculation. We restrict to the case a). In
the convolution integral

(f ∗ g)(x) =

∫
G

f(y)g(y−1x)dy

we replace y by ykθ which doesn’t change the integral. Now we use the trans-
formation properties of f and g and obtain that (f ∗ g)(x) remains unchanged
if one multiplies it by e2π(p−n)θ, This proves a). tu

From Lemma 7.3 we see that Sn,n is a star algebra.
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7.4 Proposition. The algebra Sn,n is commutative.

Proof. There is a very general principle behind this statement. It depends on
the fact that G = SL(2,R) admits two involutions

xτ = x′ (transpose of x)

xσ = γxγ where γ =

(
1 0
0 −1

)
.

We collect the properties of the two involutions that are needed in the proof.

1) σ is an automorphism ((xy)σ = xσyσ) and τ is an anti-automorphism
((xy)σ = yσxσ)

2) kτ = kσ = k−1 for k ∈ K.
3) Every element of G can be written as product sk of a symmetric matrix

(s = sτ ) and an element k ∈ K.
4) For every symmetric s = sτ there exist k ∈ K such that

sσ = ksk−1.

1) and 2) are clear. To prove 4) we use that any real symmetric matrix s can
be transformed by means of an orthogonal matrix into a diagonal matrix

k1sk
−1
1 =

(
λ1 0
0 λ2

)
.

Here λ1, λ2 are the eigen values of s. Since we can replace k1 by γk1 we can
assume that the determinant of k1 is 1. The matrix sσ is also symmetric and
has the same eigen values as s. Hence we find an orthogonal matrix k2 of
determinant 1 such that

k2s
σk−1

2 =

(
λ1 0
0 λ2

)
.

We obtain ksk−1 = kσ where k = k−1
2 k1. Finally we prove 3). So, let

x ∈ SL(2,R). We consider xx′. This is a symmetric positive definite ma-
trix. Transformation to a diagonal matrix by means of an orthogonal matrix
gives a symmetric positive matrix s with the property xx′ = s2. Then k = s−1x
is orthogonal and has the desired property. This finishes the proof of 1)-4).

We also mention that the Haar measure on G is invariant under the two
involutions. We give the argument for the anti-automorphism σ. The integral∫
G
f(xσ)dx is right invariant. Since G is unimodular it agrees with

∫
G
f(x)dx

up to a positive constant factor C. Since σ is involutive we get C2 = 1 and
hence C = 1.

Now we can give the proof of Proposition 7.4. We extend the involutions to
functions on G by

fσ(x) = f(xσ), fτ (x) = f(xτ ).
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We claim the following two formulae:

(f ∗ g)σ = fσ ∗ gσ, (f ∗ g)τ = gτ ∗ fτ .

We prove the second formula (the first one is similar). We have

(f ∗ g)τ (x) =

∫
G

f(y)g(y−1xτ )dy and (gτ ∗ fτ )(x) =

∫
G

g(yτ )f((y−1)τx)dy.

In the first integral we replace y by yτ , then y by xy and after that y by
y−1. This transformations don’t change the integrals and proves the claimed
identity.

Now we assume that f ∈ Sm,m. In this case we claim fτ = fσ. To prove
this we write x ∈ G in the form x = sk. Then we get

fτ (x) = f(kτs) = %(k)f(s) (%(k) = eimθ)

and
fσ(x) = f(sσk−1) = %(k)f(sσ) = %(k)f(γsγ−1) = %(k)f(s).

Now let f, g be both in Sm,m. Then f ∗ g is in Sm,m too and we get (f ∗ g)τ =
(f ∗ g)σ. This gives

gτ ∗ fτ = fσ ∗ gσ.

Since f, g ∈ Sm,m implies that fσ, gσ ∈ Sm,m we can replace f, g by fσ, gσ to
obtain the final formula f ∗ g = g ∗ f . tu

Now we consider a Banach representation of G = SL(2,R),

π : G −→ GL(H).

We assume that H is a Hilbert space. But it is not necessary to assume that
it is unitary. We restrict this representation to K. Without loss of generality
we can assume that the restriction to K is unitary (use Proposition I.8.8). We
consider the (closed) subspace

H(m) := {h ∈ H; π(kθ)(h) = eimθh}.

The spaces H(n) are pairwise orthogonal and that H is the direct Hilbert sum
of the H(n). For an element h in the algebraic sum, we denote by hn the
component in H(n).

7.5 Lemma. The space Sm,n maps H(n) into H(m). It maps H(n) to zero
if n 6= m.

The proof is very easy and can be omitted. tu
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7.6 Proposition. Assume that π : G → GL(H) is an irreducible represen-
tation on a Hilbert space. The algebra Sm,m acts topologically irreducibly on
H(m) if this space is not zero.

Proof. Let h ∈ H(m) be a non-zero element. We want to show that Sm,mh
is dense in H(m). (This means that Sm,m acts topologically irreducible on
H(m).) We consider the space Ah. We know that Ah is a dense subspace of
H. It is contained in the algebraic sum

∑
H(n). We consider the projection

of
∑
H(n) to H(m). The image of Ah under this projection is dense in H(m).

Lemma 7.5 shows that this image equals Sm,mh. This shows that Sm,m acts
topologically irreducible on H(m). tu

Since Sm,m is abelian, we now obtain the following theorem.

7.7 Theorem. Let π : G → GL(H) be an irreducible representation on a
Hilbert space. We assume that the restriction to K is unitary. Then H is the
direct Hilbert sum of the spaces H(n). Assume that H(n) is finite dimensional.
Then dimH(n) ≤ 1. This is always the case if π is unitary.

We just mention that this a special case of a more general result that holds
for any semi simple Lie group G and a maximal compact subgroup. Examples
are G = SL(n,R), K = SO(n,R). For every irreducible unitary representation
of G the K-isotypic components are finite dimensional. In other words: each
irreducible unitary representation of K (which is always finite dimensional)
occurs with finite multiplicity in π|K. The proof more involved, mainly since
K is not commutative in general.

A vector h ∈ H is called K-finite, if the space generated by all π(k)h is finite
dimensional. The space of K-finite vectors is denoted by HK . The elements
of H(m,n) are K-finite. Since every finite dimensional representation of a
compact group is completely reducible, we obtain the following description.

7.8 Lemma. Let π be a Banach representation of G on a Hilbert space H
such that the restriction to K is unitary. Then

HK =
∑
m∈Z

H(m) (algebraic sum).

It is important to describe for a given irreducible unitary representation π
the set of all n sich such that H(n) is different from zero (and then one-
dimensional). For this we look for operators that shift H(n) which means
that H(n) is mapped into another H(m). We will find such operators in the
Lie algebra. Finally we mention another result which is important in this
connection.

7.9 Lemma. The group G = SL(2,R) is generated by any neighborhood of
the unit element.
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The following proof works for every connected group. (That SL(2,R) is con-
nected follows from the Iwasawa decomposition). Let U be a an open neigh-
borhood of the identity. By continuity the set of all a such that a and a−1 is
contained in U is also an open neighborhood. Hence we can assume that a ∈ U
implies a−1 ∈ U . We consider the image U(n) of

Un −→ G, (a1, . . . , an) 7−→ a1 · · · an.

The union G0 of all U(n) is an open subgroup of G. Since G is the disjoint
union of cosets of G0, the complement of G0 in G is also open. Hence G0 is
open and closed in G and hence G0 = G since G is connected. tu

8. The derived representation

Differential calculus usually is defined for maps U → Rm, where U ⊂ Rn is
an open subset. There is a straight forward generalization where E = Rn

and F = Rm are replaced by Banach spaces, where in this context they are
understood as Banach spaces over the field of real numbers. It is clear what
this means. A map f : U → F in this context is called differentiable at a ∈ U
if there exists a continuous (real) linear map La : E → F such that

f(x)− f(a) = La(x− a) + r(x) where lim
x→a

‖r(x)‖
‖x− a‖

= 0.

If this is true for every a ∈ U we call f differentiable. Then we can consider
the derivative

Df : U ≤ B(E,F ), df(a) = La.

Since the subspace of bounded operators of Hom(E,F ) is a Banach space too,
we can ask for differentiability of df . In this way one can define the space of
infinite differentiable functions C∞(U,F ). As in the finite dimensional case, the
chain rule holds for (infinitely often) differentiable functions. We also mention
that a continuous linear map is differentiable for trivial reasons.

We want apply this to functions G→ H where H is a Banach space (as usual
over the complex numbers). Assume that π : G −→ GL(H) be a continuous
representation. We associate to an arbitrary vector h ∈ H a function

G −→ H, x 7−→ π(x)h.

We call the vector h differentiable if this function is infinitely often differ-
entiable. We denote the space of differentiable vectors by H∞. These is a
sub-vector space. It depends of course on π. Hence, for example, H∞π is a
more careful notation.

We give examples of a differentiable vector.
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8.1 Lemma. Let π : G → GL(H) be a Banach representation and f ∈
C∞c (G). Then the image of π(f) is contained in H∞. As a consequence, the
space H∞ is a dense subspace of H.

Corollary. Assume that H is a Hilbert space and that the restriction of π
to K is unitary. Let m be an integer such that dimH(m) < ∞. Then the
elements of H(m) are differentiable. (This applies if π is an irreducible unitary
representation.)

Proof. The first part follows from the formula

π(x)π(f)v =

∫
G

f(y)π(x)π(y)vdy =

∫
G

f(x−1y)π(y)dy

by means of the Leibniz rule that allows to interchange integration and differ-
entiation. (Of course we need a Banach valued version of the rule. We omit a
proof of this, since it can be done as in the usual case.)

To prove the corollary we observe that π(Sm,m)H(m) is dense in H(m) by
Lemma 7.5. In the case that H(m) is finite dimensional it is the whole of
H(m). Now we can apply the first part of the proof. tu

Let X ∈ g and h ∈ H∞. The map

R −→ H, t 7−→ π(exp(tX))h

is differentiable, since it is the composition of two differentiable maps. Hence
we can define the operator dπ(X) : H∞ → H:

dπ(X)h :=
d

dt
π(exp(tX)h)

∣∣∣
t=0

.

This is related to a another construction, the Lie derivative (from the left).
This is for each X ∈ g a map

LX : C∞(G,H) −→ C∞(G,H)

which is defined by

LXf(a) =
d

dt
f(a exp(tX))

∣∣∣
t=0

.

(It is easy to show that LXf is differentiable.) The Lie derivative has nothing
to do with the representation π. But we get a link to the derived representation
if we apply it to functions of the type x 7→ π(x)h.
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8.2 Lemma. Let X ∈ g and h ∈ H∞. We consider the differentiable function
f(x) = π(x)h on G. Then the formula

π(a)dπ(X)h = (LXf)(a)

holds, in particular
dπ(X)h = (LXf)(e) ∈ H∞π .

Proof. The second formula is just true by definition. The first one can be
obtained if one applies π(a) to the second one. One just has to observe that
π(a) commutes by continuity with the limit

lim
t→0

π(exp(tX))h− h
t

. tu

The Lie derivatives satisfy a basic commutation rule.

8.3 Proposition. For X,Y ∈ g the formula

L[X,Y ] = LX ◦ LY − LY ◦ LX ([X,Y ] = XY − Y X)

holds.

Proof. The formula states

d

dt
f(exp(t[X,Y ]))

∣∣
t=0

=

d

dt

d

ds

(
f(exp(tX) exp(sY ))− f(exp(tY ) exp(sX))

)∣∣
t=s=0

.

Here f is a C∞ function on some open neighborhood of the unit element of
G = SL(2,R). It is easy to show that f is the restriction of a C∞-function
on some open neighborhood of the unit element of GL(2,R) (which can be
considered as an open subset of R4). Hence it is sufficient to prove the formula
for G = GL(2,R) and g can be replaces we the space of all real 2× 2-matrices.
Using Taylor’s formula one can reduce the proof to the case where f is a
polynomial. The product rule shows that the formula is true for fg if it is true
for f and g. Hence it is sufficient to prove it for linear functions. So we reduced
the statement to the formula

d

dt
exp(t[X,Y ])

∣∣
t=0

=

d

dt

d

ds

(
exp(tX) exp(sY ))− exp(tY ) exp(sX)

)∣∣
t=s=0

.

This is equivalent to the formula [X,Y ] = XY − Y X. tu
As a consequence of the commutation rule of the Lie derivative we obtain

the following rule for the derived representation.
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8.4 Proposition. Let π : G→ GL(H) be a unitary representation. Then the
following rule

dπ([X,Y ]) = dπ(X) ◦ dπ(Y )− dπ(Y ) ◦ dπ(X)

holds.

Propositions 8.3 and 8.4 provide special cases of the following definition.

8.5 Definition. Let A be a an associative algebra (over the field of real
numbers is enough). A map ϕ : g→ A, A 7−→ A is called a Lie homomorphism
if it is R-linear and if

ϕ([A,B]) = ϕ(A)ϕ(B)− ϕ(B)ϕ(A)

holds.

Hence Proposition 8.3 provides a Lie homomorphism

g 7−→ End(C∞(G,H))

and Proposition 8.4 a Lie homomorphism

g 7−→ End(H∞).

In both cases the algebra on the right-hand side is a complex algebra (since
H is a complex vector space and since we understand by End complex linear
endomorphisms. In such a case we can extend ϕ to the complexification gC by
means of the formula

gC −→ A, ϕ(A) = ϕ(Re(A)) + iϕ(Im(A)).

It is easy to check that the formula

ϕ([A,B]) = ϕ(A)ϕ(B)− ϕ(B)ϕ(A)

remains true where the bracket in gC is of course defined by the formula
[A,B] = AB −BA.
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9. Explicit formulae for the Lie derivatives

In the following we use the elements

W =

(
0 1
−1 0

)
, V =

(
0 1
1 0

)
, H =

(
1 0
0 −1

)
of g. They give a basis of g. We also need

X =

(
0 1
0 0

)
We also will consider the complexification gC . Here we use the (complex) basis

W, E− = H − iV, E+ = H + iV.

So we have

E− =

(
1 −i
−i −1

)
, E+ =

(
1 i
i −1

)
.

Recall that the Lie derivatives to gC can be extended by C-linearity:

LA+iB = LA + iLB ,

since H and hence C∞(G,H) is a complex vector space.

From the Iwasawa decomposition we know that we can write g ∈ G in the
form

g =

(
a b
c d

)
=

(√
y
√
y−1 x

0
√
y−1

)(
cos θ sin θ
− sin θ cos θ

)
with unique x and y > 0. The angle θ is determined mod 2π. We need the
expressions for x, y, θ in terms of a, b, c, d. To get them it is useful to use complex
numbers. Let τ be a complex number in the upper half plane, Im τ > 0. Since
c, d are real but not both zero, the number cτ + d is different from zero. Hence
we can define

g(τ) =
aτ + b

cτ + d
.

Let h be a second matrix from G. A direct computation which we omit shows

(gh)(τ) = g(h(τ)).

We also notice
kθ(i) = i.

Hence we obtain
ai + b

ci + d
= x+ iy.
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This gives us x and y in terms of a, b, c, d.

y =
1

c2 + d2
, x =

ac+ bd

c2 + d2
.

Looking at the second row of the Iwasawa decomposition we get

c
√
y = − sin θ, d

√
y = cos θ.

This shows

eiθ = cos θ + i sin θ =
d− ic√
c2 + d2

.

This gives as

θ = Arg
d− ic√
c2 + d2

.

Since θ is only determined mod 2π, we have to say a word about the choice of
the argument Arg. All what we need is that for a given g0 ∈ G one can make
the choice of Arg such it depends differentiably on g for all g in a small open
neighborhood of g0.

In the following we will fix g ∈ G and X ∈ g and consider

g(t) = g exp(tX)

for small t. We write x(t), y(t), θ(t) in this case. As we mentioned the function
θ(t) can be chosen for small t such that it depends differentially on t. If we
insert t = 0 we get the original x, y, θ.

For the Lie derivative we have to consider a differentiable function f on G.
We can write it as function f of three variables. We get

f(g(t)) = F (x(t), y(t), θ(t)).

By means of the chain rule we get

d

dt
f(g(t)) =

∂F

∂x
ẋ(t) +

∂F

∂y
ẏ(t) +

∂F

∂θ
θ̇(t).

Recall that we have to evaluate this expression at t = 0 to get the Lie derivative.

As an example we take

X =

(
0 1
0 0

)
, etX =

(
1 t
0 1

)
.

Then we have

g(t) =

(
a b+ ta
c d+ tc

)
.
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We obtain

z(t) =
ai + at+ b

ci + ct+ d
.

Differentiation and evaluating at t = 0 gives

ż(0) =
1

(ci + d)2
.

Using the formulae

y =
1

c2 + d2
, e2iθ =

(d− ic)2

c2 + d2

we obtain

ż(0) = ye2iθ or ẋ(0) = y cos 2θ, ẏ(0) = y sin 2θ.

Finally, to compute θ̇(0), we use the formula

cos θ(t) = (d+ ct)
√
y(t).

Differentiation gives

−θ̇(t) sin θ(t) = (d+ ct)
ẏ(t)

2
√
y(t)

+ c
√
y(t).

Evaluating by t = 0 we get

θ̇(0) sin θ =
dẏ(0)

2
√
y
− c√y.

We insert −c√y = sin θ and ẏ(0) = y sin 2θ = 2y sin θ cos θ to obtain

θ̇(0) = −d√y cos θ + 1 = − cos2 θ + 1 = sin2 θ.

Another – even easier example – is LW . A simple computation gives

W =

(
0 1
−1 0

)
, exp tW =

(
cos t sin t
− sin t cos t

)
.

Hence we obtain that LW is given by the operator ∂/∂θ. In a similar way other
elements of the Lie algebra can be treated. Since V = 2X −W we get LV . We
omit the computation for

H =

(
1 0
0 −1

)
, etH =

(
et 0
0 e−t

)
and just collect the formulae together.
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9.1 Proposition. Let f ∈ C∞ and A ∈ g. We denote by F (x, y, θ) the
corresponding function in the coordinates and similarly G(x, y, θ) for g = LAf .
The operator F 7→ G can be described explicitly as follows:

LX = y cos 2θ
∂

∂x
+ y sin 2θ

∂

∂y
+ sin2 θ

∂

∂θ
,

LW =
∂

∂θ
,

LV = 2y cos 2θ
∂

∂x
+ 2y sin 2θ

∂

∂y
− cos 2θ

∂

∂θ
,

LH = −2y sin 2θ
∂

∂x
+ 2y cos 2θ

∂

∂y
+ sin 2θ

∂

∂θ
,

and, as a consequence,

LE− = −2iye−2iθ
( ∂
∂x

+ i
∂

∂y

)
+ ie−2iθ ∂

∂θ
.

10. Analytic vectors

Let E, F be Banach spaces over the field of real numbers and let U ⊂ E be
an open subset. We introduced the notion of a differentiable map U → F In
the case that E is finite dimensional (but F may be not) we can also define
the notion of an analytic map. In the case E = Rn this means as usual that
for each a ∈ U there exists a small neighborhood in which there exists an
absolutely convergent expansion as power series

f(x) =
∑
ν∈Nn0

aν(x1 − a1)ν1 · · · (xn − an)νn (aν ∈ F ).

This notion is invariant under linear transformation of the coordinates, hence
it carries over to arbitrary E. We denote by Cω(U,F ) the space of all analytic
functions. This is a subspace of C∞(U,F ). The basic property of analytic
functions is the principle of analytic continuation. Assume that U is connected
and that a ∈ U a point that all derivatives of f or arbitrary order vanish (this
is understood to include f(a) = 0). Then f is identically zero.

Using the standard coordinates of G, we can define the notion of analytic
function G→ H into any Banach space. If π : G→ GL(H) is a representation
we can define the notion of an analytic vector h ∈ H. By definition this means
that the function π(x)h on G is analytic. The set Hω of all analytic vectors is
a sub-vector space of H∞.
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We recall the formula for the Lie derivative

(LXf)(y) =
d

dt
f(y exp(tX))

∣∣∣
t=0

.

We replace y by y exp(uX) and obtain

(LXf)(y exp(uX)) =
d

dt
f(y exp((u+ t)X))

∣∣∣
t=0

=
d

du
f(y exp(uX)).

By induction follows

(LnXf)(y exp(uX)) =
dn

dun
f(y exp(uX)).

The Taylor expansion of the function t 7→ f(y exp(tX)) is given by

f(y exp(tX)) =

∞∑
n=0

1

n!

dn

dtn
f(y exp(tX))

∣∣∣
t=0

tn

=
∞∑
n=0

1

n!
(LnXf)(y) tn.

This formula is true for given X, y if |t| is sufficiently small, |t| < ε. For a real
constant the formula LcX = cLX can be checked. This shows that (for fixed
y) the Taylor formula holds if X is in a sufficiently small neighborhood of the
origin. We specialize the Taylor expansion to the function f(x) = π(x)h and
to t = 1.

10.1 Proposition. Let h ∈ H be an analytic vector. For sufficiently small
X the formula

π(exp(X))h =
∞∑
n=0

1

n!
dπ(X)nh

holds.

Making use of Lemma I.2.1 and Lemma 7.9 we now obtain the following im-
portant result.

10.2 Proposition. Let π : G → GL(H) be a Banach representation and
let V ⊂ H be a linear subspace consisting of analytic vectors that is invariant
under dπ(g). Then the closure of V is invariant under G.

In the next section we will prove the existence of analytic vectors.
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11. The Casimir operator

In the following we will make use of the basic commutation rules in g:

[E+, E−] = −4iW, [W,E+] = 2iE+, [W,E−] = −2iE−.

They can be verified by direct computation.

Let A be an associative C-algebra and

% : g −→ A

be a Lie homomorphism, i.e. a linear map with the property

%([A,B]) = %(A)%(B)− %(B)%(A).

We also can consider its C-linear extension gC → A. Our typical example is
that A is the algebra of (algebraic) endomorphisms of an abstract (complex)
vector space H. In this case we talk about a Lie algebra representation of g on
H. We denote the image of element A ∈ gC by the corresponding bold letter
A. We define the Casimir element by

ω = H2 + V2 −W2.

Using the above commutation rules we can check by a simple computation

ω = H2 + V2 −W2 = E+E− + 2iW−W2.

The basic property of the Casimir element is that it commutes with the image
of gC .

11.1 Lemma. The Casimir element ω (with respect to % : g→ A) commutes
with all A for A ∈ g.

Proof. One uses the second formula for the Casimir operator and applies the
above commutation rules. tu

The Lie algebra g acts on the space C∞(G,H). Hence we can consider the
Casimir operator ω acting on this space. Using the formulae on Proposition
8.2 we get the explicit expression

ω = 4y2
( ∂2

∂x2
+

∂2

∂y2

)
− 4y

∂2

∂x∂θ
.

We are especially interested on its action of functions of the type

f(xk) = einθf(x).
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Since ∂f/∂θ = inf we see that the operator

4y2
( ∂2

∂x2
+

∂2

∂y2

)
− 4yin

∂

∂x

has the same effect on f as the Casimir operator. The advantage of the lat-
ter operator is that it is – like the Laplace operator – an elliptic differential
operator. We make use of a basis result that C∞-eigen functions Df = λf of
an elliptic differential operator D are analytic functions. Usually this theorem
is formulated for scalar valued function. But it is also true for Banach valued
functions. For this one can use for example the following general result.

11.2 Proposition. A function f : G → H is analytic if an only if L ◦ f is
analytic for every continuous linear function L.

We do not give a proof. tu
Let now π : G → End(H) be a Banach representation and let h ∈ H by

a differentiable vector. Then there is the Casimir operator acting on H∞.
Assume that h is an eigen vector and that h ∈ H(m). We claim that h is an
analytic vector. We have to show that the function fh(x) = π(x)h is analytic.
The condition h ∈ H(m) implies

fh(xk) = einθfh(x).

For any A ∈ g we have
LAfh = fdπ(A)h.

This carries over to the Casimir operator. So we can write

ωfh = fωh.

By assumption h is an eigen vector of the Casimir operator. This implies that
fh is an eigen function. So we get that fh is analytic. By definition this means
that h is analytic. This gives the following result.

11.3 Proposition. Let π : G → GL(H) be a Banach representation and let
h ∈ H(m) be a differentiable vector which is an eigen vector of the Casimir
operator. Then h is analytic.

This gives us the possibility to identify many analytic vectors. For this we have
to study the action of the generators of g on the spaces H(m) in more detail.

11.4 Lemma. Let π : G → GL(H) be a Banach representation on a Hilbert
space H. We assume that the restriction to K is unitary. We also assume
that the elements of H(m) are differentiable. Then dπ(W ) acts on H(m) by
multiplication by im. The operator dπ(E+) maps H(m) to H(m + 2) and
dπ(E−) maps H(m) to H(m− 2).
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Proof. Recall that the space H is the direct Hilbert sum of the K-isotypic
components, which are H(m). A direct computation gives

exp(tW ) =

(
cos t sin t
− sin t cos t

)
.

This gives
π(exp(tW ))h = eimth for h ∈ H(m).

If we differentiate by t and evaluate than by t = 0 we get the desired result for
the action of W .

To get the statement for the action of E+ we use the rule

dπ(W )dπ(E+) = dπ[W,E+] + dπ(E+)dπ(W )

and the commutation rule [W,E+] = 2iE+. For a vector a ∈ H(m) we get

dπ(W )dπ(E+)h = i(m+ 2)dπ(E+)h.

Hence dπ(E+)h is an eigen value of dπ(W ) with eigenvalue i(m+ 2). Hence it
must lie in H(m+ 2). The argument for E− is similar. tu

From the second formula for the Casimir we see that H(m) is mapped into
itself. This gives the following basic result.

11.5 Theorem. Let π : G → GL(H) be an unitary representation such that
all H(m) have dimension ≤ 1. (This is the case if π is irreducible). Then
the vectors from HK =

∑
H(m) (algebraic sum) are analytic and this space is

invariant under g.

Proof. Since the spaces H(m) have dimension ≤ 1 they consist of differentiable
vectors. The elements of H(m) are eigen elements of the Casimir operator.

tu
By a representation of the Lie algebra g on the abstract vector space E we

understand a Lie homomorphism map π : g → End(E), i.e. a linear map with
the property

π([X,Y ]) = π(X) ◦ π(X)− π(Y ) ◦ π(X).

For a unitary representation π : G → GL(H) we can consider the derived
representation

dπ : g −→ End(HK).

11.6 Proposition. Let π : G → GL(H), be a unitary representation such
that all H(m) have dimension ≤ 1. Then π is irreducible if and only if the
derived representation

dπ : g −→ End(HK)

has the following property. Let A be the algebra of operators that is generated
by the image of g and by the identity. For each non-zero h which is contained
in some H(m) we have A(h) = HK .
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Proof. We notice that the set A(h) = {A(h), A ∈ A} is a vector space.
This vector space can also be described as follows. Let X = X1 · · ·Xn be an
operator such that each Xi is one of the dπ(E+), dπ(E−), d(W ). Then A(h)
is the vector space generated by all X(h).

For a X as above the space X(Ch) is either 0 or it is one of the H(n).
Hence we see that A(h) is generated by certain spaces H(n).

Now we assume that π is irreducible. We prove that A(h) is the full HK .
We argue indirectly. So we can assume that there exist an H(n) 6= 0 which is
not contained in A(h). We recall that the spaces H(k) are pairwise orthogonal.
Hence the preceding remark shows that H(n) is orthogonal to A(h). But then
H(n) is orthogonal to the closure of A(h). We know that this space is invariant
under G. But this is not possible since we assumed that π is not the trivial
one dimensional representation.

Assume now that A(h) = HK for all nonzero h ∈ H(m). We claim that
π is irreducible. Again we argue indirectly. We find a proper closed invariant
subspace H ′. We can take a non-zero isotypic component H ′(m). Consider a
non-zero element h ∈ H ′(m). By assumption then A(h) is HK . This shows
HK ⊂ H ′ and hence H = H ′. tu

Since the Casimir operator commutes with all elements of g we obtain the
following kind of a Schur lemma.

11.7 Proposition. Let π : G → GL(H) be an irreducible unitary repre-
sentation. Then the Casimir operator acts on HK by multiplication by some
constant.

This constant is a basic invariant of π.

12. Admissible representations

Let π : G→ U(H) be a unitary representation of G = SL(2,R). Then we can
consider the space of K-finite vectors H = HK . They consist of differentiable
vectors. The Lie algebra g = sl(2,R) acts on them The action of K and g are
tied together.

12.1 Remark. Let π : G → H be a unitary representations of G. Then on
HK the following formula holds,

π(k) ◦ dπ(X) = π(kXk−1) ◦ π(k), X ∈ g, k ∈ K.

Corollary. This formula shows that g acts on HK .

The action of g extends C-linearly to the complexification gC = sl(2,C). We
are led to consider the following algebraic objects.
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12.2 Definition. A g-K-module H is a complex vector space H together with
a homomorphism

π : K −→ GL(H)

and a Lie homomorphism

dπ : g −→ End(H)

such the compatibility relation

(dπ)(A)h =
d

dt
π(etA)h

∣∣
t=0

for A ∈ k is valid. Furthermore, let H(m) be the eigenspace

H(m) = {h ∈ H; π(kθ) = eimθh},

then H is the algebraic direct sum of all H(m).

So each unitary irreducible representation induces a g-K- module. Even more,
it is admissible in the following sense.

12.3 Definition. A g-K-module H is called admissible if the eigenspaces
H(m) are finite dimensional.

12.4 Definition. An admissible g-K-module H is called irreducible, if it is
not the zero representation and if the following condition is satisfied. Let A
be the C-algebra of operators that is generated by the image of g. For each
non-zero h which is contained in some H(m), we have A(h) = H.

It is clear what an isomorphism of admissible representation means. We em-
phasize that this is understood in a pure algebraic way. As we have seen, every
irreducible unitary representation G → GL(H) has an underlying irreducible
admissible g-K-module. We also recall that the Lie homomorphism can be
extended C-linearly to gC .

We study in detail admissible representations. For this we will use the basis
E+, E+,W for gC . We recall

[E+, E−] = −4iW, [W,E+] = 2iE+, [W,E−] = −2iE−.

We mention that W acts by multiplication with in on H(n). The same argu-
ment as in Lemma 11.4 shows

E+(H(n)) ⊂ H(n+ 2), E−(H(n)) ⊂ H(n− 2).

We notice that the operators E+E− act on H(n). We consider the C-algebra
generated by all operators from End(H(n)) generated by E+E− and by mul-
tiplications with scalars. It is rather clear that this acts irreducible on H(n).
These operators commute with the Casimir operator. Hence the Casimir op-
erator ω = E+E− + 2iW −W 2 acts on H(n) by multiplication with a scalar.
It follows that E+E− acts as scalar. This shows the following result.
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12.5 Theorem. Let H be an irreducible admissible g-K-module. Then
dimH(n) ≤ 1.

Choose some h ∈ H(n), h 6= 0 for suitable n. We know that the Casimir
operator ω acts as scalar on h. Then also E+h, E−h, Wh are eigenvectors of ω
with the same eigenvalue. The irreducibility shows that ω acts with the same
scalar on the whole H.

12.6 Theorem. Let H be an irreducible admissible g-K-module. Then the
Casimir operator acts by multiplication with a constant on H.

Now we study in detail the irreducible unitary representations. We see that
the spaces

Heven =
∑
n even

H(n), Hodd =
∑
n odd

H(n)

are invariant subspaces. Hence we have to distinguish between an even case
(all H(2n+ 1) are zero) and an odd case (all H(2n) are zero).

Let S be a set of all integers which are all odd or all zero. We call S an
interval if for m,n ∈ S each number of the same parity between m and n is
contained in S. We claim now that the set S of all n such that H(n) 6= 0 is an
interval. To prove this we consider an n ∈ S such that H(n) is different from
zero. Recall that H(n) is one-dimensional. We choose a generator h. The space
H is generated by all A1 . . . Amh where Ai ∈ gC . From the relations between
the generators we see that H is generated by Em+ h and Em− h. Let for example

H(n+ 2k) = 0, k > 0. Then En+2k
+ h = 0 and hence all H(m), m > n+ 2k, are

zero. Hence S is an interval.

12.7 Proposition. For the set S of integers m with the property H(m) 6= 0
of an admissible representation there are the following possibilities:

1) S is the set of all even integers.
2) S is the set of all odd integers.
3) There exists m ∈ S such that S consists of all x ≥ m with the same parity.
4) There exists n ∈ S such that S consists of all x ≤ n with the same parity.
5) There exist integers m ≤ n of the same parity such that S consists of all

x ∈ Z, m ≤ x ≤ n, of the same parity.

In the cases 3)-5) we call m the lowest weight and the non-zero elements of
H(m) the lowest weight vectors. Similarly we call n the highest weight.

We study case 1) in more detail. We choose a non-zero vector h ∈ H(0).
We know that E+ is non zero on all H(n) (n even). Hence we can define for
all even n a uniquely determined hn ∈ H(n) such that

h0 = h, E+hn = hn+2.

Then we define the number cn 6= 0 by

E−hn = cnhn−2.
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The system of numbers (cn)n even is independent of the choice of h. It is clear
that the action of gC is determined by this system of numbers and it is also
clear that isomorphic representations lead to the same system. A much better
result is true. The relation [E+, E−] = −4iW shows

cn − cn+2 = 4n, c0 = λ

Hence all cn are determined by one, for example by c0. This equals the eigen-
value λ of the Casimir operator, actually

ωh = (E+E− + 2iW −W 2)h = λh = c0h for h ∈ H(0).

Hence we obtain in the case 1)

c2n = λ− 4(n− 1)n

(and cn = 0 for odd n). So the representation is determined up to isomorphism
by λ. What can we say about the existence? We start with some complex
number λ We can take for each even n a one dimensional vector space Chn and
then define the vector space H =

⊕
Ch2n. The we can take the above formulas

to define E+, E−,W . It is easy to check that this gives a representation.
Obviously this is an admissible representation if all c2n are different from zero.
In this way we obtain the following result.

12.8 Proposition. An irreducible admissible representation of type 1) (in
Proposition 12.7) is determined up to isomorphism by the eigenvalue λ of the
Casimir operator. An eigenvalue λ occurs if and only if it is different from
4(n− 1)n for all integers n.

The case 2) is very similar. Here we choose a non-zero vector h ∈ H(1). Then
we define for all odd n hn such that h1 = h and E+hn = hn+2. Then we define
cn through E−hn = cnhn−2. Then one gets

c1 = λ+ 1, cn − cn+2 = 4n.

Here the solution is

c2n+1 = λ− 4(n− 1)n+ 1

(and cn = 0 for even n).
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12.9 Proposition. An admissible representation of type 2) (in Proposition
12.7) is determined up to isomorphism by the eigenvalue λ of the Casimir
operator. An eigenvalue λ occurs if and only if it is different from 4(n−1)n+1
for all integers n.

Assume now that there is a lowest weight m. Now we choose a non-zero h ∈
H(m) and define hm = h and E+hk = hk+2 for k ≥ n (same parity as n).
They are all different from 0. Then we define the constants ck, k ≤ n, through
E−hk+2 = ckhk for k ≥ m. We have E−E+hm = cmhm andE−hm = 0. Hence
the relation [E+, E−] = −4iW gives

cm = −4m and ck−2 − ck = 4k for k > m.

The only solution is

ck = −4
∑

m≤ν≤k
ν≡mmod 2

ν (k ≥ m).

12.10 Proposition. An admissible representation with a lowest weight vector
but no highest weight vector is determined up to isomorphism by its lowest
weight m. An integer occurs as lowest weight if and only if m > 0.

We also mention that the eigenvalue of the Casimir operator is

λ = m2 − 2m.

The same argument works if there is a highest weight vector.

12.11 Proposition. An admissible representation with a highest weight vec-
tor but no lowest weight vector is determined up to isomorphism by its highest
weight n. An integer occurs as highest weight if and only if n < 0.

In this case the eigenvalue of the Casimir operator is

λ = n2 + 2n.

It remains to treat the case where a lowest weight m and a highest weight n
exist. The are the only finite dimensional cases. In this case we get for the
eigenvalue of the Casimir operator

λ = n2 + 2n = m2 − 2m.

This (and m ≤ n) imply m = −n and n ≥ 0. Hence we get the following result.
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12.12 Proposition. An irreducible admissible g-K-module is finite dimen-
sional if and only if it has a lowest weight m and a highest weight n. These
have the property m = −n, n ≥ 0. It is determined by n up to isomorphism.
Its dimension is n + 1. Hence it is determined also by its dimension Every
integer n ≥ 0 occurs. The eigen value of the Casimir operator is n2 − n.

We mention that the trivial representation occurs here (m = n = 0).

We can describe the finite dimensional irreducible admissible g-K modules
in slightly modified form as follows. We write n = 2l. Here l is a nonnegative
integer or half integer. Then the dimension is 2l + 1. The above description
shows that there exists a basis

el,−l, el,−l+1, . . . , el,l−1, ell

such that

kθelk = e2ikθek.

This implies

Welk = 2ikelk.

Moreover

E+elk = ek+1, −l ≤ k < l

and

E−el,k+1 = clkelk,−l ≤ k < l, clk = −8
∑
−l≤ν≤k
ν−l∈Z

ν.

We collect the main result in a table.

Irreducible admissible representations

Tpye determined by condition

even, no highest or lowest weight λ ∈ C λ 6= 4(n− 1)n (n ∈ Z).
odd, no highest or lowest weight λ ∈ C λ 6= 4(n− 1)n+ 1.
lowest but no highest weight weight m m > 0
highest but no lowest weight weight n n < 0
finite dimensional weights m < n m = −n, n ≥ 0

For later purpose we look at the finite dimensional representations of gC in
some more detail. Here the assumptions can be weakened.

12.13 Proposition. For each integer n ≥ 0 there exists one and up to
isomorphism only one irreducible admissible g-K-module of dimension dimH =
n + 1. We write n = 2l where l is integral or half integral, l ≥ 0 There exists
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a basis el,−l, el,−l+1, . . . , el,l−1, ell with the following properties. The group K
acts through kθelk = e2ikθek. The Lie algebra gC acts through

Welk = 2ikelk,

E+elk = el,k+1, −l ≤ k < l,

E−el,k+1 = clkelk,−l ≤ k < l, ck = −8
∑
−l≤ν≤k
ν−l∈Z

ν (k ≥ l).

13. The Bargmann classification

Let π : G → GL(H) be an irreducible unitary representations. Then the
derived representation gC → End(HK) has the property that the operators
dπ(A) for A ∈ g are skew symmetric,

〈Ah, h′〉 = −〈h,Ah′〉.

This follows immediately from the definition of the derived representation. It
is clear that this formula extends to all A ∈ gC in the following way

〈Ah, h′〉 = −〈h, Āh′〉.

Hence it is natural to ask for an admissible representation gC on H whether
there exists a Hermitian scalar product on H such that the elements of g act
skew-symmetrically.

13.1 Definition. An admissible representation is called unitarizible if there
exists a Hermitian scalar product on H such that

〈Ah, h′〉 = −〈h, Āh′〉

for A ∈ gC .

We want to pick out in the list of all admissible representations the unitary
ones.

13.2 Proposition. An admissible representation is unitarizible if and of one
of the following conditions is satisfied.

1) Even case without lowest or highest weight: The eigenvalue λ of the Casimir
operator is real and −λ ≥ 0.

2) Odd case without lowest or highest weight: The eigenvalue λ of the Casimir
operator is real and −λ ≥ 1.
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3) All representations with a lowest but no highest weight m, m > 0, are
unitarizible.

4) All representations with a highest but no lowest weight n, n < 0, are unita-
rizible.

5) A finite dimensional admissible representation is unitarizible if and only if
it is trivial.

Proof. We treat the case 1) since all other cases are similar. There is a non
zero element h ∈ H(0) and E+E−h = λh. From the condition that the real
elements A ∈ g act skew Hermitian we obtain the rule 〈E+h, h′〉 = −〈h,E−h′〉
and hence

〈E−h,E−h〉 = −〈h,−E+E−h〉 = −〈h, λh〉 = −λ̄〈h, h〉.

It follows that λ is real and negative. Assume conversely that this is the
case. Then we define a scalar product on H such that the H(n) are pairwise
orthogonal and such that 〈h, h〉 = 1. Then we define 〈E+h,E+h〉 = 1 and so
on. The proof no should be clear. tu

13.3 Proposition. Two unitary representations π : G → GL(H), π′ : G →
GL(H ′) of G = SL(2,R) are unitary isomorphic if and only if the underlying
admissible representations are (algebraically) isomorphic.

Proof. Let T : HK → H ′K be an isomorphism of the admissible representations.
We choose scalar products such that g acts skew symmetric. We choose a non
zero h ∈ H which is contained in some H(m). We normalize h such that
〈h, h〉 = 1. We set h′ = Th. Without loss of generality we may assume that
〈h′, h′〉 = 1 since we can replace the scalar product of H ′ by a multiple. Now
we claim that T preserves the scalar products. For the proof we Definition
12.4. It implies that HK is generated by all A1 · · ·Anh, where Ai ∈ g. So we
have to show that T preserves the scalar products for such elements. This is
done by induction. We just explain the beginning to the induction to give the
idea. Since H(m) is one-dimensional and since the spaces H(n) are pairwise
orthogonal, we know all scalar products 〈h, x〉. Let A ∈ g. The formula
〈Ah, x〉 = −〈h,Ax〉 gives all scalar products 〈Ah, x〉. Proceeding in this way
we get that all scalar products are determined (from 〈h, h〉 = 1). The same
calculation can be done in H ′. In this way we can see that T preserves the scalar
products. Now we can extend to an isomorphism of Hilbert spaces T : H → H ′.
From Proposition 10.1 in connection with the Lemmas 7.9 and I.2.1 we obtain
that T preserves the action of G. tu

The question arises whether each admissible representation can be realized
by unitary representations of G (in the sense that it is isomorphic to its derived
representation).

13.4 Theorem. Each unitarizible admissible representation can be realized
by an irreducible unitary representation.
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Proof. In Sect. 3–5 of this chapter we gave several examples of unitary represen-
tations. It can be checked we will see this below that we obtain all unitarizible
admissible representations. This gives the proof. We consider the representa-
tions H(s) which have been described in Chap. I, Sect. 7.

13.5 Lemma. Let f ∈ H(s) be an element that is C∞ considered as function
on the group G. Then the image of f in H(s) is a C∞-vector of the represen-
tation πs and we have

LXf = dπs(X)f.

Proof. It is easy to check that LXf has the transformation properties of func-
tions from H(s). Since it is continuous it is contained in H(s). We have to
show that

lim
t→0

∫
K

∣∣∣f(k exp(tX))− f(k)

t
− LXf(k)

∣∣∣2dk = 0.

by definition of L the integrand tends pointwise to 0. Using the mean-value
theorem it is easy to show that the integrand is bounded for small t. Hence
the Lebesgue limit theorem can be applied. tu

The space H(n, s) of all K-eigenfunctions which pick up the nth power of
the standard character is one dimensional and generated by the function

ϕ

((√
y ∗

0
√
y−1

)(
cos θ − sin θ
sin θ cos θ

))
= y(s+1)/2einθ.

We can use the formula in Proposition 9.1 to compute the derived representa-
tion. The result is

dπs(W )ϕn = inϕn,

dπs(E
−)ϕn = (s+ 1− n)ϕn−2

dπs(E
+)ϕn = (s+ 1 + n)ϕn+2

From this description, it is easy to find invariant subspaces, namely

H(s)even =
⊕̂
n even

Cϕn, H(s)odd =
⊕̂
n odd

Cϕn.

We first treat the even case. Then the parameter c from the previous section
computes as c = (s + 1)(s − 1). This was the reason that we introduced
already somewhat the parameter s as solution of this equation. We recall that
the representation πs is unitary if Re s = 0. We see that the corresponding
derived representation is the even principal series. But one cannot realize the



§13. The Bargmann classification 77

complementary series in this way, since this would demand s ∈ (−1, 1), s 6= 0.
But in this case πs is only a Banach representation. Hence one needs for the
complementary series a different kind of realization. We indicated it in Chapt. I,
Sect. 7. We will give more details.

The odd principal series is obtained completely from πs. Here the parameter
c is computed as c = s2 which again explains the conventions from the previous
section. Hence in the case that s is purely imaginary but s 6= 0 In this way we
get realizations of the two principal series where s = 0 has been excluded.

In the case s = 0 the odd space can be decomposed into subspaces again.
We obtain in the case s = 0 two irreducible subspaces of the odd space,

⊕̂
n≥1 odd

Cϕn,
⊕̂

n≤1 odd

Cϕn.

Obviously they are realizations of the two mock discrete representations. So
in this sense the mock discrete representations are simply degenerations of the
principal series.

Hence we have found realizations of the principal series and the two mock
discrete representations and we mention that the complementary series can also
be realized by concrete unitary representations.

It remains to realize the discrete series. The holomorphic discrete series
gives the discrete series with a lowest weight and the antiholomorphic discrete
series gives the discrete series with a highest weight. tu

Collecting together, we get the classification of the irreducible unitary rep-
resentations of G. First we introduce some notations. Recall that in case 1)
and case 2) the representation is determined by a single parameter λ, the eigen-
value of the Casimir operator. Instead of λ we will use a new parameter s. It
is defined through

λ = (s+ 1)(s− 1)

and is determined up to its sign.

1) λ is real and λ ≤ −1 if and only if s is purely imaginary.
2) λ is real and −1 < λ < 1 if and only if s is real and −1 < s < 1, s 6= 0.

We use the following notations for irreducible unitary representations π : G→
GL(H).

13.6 Definition. The even principal series consists of all representations
of even type without highest or lowest weight and with the property that s is
purely imaginary. (Then λ ≤ −1)

The complementary series consists of all representations of even type with-
out highest or lowest weight and with the property that s ∈ (−1, 1) but s 6= 0.
(Then −1 < λ < 0)
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The odd principal series consists of all representations of odd type without
highest or lowest weight and with the property that s is different from zero and
purely imaginary (Here λ ≤ −1.)

The holomorphic discrete series consists of all representations with a high-
est weight n < −1 and now lowest weight.

The antiholomorphic discrete series consists of all representations with a
lowest weight m > 1 and now lowest weight.

The mock discrete series consists only of two representations, namely those
with highest weight m = −1 (and no lowest weight) and conversely n = 1.

The border cases with highest weight −1 or lowest weight 1 have some special
properties. Hence they are separated from the other representations with a
highest or lowest weight vector. Those with m ≤ −2 or n ≥ 2 define the
discrete series and the two with m = −1 or n = 1 define the mock discrete
series.

Collecting together we obtain Bargmann’s classification of all irreducible
representations π of G. If this representation is not the trivial one dimensional
representation then g acts non identically zero (Proposition 2.10.1) and then the
derived representation is a unitarizible admissible representation. The above
discussion gives now the main result.

13.7 Theorem. Each unitary irreducible unitary representation of G =
SL(2,R) is either the trivial one-dimensional representation or it is unitary
isomorphic to a representation of the following list.

1) The even principal series, s ∈ iR,
2) the odd principal series, s ∈ iR − {0},
3) the complementary series, s ∈ (−1, 1)− {0},
4) the discrete series with highest weight m ≤ −2 or lowest weight n ≥ 2.
5) the mock discrete series (two representations, (highest weight −1 or lowest
weight 1).

In the first three cases, s is determined up to its sign. In the last two cases the
weight is uniquely determined.

Why has the mock discrete series been separated from the discrete series? If
G is an arbitrary locally compact group, one has a general notion of a discrete
series representation. An irreducible unitary representation is called a discrete
series representation of it occurs (as unitary representation) in the regular
representation L2(G). It can be shown that the discrete series representations
of G = SL(2,R) in this sense consist of all representations with a higher or
lower weight vector with two exceptions, the weights 1 and −1 do not occur.
Hence these play a special role. Since they look similar as the discrete series
representations they are called “mock discrete”.
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14. Automorphic forms

We consider a discrete subgroup Γ ⊂ G with compact quotient Γ\G. We recall
that the representation of G on L2(Γ\G) is completely reducible with finite
multiplicities. One can ask which representations of the Bargmann list occur
and for their multiplicity. For this we make a simple remark.

14.1 Lemma. Let f : H → C be a function on the upper half plane and let
m be an integer. We consider the function

F

(
a b
c d

)
= f

(ai + b

ci + d

)
(ci + d)−m.

then we have
F (gkθ) = eimθF (g)

and every function on G with this transformation property comes from a func-
tion f on H. Moreover we can write F as

F

((√
y
√
y−1x

0
√
y−1

)(
cos θ − sin θ
sin θ cos θ

))
= f(x+ iy)eimθ√ym.

The function F is right-invariant under Γ if and only if f satisfies

f((az + b)(cz + d)−1) = (cz + d)mf(z)

for all elements in Γ.

Proof. The proof is straight forward. tu
Now we assume that their is an irreducible closed subspace H ⊂ L2(Γ\G)

which belongs to the holomorphic discrete series with lowest weight m ≥ 2.
Wir consider a non-zero lowest weight vector h. From Lemma 14.1 we know
that h comes from a function f : H → C with the transformation property

f(az + b)(cz + d)−1 = (cz + d)mf(z),

(
a b
c d

)
∈ Γ.

Since h is a lowest weight vector we have E−h = 0. Using the explicit formula
for E− we obtain that ( ∂

∂x
+ i

∂

∂y

)
f = 0.

This means that f is holomorphic. This means that f is a holomorphic auto-
morphic form. Conversely it can be shown that every holomorphic automorphic
form occurs in this way.
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But als other representations of the Bargmann list may occur. For example
assume that an even principal series representation with parameter s occurs.
We can now consider a non zero vector h of weight 0. This is invariant under
K and corresponds to a function f on the upper half plane. Recall that h is an
eigen form of the Casimir operator with eigen value λ = (s+1)(s−1). Looking
at the explicit expressions for E± we see that this means

y2
( ∂2

∂x2
+

∂2

∂y2

)
f = λf.

What we have found is so-called wave form in the sense of Maass. Maass gave
a generalization of the theory of modular forms replacing holomorphicity by
certain differential equation. All these Maass forms can be recovered in the
following way: Consider an irreducible sub representation H ⊂ L2(Γ\G). Take
a vector h ∈ H(m) for an arbitrary m. By Lemma 14.1 this corresponds to
function f on H with a certain transformation property. Make use of the fact
that h is an eigen form of the Casimir operator. This produces a differential
equation for f . In this way on recovers precisely the differential equations that
Maass has introduced.

15. Some comments on the Casimir operator

Let U ⊂ Rn be an open subset. We are interested in maps

D : C∞(U) −→ C∞(U)

which can be written as finite sum

Df =
∑

hi1...im
∂i1+···+imf

∂xi11 . . . ∂xinn

with differentiable coefficients h.... Clearly they are uniquely determined. We
call D a linear differential operator. This notation is due to the fact that
obviously D(f + g) = Df + Dg and D(Cf) = CDf . When D is non-zero
there exists a maximal m such that hi1,...,in is non-zero for some index with
i1 + · · · + in = m. We call m the degree of this operator and the function on
U × Rn

P (x1, . . . , xn, X1, . . . , Xn) =
∑

i1+···+in=m

hi1,...,im(x)Xi1
1 . . . Xin

n

is called the symbol of D. This is a homogenous polynomial of degree m for
fixed x. The operator D is called elliptic, if it is not zero and if

P (x,X) 6= 0 for all X 6= (0, . . . , 0).
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There are two simple observations:

a) Let V ⊂ U ⊂ Rn be open subsets and let D be a linear differential operator
on U . Then there is a natural restriction to a linear differential operator on
V .

b) Let ϕ : U → V be a diffeomorphism between open subsets of Rn and let D
be a linear differentiable operator on U . Then the transported operator to
V is a linear differential operator as well. Ellipticity is preserved.

It is clear how to define the notion of a linear differential operator on G =
SL(2,R) (use Iwasawa coordinates): We have seen that elements of g = sl(2,R)
acts on differentiable functions on G through

Af(x) =
d

dt
f(x exp(tA))

∣∣
t=0

.

It is clear that this is a linear differential operator on G This is a Lie homo-
morphism

g −→ End(C∞(G)).

Here C∞(G) denotes the space of all differentiable functions on G with values
in some complex Banach space. So the space is a complex vector space and the
Lie homomorphism can be extended C-linearly to gC . From construction it is
clear that the images of g are left invariant operators, i.e. they commute with
the operator “translation from the left”

Ly : C∞(G) −→ C∞(G), (Lyf)(x) = f(y−1x).

We also can consider translation from the right

Ry : C∞(G) −→ C∞(G), (Ryf)(x) = f(xy).

Both Ly and Ry are actions from the left.

15.1 Definition. We denote by D(G) the smallest subalgebra of End(C∞(G))
that contains the image of g.

It can be shown that D(G) equals the algebra of all left invariant linear differ-
ential operators: We don’t need this.

15.2 Definition. A Casimir operator is an element of D(G) that commutes
with the image of g.

15.3 Lemma. Casimir operators C have the property

Rg ◦ C = C ◦Rg.

Proof. Since the Casimir operators commute with X ∈ g they also commute
with eX . But we know that G is generated by the image of g. tu

Hence Casimir operators are left and right invariant linear differential op-
erators.



Chapter III. The complex special linear group of degree
two

The classification of irreducible unitary representations of SL(2,C) is partly
similar to that of SL(2,R). But there arise extra difficulties due to the fact
that the compact subgroup that now comes instead of SO(2) into the game is
not abelian. In the following we will keep short when the arguments are the
same as in the case SL(2,R). But we treat the differences in great detail.

1. Unitary representations of some compact groups.

In this section we mention some results about the representation theory of the
compact groups U(n) and SU(n). Here U(n) denotes the group of all n × n-
matrices A with the property Ā′A = E and SU(n) denotes the subgroup of
elements of determinant one. We want to describe the unitary irreducible
representations of them. We formulate the general results, but we give proves
only the case n = 2. Here we apply the SL(2,R)-theory.

We recall some facts for compact groups K (see Chapt. I, Sect. 8):

1) Each irreducible unitary representation of a compact group is finite dimen-
sional.
2) If K → GL(V ) is a finite dimensional (continuous) representation of K, then
there exists a Hermitian scalar product on V such that the representation is
unitary.
3) Let K → GL(Vi) be two finite dimensional irreducible unitary representa-
tions. They are unitary isomorphic if and only of the isomorphic in the usual
sense.

Hence the classification of irreducible unitary representation of a compact group
and the classification of finite dimensional irreducible representations is the
same. So we can forget about the scalar products.

The representation theory of the group SU(n) is closely related to the theory
of rational representations of GL(n,C). We have to consider polynomial func-
tions f on GL(n,C). These are function which can be written as polynomials
in the n2 variables aik. Moreover, a function f on GL(n,C) is called rational
if there exists a natural number k such that (detA)kf(A) is polynomial. We
mention the following result (which we will prove in the case n = 2).

1.1 Proposition. Every finite dimensional (continuous) representations
π : U(n) → GL(V ) extends to a rational representation of GL(n,C). Two
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finite dimensional representations of U(n) are isomorphic if and only if their
rational extensions are isomorphic. The representation π is irreducible if an
only if its rational extension is irreducible.

Hence the classification of irreducible unitary representations of U(n) is the
same as the classification of irreducible rational representations of GL(n,C).
The classification of the irreducible rational representations can be given by
their highest weight.

1.2 Theorem. Let π : GL(n,C) → GL(V ) be an irreducible rational repre-
sentation. There exists a one-dimensional subspace W ⊂ V that is invariant
under all upper triangular matrices and W is unique with this property. There
exist integers

r1 ≥ r2 ≥ · · · ≥ rn

such that the action of diagonal matrices A with diagonal a1, . . . , an is given
by

π(A)w = ar11 · · · arnn w (w ∈W ).

This gives a bijection between the set of isomorphy classes of irreducible rational
representations of GL(n,C) and the set of increasing tuples r1 ≥ · · · ≥ rn of
integers.

We will not prove this result general but we will prove it in the case n = 2.
tu

The tuple (r1, . . . , rn) is called the highest weight and the elements of W
are called highest weight vectors.

This theorem does not tell, how the representations of a given highest weight
can be constructed and, in particular, it does not tell the dimensions of the
representations.

For us, the case n = 2 is of special importance. Let

l ∈ {0, 1/2, 1, 3/2, . . .}

be a non negative integral or half integral number. We consider the space Vl
of all polynomial functions P : C2 → C which are homogenous and of degree
2l. So the dimension of Vl is 2l + 1. We define a representation

%l : GL(2,C) −→ GL(Vl)

by
(%(g)P )(x) = P (g′x).

(We use the standard action of GL(2,C) on C2 of linear algebra which is an
action from the left.) The subspace Wl that is generated by the polynomial
P (x, y) = y is invariant under upper triangular matrices and it is the only one
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dimensional subspace with this property. From this one can deduce that %l is
irreducible. The highest weight is (0, 2l). More generally, we can consider the
representation det(g)k%l(g). Its highest weight is (k, k + 2r). These pairs ex-
haust all highest weights. Hence we have found all representations of GL(2,C)
and as a consequence also of U(2).

We are more interested in SU(2). It is not difficult to show that every
finite dimensional irreducible representation of SU(2) is the restriction of a
representation of U(2). In this way one can prove the following result.

1.3 Theorem. The restriction of %l to SU(2) is irreducible. Every finite
dimensional irreducible representation is isomorphic to one and only one rep-
resentation (Vl, %l).

Proofs in the case n=

We study the group SU(2). It consists of all complex matrices(
a b
−b̄ ā

)
, |a|2 + |b|2 = 1.

This can be identified with the 3-dimensional sphere S3. We parameterize an
open part of SU(2) through

{x = (x1, x2, x3); x2
1 + x2

2 + x2
3 < 1} −→ SU(2), x 7−→

(
a b
−b̄ ā

)
,

a = x1 + ix2, b = x3 + i
√

1− x2
1 − x2

2 − x2
3

.

Using this one can define when a function on this open subset of S3 is differ-
entiable or analytic. The functions are allowed to be Banach valued. Using
similar maps we can introduce differentiable or analytic functions on any open
subset of SU(2). (The reader who is familiar with manifolds will se that there
is a natural structure of a real analytic manifold on SU(2).)

Let π : SU(2) → GL(H) be a continuous finite dimensional irreducible
representation (on the complex vector space H). As in Chap. II, Sect. 8 we can
define the subspace H∞ of differentiable vectors and we can define a derived
representation

dπ : su(2) −→ End(H∞).

This is a Lie homomorphism in the sense of Definition II.8.5. The same proof
also shows that H∞ is dense. Since H is finite dimensional, this means that
every vector of H is differentiable. We will see more, namely that every vector
is analytic. This is more difficult and needs some insight into the structure of
g = su(2). Therefore we consider su(2) as subset of sl(2,C). This is a real
subspace. One checks

sl(2,C) = su(2)⊕ isu(2).
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And one checks that the Lie multiplication on sl(2,C) is just the C-bilinear
extension of the Lie multiplication on su(2). (In the notions of the next section
this says that sl(2,C) is the complexification of su(2). In the same sense sl(2,C)
is also the complexification of sl(2,R). So sl(2,C) arises as complexification of
two different Lie algebras.)

The representation extends C-linearly to a Lie representation

π : sl(2,C) −→ End(H).

We studied such representations in detail. In particular, we constructed a
Casimir operator ω which commutes with all A ∈ sl(2,C). Then it commutes
also with eA and hence with all g in a small neighbourhood of the unit element.
Since SU(2) is connected this neighbourhood generates the full group. Hence
ω commutes with the full group SU(2). Since the action is assumed to be
irreducible, ω acts by a scalar on H.

We choose a basis of su(2) and compute the exponentials

X1 =
1

2

(
i 0
0 −i

)
X2 =

1

2

(
0 1
−1 0

)
X3 =

1

2

(
0 i
i 0

)
e2tX1 =

(
eit 0
0 e−it

)
e2tX2 =

(
cos t sin t
− sin t cos t

)
e2tX3 =

(
cos t i sin t
i sin t cos t

)

Notice that 2X2 = W which we introduced earlier (Chap. II, Sect. 8). The
commutation relations are

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

(This means that su(2) is isomorphic to R3 with the cross product.) The
expressions of E± in the Xi are

E± = 2(±X3 − iX1).

For the Casimir operator ω (Chap. II, Sect. 10) we get the expression

ω = E+E− + 2iW −W 2 = −4(X2
1 +X2

2 +X3
3 ).

We compute the Lie derivatives

(LX(f))(x) =
d

dt
f
(
xetX

)∣∣
t=0

(X ∈ su(2))
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which transforms functions on SU(2) (may be Banach valued) to functions of
the same kind. We restrict the function f to a function on the open ball

{(x1, x2, x3); x2
1 + x3

2 + x2
3 < 1}

through

f0(x1, x2, x3) = f

(
a b
−b̄ ā

)
, a = x1 + ix2, b = x3 + ix4,

x4 =
√

1− x2
1 − x2

2 − x2
3.

We denote by (LXf)0 the restriction of LXf to this ball. Then we can consider
the operator

f0 7−→ (LXf)0.

This is the transformed operator L to the ball. For simplicity of notation, we
denote this operator also by LX . We compute it for X = X1

LX1
f

(
a b
−b̄ ā

)
=

d

dt
f

((
a b
−b̄ ā

)(
eit/2 0

0 e−it/2

))∣∣∣∣
t=0

=
d

dt
f0(y1, y2, y3)

where
y1 = cos(t/2)− x2 sin(t/2),

y2 = x1 sin(t/2) + x2 cos(t/2),

y2 = x3 cos(t/2) + x4 sin(t/2).

The chain rule gives

LX1
f0 =

1

2

(
−x2

∂f0

∂x1
+ x1

∂f0

∂x2
+ x4

∂f0

∂x3

)
.

In the same way we get the following formulas.

LX1 =
1

2

[
−x2

∂

∂x1
+ x1

∂

∂x2
+ x4

∂

∂x3

]
,

LX2
=

1

2

[
−x3

∂

∂x1
− x4

∂

∂x2
+ x1

∂

∂x3

]
,

LX3
=

1

2

[
−x4

∂

∂x1
+ x3

∂

∂x2
− x2

∂

∂x3

]
.

Now we can compute the action of the Casimir operator. We have to square
the single LXi . Then terms (

xi
∂

∂xk

)(
xα

∂

∂xβ

)
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occur. The operators xi∂/∂xk do not commute. But we have

(
xi

∂

∂xk

)(
xα

∂

∂xβ

)
= xixα

∂2

∂xk∂xβ
if α 6= k

and (
xi

∂

∂xk

)(
xk

∂

∂xβ

)
= xixk

∂2

∂xk∂xβ
+ xi

∂

∂xβ
.

Now we can expand and then add the three squares of LXi . If one does this
patiently one will see that many terms vanish and one gets

ω =− (1− x2
1)
∂2

∂x2
1

− (1− x2
2)
∂2

∂x2
2

− (1− x2
3)
∂2

∂x2
3

+ 2x1x2
∂2

∂x1∂x2
+ 2x1x3

∂2

∂x1∂x3
+ 2x2x3

∂2

∂x2∂x3

+ 2x1
∂

∂x3
+ 2x2

∂

∂x2
+ 2x3

∂

∂x3
.

Readers who know the notion of the Laplace operator on a Riemannian man-
ifold will realize that this operator describes just the Laplace operator on the
3-dimensional sphere. It is a linear differential operator of degree two. Its sym-
bol is a quadratic form. Quadratic forms can be described through symmetric
matrices. In this case it is the negative of the matrix 1− x2

1 −x1x2 −x1x3

−x1x2 1− x2
2 −x2x3

−x1x3 −x2x3 1− x2
3

 .

This matrix is positive definite for all x with x2
1 + x2

2 + x2
3. For example, its

determinant is 1− x2
1 − x2

2 − x2
3. So ω is an elliptic differential operator.

We have proved that every vector of H is analytic. This implies, as in the
case SL(2,R) the following result.

1.4 Proposition. Let π : SU(2) → GL(V ) be a finite dimensional irre-
ducible representation. Then the derived representation dπ : su(2) → End(V )
is irreducible in the sense that every su-invariant subspace is V or 0.

The representation dπ extends C-linearly to the complexification of su(2) which
is sl(2,C). This can be restricted to a Lie homomorphism sl(2,R)→ End(H).
Also SO(2) acts on H, since it is a subgroup of U(2). This means that H
is a sl(2,R)-SO(2)-module. For trivial reason it is admissible. Clearly it is
irreducible. Such modules have been determined in Proposition II.12.12. From
the description that follows that there is exactly one such module for each
dimension n. This finishes the proof of Theorem 1.3. tu



88 Chapter III. The complex special linear group of degree two

1.5 Theorem. For each integer or half integer l ≥ 0 there exists a unique
irreducible unitary representation of SU(2) on a Hilbert space Vl of dimension
2l+1. There exists a basis el,−l, el,−l+1, . . . , el,l−1, ell such that for −l ≤ m ≤ l
we have

kθelm = eimθelm,

X1elm =
i

4
(el,m+1 + cl,m−1el,m−1),

X2elm = imelm,

X3elm =
1

4
(el,m+1 − cl,m−1el,m−1),

where
clk = −8

∑
−l≤ν≤k
ν−l∈Z

ν (k ≥ l).

Here we have to set elm = 0 if it is outside the range.

2. The Lie algebra of the complex linear group of degree
two

We need the notion of the complexification of a real vector space V . By defi-
nition this is VC = V ×V as real vector space. The multiplication by i is given
by

i(a, b) = (−b, a).

This extends to an action of C on VC through

(α+ iβ)x = αx+ iβx (x ∈ VC )

and this equips VC with a structure as complex vector space. We can embed
V into VC by a 7→ (a, 0) and if we identify V with its image than VC = V ⊕ iV .
The following universal property holds. Let f : V → W be an R-linear map
into a complex vector space W . Then there exist a unique C-linear extension
VC →W . Just map (a, b) to f(a) + if(b).

We must give a warning. The vector space V might be a complex vector
space in advance. Of course we can consider V as real vector space and then
take its complexification. But on V × V we can also consider the complex
product structure. So we have two different complex structures on the vector
space V × V . This might lead to confusion. To avoid this we denote the new
multiplication by i by

J(a, b) = (−b, a)

and the old one by
i(a, b) = (ia, ib).
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2.1 Remark. Let V be a complex vector space. On V × V we have two
complex structures.

1) Internal multiplication with i is defined through i(a, b) = (ia, ib)
2) External multiplication with i is defined through J(a, b) = (−b, a).

Obviously iJ(a, b) = J i(a, b). The complexification of V is V × V together
with the external J . We write this complex vector space as VC = V × V (with
external multiplication J). In simplified notation we can write

VC = V + JV, J(a+ Jb) = −b+ Ja.

We apply this construction to the Lie algebra sl(2,C) of all complex 2 × 2-
matrices with trace zero. We have to consider its complexification sl(2,C)C =
sl(2,C)×sl(2,C). We define a Lie bracket on sl(2,C)C by means of the formula

[A1 + JA2, B1 + JB2)] := [A1, B1]− [A2, B2] + J([A1, B2] + [A2, B1]).

Embed sl(2,C) into sl(2,C)C by A 7→ A + J0. Then the Lie bracket that we
introduced on sl(2,C)C is just the C-linear extension of the Lie bracket on
sl(2,C). This bracket is C-bilinear (where multiplication by i is given by J).
This means

[J(A1 +JA2), B1 +JB2] = J [A1 +JA2, B1 +JB2] = [A1 +JA2, J(B1 +JB2)]

which is easy to check. In this sense we can call sl(2,C)C the complexified Lie
algebra of sl(2,C) considered as real Lie algebra.

We also can consider sl(2,C) × sl(2,C) as complex vector space (with the
internal multiplication by i and the Lie bracket

[(A1, B1], [A2, B2]) = ([A1, B1], [A2, B2]).

We call this the product Lie algebra. A priori this is different from sl(2,C)C .
Nevertheless we will see that both are isomorphic.

2.2 Lemma. The maps

sl(2,C) −→ sl(2,C)C , A −→ A±,

A+ =
1

2
(Ā, iĀ),

A− =
1

2
(A,−iA),

are C-linear homomorphisms of Lie algebras.
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Proof. The C-linearity means of course for example (iA)± = JA±. This and
the compatibility with the Lie bracket is easy to check. tu

We simplify the notation and write for (A,B) ∈ sl(2,C)C

A+ JB := (A,B)

Then we have

A+ =
1

2
(Ā+ J iĀ), A− =

1

2
(A− J iA).

Recall that in sl(2,C) we considered the basis E+, E−,W . (Here the signs in
the exponent have nothing to do with Lemma 2.2.) We consider their images
in the complexification and get 6 elements of sl(2,C)C

W+, E++, E−+; W−, E+−, E−−

which give a complex basis. Now we can proof a structure result.

2.3 Lemma. The map

sl(2,C)× sl(2,C)
∼−→ sl(2,C)C , (A,B) 7−→ A+ +B−

is an isomorphism of complex Lie algebras where on the left hand side i acts
componentwise (and the Lie product comes from the product structure) and on
the right hand side via J .

Proof. One has to use Lemma 2.2 and one has to check [A+, B−] = 0. tu
The both sides in Lemma 2.3 are equal as vector spaces. But they have

different structures as Lie algebras. Nevertheless they are isomorphic.

Now we consider a (complex associative) algebra A and a real linear Lie
algebra homomorphism

ϕ : sl(2,C) −→ A.
“Lie homomorphism” means that ϕ([A,B]) = ϕ(A)ϕ(B)−ϕ(B)ϕ(A). We can
extend it to a C-linear Lie homomorphism

ϕ : sl(2,C)C → A.
Here C-linear refers of course to the complexification complex structure of
sl(2,C)C where multiplication by i is given by J . This means that we have to
define

ϕ(A+ JB) = ϕ(A) + iϕ(B).

The C-linearity means

ϕ(J(A+ JB)) = iϕ(A+ JB) = i(ϕ(A) + iϕ(B)) = −ϕ(B) + iϕ(A).

2.4 Remark. Let ϕ : sl(2,C) → A a real linear Lie homomorphism into
an associative complex algebra A. Extending it C-linear to sl(2,C)C and then
restricting to sl(2,C) by means of A 7→ A+ or (A−), one gets two complex
linear Lie homomorphisms

ϕ± : sl(2,C) −→ A.
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We have to start with a real Lie homomorphism

ϕ : sl(2,C) −→ A

where A is a complex assoziative algebra. First we have to extend ϕ to a
C-linear map

ϕ : sl(2,C)C −→ A.

To extend ϕ in the C-linear way we have to define

ϕ(A+ JB) = ϕ(A) + iϕ(B).

Now we make use of the two embeddings

sl(2,C) −→ sl(2,C)C , A 7−→ A±.

They induce the two C-linear homomorphisms

ϕ± : sl(2,C)→ A, ϕ+(A) =
1

2
(ϕ(Ā) + iϕ(iĀ)),

ϕ−(A) =
1

2
(ϕ(A)− iϕ(iA)).

The point is that these are C-linear (but ϕ needs not). Hence each of the both
gives a Casimir operator.

3. Casimir operators

Recall that any C-linear Lie homomorphism of sl(2,C) into an associative
complex algebra introduces a certain Casimir element in A. It has the property
that it commutes with the image of sl(2,C). For trivial reason it also commutes
with the image of sl(2,C)C . By means of Remark 2.4 we get now two Casimir
elements

ω+ = ϕ(E++)ϕ(E−+) + 2iϕ(W+)− ϕ(W+)2,

ω− = ϕ(E+−)ϕ(E−−) + 2iϕ(W−)− ϕ(W−)2,

3.1 Proposition. Let sl(2,C)→ A be a real linear Lie homomorphism. We
extend it by complex linearity to sl(2,C)C and restrict it in two ways to complex
linear Lie homomorphism sl(2,C) → A. These Lie homomorphisms produce
Casimir elements ω± ∈ A. They commute with the image of sl(2,C)C .
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We want to express these Casimir operators by means of a different real basis
of SL(2,C). We choose an explicit R basis of sl(2,C),

X1, X2, X2, iX1, iX2, iX3.

We know how the elements X1, X2, X3 act on H. But we do not know so far
how iX1, iX2, iX3 act. Recall the module structure of H is given through real
linear Lie homomorphism

ϕ : sl(2,C) −→ End(H).

This has been extended C-linear to sl(2,C)C . This means ϕ(JA) = iϕ(A).
But ϕ(iA) and iϕ(A) are different.

The basis X1, . . . , iX3 is also a C-basis of the complexification sl(2,C)C .
Since the extension of dπ to this complexification is C-linear, it seems to be
natural to work in the complexification with a C-basis. There is another natural
C-basis of sl(2,C)C . For this we recall the two C-linear embeddings

sl(2,C) −→ sl(2,C)C , A 7−→ A±,

A+ =
1

2
(Ā+ J(iĀ)), A− =

1

2
(A− J(iĀ)).

We choose in sl(2,C) the elements W,E+, E− and take there images under
A 7→ A±.

W+, E++, E−+; W−, E+−, E−−.

This is also an C-basis of the complexification.

We have

E++ =
1 + J i

2
E−,

E+− =
1− J i

2
E+,

E−+ =
1 + J i

2
E+,

E−− =
1− J i

2
E−, ,

W+ =
1 + J i

2
W,

W− =
1− J i

2
W.

Making use of W = 2X2 and E± = 2(±X3 − iX1) we obtain

E++ = −(1 + J i)(X3 + iX1),

E−+ = (1 + J i)(X3 − iX1),

W+ = (1 + J i)X2,

E+− = (1− J i)(X3 − iX1),

E−− = −(1− J i)(X3 + iX1),

W− = (1− J i)X2.
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We apply ϕ which is C-linear with respect to J (but not to i and obtain

ϕ+(E+) = −ϕ(X3 + iX1) + iϕ(X1 − iX3),

ϕ+(E−) = ϕ(X3 − iX1) + iϕ(X1 + iX3),

ϕ+(W ) = ϕ(X2) + iϕ(iX2),

ϕ−(E+) = ϕ(X3 − iX1)− iϕ(X1 + iX3),

ϕ−(E−) = −ϕ(X3 + iX1) + iϕ(−X1 + iX3),

ϕ−(W ) = ϕ(X2)− iϕ(iX2).

For the Casimir operators we get

ω+ =ϕ+(E+)ϕ+(E−) + 2iϕ+(W )− (ϕ+(W ))2,

=− (ϕ(X1)2 + ϕ(X2)2 + ϕ(X3)2)

+ ϕ(iX1)2 + ϕ(iX2)2 + ϕ(iX3)2

− 2i(ϕ(X1)ϕ(iX1) + ϕ(X2)ϕ(iX2) + ϕ(X3)ϕ(iX3)

ω− =ϕ−(E+)ϕ−(E−) + 2iϕ−(W )− (ϕ−(W ))2,

=− (ϕ(X1)2 + ϕ(X2)2 + ϕ(X3)2)

+ ϕ(iX1)2 + ϕ(iX2)2 + ϕ(iX3)2

+ 2(i(ϕ(X1)ϕ(iX1) + ϕ(X2)ϕ(iX2) + ϕ(X3)ϕ(iX3))

Instead of ω+, ω− we will use also

tu+ = −ω+ + ω−
2

, tu− = i
ω+ − ω−

2
.

tu+ =ϕ(X1)2 + ϕ(X2)2 + ϕ(X3)2 − ϕ(iX1)2 − ϕ(iX2)2 − ϕ(iX3)2

tu− =ϕ(X1)ϕ(iX1) + ϕ(X2)ϕ(iX2) + ϕ(X3)ϕ(iX3)

4. The Casimir and explicit formulae

We consider a special ϕ,

ϕ : sl(2,C) −→ End(C∞(G))

that is defined through the Lie derivative.

(ϕ(A)(f)) =
d

dt
f(x exp(tA))

∣∣
t=0

.
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This map is only real linear (but C∞(G) means the space of complex valued
functions. Even more general, one can consider differentiable functions on G
with values in a complex Banach space). We use sometimes the notations

Af = ϕ(A)f

if the context clearly indicates what is meant. In the case of the group SL(2,R)
we got explicit formulas for the Casimir operator. The case SL(2,C) is more
involved. We must be satisfied with a weaker result. For this we consider
a finite dimensional representation σ : K → GL(H) of the compact group
K = SU(2). Then we consider differentiable functions

f : SL(2,C)→ H, f(xk) = σ(k)f(x) (x ∈ SL(2,C), k ∈ K).

Such a function is determined by its restriction f0 to AN , since

f(ank) = σ(k)f0(an)

and each differentiable function f0 on AN extends to a function f .

We consider now a Casimir operator C. Since C is right invariant, we get
the following result.

4.1 Lemma. Let C be a Casimir operator for G = SL(2,C) and f : G→ H
be a differentiable function with the transformation property f(xk) = σ(k)f(x).
Then g = C(f) has the same transformation property.

Hence there exists an operator (depending on σ)

C0 : C∞(AN) −→ C∞(AN)

such that Cf = g means C0f0 = g0.

4.2 Lemma. Let C be a linear combination of ω± and let σ : K → GL(H) be
a finite dimensional representation. The corresponding operator C0 on AN is
a linear differential operator of degree ≤ 2. Its part of order two is independent
of σ.

Proof. We introduced the notion of a linear differential operator on open subsets
of Rn. We can identify AN with the hyperbolic 3-spaceH3 and so we can apply
this notion. We also know from the Iwasawa decomposition that H3 × B3, B3

denotes the 3-ball, parameterises some open part of G. It is clear that the Lie
derivative is a linear differential operator of degree ≤ 1 on H3×B3 ⊂ R6. The
composition of two of them gives a linear differential operator of degree ≤ 2.
The same is true for C0. tu

In the case of the group SL(2,R) we got explicit formulas for a concrete
basis of the Lie algebra. The case SL(2,C) is more involved. We must be
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satisfied with a weaker result. For this we consider a finite dimensional unitary
representation σ : K → GL(H) of the compact group K = SU(2). Then we
consider differentiable functions

f : SL(2,C)→ H, f(xk) = σ(k)f(x) (x ∈ SL(2,C), k ∈ K).

Such a function is determined by its restriction f0 to AN , since

f(ank) = σ(k)f0(an)

and each differentiable function f0 on AN extends to a function f .

We consider now a Casimir operator C. Since C is right invariant, we get
the following result.

4.3 Lemma. Let C be a Casimir operator for G = SL(2,C) and f : G→ H
be a differentiable function with the transformation property f(xk) = σ(k)f(x).
Then g = C(f) has the same transformation property.

Hence there exists an operator (depending on σ)

C0 : C∞(AN) −→ C∞(AN)

such that Cf = g means C0f0 = g0.

4.4 Lemma. Let C be a linear combination of ω± and let σ : K → GL(H) be
a finite dimensional representation. The corresponding operator C0 on AN is
a linear differential operator of degree ≤ 2. Its part of order two is independent
of σ.

Proof. We introduced the notion of a linear differential operator on open subsets
of Rn. We can identify AN with the hyperbolic 3-spaceH3 and so we can apply
this notion. We also know from the Iwasawa decomposition that H3 × B3, B3

denotes the 3-ball, parameterises some open part of G. It is clear that the Lie
derivative is a linear differential operator of degree ≤ 1 on H3×B3 ⊂ R6. The
composition of two of them gives a linear differential operator of degree ≤ 2.
The same is true for C0. tu

We recall (Lemma 4.4) that for example tu+ induces a linear differential
operators on AN of order ≤ 2. It depends on the choice of a σ ∈ K̂. But the
part of order two is independent of this choice. We want to prove that this
operator is elliptic. For this we need only the part of order two. Hence we can
assume that σ is trivial. So we have to consider a differentiable function f on
G with the property

f(pk) = f(p),

We have to consider h = tu+f . We know that this has also the property
h(pk) = h(p). We have to extract from h the terms of order 2. We want to
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work with the coordinates of the hyperbolic 3-space. So we have to use the
identification

P
∼−→ H3, p 7−→ z = p(j).

We write
p(j) = x+ iy + jv, v > 0

Hence the coordinates of the hyperbolic 3-space are (x, y, v). We switch freely
between the notations

(x, y, v), (z, v) (z = x+ ix), x+ iy + jv.

And we write

f0(z, v) = f(an); a =

(√
v 0

0
√
v
−1

)
, n =

(
1 v−1z
0 1

)
.

(similarly for h). If X is in the Liealgebra of SU(2), then eiX is unitary. We
apply X to f ,

d

dt
f(anketX)

∣∣∣
t=0

=
d

dt
f(an) = 0.

So we only have to consider the operators that correspond to iX1, iX2, iX3. We
know their exponentials.

e2tiX1 =

(
e−t 0
0 et

)
e2tiX2 =

(
cos it sin it
− sin it cos it

)
e2tiX3 =

(
cos it i sin it
i sin it cos it

)

We start with X2
1 . For this we have to evaluate

∂2

∂s∂t
f(getiX1esiX1)

at t = s = 0. Since we want to apply the formula f(g) = f0(g(j)) we consider

Z(t, s) = x(s, t) + iy(s, t) + jv(s, t) = getiX1esiX1(j) = z + vk(e−(t+s)j)

= z + vK(s, t) where K(s, t) = k(e−(t+s)j).

We have to compute

∂2

∂s∂t
f(Z(s, t)) =

∂

∂s

[
∂f0

∂t
(·)
]
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=
∂

∂s

[
∂f0

∂x
(·)∂x(s, t)

∂t
+

∂f0

∂y
(·)∂y(s, t)

∂t
+

∂f0

∂v
(·)∂v(s, t)

∂t

]
Here the dot stands for z(s, t), v(s, t). Recall that we only intend to compute
the terms of second order. Hence the essential part is[

∂

∂s

∂f0

∂x
(·)
]
∂x(s, t)

∂t
+

[
∂

∂s

∂f0

∂y
(·)
]
∂y(s, t)

∂t
+

[
∂

∂s

∂f0

∂v
(·)
]
∂v(s, t)

∂t

The bracket has to be evaluated by means of the chain rule again.[
∂2f0

∂x2
(·)∂x(s, t)

∂s
+
∂2f0

∂x∂y
(·)∂y(s, t)

∂s
+
∂2f0

∂x∂v
(·)∂v(s, t)

∂s

]
∂x(s, t)

∂t

+

[
∂2f0

∂x∂y
(·)∂x(s, t)

∂s
+
∂2f0

∂y2
(·)∂y(s, t)

∂s
+
∂2f0

∂y∂v
(·)∂v(s, t)

∂s

]
∂y(s, t)

∂t

+

[
∂2f0

∂x∂v
(·)∂x(s, t)

∂s
+
∂2f0

∂y∂v
(·)∂y(s, t)

∂s
+
∂2f0

∂v2
(·)∂v(s, t)

∂s

]
∂v(s, t)

∂t

We write this in the form of a table

∂2f0

∂x2
(·) :

∂x(s, t)

∂s

∂x(s, t)

∂t
∂2f0

∂y2
(·) :

∂y(s, t)

∂s

∂y(s, t)

∂t

∂2f0

∂v2
(·) :

∂v(s, t)

∂s

∂v(s, t)

∂t
∂2f0

∂x∂y
(·) :

∂x(s, t)

∂t

∂y(s, t)

∂s
+
∂x(s, t)

∂s

∂y(s, t)

∂t

∂2f0

∂x∂v
(·) :

∂x(s, t)

∂t

∂v(s, t)

∂s
+
∂x(s, t)

∂s

∂v(s, t)

∂t
∂2f0

∂y∂v
(·) :

∂y(s, t)

∂t

∂v(s, t)

∂s
+
∂y(s, t)

∂s

∂v(s, t)

∂t

We have to differentiate Z(s, t) by t and s and then evaluate at s = t = 0.
This is same as to differentiate Z(0, t) by t and then to evaluate at t = 0. We
abbreviate Z(t) = Z(0, t) and K(t) = K(0, t) and similarly for x(s, t), . . .

We make use of some simple rules for differentiating functions a(t) of one
real variable with values in the skew field of quaternions (which can be identified
with R4). We use the abbreviation ȧ = da(t)/dt. Then one has the rules

(ab) ˙ = aḃ+ ȧb, (a−1) ˙ = −a−1ȧa−1, (ab−1) ˙ = (ȧ− ab−1ḃ)b−1.
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Now we can compute Ż = vK̇. We have

K(t) = a(t)b(t)−1, a(t) = k1e
−tj− k2, b(t) = k2e

−tj + k1

where k =

(
k1 −k2

k̄2 k̄1

)
.

We have

a(0) = k1j− k2, ȧ(0) = −k1j, b(0) = k̄2j + k̄1, ḃ(0) = −k̄2j.

Now we apply the quotient rule. Using the rules

aja = |a|2j for a ∈ C and jājb = −ab for a, b ∈ C

we obtain
K̇(0) = −k̇1k̇2 − j.

Here we use the notation

k1 = k̇1 + k̈1i, k2 = k̇2 + k̈2i

(Here the dots have nothing to do with derivations.) Similar calculations have
to be done for X2

2 , X
2
3 . To distinguish them from X2

1 , we now write Z1(s, t), . . .
instead of Z(s, t), . . . and Z2(s, t), . . . and Z3(s, t), . . . in the two other cases.

Next we treat X2
2 . A straight forward calculation gives(

cos(it/2) sin(it/2
− sin(it/2) cos(it/2)

)
(j) =

sin(it) + j

cos(it)
.

This gives
K2(t) = a2(t)b2(t)−1,

a2(t) = k1(sin(it) + j)− k2 cos(it),

b2(t) = k̄2(sin(it) + j) + k̄1 cos(it).

From

a2(0) = k1j− k2, ȧ2(0) = k1i, b2(0) = k̄2j + k̄1, ḃ2(0) = k̄2i

we deduce

K̇2(0) = −2(k̇1k̈1 + k̇2k̈2) + (k̇2
1 + k̇2

2 − k̈2
1 − k̈2

2)i + 2(k̈1k̇2 − k̇1k̈2)j

Finally we treat X2
3 . We start with(

cos(it/2) i sin(it/2)
i sin(it/2) cos(it/2)

)
(j) =

sin(it)i + j

cos(it)
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From this we get

K3(t) = a3(t)b3(t)−1,

a3(t) = k1(sin(it)i + j)− k2 cos(it),

b3(t) = k̄2(i sin(it) + j) + k̄1 cos(it).

where

a3(0) = k1j− k2, ȧ3(0) = −k2i, b3(0) = k̄1j + k̄2, ḃ3(0) = −k̄2i

We collect in a table

K̇1(0) = 2(k̈1k̈2 − k̇1k̇2)− 2(k̇1k̈2 + k̈1k̇2)i + (k̇2
2 + k̈2

2 − k̇2
1 − k̈2

2)j,

K̇2(0) = −2(k̇1k̈1 + k̇2k̈2) + (k̇2
1 + k̇2

2 − k̈2
1 − k̈2

2)i + 2(k̈1k̇2 − k̇1k̈2)j

K̇3(0) = −k̇2
1 + k̈2

1 + k̇2
2 − k̈2

2 + 2(−k̇1k̈1 + k̇2k̈2)i + 2(k̇1k̇2 + k̈1k̈2)j

Now get the decisive information about the Casimir operator C := tu+.
Recall that we want to act on differentiable functions f : G → C of the form
f(pk) = f0(p)σ(k) for some finite dimensional representation of K = SU(2).
As we mentioned already, the function Cf is of the same kind. Hence we obtain
an operator C0 : C∞(P ) → C∞(P ). We use for P the hyperbolic coordinates
(x, y, v).

4.5 Proposition. The action of the Casimir operator C = tu+ on differ-
entiable functions of the type f(pk) = f0(p)σ(k) is described through a linear
differential operator C0 : C∞(P )→ C∞(P ) of order ≤ 2. Its part of order 2 is
independent of σ and is given by

v2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂v2

)
Hence C0 is an elliptic differential operator.

Proof. We restrict to a typical example and compute the coefficient of ∂2/∂x2.
The above table shows that we have to evaluate

∂x(s, t)

∂s

∂x(s, t)

∂t

at s = t = 0 for each of the X1, X2, X3 and to sum them up. This is the same
as

3∑
i=1

ẋi(0)2.

Recall that Żi(t) = vK̇i(t). Hence the sum equals v2 times

4(k̈1k̈2 − k̇1k̇2)2 + 4(k̇1k̈1 + k̇2k̈2)2 + (−k̇2
1 + k̈2

1 + k̇2
2 − k̈2

2)2

But this is the same as

(k̇2
1 + k̈2

1 + k̇2
2 + k̈2

2)2 = 1.

The other coefficients are similar. tu
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5. Structure of the complex special linear group of degree
two

We need a generalization of the upper half plane. The hyperbolic space is
defined through

Hn = Rn−1 × R>0.

We can identify H2 with the usual upper half plane. Now we need the three
dimensional hyperbolic space. We identify it with C × R>0. We write its
coordinates in the form (z, p) where z is a complex number and p > 0. An
elegant way to describe the action of SL(2,C) on H3 is to use the skew-field of
quaternions R+iR+jR+kR. Multiplication is defined by R-bilinear extension
of

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j.

This multiplication is associative and without zero divisors. The center is R
and 1 ∈ R is the unit element. The conjugate of a quaternion is

a1 + ia2 + ja2 + ka3 = a1 − ia2 − ja2 − ka3.

The rule ab = b̄ā holds. The absolute value of a quaternion is |a| =
√
aā =√

a1
1 + a2

2 + a3
3 + a2

4. The inverse of a non zero quaternion is

a−1 =
ā

|a|2
.

Each complex number can be considered as a quaternion whose j- and k-
component is 0.

A quaternion is called pure if its k-component is zero. We identify the
elements (z, v) ∈ H3 with the pure quaternion P = z + jv. Let M =

(
a b
c d

)
∈

SL(2,C). On can show that the quaternion cP + d is different from zero and
define then M(P ) = (aP +b)(cP +d)−1. On also can check that M(P ) is in H3

again and that this defines an action of SL(2,C) from the left. We leave this
as an exercise for the reader (see [EGM], 1.1). The action in the coordinates
(z, v) can be calculated.

(z∗, v∗) = M(z, v), z∗ =
(az + b)(c̄z̄ + d̄) + ac̄v2

|cz + d|2 + |c|2v2

v∗ =
v

|cz + d|+ |c|2r2
.

We consider the distinguished point (0, 1) (which corresponds to j). One checks
that the stbilizer of this point is SU(2) and one checks(√

v 0

0
√
v
−1

)(
1 v−1z
0 1

)
(0, 1) = (z, v).
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In the rest of this section, we use the following notations:

G = SL(2,C),

A =

{
a =

(
α 0
0 α−1

)
; α > 0

}
,

N =

{
n =

(
1 z
0 1

)
; z ∈ C

}
,

K = SU(2).

Similar to the real case there is an Iwasawa decomposition.

5.1 Lemma (Iwasawa decomposition). The map

A×N ×K −→ G, (a, n, k) 7−→ ank,

is topological.

Proof. Let g ∈ G. We consider g(0, 1) = (z, v). We have

p(0, 1) = (z, v) where p =

(√
v 0

0
√
v
−1

)(
1 v−1z
0 1

)
.

Then k = p−1g stabilizes (0, 1) and is hence in K. So g = pk is the Iwasawa
decomposition. tu

It can be made explicit:

(
a b
c d

)
=

( 1√
cc̄+dd̄

0

0
√
cc̄+ dd̄

)(
1 ac̄+ bd̄
0 1

)
1√

cc̄+ dd̄

(
d̄ −c̄
c d

)
.

We choose the Haar measure dk of K such that the volume of K is one. We
denote by da the Haar measure on A. (Recall that it is dα/α.) We denote by
dz = dxdy the usual Lebesgue measure. It corresponds to the Haar measure
dn on N . on C.

5.2 Proposition. A Haar measure on G = SL(2,C) can be obtained as
follows: ∫

G

f(x)dx =

∫
A

∫
N

∫
K

f(ank) dk dn da.
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The proof is the same as that in the case SL(2,R).

Similar to SL(2,R) the group P of upper triangular matrices with positive
real diagonal plays an important role. The multiplication map

A×N ∼−→ P

is a topological map but not a group isomorphism. Nevertheless

dp = dnda

is a Haar measure on P . he modular function computes as

∆(p) = α−4, p = an.

The proof is the same as in the SL(2,R)-case.r

6. Principal series for the complex special linear group
of degree two

Next we construct for each s ∈ iR a unitary representation of G = SL(2,C).
The construction is the same as in the case SL(2,R). First we define the space

H∞(s) =
{
f ∈ C∞(G), f(px) = α2+sf(x)

}
.

The group G acts on this space through translation from the right. A function
f ∈ H∞(s) is determined by its restriction to K. This gives an identification of
H∞(s) and C∞(K). We consider on this space the scalar product coming from
the Haar measure of K. As in the SL(2,R)-case, the action of G is unitary with
respect to this scalar product if s ∈ iR. We denote the completion of H∞(s)
by H(s). This can be identified with L2(K). In this way we get a unitary
representation of G for s ∈ iR.

So far we proceeded as in the case SL(2,R). In this case we considered the
even and odd parts of H(s). This is now a little bit more involved. Instead of
±1 we have to consider now the group

K0 =

{
m =

(
ζ 0
0 ζ−1

)
; |ζ| = 1

}
This is a subgroup of SU(2) which is isomorphic to SO(2). This group acts on
H∞(s) through

f(x) −→ f(mx), m ∈ K0.

We decompose the space into eigenspaces of this action. The characters of K0

are of the form m 7→ ζn for arbitrary integers n. The eigenspace of such a
character is

H∞(n, s) =
{
f ∈ H∞(s); f(mx) = ζnf(x)

}
.

Since K0 is a compact abelian group the space H(s) is the direct Hilbert sum
of the spaces H(n, s) which are the completions of the H∞(n, s).
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6.1 Definition. The principal series of unitary representations of G =
SL(2,C) consists of the representations πn,s on the spaces H(n, s) defined above

A basic result states that this representation is irreducible. The proof that we
have in mind uses the derived representation which we will study in Sect. ?

For this it is important to study the decomposition of the restriction of πn,s
to K = SU(2) into irreducibles. Recall that H(n, s) has been embedded into
L2(K). In corresponds in this picture to all f ∈ L2(K) with the property

f(mk) = ζnf(k)

The action of K on this space is given by translation from the right.

Now we have to use the structure theory of compact groups K. To describe
the basic result we use the representation of K ×K on L2(K, dk) given by

f(x) 7−→ f(k−1
1 xk2)

We describe its irreducible constituents. Let σ : K → U(H) be a (finite
dimensional) irreducible representation. Consider the space End(H). There is
a natural action of K ×K on EndH given by

A 7−→ N, B(v) = σ(k−1
1 )B(k2v).

One knows that this representation of K is irreducible. As a consequence
it carries an essentially unique structure as irreducible representations. The
following result holds:

For each irreducible representation σ : K → GL(H) there exists a K ×K-sub
representation of L2(K) which is isomorphic to End(H). The multiplicity is
one. The representation of K ×K on L2(K) is the direct Hilbert sum of these
components.

Now we go back to K = SU(2). We have to exhibit the subspace of L2(K)
with the property

f(mk) = ζ−nf(k).

This means that for each irreducible representation σ : K → GL(H) we have
to compute the subspace of End(H) the subspace of all A with the property

A(σ(m)h) = ζ−nA(h).

We take for H the representation Vl. Recall that this is an irreducible repre-
sentation of K of dimension m = 2l + 1. Here n is an arbitrary nonnegative
integer. Concretely Vl is the space of all homogeneous polynomials of two
variables x1, x2 of degree m. The action of K is given by

P (k−1x)
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where x has to be written as column. So we have to compute the space of all
linear maps A : Vl → Vl with the property

A(P (ζx1ζ
−1x2) = ζnP (x1, x2).

We take for P a monomial xν11 x
ν2
2 , ν1 + ν2 = m. Then the equation reads as

A(ζν1−ν2P ) = ζnA(P ).

In the case A(P ) 6= 0 this means

ν1 − ν2 = n.

Together with the relation ν1 +ν2 = m we see that there is at most one solution
(ν1, ν2) for given n,m, namely

ν1 =
m+ n

2
, ν2 =

m− n
2

.

Both must be non negative. Hence a solution exists if and only if m ≥ |n|.
Hence the subspace of Hom(Vl, Vl) we are just considering is 0 if m < |n| and
it is Hom(C, Vl) in the case m ≥ 0. But this space is isomorphic to Vl (and
this isomorphism is compatible with the action of K. This gives the following
result.

6.2 Theorem. The principal series πn,s splits under the group K = U(2) as
follows. The representation Vl of dimension m = 2l + 1 occurs if and only if
m ≥ |n|. In this case it occurs only once.

We discuss another realization of the principle series. For this we derive an
explicit formula for the Haar measure on K0\K. For this we consider a function
f on K that is left invariant under K0 and hence can be considered as function
on K0\K. We extend f to a function on G with the property

f

((
a ∗
0 a−1

)
g

)
= |a|−2f(g).

This is possible due to the assumption on f . Then we define

f0(c, d) = f

(
a b
c d

)
where a, b are arbitrarily chosen such that ad − bc = 1. This definition is
independent of the choice of a, b, since for another choice a′, b′ we have(

a′ b′

c d

)(
a b
c d

)−1

=

(
1 ∗
0 1

)
.

The matrix on the right hand side is in the group N and, by assumption f is
left invariant under N . Finally we set

f1(z) = f0(z, 1).

6.3 Lemma. For each differentiable function f on K0\K the measure∫
K

f(k)dk :=

∫
C
f1(z)dxdy

is a Haar measure on K0\K.
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A little more generally we can associate to each function f ∈ H(n, s) the
function f0 : C × C − {(0, 0)} → C. We want to define

f0(c, d) = f

(
a b
c d

)
where a, b are chosen such that ad− bc = 1. This defines an isomorphism

H∞(n, s)
∼−→ H ′∞(n, s)

where H ′∞(n, s) denotes the space of all differentiable functions f0 on C×C−
{(0, 0)} with the transformation property

f0(Cc,Cd) = |C|−s−2

(
C

|C|

)n
f0(c, d).

The action πn,s of G on H∞(n, s) corresponds to the action

π′n,s(g)f0(c, d) = f0((c, d)g).

The function f0 is determined by its restriction

f1(z) = f0(z, 1).

We denote by H ′′∞(n, s) the space of all function f1 that occur in this way.

6.4 Lemma. The space H ′′∞(n, s) has the property

C∞c (C) ⊂ H ′′∞(n, s) ⊂ L2(C, dxdy)

where dxdy is the Lebesgue measure on C = R2.

Proof. Let f1 ∈ C∞c (C). We have to reconstruct f0(z, w) from f1(z). We set

f0(z, w) =

{
|w|2+sf1(z/w) for w 6= 0,
0 else.

It is easy to see that this function is differentiable on C × C − {(0, 0)} and
that it has the desired transformation property. Let f1 ∈ H ′′(n, s). We have
to show that f1 is square integrable. It is enough to show that∫

|z|≥1

|f1(z)|2dxdy

converges. We transform the integral by means of z 7→ 1/z. The complex
derivative is −1/z2. Hence the real functional determinant is 1/|z|2. Hence the
integral equals∫

|z|≤1

f1(1/z)/|z|2dxdy =

∫
|z|≤1

f0(1/z, 1)/|z|2dxdy =

∫
|z|≤1

f0(1, z)dxdy.
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This shows the existence of the integral.

It is easy to compute the action of G on H′′(n, s). The formula is

π′′
(
a b
c d

)
f1(z) = |bz + d|−s−2

(
bz + d

|bz + d|

)n
f

(
az + c

bz + d

)
.

To be precise. This formula holds for all z such that bz+d 6= 0. But it extends
to the whole of C by continuity. Of course this action extends to the completion
L2(C). To get an explicit formula we must extend π′′ to a continuous action
of G on L2(C, dxdy). The result is as follows. Let f1 ∈ L2(C, dxdy). We take
a representative F ∈ L2(C, dxdy). Then we define

G = |bz + d|−s−2

(
bz + d

|bz + d|

)n
F

(
az + c

bz + d

)
first outside the finite set bz+d = 0 and then we extend it by 0 to the whole of
C. This function is square integrable and we can take its class in L2(C, dxdy).
It is easy to show that this defines a continuous action of G on L2(C, dxdy).
It coincides with the action defined on H′′(s, n). Since this space is dense in
L2(C, dxdy), it is the unique continuous extension.

6.5 Remark. The principal series with parameters (s, n) is isomorphic to
the representation of G = SL(2,C) on L2(C, dxdy) where the action is given
by the formula

|bz + d|−s−2

(
bz + d

|bz + d|

)n
f

(
az + c

bz + d

)
.

7. Complementary series for the complex special linear
group of degree two

In the following we use three complex variables

z = x+ iy, w = u+ iv, ζ = ξ + iη.

We also will use polar coordinates

z = reiϕ, ζ = %eiψ.

The complementary series is a variant of the principal series in the model
described in Remark 7.2. This variant depends on the parameters n = 0 and
s ∈ (−1, 1), s 6= 0. We start with the space C∞c (C) and define on this space

〈f, g〉 =

∫
C×C

|z − w|−2−sf(z)f(w)dxdydudv
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The existence(as Lebesgue integral on C2 = R4) follows from the existence of∫
K

|z − w|−2−sdxdydudv

where K ⊂ C × C is a compact subset. We transform (z, w) 7→ (z + w,w). It
remains to show that the integral∫ R

0

|z|−2−sdxdy = 2π

∫ R

0

r−1−sdr

converges. This is the case if s > 0.

We consider the Fourier transform f̂ of f ∈ C∞c (C),

f̂(w) =
1

2π

∫
C
f(w)e−i(xu+yv)dxdy =

1

2π

∫
C
f(w)e−i Re(zw̄)dxdy.

In Sect. 1 of the appendices we introduced the Fourier transformation and
explained that the Fourier transformation of tempered functions is tempered.
In particular, the Fourier transform of a differentiable function with compact
support is tempered.

7.1 Proposition. For f ∈ C∞c (C) and 0 < s < 2 the formula

〈f, f〉 = 2sπ
Γ(s/2)

Γ(1− s/2)

∫
C
|f̂(z)|2|z|−sdxdy

holds.

Proof. We have to make use of the Bessel function

J0(x) =
1

2π

∫ π

−π
eix cosϕdϕ.

It is a differentiable function on the real axis and for big x it is asymptotically
to √

2

πx
cos(x− π/4).

We need a well known formula (a special case of a Hankel transform)∫ ∞
0

r−1+sJ0(rx)dr = 2−1+s Γ(s/2)

Γ(1− s/2)
x−s, 0 < s < 1/2.

The existence of the integral for the given parameters follows from the asymp-
totic behaviour of J0.
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Now we can compute the integral 〈f, f〉. We integrate first along z and have
to consider the integral ∫

C
|z − w|−2+sf(z)dxdy.

We apply the Fourier inversion formula and express f by means of f̂ .

f(z) =
1

2π

∫
C
f̂(ζ)ei Re(zζ̄)dξdη.

We insert this to obtain∫
C
|z − w|−2+sf(z)dxdy

=
1

2π

∫
C
|z − w|−2+s

∫
C
f̂(ζ)ei Re(zζ̄)dξdηdxdy

=
1

2π

∫
C
|z|−2+s

∫
C
f̂(ζ)ei Re((z+w)ζ̄)dξdηdxdy.

Now we go over to polar coordinates z = reiϕ.

1

2π

∫ ∞
0

∫ π

−π
r−2+s

∫
C
f̂(ζ)ei Re(reiϕζ̄)ei Re(wζ̄)dξdηrdrdϕ.

We replace one of the ζ by %eiψ and get

1

2π

∫ ∞
0

∫ π

−π
r−1+s

∫
C
f̂(ζ)ei Re(rρei(ϕ−ψ))ei Re(wζ̄)dξdηdrdϕ.

We first integrate along ϕ to obtain

1

2π

∫ ∞
0

r−1+s

∫
C
f̂(ζ)J0(%r)ei Re(wζ̄)dξdηdr.

Now we can insert the mentioned integral formula for J0 to finish the proof of
Proposition 7.1 in the case 0 < s < 1/2. But both sides of the formula are
defined for 0 < s < 2 and give analytic functions there. Hence the formula
holds in this bigger range. tu

Due to the Proposition 〈f, g〉 is a positive definite Hermitian form on Cc(C).
We denote the completion by H(0, s) where s ∈ (−1, 1), s 6= 0. This is a Hilbert
space. We have to define the action of G = SL(2,C) on this Hilbert space. For
this we take g =

(
ab
cd

)
∈ G. We want to define the action with help of the

formula

f
(az + c

bz + d

)
|cz + d|s.

There exists a finite set S ⊂ C that this transformation defines a map

C∞c (C − S) −→ C∞c (C).

For c = 0 one can take S = ∅ and S = {a/c} else. This map is norm preserving
and hence extends to the completions. But both completions areH(0, s). Hence
we get a unitary representation of G on H(0, s).
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7.2 Remark. The complementary series with parameters (s, 0), s ∈ (−1, 1),
s 6= 0, is isomorphic to the representation of G = SL(2,C) on H(0, s) where
the action on a certain dense subspace is given by the formula

|bz + d|−s−2

(
bz + d

|bz + d|

)n
f

(
az + c

bz + d

)
.

8. Multiplicity one

In this section we generalize the multiplicity one theorem (Theorem II.7.7) to
G = SL(2,C), K = SU(2).

8.1 Theorem. Let π : G→ GL(H) by an irreducible unitary representation.
In the restriction of π to K each irreducible representation of K occurs wit
such multiplicity ≤ 1.

Proof. The proof is different from the proof in the SL(2,R). There we made
use of the commutativity of the algebra Sn,n which now is not available.

We explain the analogue of Sn,n. For this we need a generalization of the
convolution product. Let G be a locally compact unimodular group and let
K ⊂ G be a compact subgroup and let dx, dk be their Haar measures. Then
we have convolution products α∗β on C(K) and f ∗g on Cc(G) and, in addition

C(K)× Cc(G) −→ Cc(G), (α ∗ f)(x) =

∫
K

α(k)f(k−1x)dk,

Cc(G)× C(K) −→ Cc(G), (f ∗ α)(x) =

∫
K

f(xk)α(k−1)dk.

Notice that in the case G = K this is the usual convolution product. The
associative law remains valid, for example f ∗ (α ∗ β) = (f ∗ α) ∗ β.

Now we consider a unitary representation π : G→ U(H). We want to study
its restriction to K. Therefore we consider some σ ∈ K̂. We recall the element
eσ that is an idempotent in the convolution algebra C(K). For any f ∈ Cc(G)
we consider eσ ∗ f ∗ eσ. From the Peter Weyl theorem follows that π(eσ ∗ f ∗σ)
maps H(σ) into itself. Therefore it looks natural to consider

Cc,σ(G) = {eσ ∗ f ∗ eσ; f ∈ Cc(G)}.

8.2 Theorem. Let G be a locally compact group and let K ⊂ G be a compact
subgroup. Let σ ∈ K̂. Then Cc,σ(G) is a star algebra (sub algebra of Cc(G)).
Let π : G → U(H) be a unitary representation. Then Cc,σ(G) acts on the
isotypic component H(σ).



110 Chapter III. The complex special linear group of degree two

In the following we need the von-Neumann density theorem. It is explained in
Sect. 3 from the Appendices (Chap. VI). It uses the SOT-topology on B(H)
where H is a Hilbert space. We have to use Theorem VI.3.3. Let π be irre-
ducible. Then the image of Cc(G) in B(H) is SOT-dense. An easy consequence
is that the image of Cc,σ is SOT-dense in B(H(σ)).

8.3 Definition. An associative algebra A admits many finite dimensional
representations, bounded by n, if for every A ∈ A, A 6= 0, there exists a
homomorphism π : A → End(H), dim(H) ≤ n, π(A) 6= 0.

8.4 Theorem (Kaplansky-Godement). Let A be an associative algebra
that admits many finite dimensional representations, bounded by n. Let H be
a Hilbert space and A → B(H) a homomorphism such that the image of A is
SOT-dense, then dim(H) ≤ n.

Wie apply the theorem of Kaplansky-Godement to A = Cc,σ and to H = H(σ).
We make use of a result which we will formulate and prove a little later. It
concerns the construction of the principal series of SL(2,C). The corresponding
representation of Cc,σ will turn out to be isomorphic to σ. This means that
A admits many finite dimensional representations, bounded by dim(H(σ)). So
we obtain that H(σ) is irreducible. This completes the proof of Theorem 8.1.

tu

9. Differentiable and analytic vectors

As in the case of SL(2,R) we can define the notion of differentiable and an-
alytic functions (may be Banach space valued) on G. Just use the Iwasawa
coordinates. We consider irreducible unitary representations π : G → GL(H).
A vector h ∈ H is called differentiable (analytic) if the function π(x)h is differ-
entiable (analytic). This map is only real linear (but C∞(G) means the space
of complex valued functions. We denote by H∞ the subspace of differentiable
vectors and by Hω the subspace of analytic vectors and we denote by HK the
space of the K-finite vectors. Recall that this is the algebraic sum of all (finite
dimensional) subspaces which are invariant under K. The spaces of differen-
tiable (analytic) elements are invariant under the action of G. As in the case
SL(2,R) it is easy to prove that the space of differentiable functions is dense.

We consider the restriction of K and decompose the representation into
isotypics with respect to K.

H =
⊕̂

σ∈K̂
H(σ).

Then HK is the algebraic sum of the H(σ).
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9.1 Lemma. Let π : G → GL(H) be a unitary representation such that the
isotypic components H(σ) are finite dimensional. Then is all elements of HK

are differentiable.

Proof. As in the case of SL(2,R) we know that the elements

π(f)h =

∫
G

f(x)π(x)dx, f ∈ C∞c (G),

are differentiable. They generate a dense subspace ofH. Hence their orthogonal
projection to H(σ) generates a dense subspace of H(σ). Since this space is finite
dimensional, all its elements are in the projection It remains to show that the
projections are differentiable. This follows from the Peter Weyl theorem.

tu
In the case SL(2,R) we proved more, namely that the elements of HK are

analytic. We can now prove the same result for G = SL(2,C).

Let π : G→ U(H) be an irreducible unitary representation of G = SL(2,C).
The Lie algebra sl(2,C) acts on HK and the formula

π(k) ◦ dπ(A) = dπ(kAk−1) ◦ dπ(A), k ∈ K, A ∈ g,

holds. Let C be a Casimir operator. Then C acts on HK . We have seen
already more, namely that C acts on the isotypic components H(σ). Since this
irreducible with respect to su(2), the Casimir operator acts by a scalar on f .
From ? follows that the elements of H(σ) are analytic. Hence HK consists of
analytic vectors. Similar to the SL(2,R)-case we are lead to the notion of a
g-K-module. Before we give the definition, we make a simple remark. We have
to consider representations π : K → GL(V ) on a complex vector space such
that all vectors of V are K-finite. We call such a representation continuous if
the representation of K on any finite dimensional subspace of V is continuous
in the usual sense. Then one can define for each σ ∈ K̂ the isotypic component
V (σ) and V is the (algebraic) direct sum of all H(σ).

9.2 Definition. Let g = sl(2,C) and K = SU(2). A g-K-module is a complex
vector space H together with a representation

π : K → GL(H)

and a real linear Lie homomorphism

dπ : g→ End(H)

such that the following conditions hold.

1) H consists of K-finite vectors and π is continuous.

2) The formula

π ◦ dπ(A) = dπ(kAk−1) ◦ dπ(A), k ∈ K, A ∈ g

holds.

Such a module is called admissible if the K-isotypics are finite dimensional
and irreducibly admissible if in addition for each h ∈ H(σ), h 6= 0, one has
A(h) = H. Here A ⊂ End(H) is the C-algebra generated by the image of g.
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9.3 Remark. Let H be an irreducible admisible g-K-module (g = sl(2,C),
K = SU(2)). Then the Casimir operators act by scalars on H.

So we have seen that, as in the case SL(2,R), every unitary irreducible represen-
tation of G = SL(2,C) on a Hilbert space H induces a structure as irreducible
admissible g-K-module on H = HK . It should be clear what it means that two
g-K modules are isomorphic. Then we have, as in the case SL(2,R).

Two irreducible unitary representations of G = SL(2,C) are isomorphic if and
only of the associated g-K-modules are isomorphic.

Now we have the following two tasks.

1) Classify all irreducible admissible g-K-modules.
2) Exhibit those which come from an irreducible unitary representation of G =
SL(2,C).

In the case SL(2,R) we solved both problems. Now we are content with a
slightly weaker argument.

A g-K-module is called unitarizible if there exists a (Hermitian positive definit)
scalar product on H such that the elements A ∈ g act skew symmetric, 〈Ax, y〉 =
−〈x,Ay〉 and if the operators π(k) are unitary.

As in the SL(2,R) it is rather clear that the g-K-module associated to an
irreducible unitary representation of G = SL(2,C) is unitarizible.

We have to classify unitarizible irreducible admissible g-K-modules.

These representations have the following remarkable property.

9.4 Theorem. For every unitarizable irreducible admissible g-K-module (g =
sl(2,C), K = SU(2) the multiplicities of the irreducible unitary components are
one.

We will not prove this result, since for our final purpose (classification of the
irreducible unitary representations of GL(2,C) this is result is not necessary,
since for admissible modules that come from such representations it is true
(Theorem 8.1). If somebody is interested in proof, we recommend to read first
the following section. It is possible to modifiy this a little such that it includes
such a proof.

10. Unitary dual of the complex special linear group of
degree two

In this section we consider g = sl(2,C) as real Lie algebra and K = SU(2). Let
H be a unitarizable irreducible admissible g×K-module H,

π : g −→ End(H), π : K −→ GL(H).
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Recall that we assume in addition that the isotypic components H(σ), σ ∈
K̂, are irreducible. This means that each irreducible unitary representation
occurs at most once in H. Recall that the irreducible representations can be
parameterised by an integral or half integral l ≥ 0. Surely there is a smallest l0
such that the corresponding σ occurs in H. This is the first important invariant
of the module π. Here we have to consider sl(2,C) as real Lie algebra.

We can extend this representation C-linearly to the complexification

sl(2,C)C = sl(2,C) + Jsl(2,C).

Then we can consider the Casimir operators ω± ∈ End(H). Similar to the
SL(2,R)-case it can be shown that both act by multiplication with constants
µ±. These are two other basic invariants for the representation.

10.1 Theorem. A unitarizible irreducible admissible sl(2,C)-SU(2)-module
is determined by the parameters l0, µ

+, µ− up to unitary isomorphism. The
parameters µ± are real and satisfy the relations

(µ−)2 = 32l20(µ+ + 8l20 − 8), 32(l0 + 1)2(µ+ + 8l20 + 16l0)− (µ−)2 > 0.

Proof. We have a decomposition

H =
⊕
l∈S

H(l)

where S is a certain set of non-negative integral or half-integral non-negative
numbers and where H(l) is of dimension 2l+1 for l ∈ S. Each H(l) is invariant
and irreducible under SU(2). As in Theorem 1.5 we use a basis of H(l) of the
form

el,−l, el,−l+1, . . . , el,−l−1, ell

and we set
H(l,m) = Celm for − l ≤ m ≤ l, l −m ∈ Z.

So we have
H =

⊕
l∈S
−l≤m≤l

H(l,m).

The bases have the following properties.

X1elm =
i

4
(el,m+1 + cl,m−1el,m−1),

X2elm = imelm,

X3elm =
1

4
(el,m+1 − cl,m−1el,m−1).
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clm = −8
∑

−l≤ν≤m
ν−l∈Z

ν (≥ l).

Recall that in this formuala elm has to be set to zero if it is outside the range.
We introduce a new basis.

W = 2X2, R+ = 2(X3 − JX1), R− = 2(−X3 − JX1)

Its advantage is that R± are lowering resp. raising operators

Wel,m = 2imelm, R+elm = el,m+1, R−elm = cl,m−1el,m−1.

The generated complex sub-vector space of sl(2,C)C (complex structure com-
ing from J) is

u(2) + Ju(2).

This is isomorphic to SL(2,C) (complex structure coming from i). The isomor-
phism comes from the correspondence

W ↔W, E+ ↔ R+, E− ↔ R−.

We consider also the elements

W ′ = iW, R′+ = iR+, R′− = iR−.

Then the 6 elements
W,R+, R−, W ′, R′+, R

′
−

give a complex basis (complex structure coming from J) of sl(2,C)C . The
relations between them can be computed. The result is

[W,R+] = 2JR+

[W ′, R′+] = −2JR+

[W,R′+] = 2JR′+

[R+, R′+] = 0

[R−, R′+] = 4JW ′

[W,R−] = −2JR−

[W ′, R′−] = 2JR−

[W,R′−] = −2JR′−

[R+, R′−] = −4JW ′

[R−, R′−] = 0

[R+, R−] = −4JW

[R′+, R′−] = 4JW

[W,W ′] = 0

[R+,W ′] = −2JR′+

[R−,W ′] = +2JR′−

The first row of this table corresponds to the known relations between W , E+,
E−. The second row is a trivial consequence of the first row. The rest can be
verified directly.

We want to work out the action of W ′, R′+, R
′
− on H. Recall that

H =
⊕
l∈S

−l≤m≤l

H(l,m)
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where the occurring H(l,m) = Celm are one dimensional. We know already
the action of W,R+, R−. The basis elements elm can be taken such that

W : H(l,m)
∼−→ H(l,m), Wel,m = 2imelm,

R+ : H(l,m)
∼−→ H(l,m+ 1), R+elm = el,m+1 (−l ≤ m < l),

R− : H(l,m+ 1)
∼−→ H(l,m), R−el,m+1 = clmelm (−l ≤ m < l)

with known constants clm. We notice that we can change for each l the basis
element elm by a constant depending on l.

Our next goal is to determine the action of R′+ on H(l, l). We know that
this space is in the kernel of R+. (The kernel of R+ is the sum of all H(l, l)
that occur in H.) Since R+ and R′+ commute, the element R+(v) for every
v ∈ H(l, l) is contained in the kernel of R+. Hence it is contained in the sum∑
H(ν, ν). Now we make use of the commutation rule [W,R′+] = 2JR′+. It

implies
W (R′+v) = 2i(l + 1)R′+v.

A similar argument works for R′−. So we get the following result.

10.2 Lemma. Let l ∈ S. We have

R′+ : H(l, l) −→ H(l + 1, l + 1),

R′− : H(l,−l) −→ H(l + 1,−l − 1).

The right hand sides have to be set to zero of there are outside the range.

Next we want to compute the action of W ′ on H(l, l). This is more involved.
We have to bring the two Casimir operators tu± into the game. A straight
forward computation shows

tu+ = 2(ϕ(W )2 − ϕ(W ′)2) + 2ϕ(R′−)ϕ(R′+) + 2ϕ(R+)ϕ(R−),

tu− = 4ϕ(W )ϕ(W ′)− 8iϕ(W ′) + 2iϕ(R−)ϕ(R′+) + 2iϕ(R′−)ϕ(R+).

We will use also the simplified notation

tu+ = 2(W 2 −W ′2) + 2R′−R′+ + 2R+R−,

tu− = 4WW ′ − 8iW ′ + 2iR−R′+ + 2iR′−R+.

We know that these operators act by scalars on H,

tu+a = µ+a, tu−a = µ−a.

We apply the two equations to a = ell. Making use of

R+ell = 0, WW ′ = W ′W, Well = 2ilell, [R+, R−] = −4JW

the expressions for tu± give

2W ′2ell = −(8l2 + 16l − µ+)ell −R′−R′+ell
8i(l + 1)W ′ell = −µ−ell + 2R−R′+ell

The last relation shows the next lemma.
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10.3 Lemma. We have

W ′ : H(l, l) −→ H(l, l)⊕H(l + 1, l),

more precisely
W ′ell = βllell + γl+1,lel+1,l

where

βll =
−µ−

8i(l + 1)
, γl+1,lel+1,l =

2R−R′+ell
8i(l + 1)

.

The image of W ′ is contained in H(l, l) if and only if R′+ is zero on H(l, l).

Next we determine the action of W ′ on all spaces H(l,m).

10.4 Lemma. Let l ∈ S, −l ≤ m ≤ l. We have

W ′ : H(l,m) −→ H(l − 1,m)⊕H(l,m)⊕H(l + 1,m).

We will use the notation

W ′elm = αl−1,mel−1,m + βlmelm + γl+1,mel+1,m

(Again terms have to be set to 0 if they are outside the range.)

Proof. The case m = l has been settled. We continue with m = l − 1. We will
make use of the relation

[R+, [R−,W ′]] = 8W ′

which follows from the table of relations above. It means

R+R−W ′ −R+W ′R− −R−W ′R+ +W ′R−R+ = 8W ′

We apply both sides of this relation to ell. Since R+ell = 0 we obtain

R+W ′ : H(l, l − 1) −→ H(l, l) +H(l + 1, l).

We combine this with the relation [W,W ′] = 0. It implies

W (W ′elm) = 2imW ′elm.

This means
W ′elm =

∑
|m|≤ν

Cνmeνm.
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We set m = l− 1 and apply R+. Since R+el−1,l−1 = 0 but R+el−1,m = el−1,m

for the other m, we get

W ′el,l−1 = αl−1,l−1el−1,l−1 + βl,l−1el,l−1 + γl+1,l−1el+1,l−1.

This is the first step of an induction to prove Lemma 10.6 for m = l, l − 1, . . ..
The induction is performed with the help of the relation

R+R−W ′ −R+W ′R− −R−W ′R+ +W ′R−R+ = 8W ′.

This proves the lemma. tu
Now we make use of the fact that our representation is unitarizible. Hence

SL(2,C) acts by skew symmetric operators and more generally

ϕ(A+ JB) = −ϕ(A) + iϕ(B).

We take the scalar product of the two sides of the first of the above two equa-
tions with ell to obtain

−2‖W ′ell‖2 = −(8l2 − 16l + µ+) + ‖R′+ell‖2

Now we make use of the second equation. We want to take the square of the
norm on both sides. We claim that the two terms on the right hand side are
orthogonal, 〈R−R′+ell, ell〉 = 0. This follows from the fact that the adjoint of
R− is −R+ and that R+ annihilates ell ∈ H(l, l). So we get

64(l + 1)2‖W ′ell‖2 = (µ−)2 + 4〈R−R′+ell, R−R′+ell〉.

To simplify this, we use Lemma 10.2.

〈R−R′+ell, R−R′+ell〉 = −〈R′+ell, R+R−R′+ell〉 = 8(l + 1)‖R′+ell‖2.

This gives the following result.

64(l + 1)2‖W ′ell‖2 = (µ−)2 + 32(l + 1)‖R′+ell‖2

Now we can use the two equations to eliminate ‖W ′ell‖.

(µ−)2 + 32(l + 1)‖R′+ell‖2 = 32(l + 1)2
[
(8l2 − 16l + µ+)− ‖R′+ell‖2

]
or

(32(l + 1) + 1)‖R′+ell‖2 = 32(l + 1)2(8l2 − 16l + µ+)− (µ−)2.

The right hand side has to be non-negative. This is nearly to get the inequality
in Theorem 10.1. To get it completely we need R′+ell 6= 0.
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10.5 Lemma. Let H(l) be non zero. Then R′+ is non zero on H(l, l).

Corollary. Let l0 be the smallest l0 such that H(l0, l0) is non zero. Then
H(l, l) is non zero for all l ≥ l0, l ≡ l0 mod 2. This means

S = {l0, l0 + 1, l0 + 2, . . .}

Proof. Assume H(l, l) 6= 0 and R′+(H(l, l)) = 0. We will show that then∑
λ>l

H(λ)

is invariant under g. This contradicts the irreducibility. From Lemma 10.3 we
get that 〈W ′ell, el+1,l〉 = 0. From the skew-symmetry we get 〈W ′el+1,l, ell〉 = 0.

tu
We still can normalize the bases el,−l, . . . ell for each l ≥ l0, l − l0 ∈ Z (i.e.

multiply them by a constant). We do it in such a way that

R′+ell = el+1,l+1, l ≥ l0, l − l0 ∈ Z.

We want to show that the representation is determined by µ± and l0. This
implies a lot of formulas which we collect in a table. Some of them are known
already and some of them will be proved later.

Recall that the space H has the basis

el,−l, el,−l+1, . . . , el,l−1, ell

where l runs through certain integral or half integral numbers.

Welm = 2imelm
R+el,m = el,m+1

R−el,m+1 = clmelm
R′+ell = el+1,l+1

W ′ell = βllell + γl+1,lel+1,l

W ′elm = αl−1,mel−1,m + βlmelm + γl+1,mel+1,m

R′+elm = α+
l−1,m+1el−1,m+1 + β+

l,m+1el,m+1 + γ+
l+1,m+1el+1,m+1

R′−elm = α−l−1,m−1el−1,m−1 + β−l,m−1el,m−1 + γ−l+1,m−1el+1,m−1

[R′+, R′−]ell = 8lell
8W ′ = R+R−W ′ −R+W ′R− −R−W ′R+ +W ′R−R+

βll = −µ−/(8i(l + 1))
γl+1,lel+1,l = 2R−R′+ell/(8i(l + 1))

In the following we have to show that W ′ , R′− and the rest of R′+ can bee
computed from l0, µ

+, µ− only.
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10.6 Lemma. We have

R′+ : H(l,m) −→ H(l − 1,m+ 1)⊕H(l,m+ 1)⊕H(l + 1,m+ 1),

R′− : H(l,m) −→ H(l − 1,m− 1)⊕H(l,m− 1)⊕H(l + 1,m− 1).

We will use the notation

R′+elm = α+
l−1,m+1el−1,m+1 + β+

l,m+1el,m+1 + γ+
l+1,m+1el+1,m+1,

R′−elm = α−l−1,m−1el−1,m−1 + β−l,m−1el,m−1 + γ−l+1,m−1el+1,m−1,

Proof. The lemma follows from the formulas

R′+ = −i[R+,W ′], R′− = i[R−,W ′]

and from Lemma 10.3. tu
We will use the following notation. A function f : [a,∞) → R is called

rational if it can by written as quotient f = P/Q where P,Q are two polynomial
functions such that Q has no zeros in (a,∞).

10.7 Lemma. The functions αlm, βlm, γlm and α±lm, β±lm, γ±lm are rational
on [l0,∞) for fixed m. They depend only on l0, µ

±.

Proof. We have determined the operators W ′, R′±. The operators W,R± are
also known, they leave each single H(l) invariant. The formulas show that
g = sl(2,C) acts on the sum of all H(l), l ≡ l0 mod 2. Since we assume
that H is irreducible we see that H(l) is different from 0 if and only if l ≡ l0,
l ≥ 0 and we see that the module is determined up to isomorphism by l0, µ

±.
This is a good deal of Theorem 10.1. We still have to prove the constraint
(µ−)2 = 32l20(µ+ + 8l20 − 8) in the theorem. For this we make use of the
relations

2W ′2ell = −(8l2 + 16l − µ+)ell −R′−R′+ell,
8i(l + 1)W ′ell = −µ−ell + 2R−R′+ell

We insert
R′−R′+ell = α−ll ell + β−l+1,lel+1,l + γ−l+2,lel+2,l

R−R′+ell = cl+1,lel+1,l.

From the second relation we get

8i(l + 1)W ′ell = −µ−ell + 2cl+1,lel+1,l

and then

8i(l + 1)W ′2ell =− µ−(βllell + γl+1,lel+1,l)

+ cl+1,lαllell + βl+1,lel+1,l + γl+2,lel+2,l,

2W ′2ell =− (8l2 + 16l − µ+)ell − (α−ll ell + β−l+1,lel+1,l + γ−l+2,lel+2,l).
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Comparing the ell-terms gives

−4i(l + 1)(8l2 + 16l − µ+) = cl+1,lαll + 4i(l + 1)α−ll − µ
−βll.

The point is now that in the cases which are described in the theorem, all
parameters under the described constraints can be actually realized by an ir-
reducible unitary representation of g. Similar to the SL(2,R)-case, it is better
to introduce a new parameter s be the definition

s2 = (µ1 + 8l2 − 8)/8.

This means
µ1 = 8(s2 + 1− l2), µ2

2 = (16ls)2.

In the case l 6= 0 we can fix s such that

µ2 = 16ls (l 6= 0).

In the case s = 0 this makes no sense. So in this case we have to be satisfied
with the fact that s is only determined up to sign.

Now we have to check for which s the inequality in Theorem 10.1 is satisfied.
Obviously it is satisfied if s is a real number. We call the triples l, µ+, µ− which
came from real s the principal series. But that ist all. In the case l = 0 one
This parameter is defined up to the sign. With this parameter we can also take
s = it where t ∈ (−1, 1). This is called the complementary series.

10.8 Theorem. Principal Series.
For every l ∈ {0, 1/2, 1, . . .} and for any real s there exists an irreducible
unitary representation πl,s which produces the parameters (l, µ+, µ−) where

µ+ = 8(s2 + 1− l2), µ− = 16ls.

The parameter s is uniquely determined if l 6= 0 and up to the sign if l = 0.

Complementary Series.
The same statement is true for l = 0 and s = it, t ∈ (−1, 1). Here s is also
determined up to the sign.

Every unitary irreducible representation of GL(2,C) is unitary isomorphic to
a representation of these two lists.

In the following we will describe the realization of the principal series.
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1. The Lorentz group

The Minkowski space of dimension n + 1 is the vector space Rn+1 that has
been equipped with the symmetric bilinear form

〈x, y〉 = −x1y1 + x2y2 + · · ·xn+1yn+1.

A vector is called time-like if 〈x, x〉 = 0. The set of all time like vectors consists
of two connected cones. One of them is define by x1 > 0. We call this the
future cone.

The Lorentz group is the subgroup of GL(Rn+1) that preserves this form,
〈gx, gy〉 = 〈x, y〉. If one identifies GL(Rn+1) with GL(n + 1,R) in the usual
manner, then this means

A′JA = J where J =


−1

1
. . .

1

 .

We denote the Lorentz group by O(n, 1). We always assume n > 0. There are
two important subgroups. The first is the special orthogonal group SO(n, 1)
which consists of all elements with determinant one. The second is the subgroup
O+(n, 1) that preserves the future cone. Since time like vectors are mapped to
time like vectors, it is sufficient to know that the vector (1, 0, . . . , 0) is mapped
to a vector a with a1 ≥ 0. For the matrix A this means that a11 > 0. Hence we
have seen that the set of all matrices in the Lorentz group with this property
build a group. The elements of this group are called orthochronous. The matrix
J is in the Lorentz group and has determinant -1. This shows

O(n, 1) = SO(n, 1) ∪ SO(n, 1)J.

The negative of the unit matrix E is not orthochronous. Hence we see

O(n, 1) = O+(n, 1) ∪O+(n, 1)(−E).

We use the notation

SO+(n, 1) = O+(n, 1) ∩ SO(n, 1).
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We see

O(n, 1) = SO+(n, 1) ∪ SO+(n, 1)J ∪ SO+(n, 1)(−E) ∪ SO+(n, 1)(−J).

It can be shown that SO+(n, 1) is open in O(n, 1) and connected. Hence O(n, 1)
has 4 connected components.

For small n one can find different descriptions. We start with O(2, 1). For
this we consider the vector space X of all skew symmetric real 2× 2-matrices

X =

(
x2 x1

−x1 x3

)
.

Their determinant is −x2
1 + x2

2 + x2
3. We identify X with R3 in the obvious

way. The group SL(2,R) acts on X through (A,X) 7−→ AXA′. For given
A this transformation can be considered as element of GL(3,R). The above
formula for the determinant shows that it is in O(3,R). From the Iwasawa
decomposition one can see that SL(2,R) is connected. Hence we constructed
a homomorphism SO+(2, 1) −→ SL(2,R).. This is surjective and each element
of the target has two pre-images. Hence we write

SL(2,R) = Spin(2, 1).

1.1 Proposition. The homomorphism

SL(2,R) −→ SO+(2, 1)

is continuous and surjective. Each element of SO+(2, 1) has precisely two in-
verse images which differ only by the sign.

We skip the proof of the surjectivity. tu
Proposition 1.1 is only a special case of a general result. For each n there

exists connected locally compact group G and a continuous surjective homo-
morphism G → SO+(n, 1) such that each element of the image has precisely
two pre-images. This group is (in an obvious sense) essentially unique and
called the spin covering. The usual notation is Spin(n, 1) for this group. We
don’t give this (not quite trivial construction) in the general case and treat
besides n = 2 only the case n = 3 which is fundamental for physics.

Similar constructions hold for the compact groups O(n), n > 1. It is known
that SO(n) is already connected (there are no plus groups in this case). The
spin group in this case is a connected group Spin(n) together with a continuous
homomorphism Spin(n) → SO(n) such that each element of the target has
precisely two pre images.

So far we constructed Spin(2, 1) = SL(2,R). For the construction of
Spin(3, 1) we consider the space of all Hermitian 2× 2-matrices

H =

(
h0 h1

h̄1 h2

)
.
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We identify H with R4 through

H 7−→
(h0 + h2

2
,
h0 − h2

2
,Reh1, Imh1

)
.

Then we have
detH = x2

1 − x2
2 − x2

3 − x2
4.

The group SL(2,C) acts on H through (A,H) 7−→ AHĀ′ It preserves the
determinant. Hence we obtain a Lorentz transformation. It can be shown that
SL(2,C) is connected two. Hence we get a homomorphism

SL(2,C) −→ SO+(3, 1).

1.2 Proposition. The homomorphism

SL(2,C) −→ SO+(3, 1)

is continuous and surjective. Each element of SO+(3, 1) has precisely two in-
verse images which differ only by the sign.

This allows us to write
Spin(3, 1) = SL(2,C).

The existence of spin coverings is not tied to signature (n, 1). For example
we can consider the Euclidian orthogonal group O(3,R). Recall that O(n,R)
consists of all A ∈ GL(n,R) with the property A′A = E. This is a closed
subgroup. The rows and columns have Euclidean length 1. Hence O(n,R) is
a compact group (in contrast to the Lorentz group!). The subgroup SO(n,R)
of elements of determinant one is called the special orthogonal group. One
can show that it is connected. The group O(n,R) can be embedded into the
Lorentz group O(n, 1) by means of

A 7−→
(

1 0
0 A

)
.

We consider this in the case n = 3. We can consider the inverse image in
SL(2,C). One can check that this inverse image is the special unitary group
SU(2). Recall that The unitary group U(n) is the subgroup of all A ∈ GL(n,C)
with the property Ā′A = E. This is a compact group. The special unitary
group is the subgroup of all A with detA = 1. One can show that it is
connected.

1.3 Proposition. The homomorphism

SU(2) −→ SO(3,R)

is continuous and surjective. Each element of SO(3,R) has precisely two in-
verse images which differ only by the sign.
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Hence we can write
Spin(3) = SU(2,C).

What could be Spin(2). It should be a two fold covering of SO(2). This group
isomorphic to S1. Here we have the natural map

S1 −→ S1, ζ 7−→ ζ2.

Hence it looks natural to define

Spin(2) = S1

together with the map

Spin(2) −→ SO(2), eiθ 7−→
(

cos(2θ) sin(2θ)
− sin(2θ) cos(2θ)

)
.

2. The Poincaré group

In the following we call O(n, 1) the homogeneous Lorentz group. The inhomo-
geneous Lorentz group is the set of all transformations of Rn+1 of the form

v 7−→ A(v) + b

where A is a Lorentz transformation and b ∈ Rn+1. This group can be identified
with the set O(n, 1)× Rn+1. The group law then is

(g, a)(h, b) = (gh, a+ gb).

We write for the inhomogeneous Lorentz group simply

O(n, 1)Rn+1.

We want to define also a “spin covering”. For this we have to consider the action
of Spin(n, 1) on Rn+1 which is defined by means of the natural homomorphism
Spin(n, 1)→ O(n, 1) and the natural action of O(n, 1) on Rn+1. We write this
action simply in the form (g, v) 7→ gv. The Poincaré group P (n) is the set

P (n) = Spin(n, 1)× Rn+1

together with the group law

(g, a)(h, b) = (gh, a+ gb).
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It is clear that this is a group and that the natural map

P (n) −→ O(n, 1)Rn+1

(spin covering on the first factor and identity on the second factor) is a ho-
momorphism. This image is SO+(n, 1)Rn+1 and each element has two inverse
images.

There is a Euclidian pendent of the inhomogenous Lorentz group. The
Euclidian group is the set of all transformations of Rn of the form

v 7−→ A(v) + b

where A ∈ O(n) and b ∈ Rn. This group can be identified with the set
O(n)× Rn. The group law then is

(g, a)(h, b) = (gh, a+ gb).

We write for the inhomogeneous Lorentz group simply

E(n) = O(n)Rn

and
E0(n) = SO(n)Rn.

Orbits

The Lorentz group O(3, 1) acts on R4 in a natural way. Two elements a, b are
in the same orbit if and only if 〈a, a〉 = 〈b, b〉. Here 〈·, ·〉 means the Lorentz
scalar product. It is easy to derive a system of representatives of the orbits and
the corresponding stabilizers.

Representatives of orbits and their stabilizers for the Lorentz group
(natural action of O(3, 1) on R4)

1) (0, 0, 0, 0) O(3, 1)
2) (0,m, 0, 0), m > 0 O(2, 1)
3) (m, 0, 0, 0), m > 0 O(3)
4) (1, 1, 0, 0) E(2)

The subgroup SO(3, 1) has the same orbits since the representatives are fixed
by substitution that has determinant −1. Simply change the sign of the last
coordinate. But this is not true if on takes SO+(3, 1). Here the representatives
are as follows.

Representatives of orbits and their stabilizers for the restricted
Lorentz group
(natural action of SO+(3, 1) on R4)
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1) (0, 0, 0, 0) SO+(3, 1)
2) (0,m, 0, 0), m > 0 SO+(2, 1)
3) (0,m, 0, 0), m < 0 SO+(2, 1)
4) (m, 0, 0, 0), m > 0 SO(3)
5) (1, 1, 0, 0) E0(2)
6) −(1, 1, 0, 0) E0(2)

Finally we treat the action of SL(2,C) on R4. The orbits are the same as
that of SO+(3, 1). The stabilizers are the inverse images of the stabilizers in
SO+(3, 1).

Representatives of orbits and their stabilizers for the Spin group
(natural action of SL(2,C) on R4)

1) (0, 0, 0, 0) SL(2,C)
2) (0,m, 0, 0), m > 0 SL(2,R)
3) (0,m, 0, 0), m < 0 SL(2,R)
4) (m, 0, 0, 0), m > 0 SU(2)
5) (1, 1, 0, 0) Iso(2)
6) −(1, 1, 0, 0) Iso(2)

Here Iso(2) means the inverse image of E0(2) in SL(2,C). Hence we see that
the irreducible unitary representations of the Poincaré group come from the
irreducible unitary representations of the little groups

SL(2,C), SL(2,R) two possibilities, SU(2), Iso(2) two possibilities.

They have been all determined in the book. Not all irreducible representations
of P (3) are of physical significance.

There is the notion of “positive energy” for an irreducible unitary repre-
sentation of P (3). The definition needs rests on the Hamilton operator which
we will introduce a little later (Definition 3.3). Here we just mention that the
cases 4) and 5) lead to representations of positive energy. These are the repre-
sentations of physical interest. In both cases 〈a, a〉 is non-positive and we can
define the mass of such a representation by

m :=
√
−〈a, a〉.

So we have

a = (0,m, 0, 0) representation of positive energy and mass m > 0,
a = (1, 1, 0, 0) representation of positive energy and mass m = 0.

These representations come from the little groups SU(2) and Iso(2).
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3. Physical relevance

We keep short.

Special relativity

Minkowski space. The space of all space time events. It is a four dimensional
real vector space.

Observer.An isomorphism M ∼= R4. So any event corresponds to a point
(x0, x1, x2, x3), x0 is the time coordinate and the other are the space
coordinates.

Change of an observer.An isomorphism R4 → R4. It preserves the form −x2
0 +

x2
1 + x2

2 + x2
3. The set of all possible changes of observers is the Lorentz

group O(3, 1).

Quantum Mechanics

The physical Hilbert space H.An observer sees states, these are elements of the
associated projective space Ĥ = (H − {0})/C∗. Change of an observer
induces a bijection Ĥ → Ĥ. The transition probabilities

(φ, ψ)

‖φ‖2‖ψ‖2

are preserved. The set of all these maps is denoted by Aut(Ĥ).

Change of observers. This given by a homomorphism

G ∼= O◦(1, 3)×M −→ Aut(Ĥ).

Special elements of Aut(Ĥ) come from unitary operators U : H → H.
But also antiunitary operators induce elements of Aut(H). Wigner has
shown that each element of Aut(Ĥ) comes from a unitary or antiunitary
operator. Hence The image of

U(H) −→ Aut(Ĥ)

is a subgroup of index two One can show that the image of SO+(3, 1) is
contained in this subgroup. Such a homomorphism usually can not be
lifted to a homomorphism into U(H) But now the Poincaré group comes
into the game. A not quite trivial theorem says that there exists a
homomorphism of the Poincaré group P → U(H) such that the diagram

P −→ U(H)
↓ ↓
G −→ Aut(Ĥ)

commutes. Hence a unitary representation of the Poincarè group is basic
for the (special) relativistic Quantum Mechanics.
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The Poincaré algebra

We start with some remarks about Lie groups and Lie algebras. There is no
need to prove them here, since in all cases we need them, one can verify them
directly.

Let G,H be two Lie groups (one of the groups we consider) and let G→ H
be a continuous homomorphism. One can show that there exists a unique
homomorphism of Lie algebras g→ h such that the diagram

G −→ H
↑ ↑
g −→ h

commutes. In the case that the fibres of G → H are discrete (for example
finite) this map is injective and even more an isomorphism if their dimensions
agree. Examples are our spin coverings, for example

SL(2,C) −→ SO(3, 1).

The induced homomorphism of Lie algebras sl(2,C) → s(3, 1) must be an
isomorphism. It is a good exercise to work it out. Similarly su(2) ∼= so(3), and
so on. Another observation is that a Lie group G has the same Lie algebra
as its connected component. Roughly speaking: the Lie algebra cannot see
discrete stuff.

Next we consider the extended Lorentz group. We want to consider it as a
matrix group. For this we consider

O(3, 1)R4 −→ GL(5,R), (g, a) 7−→
(
g a
0 1

)
.

This defines an isomorphism of the extended Lorentz group with a closed sub-
group of GL(5,R). Hence the Lie algebra is defined. Following our general
remarks, the groups SO+(3, 1)R4 and the Poincaré group P (3) should have the
same Lie algebra. We skip the direct construction of the Lie algebra p of P (3)
and just define

p := Lie algebra of the extended Lorentz group.

Besides p we also consider its complexification pC = p + ip. From definition,
p consists of al real 5 × 5-matrices Ã such that exp(tB̃) is in the group. It is
easy to check that B is of the form

Ã =

(
A a
0 0

)
.

One computes the Lie bracket as

[Ã, B̃] =

(
[A,B] Ab−Ba

0 0

)
.

This shows that we can identify p with pairs (A, a). We take this description
now as final definition
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3.1 Definition. The Poincaré algebra p is as vector space

p := so(3, 1)× R4

with the Lie bracket

([(A, a), (B, b)] = ([A,B], Ab−Ba).

In this formula a, b is understood as column vector.

The natural embedding

so(3, 1) −→ p, A 7−→ (A, 0)

is a Lie homomorphism. Hence so(3, 1) can be considered as Lie sub-algebra
of p. Similarly R4 can be considered as subspace of p, via a 7→ (0, a). We can
consider R4 as Lie sub-algebra if we equip it with the trivial structure [A,B].
(On calls then R4 an abelian sub-algebra.)

The dimension of p is obviously 10. It is easy to write down a basis. In the
following we denote the coordinates of R4 by (x0, . . . , x3) and we denote the
standard basis of R4 by e0, . . . , e4. Similarly the lables of matrices run form 0
to 3.

First we consider the standard basis e0, . . . , e3 of R4 and consider them as
elements of p. Then we recall that the elements of so are of the form

E3,1A, A′ = −A, E3,1 =


−1

1
1

1

 .

We denote by ω(ij) 0 ≤ i < j ≤ 3 the skew symmetric matrix that has entry 1
at the position (i, j) and −1 at the position an der Stelle (j, i) den Eintrag −1
und zeros else.

The 10 elements ei ∈ M und E3,1ω
(ij) ∈ p form a (real) basis of p. Of

course they form also a C-basis of pC .

Physicists us a slight modification. They use

P i = −iei, J ij =
i

2
ωij .

3.2 Remark. The 10 elements P i, J ij form a complex basis of pC The
commutation rules

i[Jµν , Jρσ] = ηνρJµσ − ηµρJνσ + ησνJρµ,

i[Pµ, Jρσ] = ηµρPσ − ηµσP ρ,
[Pµ, P ρ] = 0.

determine the structure of the Poincaré algebra.
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If we have a unitary representation of the Poincaré group on the Hilbert space
H, we can define as earlier the dense subspace of differentiable vectors. The
elements of p and then, by C-linear extension, then induce operators H∞ →
H∞. This operators often are denoted by the same letter, and, even more, the
elements of p are called “operators”. Their physical names are:

Hamilton operator H = P 0

Momentum operators P := (P 1, P 2, P 3)
Angular momentum operators J := (J23, J31, J12)
Boost operators K := (J01, J02, J03)

The Hamilton operator commutes with momentum and angular momentum
operators, but not with the boost operators.

The Hamilton operator is of great importance for the study of unitary rep-
resentations P (3) → U(H). The corresponding operator H : H∞ → H∞ is
symmetric,

〈Ha, b〉 = 〈a,Hb〉 for a, b ∈ H∞.

Hence 〈Ha, a〉 is real for all a ∈ H∞.

3.3 Definition. The unitary representation P → U(H) is of positive energy
if the exists ε > 0 such that

〈Ha, a〉 ≥ ε〈a, a〉.

The eigen values of H for a representation of positive energy are all positive.



Chapter V. Mackey’s theory of the induced
representation

1. Induced representations, simple case

The basic idea of induced representations is easy to explain. Let P ⊂ G be
a subgroup of a group and let σ : P → GL(H) be a representation of the
subgroup. We consider the space Ind(σ) of all functions f : G → H with the
property

f(px) = σ(p)f(x) for p ∈ P, x ∈ G.

Then G acts by right translation on Ind(σ). Assume that G is a locally compact
group and that P is a closed subgroup. We want to modify this construction
in such a way that we get – for certain σ – a unitary induced representation.
An example was already given by the construction of the principal series in
Chap. I, Sect. 7. Here G = SL(2,R) and P is the subgroup of all upper
triangular matrices with positive diagonal, σ was the one dimensional unitary
representation given by the character σ(p) = as where Re s = 0.

Already in this case we had to deal with the problem is that the condition
∆G|P = ∆P may be false so there is no G-invariant measure on P\G.

Before we go to the general case we make a very restrictive assumption which
was satisfied in the example of the principal series. We assume that there exists
a closed subgroup K ⊂ G be a closed subgroup of the locally compact group G
such that the multiplication map P ×K → G is a topological map. We assume
that G and K are unimodular but we do not assume that P is unimodular.
Let ∆ be the modular function of P .

1.1 Lemma. Let y ∈ G. We consider the (continuous) maps α : K → K
and β : K → P which are defined by ky = β(k)α(k). Then for each f ∈ Cc(K)
the formula ∫

K

f(α(k))∆(β(k))dk =

∫
k

f(k)dk
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holds.

Proof. This is a generalization of Lemma II.3.3. The same proof works.
tu

Now we can give a straight forward generalization of the principal series.
Let σ : P → GL(H) be a unitary representation of P . We consider functions
f : G→ V with the transformation property

f(py) = ∆(p)1/2σ(p)f(y), p ∈ P, y ∈ G.

(It is essential that we do not induce σ directly but modify it with the factor
∆(p)1/2.) Such a function is determined by its restriction to K and every
function on K can be extended to a function with this transformation property
on G. The group G acts by translation from the right on the space of functions
with this transformation property. We can this consider as an action of G on
the space of all functions f : K → V .

1.2 Proposition. We assume that G = PK and that G and K are both
unimodular. Let σ : P → GL(V ) be a unitary representation. The group G
acts on functions f : G→ V with the transformation property

f(py) = ∆(p)1/2σ(p)f(y), p ∈ P, y ∈ G

by translation from the right. These functions can be identified with functions
f : K → V . Zero functions on K are transformed into zero functions and
square integrable functions into square integrable ones. This induces a unitary
representation π of G on L2(K,V, dk).

The proof is the same as that of Proposition II.3.1.

2. Induced representations, the general case

Unfortunately this construction which we gave in Sect. 1 is not good enough.
We want to give up the existence of a decomposition G = KL. We simply
assume that L ⊂ G is a closed subgroup of a locally compact group.

The following procedure to overcome this difficulty is due to Mackey.

2.1 Proposition. Let G be a locally compact group and L ⊂ G be a closed
subgroup. There exists a continuous function ρ : G → R>0 and with the
property

ρ(x`) =
∆L(`)

∆G(`)
ρ(x).
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A proof of this Proposition can be found in Follands book [Fo], Proposition
2.54. We do not need this proposition in full generality and can be satisfied
with the weaker version that we will explain now.

We start with an important special case where the existence of a function
ρ is trivial.

2.2 Remark. Let L,K ⊂ G we closed subgroups of a locally compact group
such that the map

K × L ∼−→ G, (k, `) 7−→ k`,

is topological. Then the function

ρ(k`) =
∆L(`)

∆G(`)

satisfies the condition in Proposition 2.1.

The proof is trivial. tu
But this case not enough for our purpose. Let us assume the following:

There exists an open non-empty subset U ⊂ G/L and a continuous section
s : U → G.

(Section means that s(a) is a representative of the coset aL ∈ G/L.) Let Ũ be
the inverse image of U in G and π : Ũ → U the natural projection. We can
consider the continuous function

ρU : Ũ → R>0, ρU (x) =
∆L

∆G
(xs(π(x))−1).

Then ρU has the desired transformation on Ũ . Taking translates we can cover
L\G with sets U . Since we have countable basis of the topology we can write

L\G = U1 ∪ U2 ∪ · · ·

such that in each inverse image Ũi a function ρi = ρUi) with such a property
exist. We want to glue the ρi and do this in the most simple way. We consider
the disjoint decomposition

L\G = B1 ∪̇B2 ∪̇ . . . where Bn = Un − (U1 ∪ . . . ∪ Un−1).

We now define ρ such that its restriction to Bi is ρi. This is a measurable
function for any Radon measure, since the sets Bi are measurable sets. (They
are Borel sets).

The assumption that a local continuous section s exists is weak. It is always
satisfied in the context of Lie groups. The reason is that for a Lie group G
there is a vector space g (the Lie algebra) and a surjective map g→ G which is
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a local homeomorphism close to the origin. Even more, there exists a subspace
p ⊂ g which plays the same role for L. Consider a decomposition of vector
spaces g = p⊕ a. Then a→ G/L is a local homeomorphism close to the origin.
Now the existence of a local section is clear, it just corresponds to the natural
imbedding of a into g.

This argument applies in all situations which we need. Just to keep the
presentation as simple as possible, we assume that Proposition 2.1 has been
proved.

We need a generalization of the construction of quotient measures (Propo-
sition I.5.5).

2.3 Proposition. Assume that L ⊂ G is a closed subgroup of a locally
compact group and that ρ is a function as in Assumption 2.1. Let d`, dx be left
invariant Haar measures on L, G. Then there exists a unique Radon measure
dx̄ on G/L (depending on ρ) such that the formula∫

G

f(x)ρ(x)dx =

∫
G/L

[∫
L

f(x`)d`

]
dx̄

holds for f ∈ Cc(G).

Proof. The proof is the same as that of the existence of the quotient measure,
Proposition I.5.5. First we mention the essential fact that the inner integral is
right invariant as function of x, since d` has been taken to be left invariant.

The essential point of the proof is∫
L

f(x`)d` = 0 =⇒
∫
G

f(x)%(x)dx = 0.

The left hand side of this equation implies∫
G

g(x)%(x)

∫
L

f(x`)d`dx = 0 for g ∈ Cc(G).

Interchanging the integrations we get∫
L

∫
G

g(x)%(x)f(x`)dxd` = 0.

In the inner integral we transform x 7→ x`−1. Since dx is left invariant, a factor
∆G(`) comes up. ∫

L

∫
G

g(x`−1)%(x`−1)f(x)∆G(`)−1 = 0.
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We interchange again the integrations and transform then ` 7→ `−1. A factor
∆L(`) enters. We also insert %(x`) = %(x)∆L(`)/∆G(`). Then all ∆-factors
cancel and we get ∫

G

f(x)%(x)

∫
L

g(x`)d`dx = 0.

Since this is true for all g we obtain that
∫
G
f(x)%(x)dx = 0. tu

The measure dx̄ on G/L is not invariant under the action of G. But it
has still the weaker problem that the space of zero functions is invariant under
(left-) translation by elements of G.

One can use this measure to define the induced representation of a unitary
representation σ : L→ GL(H).

2.4 Definition and Remark. Assume that L ⊂ G is a closed subgroup
of a locally compact group and that ρ is a function as in Proposition 2.1. Let
dx be the corresponding measure on G/L. Let σ : L → GL(H) be a unitary
representation. Consider the space of all measurable functions f : G→ H with
the property f(x`) = σ(`)f(x) and such that ‖f(x)‖2σ is integrable considered
as function on G/L. The quotient of this space by the subspace of all functions,
such that ‖f(x)‖2σ is a zero function (considered on G/L), is a Hilbert space
H(σ) with the Hermitian inner product

〈f, g〉 =

∫
G/L

〈f(x), g(x)〉σdx.

The group G acts on it by means of the modified translation from the right: for
g ∈ G the operator Lg is defined by

(Lgf)(x) = f(g−1x)

√
ρ(g−1x)

ρ(x)
.

This is a unitary representation, called the (unitary) induced representation of
σ to G. It is independent of the choice of ρ up to unitary isomorphism.

Proof. First one checks that the transformation formula f(x`) = σ(`)f(x) is
preserved by the action Lg Then one checks Lgh = Lg ◦ Lh which is very easy.
Now we prove that Lg is unitary. This means 〈Lgf,Lgf2〉 = 〈f1, f2〉 where
fi ∈ Cc(G/P ). We can assume that fi(x) =

∫
L

(xl)Fi(x) where Fi ∈ Cc(G). If
we set ϕ(x) = 〈F1(x), F2(x)〉 the claimed formula reads as∫

G

ϕ(x)%(x)dx =

∫
G

ϕ(g−1x)
%(g−1x)

%(x)
%(x)dx.

It is just an application of the left invariance of dx.

It remains to show that the obtained representations for two %1, %2 are
isomorphic. This is also easy, the intertwining operator is f 7→ fρ2/ρ1.

tu



136 Chapter V. Mackey’s theory of the induced representation

3. Pseudomeasures

A pseudomeasure on a locally compact space by definition is just a continuous
C-linear map

µ : Cc(X) −→ C

Here continuous means the following. Let fn : X → C be a sequence of contin-
uous functions which vanish outside a joint compact set and which converges
uniformly to a function f (that is automatically continuous and with compact
support), then µ(fn)→ µ(f).

A more formal way is to introduce for compact K ⊂ X the space CK(X)
of all a continuous functions with support in K. Then CK(X) is a subspace
of Cc(X). The space CK(X) is a normed space (maximum norm) and hence a
topological space. We can consider the weakest topology on Cc(X) such that
the inclusions are all continuous. Then the convergence explained above is the
same as convergence with respect to this topology. It is easy to see that each
point f ∈ Cc(X) has a countable basis of the system of neighbourhoods. This
means that the topology is determined by the convergent sequences. A set is
A closed if the limit fn of an arbitrary convergent sequence in A is contained
in A.

Please notice that Radon measures are continuous. More examples of pseu-
domeasures are obtained as follows. Let (X, dx) be a Radon measure and let
h : X → C be a continuous function. Then

µ(f) =

∫
X

f(x)h(x)dx

is a pseudomeasure.

Let Y ⊂ X a closed subset and let µ be a pseudomeasure on Y . Then one
can define a pseudomeasure ν on X by

ν(f) = µ(f |K)

We call ν the injection from µ to X.

Another simple construction is as follows. Let µ be a pseudomeasure and
h be a continuous function on X. The one can define the pseudomeasure hµ
through

(hµ)(f) = hµ(f).

Occasionally we will use the notation∫
X

f(x)dµ(x) := µ(f)
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In this notation the injection writes as∫
X

f(x)dν(x) :=

∫
Y

f(y)dµ(y).

In the following definition we have to consider Cc(X) for a locally compact
space. It can carry different interesting structures as ∗-algebra. For example
one can take the usual (pointwise) multiplication of functions and f∗(x) = f(x).
In the case that G is an locally compact group one can consider the convolution
product. The convolution algebra Cc(G) is also a ∗-Algebra. One can mix the
two examples as follows.

3.1 Lemma. Let G be a locally compact group and let X be a locally compact
space together with a continuous map

G×X −→ X, (g, x) 7−→ gx,

which defines an action from G on X from the left. Then Cc(X × G) can be
equipped with a structure as ∗-algebra as follows:

(f1 ∗ f2)(x, g) =

∫
G

f1(x, y)f2(y−1x, y−1g)dy,

f∗(x, g) = f(g−1x, g−1)∆G(g−1).

If take G = {e} or for X one point, we recover the two examples above.

3.2 Definition. Let X be a locally compact space and let Cc(X) equipped with
a structure as ∗-algebra. A pseudomeasure µ on (X, ∗) is called of positive
type if

µ(f ∗ f∗) is real and non-negative for all f ∈ Cc(X)

For the rest of this section we consider a locally compact group G and equip
Cc(G) with the structure as ∗-algebra coming from the convolution. We want to
associate to a pseudomeasure µ of positive type on G a unitary representation
of G. For this we start with the convolution algebra (Cc(G), ∗). We define a
pairing

〈f, g〉 = µ(g∗ ∗ f).

This is a Hermitian pairing (C linear in the first variable and with property
〈g, f〉 = 〈f, g〉). It is semidefinite, 〈f, f〉 ≥ 0. The null space of all f , 〈f, f〉 = 0,
is a sub vector space. We denote the factor space by

H(µ) = Cc(G)/nullspace.
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The pairing factors through this factor space and defines a positive Hermitian
form on H(µ) which we denote also by 〈·, ·〉. The completion H(µ) is a Hilbert
space. The group G acts on Cc(G) through translation from the left

Lgf(x) = f(g−1x)

This action preserves the above null space and hence defines an action of G on
H(µ). This extends to a unitary representation of G on H(µ). The continuity
of this representation is clear since right- and left- translation are continuous
maps

G× Cc(G) −→ Cc(G).

So we obtain the following result.

3.3 Remark. Let G be a locally compact group and let Cc(G) be the convo-
lution algebra (which is a ∗-algebra). Let µ be a pseudomeasure of positve type
on (G, ∗). Then the pairing

〈f, g〉 = µ(g∗ ∗ f)

factors through H(µ) = Cc(G)/nullspace and induces a unitary representation
of G on its completion.

This means that pseudomeasures of positive type on a locally compact group
produce unitary representations. It is not trivial to construct such pseudomea-
sures. Here is an example. Consider the pseudomeasure

µ : Cc(G) −→ C, µ(f) = f(e).

Actually this is a Radon measure. It is easy to check that it is of positive type.
The associated unitary representation is the regular representation.

The question arises which representations come from a pseudomeasure of
positive type. Here is a result in this direction. Assume that L ⊂ G is a
closed subgroup. Let σ be a unitary representation of L that comes from a
pseudomeasure of positive type. Then the induced representation IndGL (σ) also
comes from a pseudomeasure of positive type.

3.4 Theorem. Let L ⊂ G be a closed subgroup and µ be a pseudomeasure
of positive type on L and let σ be the associated representation. Consider the
injection T of the pseudomeasure

√
∆G/∆Lµ into G. Then T is of positive type

and the associated unitary representation is unitarily equivalent to IndGL (σ).

We will nod make use of this theorem an omit a proof. tu
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4. Imprimitivity

Induced representations from a proper closed subgroup L ⊂ G have an impor-
tant property. They are imprimitive. To define this we have first to introduce
the notion of a system of imprimitivity.

We will have to consider several ∗-representations

S : A −→ B(H)

of a ∗-algebra A. This is a ∗-homomorphism into the algebra of bounded
operators of a Hilbert space. The latter is a ∗-algebra where A∗ is the adjoint
of A. Such a homomorphism is called nondegenerate if a vector h ∈ H with
the property S(A)h = 0 for all A ∈ A is zero. This is the case if A contains a
unit element and if this is mapped to the identity.

4.1 Definition. Let Y be a locally compact space and let Cc(Y ) equipped with
a structure as ∗-algebra. A homomorphism

Cc(Y ) −→ B(H), H some Hilbert space

is called regular if it is a continuous ∗-homomorphism and if it is non-
degenerate.

Continuity refers of course to the SOT-topology of B(H) (and the topology we
introduced on Cc(Y )).

4.2 Definition. A system of imprimivity is a triple (π, Y, S) consisting of

1) a unitary representation π : G→ U(H) of a locally compact group,
2) a continuous action from the left

G× Y −→ Y, (g, y) 7−→ gy,

of G on a locally compact space Y ,
3) a regular homomorphism S : Cc(Y ) −→ B(H) satisfying

π(g)S(f)π(g)−1 = S(Rgf)

Here the star algebra structure of Cc(Y ) is given by usual (pointwise) mul-
tiplication and by f∗(y) = f(y).

There is an obvious notion of isomorphy of systems of imprimitivity.

A system of imprimitivity is called non-trivial if S consists of more then one
point. Every unitary representation can be extended into a trivial system of
primitivity in an essentially unique way. Hence systems of imprimitivity can
be considered as generalizations of ordinary unitary representations.
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4.3 Definition. A unitary representation of a locally compact group is called
imprimitive if it belongs to a system of imprimitivity which is non-trivial in
the sense that S consists of more than one point.

4.4 Proposition. Every unitary representation that is induced from a closed
subgroup L ⊂ G is imprimitive.

To prove this we consider a locally compact group G and a closed subgroup
L ⊂ G and a unitary representation σ : L → U(H). We want to associate
a concrete system of imprimitivity. We will call this the canonical system of
imprimitivity. Let H(σ) be the representation space of the induced representa-
tion π (see Definition and Remark 2.4). An element f ∈ Cc(G/L) act on H(σ)
by multiplication. This gives a map

S : Cc(G/L) −→ B(H(σ)), f 7−→ mf (mf (g) = fg).

It is easy to verify that (π,G/L, S) is a system of imprimitivity. tu
Let G be a locally compact group and π : G→ U(H) a unitary representa-

tion. As we have learnt this extends to a ∗-homomorphism

Cc(G) −→ B(H).

where the ∗-structure on Cc(G) comes from the convolution. It is clear that
this homomorphism is non-degenerate. Hence it is regular in the sense of 4.1.

One knows that a closed subspace A ⊂ H is invariant under G if and only
if it is invariant under Cc(G).

This construction can be extended to systems of imprimitivity in a natural
way as follows. Let (π, Y, S), π : G → U(H) be a system of imprimitivity.
We consider the algebra Cc(Y ×G) as star algebra as described in Lemma 3.1.
Then one can construct a map

T : Cc(Y ×G) −→ B(H)

as follows. Consider an element f(y, x) from Cc(Y × G) for fixed x ∈ G as
function of y ∈ Y . Apply to this function S. The result is a map

F : G −→ B(H), F (x) = S(f(·, x))

Now we define an operator on H by

h 7−→
∫
G

F (x)π(x)hdx.

It is easy to show that this operator is bounded. So we obtain a map

T : Cc(Y ×G) −→ B(H)

which we call the natural one.
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4.5 Lemma. Let (π, Y, S), π : G→ U(H) be a system of imprimitivity. We
consider the algebra Cc(Y ×G) as star algebra as described in Lemma 3.1. The
natural map

T : Cc(Y ×G) −→ B(H)

is regular. A closed subspace of H is invariant under G and Cc(Y ) if and only
if it is invariant under Cc(Y ×G).

The proof is given by straight forward calculation which we omit. tu
In Remark 3.3 we learnt how to construct unitary representations from

pseudomeasures of positive type. There is a straightforward generalization to
systems of imprimitivity.

Assume that the locally compact group G acts from the left on a locally
compact space Y . Recall that we equipped Cc(Y × G) (Lemma 3.1) with a
structure as ∗-algebra. Let µ be a pseudomeasure of positive type. Then we
can construct a system of imprimitivity (π, Y, S), π : G → B(H), as follows.
Consider on Cc(Y ×G) the pairing

〈f, g〉 = µ(g∗ ∗ f).

This is Hermitian and semipositive. We quotient out the null space to obtain
the Hilbert space

H = Cc(Y ×G)/nullspace

The group G acts on Cc(Y × G) through translation from the left on both
factors

(π(g)f)(y, h) = f(g−1y, g−1h)

One checks that this factors through H and gives a unitary representation. It
remains to define the operator S(f) for f ∈ Cc(Y ). It is induced from the
multiplication operator on Cc(Y ×G)

S(f)h(y, x) = f(y)h(y, x) (h ∈ Cc(Y ×G)).

A straight forward calculation shows that we constructed a system of imprim-
ivity.

4.6 Lemma. Let G be a locally compact group that acts on a locally compact
space Y from the left and let Cc(Y × G) the associated ∗-algebra. To every
pseudomeasure of positive type on this algebra there is associated a system of
imprimitivity (π, Y, S), π : G→ U(H), in a natural way

There is also a converse way. One can associate to a system of imprimitivity
(π, Y, S), π : G→ U(H), several pseudomeasures of positive type on Cc(Y ×G)
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4.7 Remark. Let (π, Y, S), π : G→ U(H) be a system of imprimitivity and
let h ∈ H. Here T : Cc(Y × G) → B(H) is the associated regular homomor-
phism. Then

µ(f) = 〈T (f)h, h〉

is a pseudomeasure of positive type on Cc(Y ×G).

The proof is easy and can be omitted. tu

4.8 Definition. A system (π, Y, S), π : G→ U(H), of imprimitivity is called
1) transitive if G acts transitively on Y .
2) cyclic if there exists a vector h ∈ H, such that every closed subspace of H

that contains h and is invariant under Cc(Y ×G), equals H.

The vector h then is called a cyclic vector. Transitivity means that for each
a, b ∈ Y there exists g such that b = ga. If a ∈ Y is an arbitrary point, and if
L = Ga is the stabilizer of a, then the natural map

G/L −→ Y

is bijective and continuous. Even more, one can show that it is topological,
[He], Chap. II, Sect. 3, Theorem 3.2.

We associated to a system of imprimitivity (π, Y, S), π : G → U(H), with
a cyclic vector H a map T : Cc(Y ×G)→ B(H) (Lemma 4.5). If h is a vector
of H wa can associate a pseudomeasure µ on Y ×G. To µ we can associate a
system of transitivity (π′, Y ′, S′) as explained in Remark 4.7. It is natural to
ask whether the two systems are the same. We recall that the representation
space H(µ) of the representation associated to µ comes from Cc(Y ×G) (taking
a quotient by a nullspace and completing). There is a natural map

Cc(Y ×G) −→ H, f 7−→ T (f)h.

It is easy to check that this map factors through H(µ),

H(µ) −→ H.

This is a linear map that preserves the scalar product. Hence it is an isomor-
phism onto the image which hence is closed. On the other side this image is
dense since h is cyclic. Therefore it is an isomorphism of Hilbert spaces that
intertwines the two representations of G.

4.9 Lemma. Let (π, Y, S), π : G→ U(H), be a cyclic system of imprimitivity.
Let h ∈ H a cyclic vector. We consider the associated pseudo measure µ (s.
Remark 4.7) on Y × G. To this pseudo measure we can associate a system
of imprimitivity again (Lemma 4.6). The two systems of imprimitivity are
isomorphic.



§4. Imprimitivity 143

4.10 Imprimitivity theorem. Let (π, Y, S), π : G→ U(H), be a transitive
and cyclic system of imprimitivity. Choose a point a ∈ Y and denote by L = Ga
its stabilizer. Then there exists a unitary representation σ of L such that π is
unitary isomorphic to the induced representation IndGL (σ). The representation
σ is unique up to unitary isomorphism.

Proof. We choose a cyclic vector h and denote by µ the corresponding pseu-
domeasure of positive type on Y ×G. We want to pull it back to a pseudomea-
sure on G×G and need for this a map

Cc(G×G) −→ Cc(Y ×G).

To get it we define first a map

Cc(G×G) −→ Cc(G×G), ϕ 7−→ Φ

through

Φ(y, x) =

∫
L

ϕ(x−1y`, y`)∆G(y`)−1d`.

The function Φ(y, x) is invariant under y 7→ y` for ` ∈ L. Hence it can consid-
ered as function on Cc(Y ×G). So we obtain an obviously continuous map

Cc(G×G) −→ Cc(Y ×G)

and we can pull back the pseudomeasure µ to a pseudomeasure λ on G × G.
Let f, g ∈ Cc(G) we then we can consider the function f(x)g(y) on G×G. We
can apply λ to this function to define

〈f, g〉λ = λ(f(x)g(y)) =

∫
L

f(x)g(y)dλ(x, y).

This is a Hermitian form on Cc(G). We will prove a little later that it is
semipositive. First we want to define an action σ of L on Cc(G) from the left.
It is a modified translation from the right, namely

(σ(`)f)(x) =

√
∆L(`)

∆G(`)
f(x`) (f ∈ Cc(G), x ∈ G, ` ∈ L).

So σ(`)f is in Cc(G) (as f). A straightforward computation shows that σ
preserves 〈f, g〉λ. So, in the case that the form is semipositive, we can use σ to
define a unitary representation of L on the completion H(λ) of a quotient of
Cc(G) by a nullspace.
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Proof of the semipositivity

We want to compare the two spaces Cc(Y ×G) and the space C(G, Cc(G)) of all
continuous maps from G into Cc(G) (which has been equipped with a topology).
Actually we construct an operator

U : Cc(Y ×G) −→ C(G, Cc(G)).

Recall Y = G/L. For this we must associate to a function f ∈ Cc(Y × G) a
map Uf : G→ Cc(G). So Uf(x), x ∈ G, should be a function on G. We define
it by

(Uf(x))(y) = f(xL, xy−1) (y ∈ G).

Claim. For each x ∈ G the map

Cc(Y,G) −→ Cc(G), f 7−→ Uf(x)

is surjective.

Hence, for the proof of the semipositivity, it is sufficient to prove

〈Uf(x), Uf(x)〉λ ≥ 0

for x ∈ G. Since this is a continuous function on G, it is sufficient to prove∫
G

φ(x)〈Uf(x), Uf(x)〉dx ≥ 0

for all nonnegative φ ∈ Cc(G). To prove this we introduce φ′(x) =
∫
L
φ(x`)d`

and consider it as function on Y . Then we define

g(y, x) =
√
φ′(y)f(y, x).

Now a straightforward computation shows∫
G

φ(x)〈Uf(x), Uf(x)〉dx = µ(g∗ ∗ g).

This finishes the proof of the semipositivity.

In Cc(G) we can consider the nullspace that consists of all f with 〈f, f〉λ = 0.
Since this is nonnegative the nullspace is a sub-vector space. The scalar product
〈f, g〉λ induces a positive definite Hermitian form on

Cc(G)/nullspace(λ).

The completion H(λ) is a Hilbert space with an unitary representation of L.
We denote this representation by σ.
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We want to show that the given π is isomorphic to the induced representa-
tion IndGL (σ). From Lemma 4.9 we know that π is isomorphic to the represen-
tation of G on H(µ) which is associated to the pseudomeasure µ on Y ×G. So
we have to construct an (unitary) isomorphism

H(µ)→ IndGL (σ).

Recall that H(µ) is constructed from Cc(Y × G) (by taking a quotient and
then completing). The induced representation is built from certain functions
G → H(λ) and H(λ) is the completion of a quotient of Cc(G). This suggests
that IndGL (σ) is related to C(G, Cc(G)) and that the desired isomorphism comes
from the map U . We describe the steps that need to be done.

1) We denote by C(G, Cc(G))0 ⊂ C(G, Cc(G)) the subspace that consists of
all continuous functions f : G → Cc(G) such that the composition with
Cc(G)→ H(λ) is contained in IndGL (σ). Then there is a natural map

C(G, Cc(G))0 −→ IndGL (σ).

2) Let f ∈ Cc(Y ×G) and g = Uf : G→ Cc(G). One can check

g(x`) =

√
∆H(`)

∆G(`)
σ(`−1)g(x)

Hence the image of the map U : Cc(Y ×G) −→ C(G, Cc(G)) is contained in
C(G, Cc(G))0.

3) The diagram
Cc(Y ×G) −→ C(G, Cc(G))0

↓ ↓
H(µ) −→ IndGL (σ)

is commutative.
4) The map H(µ) −→ IndGL (σ) preserves the scalar products. Hence it is

injective and the image is complete and hence closed.
5) The image is dense, since the vector h is cyclic. Hence H(µ) −→ IndGL (σ)

is an isomorphism of Hilbert spaces.

5. Stone’s theorem

We study unitary representations of the additive group Rn which are not nec-
essarily irreducible. We give an example. Let (X, dx) be a Radon measure and
f : X → C be a measurable and bounded function. Then we can define the
multiplication operator

mf : L2(X, dx) −→ L2(X, dx), g 7−→ fg.
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This is a bonded linear operator. A bound is given by supx∈X |f(x)|. The
adjoint of mf is mf̄ . Hence mf is self adjoint for real f and unitary if |f(x)| = 1
for all x. If f is the characteristic function of a measurable set, we have m2

f =
mf . This means that P = mf is an orthogonal projection. This implies that
there exists an orthogonal decomposition H = H1⊕H2 such that P (h1 +h2) =
h2. Just take for H1 the kernel of P and for H2 its orthogonal complement.
This is the image of P .

If fn is a sequence of uniformly bounded functions that converges pointwise
to f then mfn converges pointwise to mf .

We also have to consider the group R̂n of unitary characters of Rn. This
group is isomorphic to Rn and hence a locally compact group as well. An
isomorphism can be obtained after the choice of a non degenerate symmetric
bilinear form 〈·, ·〉 on Rn. Then on can associate to a ∈ Rn the character

χ(x) = ei〈a,x〉. In any case R̂n carries a structure as real finite dimensional
vector space. In particular, it carries a structure as topological space

Now we assume that f : X → R̂n is a measurable (not necessarily bounded)
function. Then we can consider for each a ∈ Rn the bounded and measurable
function

x 7−→ f(x)(a).

We denote by U(a) the multiplication operator or for this function. Obviously
this is a unitary operator and moreover a 7−→ U(a) is an unitary representation.
We call it the multiplication representation related to f .

5.1 Stone’s theorem. Let U : Rn → GL(H) be a unitary representation.
Then there exists a Radon measure (X, dx) and a continuous function f : X →
R̂n and a Hilbert space isomorphism σ : H → L2(X, dx) such that the transport
of U to L2(X, dx) equals the multiplication representation related to f .

The space (X, dx) is not uniquely determined.

In the following we use the notations of Stone’s theorem. We consider a

bounded function ϕ : R̂n → C. We always assume that ϕ ◦ f is measurable
with respect to dx. This is for example the case when ϕ is continuous. Another
case which we will use is that ϕ is the characteristic function of a Borel set
B ⊂ Rn, since then ϕ ◦ f is the characteristic function of f−1(B) which is also
a Borel set. Both type of functions are Borel functions in the following sense.

5.2 Definition. A map f : X → Y between topological spaces is called a
Borel map if the inverse images of Borel sets are Borel sets.

Then we can consider the multiplication operator mϕ◦f . We use the isomor-
phism in Theorem 5.1 to transport it to a bounded linear operator which we
denote by same letter. We also use the notation

S(ϕ) = mϕ◦f : H −→ H.
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5.3 Remark. Denote by Bb(R̂n) the space of bounded Borel functions, The
operator valued map

S : Bb(R̂n) −→ B(H)

depends only on the representation U(a) (and not on the choice of (X, dx) and
the isomorphism σ).

In particular we obtain a map S : Cc(R̂n)→ B(H).

5.4 Remark. Let U : Rn → GL(H) be a unitary representation. Consider

Cc(R̂n) as ∗-Algebra where the ∗-Multiplikation is the usual product and f∗(x) =
f(x). The associated map

S : Cc(R̂n)→ B(H)

is a regular homomorphism.

For any Borel set B ⊂ R̂n we can evaluate S at the characteristic function χB.
We denote this by P (B). This is a operator valued measure in the following
sense.

5.5 Definition. A operator valued measure on R̂n is map P from the set

of all Borel sets E ⊂ R̂n into the set B(H) of bounded operators of a Hilbert
space with the properties

1) P (B) is a projector.
2) P (∅) = 0, P (Rn) = id.
3) P (E ∩ F ) = P (E)P (F ).
4) If E1, E2, . . . are pairwise disjoint then

P (∪Ei) =
∑

P (Ei) (pointwise).

Let Y ⊂ R̂n be a Borel subset such that P (Y ) = id. Then we say that P is
supported at Y . Is Y ′ any Borel subset disjoint to Y then P (Y ′) = 0.

5.6 Lemma. Let Rn → U(H) be a unitary representation and let Y ⊂ R̂n

be a locally closed subset such that the associated projection valued measure is
supported at Y . Then there exists a unique map

Cc(Y )→ U(H)

such that the diagram

Cc(R̂n) → U(H)
↓

Cc(Y )

↗

commutes.
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6. Mackey’s theorem

Let M be a locally compact group and let

M −→ GL(n,R)

be a continuous homomorphism. We denote by

M × Rn −→ Rn, (m, a) 7−→ ma,

the associated action of M on Rn. Similar to the Poincaré group we can define
on M × Rn a group structure

(m, a)(n, b) = (mn, a+ nb).

We call this group by
G = MRn.

The group M acts also on R̂n,

m(χ)(x) = χ(mx).

Let χ ∈ R̂n. We denote its stabilizer by

L = Mχ = {m ∈M ; χ(mx) = χ(x) for x ∈ Rn}.
This is called a little subgroup of M (with respect to the given action on Rn.
It depends up to conjugation only on the orbit of χ. Hence in the following χ
runs through a fixed system of representatives.

This concept differs slightly from our construction of the Poincaré group.
But it is easy to bring both concepts together is we assume that there exists
non degenerate symmetric bilinear form on Rn. (as in the case of the Poincaré

group). In this case the induced isomorphism Rn → R̂n has the property that
the orbits map to orbits and the stabilizers are preserved.

Besides L we will have to consider the group

LR̂n.

Now we consider an irreducible unitary representation

σ : Lα −→ GL(H).

We can extend this to a representation

σ · χ : LαR̂n −→ B(H), (x, a) 7−→ χ(a)σ(x).

It is easy to check that this is representation. (One has to use that L fixes χ.
We can induce this representation to an unitary representation of G. We say
that a unitary representation of G comes from a pair (L, σ) if it is isomorphic
to the representation constructed in this way.

Mackey’s theorem states that – under a certain assumption – this is an
irreducible unitary representation of G and that each irreducible unitary rep-
resentation is isomorphic to such one.

Now we can formulate the assumptions for Mackey’s theorem.
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6.1 Assumption. 1)There exists a closed subset in R̂n which intersects with
each M -orbit in exactly one point.

2) The orbits are locally closed.

A set Y ⊂ X of a topological space is called “locally closed”if it is open in its
closure. Assumption 1) means that we can choose from each orbit a represen-
tative in some regular way. Assumption 1) can be weakened and assumption
2) is not really necessary. But the proof gets a little easier under the sharpened
assumptions. In our examples, in particular in the case of the Poincaé group
the sharpened assumptions are met.

Now we can formulate Mackey’s theorem.

6.2 Mackey’s theorem. Assume that G = MRn satisfies the assumption.
Then each unitary representation of G that comes from an irreducible unitary
representations of a little group is unitary and irreducible. Each irreducible
unitary representation of G is isomorphic to one of this type.

One can ask when two irreducible representations of G are isomorphic.

6.3 Theorem, Mackey. Two irreducible unitary representations that come
from pairs (L, σ), (L, τ) are (unitary) isomorphic if and only if there exist
g ∈ L, β = g(α) and a commutative diagram

Lα −→ U(Hα)
↓ ↓
Lβ −→ U(Hβ).

The right vertical arrow has to come from a Hilbert space isomorphism Hα →
Hβ.

Hence we can choose a system S of representatives of the orbits and then write

Ĝ ∼=
.⋃

α∈S
L̂α.

This means that we have to determine a system of representatives of the orbits
and the irreducible unitary representations of the corresponding little groups.

An example

We consider the group

Iso(2) :=

{(
ζ z
0 ζ−1

)
; ζ ∈ S1, z ∈ C

}
.
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(Its name will be explained later.) The subgroup L is defined through z = 0 and
isomorphic to S1. The subgroup A is defined through ζ = 0 and is isomorphic
to C. The action of S1 on C is given by

(ζ, z) 7−→ ζ2z.

As representatives of the orbits we can take z = r real, r ≥ 0. The corre-
sponding little group is S1 in the case r = 0 and the trivial group {1,−1}
else. The case r = 0 leads to the one dimensional representations that factor
through Iso(2)→ S1. For each r > 0 we get one infinite dimensional irreducible
representation of Iso(2).

6.4 Theorem. The group Iso(2) has two series of irreducible unitary repre-
sentations. The first series is parameterized through Z and corresponds to the
one-dimensional characters that factor through Iso(2)→ S1. The second series
is parameterized through R>0 × {1,−1}. They all come from the little group
{1,−1}.

We write the representation coming from (r, ε), r > 0, explicitly. Here ε as
a character of {1,−1}. It is either the trivial representation or it corresponds
to the non-trivial character Z/2Z → S1. Then we have to extend this to the
character (one-dimensional representation)

{1,−1} × C −→ S1; (α, z) 7−→ ε(α)ei(r,z).

7. Proof of Mackey’s theorem

Let π : G→ U(H) be a unitary representation where G = MRn. The idea is to
apply the imprimitivity theorem. Restricting π we get a unitary representation
Rn → U(H), x 7→ π(e, x). Stone’s theorem gives us a map

T : CB(Rn) −→ U(H)

Recall that CB(Rn) denotes the space of bounded Borel functions. In particular
we get a map

T : Cc(Rn) −→ B(H).

This is a regular homomorphism and we get the projection valued measure
P (B). It is ergodic in the following sense.

7.1 Lemma. Let B ⊂ Rn be a Borel set which is invariant under M . Then
P (B) = 0 or B = id,

This is a very strong property.
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7.2 Proposition. Assume Assumption 6.1. There exists an orbit B ⊂ Rn

such that P (B) = id.

Proof. We choose a closed subset A ⊂ R̂n which is a system of representatives
of the orbits. Let U1, U2, . . . be a basis of the topology of A. Consider for each
i the set

Ui = MUi = {mu; m ∈M, u ∈ Ui}

This are invariant sets, hence P (Ui) = 0 or id. Now we consider the set

U =
⋂

P (Ui)=id

Ui.

Obviously P (U) = id. We claim now that U is an orbit. Since orbits are closed
we can apply Lemma 5.6which gives us a map

S : Cc(A) −→ B(H).

This is a regular homomorphism which gives a system of imprimitivity

(π : M → U(H),A, S)

Since A is an orbit this system is transitive.

We can apply the imprimitivity theorem to obtain a unitary representation
σ : L→ U(H) such that π|M is the induced representation.
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1. The spectral theorem

We have to consider the space C∞c (R) of infinitely many differentiable complex
valued functions on the real line. By a “Radon measure on C∞c (R)” we under-
stand a C-linear map I : C∞c (R) → C with the properties I(f̄) = I(f) and
I(f) ≥ 0 if f ≥ 0. It is easy to show that such an I extends uniquely to a
Radon measure (on Cc(R)). This follows from the fact that each f ∈ Cc(R) is
the uniform limit of a sequence fn ∈ C∞c (R) whose supports are contained in
a joint compact set.

A function f : R → C is called rapidly decreasing if Pf is bounded for all
polynomials P . If f is measurable and rapidly decreasing, the (usual Lebesgue)
integral ∫ ∞

−∞
f(t)dt

exists. A function is called tempered (or a Schwartz function) if it is infinitely
often differentiable and if all derivatives of arbitrary order are rapidly decreas-
ing. The space of all tempered functions is called by S(R). For tempered
functions f the Fourier transform

f̂(x) =
1√
2π

∫ ∞
−∞

e−itxf(t)dt

exists. It is easy to show (using partial integration) that it is tempered again.
In particular, the Fourier transform of a C∞-function with compact support is
tempered.

1.1 Fourier inversion theorem. The map S(R) → S(R), f 7→ f̂ , is an
isomorphism of vector spaces. It extends to an isomorphism of Hilbert spaces

F : L2(R, dt) −→ L2(R, dt)
where dt means the standard Lebesgue measure on the line. Moreover, one has

FF(f)(x) = f(−x).

Let (X, dx) be Radon measure and let f : X → C be a bounded measurable
function. Then we can define a bounded and linear operator

L2(X, dx) −→ L2(X, dx), g 7−→ fg.

In the case f̄f = 1 this operator is unitary.
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1.2 Spectral theorem. Let U : R → U(H) be a unitary representation of
the additive group R on a Hilbert space. Then there exists a Radon measure
(X, dx) and a real continuous function f : X → R such that the representation
U is equivalent to the representation

Ũ : R −→ U(L2(X, dx)), Ũ(t)(g) = eitfg.

Equivalence means of course that there exists a Hilbert space isomorphism
W : L2(R, dx)

∼−→ H with the property Ũ(t) = W−1U(t)W .

We first treat a reduction of the spectral theorem to a special case. Let
π : G → GL(E) be a continuous representation. A vector a is called cyclic if
the subspace generated by all π(g)a is dense in E. This means that E is the only
closed invariant subspace that contains a. The representation is (topologically)
irreducible if and only if each non zero vector is cyclic. The existence of a cyclic
vector is a much weaker condition.

When a cyclic vector exists, then the spectral theorem can be sharpened
slightly as follows.

1.3 Proposition. Let U : R → U(H) a unitary representation of the
additive group R on a Hilbert space. Assume that a cyclic vector exists. Then
in the spectral theorem we can take X = R (and dx some Radon measure) and
f(t) = t.

We first show that the general spectral theorem follows from Proposition 1.3
and hence after we prove the proposition.

Proposition 1.3 implies the spectral theorem 1.2. We claim the following.

Every unitary representation π : G→ U(H) has the following property. H can
be written as direct Hilbert sum of a finite or countable set of sub Hilbert spaces
Hi which are invariant and such that each of them admits a cyclic vector.

This can be proved by a standard argument using Zorn’s lemma. We leave the
details to the reader. Such a decomposition is not at all unique. Hence one
should not overemphasize its meaning.

The Radon measure that is used for the spectral theorem of (π,H) is the
direct sum of the Radon measures for the single Hi. We explain briefly the
notion of the direct sum. Let (Xi, dxi) be a finite or countable collection of
Radon measures. Then one defines their direct sum as follows. One takes the
disjoint union X of the Xi. This is the set of all pairs (x, i), x ∈ Xi. There is a
natural inclusion Xi → X, x 7→ (x, i), and X is the disjoint union of the images.
We equip X with the direct sum topology. This means that the (images of the)
Xi are open subsets and that the induced topology is the original one. Then
one defines in an obvious way a Radon measure on X such that the restriction
to the Xi are the given dxi. tu



154 Chapter VI. Appendices

Proof of Proposition 1.3. To any bounded continuous function h : R → C we
associate the functional

Ih : C∞c (R) −→ C, Ih(g) =

∫ ∞
−∞

h(t)ĝ(t)dt.

The integral exists, since ĝ and hence hg are rapidly decreasing. We apply this
to the function h(t) = 〈U(t)a, a〉 where a is a cyclic vector. This function has
the property

h(−t) = 〈U(−t)a, a〉 = 〈a, U(t)a〉 = h(t).

Using this it is easy to check that Ih is real, i.e. real valued for real g. One just
has to use the simpel rule

ĝ(t) = ĝ(−t).

We will see a little that Ih is actually a Radon measure on C∞c (R). For this
reason, we later use already now the notation∫

R
g(x)dµ =

∫ ∞
−∞
〈U(t)a, a〉ĝ(t)dt (g ∈ C∞c (R)).

Next we define a linear map

W : C∞c (R) −→ H, g 7−→
∫ ∞
−∞

ĝ(t)U(t)adt.

This is a Bochner integral with values in the Hilbert space H. The integrand
is continuous, hence measurable and it is bounded by the integrable function
|ĝ|. Hence the Bochner integral exists.

For g1, g2 ∈ C∞c (R) we compute∫
R
g1(t)g2(t)dµ

as follows. We make use of the fact that the Fourier transformation of the
product g1g2 of two functions equals the convolution of the two Fourier trans-
forms

ĝ1g2 = ĝ1 ∗ ĝ2.

Recall that the convolution of two functions on the line is

(g1 ∗ g2)(x) =

∫ ∞
−∞

g1(x− t)g2(t)dt.

So we get ∫
R
g1(t)g2(t)dµ =

∫ ∞
−∞
〈U(t)a, a〉ĝ1ḡ2(t)dt

=

∫ ∞
−∞
〈U(t)a, a〉

∫ ∞
−∞

ĝ1(t− s)ˆ̄g2(s)dsdt.
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We compare this with the inner product of W (g1) and W (g2) in the Hilbert
space H. It is

〈W (g1),W (g2)〉 =

〈∫ ∞
−∞

ĝ1(t)U(t)adt,

∫ ∞
−∞

ĝ2(s)U(s)ads

〉
.

The integrals are standard integrals along continuous functions with compact
support. They can be considered as Riemann integrals and hence approximated
by finite sums. In this way we see

〈W (g1),W (g2)〉 =

∫ ∞
−∞

∫ ∞
−∞
〈U(t)a, U(s)a)〉ĝ1(t)ˆ̄g2(s)dtds.

By means of the integral transformation (s, t) 7→ (s, t− s) we obtain

∫
R
g1(t)g2(t)dµ = 〈W (g1),W (g2)〉

Now, let g ∈ C∞c (R) be a real nonnegative function. In the case that
√
g is

differentiable, we set g1 = g2 =
√
g to show that

∫
gdµ is non negative. But√

g needs not to be differentiable (notice that the square root of x2 is |x| which
is not differentiable at the origin). But it is always possible to approximate g
by functions g2

1 where g1 is differentiable So we see that dµ is a Radon measure
as we have claimed. The map W : C∞c (R)→ H is unitary. Hence it is injective
and it extends to a unitary map

L2(R, dµ) −→ H.

(Here one uses that a bounded linear map E → F of normed spaces extends to
the completions.) In particular, W extends to S(R). The image is a complete
and hence a closed subspace of H. Next we have to compare U(t) with the
representation

Ũ : R −→ U(L2(R, dµ)), (Ũ(t)(g))(x) = eitxg(x).

We prove WŨ(s) = U(s)W . This follows simply from the fact that the Fourier
transform of the function x 7→ eisxg(x) is the function x 7→ ĝ(x− s).

It remains to show that W is surjective. Here we have to use that a is a
cyclic vector. It is sufficient that a is in the image, or even that there exists
a sequence gn of tempered functions such that W (gn) → a. For this purpose
we choose a differentiable Dirac sequence hn. Then the integrals

∫
hn(t)U(t)a

converge to U(0)a = a. We can write hn = ĝn where gn is tempered. tu
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2. Variants of the spectral theorem

Let (X, dx) be a Radon measure. A function f : X → C is called essentially
bounded if there exists C ≥ 0 such that |f(x)| ≤ C outside a zero set. We denote
by ‖f‖∞ the infimum of all C. This is a semi norm on the space L∞(X) of
all measurable essentially bounded f . Zero functions are essentially bounded
and their infinity-norm is 0. The quotient L∞(X) of L∞(X) by the subspace
of zero functions is a normed space. It can be shown that it is a Banach space.
(Sometimes it is considered as a “limit space” of all Lp-spaces).

2.1 Remark. Let f be an essentially bounded measurable function on X.
Then gf is square integrable if g is and multiplication by f defines a bounded
linear operator

mf : L2(X, dx) −→ L2(X, dx).

The norm of mf equals ‖f‖∞.

Proof. Let g ∈ L2(X, dx). Then ‖fg‖2 ≤ ‖f‖∞‖g‖2. This shows that mf is
bounded and ‖mf‖ ≤ ‖f‖∞. We have to prove the inverse inequality. For this
we assume for a moment that f is square integrable. Then we have ‖f‖22 =
‖ff̄‖2 ≤ ‖mf‖‖f‖2. This shows ‖f‖∞ ≤ ‖mf‖. in the case that f is not
square integrable we replace f by fχK where χK is the characteristic function
of a compact subset K. Take the supremum along all K in the inequality
‖fχK‖∞ ≤ ‖mfχK‖ we obtain the claim. tu

These are the most general multiplication operators due to the following
Lemma.

2.2 Lemma. Let f be an essentially bounded measurable function on X
such that fg is square integrable if g is square integrable. Then f is essentially
bounded.

Proof. First we show that multiplication by f is a bounded operator mf :
L2(X, dx) → L2(X, dx). Here we use the closed graph theorem. It is enough
to show that the graph {g, fg); g ∈ L2(X) is closed. Consider a sequence
(gn, fgn) that converges in the qraph. This means that

gn −→ g, fgn −→ h (both in L2(X, dx)).

Convergence in L2(X, dx) implies pointwise convergence of a suitable sub-
sequence outside a zero set. Hence we can assume that gn and fgn converge
pointwise outside the zero set. This shows ψ = fg in L2(X, dx).

The boundedness of mf implies the existence of a constant such that

‖fg‖2 ≤ C‖g‖2.
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Now we choose a constant A > 0 such that A2 > C. We consider the charac-
teristic function χ of the set

{x ∈ X; |f(x)| ≥ A}.

For a moment we assume that this set has a finite volume. From A2χ(x) ≤
|f(x)|χ(x) and from χ = χ2 we obtain

A2

∫
X

χ(x)dx ≤
∫
X

|f(x)| χ(x)2dx ≤ C
∫
X

χ(x)dx = C

∫
X

χ(x)dx

we obtain that χ is a zero function. This means that |f | is bounded by A
outside a zero set.

If χ is not integrable, then we make a similar trick as in the proof of Remark
2.1. We multiply χ with the characteristic function of an arbitrary compact
set K. tu

We want to work out when mf is an isomorphism. For this we introduce a
notation. Let f : X → C be a measurable function. We say that 1/f exists if
the set of zeros is a zero set. In this case we define

(1/f)(x) =
{

1/f(x) if f(x) 6= 0,
0 else.

2.3 Lemma. Let f be an essentially bounded measurable function on X. The
multiplication operator mf : L2(X, dx) → L2(X, dx) is an isomorphism if and
only if 1/f exists and is essentially bounded.

Proof. Assume that mf is an isomorphism. Then every h ∈ L2(X, dx) is of the
form fg, g ∈ L2(X, dx). In particular (1/f)h = g is in L2(X, dx). Now we can
apply Lemma 2.2. tu

A bounded linear operator A : H → H is called self adjoint if 〈Ax, y〉 =
〈x,Ay〉 for all x, y ∈ H. We derive a spectral theorem for such operators. For
this we introduce the exponential

EA =
∞∑
n=1

An

n!
.

This series converges in the Banach space B(H), since ‖An‖ = ‖A‖n and the
norm of eA is bounded by e‖A‖. As for complex numbers one can prove

eA+B = eAeB if AB = BA.

Using this one can show that

U(t) = eitA
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is a unitary representation of R on H. We can apply the spectral theo-
rem 1.2. It says that there exists a Radon measure (X, dx), an isomorphism
H → L2(X, dx) and a continuous function f such that U(t) corresponds to
multiplication with eitf on L2(X, dx). We want to follow that

Ag = fg on L2(X, dx)

For this we consider a sequence tn → 0, tn 6= 0. Then

lim
n→∞

eitnAg − g
tn

= Ang.

This holds in L2(X, dx) but then, after replacing tn by a sub-sequence, point-
wise outside a zero set. Since we have also

lim
n→∞

eitnf(x)g(x)− g(x)

tn
= f(x)g(x)

we get
Ag = fg on L2(X, dx)

as stated This implies that f is essentially bounded. So we obtain the following
variant of the spectral theorem.

2.4 Theorem. Assume that A is a self adjoint (bounded) operator on a
Hilbert space. Then there exists a Radon measure (X, dx), a real continuous
and essentially bounded function f on X, and a Hilbert space isomorphism
H ∼= L2(X) such that A corresponds to multiplication by f .

The spectral theorem of compact self adjoint operators (Theorem I.8.3) is a
special case of this. To prove it we have to study when a multiplication operator
mf : L2(X) → L2(X) for a real bounded continuous function is compact. A
necessary condition for this is that X carries the discrete topology. In particular
X must be a countable set. The measure is known if one knows the masses
(=volumes) m(a) of the single points. The set of all points with mass zero is
a zero set. Hence we can replace X by their complement. without changing
L2(X). This means that we can assume m(a) > 0 for all a. We then consider
the functions

fa(x) =
{

1/m(a) for x = a,
0 else

.

This is an orthonormal basis. The functions fa are eigen functions of mf with
eigen value f(a). So we have proved.

Let A : H → H be a compact self adjoint bounded operator on a Hilbert space.
Then there exists an orthonormal basis e1, e2, . . . of eigen vectors, Aei = λei.

We notice that the eigenvalues are bounded. This follows easily from ‖λa‖ ≤
‖Aa‖ ≤ ‖A‖‖a‖ which shows that the eigenvalues are bounded by ‖A‖. The
compactness of A implies that the multiplicities of the eigenvalues are finite. It
remains to show that the set of eigenvalues has no accumulation point different
from zero. So assume that λ = limλn is different from zero and the limit of a
sequence of eigenvalues. We choose eigen vectors a, an of norm 1.
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Functional calculus for self adjoint operators

The spectrum σ(A) of a bounded operator on a Banach space consists of all
λ ∈ C such that A−λE is not a bounded isomorphism of Banach spaces. From
the spectral theorem we derive the following three propositions (which in other
approaches are proved directly and then the spectral theorem is a consequence
of them).

2.5 Proposition. Let A : H → H be a self adjoint operator, then the
spectrum σ(A) is real and compact.

Proof. An argument with the geometric series shows that B∗(H) is open in
B(H). This implies that the spectrum is closed.

For the rest of the proof we can assume that A is a multiplication operator
mf : L2(X, dx)→ L2(X, dx) where f is a real, locally bounded function. Now,
let λ be a non-real number. Then 1/(f −λ) exists and is locally bounded. The
same is true if λ is a real number with |λ| > ‖f‖∞. Hence in both cases λ is
not in the spectrum. tu

Let P ∈ C[X] be a polynomial and let A be an associative algebra with
unit. Then P (a) ∈ A can be defined for arbitrary a ∈ A in an obvious way. In
particular, one can define P (A) for an endomorphism A of a vector space. If
A is a a self adjoint operator on a Hilbert space and if P is real then P (A) is
self adjoint too.

2.6 Proposition. Let A be a self adjoint operator and let P ∈ C[X] be a
polynomial whose restriction to σ(A) vanishes, then P (A) = 0.

There is an obvious conclusion.

2.7 Lemma. Let A be a self adjoint operator such that its spectrum consists
of one point a ∈ R. Then A is a multiple of the identity.

Proof. Consider P (x) = x−a. Then P vanishes on the spectrum. This implies
P − a id = 0. tu

2.8 Proposition. Let A be a self adjoint operator and let P ∈ C[X] be a
polynomial. Then we have

σ(P (A)) = P (σ(A)),a)

‖P (A)‖ = ‖P‖σ(A).b)

Here ‖P (A)‖ means the operator norm and ‖P‖σ(A) the maximum of |P | on
σ(A).

The three propositions immediately imply what is called “functional calcu-
lus”.



160 Chapter VI. Appendices

2.9 Theorem. Let A be a self adjoint operator. For each real continuous
function P on σ(A) the bounded operator P (A) can be defined in a unique way
such that the following properties holds. The map

C(σ(A)) −→ B(H)

is a norm preserving Banach algebra homomorphism.

Additional Remark. Let B be a bounded linear operator that commutes with
A. Then B commutes with all P (A), P ∈ C(σ(A)).

Let A be a bounded linear operator on a Hilbert space. The commutator
of A consists of all bounded linear operators that commute with A. The bi-
commutant consists of all bounded linear operators that commute with all
operators of the commutator of A. Clearly A ∈ G(A). The Additional Remark
in Theorem 2.9 shows that all P (A) are in the bi-commutant of A.

2.10 Lemma. Let A be a self adjoint operator on a Hilbert space H, Assume
that the bi-commutant contains only operators whose kernel is H or 0. Then
A is a multiple of the identity.

Proof. We assume that A is not a multiple of the identity. Then the spectrum
consists of more than one point. Hence we can find two continuous real func-
tions f1, f2 on the spectrum which are not zero but their product is zero. Let
Ai = fi(A). These are two non-zero operators in the bi-commutant of A with
the property A1 ◦A2 =. This shows that A2(H) is in the kernel of A1. So the
kernel is neither 0 nor H. This proves the Lemma. tu

3. The von-Neumann bi-commutant theorem

Let H be a Hilbert space and B(H) the algebra of bounded linear spaces. This
is a Banach space with the operator norm and hence a topological space. But
there are several other topologies. One of them is the strong operator topology
(SOT) which is defined with the help of a family of seminorms. For each a ∈ H
we consider

pa(A) = ‖Aa‖.

The SOT-topology on B(H) is the weakest topology such that these seminorms
are continuous. It can be described concretely as follows. For A ∈ B(H) and
a ∈ H and for ε > 0 we denote by

Ba(A, ε) = {B ∈ B; pa(B −A) < ε}

In the SOT-topology these sets are open and each open subset is the union of
finite intersections

Ba1(A, ε1) ∩ . . . ∩Ban(A, εn).
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We have to consider sub-algebras A ⊂ B(H). The commutant

A′ = {B ∈ B(H); AB = BA for all A ∈ A}

is a subalgebra too. The bi-commutant A′′ contains A. We are mainly in-
terested in star-subalgebras of B. This means that with A also the adjoint
operator A∗ is contained in A. The von-Neumann density theorem states.

3.1 Theorem (von Neumann bi-commutant theorem). Let A be a
star-subalgebra of B(H) which contains the identity. Then A is SOT-dense in
A′′.

Proof. The proof rests on the following simple lemma.

3.2 Lemma. Let A ⊂ B(H) be a ∗-subalgebra and let P ∈ B(H) be a projector
(i.e. P 2 = P ). The space P (H) is invariant under A if and only if P ∈ A′.

This theorem has an important consequence for unitary representations.

3.3 Theorem. Let π : G → U(H) be an irreducible unitary representation
of a locally compact group. Then the image of Cc(G) in B(H) is SOT-dense in
B(H).

Proof. Consider the SOT-closure A of the image of Cc(G) in B(H). This
is a star-algebra in B(H). It contains then unity. By Schur’s lemma, the
commutator A′ of A consists of multiples of the identity only. Hence A′′ =
B(H) and we can apply the density theorem. tu

4. The Peter-Weyl theorem

Let K be a compact group and let σ : K → U(H) be a finite dimensional
unitary representation. Recall that we defined the character

χ(x) = χσ(x) = tr(σ(x))

and a modified version
eσ = dim(H)χ(x).

This a continuous function on K. Unitary equivalent representations have the
same character.

Other important functions on K are the matrix coefficients of an unitary
representation σ (Here K needs not to be compact.) They are defined for two
a, b ∈ H through

〈σ(k)a, b〉.
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The span a space of continuous functions that we denote by

Eσ ⊂ C(K).

In the case that the representation is finite dimensional one can choose an
orthonormal basis ei of H. Then Eσ is generated by the entries of the matrix

〈σ(k)ei, ej〉.

They satisfy the famous orthogonality relations.

4.1 Theorem. Let σ, τ be two irreducible unitary representation of a compact
group K. Then the corresponding spaces Eσ, Eτ are orthogonal.

Proof. Let σ, τ be the two irreducible unitary (hence finite dimensional) rep-
resentations. Let B : Hσ → Hτ be an linear map. Then we can build the
operator

A =

∫
K

πτ (k)Bπσ(k−1)dk.

Then the invariance of the Haar measure shows

Aσ(k) = τ(k)A.

The operator A can not be injective, since otherwise it would be an isomorphism
and σ and τ would be equivalent. So the kernel of A is not trivial. But the
formula above shows that the kernel of A is invariant under σ. Hence it must
be the whole space. So A is zero, whatever B might be. We will apply this for
a well chosen B. First we choose a ∈ Hσ, b ∈ Hτ . Then we define

B(x) = 〈x, a〉b.

Then we choose two other vectors c ∈ Hσ, d ∈ Hτ . Then

0 = 〈Ac, d〉 =

∫
K

〈τ(k−1)Bσ(k−1)c, d〉dk

=

∫
K

〈
〈σ(k−1)c, a〉b, τ(k−1)d

〉
dk

=

∫
K

〈σ(k−1)c, a〉〈b, τ(k−1)d〉dk

=

∫
K

〈σ(k−1)c, a〉〈τ(k−1)d, b〉dk

This proves the theorem. tu
The space E for a irreducible unitary representation is non-zero. It follows

that there there are only finitely or countably many isomorphy classes of irre-
ducible unitary representations of a compact group K (recall that we assume
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that K has countable topology and that the Hilbert spaces are assumed to be
separable). Recall that we defined the unitary dual Ĝ to be the set of isomorphy
classes of unitary irreducible representations.

We have introduced the convolution algebra C(K). It depends on the choice
of a Haar measure which we normalize such that the volume of K is one.
Recall that an unitary representation of K can be extended to a representation
π : C(K) → B(H). Now, let σ : K → GL(Hσ) be an irreducible unitary
representation. Then we can consider the operator π(eσ).

4.2 Theorem. Let π : C(K) → B(H) be a unitary representation of the
compact group K and let σ ∈ K̂. Then π(eσ) is the orthogonal projection of H
onto the isotypic component H(σ).

4.3 Theorem. The functions eσ, σ ∈ K̂ satisfy the following relations.

eσ ∗ eσ = eσ, eσ ∗ eτ = 0 for different σ, τ ∈ K̂.

4.4 Theorem. Let K be a compact group and let f ∈ L2(K). One has

〈f, f〉 =
∑
σ∈K̂

dim(σ)tr(σ(f)σ(f̄)).

This means of course that the sum is absolute convergent.

4.5 Theorem. Every irreducible unitary representation of a compact group
K occurs in the regular representation L2(K) and its multiplicity equals its
dimension.
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