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Preface

We assume that the reader is acquainted with the local theory of complex
spaces as we treated in the first volume. In particular, we will make freely use
of elementary sheaf theory without cohomology. In this volume we present an
introduction into the cohomology theory of sheaves in an appendix (Chapt. III).

We also need some knowledge in functional analysis, in particular in the
theory of Fréchet spaces. We collected them in another appendix (Chapt. IV)
without proves.

The main subject is the theory of Stein spaces. These are complex spaces
which are opposite to compact spaces in the sense that they admit many global
holomorphic functions. The central result about Stein spaces is Cartan’s the-
orem B that asserts that the higher cohomology groups of a coherent sheafM
vanishes, Hn(X,M) = 0 for n > 1.

We treat also some applications as the construction of meromorphic func-
tions on a Stein space with prescribed poles.

The proof of Theorem B needs several different techniques. One of them
rests on a certain approximation procedure. For this we have to equip the
spaceM(X) of global sections of a coherent sheaf on a complex space with a
structure as a Frèchet space. This is not trivial and will take a while.

We have written the notes in the language of complex spaces in the sense of
Grothendieck. But it turns out that such a space X is Stein if and only if the
associated complex space in the sense of Serre, Xred, is so. If the reader feels
more comfortable, he can restrict to complex spaces in the sense of Serre. But
he will not get a big profit from this.

In a following third volume we will prove Grauert’s finiteness theorem (pro-
jection theorem). The theory of Stein spaces is an essential tool for this.



Chapter I. Local theory of complex spaces

1. Complex spaces

This sections collects basic results from vol. I, Sect. 1. In the following by a
ringed space (X,OX) we always understand a topological space that has been
equipped with a sheaf of C-algebras. For a brief introduction into sheaf theory
including the notion of coherent sheaf we refer to vol. I, Chapt. IV. Instead of
ringed space we should better say “algebred space”, but this sounds ugly. By
definition, a morphism of ringed spaces (X,OX) → (Y,OY ) is a pair (f, ϕ),
consisting of a continuous map f : X → Y and a homomorphism

ϕ : OY −→ f∗(OX)

of sheaves of C-algebras. In practice this means that we have homomorphisms
of algebras

OY (V ) −→ OX(f−1(V ))

which are compatible with restrictions. It is clear how to define the composition
of two morphisms and there is the identity morphism. (This means that we
defined a category). In particular, we have the notion of an isomorphism of
ringed spaces. We write the morphism as (f, ϕ) simply by f it is clear which ϕ
is considered. But one should have in mind that ϕ is usually not determined
by f .

We equip C
n with the sheaf of all holomorphic functions (on open subsets).

We denote this sheaf by OCn . The restricted sheaf to an open subset we denote
by OU = OCn |U . Let f1, . . . , fm be a finite system of holomorphic functions
on U . Then we can consider the ideal sheaf J generated by the fi . The factor
OU/J is a sheaf of C-algebras. The support of this sheaf is

Y =
{
a ∈ X; Ja 6= OX,a

}

=
{
z ∈ C

n; f1(z) = · · · = fm(z) = 0
}
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which is a closed subset. Then we can consider the ringed space

(Y,OY ) where OY = (OX/I)|Y.

Of course OY depends on the choice of f1, . . . , fm. Such a ringed space is called
a model space. Open subsets of Cn equipped with the sheaf of all holomorphic
functions are special model spaces. (Take fi = 0).

For the definition of |Y for closed subspaces we refer to vol. I, Chapt. IV, Sect. 5, in
particular to Remark IV.5.1 there. We recall the essentials briefly. We have to use
here a very special case of the pull back of a sheaf with respect to a continuous map
f : Y → X. This associates to a sheaf F on X a sheaf f−1F on Y . In the special
case that Y is a subspace of X (equipped with the induced topology) and that f

is the canonical injection, one writes f−1F = F |Y . In the case that Y is open in
X this agrees with the naiv restriction of a sheaf to an open subset which we used
already. We don’t need the pull back construction in general and do not presume its
knowledge. We only need another special case which we describe briefly now.

Let Y ⊂ X be a closed subspace and let i : Y → X be the natural injection. We
denote by A the category of sheaves of abelian groups on Y and we denote by B the
full subcategory of the category of abelian sheaves on X whose objects are sheaves
F of abelian groups on X with the property F |(X − Y ) = 0. The functor “direct
image” (see vol. I, Chapt. II, Sect.6) defines an equivalence of categories

i∗ : A −→ B.

There exists an inverse functor which we write as F 7→ F |Y . It has the following
property. Assume that U ⊂ X is open and that V = U ∩ Y . Then there is canonical
isomorphism F (U) → (F |Y )(V ). This property lays close the following definition of
F |Y .

(F |Y )(V ) := lim
−→

F (U).

Here U runs through all open subsets U ⊂ X such that U ∩Y = V . The basic results
of this construction are:

There are canonical isomorphisms (i.e. isomorphisms in the sense of functors)

i∗(F |Y ) ∼= F, (i∗G)|Y ∼= G.

One has canonical isomorphisms for a ∈ Y

(i∗G)a ∼= Ga, (F |Y )a ∼= Fa.

There are variants of this construction. One can take for take A the category of

sheaves of rings on Y and by B the category of sheaves of rings on X with the

property F |(X−Y ) = 0. Or one can fix a sheaf of rings OY and consider OX = i∗OY .

Then one can take for A the category of OY -modules and for B the category of OX -

modules. Notice that every OX -module M has the property M|(X − Y ) = 0 (since

every module over the zero ring is zero).
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1.1 Definition. A complex space (in the sense of Grothendieck) is a ringed
space that is locally isomorphic to a model space. A holomorphic map between
two complex spaces (X,OX) → (Y,OY ) is a morphism in the sense of ringed
spaces.

We can talk about the category of complex spaces in the sense of Grothendieck.
Notice that a holomorphic map consists of two parts, a continuous map f : X →
Y and a homomorphism of sheaves of algebras ϕ : OY → f∗OX . From vol. I,
Theorem I.11.3 we recall the following basic result.

1.2 Oka’s coherence theorem. The structure sheaf of a complex space is
coherent.

We consider the stalk OX,a of a complex space. In the case C
n (equipped with

the sheaf of holomorphic functions) this algebra is isomorphic as C-algebra to
the ring of convergent power series.

On := OCn,0 = C{z1, . . . , zn}.

An analytic algebra A is a C-algebra A that is different from 0 and is isomorphic
to a factor algebra of On, n suitable,

A ∼= On/a, a 6= A.

Analytic algebras are local algebras. If On → A is a surjective algebra homo-
morphism, then the image of the maximal ideal of On is the maximal ideal of
A. In particular we get natural homomorphisms

C −→ A −→ A/m

The composition C → A/m is an isomorphism. We will use it to identify
A/m = C. We finally mention that homomorphisms of analytic algebras A→
B are automatically local, i.e. the image of the maximal ideal of A is contained
in the maximal ideal of B. So we get a natural homomorphism

A/m(A) −→ B/m(B)

which is the identity if we identify both sides with C.

Let f ∈ OX(X) be a global section of the structure sheaf of a complex space
and let x ∈ X be a point. We can consider the germ fx and take its coset mod
m(OX,x). This is a number which we denote by f(x). In this way we get a
function

f̃ : X −→ C, f̃(x) := f(x).

A look at the definition of model spaces shows that f̃ is continuous. Hence we
have constructed an algebra homomorphism

OX(X) −→ CX(X).
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The same can be done for open subsets. We can read this as map of sheaves
of C-algebras

OX −→ CX .

We denote the kernel of this map by NX . Clearly NX(U) contains all nilpotent
elements of OX(U).

Let (X,OX) be an arbitrary ringed space. The nilradical N is the subsheaf
of OX that is defined through

U 7−→ {g ∈ OX(U), locally nilpotent}.

It also can be defined through

NX(U) = {f ∈ OX(U); fa nilpotent in OX,a for all a ∈ U}.

Basic results of local complex analysis show.

1.3 Hilbert-Rückert nullstellensatz. Let (X,OX) be a complex space.
Then the kernel of the natural map OX → CX is the nilradical NX .

1.4 Cartan’s coherence theorem. Let (X,OX) be a complex space. The
nilradical is coherent.

(This is equivalent to the fact that the nilradical is locally finitely generated.)

Holomorphic functions on complex spaces

By a holomorphic function on a complex space (X,OX) we understand a holo-
morphic map

(f, ϕ) : (X,OX) −→ (C,OC ).

So ϕ : OC → f∗OX . Such a morphism is determined by the image of the global
section 1 ∈ OC . This is an element of OX(X). This gives the following result.

1.5 Remark. The holomorphic mappings (X,OX)→ (C,OC ) are in one-to-
one correspondence to the global sections in OX(X).

Open subspaces

Let (X,OX) be a complex space and let U ⊂ X be an open subset. Then
(U,OX |U) is a complex space too, The natural inclusion i : U → X together
with the natural map ϕ : OU → i∗OX) gives a holomorphic map (U,OX |U)→
(X,OX). The following universal property is satisfied. Let (g, ψ) : (Z,OZ) →
(X,OX) be a holomorphic map of a third complex space Z into X such that
f(X) ⊂ U , then (p, ψ) factors through a unique holomorphic map (g0, ψ0) :
(Z,OZ)→ (U,OX |U).

A holomorphic map (f, ϕ) : (X,OX)→ (Y,OY ) is called an open embedding
if there is an open subset U ⊂ Y such that (f, ϕ) factors through an isomor-
phism (X,OX)

∼
−→ (U,OX |U). The composition of two open embeddings is

an open embedding.
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Closed subspaces

Let (X,OX) be a complex space and let J ⊂ OX be a coherent ideal sheaf. (It
is enough to know that J is locally finitely generated.) We then can consider
the sheaf OX/J . The support of this sheaf is a closed subset Y ⊂ X. We then
can consider the restriction

OY := (OX/J )|Y.

Then (Y,OY ) is a complex space. We call this the closed complex subspace
of (X,OX) related to the ideal sheaf J . There is a natural holomorphic map
i : (Y,OY ) → (X,OX). A holomorphic map j : (Z,OZ) → (X,OX) is called
a closed embedding (of complex spaces) if there exists a coherent ideal sheaf
J ⊂ OX) such that j factors through a biholomorphic map

(Z,OZ)
∼
−→ (Y,OY ) where Y = supp(OX/J), OY = (OX/J)|Y.

It is easy to show that the composition of two closed embeddings is a closed
embedding.

Finally we call a holomorphic map f : (Y,OY ) → (X,OX) a locally closed
embedding if it is the composition of a closed embedding f : (Y,OY )→ (U,OU )
and an open embedding (U,OU )→ (X,OX).

A subset Y ⊂ X is called a closed analytic subset of the complex space
(X,OX) if there exists a coherent ideal sheaf J ⊂ OX such that Y =
supp(OX/J). The union and intersection of finitely many closed analytic sub-
sets are closed analytic subsets.

Complex spaces in the sense of Serre

A complex space is called a complex space in the sense of Serre if the natural
map OX → CX is injective. Due to the nullstellensatz this is equivalent to the
fact that the rings OX,a are nilpotent-free. Then we can consider the elements
of OX(U) as usual functions on U . The category of complex spaces in the sense
of Serre is the full subcategory of the category of complex spaces in the sense
of Grothendieck. If (f, ϕ) : (X,OX)→ (Y,OY ) is a holomorphic map between
complex spaces in the sense of Serre, then ϕ is determined by f . It is just
the usual pull-back of functions. There is a natural functor X 7→ Xred of the
category of complex spaces of Grothendieck to that of Serre. Just associate
to (X,OX) the ringed space (X,OX/N ) where N is the nil-radical. Due to
Cartan’s coherence theorem this is a complex space. Notice also that there is
a natural morphism

(X,OX/N ) −→ (X,X ).

This is a closed embedding. So Xred is a closed complex subspace of X with
the same underlying spaces. (But usually it is not an open subspace).
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Example of a non-reduced complex space

Consider the complex plane (C,OC ). Consider the ideal sheaf that is generated
by z2. This is coherent. Its support is one point (the origin) and the restricted
sheaf is given by C{z}/z2 ∼= C

2. This ring is not nilpotent free. So the ringed
space (pt,C{z}/z2 ∼= C

2) is a non-reduced complex space.

The singular locus

A point a ∈ X of a complex space is called regular if there exists an open
neighborhood U such that (U,OX) is isomorphic to (V,OV ) for an open subset
V ⊂ C

n (and OV is the standard sheaf of holomorphic functions). A complex
space is called a complex manifold if all points are regular. A Riemann surface
is a complex manifold of (pure) dimension one. Let S be the singular locus of
(X,OX). The main theorem of local complex analyis is the following result.

Let (X,OX) be a complex space in the sense of Serre. The singular locus S is
a closed analytic subset of X. It is thin in X.

Topological assumptions

In this lecture we will always assume that complex spaces are Hausdorff. In
particular they are locally compact. We also assume that their exists a count-
able basis of the topology. This is a countable system of open sets such that
each open set can be written as union from sets of the system.

2. Finite maps

We recall the basic results of vol. I, Chapt. II, Sect. 4 and 5. A holomorphic
map f : (X,OX) → (Y,OX) is called finite if the underlying map between
topological spaces is finite. This means that it is proper and the fibres are
finite sets. A holomorphic map f : X → Y is locally finite at a point a ∈ X if
there exist open sets a ∈ U ⊂ X and f(a) ∈ V ⊂ Y such that f(U) ⊂ V and
that f : U → V is finite.

2.1 Theorem. A holomorphic map f : X → Y is locally finite at a if an only
if the corresponding map of analytic algebras OY,f(a) → OX,a is finite.

Here “finite” is understood in the sense thatOX,y is a finitely generatedOY,f(a)-
module. An important result of Grauert states.

2.2 Theorem. Let X → Y be a finite holomorphic map between complex
spaces. Let M be a coherent sheaf on X. Then the direct image f∗M is
coherent too. The functor M 7→ f∗M, starting from the category of coherent
sheaves on X, is exact.
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A direct consequence of the theorem of Grauert is the following theorem of
Remmert.

2.3 Theorem. Let X → Y be a finite holomorphic map between complex
spaces. Then the image is a closed analytic subset of Y .



Chapter II. Stein spaces

1. The notion of a Stein space

Probably the reader knows that on a connected compact complex manifold any
holomorphic function is constant. Assume that the dimension is > 1. If one
removes from this manifold a single point the situation does not remedy, since
in more than one variable there do not exist isolated singularities. Hence there
exist also non-compact manifolds that admit no non-constant analytic function.
Stein spaces are opposite to this situation. They are spaces that admit many
holomorphic functions. We are going to explain in which sense this has to be
understood.

Let K be a non-empty compact subset of a topological space X. We use
the notation

||f ||K := max{|f(x)|; x ∈ K}

for a continuous function f on X.

1.1 Definition. Let K be a non-empty compact subset of a complex space.
The holomorphic convex hull K̂ of K is the set of all x ∈ X such that
|f(x)| ≤ ||f ||K for all f ∈ OX(X).

1.2 Definition. A complex space is called holomorphically convex if the
holomorphic convex hull of any compact subset is compact.

Assume thatX is a complex space with the following property: for every infinite
closed discrete subset S ⊂ X there exists a holomorphic function f ∈ OX(X)
that is unbounded on S. Then X is holomorphically convex. This can be
seen by an indirect argument. Let K be a compact subset such that K̂ is not
compact. Then their exists a sequence in K̂ with no convergent subsequence.
This gives an infinite subset S ⊂ K̂ that is closed in X and discrete. Then
there exists a global holomorphic function which is unbounded on K̂. This is
not possible.

From this observation we can deduce that open subsets U of the plane
C are holomorphically convex. To show this we consider an infinity closed
discrete subset S. If S is unbounded, then we take f(z) = z. In the case that
S is bounded there must be an accumulation point a of S which lies on the
boundary of U . Then take f(z) = 1/(z − a).
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In more then one variable the situation is completely different. Let

U = Ur(0) = {z ∈ C
n; |zi| < ri}

be a polydisk around zero. We claim that U−{0} is not holomorphically convex.
For this we consider the subset K consisting of all z with |zi| = ri/2. We know
that every holomorphic function f on U − {0} extends holomorphically to U .
From the maximum principle one deduces K̂ = {z ∈ U ; |zi| ≤ ri/2}. This set
is not compact.

1.3 Definition. A complex space X is called a Stein space if the following
conditions are satisfied:

1) It is holomorphically convex.
2) (Point separation) For two different points x, y ∈ X there exists a global

f ∈ OX(X) with f(x) = 0, f(y) = 1.
3) (Infinitesimal point separation) For any point a ∈ X there exist global

f1, . . . , fm ∈ OX(X) whose germs generate the maximal ideal of OX,x.

It is clear that open subsets of the complex plane are Stein spaces. More
generally it is clear that a cartesian product D = D1×· · ·×Dn of open subsets
Di ⊂ C is Stein. It is already a deep result that all non-compact connected
Riemann surfaces are Stein spaces. We will not proof this result here. A proof
can be found in [Fo]. As we have seen it is false that open subsets of Cn are
always Stein in the case n > 1.

1.4 Remark. Let X be a Stein space. Then every closed analytic subspace
is a Stein space too. The cartesian product of two Stein spaces is Stein.

1.5 Definition. An Oka domain in a complex space (X,OX) is an open sub-
set U ⊂ X such that there exists a holomorphic map f : (X,OX)→ (Cn,OCn)
with the following property. The restriction of f to U defines a closed embedding

f0 : (U,OX |U) −→ (P,OP )

into some polydisk in C
n.

The basic exhaustion theorem states:

1.6 Theorem. Let X by a Stein space. Any compact subset K is contained
in an Oka domain U .

Additional remark. In the case that K = K̂ and that W is some open subset
containing K one can get U ⊂W .

Before we start with the proof, we formulate a technical lemma. For this it
is convenient to introduce the notion of a “local embedding”. A holomorphic
map f : (X,OX) → (Y,OY ) of complex spaces is called a local embedding of
complex spaces if for every a ∈ X there exist open neighbourhoods a ∈ U ⊂ X,
f(a) ∈ V ⊂ Y such that f factors through a closed embedding U → V .
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1.7 Lemma. Let f : X → Y be a holomorphic map of complex spaces. We
make two assumptions:

a) f is a closed embedding of topological spaces. This means that f(X) is closed
and X → f(X) is topological. (This is more than injective).

b) f is a local embedding.

Then f is a closed embedding of complex spaces.

Proof of the lemma. Let a ∈ X be a point and U a neighborhood with prop-
erty b). Then we know from a) that f(U) is an open subset from f(X). By
assumption b) f(U) is analytic. This means that every point of f(X) admits
an open neighborhood that is analytic. But then f(X) is analytic. The inverse
map f(X)→ X is analytic since this is locally the case. ⊔⊓

Property a) has been used essentially in the proof. So one should have in
mind that bijective continuous maps between topological spaces need not to be
topological. There is an exceptional case where the situation is better.

Recall that a continuous map f : X → Y between locally compact Hausdorff
spaces is called proper, if the inverse image of any compact set K ⊂ Y is
compact. Proper maps have the basic property that they are closed. This
means that the images of closed subsets of X are closed in Y . This immediately
gives:

Let f : X → Y be a bijective continuous and proper map between complex
Hausdorff spaces. Then f is topological.

This is clear: The inverses under f−1 are the images under f . Hence the
assumption says that the inverse images of closed sets under f−1 are closed.
This means that f−1 is open.

Proof of 1.6 continued. We can assume that K = K̂. We will prove the
sharpened form where we have to consider an open neighborhood W of K. For
each a ∈ K we can choose finitely many global functions that map an open
neighborhood U(a) of a biholomorphically onto an analytic subset of some C

n.
The compact subset K can be covered by finitely many of these neighborhoods,
K ⊂ U(a1) ∪ · · · ∪ U(am). We collect the functions for each a and obtain a
holomorphic map such is locally biholomorphic on U(a1) ∪ · · · ∪ U(am). We
choose an open neighborhood U of W whose closure is compact and contained
in U(a1)∪ · · · ∪U(am). We would like to manage that f is injective on U . For
this we consider the set A of all (a, b) ∈ Ū × Ū such that f(a) = f(b). The
diagonal ∆ of Ū × Ū is contained in A. Actually ∆ is an open subset of A.
To show this we consider some diagonal point (a, a). Then a ∈ U(ai) for some
i. Then all points. Then U(i) × U(i) is an open neighborhood of (a, a) in X.
Its intersection with A is contained in ∆ since f is injective on U(ai). Since
∆ is open in A we get that the complement A −∆ is compact. For each pair
(a, b) ∈ A−∆ we can choose a global holomorphic function h with h(a) 6= h(b).
Then h(x) 6= h(y) for all (x, y) in a full open neighborhood of (a, b) in A−∆.
We can cover A−∆ by finitely many such open sets. We add the finitely man
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functions h as new components to the map f . In this way we produce a globally
defined map that is injective. Without loss of generality we can assume that f
is injective on Ū (and locally biholomorphic on U).

It remains to manage that f defines a proper map of U onto an analytic set
of some polydisk. The polydisk we want to take is just the product of unit discs
(|zj | < 1). For this we can assume without loss of generality |fi(z)| ≤ 1 for z
in K. One just has to multiply f with a suitable constant. Now we will make
use of the holomorphic convexity: For each boundary point a ∈ ∂U we can
choose a global holomorphic function g such that ||g||K < g(a). Multiplying
with a suitable constant we can get ||g||K < 1 < |g(a)|. This inequality remains
true in a full open neighborhood of a. We can cover ∂U with finitely many
of these neighborhoods. We add the corresponding functions g as additional
components to f . Now we modify U . We replace U by the set of all x ∈ U such
that |fi(x)| < 1. We still have that f is injective and locally biholomorphic on
this new U ⊃ K. But now we have the advantage that f defines a proper map
of U into the polydisk. For this one has just to show that the inverse image
of the compact set |zi| ≤ ̺ < 1 is compact in U . This is clear since this set is
away from the boundary of U . ⊔⊓

2. Approximation theorems for cuboids

In the theory of Stein spaces it turned out to be of some advantage to work
with rectangles of the form

Q = {z ∈ C; a1 < x1 < a2; b1 < y1 < b2}.

Here a1 < a2 and b1 < b2 real numbers. In the following we understand by an
open cuboid a set Q = Q1× · · ·×Qn, where the Qi are rectangles in the above
sense. Cuboids are Stein spaces and every closed analytic subset of a cuboid is
Stein.

A very special case of the so-called Runge approximation theorem states:

2.1 Runge’s approximation theorem (special case). Every holomorphic
function on a cuboid is the locally uniform limit of a sequence of polynomials.

(For polydisks instead of cuboids this result follows from the Taylor expansion
of a holomorphic function. But we need it for cuboids). We just give a hint to
the proof in the one-dimensional case. Let f : Q → C be a holomorphic map
on a rectangle Q. We have to show that for each shrunken rectangle Q0 ⊂ Q
and for each ε > 0 there exists a polynomial P with |P (z) − f(z)| < ε for all
z ∈ Q0. Cauchy’s integral formula gives for z ∈ Q0

f(z) =
1

2πi

∫

∂Q1

f(ζ)

ζ − z
dζ.
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Here we have chosen some cuboid Q1 between Q0 and Q. Using an approx-
imation by step functions we can approximate f by functions of the type
C/(z − a) where a is on the boundary of Q1. Hence it is sufficient to as-
sume f(z) = C/(z − a). Since a is outside of the closure of Q0, we find a disk
that contains the closure of Q0 but not a. In this disc we can expand C/(z−a)
into a power series and then approximate it by its Taylor polynomials. ⊔⊓

We need a certain matrix valued version of this approximation theorem.
For this it is convenient to use the matrix norm for a square matrix A.

|A| = max{|Az|; |z| = 1}.

Here |z| denotes the Euclidean norm of a vector z. This matrix norm has the
properties:

a) |aik| ≤ |A|.
b) |AB| ≤ |A||B|.
c) |A+B| ≤ |A|+ |B|.

From these inequalities immediately follows that the series

eA : =
∞∑

ν=0

Aν

ν!
,

log(E −A) : = −
∞∑

ν=1

Aν

ν
for |A| < 1

converge. The rule

Alog(E−A) = E −A

holds. It follows from the known case n = 1 since it can be expressed as a formal
relation in factorials. We have to give some warning. The rule eA+B = eAeB

is usually false. It holds if the matrices A,B commute.

We will have to consider matrix valued function F : D → C
(m,m) on open

subsets D ⊂ C
n. Of course holomorphy means that each component of is

holomorphic. An immediate application of the above consideration is:

2.2 Lemma. Let F : D → C
(m,m) be some matrix valued holomorphic

function on an open subset D ⊂ C
n. Assume that |F (z) − E| < 1 for all

z ∈ D, Then there exists a holomorphic function G : D ⊂ C
(m,m) with the

property F = eG.

In contrast to the case m = 1 it is very difficult to get holomorphic logarithms
without an estimate as in 2.2. This will cause some difficulties. To come around
them we prove:
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2.3 Lemma. Let F : D → GL(m,C) be an invertible holomorphic matrix
valued function on an open convex subset D ⊂ C

n. Let K ⊂ D be a compact
subset and ε > 0. Then F = F1 · · ·Fk can be written as finite product of
holomorphic functions

Fi : D → GL(m,C), |Fi(z)− E| ≤ ε for z ∈ K.

Proof. We will use a simple fact about topological groups. Let G be the set of
all holomorphic maps F : D → GL(m,C). This is a group under multiplication.

For any holomorphic F : D → C
(m,m) and a compact subset K ⊂ D we define

||F ||K = max{|F (z)|, z ∈ K}.

Eventually replacing K by a bigger compact set (with non-empty interior) we
can assume that || · || is definite. Then ||F −G||K defines a metric on G and G
gets a topological space. It is clear that multiplication G×G→ G and inversion
G → G are continuous. This means that G is a topological group. We claim
that this topological space is arcwise connected. To show this we can assume
that 0 ∈ D. For any F ∈ G we can consider Ft(z) = F (tz), 0 ≤ t ≤ 1. Notice
that Ft ∈ G and that t→ Ft is continuous. Hence it defines a curve in G that
combines F with the constant function F0. Now the connectedness of G follows
from the known fact that GL(m,C) is connected. For sake of completeness we
recall the argument. Any invertible matrix can be written as finite product of
diagonal matrices and strict triangular matrices. Each of them, hence also an
finite product of them can be combined with the unit matrix. This follows just
from the connectedness of C

.
and C.

Proof of 2.3 continued. We denote by U ⊂ G the set of all F ∈ G with
||F ||K < ε and ||F−1||K < ε. This is an open subset. Then we denote by
G0 the subgroup of G generated by U . It consists of all finite products of
elements of U . Since G0 is the union of translates of G it is an open subgroup
of G. But an open subgroup is automatically closed. This follows from the
decomposition of G into (say right-) cosets G0g. The complement of G0 is the
union of all cosets different from G0 and hence open. From the fact that G is
arcwise connected we get G = G0. This finishes the proof of 2.3. ⊔⊓

Now we are able to prove a multiplicative analogue of Runge’s approxima-
tion theorem.

2.4 Multiplicative version of Runge’s approximation theorem. Let
F : Q → GL(m, Z) be an invertible holomorphic matrix valued function on a
cuboid Q ⊂ C

n. There exists a sequence Fν : Cn → GL(n,C) of invertible
holomorphic matrix valued functions on the whole C

n that converges on Q
locally uniformly to F .
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Proof. Let K ⊂ Q be a compact subset and ε > 0. We have to construct
a holomorphic G : C

n → GL(m,C) such that ||F − G||K < ε. We choose
a cuboid K ⊂ Q0 whose compact closure is contained in Q. Because of 2.3
we can restrict to the case |F (z) − E| < 1 for z ∈ Q0. Then there exists a
holomorphic logarithm eH = F on Q0. By Runge’s approximation theorem
we can approximate H by a polynomial function P . Hence we can manage
||F − eP ||K < ε. ⊔⊓

The usual theory of infinite products can be generalized to matrix valued
functions. Recall that an infinite product (1+a1)(1+a2) · · · is called absolutely
convergent if the series |a1| + |a2| + · · · converges. It is known that then the
limit

lim
ν→∞

(1 + a1) · · · (1 + aν)

exists and that it is zero if and only of one of the factors 1 + ai is zero. Here
is a matrix valued variant.

2.5 Lemma. Let Gν be a sequence of holomorphic matrix valued functions on
some open domain in C

n such that there exists a convergent series a1+a2+ · · ·
of numbers with the property |Gν(z)| ≤ aν for all z. Then the limit

F (z) = lim
m→∞

F1 · · ·Fm, Fν := E +Gν ,

exists and is a holomorphic function. It is invertible if all Fν are.

Proof. The usual theory of infinite products shows that (1 + a1) · · · (1 + aν)
converges, say to a. Pν = F1 · · ·Fν are bounded ba a in the sense |Pν(z)| ≤ a
for all z. This follows from |E +Gi(z)| ≤ 1 + ai. Now we get

|Pν+1(z)− Pν(z)| = |Pν(z)Gν+1(z)| ≤ a · aν

From this follows that Pν is a uniform Cauchy sequence. Hence its limit F
exists and is a holomorphic function. We have still to show that it is invertible
if all Fν are. For this it is sufficient to show that the product of the detFµ

converges absolutely in the sense of infinite products. This means the the series
∑

(1 − detFν) converges absolutely. Since 1 − detFν is polynomial without
constant coefficient in the entries of Fν it can be bounded for all ν with aν < 1
by a bound C|aν |. This shows the convergence. ⊔⊓

3. Cartan’s gluing lemma

We consider two rectangles R′, R′′ ⊂ C in a very special position. We identify
C with R

2. In fact we assume that there are real numbers a < b < c < d such
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that the rectangles are of the form R′ = (a, c) × I and R′′ = (b, d) × I, where
I ⊂ R is a bounded open interval.

a b c d

For a cuboid D ⊂ C
n−1 we can consider Q′ = R′ ×D and Q′′ = R′′ ×D.

3.1 Cousin’s additive gluing lemma. Let Q′, Q′′ be two cuboids in C
n

in the special position Q′ := R′ × D, Q′′ := R′′ × D, where R′, R′′ ⊂ C are
rectangles of the form

R′ = (a, c)× I, R′′ = (b, d)× I (a < b < c < d).

Furthermore let f be an analytic function on Q′ ∩Q′′ Then one has:

There exist analytic functions

f ′ : Q′ −→ C, f ′′ : Q′′ −→ C

with the property

f(z) = f ′(z) + f ′′(z) for z ∈ Q′ ∩Q′′.

Proof. We know that the cohomology of O on a cuboid vanishes. By Leray’s
Lemma the cohomology H1(Q,O) can be computed by means of the Čech
cohomology with respect to the covering Q = Q′ ∪Q′′. Its vanishing is just the
statement of Lemma 3.1. ⊔⊓

We give a second proof of Lemma 3.1 under a slightly stronger assumption.
We assume that f can be extended to a an analytic function on an open set U
which contains Q′ ∩Q′′.

This proof uses the Cauchy integral formula applied to f as function of z1.
During the proof, z2, . . . , zn will kept fixed. The integrals in consideration will
depend analytically on z2, . . . , zn by Leibniz’s criterion. Hence it is sufficient
to restrict to the case n = 1. The Cauchy integral formula gives

f(z) =
1

2πi

∮

∂(R′∩R′′)

f(ζ)

ζ − z
dζ for z ∈ Q′ ∩Q′′.



16 Chapter II. Stein spaces

It is clear that the boundary ∂(R′ ∩ R′′) is the composition of two paths W ′

andW ′′, whereW ′ is contained in the boundary of R′ andW ′′ in the boundary
of R′′.

Then one has
f(z) = f ′(z) + f ′′(z) for z ∈ Q′ ∩Q′′

with

f ′(z) :=

∮

W ′

f(ζ)

ζ − z
dζ

and similarly f ′′. The functions f ′, f ′′ are analytic in the complements of
W ′,W ′′, hence in the whole Q′, Q′′ (actually in a much bigger domain!)

This second proof of the gluing lemma has the advantage to admit esti-
mates for the functions f ′, f ′′. For this improvement we assume that the
set U is bounded and also that the function f is bounded on U . Recall that
the construction of the gluing functions is given by a Cauchy integral along
f(z)/(ζ1− z1). This integral can be estimated by the standard estimate of line
integrals. This estimate involves the length of the curve. This is bounded by
the bounds of the domain U . We obtain.

3.2 Lemma. Assume that a bounded open set U ⊂ C
n which contains

the closure of Q′ ∩ Q′′ is given. There exists a constant M depending only
on U such that for each bounded holomorphic function f on U the solution
f ′ : Q′ → C, f ′′ : Q′′ → C of the additive gluing lemma can be obtained with
the estimate

|f ′(z)| ≤
M ||f ||

δ′(z)
(z ∈ Q′).

Here ||f || denotes the supremum of |f(z)| on U and δ′(z) denotes the minimal
distance of z to a boundary point of Q′ (similarly for f ′′).

Supplement. For M one can take 3 times the diameter of U . (The diameter
is the supremum of the Euclidean lengths of line segments contained in U .)

There is a multiplicative version of the gluing lemma that produces a decom-
position of the typ f(z) = f ′(z)f ′′(z). The proof is easy for scalar valued
functions. One takes a holomorphic logarithm of f and applies the additive
lemma to the logarithm and exponentiates then. The result follows then from
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the rule ea+b = eaeb. Due to Cartan the multiplicative lemma is also valid for
matrix valued f . But the proof is more involved. One reason is that the rule
ea+b = eaeb is false for matrices a, b.

3.3 Lemma (Cartan’s multiplicative gluing lemma). We take the same
assumptions as in 3.1. Furthermore let F : U → GL(m,C) be a holomorphic
function on an open set U which contains the closure of Q′ ∩ Q′′. Then there
exist holomorphic functions F ′ : Q′ → GL(m,C), F ′′ : Q′′ → GL(m,C) such
that

F (z) = F ′(z) · F ′′(z) for z ∈ Q′ ∩Q′′.

Proof. In a first step we mention that for the proof of the gluing lemma we can
assume that F (z) is close to the identity matrix (in the sense |F (z)| < ε for a
given ε > 0). The reason is that be the multiplicative Runge approximation we
can choose for an arbitrary F a G : Cn → GL(m,C) such that FG−1 is small
in the sense we need. So we get a decomposition FG−1 = F ′F ′′ and then a
decomposition F = F ′ · · · (F ′′G). ⊔⊓

In the next step we will explain the strategy of the proof (which only will
work if F is close enough to the unit matrix). We write F (Z) = E+G(Z) where
E is the unit matrix. Then we apply the additive lemma to the components
of G to produce a decomposition G(Z) = G′(Z) + G′′(Z), where G′, G′′ are
holomorphic on Q′, Q′′. Then as a first trial we set F ′ = E+G′, F ′′ = E+G′′.
Then

F ′F ′′ = (E +G′)(E +G′′) = E +G′G′′ +G′G′′ = F +G′G′′.

The term G′G′′ is a failure term. We want to get rid of it through an approxi-
mation method. What we described is only the first step of an approximation.
Hence we set

G0 = G, G′
0 = G′, G′′

0 = G′′.

By induction we will define a sequence Gν , G
′
ν , G

′′
ν . Here Gν should be an

invertible matrix valued function on some open neighborhood of Q′ ∩Q′′ and
Gν = G′

ν + G′′
ν a decomposition in sense of the additive lemma. The basic

formula for the procedure is

(E +G′
ν)(E +Gν+1)(E +G′′

ν) = (E +Gν).

Assume that we have constructed this sequence. Then we can define

F ′
ν = E +G′

ν , F ′′
ν = E +G′′

ν .

Then we have

F = [F ′
1F

′
2 · · ·F

′
ν ]Fν+1[F

′′
1 F

′′
2 · · ·F

′′
ν ] on Q′ ∩Q′′
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and the solution of the multiplicative decomposition should be obtained by

F ′ := lim
ν→∞

[F ′
1 · · ·F

′
ν ]

and similarly F ′′. Of course the hope is that Gν tends to zero for ν →∞ and
that the infinite products converge.

Before we start with the proof of the convergence, we have to overcome a
small technical difficulty. Of course we can define Gν+1 through the equation
(E + G′

ν)(E +Gν+1)(E +G′′
ν) = E + Gν if E + Gν is invertible and we get a

function that is holomorphic onQ′∩Q′′. But to apply the additive gluing lemma
we should have a holomorphic function on some open neighborhood of Q′ ×Q′′.
We will overcome this difficult through a small modification. We enlarge the
cuboid a little bit: We write Q as the intersection of a decreasing sequence of
cuboids (all contained in U) Q1 ⊃ Q2 ⊃ · · · such that each Qν contains the
(compact) closure of Qν+1. We define the decomposition Qν = Q′

ν ∪ Q
′′
ν into

two sub-cuboids in the obvious way such that Q′
ν ∩Q = Q′ and Q′′

ν = Q′′.

Now we can define the functions Gν inductively as holomorphic functions
on Q′

ν ∩ Q
′′
ν and then apply the additive gluing lemma to define G′

ν , G
′′
ν on

Q′
ν+1, Q

′′
ν+1. So lets recall:

The functions Gν are holomorphic on Q′
ν ∩ Q

′′
ν . One has the decomposition

Gν = G′
ν +G′′

ν on Q′
ν+1 ∩Q

′′
ν+1. Moreover one has (by definition of Gν+1)

(E +G′
ν)(E +Gν+1)(E +G′′

ν) = (E +Gν) on Q′
ν+1 ∩Q

′′
ν+1.

Of course the start is G0 = E − F .

Now we come to the problem of convergence of F ′
1 · · ·F

′
ν (where F ′

ν = E +
G′

ν). We want to use a standard criterion for convergence of infinite products.

Proof of 3.3 continued. The strategy to enforce convergence is to construct the
G′

ν with an estimate. What we finally want to have is an estimate of the forms

|Gν(z)| ≤ ̺ · 4
−ν for z ∈ Q′

ν ∩Q
′′
ν ,

|G′
ν(z)| ≤ C · 2

−ν for z ∈ Q′
ν+1

with certain constants C < 1/2, ̺. The condition on C will ensure that E +
G′

ν + G′′
ν is invertible. If we succeed to get such an estimate we are obviously

through.

Estimates for the gluing functions

We will obtain the estimates for Gν+1 from estimates of the G′
ν , G

′′
ν inductively.

But this demands also an estimate for the Gν . Recall that Gν+1 is defined by

(E +G′
ν)(E +Gν+1)(E +G′′

ν) = (E +G′
ν +G′′

ν) on Q′
ν+1 ∩Q

′′
ν+1.
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3.4 Lemma. Let A,B be m×m-matrices such that |A| ≤ 1/2 and |B| ≤ 1/2
and let be C a matric such that

(E +A)(E + C)(E +B) = E +A+B.

There exists a constant P depending only on m such that

|C| ≤ P |A||B|.

Proof. The set of all A with |A| ≤ 1/2 is compact. The matrix E + A is
invertible for these A. This can be shown by means of the geometric series.
The function |(E+A)−1| takes a maximum on |A| ≤ 1/2. Let P be the square
of this maximum. An easy computation gives

C = (E +A)−1(−AB)(E +B)−1.

This shows |C| ≤ P |A||B|. ⊔⊓

Proof of 3.3 continued. It is our goal to get an estimate for G′
ν , G

′′
ν . To apply

this lemma to our situation we make an assumption about our system of en-
larged cuboids. We assume that the minimal distance of any point of Qν+1 to
a boundary point of Qν is ≥ δ2−ν with some positive constant δ. It is clear
such a constant δ exists (depending on the shape of Q ∩Q′ ⊂ U).

We will proceed by induction to produce

|Gν(z)| ≤ ̺ · 4
−ν for z ∈ Q′

ν ∩Q
′′
ν ,

|G′
ν(z)| ≤ C2

−ν for z ∈ Q′
ν

|G′′
ν(z)| ≤ C2

−ν for z ∈ Q′′
ν

The constants C, ̺ will be determined during the proof. Whatever the constants
will be, we can get the beginning of the induction G0, G

′
0, G

′′
0 since, as we

mentioned at the beginning of the proof, G can be assumed as small as we
want. Assume that Gν and G′

ν , G
′′
ν have been constructed. Then we construct

Gν+1 and then the decomposition Gν+1 = G′′
ν+1 +G′′

ν+1. For Gν+1 we get the
estimate (Lemma 3.4)

|Gν+1(z)| ≤ PC
24−ν .

So, if we make the choice
̺ := 4PC2,

we get the desired inequality |Gν+1(z)| ≤ ̺·4
−(ν+1). For G′

ν+1 (similarly G′′
ν+1)

we get from Lemma 3.2 the estimate

|G′
ν+1(z)| ≤

2νM

δ
· ̺ · 4−(ν+1) =

2MPC2

δ
2−(ν+1).

So alle we need is the estimate

2MPC2 ≤ δC.

This is true if C is small enough.
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4. The syzygy theorem

We need a sheaf theoretic version of a famous result, namely Hilbert’s syzygy
theorem. Hilbert expressed this theorem for the polynomial ring but the proof
works literally also for the ring of power series. It states:

4.1 Hilbert’s syzygy theorem. Let M be a finitely generated module over
the ring R = C{z1, . . . , zn} of convergent power series in n variables. Let

Fn −→ Fn−1 −→ · · · −→ F1 −→M −→ 0

be a an exact sequence where the modules Fi are finitely generated free modules.
Then the kernel of Fn → Fn−1 is free.

Corollary. For any finitely generated module M there exists an exact sequence

0 −→ Fn+1 −→ · · · −→ F1 −→M −→ 0

with free modules Fi.

There is an immediate sheaf theoretic consequence.

4.2 Remark. Let M be a coherent sheaf on some open subset U ⊂ C
n and

a ∈ U a point. There exists an open neighborhood a ∈ V ⊂ U and an exact
sequence

0 −→ Fn+1 −→ · · · −→ F1 −→M|V −→ 0

where Fi
∼= Oni

V are free sheaves on V .

Proof. We choose a resolution of the moduleMa

0 −→ Fn+1 −→ · · · −→ F1 −→Ma −→ 0

by free OU,a-modules. We can extend this sequence using ??? and ???. ⊔⊓

There is a much better result:

4.3 Proposition. Let M be a coherent sheaf on a cuboid Q and Q0 ⊂ Q a
shrunken cuboid. Then there exists an exact sequence

0 −→ Fn+1 −→ · · · −→ F1 −→M|Q0 −→ 0

where Fi
∼= Oni

Q0
are free sheaves on Q0.

The proof of this proposition rests on the Cartan gluing lemma 3.3. During the
proof we use the following short notation. LetM be a coherent sheaf on some
open subset U ⊂ C

n. The sheaf M admits a free resolution over a compact
subset K ⊂ U if there exists an open set K ⊂ V ⊂ U and an exact sequence

0 −→ Fn+1 −→ · · · −→ F1 −→M|V −→ 0

with free OV -modules Fi.
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4.4 Lemma. As in 3.1 we consider two rectangles in the position

R′ = (a, c)× I, R′′ = (b, d)× I (a < b < c < d)

and then the cuboids Q′ = R′ ×D, Q′′ = R′′ ×D with a cuboid D ⊂ C
n. Let

M be a coherent sheaf over some open neighborhood of Q′ ∪Q′′.

Assume that M admits free resolutions over Q̄′ and Q̄′′. Then M admits a
free resolution over Q′ ∪Q′′.

Before we prove this lemma we show that 4.3 follows from it. For this we
decompose the cuboid Q0 into N2n closed small sub-cuboids, by dividing each
edge into N equidistant sub-cuboids as indicated in the figure.

By means of 4.2 and a simple compactness argument this can be done in such a
way thatM admits a free resolution over the closure of each small sub-cuboid.
Application of the gluing lemma 4.4 several times leads to a free resolution over
Q̄0. We describe this in more detail in the case n = 1: In the first step one
produces a resolution over the first row of squares in the above figure

Then we do the same with the second row and then glue the first with the
second row. This gives a free resolution over

It should be clear that this argument works in arbitrary dimension. So we are
reduced to the

Proof of 4.4. The resolutions over Q̄′ and Q̄′′ give two different resolutions over
the intersection. So we need a method to compare two different resolutions.
The principle can be understood already in the local case. So let us assume
that we have a finitely generated module M over a ring R and that we have
two different free resolutions

0 −→ Fn+1 −→ · · · −→ F1 −→ M −→ 0,
0 −→ Gn+1 −→ · · · −→ G1 −→ M −→ 0
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Two such resolutions are called isomorphic if there is a commutative diagram

0 −→ Fn+1 −→ · · · −→ F1 −→ M −→ 0,
↓ ↓ ‖

0 −→ Gn+1 −→ · · · −→ G1 −→ M −→ 0

where the vertical arrows are isomorphisms. It is not true that two resolutions
are isomorphic. The reason that there exist trivial resolutions of 0. By a trivial
resolution of 0 we understand a resolution of the form

0 · · · −→ F
id
−→ F −→ 0 −→ · · · −→ 0

with a free module F . One can define the direct sum of a resolution with such
a trivial resolutions. (The direct sum two resolutions

0 −→ Fn+1 −→ · · · −→ F1 −→ M −→ 0,
0 −→ Gn+1 −→ · · · −→ G1 −→ N −→ 0

is
0 −→ Fn+1 ⊕Gn+1 −→ · · · −→ F1 ⊕G1 −→M ⊕N −→ 0

with obvious arrows. In the case N = 0 we can identify M ⊕ 0 and M .)

By an elementary modification of a free resolution we understand a new free
resolution which one obtains if one takes the direct sum with a trivial resolution
of 0 as described above.

4.5 Lemma. Two free resolutions of an R-module M get isomorphic after
performing a finitely many elementary modifications (to both of them).

Proof. The proof is given by some induction. The first step is to modify F1, G1

if necessary. We take free generators of F1 and consider their images in M .
Taking inverse images of them in G1 we construct an R-linear map σ : F1 → G1

and similarly τ : G1 → F1 such that the diagrams

F1

σ

M

‖

G1 M

, F1 M

G1

τ

M

‖

commute. It may be that σ and τ−1 are isomorphisms. Then we do nothing.
Otherwise we add to the F -resolution the trivial resolution 0→ G1 → G1 → 0
and to the G-resolution the trivial resolution 0 → F1 → F1 → 0. We get new
resolutions

· · · −→ F3 −→ F2 ⊕G1 −→ F1 ⊕G1 −→ M −→ 0
↓ ‖

· · · −→ G3 −→ G2 ⊕ F1 −→ G1 ⊕ F1 −→ M −→ 0



§4. The syzygy theorem 23

where the vertical arrows have to be explained. The map F1 ⊕G1 → G1 ⊕ F1

is defined by means of the matrix

(
σ 1− στ
1 −τ

)

.

This has to be understood as follows. The action on a pair (f, g) is given by

(
σ 1− στ
1 −τ

)(
f
g

)

:=

(
σ(f) + g − στ(g)

f − τ(g)

)

.

The essential point is that this map is an isomorphism. The inverse map is
given though the matrix

(
−τ −1 + στ
−1 σ

)

.

One checks that the above diagram is commutative. This shows that we can
reduce to the situation

0 −→ Fn+1 −→ · · · −→ F1 −→ M −→ 0,
↓ ↓ ‖

0 −→ Gn+1 −→ · · · −→ G1 −→ M −→ 0

where the vertical arrow is an isomorphism. This was the first step of the
induction. We explain, how to continue. It might happen that Fν = Gν = 0
for ν ≥ 0. Then F2, G2 can be considered as submodules of F1, G1. The
map F1 → G1 maps F2 into G2 and conversely. Hence we have isomorphic
resolutions 0→ F2 → F1 →M → 0 and 0→ G2 → G1 →M and we are done.
Otherwise we construct now a linear map σ : F2 → G2 such the diagram

F2 −→ F1 −→ M −→ 0,
↓ ↓ ‖
G2 −→ G1 −→ M −→ 0

commutes. This can easily done by means of the free generators. Similarly we
construct τ : G2 → F2. We modify now with the complexes · · · 0 → G2 →
G2 → 0→ 0 and · · · 0→ F2 → F2 → 0→ 0 and reduce to a situation

· · · F2 −→ F1 −→ M −→ 0,
↓ ↓ ‖

· · · G2 −→ G1 −→ M −→ 0

where both vertical arrows are isomorphism. I should be clear now how the
induction runs and terminates.

Proof of 4.4 continued. We come back to the resolutions of M over Q̄′ and
Q̄′′. This means that there are two cuboids Q̄′ ⊂ Q̃′ and similarly Q̃′′ that
are located similarly as described in 4.4 and such that the resolutions of M
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are defined over Q̃′, Q̃′′. After finitely many modifications they are isomorphic
over the intersection. This means that the resolutions are of the form

0 O
mn+1

Q̃′
· · · Om1

Q̃′
M|Q̃′ 0

0 O
mn+1

Q̃′′
· · · Om1

Q̃′′
M|Q̃′′ 0

and over Q̃′ ∩ Q̃′′ there are isomorphisms σ such that the diagram

0 O
mn+1

Q̃′∩Q̃′′

σ

· · · Om1

Q̃′∩Q̃′′

σ

M|(Q̃′ ∩ Q̃′′) 0

0 O
mn+1

′∩Q̃′′
· · · Om1

Q̃′∩Q̃′′
M|(Q̃′ ∩ Q̃′′) 0

gets commutative.

The isomorphisms σ are given by invertible holomorphic functions Q̃′∩Q̃′′ →
GL(mi,O(Q̃

′ ∩ Q̃′′). Now can Cartan’s gluing lemma to write σ as product
σ = σ′σ′′, where σ′ is a holomorphic map from Q′ to GL(mi,O(Q

′)) and
similarly σ′′. To be precise we first have to shrink Q̃′ and Q̃′′ a little. We use
the isomorphisms σ′, σ′′ to modify the resolution ofM|Q̃′,M|Q̃′′ in such a way
that now the two resolutions over Q̃′ ∩ Q̃′′ are identical. If this is the case they
glue to single resolution ofM over Q̃′ ∪ Q̃′′. This finishes the proof of 4.4 and
then of 4.3. ⊔⊓

5. Theorem B for cuboids

We know from the lemma of Dolbeault III.6.9 that the cohomology groups
Hq(Q,OQ), q > 0, vanish for a poly disk Q. Since every rectangle is is biholo-
morphic equivalent to the unit disk this is also true for cuboids. This section
is devoted to the proof of

5.1 Theorem B for cuboids. Let M be a coherent sheaf on a cuboid Q.
Then

Hq(Q,M) = 0 for q > 0.

Corollary. Theorem B is true for polydisks.

The corollary follows since each rectangle in the complex plane is biholomorphic
equivalent to a disk. Technically it has advantages to work with cuboids instead
of polydisks.
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It will be necessary to shrink Q a little. This means that we have to consider
a cube Q0 whose (compact) closure is contained in Q. We write Q0 ⊂⊂ Q to
indicated this. There are two different steps. In the first basic step we will
prove

5.2 Theorem. let M be a coherent sheaf on a cuboid Q and Q0 a shrunken
cuboid. Then

Hq(Q0,M|Q0) = 0 for q > 0.

Proof. We just have to show: Let

0→ Fn+1 −→ · · ·F1 −→ F −→ 0

be an exact sequence of sheaves such that all Fi are acyclic. (This means that
the higher cohomology groups vanish). Then F acyclic. For the proof one
considers the sequence

0 −→ Fn+1 −→ Fn −→−→ 0.

(So K is a co-kernel). From the long exact cohomology sequence follows that
K is acyclic. There is an obvious exact sequence

0 −→ K −→ Fn−1 −→ · · · −→ F1 −→ K.

Now we can argue by induction on n. ⊔⊓

Proof of 5.1. The proof for arbitrary cuboids uses an exhaustion argument.
This argument also will work in the general case of arbitrary Steil spaces. But
in the case of a cuboid is it is technically easier. Hence we give the details
already in the case of the cuboid.

If X is an complex manifold we know that OX(X) gets the structure as a
Frèchet space if one equips it with the topology of uniform convergence on com-
pact subsets. Slightly more generally OX(X)n gets a Frèchet space if we equip
it with the product topology. Our starting point for constructing topologies is:

5.3 Lemma. Let X be a complex manifold and M ⊂ Om
U be a coherent

subsheaf of a free sheaf. ThenM(X) is a closed subspace of Om
X (X).

Proof. Let sk be sequence in M(X) that converges (uniformly on compact
subsets) to s ∈ OX(X)n. We have to show that s ∈ M(X). This means that
for any point a ∈ X we have sa ∈ Ma. We use the notation F = On

X,a and
M = Ma. We consider the maximal ideal m in the local ring OX,a. The
vector space F/mmF is finite dimensional for any m. Hence it carries a natural
topology. Now we consider the images s̄n, s̄ of sn, s in F/mmF . The essential
point is that s̄n converges to s̄ in this finite dimensional vector space. We
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have to explain the reason for this. Taking coordinates we can identify OX,a

with the ring of power series. Then OX,a/m
m can be identified with a C

N

where the map OX,a/m
m → C

N associates to a power series the vector of
coefficients aν of degree ≤ m. Now we have to use from complex analysis that
the locally uniform convergence sk → s implies the locally uniform convergence
of all partial derivatives and hence also of the Taylor coefficients. This proves
that s̄n → s̄ in F/mmF . Now we use that every sub-vector space of a finite
dimensional vector space is closed. This gives us that s̄ is in the image of M
since this is a sub-vector space. This can be expressed as

s ∈M +m
mF.

From this follows s ∈M by a pure algebraic argument: One has to use Krull’s
intersection theorem. Application of the polydisks intersection theorem com-
pletes the proof of 5.3. ⊔⊓

LetM be a coherent sheaf on a cuboid Q. We shrink Q to a cuboid Q0. We
want to construct a topology on M(Q0) For this purpose we slightly enlarge
the shrink. That is we choose a cuboid Q1 such that Q0 is a shrink of Q1 and
Q1 is a shrink of Q. We know thatM|Q1 is finitely generated. This means that
there exists a surjective map On

Q1
→M|Q1. From the weak form of Theorem

B (5.2) we we get the surjectivity

OQ(Q0)
n −→M(Q0).

From 5.3 follows that the kernel is closed. In this way we get a structure as
Frèchet space onM(Q0). It is rather clear that this structure is independent
of the presentation On

Q1
→M|Q1. Hence we obtain:

5.4 Lemma. Let Q be a cuboid andM a finitely generated coherent sheaf on
Q. Let Q0 be a shrunken cuboid. Then M(Q0) carries a unique structure as
Frèchet space with the following property. For each cuboid Q0 ⊂⊂ Q1 ⊂⊂ Q
and all surjective maps On

Q1
→M|Q1 the induced map On

Q(Q0) →M(Q0) is
continuous.

A direct consequence of Runge’s approximation theorem 2.1 is:

5.5 Runge approximation theorem for coherent sheaves (weak form).
Let Q0 ⊂⊂ Q1 ⊂⊂ Q be cuboids and let M be a coherent sheaf on Q. The
image of the restriction mapM(Q1)→M(Q0) is dense.

Now we collected all tools for:

Proof of Theorem B for cubes 5.1. We choose a sequence of cuboids

Q1 ⊂⊂ Q2 ⊂⊂ Q3 ⊂⊂ · · · ⊂⊂ Q



§5. Theorem B for cuboids 27

whose union is Q. This is an open covering U of Q. We know Hq(Qν ,M|Qν) =
0 for q > 0. We want to show that Hq(Q,M) = 0 for q > 0. From Leray’s
theorem follows that this cohomology group can be computed by means of Čech
cohomology

Hq(U,M) = Hq(Q,M).

Similarly we get

Hq(Um,M|Qm) = Hq(Qm,M|Qm) (= 0),

where Um denotes the (finite) covering of Um by U1, . . . , Um. We recall that
the Čech complex has been denoted by Cq(U,M). For sake of simplicity we
use the notation Cq(Um,M) := Cq(Um,M|Qm). There are natural restriction
maps

Cq(U,M) −→ Cq(Um,M) −→ Cq(Uk,M) for m > k

and there is a natural (injective) extension map

Cq(Uk,M) −→ Cq(Um,M) for m > k,

a cochain s is extended by the definition s(i0, . . . , iq) = 0 if one of the indices
is out of the range (greater than k).

We consider now a cochain s ∈ Cq(U,M), q > 0, with the property ds = 0
We have to show that there is cochain t ∈ Cq−1(U,M) with dt = s. We denote
by s(m) ∈ Cq(Um,M) for some m > 0 the restriction of s. Since ds = 0 implies
ds(m) = 0 we get s(m) = dt(m) with t(m) ∈ Cq−1(Um,M). We can restrict t(m)

to Cq−1(Um−1,M). From the restriction we can subtract t(m−1). We denote
the result simply by t(m) − t(m−1). We know d(t(m) − t(m−1)) = 0. There are
two different cases. The case q > 1 is very easy, the difficult part will be the
case q = 1.

First case, q > 1. In this case we have still Hq−1(Um−1,M) = 0. Hence there
exists

αm−1 ∈ C
q−2(Um−1,M) such that t(m) − t(m−1) = dαm−1.

We denote the natural extension of αm−1 to Cq−2(Uk,M), k > m− 1, by the
same letter. Then we can define

T (m) := t(m) − d
(m−1∑

k=1

α(k)
) (

∈ Cq−1(Um,M)
)
.

The T (m) are modifications of the t(m) in the sense that the satisfy s(m) =
dT (m). The advantage of the modification is that we now have that the system
T (m) is compatible. We omit the simple calculation for it. This means that the
restriction of T (m) to Um−1 is T (m−1). This implies that they glue to a cochain
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t ∈ Cq−1(U,M). But with this cochain we clearly have dt = s. This is want
we wanted to prove.

Second case, q = 1. We consider the sequence of Frèchet spaces

M(Q1)←−M(Q2)←−M(Q2)←− · · ·

The image of each arrow is dense. Recall that we have chosen t(m) with dt(m) =
s(m). Now q = 1. The elements of C0(Um,M) attach to each index k ≤ m
a section from M(Qk). If the element is closed, then these sections glue to a
section fromM(Qm). HenceM(Qm) can be identified with the closed elements
from C0(Um,M). In this way t(m) − t(m−1) can be considered as element of
M(Qm−1). As in the first case we will have to replace t(m) by some other
T (m) = t(m) + α(m). Here α(m) should be a zero cochain with the property
dα(m) = 0. As we explained this can be considered as element ofM(Qm). The
construction of α(m) will use Runge approximation. The aim of the construction
is that the sequence T (m) converges. Since the entries of this sequence are in
different spaces, we have to explain what convergence means: It means that
there exist an T ∈ M(Q) such that for each k the sequence (t(m))≥k, more
precisely its image inM(Qk) converges to T |M(Qk). To prove the convergence,
we will use the Cauchy criterion: For each k we will have to show:

For each neighborhood 0 ∈ U ⊂M(Qk) there exists an N such that the image
of T (µ) − T (ν) inM(Qk) is contained in U for µ > ν ≥ 0.

We will use also that each space M(Qm) has a countable fundamental
system of neighborhoods of the origin (Frèchet spaces are metrisable).

For each m we choose a fundamental system of neighborhoods of the origin
as indicated in the figure

M(Q1) ←− M(Q2) ←− M(Q3) ←− · · ·
∪ ∪ ∪
U11 ←− U21 ←− U31 · · ·
∪ ∪ ∪
U12 ←− U22 ←− U32 · · ·
∪ ∪ ∪
U13 ←− U23 ←− U33 ←− · · ·
∪ ∪ ∪
...

...
...

The horizontal arrows indicate that Ukm is mapped to Uk,m−1 under the restric-
tion mapM(Qm)→M(Qm−1). We also want to have that the neighborhoods
shrink rapidly in the sense Um,k+1+Um,k+1 ⊂ Um,k. It clear that such a system
of neighborhoods can be constructed. Then induction shows

ν+1 copies
︷ ︸︸ ︷

Um,k+ν + · · ·+ Um,k+ν ⊂ Um,k.
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After this preparation we come the construction of T (m) = t(m) + α(m). What
we want to have is T (m+1) − T (m) ∈ Um,m. It is now problem to construct
this by induction. One starts with T (1) = t(1). Assume that T (1), . . . T (m) have
been constructed. We construct T (m+1). For this we consider T (m+1) − t(n) ∈
M(Qm). By the approximation theorem there exists an element α(m+1) ∈
M(Qm+1) such that T (m) − t(m+1) − α(m+1) ∈ Um,m. Now T (m+1 = t(m+1) +
α(m+1) has the desired property.

We have to check that T (m) is a Cauchy sequence in the described sense.
For this wa have to fix an k and to consider a neighborhood of the origin in
M(Qk). We can take this neighborhood in the form U = Uk,l with some l. We
have to construct an N ≥ k such that

T (µ) − T (ν) −→ U for µ ≥ ν ≥ N.

(The arrow just indicates that —after restriction to M(Qk)— the element
should be contained in U .) We claim that a possible choice is N = max(k, l+2).
For this we decompose

T (µ) − T (ν) = (T (µ) − T (µ−1)) + · · ·+ (T (ν+1) − T (ν)).

We can consider this element inM(Qν). There it lies in

Uν,µ−1 + Uν,µ−2 + · · ·+ Uν,ν ⊂

µ−ν−2 copies
︷ ︸︸ ︷

Uν,ν + · · ·+ Uν,ν ⊂ Uν,ν−(µ−ν−2) = Uν,2ν−µ−2.

Hence the image of T (µ) − T (ν) inM(Qk) is in Uk,2ν−µ−2. Since 2ν − µ− 2 ≥
ν−2 ≥ N −2 ≥ l we obtain T (µ)−T (ν) ∈ Uk,l as desired. So the global section
T “= limT (m)” has been constructed.

Finally we claim dT = s (globally). Since dT (k) = s(k) we only have to show
that T |Uk − T

(k) is closed. From construction is a limit of the close elements.
Now d is clearly a continuous operator. This finishes the proof of 5.1. ⊔⊓

6. Theorem A and B for Stein spaces

The basic theorems about Stein spaces are

6.1 Theorem A for Stein spaces. Let X be a Stein space andM a coherent
sheaf. For each a ∈ X the stalkMa can be generated by (the germs of) finitely
many global sections.
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6.2 Theorem B for Stein spaces. Let X be a Stein space andM a coherent
sheaf. Then

Hq(X,M) = 0 for q > 0.

The formulation seems to indicate that we have two independent theorems.
Actually theorem A is an easy consequence of theorem B. To prove this we
consider the vanishing ideal sheaf J ⊂ OX of the point a and then for an
arbitrary natural number Then we use the exact sequence

0 −→ JM −→M −→M/J −→ 0.

From theorem B we get that M(X) → (M/J )(X) is surjective. Notice that
(M/J )(X) =Ma/mMa. Heremmeans the maximal ideal ofOX,a. We denote
by M the submodule ofMa that is generated by the image ofM(X) and by
N =Ma/M the factor module. The above argument showsMa =M +mMa

or mN = N . The proof now follows from the lemma of Nakayama.

For the proof of theorem B we will use an exhaustion by Oka domains.
So the procedure is similar as in the proof of Theorem B for cuboids. But
there are some technical difficulties that arise. One of them is to define a
structure as Frèchet space on M(X) for singular X. Actually this is possible
for each coherent sheaf on an arbitrary complex space in a natural way. But
the construction is difficult. This is already visible for the structure sheaf.
Actually on can try to equip OX(X) with the topology of uniform convergence
on compact sets. To make this work correctly one needs that the limit of a
sequence of analytic functions that converges uniformly on each compact subset
is analytic too. Actually this is true but unfortunately rather deep and not at
reach at the moment. Hence we restrict to topologize M(X) only in special
cases.

We will use 5.3 to construct a Frèchet topology on OX(X) for special non-
smooth complex spaces. Let P ⊂ C

n be a polydisk andX ⊂ P a closed analytic
subset. We have a natural map OP (P ) → OX(X). This map is surjective by
Theorem B for polydisks. To see this just consider the ideal sheaf J ⊂ OP

corresponding to X. Then we have a short exact sequence

0 −→ J −→ OP −→ OP /J −→ 0.

From theorem B we get H1(P,J ) = 0 and form this the surjectivity of
OP (P )→ OP (P )/J (P ). There is a natural isomorphism OX(X) ∼= OP /J (P ).
This gives the claimed surjectivity OP (P )→ OX(X). We know from 5.3 that
the kernel is closed. Hence the factor space of XP (P ) by this kernel carries a
natural structure as Frèchet space. We transport this structure to OX(X) to
get a structure as Frèchet space there.
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6.3 Proposition. Let X be a complex space such there exists polydisk P and
a closed holomorphic embedding α : X → P. There exists a unique structure
as Frèchet space on OX(X) such that the induced map OP (P ) → OX(X) is
continuous. This structure is independent of the choice of the embedding α.

The open mapping theorem for Frèchet spaces shows that OP (P ) must carry
the quotient topology of OP (P ). Hence we only have to show the independence
of the choice of the embedding α. Let β : X → P ′ be another closed embedding.
We connect both embeddings to an embedding

(α, β) : X → P × P ′.

We consider the natural maps

OP (P ) −→ OP×P ′(P × P ′) −→ OX(X).

the first one is associated to the projection P × P ′ → P . Now we first
equip OX(X) with the quotient topology of OP×P ′(P × P ′). Since OP (P ) →
OP×P ′(P × P ′) is continuous by trivial reasons we get with this topology that
OP (P ) → OX(X) is continuous. By the open mapping theorem OX(X)
must carry the quotient topology of OP (P ). So we see that OP (P ) and
OP×P ′(P × P ′) induce the same topology. Since the roles of P and P ′ can
be interchanged, we see that OP (P ) and OP ′(P ′) induce the same topology.

⊔⊓

We get a first version of a variant of Runge’s approximation theorem.

6.4 Approximation theorem, first version. Let X ′ be a complex space
that can be embedded into some polydisk β : X ′ →֒ Q′ ⊂ C

n as closed complex
subspace. Let X be an open subset of X ′ that also can be embedded into some
polydisk α : X →֒ Q ⊂ C

m as closed complex subspace. We assume that the
function α extends to a holomorphic map X ′ → C

m. Then the following holds:

1) The natural map OX′(X ′)→ OX(X) is continuous.
2) The image of this map is dense.

Proof. We denote the extension of α also by α : X ′ → C
m. The two poly-

disks can be very different and not be compared directly. We improve this by
modifying them. Instead of α : X → Q we consider

X −→ Q×Q′, x 7−→ (α(x), β(x)).

This is also an closed embedding. Similarly we consider

X ′ −→ C
m ×Q′, x 7−→ (α(x), β(x)).

which is also a closed embedding. Since the topologies don’t depend on the
choice of the embeddings, we can assume from advance.
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The polydisks Q,Q′ are in the same C
n and we have Q ⊂ Q′. The diagram

X →֒ Q
∩ ∩
X ′ →֒ Q′

commutes.

From this diagram we get a map OQ′(Q′) → OQ(Q) → OX(X) that clearly
is continuous. From the universal property of the quotient topology we get
that OX′(X ′)→ OX(X) is continuous. The claimed density now follows from
the density of the image of OQ′(Q′) → OQ(Q). This is a consequence of the
possibility power series expansions in polydisk.

We need an extension of 6.4 to finitely generated coherent sheaves. For this
we need a generalization of 5.3.

6.5 Lemma. Let X be a complex space that can be embedded as closed
analytic subset into a polydisk. Let M ⊂ On

X be a coherent subsheaf of a free
sheaf. ThenM(X) is closed in OX(X)n.

Proof. Let X → P be the closed embedding into a polydisk. It is sufficient to
show that inverse image ofM(X) in OP (P )

m is closed. ButM is the module
of global sections of a coherent sub-sheaf of On

P . Hence we can apply 5.3.
⊔⊓

6.6 Lemma. Let X be a complex space that is embeddable as as closed
analytic subset into a polydisk. LetM be a finitely generated coherent sheaf on
X. Then there exists a unique structure as Frèchet space on M(X) such that
for each presentation On

X →M the map OX(X)n →M(X) is continuous.

The approximation theorem 6.4 now has an obvious generalization.

6.7 Runge’s approximation theorem, second version. Let X ′ be a
complex space that can be embedded into some polydisk β : X ′ →֒ Q′ ⊂ C

n

as closed complex subspace. Let X be an open subset of X that also can be
embedded into some polydisk α : X →֒ Q ⊂ C

m as closed complex subspace. We
assume that the function α extends to a holomorphic map X ′ → C

m. Assume
thatM is a finitely generated coherent sheaf on X ′. Then the following holds:

1) The natural mapM(X ′)→M(X) is continuous.
2) The image of this map is dense.

With the so far developed tools the proof of theorem B is literally the same as
for a cube 5.1. So can keep short. Using 1.6 we can construct an exhaustion

U1 ⊂⊂ U2 ⊂⊂ U3 ⊂⊂ · · · ⊂⊂ X

by Oka domains. We know that the cohomology of M vanishes on each Um.
This follows from Theorem B for polydisks. We also have a Frèchet space
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structure onM(Um) such the image inM(Um) is dense. (Notice that 5.5 can
be applied since Oka domains are embedded into polydisks by global functions.)
So we have produced the analogue situation as we had in the case of a cuboid.
The proof that we started behind 5.5 now works literally. ⊔⊓

7. Meromorphic functions

An element a of a ring R is called a non-zero divisor if ax = 0⇒ x = 0. Let S
be a set of all non-zero divisors. Assume that 1 ∈ S and that s, t ∈ S implies
st ∈ S. Then we call S a multiplicative subset. There exists a ring RS that
contains R as subring such that the elements of S are invertible in RS and
such that each element of RS can be written in the form a/s, a ∈ R, s ∈ S.
Such a ring is uniquely determined up to canonical isomorphism. It is called
the total quotient ring of R. In the case that R is an integral domain, one can
take for S the set of all non-zero elements and RS then is the quotient field of
R. Let f : R1 → R2 be a ring homomorphism and let S1 ⊂ R1, S2 ⊂ R2 be
multiplicative subsets such that f(S1) ⊂ S2 then the homomorphism f extends
in a natural way to a homomorphism RS1

→ RS2
.

Let O be sheaf of rings. For an open subset U we consider the set S(U) of
all f ∈ O(U) such that f |V is a non-zero divisor in O(V ) for each open V ⊂ U .
In particular, the elements of S(U) are non-zero divisors in O(U). Hence one
can consider

O(U)S(U) =
{
f/g; f ∈ O(U), g ∈ S(U)

}
.

There are obvious restriction maps, such that this assignment gives a presheaf.
We denote the generated sheaf of rings by M. The natural map O → M is
injective since the functor

”
generated sheaf“ is exact. Hence we can consider

O as a subsheaf ofM.

There is a natural map O →M of sheaves of rings and this map is injective,
since the functor “generated sheaf” is exact.

We callM the sheaf of meromorphic sections of O. The construction ofM
is compatible with restriction to open subsets U . This means that M|U can
be identified with the sheaf of meromorphic sections of O|U . Let f ∈ M(X)
be a section of M. Consider the set of all open subsets U ⊂ X such that
f |U ∈ O(U). The union of all these U is an open subset Uf of X. Clearly
f |Uf ∈ O(Uf ). We call Uf the domain of holomorphy of f .

Let a be a point. There is a natural map fromMa into the total quotient
ring of Oa. Clearly this is injective.

7.1 Lemma. Let X be a topological space and let O be a coherent sheaf of
rings. The natural homomorphism of Ma into the total quotient ring of OX,a

is an isomorphism.
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Proof. Let f ∈ OX(U) be an element such that fa is a non-zero divisor in OX,b.
We know from the coherence theorems that then fb is a non-zero divisor in a
full neighborhood. This implies Lemma 7.1. ⊔⊓

Let f ∈ M(X) be a section of M. Consider the set of all open subsets
U ⊂ X such that f |U ∈ O(U). The union of all these U is an open subset Uf

of X. Clearly f |Uf ∈ O(Uf ). We call Uf the domain of holomorphy of f .

So farM is a rather abstract object, even if O ⊂ CX is a sheaf of continuous
functions, for example if (X,OX) is a complex space in the sense of Serre. To
remedy this situation, we make the following assumption.

7.2 Assumption. Assume that O is a subsheaf of rings of CX . Assume that
for each open subset U ∈ O and that each f ∈ O(U) with the property f(x) 6= 0
is invertible in O(U).

This property is fulfilled of course for complex spaces in the sense of Serre.

7.3 Proposition. Assume that the assumption above is fulfilled. Let f a
global section ofMX . The domain of holomorphy Uf is open and dense in X.
Assume that there exists an open and dense subset U that is contained in Uf

and such that f(x) = 0 for all x ∈ U . Then f = 0.

Proof. Let a ∈ X be a point in the complement of U . There exists a non-
zero divisor ha ∈ OX,a such that hafa ∈ OX,a. This implies hf = in a full
neighborhoodW of a where h ∈ OX(W ) is a representative of ha. The function
fh is zero in U ∩W . By continuity it is zero in W . We can assume that hb is a
non-zero divisor of all b ∈W . We obtain f |W = 0. This shows f = 0. ⊔⊓

So we see that global sections of MX can be considered as holomorphic
functions on dense open subsets with additional properties. For this reason we
call sections ofMX simply “meromorphic functions”.

8. Cousin problems

An additive Cousin datum on a complex X space is an open covering U =
(Ui)i∈I on X and a collection of meromorphic functions fi ∈ MX(Ui) for all
indices i such that for each two indices the difference fi− fj is holomorphic on
Ui ∩Uj . One then can ask whether there exists a global meromorphic function
f ∈MX(X) such that f − fi is holomorphic on Ui for all i.

8.1 The first Cousin problem. Let X = (X,OX) be a complex space. Does
any additive Cousin datum admit a solution?

In standard courses about complex analysis one proves the Mittag-Leffler the-
orem which in a constructive way gives an positive answer in the case X = C.
Again we consider an open covering U = (Ui)i∈I of a complex space.
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A multiplicative Cousin datum is a collection of holomorphic functions fi
with the following property:

a) The set of zeros of fi is thin in Ui.
b) There exists a holomorphic function fij on Ui ∩Uj without zeros such that

fi = fijfj on Ui ∩ Uj .

This means that the zeros of fi and fj in Ui ∩ Uj are the same. Hence a
multiplicative Cousin datum should be considered as prescription of zeros. On
can ask whether there exists a global holomorphic function f : X → C such
that f = ϕifi on Ui with a holomorphic function ϕ : Ui → C without zeros.

8.2 Second Cousin problem. Let X be a complex space. Does every
multiplicative Cousin datum admit a solution?

We are able to prove now:

8.3 Theorem. Let U = (Ui)i∈I be an open covering of a Stein space X
fi ∈ MX(Ui) collection of meromorphic functions for all indices i such that
for each two indices the difference fi − fj is holomorphic on Ui ∩ Uj. Then
there exists a global meromorphic function f ∈ MX(X) such that f − fi is
holomorphic on Ui for all i.

Proof. We consider the short exact sequence

0 −→ OX −→MX −→MX/OX −→ 0.

We consider the images si of fi in (MX/OX)(Ui). By assumption they agree in
the intersections and hence define a global section (MX/OX)(X). Now from
the long exact cohomology sequence follows that M(X) −→ (MX/OX)(X)
is surjective. Choose f ∈ M(X) with image s. Then clearly fa − (fi)a is
contained in OX,a for all a ∈ Ui. This shows that f − fi is holomorphic on
Ui. ⊔⊓

The second Cousin problem

Again we consider an open covering U = (Ui)i∈I of a complex space. A mul-
tiplicative Cousin datum is a collection of holomorphic functions fi with the
following property:

a) The set of zeros of fi is thin in Ui.
b) There exists a holomorphic function fij on Ui ∩Uj without zeros such that

fi = fijfj on Ui ∩ Uj .

This means that the zeros of fi and fj in Ui ∩ Uj are the same. Hence a
multiplicative Cousin datum should be considered as prescription of zeros. On
can ask whether there exists a global holomorphic function f : X → C such
that f = ϕifi on Ui with a holomorphic function ϕ : Ui → C without zeros.

For a solution of this Cousin problem we need the sheaf ZX of locally
constant functions with values in Z.
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8.4 Theorem. Let X be a Stein space with the property H2(X, ZX) = 0.
Then any multiplicative Cousin problem has a solution.

Proof.. For any open subset U ⊂ X we consider the set O∗
X(U) of holomorphic

functions without zeros on U . This is a group under multiplication. (This
statement easily can be reduced to the case C

n where it is known.) With usual
restriction maps we get a sheaf O∗

X of abelian groups. Let f ∈ OX(U). Then
e2πif is holomorphic too. (Again this follows from the case X = C

n.) We claim
that the sequence

0 −→ ZX −→ OX −→ O
∗
X −→ 0

is exact. The only problem is the surjectivity. For this one has to show: Let
a ∈ X be a point and f a holomorphic function without zeros on some open
neighborhood of a. Then there is a holomorphic function g in a maybe smaller
open neighborhood of a with the property eg = f . This also can be reduced
easily to the case X = C

n. For the construction of g one may assume that
|f(a)− 1| < 1. Then one can make use of the logarithm series.

Now the proof of 8.4 is easy. From the assumptions and the long exact
cohomology sequence we get H1(X,O∗

X) = 0. A Cousin distribution is nothing
but a Čech cocycle. The solution of the Cousin problem means that this cocycle
is trivial. Hence we have to show Ȟ1((U,O∗

X) = 0. But we know that the first
Čech cohomology groups are embedded into the true cohomology. ⊔⊓

One should investigate now what it means that H2(X, ZX) is zero. Clearly
this depends only on the topological nature of X. Hence it is more a problem
of topology than of complex analysis. Hence we only mention

1) H2(Cn, ZCn) = 0. (This has been proved in III.6.8.)
2) H2(U, ZU ) = 0 for an open subset U ⊂ C. (We will not prove it here.)

We recall that in standard courses on complex functions the solution of the mul-
tiplicative Cousin problem for X = C is given in a constructive way by means
of Weierstrass products. So we obtained a very remarkable generalization using
cohomological methods.
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1. Some homological algebra

A complex A
.
is a sequence of homomorphisms of abelian groups

· · · An−1

dn−1

An
dn

An+1 · · ·

such that the composition of two consecutive is 0, dn ◦ dn−1 = 0. Usually one
omits indices at the d-s and writes simply d = dn and hence d ◦ d = 0, which
sometimes is written as d2 = 0. The cohomology groups of A

.
are defined as

Hn(A
.
) :=

Kernel(An → An+1)

Image(An−1 → An)
(n ∈ Z).

They vanish if and only if the complex is exact. Hence the cohomology groups
measure the absence of exactness of a complex.

A homomorphism f
.
: A
.
→ B

.
of complexes is a commutative diagram

· · · An−1

fn−1

An

fn

An+1

fn+1

· · ·

· · · Bn−1 Bn Bn+1 · · ·

It is clear how to compose two complex homomorphisms f
.
;A
.
→ B

.
, g
.
;B
.
→

C
.
to a complex homomorphism g

.
◦ f
.
: A
.
→ C

.
. A sequence of complex

homomorphisms
· · · −→ A

.
−→ B

.
−→ C

.
−→ · · ·

is called exact, if all the induced sequences

· · · −→ An −→ Bn −→ Cn −→ · · ·

are exact. There is also the notion of a short exact sequence of complexes

0 −→ A
.
−→ B

.
−→ C

.
−→ 0

Here 0 stands for the zero-complex (0n = 0, dn = 0 for all n).
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A homomorphism of complexes A
.
→ B

.
induces naturally homomorphisms

Hn(A
.
) −→ Hn(B

.
)

of the cohomology groups (use ???). These homomorphisms are compatible
with the composition of complex-homomorphisms. A less obvious construction
is as follows: Let

0 −→ An −→ Bn −→ Cn −→ 0

be a short exact sequence of complexes. We construct a homomorphism

δ : Hn(C
.
) −→ Hn+1(A

.
).

Let [c] ∈ Hn(C
.
) be represented by an element c ∈ Cn. Take a pre-image

b ∈ Bn and consider β = db ∈ Bn+1. Since β goes to d(c) = 0 in Cn+1 there
exists a pre-image a ∈ An+1. This goes to 0 in An+2 (because An+2 is imbedded
in Bn+2 and b goes to d2(b) = 0 there). Hence a defines a cohomology class
[a] ∈ Hn+1(A

.
). It is easy to check that this class doesn’t depend on the above

choices.

1.1 Fundamental lemma of homological algebra. Let

0 −→ A
.
−→ B

.
−→ C

.
−→ 0

be a short exact sequence of complexes. Then the long sequence

· · · → Hn−1(C
.
)

δ
→ Hn(A

.
)→ Hn(B

.
)→ Hn(C

.
)

δ
→ Hn+1(C

.
)→ · · ·

is exact.

We leave the details to the reader. ⊔⊓
There is a second lemma of homological algebra which we will need.

1.2 Lemma. Let

0 0 0 0

0 A00 A01 A02 A03 · · ·

0 A10 A11 A12 A13 · · ·

0 A20 A21 A22 A23 · · ·

0 A30 A31 A32 A33 · · ·

...
...

...
...
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be a commutative diagram where all lines and columns are exact besides the
first column and the first row (those containing A00). Then there is a natu-
ral isomorphism between the cohomology groups of the first row and the first
column,

Hn(A
., 0) ∼= Hn(A0, .)

For n = 0 this is understood as

Kernel(A00 −→ A01) = Kernel(A00 −→ A10).

The proof is given by “diagram chasing”. We only give a hint how it works.
Assume n = 1. Let [a] ∈ H1(A0,.) be a cohomology class represented by an
element a ∈ A0,1. This element goes to 0 in A0,2. As a consequence the image
of a in A1,1 goes to 0 in A1,2. Hence this image comes from an element α ∈ A1,0.
Clearly this element goes to zero in A2,0 (since it goes to 0 in A2,1.) Now α
defines a cohomology class [α] ∈ H1(A

.,0). There is some extra work to show
that this map is well-defined. ⊔⊓

2. The canonical flabby resolution

A sheaf F is called flabby, if F (X) → F (U) is surjective of all U . Then
F (U)→ F (V ) is surjective for all V ⊂ U . An example for a flabby sheaf is the
Godement sheaf F (0). Recall that we have the exact sequence

0 −→ F −→ F (0).

We want to extend this sequence. For this we consider the sheaf F (0)/F and
embed it into its Godement sheaf,

F (1) := (F (0)/F )
(0)
.

In this way we get a long exact sequence

0 −→ F −→ F (0) −→ F (1) −→ F (2) −→ · · ·

If F (n) has been already constructed then we define

F (n+1) :=
(
F (n)/F (n−1)

)(0)
.

The sheaves F (n) are all flabby. We call this sequence the canonical flabby
resolution or the Godement resolution. Sometimes it is useful to write the
resolution in the form

· · · 0 F 0 0 0 · · ·

· · · 0 F (0) F (1) F (2) F (3) · · ·
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Both lines are complexes. The vertical arrows can be considered as a complex
homomorphism. The induced homomorphism of the cohomology groups are
isomorphisms. Notice that only the 0-cohomology group of both complexes is
different from 0. This zero cohomology group is naturally isomorphic F .

Now we apply the global section functor Γ to the resolution. This is

ΓF := F (X).

We obtain a long sequence

0 −→ ΓF −→ ΓF (0) −→ ΓF (1) −→ ΓF (2) −→ · · ·

The essential point is that this sequence is no longer exact. we only can say
that it is a complex. We prefer to write in the form

· · · 0 ΓF 0 0 0 · · ·

· · · 0 ΓF (0) ΓF (1) ΓF (2) ΓF (3) · · ·

The second line is

· · · −→ 0 −→ΓF (0) −→ ΓF (1) −→ ΓF (2) −→ · · ·

↑

zero position

Now we define the cohomology groups H
.
(X,F ) to be the cohomology groups

of this complex:

Hn(X,F ) :=
Kernel(ΓF (n) −→ ΓF (n+1))

Kernel(ΓF (n−1) −→ ΓF (n))

(We define ΓF (n) = 0 for n < 0.) Clearly

Hn(X,F ) = 0 for n < 0.

Next we treat the special case n = 0,

H0(X,F ) = Kernel(ΓF (0) −→ ΓF (1)).

Since the kernel can be taken in the presheaf sense, we can write

H0(X,F ) = ΓKernel(F (0) −→ F (1)).

Recall that F (1) is a sheaf, which contains F (0)/F as subsheaf. We obtain

H0(X,F ) = ΓKernel(F (0) −→ F (0)/F )

This is the image of F in F (0) an hence a sheaf which is canonically isomorphic
to F .
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2.1 Remark. There is a natural isomorphism

H0(X,F ) ∼= ΓF = F (X).

If F → G is a homomorphism of sheaves, then the homomorphism Fa → Ga

induce a homomorphism F (0) → G(0). If F → G → H is an exact sequence.
Then F (0) → G(0) → H(0) is also exact (already as sequence of presheaves).
More generally

2.2 Lemma. Let 0 → F → G → H −→ 0 be an exact sequence of sheaves.
Then the induced sequence 0 → F (n) → G(n) → H(n) → 0 is exact for every
n.

The proof is by induction. One needs the following lemma about abelian
groups:

Let

0 0 0

0 A00 A01 A02 0

0 A10 A11 A12 0

0 A20 A21 A22 0

0 0 0

be a commutative diagram such that the three columns and the first to lines are
exact. Then the third line is also exact.

This follows from 1.2. ⊔⊓

Before we continue we need a basic lemma:

2.3 Lemma. Let 0→ F → G→ H → 0 be a short exact sequence of sheaves.
Assume that F is flabby. Then

0→ ΓF → ΓG→ ΓH → 0

is exact.
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Proof. Let h ∈ H(X). We have to show that h is the image of an g ∈ G(X).
For the proof one considers the set of all pairs (U, g), where U is an open subset
and g ∈ G(U) and such that g maps to h|U . This set is ordered by

(U, g) ≥ (U ′, g′)⇐⇒ U ′ ⊂ U and g|U ′ = g′.

From the sheaf axioms follows that every inductive subset has an upper bound.
By Zorns’s lemma there exists a maximal (U, g). We have to show U = X. If
this is not the case, we can find a pair (U ′, g′) in the above set such that U ′ is
not contained in U . The difference g− g′ defines a section in F (U ∩U ′). Since
F is flabby, this extends to a global section. This allows us to modify g′ such
that it glues with g to a section on U ∪ U ′. ⊔⊓

An immediate corollary of 2.3 states:

2.4 Lemma. Let 0 → F → G → H → 0 an exact sequence of sheaves. If F
and G are flabby then H is flabby too.

Let 0 → F → G → H → 0 be an exact sequence of sheafs. We obtain a
commutative diagram

...
...

...
↓ ↓ ↓

0 −→ F (n−1) −→ G(n−1) −→ H(n−1) −→ 0
↓ ↓ ↓

0 −→ F (n) −→ G(n) −→ H(n) −→ 0
↓ ↓ ↓

0 −→ F (n+1) −→ G(n+1) −→ H(n+1) −→ 0
↓ ↓ ↓
...

...
...

From 2.2 we know that all lines of this diagram are exact From 2.3 follows that
they remain exact after applying Γ. Hence the diagram

...
...

...
↓ ↓ ↓

0 −→ ΓF (n−1) −→ ΓG(n−1) −→ ΓH(n−1) −→ 0
↓ ↓ ↓

0 −→ ΓF (n) −→ ΓG(n) −→ ΓH(n) −→ 0
↓ ↓ ↓

0 −→ ΓF (n+1) −→ ΓG(n+1) −→ ΓH(n+1) −→ 0
↓ ↓ ↓
...

...
...

can be considered as a short exact sequence of complexes. We can apply 1.1 to
obtain the long exact cohomology sequence:
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2.5 Theorem. Every short exact sequence 0→ F → G→ H → 0 induces a
natural long exact cohomology sequence

0→ ΓF −→ ΓG −→ ΓH
δ
−→ H1(X,F ) −→ H1(X,G) −→ H1(X,H)

δ
−→ H2(X,F ) −→ · · ·

The next Lemma shows that the cohomology of flabby sheaves is trivial.

2.6 Lemma. Let
0→ F −→ F0 → F1 −→ · · ·

be an exact sequence of flabby sheaves (finite or infinite). Then

0→ ΓF −→ ΓF0 → ΓF1 −→ · · ·

is exact.

Corollary. For flabby F one has:

Hi(X,F ) = 0 for i > 0.

Proof. We use the so-called splitting principle. The long exact sequence can
be splitted into short exact sequences

0 −→ F −→ F0 −→ F0/F −→ 0, 0 −→ F0/F −→ F1 −→ F1/F0 −→ 0, . . . .

From 2.4 we get that the F0/F, F1/F0, . . . are flabby. The claim now follows
from 2.3. ⊔⊓

A sheaf F is called acyclic if Hn(X,F ) = for n > 0. Hence flabby sheaves
are acyclic. By an acyclic resolution of a sheaf we understand an exact sequence

0 −→ F −→ F0 −→ F1 −→ F2 −→ · · ·

with acyclic Fi.

2.7 Proposition. Let 0 → F → F0 → F1 → · · · be an acyclic resolution of
F . Then there is a natural isomorphism between the n-the cohomology group
Hn(X,F ) and the n-th cohomology group of the complex

· · · −→ 0 −→ΓF0 −→ ΓF1 −→ ΓF2 −→ · · ·

↑

zero position
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Proof . Taking the canonical flabby resolutions of F and of all Fn on gets a
diagram

0 0 0 0

0 F F0 F2 F3 · · ·

0 F (0) F
(0)
0 F

(0)
1 F

(0)
2 · · ·

0 F (1) F
(1)
0 F

(1)
1 F

(1)
2 · · ·

0 F (2) F
(2)
0 F

(2)
1 F

(2)
2 · · ·

...
...

...
...

All lines and columns are exact. We apply Γ to this complex. Then all lines
and columns besides the first ones remain exact. We can apply 1.2. ⊔⊓

One may ask what “natural” means in 2.7 means. It means that certain dia-
grams in which this isomorphism appears are commutative. Since it is the best
to check this when it is used we give just one example: Consider the above com-
mutative diagram in the following new meaning: All occurring sheaves besides
F are acyclic. Then 1.2 gives an isomorphism between the n-th cohomology
groups of the complexes 0→ ΓF0 → ΓF1 → · · · and 0→ ΓF (0) → ΓF (1) → · · ·.
Both are isomorphic to Hn(X,F ). This gives a commutative triangle.

3. Paracompactness

We consider a very special case. We take for O the sheaf C of continuous
functions. There are two possibilities: CR is the sheaf of continuous real-valued
and CC the sheaf of continuous complex-valued functions. If we write C we
mean one of both. The sheaf C or more generally a module over this sheaf have
over paracompact spaces a property which can be considered as a weakened
form of flabbyness.

3.1 Remark. Let X be paracompact space andM a C-module on X. Assume
that U is an open subset and V ⊂⊂ U an open subset which is relatively compact
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in U . Assume that s ∈M(U) is a section over U . Then there is a global section
S ∈M(X) such that S|V = s|V .

Proof. We choose a continuous real valued function ϕ on X, which is one on
V and whose support is compact and contained in U . Then we consider the
open covering X = U ∪ U ′, where U ′ denotes the complement of the support
of ϕ. On U we consider the section ϕs and on U ′ the zero section. Since both
are zero on U ∩ U ′ they glue to a section S on X.

3.2 Lemma. Let X be a paracompact space andM→N a surjective C-linear
map of C-modules. ThenM(X)→ N (X) is surjective.

Proof. Let s ∈ N (X). There exists an open covering (Ui)i∈I of X such that
s|Ui is the image of an section ti ∈ M(Ui). We can assume that the covering
is locally finite. We take relatively compact open subsets Vi ⊂ Ui such that
(Vi) is still a covering. Then we choose a partition of unity (ϕi) with respect
to (Vi). By 3.2 there exists global sections Ti ∈ M(X) with Ti|Vi = ti|Vi. We
now consider

T :=
∑

i∈I

ϕiTi.

Since I can be infinite we have to explain what this means. Let a ∈ X a point.
There exists an open neighborhood U(a) such Vi ∩ U(a) 6= ∅ only for a finite
subset J ⊂ I. We can define the section

T (a) :=
∑

i∈J

ϕTi|U(a).

The sets U(a) cover X and the sections T (a) glue to a section T . Clearly T
maps to s. ⊔⊓

3.3 Lemma. Let X be a paracompact space and M → N → P an exact
sequence of C-modules. ThenM(X)→ N (X)→ P(X) is exact too.

Proof. The exactness of the sequence implies the exactness of

0 −→ Image(M→N ) −→ N −→ Kernel(N → P) −→ 0.

From 3.2 we get

0 −→ Image(M→N )(X) −→ N (X) −→ Kernel(N → P)(X) −→ 0.

Applying 3.2 toM→ Image(M→N ) we obtain

Image(M→N )(X) = Image(M(X)→ N (X)).

Since also
Kernel(N → P)(X) = Kernel(N (X)→ P(X))
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we get the exactness of

0 −→ Image(M(X)→ N (X)) −→ N (X) −→ Kernel(N (X)→ P(X)) −→ 0.

This proves 3.3. ⊔⊓
LetM b an C-module over a paracompact space. Then the canonical flabby

resolution is also a sequence of C-modules. From 3.3 follows that the resolution
remains exact after the application of Γ. We obtain.

3.4 Proposition. Let X be paracompact. Every C-module is acyclic, i.e.
Hn(X,M) = 0 for n > 0.

The essential tool of the proofs has been the existence of a partition of unity.
Partitions of unity exist also in the differentiable world. Hence there is the
following variant of 3.3.

3.5 Proposition. Let X be a paracompact differentiable manifold, then every
C∞-modul is acyclic.

4. Čech Cohomology

We have to work with open coverings U = (Ui)i∈I of the given topological space
X. For indices i0, . . . , ip we use the notation

Ui0,...,ip = Ui0 ∩ . . . ∩ Uip .

Let F be sheaf on X. A p-cochain of F with respect to the covering U is family
of sections is an element of

∏

(i0,...,ip)∈Ip+1

F (Ui0,...,ip).

This means that to any (p + 1)-tuple of indices i0, . . . , ip there is associated
a section s(i0, . . . , ip) ∈ F (Ui0,...,ip). We denote the group of all cochains by
Cp(U, F ). The derivative ds of a p-cochain the (p+ 1)-cochain defined by

ds(s0, . . . sp+1) =

p+1
∑

j=0

(−1)js(i0, . . . , îj , . . . , ip+1)|Ui0,...,ip+1
.

The rule d2 = 0 is obvious, hence we obtain a complex

· · · −→ Cp−1(U, F ) −→ Cp(U, F ) −→ Cp+1(U, F ) −→ · · ·

Here for negative p we set Cp(U, F ) = 0. The cohomology groups of this
complex are the Čech cohomology groups Ȟ

p
(U, F ).



§4. Čech Cohomology 47

4.1 Lemma. There is a natural isomorphism

Ȟ
0
(U, F ) = H0(X,F ) (= F (X)).

Proof. A zero-cochain s is just a family si ∈ F (Ui). The condition ds = 0
means si|Ui ∩ Uj = sj |Ui ∩ Uj . By the sheaf axioms they glue to a global
section. ⊔⊓

4.2 Remark. Let F be a flabby sheaf. Then for every open covering

Ȟp(U, F ) = 0 for p > 0.

Proof. Just to save notation we restrict to the case p = 1. The general case
works in the same way. We start with a little remark. Assume that the whole
space X = Ui0 is a member of the covering. Then the Čech cohomology
vanishes (for every sheaf): if (sij) is a cocycle one defines si = si,i0 . Then
d((si)) = (sij).

For the general proof of 4.2 (in the case p = 1) we now consider the sequence

0 −→ F (X) −→
∏

i

F (Ui) −→
∏

ij

F (Ui ∩ Uj) −→
∏

ijk

F (Ui ∩ Uj ∩ Uk)

s 7−→ (s|Ui)
(si) 7−→ (si − sj)

(sij) 7−→ (sij + sjk − sik)

We will proof that this sequence is exact. (Then 4.2 follows.) The idea is to
sheafify this sequence: For an open subset U ⊂ X one considers F |U and also
the restricted covering U ∩Ui. Repeating the above construction for U instead
of X on obtains a sequence of sheaves

0 −→ F −→ A −→ B −→ C.

Since F is flabby, also A,B, C are flabby. The remark at the beginning of the
proof shows that 0 −→ F (U) −→ A(U) −→ B(U) −→ C(U) is exact, when
U is contained in some Ui. Hence the sequence of sheaves is exact. From 2.6
follows that the exactness is also true for U = X. ⊔⊓

4.3 Theorem of Leray. Let F be a sheaf on X and U = (Ui) an open
covering of X. Assume that Hp(U,F |U) = 0 for all p > 0 and for arbitrary
intersection of finitely many Ui. Then there is a natural isomorphism

Hp(X,F ) ∼= Ȟp(U, F )

for all p.
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Proof . We consider a flabby resolution 0 → F → F0 → F1 → · · ·. There is a
natural diagram

0 0 0 0
↓ ↓ ↓ ↓

0 → F (X) → F0(X) → F1(X) → F2(X) → · · ·
↓ ↓ ↓ ↓

0 → C0(U, F ) → C0(U, F0) → C0(U, F1) → C0(U, F2) → · · ·
↓ ↓ ↓ ↓

0 → C1(U, F ) → C1(U, F0) → C1(U, F1) → C1(U, F2) → · · ·
↓ ↓ ↓ ↓

0 → C2(U, F ) → C2(U, F0) → C2(U, F1) → C2(U, F2) → · · ·
↓ ↓ ↓ ↓
...

...
...

...

All rows but the first one are exact. Similarly all columns but first one are
exact. Now a homological lemma 1.2 gives the desired result. ⊔⊓

5. The first cohomology group

The first Čech cohomology group has some special properties: We will keep
very short, since later we will use it only in applications. Let f : G → H be
a surjective homomorphism of sheaves and U = (Ui) an open covering of X.
We denote by HU,f

(X) the set of all global sections of H with the following
property:

For every index i there is a section ti ∈ G(Ui) with f(ti) = s|Ui. By definition
of (sheaf-)surjectivity for every global section s ∈ H(X) there exists an open
covering U with s ∈ HU,f

(X). It follows

H(X) =
⋃

U

HU,f
(X).

Let 0 → F → G
f
→ H → 0 be an exact sequence and U an open covering.

There exists a natural homomorphism

δ : HU,f
(X) −→ Ȟ1(U, F ),

which is constructed as follows: Let be s ∈ HU,f
(X). We choose elements

ti ∈ G(Ui) which are mapped to s|Ui. The differences ti − tj come from
sections tij ∈ F (Ui ∩Uj). They define a 1-cocycle δ(s). It is easy to check that
this corresponding element of Ȟ1(U, F ) doesn’t depend on the choice of the ti.
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5.1 Lemma. Let 0→ F
f
→ G→ H → 0 be an exact sequence of sheaves and

U an open covering. The sequence

0→ F (X) −→ G(X) −→ HU,f (X)
δ
−→ Ȟ1(U , F ) −→ Ȟ1(U , G) −→ Ȟ1(U , H)

is exact.

The simple proof is left to the reader. ⊔⊓

Let now F be an arbitrary sheaf, F (0) the associated flabby sheaf. We get
an exact sequence 0 → F → F (0) → H → 0. let U be an open covering. We
know that Ȟ1(U, F (0)) vanishes, 4.2. From 4.2 we obtain an isomorphy

Ȟ1(U, F ) ∼= HU,f
(X)/G(X).

From the long exact cohomology sequence we get for the usual cohomology

H1(X,F ) ∼= H(X)/G(X).

This gives an injective homomorphism

Ȟ1(U, F ) −→ H1(X,F ).

In the following we consider Ȟ1(U, F ) as subset of H1(X,F ). Now it is easy
to check:

5.2 Proposition. Let F be a sheaf. Then

H1(X,F ) =
⋃

U

Ȟ1(U, F ).

The following commutative diagram that the Čech combining δ from 5.1 and
that of general sheaf theory 2.5 coincide:

5.3 Remark. For a short exact sequence 0→ F → G
f
→ H → 0 the diagram

0 −→ F (X) −→ G(X) −→ HU,f
(X)

δ
−→ Ȟ1(U, F )

‖ ‖ ↓ ↓

0 −→ F (X) −→ G(X) −→ H(X)
δ
−→ H1(X,F )

is commutative.

The proof is left to the reader. ⊔⊓

LetV = (Vj)j∈J be a refinement of U = (Ui)i∈I and ϕ : J −→ I a refinement
map (Vϕ ⊂ Ui). Using this refinement map one obtains a natural map

Ȟ1(U, F ) −→ Ȟ1(V, F ).

This shows:
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5.4 Remark. Let V be an refinement of U and ϕ : J → I a refinement map.
The diagram

Ȟ1(U, F ) Ȟ1(V, F )

H1(X,F )

commutes. Especially it doesn’t depend on the choice of the refinement map.

We also mention a refinement of Leray’s lemma 4.3 in case of the first coho-
mology group.

5.5 Theorem (refinement of Leray’s theorem in case of the first co-
homology group). Let F be a sheaf on X and U = (Ui) an open covering
of X. Assume that H1(Ui, F |Ui) = 0 for all ⊂∈ I. Then there is a natural
isomorphism

H1(X,F ) ∼= Ȟ1(U, F ).

Hint for the proof. One has to show that for any refinement V the map
H1(U, F ) → H1(V, F ) is surjective. The proof is easy and left to the reader.
Details can be found in Forster’s book “Riemann surfaces”, Proposition II.12.8.

⊔⊓

6. Some vanishing results

Let X be a topological space and A an abelian group. We denote by AX the
sheaf of locally constant functions with values in A. This sheaf can be identified
with the sheaf which is generated by the presheaf of constant functions. We
will write

Hn(X,A) := Hn(X,AX).

6.1 Proposition. Let U be an open and convex subset of Rn. Then for every
abelian group A

H1(U,A) = 0.

Actually this is true for all Hn, n > 0. The best way to prove this is to use the
comparison theorem with singular cohomology as defined in algebraic topology.
We restrict to H1.
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Proof of 6.1. Every convex open subset of R
n is topologically equivalent to

R
n. Hence it is sufficient to restrict to U = R

n. Just for simplicity we assume
n = 1. (The general case should then be clear.) We use Čhech cohomology and
show that every open covering admits a refinement U such that H1(U, AX) = 0.
To show this we take a refinement of a very simple nature. It is easy to show
that there exists a refinement of the following form. The index set is Z. There
exists a sequence of real numbers (an) with the following properties:

a) an ≤ an+1

b) an → +∞ for n→∞ and an → −∞ for n→ −∞
c) Un = (an, an+2).

Assume that sn,m is a cocycle with respect to this covering. Notice that Un

has non empty intersection only with Un−1 and Un+1. Hence only sn−1,n is of
relevance. This a locally constant function on Un−1 ∩ Un = (an, an+1). Since
this is connected, the function sn−1,n is constant. We want to show that it is
coboundary, i.e. we want to construct constant functions sn on Un such that
sn−1,n = sn−sn−1 on (an, an+1). This is easy. One starts with s0 = 0 and then
constructs inductively s1, s2, . . . and in the same way for negative n. ⊔⊓

Consider on the real line R the sheaf of real valued differentiable functions
C∞. Taking derivatives one gets a sheaf homomorphism C∞ → C∞, f 7→ f ′.
The kernel is the sheaf of all locally constant functions, which we denote simply
by R. Hence we get an sequence

0 −→ R −→ C∞ −→ C∞ −→ 0.

This sequence is exact since every differentiable function has an integral.
Hence this sequence can be considered as acyclic resolution of R. We ob-
tain Hn(R,R) = 0 for all n > 0. For n = 1 this follows already from 6.1.
There is a generalization to higher dimensions. For example a standard result
of vector analysis states in the case n = 2.

6.2 Lemma. Let E ⊂ R
n be an open and convex subset, f, g ∈ C∞ a pair of

differentiable functions with the property

∂f

∂y
=
∂g

∂x
.

Then there is a differentiable function h with the property

f =
∂h

∂x
, g =

∂h

∂y
.

In the sequence of exact sequences this means:

The sequence
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0 −→ C −→ C∞(E) −→ C∞(E)× C∞(E) −→ C∞(E) −→ 0

f 7−→
(
∂f
∂x
,
∂f
∂y

)

(f, g) 7−→ ∂f
∂y
− ∂g
∂x

is exact. When E is not convex, this sequence needs not to be exact. But since
every point in R

2 has an open convex neighborhood, the sequence of sheaves

0 −→ RX −→ C
∞
X −→ C

∞
X × C

∞
X −→ C

∞
X −→ 0

is exact. This is an acyclic resolution and we obtain:

6.3 Proposition. For convex open E ⊂ R
2 we have

Hi(E,R) = 0 for i > 0.

The sequence is a special case of the de-Rham complex

0 −→ R −→ A0
X −→ A1

X −→ · · · −→ An
X −→ 0

Here X is a differentiable manifold of dimension n and Ai
X denotes the sheaf

of alternating differential forms of degree i.

6.4 Lemma of Poincaré. Let U ⊂ R
n be an open convex subset. Then

Hp(U,R) = 0 for p > 0.

Proof. Let ω be a closed form. We decompose it as

ω = α+ β ∧ dxn,

where α doesn’t contain any term with dxn. We write

β =
∑

fadxa

where a are subsets of {1, . . . , n − 1} that do nor contain n. (We use the
notation dxa = dxa1

∧ . . . ∧ dxap
, where a1 < . . . < ap are the elements of

a in their natural order.) Integrating with respect to the last variable we
find differentiable functions Fa such that ∂nFa = fa. Now the difference ω −
d
∑

a Fadxa doesn’t contain any term in which dxn occurs. Hence we can
assume that in ω no term with dxn occurs. We write

ω =
∑

a

gadxa,

where all a are subsets of {1, . . . , n − 1}. Now we use dω = 0. We obtain
∂nga = 0. Hence ga do not depend on xn. But now ω can be considered
as differential form in one dimension less (on the image of U with respect to
the projection map that cancels the last variable) and an induction argument
completes the proof. ⊔⊓

We obtain
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6.5 Theorem of de Rham. For a differentiable manifold X on has

dimHi(X,R) ∼=
Kernel(Ai(X) −→ Ai+1(X))

Image((Ai−1(X) −→ Ai(X))
.

Applying the Lemma of Poincarè again we obtain:

6.6 Proposition. For convex open E ⊂ R
n on has

Hi(E,R) = 0 fur i > 0.

Differential forms can also be considered complex valued. The Lemma of
Poincarè remains true by trivial reasons. Hence we see also:

6.7 Proposition. For convex open E ⊂ R
n on has

Hi(E,CX) = 0 fur i > 0.

As an application we prove

6.8 Proposition. For convex open E ⊂ R
n on has

H2(E, Z) = 0.

Proof. We consider the homomorphism

C −→ C
.
, z 7−→ e2πiz.

The kernel is Z. This can be considered as a exact sequence of sheaves for
example on an open convex E ⊂ R

n. A small part of the long exact cohomology
sequence is

H1(E,C∗) −→ H2(X, Z) −→ H2(E,C).

Since the first and the third member of this sequence vanish (6.1 and 6.3) we
get the proof of 6.6. ⊔⊓

Next we treat an example of complex analysis. For this wee need the Dol-
beault complex

0 −→ Ωp(U)
∂̄
−→ Ap,0(U)

∂̄
−→ Ap,1(U)

∂̄
−→ · · ·

for an open subset U ⊂ C
n.
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6.9 Lemma of Dolbeault. Let U ⊂ C
n be a polydisk. The sequence

0 −→ Ωp(U)
∂̄
−→ Ap,0(U)

∂̄
−→ Ap,1(U)

∂̄
−→ · · ·

is exact.

Corollary. One has

Hq(U,OU ) = 0 for q > 0.

6.10 Basic Lemma. Let f : E → C be a C∞-function on the unit disk E.
Then there exists a C∞-function g : E → C with the property

∂g

∂z̄
= f(z).

Additional Remark. If f depends differentiably on more variables, one can
get that the seme is true for g.

Proof of the basic lemma. In a first step we assume that f is defined on some
open neighborhood of Ē. The proof uses Stokes’s theorem. The idea is to
define g as an surface integral:

g(a) =
1

2πi

∫

E

f(z)
dz ∧ dz̄

z − a
.

Since there is a singular point in the integrand, the integral needs an interpre-
tation. For this we use polar coordinates z = a + reiϕ in a small disk around
a. We get

dz ∧ dz̄ = 2idx ∧ dy = 2irdrdϕ.

The new integrand is 2if(z)e−iϕ. The singularity disappeared!. This consider-
ations shows that as precise definition of the integral one can take

g(a) =
1

2πi
lim
ε→0

∫

E(ε)

f(z)
dz ∧ dz̄

z − a

where E(ε) denotes the complement of the disk |z − a| ≤ ε. Here ε should be
taken small enough such that this closed disk is contained in E. We will apply
the theorem of Stokes to E(ε) and the differential form

ω := f(z) log |z − a|2dz̄.

Since

dω = ∂ω =
∂f

z
log |z − a|2 +

f(z)

z − a
,
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we get from Stoke’s theorem

∮

|z|=1

f(z) log |z − a|2dz̄ −

∮

|z−a|=ε

f(z) log |z − a|2dz̄

=

∫

E(ε)

∂f

∂z
log |z − a|2dz ∧ dz̄ +

∫

E(ε)

f(z)
dz ∧ dz̄

z − a
.

Now we take the limit ε to 0 the integral
∮

|z−a|=ε
f(z) log |z − a|2dz̄ tends to

0. This follows from the standard estimate of line curve integrals and the fact
limε→0 ε log ε = 0. Taking the limit now we get

2πig(a) =

∮

|z|=1

f(z) log |z − a|2dz̄ −

∫

E

∂f

∂z
log |z − a|2dz ∧ dz̄.

One should notice that the integrand of the surface integral still has a singu-
larity at a. But this is only a logarithmic singularity and log |z−a| is Lebesgue
integrable over E. It is easy to verify that the Lebesgue limit theorem ap-
plies. The same argument applies to show that g is differentiable and that
differentiation can be interchanged with integration:

2πi
∂g(a)

∂ā
=

∫

E

∂f(z)

∂z

dz ∧ dz̄

z̄ − a
−

∫

|z|=1

f(z)
dz̄

z̄ − a
.

Now the proof follows from the generalized Cauchy integral formula: Let f be
a C∞ function on an open neighborhood of Ē. Then

2πif(a) =

∫

|z|=1

f(z)

z − a
dz +

∫

E

∂f

∂z̄

dz ∧ dz̄

z − a
.

(For holomorphic f this is the usual Cauchy integral formula.

Since this formula may not be standard, we mention that it is also an
application of Stokes theorem. One uses the formula

d
(

f(z)
dz

z − a

)

=
∂f

∂z̄

dz ∧ dz̄

z − a

and again applies Stoke’s theorem to the domain E(ε), introduces polar coor-
dinates and takes the limit ε→ 0.

Now we assume that F is given only on E (and not on a neighborhood of Ē.
This needs a new technique. The idea is to use an approximation argument.
We choose an exhaustion of E by the sequence of disks En = {z; |z| < 1−1/n}.
We know already that there exists gn ∈ C∞(En) such that ∂gn/∂z̄ = f on En.
The functions gn are not uniquely determined. The idea is to prepare them
such that they converge. More precisely we want to have that for each i the
sequence gn, gn+1, . . . converges on En. The limit will be a function on En and
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all these differential forms glue to a function g on the whole E. This will be
the solution of our problem. (∂g/∂z̄ = f).

We have to explain in which sense convergence is understood. For this we
use the maximum norm ||h||En

for a function that is continuous on some open
neighborhood of En. The strategy is to construct the gn inductively such that

||gn+1 − gn||En−1
< 2−n.

One starts with arbitrary g1. The induction step is very easy. Assume that
g1, . . . , gn have been constructed. Then choose any h such that ∂h/∂z̄ = f on
En+1. We can modify h by adding function. Hence we try to define gn+1 =
h + P with an analytic function. Now we use that h − gn is holomorphic on
En. We can approximate this function on En−1 by a polynomial P (taking a
partial sum of the Taylor expansion). This gives the construction of gn+1.

Now it is easy to show that the limit of the gn exists. Just write in (on Pn)
in the form

g = gn +

∞∑

i=n

(fi+1 − fi).

The sum is a series of holomorphic functions that converges uniformly on En.
Hence the limit exists and differentiation can be exchanged with the limit.

This finishes the proof of the basic lemma. ⊔⊓

Proof of 6.9 continued. Now we go to several variables and consider a polydisk
P . We assume that ω is a differential form of type (p, q) not only on P but on
an open neighborhood of P̄ . We assume ∂ω = 0 and claim that there exists a
(p, q − 1)-form ω′ on P with ∂ω′ = ω. The proof can be given by induction in
the same way as in the proof of the lemma of Picareè. The beginning of the
induction now is the basic lemma 6.10. We skip details. ⊔⊓

We give a nice application. Let C̄ be the Riemann sphere.

6.11 Theorem. One has

H1(C̄,OC̄ ) = 0.

For the proof we use a covering by two disks of the Riemann sphere U = {z ∈
C; |z| < 2} and V = {z ∈ C̄; |z| > 1} (including ∞). We can apply the
refinement of Leray’s theorem 5.5 to obtain H1(U,O) = H1(C̄,OC̄ ). A Čech
1-cocycle simply is given by a holomorphic function on the circular ring. We
have to show that it can be written as difference f1−f2 where fi is holomorphic
on the disc Ei. This is possible by the theory of the Laurent decomposition.

⊔⊓
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1. Paracompact spaces

A covering U = (Ui)i∈I of a topological space is called locally finite if for every
point a ∈ X there exists a neighborhood W , such that the set of indices i ∈ I
with Ui ∩W 6= ∅ is finite.

A covering V = (Vj)j∈J is called a refinement of the covering U if for every
index j ∈ J there exists an index i ∈ I with Vj ⊂ Ui. If one chooses for each
j such an i one obtains a so-called refinement map J → I, which needs not to
be unique.

1.1 Definition. A Hausdorff space is called paracompact if every open
covering admits a locally finite (open) refinement.

We collect some results about paracompact spaces without proofs. Firstly we
give examples:

Every metric space is paracompact.

Every locally compact space with countable basis of topology is paracompact.

Next we formulate the basic result about paracompactness: Let U = (Ui) be
a locally finite covering. A partition of unity with respect to U is family ϕi of
continuous real valued functions on X with the following property:

a) The support of ϕi is compact and contained in Ui.
b) 0 ≤ ϕi ≤ 1,
c)

∑

i∈I ϕi(x) = 1 for all x ∈ X.

(This sum is finite.)

1.2 Proposition. Let X be a paracompact space. For every locally finite
open covering there exists a partition of unity.

We mention two related results:

1.3 Proposition. Let X be a paracompact space and U = (Ui) a locally finite
open covering. There exist open subsets Vi ⊂ Ui whose closure V̄i (taken in X)
is contained in Ui and such that V = (Vi) is still a covering.

Another related result states:
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1.4 Proposition. Let X be a locally compact paracompact space, U an open
subset and V ⊂⊂ U a relatively compact open subset in U . Then there exists
a continuous function on X which is one on V and whose support is compact
and contained in U .

(The symbol V ⊂⊂ U means that the closure V̄ , taken in X, is compact and
contained in U .)

2. Frèchet spaces

A topological vector space is (complex) vector space E together with a topology
such the addition map E × E −→ E and the multiplication with scalars C ×
E −→ E is continuous. It is easy to derive then that or each fixed a ∈ E the
map E → E, x 7→ x + a, is topological. Topological vector spaces very often
are constructed by means of semi-norms.

A semi-norm p on a complex vector space E is a map p : E → R with the
properties

a) p(a) ≥ 0 for all a ∈ E,
b) p(ta) = |t|p(a) for all t ∈ C, a ∈ E,
c) p(a+ b) ≤ p(a) + p(b).

The ball of radius r > 0 is defined as

Ur(a, p) :=
{
x ∈ E; p(a− x) < r

}
.

LetM be a set of semi-norms. A subset B ⊂ E is called a semi-ball around a
with respect toM if there exists a finite subset N ⊂M and for each p ∈ N a
number rp > 0 such that

B =
⋂

p∈N

Urp(a, p).

A subset U of E is called open (with respect to M) if for every a ∈ U there
exists a semi-ball B around a with B ⊂ U .

It is clear that this defines a topology on E such that all p : E → C are
continuous. (It is actually the weakest topology with this property.) It is
also easy to to see that E is a topological vector space. Moreover a sequence
(an) in E converges to a ∈ E if and only if p(an − a) → 0 for all p ∈ M.
Obviously the elements p ∈ M are continuous. Let Mmax be the set of all
continuous semi-norms. Two sets N and M define the same topology if and
only ifMmax = Nmax. EspeciallyMmax andM define the same topology.

The setM is called definite, if

p(a) = 0 for all p ∈M =⇒ a = 0.
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It is easy to prove thatM is definit if and only if E is a Hausdorff space.

A sequence (an) in E is called a Cauchy sequence with respect toM, if for
every ε > 0 and every p ∈M there exists an N = N(p, ε) such that

p(an − am) < ε for n,m ≥ N.

Remarkably this notion only depends on the topology. Obviously a sequence
is a Cauchy sequence if and only if for every neighborhood U od the origin one
has an − am ∈ U if noth n,m are sufficiently large.

The set M is called of countable type, if there exists a countable subset
N ⊂M defining the same topology and the same Cauchy sequences.

2.1 Definition. A Frèchet space E is a topological vector space whose topol-
ogy can be defined by a set M of seminorms such the following properties are
satisfied:

a)M is definite.
b)M is of countable type.
c) Every Cauchy sequence converges.

Notice that a Banach space is a Frèchet space, where M consists of a single
element.

2.2 Lemma. Frèchet spaces are metrisable.

Proof. We choose some ordering of N = {p1, p2, . . .}. Then one defines

d(a, b) =
∞∑

n=1

2−n pn(a− b)

1 + p(an) + p(bn)
.

It is easy to show that this is a metric which defines the original topology.
⊔⊓

An important result about Frèchet spaces is:

2.3 Open mapping theorem. Any surjective linear continuous map E → F
between Frèchet spaces is open. Especially the topology on F agrees with the
quotient topology of E.

An obvious corollary states that a bijective linear continuous map between
Frèchet spaces is topological.

Permanence properties of Frèchet spaces
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A closed subspace F ⊂ E of a Frèchet space, equipped with the induced topol-
ogy, is a Frèchet space too. A defining system of seminorms is obtained if one
restricts the seminorms p of a defining system on E to F .

Let F ⊂ E a closed subspace of a Frèchet space. Then the quotient space
E/F equipped with the quotient topology, is a Frèchet space. A defining system
of seminorms is obtained as follows. Denote the quotient map by f : E → E/F .
Let p be a continuous seminorm on E (from a defining system is enough). Then

p̃(y) = inf
f(x)=y

p(x) (x ∈ E),

is a seminorm on E/F .

Let (Es)s ∈ I be a finite or countable family of Frèchet spaces. Then their
direct product

E =
∏

s∈S

Es

equipped with the product topology, is a Frèchet space. In terms of seminorms
this can be described as follows. Take a finite subset T ⊂ S and for each t ∈ T
take a continuous seminorm pi, i ∈ J on Ei (from a defining system is enough).
Then one can define a seminorm on the product

p((xi)) = max
j∈J

pj(xj).

Basic example of Frèchet spaces

Let X be a complex manifold and O(X) the set of all analytic functions on X.
This is a complex vector space. For an arbitrary compact subset K ⊂ X we
define

p(f) = pK(f) := max
z∈K
|f(z)|.

This is s semi norm. A sequence (fn) converges with respect to pK if and only
if fn converges uniformly on K.

2.4 Remark. Let X be a complex manifold. The vector space O(X) equipped
with the set of all norms of the form pK , K ⊂ X compact, is a Frèchet space.

The set of all pK is of countable type sinceX is assumed to have countable basis
of topology. This implies that there is a sequence K1 ⊂ K2 ⊂ · · · of compact
subsets whose union is X and such that Ki is contained in the interior of Ki+1.
Then every compact subset is contained in one of the Ki. The convergence of
Cauchy sequences follows from the theorem of Weierstrass, which states that
analyticity is stable under uniform convergence. ⊔⊓

The basic result about this Frèchet space is:
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2.5 Theorem of Montel. Let X be a complex manifild and C > 0 a positive
constant. The set

O(X,C) :=
{
f ∈ O(X); |f(z)| ≤ C for z ∈ X

}

is compact in O(X).

For the proof one has to use the fact that a metric space is compact if every
sequence admits a convergent subsequence. Hence the statement follows from
the usual theorem of Montel which states that every sequence in O(X,C) ad-
mits a locally convergent sub-sequence. We notice that the analogue for real
differentiable functions is false. The proof uses heavily the Cauchy integral.

Compact operators

A well-known fact is that in a Banach space of infinite dimension the closed
ball ||a|| ≤ 1 is not compact. This result is also true for Frèchet spaces in the
following form:

Assume that the Frèchet space admits a non-empty open subset with compact
closure. Then it is of finite dimension.

We need a generalization of this result: A continuous linear map f : E → F
between Frèchet spaces is a compact operator, if there exists a non-empty open
subset of E such that the closure of its image is compact. It is clear that this
is the case if f(E) is of finite dimension.

A linear map f : E → F is called nearly surjective if F/f(E) has finite
dimension. This is automatically the case when F is finite dimensional.

2.6 Theorem of Schwartz. Let f : E → F be a surjective continuous linear
map between Frèchet spaces and let g : E → F be a compact operator. Then
f + g is nearly surjective.

If one applies Schwartz’s theorem in the case E = F , f = − id and g = id on
obtains:

2.7 Corollary. When the identity operator id : E → E of a Frèchet space is
compact, then E is finite dimensional
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