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Contents I

Preface

These notes arose from lectures on complex spaces which I gave occasionally in
Heidelberg. In a first part I treated the local theory of complex spaces. I tried
to proceed as elementary as possible. So the first chapter that covers the local
theory up to the coherence theorems is presented without using the language
of sheaves. Instead of this we used some basic commutative algebra which
makes things much more understandable. In an appendix the reader finds the
tools of commutative algebra without proofs. But in the spirit of the notes
commutative algebra should be considered as easy compared to the complex
analysis.

In the second chapter we change the point of view. We introduce complex
spaces in the sense of Grothendieck. This rests on sheaf theory. We presented
basic sheaf theory (without cohomology) in an extra appendix. In the second
chapter we reformulated the local result, in particular the coherence theorems
sheaftheoretically.

There will follow two other volumes, one about Stein spaces and finally on
Grauert’s coherence theorem.



Chapter I. Local complex analysis

1. The ring of power series

All rings are assumed to be commutative and with unit element. Homomor-
phisms of rings are assumed to map the unit element into the unit element.
Modules M over a ring R are always assumed to be unitary, 1Rm = m.

Recall that an algebra over a ring A by definition is a ring B together with
a distinguished ring homomorphism ϕ : A→ B. This ring homomorphism can
be used to define on B a structure as A-module, namely

ab := ϕ(a)b (a ∈ A, b ∈ B).

Let B,B′ be two algebras. A ring homomorphism B → B′ is called an algebra
homomorphism if it is A-linear. This is equivalent to the fact that

B // B′

A

>>⑥⑥⑥⑥⑥⑥⑥⑥

__❅❅❅❅❅❅❅❅

commutes.

The notion of a formal power series can be defined over an arbitrary ring
R. A formal power series in n variables is just an expression of the type

P =
∑

ν

aνz
ν , aν ∈ R,

where ν runs through all multi-indices (n-tuples of nonnegative integers). Here
z = (z1, . . . , zn) and zν = zν11 · · · zνnn just have a symbolic meaning. Strictly
logically, power series are just maps N

n
0 → R. Power series can be added and

multiplied formally, i.e.
∑

ν

aνz
ν +

∑

ν

bνz
ν =

∑

ν

(aν + bν)z
ν ,

∑

ν

aνz
ν ·
∑

ν

bνz
ν =

∑

ν

( ∑

ν1+ν2=ν

aν1bν2

)
zν .
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The inner sum is finite. In this way we get a ring R[[z1, . . . , zn]]. Polynomials
are just power series such that all but finitely many coefficients are zero. In this
way, we can consider the polynomial ring R[z1, . . . , zn] as subring of the ring
of formal power series. The elements of R can be identified with polynomials
such that all coefficients aν with ν 6= 0 vanish. We recall that for a non-zero
polynomial P ∈ R[z] in one variable the degree degP is well-defined. It is
the greatest n such the the nth coefficient is different from 0. Sometimes it is
useful to define the degree of the zero polynomial to be −∞. If R is an integral
domain, the rule deg(PQ) = degP + degQ is valid.

There is a natural isomorphism

R[[z1, . . . , zn−1]][[zn]]
∼
−→ R[[z1, . . . , zn]]

whose precise definition is left to the reader. In particular, R[[z1, . . . , zn−1]]
can be considered as a subring of R[[z1, . . . , zn]]. One can use this to show that
R[[z1, . . . , zn]] is an integral domain if R is so.

Let now R be the field of complex numbers C. A formal power series is
called convergent if there exists a small neighborhood of the origin where it is
absolutely convergent. It is easy to show that this means just that there exist
constants a, b such that |aν | ≤ abν1+···+νn . The set

On = C{z1, . . . , zn}

of all convergent power series is a subring of the ring of formal power series.
There is a natural homomorphism

On −→ C, P 7−→ P (0) := a0,

that sends a power series to its constant coefficient. Its kernel mn is the set of
all power series whose constant coefficient vanishes. The power mkn is the ideal
generated by P1 · · ·Pk where Pi ∈ mn. It is easy to see that a power series P
belongs to mkn if and only if

aν 6= 0 =⇒ ν1 + · · ·+ νn ≥ k.

As a consequence, we have
⋂

mkn = 0.
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2. Holomorphic functions

We consider open subsets U ⊂ C
n. A function f : U → C is called holomorphic

if for any a ∈ U there exists a convergent power P ∈ On such that

f(z + a) = P (z) =
∑

ν

aνz
ν

for all z in a small neighborhood of 0. We also can write

f(z) =
∑

ν

aν(z − a)ν

in a small neighborhood of a. We associate to each a ∈ U an own ring of power
series

OU,a = C{z1 − a1, . . . , zn − an}

and we write
[f ]a =

∑

ν

aν(z − a)ν ,

[f ]a ∈ C{z1 − a1, . . . , zn − an}.

We denote be O(U) the ring of all holomorphic functions on U . So we get for
each a ∈ U a homomorphism

O(U) −→ OU,a, f 7−→ [f ]a.

Let V ⊂ C
m be a second open subset. A maps f : U → V is called holomorphic

if all its components are holomorphic. It is easy to show that holomorphic
maps are complex differentiable in the following sense. They are continuously
differentiable in the sense of real matrices and the Jacobian maps C

n −→ C
m

are C-linear.

Phcd2.1 Proposition. A map f : U → V , U ⊂ C
n, V ⊂ C

m is holomorphic if
and only if it is complex differentiable.

In the case n = 1 this is proved in standard courses about complex calculus.
Since the proof can be straightly generalized to the case n > 1 we omit a prof
here. A possible reference is [Fr]. ⊔⊓

On can use this proposition to prove the theorem of invertible functions by
reducing it to the known real case.

Psif2.2 Proposition. Let f : U → V , U ⊂ C
n, V ⊂ C

n be a holomorphic map
and let a ∈ U be a point such that the Jacobian map J(f, a) : Cn → C

n is
invertible. Then there exists an open neighborhood a ⊂W ⊂ U such that h(W )
is open and such that the map W → f(W ) is biholomorphic.
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There is a natural homomorphism, sometimes called “pull back”,

f∗ : O(V ) −→ O(U), g 7−→ g ◦ f,

and similarly for each a ∈ U

f∗
a : OV,f(a) −→ OU,a.

3. Homomorphisms between rings of power series

Complex analysis deals with holomorphic functions.

IsInv3.1 Lemma. An element P ∈ C[[z1, . . . , zn]] is a unit (i.e. an invertible
element) if an only if P (0) 6= 0. The same is true in the ring On

Proof. We can assume P (0) = 1. Then P can be inverted by means of the
geometric series

1

P
=

1

1 + (P − 1)
=

∞∑

m=0

(P − 1)n.

Since P −1 has no constant coefficient this series defines a formal power series.
An easy argument shows that this is convergent of P is convergent- ⊔⊓

As a consequence of Lemma 3.1, the rings C[[z1, . . . , zn]], On are local rings.
Recall that a ring R is called local if the sum of two non-units is a non-unit.
Then the set of all non-units is an ideal, obviously the only maximal ideal.

RisL3.2 Remark. The rings C[[z1, . . . , zn]], On is a local ring. The maximal
ideal in both cases consists of all P with P (0) = 0.

We denote by mn the maximal ideal of On. The rings C[[z1, . . . , zn]], On

contains C as a subring (constant power series). Hence they are C-algebra.

Our next task is to describe the algebra homomorphisms

f : C[[z1, . . . , zm]] −→ C[[z1, . . . , zn]], f : Om → On.

First we claim that non-units are mapped to non-units. This means that f
is a local homomorphism. Otherwise there would be non-unit P ∈ Om such
that Q = f(P ) is a unit. Then we would have f(P −Q(0)) = Q −Q(0). The
element P −Q(0) is a unit but its image Q−Q(0) is not. This is not possible.

There is a special kind of such a homomorphism which we call a “substi-
tution homomorphism”. Let P (z1, . . . , zn) is an element of C[[z1, . . . , zn]], and
let P1, . . . , Pn contained in the maximal ideal Then one can define

P (P1, . . . , Pn) =
∑

ν

aνP
ν1
1 · · ·P νnn .
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The right hand side can be read as formal power series (since that P1, . . . , Pn
have no constant coefficients). So we get a homomorphism

C[[z1, . . . , zn]] −→ C[[z1, . . . , zm]], P 7−→ P (P1, . . . , Pn).

We call it a substitution homomorphism. A simple convergence proof shows
that the restriction to Om defines a homomorphism Om → On. We call it also
a substitution homomorphism.

SubHom3.3 Lemma. Each algebra homomorphism

C[[z1, . . . , zn]] −→ C[[z1, . . . , z]], On −→ Om

is a substitution homomorphism.

Proof. We treat the convergent version. Let ϕ : On → Om an algebra ho-
momorphism. Since it is local, the elements Pi := ϕ(zi) are contained in the
maximal ideal. Hence one can consider the substitution homomorphism ψ de-
fined by them. We claim ϕ = ψ. At the moment we only know that ϕ and ψ
agree on C[z1, . . . , zn]. Let P =

∑
ν aνz

ν ∈ On. We claim ϕ(P ) = ψ(Q). For
this we decompose for a natural number k

P = Pk +Qk, Pk =
∑

ν1+···+νn≤k

aνz
ν .

Then Qk is contained in the k-the power mk of the maximal ideal. (Obviously
mk is generated by all zν where ν1 + · · ·+ νn ≥ k.) We get

ϕ(P )− ψ(P ) = ϕ(Qk)− ψ(Pk) ∈ mk.

This is true for all k. But the intersection of all mkn is zero. ⊔⊓

Finally we treat a version of the theorem of inverse functions. First we
mention that for a formal power series the partial derivatives

∂P

∂zj

can be defined in an obvious formal way. It is clear the the partial derivatives
of a convergent power series are convergent. If P = (P1, . . . , Pm) is a tuple of
power series in C[[z1, . . . , zn]], then we can define the Jacobi matrix at 0

J(P, 0) :=
(∂Pi
∂zj

)
i≤j

.

Pahi3.4 Proposition. An algebra homomorphism

C[[z1, . . . , zn]] −→ C[[z1, . . . , zn]]

is an isomorphism if and only if the Jacobi matrix J(P, 0) is invertible, where
P = (P1, . . . Pn) are the images of z1, . . . , zn. The same is true in the conver-
gent case.
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In the following we need only the convergent case. Nevertheless we want to
indicated how the formal proof runs. To get the idea, it is sufficient to treat
the case n = 1. We have

P =

∞∑

n=1

anz
n.

By assumption a1 6= 0. We can assume a1 = 1. The inverse isomorphism, if it
exists, is a substitution homomorphism given by power series

Q =
∞∑

n=1

bnz
n.

The relation P (Q) = 1 gives a recursion bn:

∞∑

n=1

an

(
∞∑

m=1

bmx
m

)n
= x,

or
m∑

n=1

an
∑

ν1+ν2+···+νn=m

bν1 . . . bνn =

{
1 für m = 1,

0 für m > 1.

We obtain

(∗)

b1 = 1,

bm = −
m∑

n=2

an
∑

ν1+ν2+···+νn=m

bν1 . . . bνn , m > 1.

One the right hand side we only have bν such that ν < m. Hence the coefficients
bn can be determined inductively.

We know treat the convergent case. It would be enough to prove that Q is
convergent if this is so for P . This can be proved directly by a clever somewhat
tedious estimate. We will not give it here and propose another argument. It
rests on Sect. 2., in particular on the Propositions 2.1 and 2.2.

An n-tupel P = (P1, . . . , Pn) ∈ On
n induces a complex differentiable map

f : U → C
n, where 0 ∈ U ⊂ C

n is an open neighborhood of the origin. By
assumption its Jacobian at 0 is invertible. Hence we can apply the theorem of
invertible functions. After possible shrinking of U we obtain that V = f(U) is
open and that the map U → V is biholomorphic. Hence the inverse map can
be expanded into power series Q = (Q1, . . . , Qn). ⊔⊓
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4. The Preparation and the Division Theorem

There is an division algorithm in the ring of power series analogous to the
Euclidean algorithm in a polynomial ring. We recall this Euclidean algorithm.

The Euclidean Algorithm for Polynomials

let R be an integral domain and let

a) P ∈ R[X ] be an arbitrary polynomial,

b) Q ∈ R[X ] be a normalized polynomial, i.e. the highest coefficient is 1.

Then there exists a unique decomposition

P = AQ+B.

where A,B ∈ R[X ] are polynomials and

deg(B) < d.

This includes the case B = 0 if one defines deg(0) = −∞. The proof of this
result is trivial (induction on the degree of P ). ⊔⊓

Dzna4.1 Definition. A power series P ∈ C[[z1, . . . , zn]] is called zn-general if

P (0, . . . , 0, zn) 6= 0.

Then we can write

P (0, zn) = Czdn + higher terms, C 6= 0.

We call d the order of P . Frequently we will normalize to C = 1.

weidiv4.2 Division theorem. Let Q ∈ C[[z1, . . . , zn]] be a zn-general power series
of order d. Every power series P ∈ C[z1, . . . zn]] admits a unique decomposition

P = AQ+B where

A ∈ C[[z1, . . . , zn]], B ∈ C[[z1, . . . , zn−1]][zn], degzn(B) < d.

The analoge theorem holds in On.
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Here degzn(B) means the degree of the polynomial B in the variable zn (taking
−∞ if B = 0).

Proof. In this proof we denote the coefficients of a power series A by the same
letter, i.e.

A =
∑

ν∈Nn

aνz
ν .

So the product of two power series is

AB =
∑

ν

∑

µ≤ν

AµBν−µ.

Here µ ≤ ν is understood componentwise. Even more, µ < ν means µ ≤ ν and
µ 6= ν. In our context it is convenient to separate ν into two parts, a vector of
length n− 1 and a number. We write for this pair (ν, j) where now ν ∈ N

n−1
0

and j ∈ N0. Now the formula P = AQ+B reads as

(∗) Pν,j =
∑

µ≤ν

j∑

m=0

Aµ,mQν−mu,j−m +Bν,j.

The condition that B is a polynomial in zn of degree < d reads as

Bν,j = 0 for all j ≥ d.

The series P,Q are given and Q has the property

Q00, . . . , Q0,d−1 = 0, Q0d 6= 0.

We can and will assume that
Q0d = 1.

We want to extract Aν,j from (∗). For this purpose we will apply this formula
only in the case j ≥ d. Then the B-s don’t occur. If we write j = d + k, the
formula reads

Pν,d+k =
∑

µ≤ν

j+k∑

m=0

Aµ,mQν−µ,d+k−m.

We extract the terms such that µ = ν. By means of the fact that Q0,d+k−m = 0
if d+ k −m < d we obtain

Pν,d+k =
k∑

m=0

Aν,mQ0,d+k−m +
∑

µ≤ν

j+k∑

m=0

Aµ,mQν−µ,d+k−m

Aν,k +

k−1∑

m=0

Aν,mQ0,d+k−m +
∑

µ≤ν

j+k∑

m=0

Aµ,mQν−µ,d+k−m

.
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We solve this formula for Aν,k (ν ∈ N
n−1
0 , k ∈ N0).

Aν,k = Pν,d+k −
k−1∑

m=0

Aν,mQ0,d+k−m −
∑

µ≤ν

j+k∑

m=0

Aµ,mQν−µ,d+k−m

It is easy to solve this system inductively. The beginning of the induction is

A00 = P0d.

Then we can determine A01, A02, . . . inductively. After this has been settled
we consider an arbitrary ν with |ν| = 1. From the framed formula we first get
Aν,0 and then, again inductively, all Aν,k. After the ν with |ν| = 1 have been
settled, we jump to the ν with ν = 2 and so on. So all in all we have a double
induction where the outer induction runs over |ν| and the inner induction over
k. This gives us a formal series A and then also B.

In the next part of the proof we show that everything works in On. So we
have to show that A (and then also B) converges if P and Q converge. The
convergence of P,Q means that there exist constants a, b such that

Pν,j , Qnu,j ≤ abν+j.

We will show that there exist positive numbers α, β, γ with the property

Aν,k ≤ αβ|ν|γk.

This implies of course the convergence of A. The constants α, β, γ depend only
on a, b. The proof follows the same induction procedure as the proof of the
determination of the Aν,k. The beginning of the induction is

|A00| = |P0d| ≤ abd ≤ α.

So α should be greater of equal than abd. We say that (µ,m) comes before
(ν, k) if µ < ν or if µ = ν and m < k. To prove the estimate for Aν,k we can
assume that the estimate has been proved for all (µ,m) before (ν, k). So we
get

|Aν,k| ≤ abd+k +

k−1∑

m=0

αβ|ν|γmabd+k−m +
∑

µ<ν

d+k∑

m=0

αβ|µ|γmab|ν−µ|+d+k−m.

We want this be be smaller than αβ|ν|γk. Sufficient for this are the three
inequalities

αβ|ν|γk ≥3abd+k,

3

k−1∑

m=0

αβ|ν|γmabd+k−m,

3
∑

µ<ν

d+k∑

m=0

αβ|µ|γmab|ν−µ|+d+k−m.
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The first of the three inequalities is fulfilled if we demand

α ≥ 3abd, β ≥ 1, γ ≥ b.

The next inequality reads

γk ≥ 3abd+k
k−1∑

m=0

(γ
b

)m
.

A polynomial p(x) = a0+a1x+ · · ·+anxn, an 6= 0, can be estimated as follows

|p(x)| ≤ C|xn| for |x| ≥ 1.

Here C is a constant that depends on the coefficients of p. So the claimed
inequality follows from

γk ≥ 3Cabd+k
(γ
b

)k−1

or
γ ≥ 3Cabd+1.

The treatment of the third inequality is analogous. First we notice that µ < ν
implies |µ − ν| = |ν| − |µ|. Hence the right hand side of the third inequality
contains the sum ∑

µ<ν

(β
b

)|µ|

occurs. This is a polynomial in β/b of degree |ν|-1. Hence we can estimate it
by

∑

µ<ν

(β
b

)|µ|
≤ C

(β
b

)|ν|−1

.

Now the same argument as in the second case gives the desired equation for
big enough β. ⊔⊓

The Weierstrass preparation theorem is related to the division theorem
which – not correctly – sometimes is also called Weierstrass preparation theo-
rem. But this is historically not correct. Weierstrass first proved the prepara-
tion theorem and short time after that Stickelberger proved the division the-
orem. We will do the converse, we derive the preparation from the division
theorem.

DWp4.3 Definition. A Weierstrass polynomial is a normed polynomial

Q ∈ C[[z1, . . . , zn−1]][zn]

of the form
Q = zdn +Qd−1z

d−1
m + · · ·+Q0, Qj(0) = 0.

So a Weierstrass polynomial has the property

Q(0, zn) = zdn.

In particular Weierstrass polynomials are zn-general. We mention that units are
also zn-general and that the product of two zn-general elements is zn-general.
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WPT4.4 Weierstrass preparation theorem. Let P be a zn-general power series
in C[[z1, . . . , zn]]. Then there exists a unique decomposition

P = UQ

where Q is a Weierstrass polynomial and U is a unit, U(0) 6= 0. The same
is true in the ring of convergent instead of formal power series. So P ∈ On

implies Q,U ∈ On.

Proof. We apply the division theorem for (P,Q) = (zdn, P ). So we get

zdn = AP +B

where B is a polynomial of degree < d (=order(P )). This means

AP = zdn −B.

The right hand side, we call it Q = zdn − B, is a normalized polynomial in
zn of degree d. We claim that it is a Weierstrasspolynomial. This means
B(0, zn) = 0. This follows from the fact that the zn-order of the left hand side
is ≥ d. The same argument shows that A(0) 6= 0. So A is a unit and we get

P = UQ, U = A−1.

It remains to prove the uniqueness of the decomposition. This means the
following. Let Q, Q̃ be two Weierstrass polynomials and let Q̃ = UQ where
U is a unit. Then Q̃ = Q. For the prove we perform the (trivial) polynomial
division Q̃ = AQ + B. From the uniqueness in the division theorem we get
A = U and B = 0. So U is a polynomial. Comparing degrees and the value at
0 we obtain U = 1. ⊔⊓

The technique of comparing the Weierstrass division with the polynomial
division gives the following result.

Ldfc4.5 Remark. Let Q be a Weierstrass polynomial and let A a power series
such that AQ is a non-zero polynomial in zn, then A is a polynomial in zn
as well. (This holds in the ring of formal and in the ring of convergent power
series.)

Proof. Just compare P := AQ with the polynomial division P = A1Q + B2.
The uniqueness statement in the division theorem gives A1 = A (and B1 = 0).

⊔⊓

Let A be a complex m× n-matrix. We consider A as linear map

A : Cn −→ C
m z 7−→ w, wµ =

∑
aµνzν .

For a power series P ∈ On, we obtain by substitution the power series P (Az)
If m = n and if A is an invertible matrix, then

On
∼
−→ On, P (z) 7−→ P (A−1z),

is an ring automorphism. The inverse map is given by A−1.
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AlAl4.6 Remark. For every finite set of convergent power series P ∈ On , P 6= 0 ,
there exists an invertible n× n-matrix A, such that all PA are zn-general.

Proof. There exists a point a 6= 0 in a joint convergence polydisk, such that
P (a) 6= 0 for all P . After the choice of suitable coordinate transformation
(choice of A), one can assume A(0, . . . , 0, 1) = a. Then all PA are zn-general.

⊔⊓

5. Algebraic properties of the ring of power series

We restrict now to the ring of convergent power series. The ring O0 just
coincides with the field of complex numbers. The ring O1 is also very simple.
Every element can be written in the form znP where P is a unit and n ≥ 0 an
integer. It follows that each ideal of O1 is of the form O1z

n. The rings On,
n > 1, are much more complicated.

Let Q ∈ On−1[zn] be a Weierstrass polynomial. We can consider the natural
homomorphism

On−1[zn]/QOn−1[zn] −→ On/QOn.

The division theorem implies that this is an isomorphism.

WDalg5.1 Theorem. For a Weierstrass polynomial Q ∈ On−1[zn] the natural
homomorphism

On−1[zn]/QOn−1[zn] −→ On/QOn

is an isomorphism.

Proof. The surjectivity is an immediate consequence of the existence statement
in the division theorem. The injectivity follows from the uniqueness statement
in this theorem as follows. Let P ∈ On−1[zn] a polynomial that goes to 0,
i.e. P = SA, Q ∈ On. We have to show that S is a polynomial in zn. We
compare with the elementary polynomial division P = AQ+B. The uniqueness
statement in the division theorem shows A = S and B = 0. ⊔⊓

Recall that an element a ∈ R is a prime element if and only if Ra is a non-
zero prime ideal. (A prime ideal p ⊂ R is an ideal such that R/p is an integral
domain.) By our convention the zero ring is no integral domain. Hence prime
ideals are proper ideals and prime elements are non-units. From Theorem 5.1
we obtain the following result.

WePr5.2 Lemma. A Weierstrass polynomial P ∈ On−1[zn] is a prime element in
On, if and only if it is a prime element in On−1[zn].
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We recall that an integral domain R is called a UFD-domain if every nonzero
and non-unit element of R can be written as a finite product of prime elements.
This product then is unique in an obvious sense. Every principal ideal domain
is UFD. As a consequence every field is UFD. But also Z and O1 are principal
ideal rings and hence UFD. A famous result of Gauss states that the polynomial
ring over a UFD domain is UFD. A non-unit and non-zero element a of an
integral domain is called indecomposable if it cannot be written as product
of two non-units. Primes are indecomposable. The converse is true in UFD-
domains. It is often easy to show that any element of an integral domain is the
product of finitely many indecomposable elements. For example this is case in
On. On can prove this by induction on

o(P ) := sup{k; P ∈ mkn}.

An integral domain is UFD if and only if every element is the product of finitely
many indecomposable elements and if each indecomposable element is a prime.

UFD5.3 Theorem. The ring On is a UFD-domain.

Proof. We have to show that every indecomposable element P ∈ On is a
prime. The proof is given by induction on n. By the preparation theorem one
can assume that P ∈ On−1[zm] is a Weierstrass polynomial.

We claim that P is indecomposable in On−1[zn]. We argue indirect and
consider a non-trivial decomposition P = AB; A,B ∈ On−1[zn]. Then zdn =
P (0, zn) = A(0, zn)B(0, zn). But then we can assume A(0, zn) = zαn , B(0, zn) =
zβn where α+ β = d, α > 0, β > 0. But then A(0) = B(0) = 0 and P = AB is
a non-trivial decomposition in On.

By induction assumption On−1 is UFD. The theorem of Gauss implies that
On−1[zn] is UFD. Hence P is a prime element in On−1[zn]. By Theorem 5.1
then P is prime in On. ⊔⊓

Recall that a ring R is called noetherian if each ideal a is finitely generated,
a = Ra1 + · · ·+ Ran. Then any sub-module of a finitely generated module is
finitely generated.

NOET5.4 Theorem. The ring On is noetherian.

Proof. Again we argue by induction on n. Let a ⊂ On be an ideal. We want to
show that it is finitely generated. We can assume that a is non-zero. Take any
non-zero element P ∈ a. By the preparation theorem we can assume that P is
a Weierstrass polynomial. It is sufficient to show that the image of a in On/(P )
is finitely generated. This is the case, since On−1 is noetherian by induction
hypothesis and then On−1[zn] is noetherian by Hilbert’s basis theorem. ⊔⊓
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6. Hypersurfaces

Under a hypersurface we understand here the set of zeros of a non-zero analytic
function on a domain D ⊂ C

n. For their study we will make use of the theory
of the discriminant. It can be used to characterize square free elements of a
polynomial ring over factorial rings.

An element a of an integral domain is called square free if a = bc2 implies
that c is a unit. Primes are square free. Notice our convention: units are square
free but they are no primes.

There is a close relation between the question of divisibility of power series
and their zeros.

divI6.1 Proposition. Let P,Q ∈ On , Q 6= 0, be two power series. We assume
that there exists a neighborhood of the origin in which both series converge and
such that every zero of Q in this neighborhood is also a zero of P . Then there
exist a natural number n such that Pn is divisible by Q,

Pn = AQ, A ∈ On.

If Q is square free, one can take n = 1, i.e. then P is divisible by Q.

Proof. Because of the existence of the prime decomposition, we can assume
that Q is square free. By our standard procedure, we can assume that Q is a
Weierstrass polynomial. From the division theorem we obtain

P = AQ+B, B ∈ On−1[zn], degzn B < d.

By assumption we know in a small neigborhood of the origin

Q(z) = 0 =⇒ B(z) = 0.

Now we make use of the fact that Q is a square free element of On. We know
then that Q is square free in On−1[zn]. Hence the discriminant of Q is different
from 0. Now we consider the polynomial

Qa(z) = Q(a1, . . . , an−1)(z) ∈ C[z]

for fixed sufficiently small a = (a1, . . . , an−1). The discriminant dQa
can be

obtained from dQ by specializing z1 = a1, . . . , zn−1 = an−1. This follows for
example from the existence of the universal polynomial ∆n. Therefore there
exists a dense subset M of a small neighborhood of 0 such that dQa

is different
from 0 for a ∈ M . This means that Qa is a square free element from C[z].
Since C is algebraically closed, this means nothing else that Qa has no multiple
zeros. Hence Qa has d pairwise distinct zeros (for a ∈ M). As we pointed out
several times the d zeros are arbitrarily small if a is sufficiently small. We
obtain that z 7→ B(a, z) has d pairwise distinct zeros if a lies in a dense subset
of a sufficiently small neighborhood of the origin. It follows that Ba vanishes
for these a. This shows B = 0. ⊔⊓
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reD6.2 Definition. A holomorphic function

f : D −→ C (D ⊂ C
n open)

is called reduced at a point a ∈ D if the power series of f at a is a square free
element of C{z1 − a1, . . . zn − an}.

(The notation C{z1 − a1, . . . zn − an} has been introduced for the same time.
This ring is just the usual ring of power series. The notation just indicates
that the elements now are consider as functions around a. It is the same to
consider f(z − a) and then to take the power series expansion around 0.) If a
is a non-zero element of an UFC-domain one can define its “square free part”
b. This is a square free element which divides a and such that a divides a
suitable power of a. The square free part is determined up to a unit of R. The
definition of b is obvious fron the prime decomposition of a. For example the
square free part of z21z

3
2 is z1z2. If we want to investigate local properties of a

hypersurface A around a given point a ∈ A we can assume that the defining
equation f(z) = 0 in a small neighborhood of a is given by a function f which
is reduced at a.

redO6.3 Proposition. Let f be a holomorphic function on an open set U ⊂ C
n.

The set of all points a ∈ U in which f is reduced is an open set.

For the prove of 6.3 we need the following two remarks:

squFr6.4 Remark. Let P ∈ On−1[zn] be a normalized polynomial, which is square
free in the ring On−1[zn]. Then P is square free in the bigger ring On.

We already used this result for Weierstrass polynomials where it is a conse-
quence of 5.2. For the general case, we use the preparation theorem

P = UQ, U unit in On, Q Weierstrass polynomial.

We know that U is a polynomial in zn (???). This implies that Q is square free
in the ring On−1[zn] and therefore in On. But U is a unit in On. Therefore P
is square free in On. ⊔⊓

The same argument shows:

UoE6.5 Remark. Let P ∈ On−1[zn] be a normalized polynomial which is prime
in the ring On−1[zn]. Then P either is a unit in On or it is a prime in On

Proof of 6.3. Let a ∈ D be a point in which f is reduced. We can assume a = 0
and that the power series P = f0 is a Weierstrass polynomial. We consider the
power series of f in all points b in a small polydisk around 0.

fb ∈ C{z1 − b1, . . . , zn − bn}
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This power series is still a normalized polynomial in C{z1 − b1, . . . , zn−1 −
bn−1}[zn − bn] but usually not a Weierstrass polynomial. By assumption P
is square free (in On but then also in On−1[zn] since it is a Weierstrass poly-
nomial). Therefore the discriminant does not vanish. This (and the universal
formula for the discriminant) shows that the discriminant of Pb does dot vanish
if b is close to 0. This means that Pb is square free in the polynomial ring and
square free in Oa by 6.4. ⊔⊓

7. Analytic Algebras

All rings are assumed to be commutative and with unit element. Homomor-
phisms of rings are assumed to map the unit element into the unit element.

Recall that an algebra over a ring A by definition is a ring B together with
a distinguished ring homomorphism ϕ : A→ B. This ring homomorphism can
be used to define on B a structure as A-module, namely

ab := ϕ(a)b (a ∈ A, b ∈ B).

Let B,B′ be two algebras. A ring homomorphism B → B′ is called an algebra
homomorphism if it is A-linear. We will consider C-algebras A. If A is different
form zero then the structure homomorphism C → A is injective. Usually
identify complex numbers with their image in A. So each non-zero C-algebra
contains the field of complex numbers as sub-field.

AnAlgo7.1 Definition. An analytic algebra A is a C-algebra which is different from
the zero algebra and such there exist an n and a surjective algebra homomor-
phism On → A.

A ring R is called a local ring if it is not the zero ring and if the set of non-
units is an ideal. This ideal is then a maximal ideal and moreover, it is the
only maximal ideal. We denote this ideal by m(R). Hence R−m(R) is the set
of units of R. The algebra On is a local ring. The maximal ideal mn consists
of all P with P (0) = 0.

Let A be a local ring and a ⊂ m be a proper ideal. Then A/a is a local ring
too and the maximal ideal of A/a is the image of m. This shows the following.
If A is a local ring and A → B is a surjective homomorphism onto a non-zero
ring, then B is also a local ring and the maximal ideal of A is mapped onto the
maximal ideal of B. In general, a homomorphism A → B between local rings
is called local if it maps the maximal ideal of A into the maximal ideal of B.
The natural map A/m(A) → B/m(B) is an isomorphism.

In particular, analytic algebras are local rings and the homomorphism On →
A in Definition 7.1 is a local homomorphism. The natural maps

C −→ On/mn −→ A/m(A)
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are isomorphisms. For a ∈ A we denote by a(0) the its image in A/m(A).
Recall that we identify this with a complex number. The maximal ideal of A
consists of all a ∈ A such that a(0) = 0.

We notice that an arbitrary algebra homomorphism f : A → B between
analytic analytic algebras is local. This follows from the commutative diagram

A //

��❅
❅❅

❅❅
❅❅

B

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

C

Our next task is to describe the homomorphisms Om → On. They are defined
by means of elements P1, . . . , Pn ∈ Om that are contained in the maximal ideal.
If P (z1, . . . , zn) is an element of On, one can substitute the variables zi by the
power series Pi. This substitution gives a homomorphism

On −→ Om, P 7−→ P (P1, . . . , Pn).

SubsHom7.2 Lemma. Each algebra homomorphism On → Om is a substitution
homomorphism.

Proof. Let ϕ : On → Om an algebra homomorphism. Since it is local, the
elements Pi := ϕ(zi) are contained in the maximal ideal. Hence one can con-
sider the substitution homomorphism ψ defined by them. We claim ϕ = ψ.
At the moment we only know that ϕ and ψ agree on C[z1, . . . , zn]. Let
P =

∑
ν aνz

ν ∈ On. We claim ϕ(P ) = ψ(Q). For this we decompose for
a natural number k

P = Pk +Qk, Pk =
∑

ν1+···+νn≤k

aνz
ν .

Then Qk is contained in the k-the power mk of the maximal ideal. (Obviously
mk is generated by all zν where ν1 + · · ·+ νn ≥ k.) We get

ϕ(P )− ψ(P ) = ϕ(Qk)− ψ(Pk) ∈ mk.

This is true for all k. But the intersection of all mk is zero. This proves 7.4.
⊔⊓

We have to generalize 7.4 to homomorphisms ϕ : A → B of arbitrary
analytic algebras A,B. There is one problem. Let m(B) be the maximal ideal
of B. It is not obvious that the intersection of all powers of m(B) is zero. But
it is true by general commutative algebra (Krull’s intersection theorem).
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SubBel7.3 Lemma. Let A → B a homomorphism of analytic algebras. Assume
that surjective algebra homomorphism On → A and Om → B are given. There
exists a (substitution) homomorphism On → Om such the the diagram

A −→ B
↑ ↑
On −→ Om

commutes.

The proof should be clear. The variable zi ∈ On is mapped to an element of
A then of B. Consider in Om an inverse image Pm. These elements define
a substitution homomorphism On → Om. From Krull’s intersection theorem
follows that the diagram commutes. ⊔⊓

From 7.3 follows:

SubsHom7.4 Lemma. Let f1, . . . , fm be elements of the maximal ideal of an analytic
algebra A. There is a unique homomorphism C{z1, . . . , zn} → A such that
zi 7→ fi.

We denote the image by C{f1, . . . , fn} and call it the analytic algebra gener-
ated by f1, . . . , fn. We want to derive a criterion that C{f1, . . . , fn} = A. A
necessary condition is that f1, . . . , fn generate the maximal ideal. Actually it
is also sufficient:

MaxErz7.5 Lemma. Let f1, . . . , fn be elements of the maximal ideal of an analytic
algebra A. Then the following conditions are equivalent:

a) They generate the maximal ideal.

b) A = C{f1, . . . , fn}.

It is easy to reduce this to the ring A = C{z1, . . . , zn}. Let P1, . . . , Pm be
generators of the maximal ideal. We can write

zi =
∑

ij

AijPj .

Taking derivatives and evaluating at 0 we get: The rank of the Jacobian matrix
of P = (P1, . . . , Pm) is n. We can find an system consisting of n elements, say
P1, . . . , Pn, such that the Jacobian is invertible. Now one can apply the theorem
of invertible functions. ⊔⊓
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8. Noether Normalization

We consider ideals a ∈ On and their intersection b := a ∩ On−1 with On−1.

natE8.1 Lemma. Let a ⊂ On ba a zn-general ideal. Then On/a is an On−1/b-
module of finite type with respect to the natural inclusion

On−1/b →֒ On/a (b = On−1 ∩ a).

Additional remark. If a contains a Weierstrass polynomial of degree d, then
On/a is generated as On−1/b-module by the images of the powers

1, zn, . . . , z
d−1
n .

The proof is an immediate consequence of the division theorem. ⊔⊓

noetH8.2 Noether normalization theorem. Let A be an analytic algebra. There
exists an injective homomorphism of analytic algebras

C{z1, . . . , zd} →֒ A (d suitable)

such that A is a module of finite type over C{z1, . . . , zd}. The number d is
unique (it is the Krull dimension).

Proof. The existence of such an embedding follows from 8.1 by repeated appli-
cation. One makes use of the following simple fact. If A ⊂ B and B ⊂ C are
finite then A ⊂ C is finite too. The essential point is the uniqueness of d. It
follows from the characterization as Krull dimension. ⊔⊓

The Noether normalization admits a refinement if the starting ideal a is a
prime ideal. Recall that an ideal p ⊂ R in a ring R is called a prime ideal if
the factor ring is an integral domain.

So let P ⊂ On be a prime ideal and p = On−1 ∩P. We have an injective
homomorphism

On−1/p →֒ On/P

which shows that p is also a prime ideal. Let K resp. L be the field of quotients
of On−1/p resp. On/p. We have a commutative diagram

On−1/p →֒ On/P
∩ ∩
K →֒ L .

We distinguish two cases which behave completely different:

First alternative. P is a principal ideal (i.e. generated by one element).
Second alternative. This is not the case.
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erstA8.3 Theorem, the first alternative. Let P ⊂ On = C{z1, . . . , zn} be a
zn-general prime ideal. Assume

P ∩ On−1 = {0}.

Then P is a principal ideal.

Proof. Let Q ∈ P be a zn-general element. One of the prime divisors of Q must
be contained in P. It is zn-general too. Hence we can assume that Q is prime.
We will show that Q generates P. By the preparation theorem we can assume
that Q is a Weierstrass polynomial. Let P ∈ P be an arbitrary element. From
8.1 applied to the ideal a = (Q) we get an equation

P k +Ak−1P
k−1 + . . .+ A0 ≡ mod (Q), Ai ∈ On−1 (0 ≤ i < k).

The equation shows that A0 is contained in P, hence in P∩On−1. By assump-
tion this ideal is 0 and we obtain A0 = 0. We see

P · (P k−1 + . . .+ A1) ≡ 0modQ.

But (Q) is a prime ideal and we get

either P ∈ (Q) or P k−1 + . . .+ A1 ≡ mod (Q).

Repeated application of this argument shows P ∈ (Q) in any case. ⊔⊓

gleiQ8.4 Theorem, the second alternative. Let

P ⊂ On = C{z1, . . . , zn}

be a prime ideal which is not a principal ideal. After a suitable linear transfor-
mation of the coordiantes we can obtain:

a) P is zn-general.
b) The two integral domains

On−1/p →֒ On/P (p = On−1 ∩P)

have the same field of fractions.

“After a suitable linear transformation of the coordinates” means that we allow
to replace P by its image under the automorphism

On → On, P (z) 7→ P (A−1z),

for suitable A ∈ GL(n,C).
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Proof of Theorem 8.4. We may assume that P is already zn-general. From 8.3
we know that

p = P ∩ On−1

is different from 0. After a linear transformation of the variables (z1, . . . , zn−1)
we can assume that p is zn−1-general. The ideal P remains zn-general. Now
we consider

q = p ∩ On−2 = p ∩ On−2.

The extension

On−2/q ⊂ On/P

is of finite type. We denote the fields of fractions by K ⊂ L. This is a finite
algebraic extension and we have L = K[z̄n−1, z̄n]. The bar indicates that we
have to take cosets mod P . From elementary algebra we will use

Theorem of primitive element. Let K ⊂ L be a finite algebraic extension
of fields of characteristic zero, which is generated by two elements, L = K[a, b].
Then for all x ∈ K but a finite number of exceptions one has

L = K[a+ xb].

As a consequence every finite algebraic extension of fields of characteristic zero
is generated by one element. This is the usual formulation of this theorem.
The above variant is contained in the standard proofs.

We obtain that

L = K[z̄n−1 + az̄n].

for almost all a ∈ C. We consider now the following (invertible) linear trans-
formation of variables,

wn−1 = zn−1 + azn, wj = zj for j 6= n− 1.

We have to take care that P remains general in the new coordinates, which now
means wn-general. This possible because we have infinitely many possibilities
for a.

Thus we have proved that we can assume without loss of generality L =
K[z̄n−1]. But then the quotient fields of On−1/p and On/P agree. ⊔⊓
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9. Geometric Realization of Analytic Ideals

We will have to consider systems of ideals aa ⊂ OU,a.

Dfgs9.1 Definition. Let U ⊂ C
n be an open subset. A system a = (aa)a∈U

of ideals aa in OU,a is called finitely generated if there exist finitely many
holomorphic functions f1, . . . , fm on U such that

aa = ([f1]a, . . . , [fm]a).

We call the functions f1, . . . , fm a system of generators. This system is not
uniquely determined. For example, g1, . . . , gk defines the same system of they
generate the same ideal in O(U). We leave the following statement as exercise
to the reader. (We will not make use of it.)

The tuples f1, . . . , fm and g1, . . . , gk define the same system if and only if there
exists an open covering U =

⋃
Ui such that the restriction to Ui generate the

same ideal in O(Ui).

Daas9.2 Definition. Let (U, a) be a finitely generated system. We consider

X := {a ∈ U ; aa 6= OU,a}

and call it the associated analytic set.

In the notation of Definition 9.1 we have

X = {a ∈ U ; f1(a) = · · · fm(a) = 0}.

So our associated analytic sets are zero sets of finitely many holomorphic func-
tions.

Dhmf9.3 Definition. A holomorphic map f : (U, a) → (V, b) of finitely generated
systems is a holomorphic map f : U → V with the following condition:

f∗
a (bf(a)) ⊂ aa.

The condition formulated in the Definition means that we have an induced
homomorphism of analytic algebras

f∗
a : OV,f(a)/bf(a) −→ OU,a/aa.

RfXY9.4 Remark. Let (U, a), (V, b) be two finitely generated systems and X, Y the
associated analytic sets and let f : (U, a) → (V, b) be an analytic map. Then
f(X) ⊂ Y .

Hence an analytic map f of analytic systems induces a map

f : X −→ Y

of the associated analytic sets. These maps are clearly continuous.
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Raan9.5 Remark. Let a0 ⊂ On = C{z1, . . . , zn} be an ideal. Then there exists
a finitely generated system (U, a) on some open neighborhood U of the origin
such that extends a0.

Proof. The ringOn being noetherian we can choose a finite system of generators
a = (P1, . . . , Pm). The generators converge in a common open neighborhood U
around 0. They can be considered as holomorphic functions there and for each
point in U we can consider the ideal generated by their power series expansions
in this point. ⊔⊓

We call this system (U, a) a geometric realization of a. It is clear that two
geometric realizations agree in a small neighborhood of the origin. This means
that for all local questions around the origin the geometric realization behaves
as if it were unique.

The technique of the last section was to consider the intersection b0 =
a0∩On−1. Let (U, a) resp. (V, b) be geometric realizations of a resp. b. We can
assume that

U = V ×W, 0 ∈W ⊂ C.

We consider the projection (cancelation of the last variable)

f : U → V, (z1, . . . , zn) 7−→ (z1, . . . , zn−1).

Generators of b can be expressed by means of generators of a. If we replace
V,W by suitable smaller open neighborhoods of the origin, we get that the
projection defines a holomorphic map

f : (U, a) −→ (V, b).

We call this map a geometric realization of the pair (a, b = a ∩ On−1). Again
this realization is uniquely determined in an obvious local sense around 0.

In particular, we get a continuous map

f : X −→ Y

between the associated analytic sets.

Dcmf9.6 Definition. A continuous map f : X → Y between locally compact spaces
is called finite if it is proper and if its fibres f−1(b), b ∈ Y are finite.

Recall that proper means that inverse images of compact sets are compact.
Here is an example of a finite map.

Lpfm9.7 Lemma. Let V ⊂ C
n−1 open and let P ∈ O(V )[zn] be a normalized

polynomial. Let X ⊂ V × C be the zero set of P . The projection

X −→ V

is a finite map.

An ideal a ⊂ On is called zn-general if it contains a zn-general element. For the
theory of ideals in On it is sufficient to restrict to zn-general ideals, since every
non-zero ideal can be transformed into a zn-general one by means of linear
change of coordinates.
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einP9.8 Remark. Let a0 be a zn-general ideal in On and b0 = a ∩ On−1. There
exists a geometric realization

f : (U, a) −→ (V, b), , U = V ×W,

of (a, b) such that the map

X −→ V

is finite. The sets U, V can be taken to be arbitrarily small in the following
sense. If 0 ∈ V ′ ⊂ C

n−1, 0 ∈ W ′ ⊂ W are open neighborhoods, then one can
get V ⊂ V ′, W ⊂W ′. In addition one can reach that the point 0 ∈ V has only
one inverse image in X (namely 0).

Proof. There exists a Weierstrass polynomial P ∈ a. Close to the origin
the inverse image is contained in the set of zeros of P (0, . . . , 0, zn) = 0. But
P (0, . . . , 0, zn) = zdn implies that 0 is the only solution. The rest comes from the
frequently used argument of “continuity of zeros” of a Weierstrass polynomial.

⊔⊓

We want to apply this in the case that P ⊂ On is a prime ideal of the second
alternative, i.e. it is zn-general and On/P and On−1/p (p := P ∩ On−1) have
the same field of fractions.

bimeR9.9 Proposition. Let P ⊂ On be a zn-general prime ideal and p := P∩On−1.
We assume that the fields of fractions of On/P and On−1/p agree (second
alternative). There exists a geometric realization

f : (U, (Pa)a∈U ) −→ (V, (pb)b∈V )

where

U = V ×W, V ⊂ C
n−1, W ⊂ C,

(and f is the natural projection) such the following holds:

Let f : X → Y be the corresponding map of the associated analytic sets. There
exists a power series A ∈ On−1 which is not contained in p and which converges
in V . Let be

S :=
{
z ∈ Y ; A(z) = 0

}
and T := f−1(S).

The restriction

f0 : X − T −→ Y − S

of f is topological.
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Proof. We make use of the fact that the two fields of fractions agree. Expressing
the coset of zn as a fraction we obtain:

There exist power series A,B ∈ On−1 with the properties

A 6∈ p Azn −B ∈ P.

We can assume that that A and B both converge in V . In particular the sets
S and T are defined now. All points z ∈ X satisfy

znA(z1, . . . , zn−1) = B(z1, . . . , zn−1).

This means

zn =
B(z1, . . . , zn−1)

A(z1, . . . , zn−1)

if z is not contained in T . So we have proved the injectivitiy of the map
f0 : X − T → Y − S.

It remains to show that f0 is surjective. We define

g(z1, . . . , zn−1) := (z1, . . . , zn), zn :=
B(z1, . . . , zn−1)

A(z1, . . . , zn−1)
.

What we need is g(z) ∈ X for z ∈ Y − S. In a first step we show:

teL9.10 Lemma. Let P ∈ P ∩ On−1[zn]. There exists a r′, 0 < r′ ≤ r, such
that

P (g(z)) = 0 for all z ∈ Y − S, ||z|| < r′.

(|| · || denotes the maximum norm.)
Proof. We choose r′ small enough such that the coefficients of P converge in
the polydisk with multiradius (r′, . . . , r′). Let d be the degree of P . Then AdP
can be written as polynomial in Azn with coefficients from On−1. By means of
Azn = (Azn −B) +B we can rearrange P as polynomial in Azn −B,

P =
d∑

j=0

(Azn −B)dPj (Pj ∈ On−1).

We want to show P (g(z)) = 0 which is equivalent to P0(z) = 0. But this is clear
because P0 ∈ P ∩ On−1 = p. This completes the proof of the Lemma. ⊔⊓

We continue the proof of Proposition 9.9 and claim:

There exists r′, 0 < r′ ≤ r, such that

|zn| < ε for ||(z1, . . . , zn−1)|| < r′.
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One applies the Lemma 9.10 to a Weierstrass polynomial Q contained in P

and uses the standard argument of “continuity of roots”.

The set X can be defined by a finite number of equations P1(z) = · · · =
Pm(z), Pj ∈ P, which converge in the polydisk of multiradius (r, . . . , r, ε). By
means of the division theorem (Pj = AjQ+Bj) and the above lemma 9.10 we
obtain Pj(g(z)) = 0 and hence g(z) ∈ X for ||z|| < r′ and suitable r′ ≤ r. If
we replace Y resp. X by their intersections with the polydisks of multiradius
(r′, . . . , r′) resp. (r′, . . . , r′, ε) we obtain that f0 is surjective and then that f0 is
bijective. The above formula for zn shows that the inverse of f−1

0 is continuous.
⊔⊓

Lemma 9.9 should be interpreted as a result which states that the realization
X → Y in case of the second alternative is close to a biholomorphic map.
One could say that f is bimeromorphic. But there is a big problem up to
now. In principle it could be that S equals the whole Y . The Hilbert-Rückert
Nullstellensatz will show that this is not the case. This nullstellensatz will be
the goal of the next section.

Appendix to Sect. 9. Continuity of roots

We recall a basic fact about proper maps f : X → Y between locally compact
Hausdorff spaces. Recall that proper means that inverse images of compact
sets are compact. Proper maps have the following two basic properties. They
can be found in standard text books on topology.

Lpmp9.11 Lemma. Let f : X → Y be proper.

1) The images of closed subsets are closed.

2) Let b be a point of Y and Let f−1(b) ⊂ U ⊂ X be an open neighborhood of
the fibre over b. Then there exists a neighborhood b ⊂ V ⊂ V such that its
inverse image is contained in U , i.e. f−1(V ) ⊂ U .

Here is an example of a proper map.

LefC9.12 Lemma. The map

C
n −→ C

n, a 7−→ (E1(a), . . . , En(a)),

given by the elementary functions, is continuous and proper.

Proof. We make use of the Vieta formula

(X − a1) · · · (X − an) = Xn +

n∑

ν=1

Eν(a)X
n−ν.

We have to show that a set of a-s is bounded if the elementary functions Eν
are bounded on this set. This follows from the estimate

|am| ≤ nC where C = max{1, |E1(a)|, . . . , |En(a)|}.
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This follows from the following simple computation.

anm +
n∑

ν=1

Eν(a)a
n−ν
m = 0.

In the case |am| ≤ 1 it implies

|am|
n ≤ nC or |am|

n ≤ nC.

In the case |am| > 1 we get

|am|
n ≤ nC|am|

n−1 or |am| ≤ nC.

Tho both cases are settled. ⊔⊓

There is another way ro express the lemma. Call two points z, w ∈ C
n

equivalent if they agree up to the ordering. This means that there is a permu-
tation σ ∈ Sn in the group of permutations Sn such that wi = zσ(i). We denote
the equivalence class of z by [z]. The set of all equivalence classes is denoted
by C

n/Sn. There is a natural projection map

C
n −→ C

n/Sn, z 7−→ [z].

We equip C
n/Sn with the quotient topology. So a subset of C

n/Sn is open
if and only if its inverse image in C

n is open. Then the projection map is
continuous and open (the image of open subsets are open). It is also easy to
check that C

n/Sn is locally compact and that the projection map is proper

Let [z] ∈ C
n/Sn. The point (E1(z), ..., En(z) does not depend on the choice

of tje representative z. Hence we get a natural map

C
n/Sn −→ C

n, [z] 7−→ (E1(z), ..., En(z)).

LSit9.13 Lemma. The natural map

C
n/Sn −→ C

n, [z] 7−→ (E1(z), ..., En(z)),

is topological.

Proof. This map is obviously bijective, continuous and proper. Hence images
of closed subsets are closed. This means the inverse map has the property that
inverse maps of closed subsets are closed. This implies continuity of the inverse
map. ⊔⊓

The inverse map C
n −→ C

n/Sn describes the map that associates to a
normed polynomial of degree n its roots. Hence the Lemmas 9.12 and its
corollary 9.13 can be considered as a precise mathematical statement of the
principle of continuity of roots .
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10. The Nullstellensatz

We associate to an ideal a ⊂ On an ideal A ⊂ On. A power series P ∈ On

belongs to A if there exists a geometric realization (U, a) of a with associated
analytic set X P converges in U and such that P vanishes on X . The ideal A is
called the vanishing ideal associated to a. It is a proper ideal, i.e. contained in
the maximal ideal mn. It is clear that the a ⊂ A. We call A also the saturation
of a.

The Radical of an Ideal

Let R be a ring. The radical rad a of an ideal a is the set of all elements a ∈ R
such that a suitable power an, n ≥ 1 is contained in a. It is easy to prove that
rad a is an ideal which contains a. Furthermore rad rad a=rad a. An ideal is
called a radical ideal is it coincides wit its radical. This e aquivalent with the
property that R/a is a reduced ring, i.e. a ring which contains no nilpotent
elements different form 0. Let R be a UFD-domain. A principal ideal Ra,
a 6= 0 is a radical ideal if and only if a is square free. We are able to state and
prove a fundamental result of local complex analysis:

RNS10.1 The Hilbert-Rückert nullstellensatz. The saturation A of an ideal
a ⊂ On is the radical of a,

A = rad a.

Proof. We want to reduce the nullstellensatz to prime ideals a. Prime ideals
are of course radical ideals. The easiest way to do this reduction is to use a
little commutative algebra, namely:

Every proper radical ideal in a noetherian ring is the intersection of finitely
many prime ideals.

We use this and write the radical of our given ideal as intersection of prime
ideals:

rad a = p1 ∩ . . . ∩ pm.

The saturation A of a is contained in the intersection of the of the saturations
of the prime ideals. If we assume the nullstellensatz for prime ideals we obtain

A ⊂ p1 ∩ . . . ∩ pm = rad a

This implies A = rad a because the converse inclusion is trivial.

Now we can assume that P := a is a prime ideal. We have to distinguish
the two alternatives:

First alternative. The ideal P is principal, P = (P ). The element P is a prime
element in On. In this case the nullstellensatz is a consequence of the theory
of hypersurfaces (6.1).
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Second alternative. P is not a principal ideal. Then we can assume that P is
zn-general, that the extension

On−1/p →֒ On/P (p = P ∩On−1).

is module-finite and that the two rings have the same field of fractions. We
make use of the geometric realization as in Proposition 9.9.

f : (U, (Pa)a∈U ) −→ (V, (pb)b∈V )

where
U = V ×W, V ⊂ C

n−1, W ⊂ C,

(and f is the natural projection). Recall that it induces a diagram

f : X −→ Y
∪ ∪

f0 : X − T
∼
−→ Y − S .

We indicated already in the last section that in principle S could be the whole
Y before the nullstellensatz is known. But now we are in a better situation.
We can prove the nullstellensatz by induction on n and therefore assume:

The nullstellensatz is true for p.

From this we derive:

Let P0 ∈ On−1 be a power series which converges in a small polydisk V around
0 and vanishes on (Y − S) ∩ V . Then P0 is contained in p.

This is quite clear, because AP0 (A as in 9.9) vanishes on Y ∩ V . The nullstel-
lensatz for p gives AP0 ∈ p and get P0 ∈ p because p is a prime ideal and A is
not contained in p.

So in some sense the set S is negligible. The proof of the nullstellensatz now
runs as follows. We take an element P from the saturation of P. The claim is
P ∈ P. The idea is to use an integral equation

Pm + Pm−1P
m−1 + . . .+ P0 ∈ P, Pi ∈ On−1 (0 ≤ i < m).

We take a minimal degree m. We distinguish two cases:

First case. P0 is contained in p: Then

P · (Pm−1 + Pm−1P
m−2 + . . .+ P1) ∈ P.

Because of the minimality of M the expression in the bracket is not contained
in P. But P is a prime ideal and we obtain P ∈ P what we wanted to show.

Second case. P0 is not contained in p: We know that P vanishes on X in
a neighborhood of 0. We can assume that P vanishes on the whole X (use
Remark 9.8). Using the bijection X − T → Y − S we obtain that P0 vanishes
on Y − S. But as we have seen this implies P0 ∈ p which is a contradiction.
This completes the proof of the nullstellensatz. ⊔⊓

We want to introduce the notion “thin at” which reflects that the set S is
negligible in Y in a certain sense.
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thinA10.2 Definition. Let Y ⊂ X ⊂ C
n be analytic sets and a ∈ Y a distinguished

point. We call Y thin at a if the following is true:

If f is an analytic function on a neighborhood a ∈ U ⊂ C
n which vanishes

on (X − Y )∩U then f vanishes on X in a (possibly smaller) neighborhood
of a.

So the essential part of the proof of the nullstellensatz was to show:

thinL10.3 Remark. Let P ⊂ On be a prime ideal with geometric realization X. Let
P ∈ On be a power series which is not contained in P. Assume that P converges
in a polydisk around 0 which contains X. Then Y := {z ∈ X ; P (z) = 0} is
thin at 0.

Again we get an obvious problem. On should expect that the property “thin
at a” extends to a full neighborhood of a and that Y is thin in the usual
topological sense in X (in this neighborhood). At the moment we are not able
to prove this. This needs the principle of coherence which will be our next goal.
Before we have developed this basic tool we must (and can) be content with
the notion “thin at”. But the reader should have in mind that “thin at” is in
reality the same as thin in a neighborhood.

11. Oka’s Coherence Theorem

We introduced already the ring

C{z1 − a1, . . . , zn − an}

of power series. Every holomorphic function f on an open neighborhood of a
has a power series expansion in this ring. (Instead of this one could consider
the function f(z − a) and take its power series expansion around 0.) We have
a natural injection

C{z1 − a1, . . . , zn−1 − an−1} −→ C{z1 − a1, . . . , zn − an}

and can define the ring

C{z1 − a1, . . . , zn−1 − an−1}[zn − an] ⊂ C{z1 − a1, . . . , zn − an}

in an obvious way. An element P of this ring is called a Weierstrass polyno-
mial, if it is normalized as polynomial in zn − an and if it has the property
P (a1, . . . , an−1, zn−an) = (zn−an)

d, where d is the degree of P in the variable
zn − an.

Let f be a holomorphic function on an open subset D ⊂ C
n. Let its power

series expansion at some point a ∈ U be a Weierstrass polynomial. Then
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the power series expansion at a different point b ∈ U usually will be not a
Weierstrass polynomial. But it is still a normalized polynomial! We give a
simple example, U = C. Then z is a Weierstrass polynomialat the origin. But
at any other point we have [fa] = w + a, where w = z − a. But this is not a
Weierstrass polynomial.

Let m be a natural number. We are interested in OU,a-submodules of the
free module Om

U,a. In the case m = 1 such a submodule is nothing else but
an ideal and ideals are the modules in which we are mainly interested. For
technical reasons it is important to allow arbitrary m. Every submodule of
Om
U,a is finitely generated because the ring of power series is noetherian.

We are not only interested in individual modules but in systems of modules.
This means that we assume that for every a ∈ U a submodule

Ma ⊂ Om
U,a

is given. We denote this system usually by a single letter,

M = (Ma)a∈U .

If V is an open subset of U , one defines in an obvious way the restricted system
M|V := (Ma)a∈V . We need a straight forward generalization of Definition 9.1.

endEr11.1 Definition. A system

M = (Ma)a∈U , Ma ⊂ Om
U,a,

is called finitely generated, if there exist finitely many vectors of holomorphic
functions

f (j) ∈ O(U)m for 1 ≤ j ≤ k,

such that the Oa-module Ma is generated by the germs

(f (1))a, . . . , (f
(k))a.

The germs are taken of course componentwise.

coH11.2 Definition. The system M = (Ma)a∈U is called coherent, if it is
locally finitely generated, which means that every point a ∈ U admits an open
neighborhood a ∈ V ⊂ U such that M|V is finitely generated.

Let p, q be natural numbers and let

F =



F11 . . . F1p

...
...

Fq1 . . . Fqp






32 Chapter I. Local complex analysis

by a matrix of holomorphic functions on U . We can consider the O(U)-linear
map

F : O(U)p −→ O(U)q

which is defined by

Ff := g; gi :=

p∑

j=1

Fijfj (1 ≤ i ≤ q).

As the notation indicates we identify the matrix and the linear map. For every
point a ∈ U we can consider Fa = ((Fik)a) and the corresponding map

Fa : Op
U,a → Oq

U,a.

OkC11.3 Oka’s coherence theorem. Let

F : O(U)p → O(U)q (U ⊂ C
n open)

be an O(U)–linear map. The system

M = (Ma)a∈U Ma := kernel (Fa)

is coherent.

The proof will be given in three steps:
First step, reduction to the case q = 1. This will be done by induction on q.
So let’s assume q > 1 and that the theorem is proved for q − 1 instead of q.
Let a0 ∈ U be a distinguished point. We want to prove that M is finitely
generated in a neighborhood of a. For this purpose we can replace U by a
smaller neighborhood of a0. We consider the two projections

O(U)q = O(U)q−1 ×O(U)
α

−→ O(U)
β

−→ O(U)q−1.

By the induction hypothesis, applied to

α ◦ F : O(U)p → O(U)q−1

we can assume that there exist a finite system

A(1), . . . , A(m) ∈ O(U)p,

such that the germs A
(1)
a , . . . , A

(m)
a generated the kernel of (α ◦ F )a for each

point a ∈ U . Now we consider the linear map

G : O(U)m −→ O(U)p, (f1, . . . , fm) 7−→ f1A
(1) + . . .+ fmA

(m),
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and compose it with the projection β,

β ◦A : O(U)m → O(U).

We assumed that the case q = 1 is proved and can therefore assume that there
exists a finite system

B(1), . . . , B(l) ∈ O(U)m,

whose germs in an arbitrary point a ∈ U generate (β ◦ A)a. It is easy to see
that the germs of

C(i) = G(B(i)) ∈ O(U)p (1 ≤ i ≤ m).

generate the kernel of our original Fa. Thus we have show:

If Oka’s theorem is true for q = 1 in a given dimension n then it is true for all
q in this dimension.

Second step. The proof of Oka’s theorem rests on Oka’s Lemma, which is a
lemma for an individual ring of power series (not a system). Before we can
formulate it, we need a notation:

On−1[zn : m] =
{
P ∈ On−1[zn]; degzn P < m

}
.

This is a free module over On−1 with basis 1, zn, . . . , z
m−1
n ,

On−1[zn : m] ∼= Om
n−1.

okaL11.4 Oka’s Lemma. Let
F : Op

n → On

be a On-linear map and let K be its kernel.

Assumption. The components of the matrix F are normalized polynomials in
On−1[zn] of degree < d (in the variable zn).

We consider the restriction of F

On−1[zn : m]p → On−1[zn : m+ d]

and denote by Km its kernel.

Claim. The On-module K is generated by Km for m ≥ 3d.

Proof. In a first step we assume that the first component of the map
F = (F1, . . . , Fp) is aWeierstrass polynomial (and not only a normalized po-
lynomial). We will prove Oka’s Lemma in this case with the better bound 2d
instead of 3d. Let G = (G1, . . . , Gp) ∈ K be an element of the kernel. The
division theorem gives

G = F1A+B, A ∈ Op
n, B ∈ On−1[zn : d]p.
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We notice that the elements

H(j) = (−Fj , 0, . . . , 0, F1, 0, . . . , 0) (1 < j ≤ p)

are contained in the kernel. The trivial formula

F1A =

p∑

j=2

AjH
(j) + (A1F1 + . . .+ ApFp, 0, . . . , 0)

shows that besides G also the element H := B + (A1F1 + . . .+ApFp, 0, . . . , 0)
is contained in the kernel, i.e.

F1(B1 +A1F1 + . . .+ApFp) + F2B2 + . . .+ FpBp = 0.

This equation shows

F1(A1F1 + . . .+ ApFp) ∈ On−1[zn : 2d].

Using again that F1 is a Weierstrass polynomial we obtain

A1F1 + . . .+ ApFp ∈ On−1[zn : 2d].

Now we see that the components ofH are contained inK2d. The trivial formula

G =

p∑

j=2

AjH
(j) +H

finally shows that G is contained in the module which generated by the H(j)

and H, which are elements of K2d.

Now we treat the general case where F1 is not necessarily a Weierstrass
polynomial. We apply the preparation theorem

F1 = Q · U, Q Weierstrass polynomial, U unit in On.

We are interested in the solutions of the equation F1P1+F2P2+ . . .+FpPp = 0
or equivalently

QP̃1 + F2P2 + . . .+ FpPp = 0 (P̃1 = UP1).

Since Q is a Weierstrass polynomial, this system is generated by solutions of
zn-degree < 2d. But UP1 is of degree < 3d if P1 is of degree < 2d. This
completes the proof of Oka’s lemma.

Third step, the proof of Oka’s theorem in the case q = 1.
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The proof now is given by induction on n. As beginning of the induction can
be taken the trivial case n = 0. We have to consider a O(U)-linear map

F : O(U)p −→ O(U),

which is given by a vector (F1, . . . , FP ). We want to show that the kernel sys-
tem is finitely generated in a neighborhood of a given point and can assume
that this point is the origin 0 and that U is a polydisk with center 0. After a
suitable linear coordinate transformation we can assume that the power series
expansions of F1, . . . , Fp in the origin are zn-general. By the preparation the-
orem we can assume that the all are Weierstrass polynomials. If we consider
the power series expansions in other points a ∈ U we still have normalized
polynomials

(Fi)a ∈ C{z1 − a1, . . . , zn−1 − an−1}[zn − an].

(but usually not Weierstrass polynomials). The degree of all those polynomials
is bounded by a suitable number d. We write U in the form

U = V × (−r, r) (V ⊂ C
n−1)

and denote by O(V )[zn : m] the set of all holomorphic functions on U which
are polynomial s in zn of degree < m with coefficients independent of zn. This
is a free O(V ) module,

O(V )[zn : m] ∼= O(V )m.

Our given map F induces an O(V )-linear map

O(V )[zn : m]p −→ O(V )[zn : m+ d]

‖ ‖

O(V )mp −→ O(V )m+d.

From the induction hypothesis we can assume that the kernel of this map is
finitely generated. From Oka’s lemma we obtain that the kernel system of F
is finitely generated. Oka’s theorem is proved. ⊔⊓

Some Important Properties of Coherent Systems

The following trivial property of coherent systems will be used frequently:

umgC11.5 Remark. Let M,N be two coherent systems on an open set U ⊂ C
n.

Assume Ma0 ⊂ Na0 for a distinguished point a0. Then Ma ⊂ Na in a complete
neighborhood of a0 holds.

Corollary. Ma0 = Na0 implies M|V = N|V for an open neighborhood V of
a0.

Another trivial observation is
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bilC11.6 Remark. Let

F : O(U)m → O(U)l (U ⊂ C
n open)

be an O(U) linear map and let

M = (Ma)a∈U , Ma ⊂ Om
U,a,

be a coherent system. The the image system

N = (Na)a∈U , Na := Fa(Ma) ⊂ Ol
U,a.

is coherent. (The same is true already for “finitely generated” instead for “co-
herent”.)

The next result is not trivial, it uses Oka’s theorem:

durC11.7 Proposition. Let M,N be two coherent systems on the open set
U ∈ C

n,
Ma,Na ⊂ Om

U,a (a ∈ U).

The the intersection system M∩N which is defined by

(M∩N )a := Ma ∩Na (a ∈ U)

is coherent too.

Proof. The idea is to write the intersection as a kernel. We explain the principle
for individual modules M,N ⊂ Rn of finite type over a ring R instead of a
system: We can write M resp. N as image of a linear map F : Rp → Rm resp.
G : Rq → Rm. We denote by K the kernel of the linear map

Rp+q −→ Rm, (m,n) 7−→ F (m)−G(n).

The image of K under the map

Rp+q −→ Rm, (m,n) 7−→ F (m).

is precisely the intersection M ∩N . The proof of 11.7 is clear now. On “reads”
M,N as coherent systems. By Oka’s theorem K now stands for a coherent
system and the image M ∩N is is coherent by 11.6. ⊔⊓

invC11.8 Proposition. Let

F : O(U)m → O(U)l (U ⊂ C
n open)

be an O(U)-linear map and let

N = (Na)a∈U , Na ⊂ Ol
U,a,

be a coherent system. The inverse image system

M = (Ma)a∈U , Ma := F−1
a (Na) ⊂ Om

U,a,

is coherent.
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In the special case N = 0 this is Oka’s theorem.
Proof. We explain again the algebra behind this result. Let F : Rm → Rl

be a R-linear map and N ⊂ Rl be a R-module of finite type. We assume
that F (Rm) ∩ N is finitely generated. Then there exists a finitely generated
submodule P ⊂ Rm such that F (P ) = F (Rm) ∩ N . We also assume that the
kernel K of F is finitely generated. It is easily proved that F−1(N) = P +K
and we obtain that the inverse image is finitely generated. These argument
works in an obvious way for coherent systems and gives a proof of 11.8.

⊔⊓

12. Rings of Power Series are Henselian

The fact that power series are henselian rings can be considered as an ab-
stract formulation of the Weierstrass theorems. We don’t need the notion of
a henselian ring to formulate this result, but for sake of completeness we give
the definition of this property.

A local ring R with maximal ideal m and residue field k = R/m is called a
henselian ring if the following is true:

Let P ∈ R[X ] be a normalized polynomial. We denote by p its image in k[X ].
Assume that a, b ∈ k[X ] are two coprime normalized polynomials with the prop-
erty p = ab. Then there exist normalized polynomials A,B ∈ R[X ] with cosets
a, b such that P = AB.

We recall that the polynomial ring in one variable over a field is a principal ideal
ring. Therefore two polynomials a, b are coprime if and only if they generate
the unit ideal k[X ].

We consider the special case where k is algebraically closed. Then every
normalized polynomial p ∈ k[X ] is a product of linear factors, if b1, . . . bm are
the pairwise distinct zeros and d1, . . . , dm their multiplicities then

p(X) =

m∏

j=1

(X − bj)
dj .

This is a decomposition of p into m pairwise coprime factors. So the henselian
property means in this case:

Let R be a local ring with an algebraically closed residue field k = R/m. Let
P ∈ R[X ] be a normalized polynomial and let p its image in k[X ],

p(X) =
∏

pj(X), pj(X) = (X − bj)
dj .

There exists a decomposition P = P1 · · ·Pm of P as product of normalized
polynomials such that pj(X) = (X − bj)

dj where pj is the image of Pj in k[X ].
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We want to show that the ring of power series On = C{z1, . . . , zn} is henselian.
The residue field On/mn can be identified with C and the projection On →
On/mn corresponds to the map

C{z1, . . . , zn} −→ C, P 7−→ P (0).

We have to consider the polynomial ring over C{z1, . . . , zn}. Therefore we need
a letter for the variable. To stay close to previous notations we consider On−1

instead of On and formulate the Hensel property for this ring. Then we have
the letter zn free for the variable of the polynomial ring. After this preparation
we see that the following theorem expresses precisely that the rings of power
series are henselian.

HENS12.1 Theorem. Let P ∈ On−1[zn] be a normalized polynomial of degree d > 0
and let β be a zero with multiplicity dβ of the polynomial z 7−→ P (0, . . . , 0, z).
Then there exists a unique normalized polynomial P (β) ∈ On−1[zn] which di-
vides P and such that

P (β)(0, . . . , 0, z) = (z − β)dP .

Moreover

P =
∏

P (0,...,0,β)=0

P β .

(Here β runs through the zeros of z 7→ P (0, . . . , 0, z).)

For the proof of this theorem we need three lemmas:

irnorm12.2 Lemma. Let P ∈ On−1[zn] be an irreducible normalized polynomial
with the property P (0) = 0. Then P is a Weierstrass polynomial.

Proof. By the preparation theorem we have P = UQ with a Weierstrass poly-
nomial and a unit U . We know that U is a polynomial. But P is irreducible.
We obtain U = 1 and P = Q. ⊔⊓

irrnu12.3 Lemma. Let P ∈ On−1[zn] be an irreducible normalized polynomial of
degree d > 0. Then

P (0, . . . , 0, z) = (z − β)d

with a suitable complex number β.

Proof. Let β be a zero of the polynomial z 7→ P (0, . . . , 0, z). We rearrange
P as polynomial in zn − β and obtain by 12.2 a Weierstrass polynomial in
On−1[zn − β]. ⊔⊓
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einId12.4 Lemma. Let P,Q be two normalized polynomials in On−1[z]. The poly-
nomials p(z) = P (0, . . . , 0, z), q(z) = Q(0, . . . , 0, z) are assumed to be coprime.
(This means that have no common zero.) Then P and Q generate the unit
ideal ,

(P,Q) = On−1[zn].

Proof. The proof will use the theorem of Cohen Seidenberg: The ring polyno-
mial in one variable over a field is a principal ideal ring. Therefore

(p, q) = C[z].

We obtain that P and Q together with the maximal ideal mn−1 ⊂ On−1 gen-
erate the unit ideal,

(P,Q,mn−1) = On−1[zn].

Now we consider the natural homomorphism

On−1 −→ On−1[zn]/(P,Q).

This ring extension is module-finite. This follows immediately if one applies
the Euclidean algorithm to one of the polynomials P,Q. The theorem of Cohen
Seidenberg deals with module finite ring extensions. We give here a formulation
which is not the standard one but usually a lemma during the proof:

Let A be a noetherian local ring and A→ B a ring homomorphism such that B
is an A-module of finite type. We assume that B is different from the zero ring
(1B 6= 0B). Then there exists a proper ideal in B which contains the image of
the maximal ideal of A.

(One can take the ideal which is generated by the image of the maximal ideal
of A. The problem is to show that this is different form B.)

We continue the proof of 12.4. We want to show that P and Q generate
the unit ideal. We give an indirect argument and assume that this is not
the case. Then by Cohen Seidenberg we obtain that the image of mn−1 in
On−1[zn]/(P,Q) does not generate the unit ideal. This means the same that
(P,Q,mn−1) is not the unit ideal, which gives a contradiction. ⊔⊓

Proof of theorem 12.1. Let P be a normalized polynomial of degree d >
0 in On−1[zn]. We decompose P into a product of irreducible normalized
polynomials

P = P1 · ·Pm.

From 12.3 we obtain

Pi(0, . . . , 0, z) = (z − βi)
di (1 ≤ i ≤ m).

The numbers βi are the zeros of the polynomial P (0, . . . , 0, z). There is no need
that the βi are pairwise distinct. But we can collect the Pi for a fixed zero and
multiply them together. ⊔⊓



40 Chapter I. Local complex analysis

We need a further little lemma from algebra:

Let R be a UFD-domain and a, b two coprime elements. The natural homo-
morphism

R/(ab) −→ R/(a)×R/(b)

is injective. It is an isomorphism if a and b generate the unit ideal.

We apply this to thorem 12.1 and obtain:

hensis12.5 Proposition. (We use the notations of 12.1.) The natural homomor-
phism

On−1[zn]/(P )
∼
−→

∏

β

On−1[zn]/(P
(β))

is an isomorphism.

We recall the the P β are Weierstrass polynomials in the ring On−1[zn − β].
From the division theorem we obtain

On−1[zn]/(P
(β)) = C{z1, . . . , zn−1, zn − β}/(P (β)).

Now we can conclude from the Hensel property the following generalization of
the division theorem for normalized polynomials instead of Weierstrass poly-
nomials:

Hensis12.6 Proposition. (We use the notations of 12.1.) The natural homomor-
phism

C{z1, . . . , zn−1}[zn]/(P )
∼

−→
∏

β

C{z1, . . . , zn−1, zn − β}/(P (β))

is an isomorphism. This remains true if one replaces P (β) by the power series
expansion of P in (0, . . . , 0, β).

The last statement uses the decomposition P =
∏
γ P

(γ) and the fact that all

factors besides the considered P (β) do not vanish at (0, . . . , 0, β) and hence
define units in C{z1, . . . , zn−1, zn − β}.
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13. A special case of Remmert’s mapping theorem

Let U ⊂ C
n be an open domain. We consider a coherent system of ideals

a = (aa)a∈U , aa ⊂ OU,a.

cohI13.1 Definition. The zero locus of a coherent system a of ideals is the of
all a ∈ U such that aa is different from the unit ideal.

In the case that a is finitely generated the zero locus is precisely what we called
earlier the associated analytic set. This leads as to a general notion of am
analytic set.

Dasg13.2 Definition. Let U ⊂ C
n an open subset. A subset X ⊂ U is called a

closed analytic subset if it is the zero locus of a coherent system of ideals.

Now we assume that U = V × C with a polydisk V ⊂ C
n−1. We consider the

projection
π : U −→ V, (z, zn) 7−→ z.

It may happen that the image of an closed analytic set X ⊂ U in V is a closed
analytic set Y ⊂ V but this must be not the case. We want to give a sufficient
condition where it is the case. The idea is to consider rather coherent systems
than analytic sets. So let’s assume that X is the zero locus of the coherent
system (aa). We expect that in good situations Y is the zero locus of certain
coherent system on V . It’s not difficult to guess what this system should be.

projS13.3 Definition. Let V ⊂ C
n−1 be a polydisk and a a coherent system of

ideals on U = V × C. We define for a point b ∈ V the ideal

bb := OV,b ∩
⋂

a∈U, π(a)=b

aa.

and call b := (bb)b∈V the projected system.

We recall that the projection π defines a natural inclusion OV,b →֒ OU,a for all
a, b with π(a) = b.

Projections of analytic sets of the above kind can be very bad and similarly
the projected systems can be bad and need not to be coherent. But there exist
“good” projections:

GRAU13.4 Theorem. Assume that V ⊂ C
n−1 is a polydisk and that a is a coherent

system on U = V × C, which can be generated by finitely many functions
f1, . . . , fm ∈ O(V )[zn]. We assume that P := f1 is a normalized polynomial.
Then the projected system b is coherent.

Additional remark. If X is the zero locus of a, then Y = π(X) is the zero
locus of b. In particular, π(X) is a closed analytic subset of V . The map
π : X → Y is finite.
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Proof of 13.4. The proof will use Oka’s coherence theorem and the Hensel
property of rings of power series. The ideal aa is the unit ideal if P (a) 6= 0.
For every b ∈ V the number of a ∈ U with π(a) = b and P (a) = b is finite.
Therefore bb is the intersection of finitely many ideals:

bb := OV,b ∩
⋂

π(a)=b, P (a)=0

aa.

The ideal bb contains 1 if and only this is the case for all aa, π(a) = b. We see
that the additional remark will follow automatically from the coherence of b.

We want to consider the ideal

Ib ⊂ OV,b[zn]/(Pb),

which is generated by the f1, . . . , fn (more precisely by their images). We have
to consider this ideal also as OV,b-module. It is of finite type over this ring,
more precisely it is generated as module over this ring by the elements

fiz
j
n (1 ≤ i ≤ m, 0 ≤ j < d).

This uses the Euclidean algorithm, which gives an isomorphism

Od
V,b

∼
−→ OV,b[zn]/(Pb).

A vector (H0, . . . , Hd) is mapped to
∑
Hjz

j
n. We take the inverse image of Ib

and get a submodule
Mb ⊂ Od

V,b.

From the given generators we see that the system M = (Mb)b∈V is finitely
generated hence coherent on V . This system is closely related to our projected
ideals bb:

Claim. The projected ideal bb is precisely the inverse image of Ib with respect
to the natural map

OV,b −→ OV,b[zn]/(Pb).

We assume for a moment that the claim is proved. Then b can be considered as
inverse image of the coherent system M. But Oka’s coherence theorem (11.8)
then implies that b is coherent. So it remains to prove the claim:

Proof of the claim. In this proof the Hensel property of rings of power series
will enter. We have to make further use of our normalized polynomial P ∈
O(V )[zn],

P = zdn + Pd−1z
d−1
n + . . .+ P0.

Its coefficients Pj are holomorphic functions on V . We will use the power
series expansion (Pj)b ∈ OV,b for varying points b ∈ V . We have to consider
the image of P in OV,b[zn],

Pb = zdn + (Pd−1)bz
d−1
n + . . .+ (P0)b ∈ OV,b[zn].
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We also have to use the ring OV,b[zn]/(Pb). The Hensel property of rings of
power series gave us important information for this ring. Applying 12.6 we
obtain a natural isomorphism*)

OV,b[zn]/(Pb)
∼
−→

∏

β

OU,(b,β)/(P
(β)
b ).

Here β runs over the zeros P (b, β) = 0. The elements P
(β)
b ∈ OV,b come from

the “Hensel decomposition”

Pb =
∏

β

P
(β)
b , P

(β)
b (b, zn) = (zn − β)dβ .

We determine the image of Ib under this isomorphism. For this we use the
simple fact that an ideal c ⊂ A×B in the cartesian product of two rings always
is the direct product of two ideals, c = a× b, where a ⊂ A and b ⊂ B are the
projections of c. Using this and the definition (13.4) of a we see:

The image of the ideal Cb in
∏
β OU,(b,β)/(P

(β)
b ) is the direct product of the

ideals ā(b,β), which mean the images of a(b,β) in OU,(b,β)/(P
(β)
b ).

We have to determine the inverse image of this ideal under the natural map

OV,b −→
∏

β

OU,(b,β)/(P
(β)
b ).

The claim states that this inverse image is the projection ideal bb. But this
inverse image is the intersection of the inverse images of ā(b,β) under

OV,b −→ OU,(b,β)/(P
(β)
b ).

But P
(β)
b is contained in a(b,β) (s. 12.6). Therefore it is the same to take the

inverse image of a(b,β) under

OV,b −→ OU,(b,β).

This is OV,b ∩ a(b,β) and the intersection of all of then is bb. ⊔⊓

*) In 12.6 the result has been formulated only for b = 0 which is no loss of generality.
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14. Cartan’s Coherence Theorem

There is a second basic coherence theorem. Oka contributes this theorem to
Cartan, but as Grauert and Remmert pointed out in there book

”
Coherent

analytic sheaves“, the essential parts of the proof are already in Oka’s papers.
We give three different formulations for Cartan’s theorem:

CAR14.1 Cartan’s coherence theorem. Let a = (aa)a∈U be a coherent system
of ideals on an open domain U ⊂ C

n. Then its radical

rad a := (rad aa)a∈U

is coherent too.

let X ⊂ U be a closed analytic subset. The vanishing ideal system AX is the
system of ideals Aa, a ∈ U which consists of all elements from OU,a, which
vanish in a small neighborhood of a on X . If a is not in X then Aa = OU,a.
For this one has to use that X is closed in U . A second form of Cartan’s
theorem is:

CART14.2 Cartan’s coherence theorem. Let X ⊂ U be a closed analytic subset
of an open set U ⊂ C

n. The vanishing ideal system A is coherent.

To see the equivalence one has to have in mind that the zero locus of a coherent
ideal system a is a closed analytic set and that by the nullstellensatz the radical
of a is the complete vanishing ideal system A. One also has to use the trivial fact
the every analytic set locally is the zero locus of a coherent system. Another
formulation is

CARTA14.3 Cartan’s coherence theorem. Let a be coherent system of ideals.
The set of all points a such that aa = rad aa is open.

We show that 14.3 implies 14.2. Let a ∈ U a point. The ideal rad aa is finitely
generated. Therefore there exists a coherent system b on an open neighborhood
a ⊂ V ⊂ U auch that ba = rad aa and ab ⊂ bb ⊂ rad ab. Now 14.3 implies that
in a full neighborhood bb = rad ab. The conclusion 14.2 ⇒ 14.3is also clear.
One uses the fact that two coherent systems which agree in a point agree in a
full neighborhood.

The rest of this section is dedicated the proof of Cartan’s theorem. We need
some preparations:

In a first step we give a reduction. We can assume that the origin is con-
tained U and that a0 = rad a0. We have to prove that aa = rad aa in a full
neighborhood of 0. We want to show that it is enough to treat the case of a



§14. Cartan’s Coherence Theorem 45

prime ideal a0. For this we use again the fact that any reduced ideal is the
intersection of finitely many prime ideals.

a0 = p
(1)
0 ∩ . . . ∩ p

(m)
0 .

We can extend the p
(j)
0 into a coherent system

(j)
a on a small neighborhood of

0. From our assumption we know that the p
(j)
a are reduced (in a small neigh-

borhood). We also know from Oka’s coherence theorem that the intersection

system p
(1)
a ∩ . . .∩p

(m)
a is coherent. This intersection system and a agree in the

origin and hence in a full neighborhood,

aa = p(1)a ∩ . . . ∩ p(m)
a .

Using the trivial fact that the intersection of reduced ideals is reduced we obtain
that the aa are reduced.

From now on we assume that 0 ∈ U and that

P := a0

is a prime ideal. We will show that aa is reduced in a neighborhood of 0. We
need some preparations for the proof:

An element a of a ring R is called non-zero-divisor if multiplication with a

R −→ R, x 7−→ ax,

is injective.

nNof14.4 Lemma. Let a be a coherent system on an open set U ⊂ C
n and let

f ∈ O(U) be an analytic function on U . The set of all points a ∈ U such that
the germ fa is a non-zero-divisor in OU,a is open

Proof. We denote the map “multiplication by a” by

mf : OU,a −→ OU,a.

The element fa is non-zero-divisor if and only if

m−1
f (aa) = aa.

From Oka’s coherence theorem we know that the system
(
m−1
f (aa)

)
a∈U

is co-
herent. The coincidence set of two coherent systems is open. ⊔⊓

After this preparations the proof of Cartan’s theorem runs as follows. Recall
that 0 ∈ U and thatP = a0 is a prime ideal. We have to show that aa is reduced
in a full neighborhood of 0. We distinguish the two “alternatives”.



46 Chapter I. Local complex analysis

1. Alternative. P = (P ) is a principal ideal. The element P is a prime
element, especially square free. The theory of the discrimant gave us that
there exists a small polydisk around 0 in which P converges and such that
Pa is square free in this polydisk. Coherence gives us that aa = (Pa) in a
full neighborhood. But a principal ideal generated ba a square free element is
reduced. What we see that in the case of hypersurfaces the properties of the
discriminant imply Cartan’s theorem. ⊔⊓

2. Alternative. This case is more involved. We will have to use the special
case od Grauert’s projection theorem. As usual we can assume that P = a0 is
zn-general and that

On−1/p −→ On/P (p := On−1 ∩P)

have the same field of fractions. The ideal P is finitely generated,

P = (Q1, Q2, . . . , Qm).

We can assume that Q := Q1 is a Weierstrass polynomial and then by the
division theorem that all Qi are polynomials over On−1. We can take U in
the form U = V × (−r, r), where V ⊂ C

n is a polydisk around 0. We can
assume that the coefficients of the Qj converge in V and that the zeros of the
polynomial z 7→ Q(b, z) for all b ∈ V have absolute value < r. From the special
case of Grauert’s projection theorem we obtain that the system

bb = OV,b ∩
⋂

a=(b,β), Q(a)=0

aa

is coherent on V . Because Q is a Weierstrass polynomial we have

b0 = p.

We want to prove Cartan’s theorem by induction on n. Therefore we can
assume that all the projected ideals bb are reduced. We will make use of the
natural homomorphism

OV,b/bb −→
∏

a=(b,β), Q(a)=0

OU,a/aa.

It is quite clear that that this homomorphism is an injection. In the case a = 0
this is the homomorphism

On−1/p −→ On/P.

Now we make use of the basic fact that the fields of fractions of both rings
agree. We find elements

A,B ∈ On−1, A 6∈ p, Azn −B ∈ P.



§15. The singular locus 47

We can assume that A and B converge in V and furthermore because of co-
herence

Ab(zn − a)−Bb ∈ aa (a = (b, β) ∈ U).

We have to combine this fact that OU,a/aa is a module of finite type*) over
OV,b/bb. More precisely it is generated by the powers

(zn − an)
ν , 0 ≤ ν < d,

where d is the zn-degree of Q. Now we consider the analytic function f := Ad

on U . The germ f0 defines a non-zero element of OU,0/P and hence non-zero-
divisor, because this ring is an integral domain. Because of the coherence result
14.4 we can assume that the multiplication map mf : OU,a/aa → OU,a/aa is
injective of all a. This map is no ring homomorphism but it is good enough to
test nilpotency: First we collect all points a = (b, β) over a given b and consider

mf :
∏

a=(b,β), Q(a)=0

OU,a/aa −→
∏

a=(b,β), Q(a)=0

OU,a/aa.

The construction of A shows that the image of mf is already contained in the
subring

OV,b/bb →֒
∏

a=(b,β), Q(a)=0

OU,a/aa.

The proof of Cartan’s theorem now can be completed as follows: Let C ∈∏
a=(b,β), Q(a)=0 OU,a/aa be a nilpotent element, Ck = 0. Then mf (C

k) =

faC
k = 0. But this implies (faC)

k = 0. We recall that mf (C) = faC is
contained in the subring OV,b/bb. But this ring is reduced (by our induction
hypothesis). Hence mf (C) = 0. But mf is injective (!) and we obtain C = 0.
Hence the ring

∏
a=(b,β), Q(a)=0 OU,a/aa is free of nilpotents and the same is

true for each of its factors. This completes the proof of Cartan’s coherence
theorem. ⊔⊓

Because of the importance of this theorem we formulate again the decisive
consequence:

vollV14.5 Theorem. Every analytic set can be written locally as the set of common
zeros of a finite system of analytic functions

f1, . . . , fm : U −→ C (U ⊂ C
n open),

such that the germs in any point a ∈ U generate the full vanishing ideal in
OU,a.

*) This true because Qa ∈ aa is a normalized polynomial, hence zn-general, hence

the product of a unit and a Weierstrass polynomial of degree ≤ d.
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15. The singular locus

Let X ⊂ U ⊂ C
n be a closed non-empty analytic subset. In this section we

denote by a = (aa)a∈U the full vanishing system (aa = rad aa) and we use also
the notation

OX,a = OU,a/aa.

So this is a nolpotentfree analytic algebra. The dimension of X at a is defined
to be

dimaX = dimOX,a (Krull dimension).

We have dimaX ≤ n. So we can define

dimX = max
a∈X

dimaX.

The set X is called pure dimensional if a 7→ dimaX is constant on X .

Drp15.1 Definition. A point a ∈ X is called a regular point of the closed analytic
set X ⊂ U if – after replacing U by some open neighborhood of a in U (and X
by its intersecton with this neighborhood) – there exists a biholomorphic map
f : U → V , V ⊂ C

n open, such that f(a) = 0 and

f(X) = {b ∈ V ; bd+1, . . . , bn = 0}.

We then get an isomorphism of analytic algebras

Od
∼= On/(zd+1 = · · · = zn)

∼
−→ OX,a.

So we see
dimaX = d.

The phrase “after replacing U by some open neighborhood of a in U (and X by
its intersecton with this neighborhood)” would occur frequently in what follows.
To simplify notation we will replace this by “after shrinking U”.

One hint to the correctness of our definition is:

HypDim15.2 Proposition. Let f : U → C be a holomorphic function on some open
connected subset U ⊂ C

n. We assume that f doesn’t vanish identically. Then
the closed subspace defined by “f = 0” is of pure dimension n− 1.

This is an application of the theorem of Cohen Seidenberg. ⊔⊓

We want to study the local behavior of the dimension dimaX for varying
a.
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dimHAL15.3 Lemma. Let (X, a) be a pointed complex space. After shrinking U we
have

dimbX ≤ dimaX for all b ∈ X.

Proof. The proof uses noether normalization: We use Remark 9.8. If one
translates it into the language of complex spaces, one obtains that the following
can be assumed.

1) X is a closed analytic subspace of a polydisk U = V × (−r, r) where V =
(−ε, ε)n−1. The point a is the origin 0.

2) The ideal A0 contains a Weierstrass polynomial Q ∈ On−1[zn]. The coeffi-
cients of Q converge in Q and that Qa ∈ Aa for all a ∈ U

3) There is a commutative diagram of holomorphic maps

U // V

X //

OO

Y

OO

where the first row is the natural projection.
4) b0 = A0 ∩On−1.

The polynomial Q can be developed in any point a ∈ U . One obtains a
polynomial in C{z1 − a1, . . . , zn−1 − an−1}[zn − an]. This needs not to be a
Weierstrass polynomial but it is still a normalized polynomial. This is sufficient
to show that the ring homomorphism

OV,f(a) −→ OU,a

is a module finite extension. As a consequence

f∗
a : OY,f(a) −→ OX,a

is module-finite for all a ∈ X . This homomorphism needs not to be surjective
but from Cohen Seidenberg we obtain still

dimOY,f(a) ≥ f∗
a (dimOY,f(a)) = OX,a.

For a = 0 the homomorphism is injective, i.e.

dimOY,0 = f∗
a (dimOY,0) = OX,0.

We will proof Lemma 15.3 by induction on n and can therefore assume

dim0 Y ≥ dimb Y (b ∈ Y ).

We obtain
dim0X = dim0 Y ≥ dimf(a) Y ≥ dimaX,

which completes the proof of lemma 15.3. ⊔⊓

We give a typical application of coherence:
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duN15.4 Lemma. Let (X, a) be a pointed complex space and let f ∈ OX (X). We
assume that the germ fa is a non-zero divisor in OX,a. Then, after shrinking
U fb is not a zero divisor in OX,b for b ∈ X

Corollary. The zero locus

Y :=
{
x ∈ U ; f(x) = 0

}

is thin in U .

Proof. (Thin means that Y contains no nonempty open subset of U .) We
consider the map that is induced by multiplication with f . It can be considered
as a map OX -linear map of sheaves OX → OX . By assumption the stalk of
the kernel at a is zero. By coherence this remains true in a full neighborhood.
So in this neighborhood fb is a non-zero divisor.

In particular, the germ fb is non-zero for b ∈ U . Hence in any neighborhood
of of b there exist points which belong to Y but not to X . This shows that Y
is thin in U . ⊔⊓

intDue15.5 Lemma. Let Y be a closed complex subspace of the complex space X
and let a ∈ Y be a point. We assume

a) OX,a is an integral domain.
b) The homomorphism OX,a → OY,y is not injective.

Then there exists an open neighborhood a ∈ U ⊂ Cn, such that Y ∩ U is thin
in X ∩ U .

One can assume that there exists f ∈ OX(X) on X whose germ in a is not
contained in the defining ideal of (Y, a). Since OX,a is an integral domain, fa
can not be a zero divisor. Now we can apply Lemma 15.4. ⊔⊓

PureInt15.6 Proposition. Let a be a point in a complex space X such that OX,a

is an integral domain. Then, after shrinking U , the analytic set X is pure
dimensional.

Proof. We can assume that 0 ∈ X ⊂ C
n is defined by a prime ideal P. We use

induction by n. we can assume a = 0. We distinguish the “two alternatives”.

1. Alternative. P is a principal ideal. Then we can use the theory of hypersur-
faces.

2. Alternative. P is not a principal ideal. We can assume (15.3) dimaX ≤
dim0X for all a ∈ X and by induction dimb Y = dim0 Y for all b ∈ Y . Let now
a ∈ X be an arbitrary point. Because T is thin, we find in any neighborhood
of a a point x ∈ X −T . Because of 15.3 we can assume dimxX ≤ dimaX . We
obtain

dim0X ≥ dimaX ≥ dimxX = dimf(x) Y = dim0 Y = dim0X. ⊔⊓

An important result of Krull dimension theory is:
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agR15.7 Proposition. Let Y ⊂ X ⊂ U be analytic sets in Z and let a ∈ Y be a
point such that OX,a is an integral domain. Assume

dima Y ≥ dimaX.

After shrinking U the sets X and Y agree.

We have seen that it is often useful to reduce statements about radical ideals
to prime ideals. This is possible because every radical ideal is the intersection
of finitely many prime ideals. We describe the geometric counterpart of this
algebraic fact in more detail:

Local irreducible components

Let R be a noetherian ring. A prime ideal p which contains a given ideal a is
called minimal with this property, if any prime ideal q, a ⊂ q ⊂ p, agrees with
p. A refinement of the already used statement about radical ideals is:

Let a be an ideal in a noetherian ring R. There exist only finitely many minimal
prime ideals containing a. Their intersection is rad a. Every prime ideal that
contains a contains one of the minimals.

Now we consider the geometric counter part of this decomposition: Let X ⊂ U
be a closed analytic set. We want to study local properties of X at a given
point a ∈ X . Since OX,a is reduced, the zero ideal is a radical ideal. We can
write it as the intersection of pairwise distinct minimal prime ideals

(0) = p1 ∩ . . . ∩ pm.

After shrinking U we can assume that there are closed analytic sets Xj ⊂ X
whose vanishing ideals at a are pj ⊂ OX,a. Again after shrinking U we can
assume

X = X1 ∪ . . . ∪Xm.

We call the Xj the local irreducible components of X at a. They are unique
up to ordering in an obvious local sense.

dimIR15.8 Lemma. Let (X, a) be a pointed analytic set and

X = X1 ∪ . . . ∪Xm

be a decomposition into local irreducible components of X at a. Then

dimaX = max
1≤j≤m

dimaXj .

Let Y ⊂ X be an analytic subset which contains a and such that OY,a is integral.
After shrinking U , the set Y is contained in one of the components Xj.
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Proof. The dimension of X at a is defined by means of sequences of prime
ideals in OX,a. Let a ⊂ On be the vanishing ideal of X at a. The chains of
prime ideals in OX,a correspond to chains

a ⊂ p0 ⊂ . . . ⊂ pm ⊂ On.

The ideal p0 must contain one of the minimal prime ideals containing a. This
proofs the statement about the dimension. The last statement is also clear
because the vanishing ideal of Y in a must contain one of the minimal prime
ideals containing a. ⊔⊓

Now we are in the state to prove a main result of local complex analysis:

HAUPT15.9 Theorem. The singular locus S of a closed analytic subset X ⊂⊂ U is
also a closed analytic subset of U . It is thin in X.

Proof. Since the statement is of local nature we can replace X be a small open
neighborhood of a given point. Therefore we can assume thatX = X1∪. . .∪Xm

is a decomposition into local irreducible components at a. We can assume that
the Xi are pure dimensional. The points the intersection of two different Xi are
singular points since the local rings there are not integral domains. Hence the
singular locus of X is the union of the pairwise intersections and the singular
loci of the Xi. Since the finite union of closed analytic subsets is analytic we
reduced 15.9 to the pure dimensional case.

In the pure dimensional case we will make use of a differential criterion of
regular (singular) points: This rests on the implicit function theorem. One
version of it states:

Let X be the zero set of m holomorphic functions f1, . . . , fm on some open
subset U ⊂ C

n. Assume that the (complex) Jacobian matrix J(f, a) has rank
r at some point a ∈ X. Then a is a regular point of X and dimaX = n− r.

There is an immediate consequence:

ifaO15.10 Lemma. Let X ⊂ C
n be an analytic set that is defined by analytic

equations

f1(z) = · · · = fm(z) = 0

in some open neighborhood 0 ∈ U ⊂ C
n. Let a ∈ X be a point. The rank r of

the Jacobian of f = (f1, . . . , fm) at a is r ≤ n − d, where d = dimaX. In the
case r = n− d the point a is regular.

Proof of the lemma. We can choose r of the functions fi whose Jacobi matrix
has rank r at a. We can assume that f1, . . . , fr is this system. The set of zeros
of this system is a analytic set X̃ that is regular and of dimension n − r at a.
Since X ⊂ X̃ we have d ≤ n − r or equivalently r ≤ n − d. When equality
holds X and X̃ agree close to a. Hence X is regular in a like X̃. ⊔⊓
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The converse of 15.10 is not true in general. Consider for example the
equation z2 = 0 in C. The dimension d is zero but the rank r of the Jacobi
matrix at a = 0 is 0. Hence the equation d+ r = n is false. The reason is that
z2 = 0 is the false description. One should better use the equation z = 0. The
correct converse of 15.10 is:

JacCor15.11 Lemma. Let X ⊂ C
n be an analytic set that is defined by analytic

equations
f1(z) = · · · = fm(z) = 0

in some open neighborhood 0 ∈ U ⊂ C
n. Let a ∈ X be a point. Assume that

the germs of the fi generate the full vanishing ideal of X in OCn,a. Then a
is a regular point of X if and only if the Jacobi matrix J(f, a) has the correct
rank n− dimaX.

Proof. It remains to proof that the condition is necessary. So let’s assume that
a is regular. Due to the implicit function theorem ??? we can assume that X is
given by equations zd+1 = . . . = zn=0. For these equations the rank condition
is trivial. But we may have different equations. From the assumption about
the vanishing ideal we know that both generate the same ideal. Hence the
statement follows from

eqRa15.12 Lemma. Let P = (P1, . . . , Pm) and Q = (Q1, . . . , Ql) be two systems
of power series which generate the same ideal in On. Then the Jacobians of P
and Q at the origin have the same rank.

The easy proof is left to the reader. ⊔⊓

Now we are able to prove the main result 15.9. We reduced already to the
case of a pure dimension case d = dimX . We can assume that X is defined
inside some open subset U ⊂ C

n as zero set of a finite number of holomorphic
functions f1, . . . , fn. We choose some point a ∈ X . We can replace U be
a smaller neighborhood since the question is od local nature. Since Oa is
noetherian we can assume that (f1, . . . , fn)a is a radical ideal in the point a.
By Cartan’s coherence theorem this then is true in a full neighborhood. We
can assume that this is true in U . Now the singular locus is described as set
of all z ∈ U such fi(z) = 0 and such that the rank of J(f, z) is smaller than
r = n − d. This means that all determinants of r × r-matrices vanish. Hence
the singular locus can be defined by a finite set of analytic equations. ⊔⊓
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1. The general notion of a complex space

We introduce the general notion of a complex space in the sense of Grothen-
dieck.

DefG1.1 Definition. A ringed space (X,OX) is a topological space together with
a sheaf of C-algebras OX .

MorC1.2 Definition. A morphism

(f, ϕ) : (X,OX) −→ (Y,OY )

between ringed spaces is a pair, consisting of a continuous map f : X → Y and
a homomorphism ϕ : OY → f∗OX of sheaves of C-algebras.

Recall that f∗OX is the sheaf (f∗OX)(V ) = OX(f−1(V )) with obvious restric-
tion maps. Hence a homomorphism ϕ : OY → f∗OX is just a collection of
homomorphisms

OY (V ) −→ OX(f−1(V ))

which is compatible with restrictions.

It is clear that the identity map is a morphism and how one composes two
morphisms (f, ϕ) : (X,OX) −→ (Y,OY ), (g, ψ) : (Y,OY ) −→ (Z,OZ). So we
can talk about the category of ringed spaces. (It seems to be better to talk
about “algebred spaces” instead of “ringed spaces”. But this sounds strange.)

Let (X,OX) be a ringed space and let U ⊂ X be an open set. Then
(U,OX |U) is a ringed space too and there is a natural morphism (U,OX |U) →
(X,OX).

Let (X,OX) be a ringed space and let J ⊂ OX be an ideal sheaf. Then we
can consider the support Y = supp(OX/J). Let us assume that Y is closed.
(This is the case if OX and J are coherent.) Then we can consider the ringed
space

(Y,OY ), OY = OX |Y.

We call this a closed ringed subspace of (X,OX). There is a natural morphism

(Y,OY ) −→ (X,OX).
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On the level of topological spaces it is the natural embedding i : Y → X where
Y carries the induced topology. The map of sheaves

OX −→ i∗OY

is defined in an obvious way. One uses that there is a canonical isomorphism
i∗OY

∼= OX/J .

Let U ⊂ C
n be an open domain and let f1, . . . , fm be analytic functions on

U . We consider the ideal sheaf J generated by f1, . . . , fm in OU . The support
of the sheaf OU/J is the set X of joint zeros of the fi. We can consider the
ringed space

OX = (OU/J )|X.

We call (X,OX) a model space. There is a natural morphism (a closed embed-
ding) of ringed spaces

(X,OX) −→ (U,OU ).

MS1.3 Definition. A complex space (X,OX) is a ringed space which is locally
isomorphic to a model space. A morphism between complex spaces is simply
called a holomorphic map.

If U ⊂ X is an open subspace, then (U,OX |U) is a complex space too. We
call it an open analytic subspace. A morphism (f, ϕ) : (X,OX) → (Y,OY ) of
ringed spaces is called an open embedding if there exists an open subset V ⊂ Y
such that f factors through an isomorphism

(X,OX)
∼
−→ (V,OY |V ).

The composition of two open embeddings is an open embedding.

ComS1.4 Remark. Let (X,OX) be a complex space and J ⊂ OX a coherent
ideal sheaf. The support Y of OX/J is a closed subset and (Y,OY ) where
OY = (OX/J )|Y is complex space too.

Proof. We can assume that (X,OX) is a model space, X ⊂ U ⊂ C
n defined by

finitely many holomorphic functions f1, . . . , fm on the open subset U ⊂ C
n. So

X is their zero set and OX = (OU/(f1, . . . , fm))|X . Here (f1, . . . , fm) denotes
the ideal sheaf generated by the fi. Now we have to consider an ideal sheaf
J ⊂ OX . We can assume that J = (g1, . . . , gk) is finitely generated too.

We call such a space that is defined through a coherent ideal sheaf a closed
complex (or analytic) subspace. A morphism (f, ϕ) : (X,OX) → (Y,OY ) of
complex spaces is called a closed embedding if there exists a closed complex
subspaces (Z,OZ) of (Y,OY ) such that f factors through an isomorphism

(X,OX)
∼

−→ (Z,OZ).

The composition of two closed embeddings is a closed embedding.
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2. Complex spaces and holomorphic functions

Dhf2.1 Definition. A holomorphic function on a complex space is a morphism

(f, ϕ) : (X,OX) −→ (C,OC ).

To every holomorphic function we can associate the image of 1 of the homo-
morphism

OC (C) −→ OX(X).

This is a distinguished global section. It is easy to show the following result.

Rhfg2.2 Remark. Let (X,OX) be a complex space. The holomorphic functions
on it are in one-to-one correspondence to the global sections in OX(X).

Let (X,OX) be a complex space. Recall that OX,a are local rings with maximal
ideal ma and that the composition

C −→ OX,a −→ OX,a/ma

is an isomorphism.

Let f ∈ OX(X) be a global section of the structure sheaf of a complex space
and let x ∈ X be a point. We can consider the germ fx and take its coset mod
m(OX,x). This is a number which we denote by f(x). In this way we get a
usual function

f̃ : X −→ C, f̃(x) := f(x).

A look at the definition of model spaces shows that f̃ is continuous. Hence we
have constructed a homomorphism of algebras

OX(X) −→ CX(X).

The same can be done for open subsets. We can read this as map of sheaves
of C-algebras

OX −→ CX .

There are two basic results about this homomorphism.

Let R be a ring. The nilradical n is the set of all nilpotent elements a
(an = 0 for some natural number). It is easy to see that n is an ideal. Let O
be a sheaf of rings on a topological space X . The nilradical of O is the sheaf
J ⊂ O generated by n(O(U)). Concretely this is

J (U) =
{
f ∈ O(U); fa nilpotent in Oa for all a ∈ U

}

=
{
f ∈ O(U); ∃ U =

⋃
Ui such that f |Ui nilpotent in O(Ui)

}

ThRue2.3 Theorem (Rückert). Let (X,OX)be a complex space. The kernel J of
the natural homomorphism

OX −→ CX

is the nilradical of OX .
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TheCa2.4 Theorem (Cartan). Let (X,OX) be a complex space. The nilradical is
coherent.

A complex space (X,OX) is called reduced if the natural map OX → CX is
injective. By Rückert’s theorem this means that the nilradical is zero. For
a reduced complex space we can consider OX as a subsheaf of CX , i.e. the
sections are functions. Reduced complex spaces are also called complex spaces
in the sense of Serre. We consider them as full subcategory of the category of
complex spaces in the sense of Grothendieck. Notice that a morphism (f, ϕ) :
(X,OX) → (Y,OY ) is determined by f . The map ϕ : OY → f∗OX is just given
by pulling back functions.

Let X = (X,OX) be a complex space. Since the radical J is coherent, we
can consider the closed analytic subspace related to J . The support of OX/J
is the whole X . So this subspace is just

Xred := (X,OX/J).

This defines a functor from the category of complex spaces into the category
of complex spaces in the sense of Serre.

Why nilpotents?

Let R be a noetherian local ring with maximal ideal m and residue field k =
R/m. The R-module m/m2 carries a natural structure as k-vector space. This
vector sapce is finite dimensional and so is its dual

Homk(m/m
2, k).

Let now (X,OX) be a complex space and let a ∈ X . We then can consider the
finite dimensional C-vector space

TaX := HomC (ma/m
2
a,C).

This is called the tangent space.

Consider the topological space pn consisting of one point and equip it with
the sheaf that is associated to the C-algebra C

n (pointwise multiplication,
C → C

n the diagonal embedding. We claim that this is a complex space. To
see this we consider the complex plane (C,OC ) and the ideal sheaf J generated
by zn+1. The associated complex space is isomorphic to pn. The associated
reduced complex space is the p1.

MorInf2.5 Lemma. Let (X,OX) be a complex space. The morphisms p2 → X are
in one-to one correspondence with the elements of the tangent space.
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Dass2.6 Definition. A subset A ⊂ X of a complex space (X,OX) is called a
closed analytic subset if there exists a coherent sheaf of ideals J ⊂ OX such
that

Y = supp(OX/J ).

The sheaf J is not unique. A possible choice is the full vanishing ideal sheaf.

Rabcs2.7 Remark. Let A,B be two closed analytic subsets of a complex space X.
Then A ∪B and A ∩B are closed analytic subsets.

3. Fibre products of complex spaces

Let X, Y be two objects in a category. The direct product of X, Y is a triple
(X×Y, p, q) consisting of an object X×Y and two morphisms p : X×Y → X ,
q : X × Y → Y such that the natural map

Mor(X × Y, Z) −→ Mor(X × Z)×Mor(X,Z)

is bijective for all objects Z. It is well-known and easy to show that the
direct product is unique up to canonical isomorphism in the obvious sense.
On says that a category admits direct products if the direct product for two
arbitrary objects exists. For example in the category of topological spaces
direct products exist. They are given by the usual cartesian product (equipped
with the product topology).

Pdpcs3.1 Proposition. In the category of complex spaces direct products exist.
They are compatible with the forgetful functor from the category of complex
spaces into the category of topological spaces.

We will not give the proof in all details. But we will describe several tools
which lead to a proof.

1) The first is a gluing principle for sheafs. Assume that X =
⋃
Ui is an

open covering of a topological space. Assume also that for each i there is
given a sheaf Fi on Ui and for each pair (i, k) of indices there is given an
isomorphism hij : Fi|(Ui ∩ Uj) → Fj |(Ui ∩ Uj) with the conditions

hik = hij ◦ hjk on Ui ∩ Uj ∩ Uj .

Then there exists a sheaf F and a system of isomorphisms hi : F |Ui → Fi
with the properties

hik = hih
−1
k on Ui ∩ Uk.
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2) Let (X,OX), (Y,OY ) be complex spaces such that their direct product
(X×Y,OX×Y ) exists. Assume that U ⊂ X , V ⊂ Y are open subsets. Then
the direct product of (U,OX |U) and (V,OY |V ) exists and can be identified
with

(U × V,OX×Y |U × V ).

3) Let X, Y be two model spaces which are closed in open subsets U ⊂ C
n and

V ⊂ C
m and which are defined through holomorphic functions f1, . . . , fν

on U and g1, . . . , gµ on V . Then the direct product of the complex spaces
X, Y exists. It can be identified with the model space in U × V defined
through the holomorphic functions fi(x)gk(y).

The diagonal

Due to the universal property the two identity maps X → X induce a holo-
morphic map

(X,OX) −→ (X ×X,OX×X)

which we call the diagonal map. Usually we will write this as

∆ −→ X ×X.

Lddm3.2 Lemma. Let (X,OX) be a Hausdorff complex space. Then the diagonal
map

∆ −→ X ×X

is a closed embedding.

Inverse images of complex spaces

Let f : X → Y be a continuous map of topological spaces and let Y ′ ⊂ Y be
a subspace equipped with the induced topology. Then one can consider the
inverse image X ′ ⊂ X and equip it also with the induced topology. This is
what we call the inverse image in the category of topological spaces.

Let (X,OX) → (Y,OY ) be a holomorphic map of complex spaces. Let
V ⊂ Y be an open subset. Then we can consider the inverse image U = f−1V .
Both, U and V can be equipped with the restricted structures OU = OX |U and
OV = OY |V . We get two complex spaces (U,OU) and (V,OV ) and a natural
holomorphic map (U,OU) → (V,OV ). We call (U,OU ) the inverse image of
(V,OV ).

We describe a similar construction for closed complex subspaces. So let
JY ⊂ OY be a coherent ideal sheaf and let (Y ′,OY ′) be the associated closed
subspace. There is a canonical injection (Y ′,OY ′) → (Y,OY ). We define an
ideal sheaf in OX . For this we consider the maps OY,f(a) −→ OX,a. We denote



60 Chapter II. Local theory of complex spaces

by JY,f(a)OX,a the ideal in OX,a that is generated by the image of JY,f(a).
Then we define for open U ⊂ X

JX(U) =
{
f ∈ OX(U); fa ∈ JY,f(a)OX,a for all a ∈ U

}
.

This is an ideal sheaf. We claim that it is coherent. For this we can assume
that JY is finitely generated by f1, . . . , fn. Then we can consider the images
F1, . . . , Fn with respect to the map OY (Y ) −→ OX (X). Clearly JX is gener-
ated by F1, . . . , Fn. So we can consider the closed complex subspace (X ′,O′

X)
defined by JX . This is called the inverse subspace.

Coincidence spaces

Let f, g : (X,OX) → (Y,OY ) be two holomorphic maps between complex
Hausdorff spaces. The set C := {(x, y) ∈ X × Y, f(x) = g(x)} is a closed
subset. It is natural ask whether it can be equipped with a structure as closed
complex subspace. For this we consider the map X → X ×X that is induced
by the two maps f, g. We consider the diagonal ∆ as closed complex subspace
in X ×X and take the inverse image in X . This is a closed complex subspace
of X whose underlying topology is the coincidence set C equipped with the
induced topology.

Fibred products of complex spaces

Let A be a category and let S be an object. We can define a new category AS.
Its objects are morphisms X → S in A. A morphism between such objects is
just a commutative diagram

X //

��❅
❅❅

❅❅
❅❅

❅ Y

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S

One says that fibred products in A exist if direct products in all categories AS

exist. In the case that A has a final element S (this means that Hom(X,S)
consists of precisely one element), then AS equals A.) We denote the fibred
product of two X → S, Y → S by

X ×S Y −→ S

and the two structure morphisms by

X ×S Y −→ X, X ×S Y −→ Y.

The category of complex spaces has a final object (one point equipped with
the constant sheaf C). Hence the following theorem is a generalization of
Proposition 3.1.

Tdpcs3.3 Theorem. In the category of complex spaces fibred products exist. They
are compatible with the forgetful functor from the category of complex spaces
over (S,OS) into the category of topological spaces over S.
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4. Germs of complex spaces

We consider the category of complex spaces. A pointed complex space (X, a)
is a complex space with a distinguished point a ∈ X . We can consider also
the category of pointed complex spaces. Morphisms are morphisms of complex
spaces that map the distinguished point to the distinguished point.

Let (X, a), (Y, b) be two punctured complex spaces. We are interested in
holomorphic maps (U, a) → (X, b) where U is an open neighborhood of a in U .
Let (U1, a) → (X, b) and Let (U1, a) → (X, b) be two such holomorphic maps.
We call them equivalent if there exists an open neighborhood a ∈ U ⊂ U1 ∩U2

such that the restrictions of the two maps are equal (as morphisms of complex
spaces). We denote the equivalence class by

(X, a)−−− > (Y, b).

So a dashed arrow is represented by a holomorphic map (U, a) → (Y, b) where
U is an open neighborhood of a. The dashed arrows define a category. This is
the category of germs of complex spaces. So the objects are pointed complex
spaces. Notice that two pointed complex spaces (X, a), (Y, b) are isomorphic
in this category if and only if there exist open neighborhoods a ⊂ U ⊂ V
and b ⊂ V ⊂ Y such that (U, a) and (V, b) are isomorphic as pointed complex
spaces.

Let (X, a) → (Y, b) be two pointed complex spaces and let f : (U, a) → (Y, b)
be a holomorphic map that maps a to b. Then we can consider

f∗
a : OY,b −→ OU,a.

Since OU,a and OX,a are canonically isomorphic we can read this as homomor-
phism

OY,b −→ OX,a.

It depends only on the equivalence of f . So we get a contravariant functor

category of germs of complex spaces −→ category of analytic algebras.

DefDu4.1 Theorem. The category of germs of complex spaces is dual to the category
of analytic algebras.
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5. Finite maps

We recall Definition I.9.6.

A continuous map f : X → Y between locally compact Hausdorff spaces is
called finite if is proper and the fibres are finite sets.

For example closed embeddings are finite.

Lfl5.1 Lemma. Let f : X → Y be a finite map between locally compact
topological Hausdorff spaces and let a ∈ X. For every neighborhoods a ∈ X ′ ⊂
X, f(a) ∈ Y ′ ⊂ Y there exist open neighborhoods a ∈ U ⊂ X ′, f(a) ⊂ V ⊂ Y ′

such that
a) f(U) ⊂ V .
b) U → V is finite.
c) f−1(f(a)) ∩ U = {a}.

Proof. We will make use of Lemma I.9.11, 2).

Dgr5.2 Definition. Let B → A be a homomorphism of analytic algebras.
A geometric realization is a holomorphic map of pointed complex spaces
(X, a) → (Y, b) together with isomorphisms B → OY,y, A → OX,x such that
the diagram

B //

��

A

��
OY,b

// OX,a

commutes.

It is clear that every homomorphism of analytic algebras admits a geometric
realization.

We used the notion “geometric realization” already in Chapt. I, Sect. 8
(compare Remark I.9.8). There is no risk of confusion.

Lemma 5.1 has the following consequence.

Labc5.3 Lemma. Let A → B and B → C be two homomorphisms of analytic
algebras such that each of them can be realized by a finite holomorphic map.
Then the composition A→ C can also be realized by a finite holomorphic map.

We give a simple example how finite maps come up in complex analysis.

LvPn5.4 Lemma. Let V ⊂ C
n−1 be open and let P ∈ O(V )[zn] be a normalized

polynomial. We denote the zero set of P by X ⊂ V ×C. The natural projection
π : X → V is finite.
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Proof. The fibres are finite. Hence it remains to show that the projection is
proper. Let K ⊂ V be a compact set. Continuity of the roots shows that there
exists a bounded set B ⊂ C such that π−1(K) ⊂ K ×B. Its closure and hence
π−1(K) is compact. ⊔⊓

We already mentioned that for a ring homomorphism A→ B there are two
important conditions of finiteness.

a) B is finitely generated as A-algebra.
b) B is finitely generated as A-module.

Clearly a) implies b), but b) is much stronger. In the following a finite homo-
morphism A→ B is to be understood as in b).

We are interested to describe all homomorphisms B → A of analytic alge-
bras that admit a geometric realization which is finite.

Every homomorphism of an analytic algebra A→ B can be embedded into
a commutative diagram

A // B

On

OO

f // Om

g

OO

where the vertical arrows are surjective. This diagram can be modified as
follows.

A // B

On

OO

F // On+m

G

OO

Here F : On → On+m is the natural embedding (F (zi) = zi) and G is given by

G(zi) = g(f(zi)) for i = 1 . . . n and G(zi) = 0 for i > n.

Rhae5.5 Remark. Each homomorphism A → B of analytic algebras can be
extended to a commutative diagram

A // B

On

OO

// On+m

OO

where the vertical arrows are surjective an where On → On+m is the natural
embedding that comes from the projection C

n+m → C
n.

We will apply this remark several times. Sometimes it is possible to reduce
to the case m = 1 with the help of induction on m. For this one proceeds
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as follows. Denote the kernels of On → A, On+m → B by a, b. From the
injectivity follows

a = b ∩On.

We can define immediate ideals

an+j = b ∩ On+j (an = a, an+m = b)

and use them to define intermediate algebras

An+j = On+j/an+j .

This gives a commutative diagram

An // An+1
//// · · · // An+m

On
//

OO

On+1
//

OO

// · · · // On+m

OO (An = A, An+m = B).

The vertical arrows are surjective. The arrows in the first row are injective.
The second row consists of natural embeddings.

Lfnj5.6 Lemma. Consider a diagram

A // B

On

OO

// On+m

OO

as in Remark 5.5. The homomorphism A → B is finite if and only if for each
j ∈ {1, . . . , m} there exists a zn+j-general element in the kernel of On+m → B.

Proof. Assume that the zn+j-general elements exist. We have to show that
A → B is finite. We can argue by induction on m and hence reduce to the
case m = 1. In this case there exists a Weierstrass polynomial in the kernel of
On+m → B. The claim then follows from the division theorem.

To prove the converse we can assume that there is no zn+m-general element
in the kernel of On+m → B. But then the image of zn+m in B cannot be
integral over A. ⊔⊓

Rres5.7 Remark. A finite homomorphism B → A of analytic algebras can be
realized by a closed embedding (X, a) → (Y, b) if and only if it is surjective.
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Proof. For a closed embedding (X, a) → (Y, b) the homomorphism OY,b →
OX,a is surjective. This follows immediately from the definition of a closed
embedding.

We prove the converse. Let A→ B be surjective. Any homomorphism A→
B of analytic algebras can be splitted in two homomorphisms A → A1 → B
where A → A1 is surjective and A1 → B is injective. If we want to study
geometric realizations, the case of injective A → B is essential. So let A → B
be injective. We extend it to

A // B

On

OO

// On+m

OO

Tfhr5.8 Theorem. Every finite homomorphism B → A of analytic algebras can
be realized by a finite holomorphic map (X, a) → (Y, b).

Proof. We can assume that there is a commutative diagram

B // A

On−1

OO

// On

OO

where the second row is the natural injection (zi 7→ zi). We denote the kernels
of the vertical arrows by b, a. Since B → A is finite there exists an integral
equation of the image of zn in A over B. This means that there exists a
normalized polynomial P ∈ On−1[zn] whose image in A is zero. Hence it is
contained in a. We consider the ideal (b, P ) ⊂ a that is generated by (the
image of) b and P ). The homomorphism On/(b, P ) → On/a is surjective and
can be realized by a closed embedding. Therefore it is sufficient to assume
that a = (b, P ). We can extend b to a coherent ideal sheaf B on an open
neighborhood 0 ⊂ V ⊂ C

n−1. We also can assume that P ∈ O(V )[zn]. Then
consider the ideal sheaf A = (B, P ) whose germ at 0 is a. Now we get a
geometric realization X → Y together with a commutative diagram

V × C // V

X //

OO

Y

OO

The vertical arrows are closed embeddings. We denote by N(P ) the zero locus
of P . Then the above diagram reads as

V × C // N(P )

X //

OO

Y

OO
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We know that the first row is finite. The vertical arrows are closed embeddings.
The first row is finite. Then the second row is finite too. ⊔⊓

We prove a converse theorem in a rather strong form.

Tipf5.9 Theorem. Let f : (X, a) → (Y, b) be a holomorphic map between pointed
complex spaces. Assume that a is an isolated point of its fibre f−1(f(a)). Then
the homomorphism OY,b → OX,a is finite.

Proof. Consider a diagram

A // B

On

OO

// On+m

OO , A = OY,b, B = OX,a,

as in Remark 5.5. We argue indirectly and assume that the homomorphism
A → B is not finite. Then there exists a j just that the kernel of On+m → A
contains no zn+j -general element. We can assume j = m. Then the image of
P (0, . . . , 0, zn+m) is zero in A. But then the points (0, . . . , zn+m) give points
in the fibre. So a is not an isolated point of its fibre f−1(f(a)).

LocF5.10 Theorem. A holomorphic map f : X → Y is locally finite at a if and
only if the corresponding map of analytic algebras OY,f(a) → OX,a is finite.

6. Grauert’s coherence theorem for finite maps

Let f : X → Y be a continuous map between topological spaces and let F
be sheaf of sets on X . Then the direct image sheaf f∗F is defined through
(f∗F )(V ) = F (f−1(V ). Let a ∈ X , b = f(a) and let b ⊂ V ⊂ Y be an open
neighborhood of b. Then there is a commutative diagram

(f∗(F ))(V )

��

= F (f−1(V ))

��
(f∗F )b // Fa

or, a little more general. Let a1, . . . , an be points in the fibre over b. Then
there is a natural commutative diagram

(f∗(F ))(V )

��

= F (f−1(V ))

��
(f∗F )b // Fa1 × · · · × Fan
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Lnib6.1 Lemma. Let f : X → Y be a finite map between locally compact spaces
and let b ∈ Y be some point. For each sheaf of sets F on X the natural map

(f∗F )b −→
∏

a∈X; f(a)=b

Fa

is a bijection.

Corollary The functor F 7→ f∗F from the category of sheaves of abelian groups
on X into that on Y is exact.

An important result of Grauert states.

GrauFi6.2 Theorem. Let (X,OX) → (Y,OY ) be a finite holomorphic map between
complex spaces. Let M be a coherent OX -module. Then the direct image f∗M
is a coherent OY -module.

We recall that f∗M a priori is a f∗OX module. But the map OY → f∗OX

equips it with a structure as OY module.

Proof of Theorem 6.2. In a first step we assume that the theorem is true in the
case M = OX . We show that then it is true in general. So let M be coherent.
Since coherence is a local property, we can assume that M is the cokernel of a
homomorphism of free sheaves,

F −→ G −→ M −→ 0.

Since f∗ is exact, we get that f∗M is the cokernel of f∗F → f∗G. This shows
that f∗M is coherent.
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1. Sets and classes

Besides sets their exist classes. Every set is also a class but not conversely.
Imagine classes which are not sets as oversized sets which are to big to deserve
to be called sets. The main example is the class of all sets. One can do with
classes all one does usually with sets besides one exception. Let A be a class
and let E(a) be for each a ∈ A a property that can be true ore false. One
would like to define the class of all a ∈ A for which E(a) is true. But this class
usually does not exist. It exists always if A is a set. In this case it is a set too.

2. Categories

A category A consists of

1) a class whose elements a re called objects.

2) For each two objects A,B ∈ A there is associated a set Mor(A,B). Its
elements are called morphisms.

3) For each three objects A,B,C ∈ A there is associated a map

Mor(A,B)×Mor(B,C) −→ Mor(A,C), (f, g) 7−→ g ◦ f.

It is called the composition of morphisms.

4) For each object A there is a distinguished element idA ∈ Mor(A,A) called
the identity.

There are obvious axioms: the composition is associative in an obvious sense.
The identities are neutral in the sense

f ◦ idA = f, idA ◦g = g, (f ∈ Mor(A,B), g ∈ Mor(B,A)).

Typical examples of categories are

The category of sets (objects are sets and morphisms are just maps).

The category of groups (objects are groups and morphisms are just homomor-
phisms).

The category of topological spaces (objects are topological spaces and mor-
phisms are continuous maps).
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3. Functors

Let A, B be two categories. A functor F : A → B consists of

1) A map F that associates to each object A ∈ A an object F (A) ∈ B

2) For each to objects A,B ∈ A there is given a distinguished map, also denoted
by F

F : Mor(A,B) −→ Mor(F (A), F (B)).

Again there are obvious axioms. The identity map goes to the identity map.
Let A,B,C be three objects. Then the diagram

Mor(A,B) //

''◆◆
◆◆◆

◆◆◆
◆◆◆

Mor(B,C)

ww♣♣♣
♣♣♣

♣♣♣
♣♣

Mor(A,C)

is commutative.

An example: we consider the categoryA whose objects are open subsets U ⊂
R
n with a distinguished point a ∈ U . Morphisms are (totally) differentiable

maps which map the distinguished point to the distinguished point. Let B be
the category whose objects are R

n for n ≥ 0 and whose morphisms are linear
maps. We define a functor F : A → B. For a pointed set (U, a) with open
U ⊂ R

n we define F (U, a) = R
n. For a morphism f : (U, a) → (V, b) we define

F (f) to be the linear map that is associated to the functional matrix. The
chain rule says that this defines a functor.

4. Equivalent categories

We assume that the reader knows the definition of a category A and of a (co-
variant) functor F : A → B. If G : B → C is another functor, the composition
G◦F us defined. This composition is associative. There is the identity functor
A → A. Two functors F,G : A → B are called isomorphic if there can be cho-
sen of each X in A an isomorphism F (X) → G(X) such that for all morphisms
X → Y in A the diagram

F (X) //

��

G(X)

��
F (Y ) // G(Y )

commutes.
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A category A is called a subcategory of B if every object of A is an object
of B and if for all objects X, Y ∈ A one has HomA(X, Y ) ⊂ HomB(X, Y ). It is
called a full subcategory if always equality holds.

Dfae4.1 Definition. A functor F : A → B is called an equivalence of categories
if the following two conditions hold:

1) For any two objects X, Y ∈ A the natural map

Hom(X, Y ) −→ Hom(F (X), F (Y ))

is bijective.
2) For each object Y ∈ B there exists an object A ∈ B such that Y and F (X)

are isomorphic.

One can ask whether there is an inverse functor. Here is a problem with the
axiom of choice. In many cases inverse functors exist in the following sense.

Dfi4.2 Definition. Let A, B be categories. Two functors F : A → B and
G : B → A are called inverse to each other if the functors G ◦F and F ◦G are
isomorphic to the identity functor on A and B.

Then F and G are equivalence of categories. One calls G an inverse of F .
(Notice that it is not uniquely determined.)

5. Modules and ideals

All rings which we consider are assumed to be commutative and with unit
elements. Ring homomorphisms are assumed to map the unit element into the
unit element. A module M over a ring A is an abelian group together with a
map A×M →M , (a,m) 7−→ am, such that the usual axioms of a vector space
are satisfied including 1Am = m for all m ∈ M . The notion of linear maps,
kernel, image of a linear map are as in the case of vector spaces. But in contrast
to the case of vector spaces, a module has usually no basis. A module which
admits a basis is called free. A finitely generated free module is isomorphic to
Rn.

If M ⊂ N is a submodule, then the factor group N/M carries a structure
of an A-module.

Recall that an ideal a in a Ring R is an abelian subgroup such that ra ∈ a

for r ∈ R and a ∈ a. Hence an ideal is nothing but an R-submodule of R. The
factor R/a is not only a R-module but carries a structure as ring such that
R→ R/a is a ring homomorphism.

An ideal is called finitely generated if it is finitely generated as module.
This means that there are elements a1, . . . , an such that a = Ra1 + · · ·+Ran.
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One writes a = (a1, . . . , an). The product ab of two ideals is the set of all
finite sums

∑
i aibi with ai ∈ a and bi ∈ b. Ideal multiplication is associative.

Especially powers of ideals are defined.

All what we have said about exact sequences of abelian groups is literarily
true for A-modules.

6. Divisibility

We recall some basic notions of divisibility in rings. Let R be ring (commutative
and with unit). An element a ∈ R of a ring is called a unit if the equation
ax = 1R is solvable in R. Then the solution is unique. The set R∗ of units is
a group under multiplication. A ring is called an integral domain if ab = 0 ⇒
a = 0 or b = 0.

UZer6.1 Definition. Let R be an integral domain. An element a ∈ R − R∗ is
called

a) indecomposable, if one has

a = bc =⇒ b or c is a unit

b) prime element, if
a|bc =⇒ a|b or a|c

(a|b means that the equation b = ax is solvable in R). Notice that units are
not prime elements.)

Of course prime elements are indecomposable, but usually the converse is
false.

Example. Let R = C[X ] be the polynomials ring in one variable over C and
R0 the sub-ring of all polynomials without linear term. The element X3 is
indecomposable in R0 but not a prime: X3|X2 ·X4.

ZPEr6.2 Definition. The integral domain R is called factorial or UFD-ring,

if the following two conditions are satisfied:

1) Each element a ∈ R − R∗ can be written as product of finitely man inde-
composable elements.

2) Each indecomposable element is prime.

In factorial rings the decomposition into primes is unique in the following sense:
Let

a = u1 · · ·un = v1 · · ·vm
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be two decompositions of a ∈ R −R∗ into primes. Then one has

a) m = n.

b) There exists a permutation σ of the digits 1, . . . , n, such that

uν = ενvσ(ν), εν ∈ R∗ for 1 ≤ ν ≤ n.

It is easy to prove this by induction.

Examples for factorial rings.

1) Each field is factorial.

2) Z is factorial

3) By an important Theorem of Gauss the polynomial ring R[z1, . . . , zn] over
a factorial ring is factorial too.

SGZ6.3 Theorem of Gauss. The polynomial ring R[z1, . . . , zn] over a factorial
ring is factorial too.

7. The discriminant

The discriminant should be treated in an course of basic algebra: We just recall
the basic facts. One constructs for each natural number n a polynomial ∆n

of n variables over the ring Z of integers. Using this universal polynomial one
defines for any normalized polynomial

P = zn + an−1z
n−1 + · · ·+ a0

over a ring R the discriminant

d(P ) := ∆n(a0, . . . , an−1) ∈ R.

The basic fact about the discriminant is: Assume that R is factorial. Then P
is square free if and only if d(P ) 6= 0.

We just give a comment. In the case R = C a polynomial is square free if
and only if it has no double zero. The discriminant of the quadratic polynomial
X2 + bX + c is b2 − 4c.
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8. Noetherian rings

In commutative algebra there is a basic notion of noetherian ring. A ring R
(commutative and with unit) is called noetherian, if any ideal a ⊂ R is finitely
generated. Noetherian rings have the basic property that a sub-module of a
finitely generated module is finitely generated. It is trivial that the factor ring of
a noetherian ring is noetherian. The Hilbert basis theorem states the following:
The polynomial ring R[X1, . . . , Xn] over a noetherian ring is noetherian. Hence
every finitely generated R-algebra is noetherian.

A ring R is called local if it is not the zero ring and if the set of all non-units
m is an ideal. Then the factor ring R/m is a field. A homomorphism A→ B of
local rings is call local, if the maximal ideal of A is mapped into the maximal
ideal of B. A field K is a local ring, m = {0}. The ring Z of integers is not a
local ring, since the units are just the elements ±1. Similarly the ring of poly-
nomials K[X1, . . . , Xn] (n ≥ 1) is not a local ring. The basic example for us the
ring On = C{z1, . . . , zn} of convergent power series. Elements with a non zero
constant term are invertible. Elements with zero constant term are not invert-
ible. Obviously they form an ideal mn. The residue field On/mn is isomorphic
to C. More precisely the composition of the natural homomorphisms

C −→ On −→ On/mn

is an isomorphism. We can use this isomorphism to identify C and On/mn.

In this connection we want to mention another algebraic result. Let M be
a module over a ring R

LemNak8.1 Lemma von Nakayama. Let M be a finitely generated module over a
local ring R with maximal ideal m. Assume mM =M . Then M = 0.

There is a rather obvious application:

HomGenLoc8.2 Lemma. Let R be a noetherian local ring R and r1, . . . , rn elements of the
maximal ideal. Assume that their cosets mod m2 generated m/m2 as R-module.
Then they generate m.

For the prove one applies the lemma of Nakayama to m/(r1, . . . , rn). We also
mention that m/m2 is not only an R-module but an R/m module in a natural
way. Hence it is vector space over the field R/m. A subset of m/m2 is an
R-submodule if and only if it as R/m-module.

KrullI8.3 Krull intersection theorem, first version. Let R be a local noetherian
ring. The intersection of all powers of the maximal ideal is zero.

The intersection theorem has an important consequence for noetherian local
rings:
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HomMaxDef8.4 Lemma. Let f, g : A → B be two local homomorphisms between noethe-
rian local rings. Assume that there exist generators a1, . . . , an of the maximal
ideal of A such that f(ai) = g(ai). Then f = g.

There is second version of Krull’s intersection theorem:

KrullIntS8.5 Krull intersection theorem, second version. Let R be a noetherian
local ring with maximal ideal m. Assume that M is a finitely generated R-
module. Then for each submodule N ⊂M one has

N =
∞⋂

ν=1

(N +mνM).

If one applies this version to M = R and N = 0, one obtains the first version.

Finiteness properties for algebras

Recall that a an algebra is just a fing homomorphism ϕ : A → B. Then B
is called an A-algebra. One can consider B as A-module by ab =: ϕ(a)b. An
algebra homomorphism B → C of A-algebras is just a ring homomorphism
that is also A-linear.

There are two basic finiteness properties for algebras A → B. The first is:
B is finitely generated as A-algebra. This means that there exists a surjective
homomorphism of A-algebras of the polynomial ring A[X1, . . . , Xn] to B. This
means that there are finitely many elements b1, . . . , bn such that any element
of B can be expressed as a polynomial with coefficients in A. There is another
much more restrictive finiteness condition: B is finitely generated as A-module.
This means that there exist finitely many elements b1, . . . , bn such that B =
Ab1 + · · ·+Abn. We call a ring extension A→ B finite, if this second stronger
condition is satisfied. A ring extension A→ B is called integral, if any element
b ∈ B satisfies an equation

bn + an−1b
n−1 + · · ·+ a0 = 0, ai ∈ A.

Be aware. This notion of “integral” has nothing to do with “integral domain”.
Notice that the highest coefficient is one. It is a basic fact that finite extensions
are integral. More precisely, a ring extension is finite if and only if it is integral
and if it is finitely generated as algebra. The usual noether normalization
theorem in commutative algebra states the following:

If K → A is a finitely generated algebra over a field K then there exist a sub-
algebra A0 ⊂ A such that A is a finite over A0 and such that A0 is isomorphic
as K-algebra to a polynomial ring K[X1, . . . , Xn]. The number n is unique. It
equals the so-called Krull dimension of A.
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An ideal p in a ring R is called a prime ideal if R/p is an integral domain.
Concretely this means

ab ∈ p =⇒ a ∈ p or b ∈ p.

The Krull dimension dimA is a basic notion of commutative algebra. It is
defined for any commutative ring with unity and can be an integer ≥ 0 or ∞.
By definition is the Supremum of all n such that there exists a chain of prime
ideals

p0
⊂
6=
. . . ⊂

6=
pn.

The basic facts about the Krull dimension are:

KruPro8.6 Proposition. Let R be a local noetherian ring such the maximal ideal
can be generated by n elements. Then dimR ≤ n.

The rings K[z1, . . . , zn], K[[z1, . . . , zm]] (where K is a field) and the ring
C{z1, . . . , zn} have Krull dimension n.

A maximal chain of prime ideals in all three cases is

0 ⊂ (z1) ⊂ . . . ⊂ (z1, . . . , zn).

This shows that the dimension is ≥ n. That the dimension equals n follows in
the case C{z1, . . . , zn} from the first part.

CohSeid8.7 Theorem of Cohen Seidenberg. If A ⊂ B is an integral ring extension
of noetherian rings then dimA = dimB.

An important result of Krull dimension theory is:

KrDimDown8.8 Proposition. Let R be a noetherian local ring and a ∈ R a non-zero
divisor. Then

dimR/(a) = dimR − 1.

Corollary. If a is an ideal which contains a non-zero divisor then

dimR > dimR/a.

Recall that a ring R is called an integral domain if ab = 0 ⇒ a = 0 or b = 0.
We recall that each integral domain is contained in a field K as subring. One
can achieve that K consists of all a/b, a, b ∈ R, b 6= 0. Such a field is called
a field of fractions. A field of fractions is uniquely determined up to canonical
isomorphism in an obvious way. Hence one talks about “the” field of fractions.

A special case of the so-called primary decomposition in noetherian ring
states:
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PrimInt8.9 Proposition. Every proper radical ideal in a noetherian ring is the
intersection of finitely many prime ideals.

Recall that an ideal is called a radical ideal if an = 0 for some natural number
implies a = 0. Prime ideals of course are radical ideals. The intersection of
radical ideals is a radical ideal.
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1. Presheaves

DPG1.1 Definition. A presheaf F (of abelian groups) on a topological space X is
a map which assigns to every open subset U ⊂ X an abelian group F (U) and
to every pair U, V of open subsets with the property V ⊂ U a homomorphism

rUV : F (U) −→ F (V )

such that for three open subsets U, V,W with the property W ⊂ V ⊂ U

rUW = rVW ◦ rUV

holds:

Example: F (U) is the set all continuous functions f : U → C and rUV (f) := f |V
(restriction).

Many presheaves generalize this example. Hence the maps rUV are called
“restrictions” in general and one uses the notation

s|V := rUV (s) for s ∈ F (U).

The elements of F (U) sometimes are called “sections” of F over U . In the
special case U = X they are called “global” sections.

DAP1.2 Definition. Let X be a topological space. A homomorphism of presheaves

f : F −→ G

is a family of group homomorphisms

fU : F (U) −→ G(U),

such that the diagram
F (U) −→ G(U)
↓ ↓

F (V ) −→ G(V )

commutes for every pair V ⊂ U of open subsets, i.e. fU (s)|GV = fV (s|FV ).
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It is clear how to define the identity map idF : F → F of a presheaf and the
composition g ◦ f of two homomorphims f : F → G, g : G→ H of presheaves.

There is also a natural notion of a sub-presheaf F ⊂ G. Besides F (U) ⊂
G(U) for all U one has to demand, that the restrictions are compatible. This
means:

The canonical inclusions iU : F (U) → G(U) define a homomorphism i : F → G
of presheaves.

When f : F → G is a homomorphism of presheaves, the images fU (F (U))
define a sub-presheaf of G. We call it the presheaf-image and denote it by

fpre(F ).

It is also clear that the kernels of the maps fU define a sub-presheaf of F . We
denote it by Kernel(f : F → G). When F is a sub-presheaf of G then one can
can consider the factor groups G(U)/H(U). It is clear how to define restriction
maps to get a presheaf G/preF . We call this presheaf the factor-presheaf.

Since we have defined Kernel and Image we can also introduce the notion
of a preasheaf-exact sequence. A sequence F → G → H is presheaf-exact
if and only if F (U) → G(U) → H(U) is exact for all U . What we have said
about exact sequences of abelian groups carries literarily over to presheaf-exact
sequences of presheaves of abelian groups.

2. Germs and Stalks

let F be a presheaf on a topological space X und let a ∈ X be a point. We
consider pairs (U, s), where U is an open neighpourhood of a and s ∈ F (U)
a section over U . Two pairs (U, s), (V, t) are called equivalent, if there exists
an open neighborhood a ∈ W ⊂ U ∩ V , such that s|W = t|W . This is an
equivalence relation. The equivalence classes

[U, s]a :=
{
(V, t); (V, t) ∼ (U, s)

}

are called germs of F in the point a. The set of all germs

Fa :=
{
[U, s]a, a ⊂ U ⊂ X, s ∈ F (U)

}

is the so-called stalk of F in a. The stalk carries a natural structure as abelian
group. One defines

[U, s]a + [V, t]a := [U ∩ V, s|U ∩ V + t|U ∩ V ]a.

We use frequently the simplified notation

sa = [U, s]a.
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For every open neighborhood a ∈ U ⊂ X there is an obvious homomorphism

F (U) −→ Fa, s 7−→ sa.

A homomorphism of presheaves f : F → G induces natural mappings

fa : Fa −→ Ga (a ∈ X).

The image of a germ [U, s]a is simply [U, fU(s)]a. It is easy to see that this is
well-defined.

Hpk2.1 Remark. Let F → G and G → H be homomorphism of presheaves
and let a ∈ X be a point. Assume that every neighborhood of a contains a
small open neighborhood U such that F (U) → G(U) → H(U) is exact. Then
Fa → Ga → Ha is exact.

Corollary. if F → G→ H is presheaf-exact then Fa → Ga → Ha is exact for
all a.

If F is a preasheaf on X , one can consider for each open subset U ⊂ X

F (0)(U) :=
∏

a∈U

Fa.

The elements are families (sa)a∈U with sa ∈ Fa. There is now coupling between
the different sa. Hence F (0)(U) usually is very giantly.

For open sets V ⊂ U , one has an obvious homomorphism F (0)(U) →
F (0)(V ). Hence we obtain a preasheaf F (0) together with a natural homo-
morphism

F −→ F (0).

3. Sheaves

DG3.1 Definition. A presheaf F is called sheaf if the following conditions are
satisfied:

(G1) When U =
⋃
Ui is an open covering of an open subset U ⊂ X and if

s, t ∈ F (U) are sections with the property s|Ui = t|Ui fur alle i, then s = t.

(G2) When U =
⋃
Ui is an open covering of an open subset U ⊂ X und if

si ∈ F (Ui) is a family of sections with the property

si|Ui ∩ Uj = sj |Ui ∩ Uj fur alle i, j,

then there exists a section s ∈ F (U) with the property s|Ui = si for all i.

(G3) F (∅) is the zero group.
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Clearly the presheaf of continuous functions is a sheaf, since continuity is a
local property. An example of a presheaf F , which usually is not a sheaf is
the presheaf of constant functions with values in Z (F (U) = {f : U → Z, f
constant}). But the set of locally constant functions with values in Z is a sheaf.

By a subsheaf of a sheaf F we understand a sub-presheaf G ⊂ F which is
already a sheaf. If F,G are presheaves then a homomorphism f : F → G of
presheaves is called also a homomorphism of sheaves.

Eug3.2 Remark. Let F ⊂ G be a sub-presheaf. We assume that G (but not
necessarily F ) is a sheaf. Then there is a smallest subsheaf F̃ ⊂ G which
contains F . For an arbitrary point a ∈ X the induced map fa : Fa → F̃a is an
isomorphism.

It is clear, that F̃ (U) has to be defined as set of all s ∈ G(U), such that:

There exists an open covering U =
⋃
Ui, such that s|Ui is in the image of

F (Ui) → G(Ui) for all i.

This is equivalent with:

The germ sa is in the image of Fa → Ga for all a ∈ U .

Bpg3.3 Definition. Let F → G be a homomorphism of sheaves. The sheaf-image
fsheaf (F ) is the smallest subsheaf of G, which contains the presheaf-image-
fpre(F ).

We have to differ between two natural notions of surjectivity.

Sis3.4 Definition.
1) A homomorphism of presheaves f : F → G is called presheaf-surjective

if fpre(F ) = G.

2) A homomorphism of sheaves f : F → G is called sheaf-surjective if
fsheaf(F ) = G.

Wenn F and G both are sheaves then sheaf-surjectivity and presheaf-surjecti-
vity are different things. We give an example which will be basic:

Let O be the sheaf of holomorphic functions on C, hence O(U) is the set of
all holomorphic functions on an open subset U . This a sheaf of abelian groups
(under addition). Similarly we consider the sheaf O∗ of holomorphic functions
without zeros. This is also a sheaf of abelain groups (under multiplication).
The map f → ef defines a sheaf homomorphism

exp : O −→ O∗.

The map O(U) → O∗(U) is not always surjective. For example for U = C
∗

the function 1/z is not in the image. Hence exp is not presheaf-surjective. But
it is know from complex calculus that exp : O(U) → O∗(U) is surjective if U
is simply connected, for example for a disc U . Since a point admits arbitrarily
small neighborhoods which are discs, it follows that exp is sheaf-surjective.
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gH3.5 Remark. A homomorphism of sheaves f : F → G is sheaf-surjective if
and only if the maps fa : Fa → Ga are surjective for all a ∈ X.

Fortunately the notion “injective” doesn’t contain this difficulty.

KiG3.6 Remark. Let f : F → G be a homomorphism of sheaves. The kernel in
the sense of presheaves is already a sheaf.

Hence we don’t have to distinguish between presheaf-injective and sheaf-
injective and also not between preasheaf-kernel and sheaf-kernel.

hH3.7 Remark. A homomorphism of sheaves f : F → G is injective if and only
if the maps fa : Fa → Ga are injective for all a ∈ X.

A homomorphism of presheaves f : F → G (sheaves) is called an isomorphism
if all F (U) → G(U) are isomorphisms. Their inverses then define a homomor-
phism f−1 : G→ F .

AGb3.8 Remark. A homomorphism of sheafs F → G is an isomorphism if and
only if Fa → Ga is an isomorphism for all a.

For presheaves this is false. As counter example on can take for F the presheaf
of constant functions and for G the sheaf of locally constant functions.

It is natural to introduce the notion of sheaf-exactness as follows:

Dse3.9 Definition. A sequence F → G → H of sheaf homomorphims is sheaf-
exact at G , if the the kernel of G→ H and the sheaf-image of F → G agree.

Generalizing 3.5 and 3.7 one can easily show:

Pee3.10 Proposition. A sequence F → G → H is exact if and only if Fa →
Ga → Ha is exact for all a.

Our discussion so far has obviously one gap: Let F ⊂ G be subsheaf of a sheaf
G. We would like to have an exact sequence

0 −→ F −→ G −→ H −→ 0.

The sheaf H should be the factor sheaf of G by F . But up to now we only
defined the factor-presheaf G/preF which usually is no sheaf. In the next section
we will give the correct definition for a factor sheaf G/sheafF .
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4. The generated sheaf

For a presheaf F we introduced the monstrous presheaf

F (0)(U) =
∏

a∈U

Fa.

Obviously F (0) is a sheaf. Sometimes its is called the “Godement-sheaf” or the
“associated flabby sheaf”. There is a natural homomorphism

F → F (0).

We can consider its presheaf-image and then the smallest subsheaf which con-
tains it. We denote this sheaf by F̂ and call it the “generated sheaf” by F .
There is a natural homomorphism

F → F̂ .

From the construction follows immediately

ePi4.1 Remark. Let F be a presheaf. The natural maps

Fa
∼
−→ F̂a

are isomorphisms.

A homomorphism F → G of presheaves induces a homomorphism F (0) → G(0).
Clearly F̂ is mapped into Ĝ.

UEg4.2 Remark. Let f : F → G be a homomorphism of presheaves. There is a
natural homomorphism F̂ → Ĝ, such that the diagram

F −→ G
↓ ↓
F̂ −→ Ĝ

commutes.

When F is already a sheaf then F → F (0) is injective. Then the map of F into
the presheaf image is an isomorphism. This implies that the presheaf image is
already a sheaf.

FiF4.3 Remark. Let F be a sheaf. Then F → F̂ is an isomorphism.

If F is a sub-presheaf of a sheaf G, then the induced map F̂ → Ĝ ∼= G is
an isomorphism F̂ → F̃ between F̂ and the smallest subsheaf F̃ of G, wich
contains F .

We identify F̃ and F̂ .



§5. Direct and inverse image of sheaves 83

Factor sheaves and exact sequences of sheaves

Let F → G be a homomorphism of presheaves. We introcuced already the fac-
tor preshaf G/preF , which asociates to an open U the factor group G(U)/F (U).
Even if both F and G are sheaves this will usually not a shesf. Hence we define
the factor sheaf as the sheaf generated by the factor-presheaf.

G/sheafF := Ĝ/preF.

This called the factor-sheaf. Since we are interested mainly in sheaves, we will
write usually for a homomorphism for sheaves f : F → G:

G/F := G/sheafF (factor sheaf)

f(F ) := fsheaf(F ) (sheaf image)

Notice that there is no need to differ between sheaf- and presheaf-kernel. When
we talk about an exact sequence of sheaves

F −→ G −→ H

we usually mean “sheaf exactness”. All what we have said about exactness
properties of sequences of abelian groups is literally true for sequences of
sheaves. For example: A sequence of sheaves 0 → F → G (0 denotes the
zero sheaf) is exact if and only of F → G is injective. A sequence of sheaves
F → G→ 0 is exact if and only if F → G is surjective (in the sense of sheaves
of course). A sequence of sheaves 0 → F → G→ H → 0 is exact if and only if
there is an ismomorphism H ∼= G/F which identifies this sequence with

0 −→ F −→ G −→ G/F −→ 0.

ESf4.4 Remark. Let 0 → F → G → H → 0 be an exact sequence of sheaves.
Then for open U the sequence

0 → F (U) → G(U) → H(U)

is exact.

Corollary. The sequence

0 → F (X) → G(X) → H(X)

is exact.

Usually G(X) −→ H(X) is not surjective as the example

0 −→ ZX −→ O
f 7→e2πif

−→ O∗ −→ 0

shows. Cohomology theory will measure the absence the right exactness. The
above sequence will be part of a long exact sequence

0 → F (X) → G(X) → H(X) −→ H1(X,F ) −→ · · ·
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5. Direct and inverse image of sheaves

Let f : X → Y a continuous map of topological spaces and F a pre-sheaf on
X . Then (f∗F )(V ) := F (f−1(V )) with natural restriction maps is a pre-sheaf
on Y . It is a sheaf if F is a sheaf. We call it the direct image sheaf. For
a point a ∈ X there is an obvious map (f∗F )f(a) → Fa. Let X → Y be a
closed embedding. This means that the image is closed and that X → Y is a
topological map. In this case the above map induces a bijection (f∗F )f(a) ∼= Fa.

We use some simple facts about sheaves. Let F be a sheaf on a topological
space. We know the trivial procedure of restricting F to an open subset.

We recall shortly the definition of F |Y . We need it only in a very special
situation. Let X be a topological space and let Y ⊂ X be a closed subspace.
Let F be sheaf of abelian groups. Assume that F |(X − Y ) = 0. This means
that the support of F is contained in Y . Then we can define

(F |Y )(V ) = lim
−→

F (U)

where U runs through all open subsets U ⊂ X . All homomorphisms in this
direct system are isomorphisms. This implies that the natural homomorphisms

(F |Y )(V ) −→ F (U) (U ⊂ X open, U ∩ Y = V )

are isomorphisms. This also says that there is a natural isomorphism

(F |Y )(U ∩ Y ) = F (U) (U ⊂ X open).

We can read them as canonical isomorphisms

i∗(F |Y ) ∼= F.

Let conversely G be a sheaf of abelian groups on Y . Then we can consider the
direct image i∗G. This sheaf vanishes on X−Y , so we can define (i∗G)|Y . We
have

(i∗G)|Y (U ∩ Y ) = (i∗G)(U) = G(U ∩ V ).

This can be read as a canonical isomorphism

(i∗G)|Y ∼= G.

Rce5.1 Remark. Let Y ⊂ X a closed subset of a topological space. We denote
by A the category of sheaves of abelian groups on X which vanish on X−Y (as
full subcategory of the category of all sheaves of abelian groups on X) and by B
the category of sheaves of abelian groups on Y . These categories are equivalent
where the equivalence is given by two inverse functors

B −→ A, G 7−→ i∗G,

A −→ B, F 7−→ F |Y.
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The same Remark holds for sheaves of rings or C-algebras.
There is a more general procedure to restrict sheaves to an arbitrary subset

Y ⊂ X (equipped with the induced topology). Even more general, one can
define for a continuous map f : Y → X the inverse image f−1F of a sheaf F
on X . First one considers the presheaf

G(V ) = lim
−→

F (U)

where U runs through all open subsets of X that contain f(V ). Then one
defines f−1F to be its generated sheaf. If U ⊂ X is open an ι : U → X is the
canonical injection then ι−1F can be identified with the restriction. Hence we
can use the notation F |Y = ι−1F for any subset Y ⊂ X , equipped with the
induced topology. Again ι denotes the natural injection.

LabF5.2 Lemma. Let X be a topological space and Y ⊂ X a closed subspace. Let
F be a sheaf on X such that F |(X − Y ) is zero and let ι : Y → X the natural
injection. Then there is a natural isomorphism

ι∗(F |Y )
∼
−→ F.

More precisely, the functor F 7→ F |Y defines an equivalence between the cate-
gory of sheaves on Y and the category of sheaves on X whose restriction to U
vanishes.

We use some simple facts about sheaves. Let F be a sheaf on a topological
space. We know the trivial procedure of restricting F to an open subset. There
is a more general procedure to restrict sheaves to an arbitrary subset Y ⊂ X
(equipped with the induced topology). Even more general, one can define for
a continuous map f : Y → X the inverse image f−1F of a sheaf F on X . First
one considers the presheaf

G(V ) = lim
−→

F (U)

where U runs through all open subsets of X that contain f(V ). Then one
defines f−1F to be its generated sheaf. If U ⊂ X is open an ι : U → X is the
canonical injection then ι−1F can be identified with the restriction. Hence we
can use the notation F |Y = ι−1F for any subset Y ⊂ X , equipped with the
induced topology. Again ι denotes the natural injection.

LabF5.3 Lemma. Let X be a topological space and Y ⊂ X a closed subspace. Let
F be a sheaf on X such that F |(X − Y ) is zero and let ι : Y → X the natural
injection. Then there is a natural isomorphism

ι∗(F |Y )
∼
−→ F.

More precisely, the functor F 7→ F |Y defines an equivalence between the cate-
gory of sheaves on Y and the category of sheaves on X whose restriction to U
vanishes.
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6. Sheaves of rings and modules

A sheaf of A-modules is a sheaf F of abelian groups such that every F (U) carries
a structure as A-module and such the the restriction maps F (U) → F (V )
for V ⊂ U are A-linear. A homomorphism F → G is called A-linear if all
F (U) → G(U) are so. Then kernel and image carry natural structures of
sheafs of A-modules. Also the stalks carry such a structure naturally. Hence
the whole canonical flabby resolution is a sequence of sheafs of A-modules.

There is a refinement of this construction: By a sheaf of rings O we under-
stand a sheaf of abelian groups such that every O(U) is not only an abelian
group but a ring and such that all restriction maps O(U) → O(V ) are ring
homomorphisms. Then the stalks Oa carry a natural ring structure such that
the homomorphisms O(U) −→ Oa (U is an open neighborhood of a) are ring
homomorphisms.

By an O-module we understand a sheaf M of abelian groups such every
F (U) carries a structure as O(U)-module and such that the restriction maps
are compatible with the module structure. To make this precise we give a short
comment. Let M be an A-module and N be a module over a different ring
B. Assume that a homomorphism r : A → B is given. A homomorphism
f : M → N of abelian groups is called compatible with the module structures
if the formula

f(am) = r(a)f(m) (a ∈ A, m ∈M)

holds. An elegant way to express this is as follows. We can consider N also as
an module over A by means of the definition an := r(a)n. Sometimes this A-
module is written as N[r]. Then the compatibility of the map f simply means
that it is an A-linear map

f :M −→ N[r].

Usually we will omit the subscript [r] and simply say that f : M → N is
A-linear.

If M is an O-module then the stalk Ma is naturally an Oa-module. An O-
linear map f : M → N between two O-modules is a homomorphism of sheaves
of abelian groups such the maps M(U) → N (U) are O(U) linear. Then the
Kernel and image also carry natural structures of O-modules.

Another standard construction of commutative algebra carries over to the
case of modules over sheaves.

An O-submodule P ⊂ M is an sub-sheaf of abelian groups such that P(U)
is an O(U)-submodule of M(U) for every open U . Then the natural inclusion
P →֒ M is O-linear. The factor sheaf M/N carries a natural structure as
O-module. An ideal sheaf in O is just an O-submodule of O (which can be
considered as O-module in the obvious way). The factor sheaf of O by an ideal
sheaf carries a natural structure as sheaf of rings.
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Let ϕ : M → N be an O-linear map and P ⊂ N an O-submodule. Then
ϕ−1(P) is defined in the naiv way: ϕ−1(P)(U) := ϕ−1

U (P((U)). This is already
a sheaf, actually an O-submodule of M.

Since for every open subset U ⊂ X we have a ring homomorphism O(X) →
O(U) all M(U) can be considered as O(X)-modules. Hence a O-module can
be considered as sheaf of O(X)-modules.

Let O be a sheaf of rings. There is the notion of an O-module M. This is
a sheaf of abelian groups together with a homomorphism of sheaves of abelian
groups

O ×M −→ M

such that the induced maps

O(U)×M(U) −→ M(U)

equip M(U) with a structure as O(U)-module. Here we use the obvious defi-
nition for the direct product of (pre-)sheaves.

(M×N )(U) = M(U)×N (U).

This definition can be extended to more than one factor and one can define

Mn = M× · · · ×M.

There is an obvious notion of an O-linear map M → N of O-modules. So we
can talk about the category of O-modules.

This category has the same exactness property as the category of abelian
groups. One can define the kernel and the sheaf image in this category and one
can define direct products. We also mention that the stalk Ma of an O-module
carries a natural structure as Oa-module.

In the following we will understand by an exact sequence of O-moduls a
sheaf exact sequence and we use the notations

f(M) := fsheaf(M) and M/N = M/sheafN .

(These are O-modules.)
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7. Finitely generated sheaves

Let M be an O-module and let Om → M be an O-linear map. There is
an induced map O(X)m → M(X). Hence there are m distinguished global
sections s1, . . . , sm ∈ M(X) (the images of the elements of the standard basis
e1, . . . , em of O(X)m). These global sections determine the map, since for
any open U ⊂ X an arbitrary section of Om can be written in the form s =
f1e1|U + · · · + fmem|U . The image of this section is f1s1|U + · · · + fmsm|U .
Conversely we obtain an O-linear map through this formula for any choice of
global sections s1 . . . , sm. This shows:

FrtoM7.1 Lemma. There is a natural one to one correspondence between O-linear
maps Om → M and m-tuples of global sections of M.

An O-module is called finitely generated if there is a surjective map of O-
modules Om → M. Surjectivity of course is understood in the sense of sheaves.
So this means that Om

a → Ma is surjective for each point a ∈ X .

The support of a sheaf F of abelian groups, rings, algebras is defined as

supportF := {a ∈ X ; Fa 6= 0}.

SuppCl7.2 Lemma. Let M be a finitely generated O-module. The support of M is
a closed subset.

Proof. We show that the complement of the support is open. Let a be a point
such that Ma = 0. Consider generators s1, . . . , sm of M. The germs (si)a are
zero. Hence there exists an open neighborhood U such that all si|U = 0. This
shows Mb = 0 for all b ∈ U . ⊔⊓

SubCon7.3 Lemma. Let M,N be two finitely generated submodules of an O-module
P. Let a be a point such that Ma ⊂ Na. Then there exists an open neighborhood
a ∈ U such that M|U ⊂ N|U .

Proof. Take generators s1, . . . , sm of M and t1, . . . , tn of N . Express the
germs (ti)a by the (sj)a. Since there are only finitely coefficients involved,
these equations extend to a small open neighborhood of a. ⊔⊓

A similar argument gives:

SurUmg7.4 Lemma. Let M → N be an O-linear map of finitely generated O-
modules. Let a be a point such that Ma → Na is surjective. Then there exists
an open neighborhood U such that M|U → N|U is surjective.
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Lifting of maps

A very simple fact of commutative algebra says. Let M → N be a surjective
R-linear map of R-modules and let Rn → N be a linear map too. Then there
exists a lift Rn →M . Denote the images of the standard basis e1, . . . , en in N
by b1, . . . , bn and take pre-images ai in M . Then map ei to ai.

To get an analogue for sheaves, we consider a surjective O-linear map M →
N of O-modules and an O-linear map On → N . Now we get a problem since
the map M(X) → N (X) needs not to be surjective. So we can not repeat the
above argument. We only can say:

LiftLoc7.5 Lemma. Let M → N be a surjective O-linear map and On → N also
an O-linear map. For each point a there exists an open neighborhood U and
an O|U -linear map such the diagram

O|Un

�� ##●
●●

●●
●●

●

M|U // N|U

commutes.

8. Coherent sheaves

Let us recall a basic property of noetherian rings R. Let M be a finitely
generated module, i.e. there exists a surjective R-linear map Rn → M . Then
the kernel K of this map is finitely generated as well. Hence there exists an

exact sequence Rn
ϕ
→ Rm →M . The map ϕ determines M ∼= Rn/Im(ϕ). The

map ϕ just given by a matrix with m rows and n columns. This is the way
how computer algebra can manage computations for finitely generated modules
over noetherian rings as polynomial rings. Serre found a weak substitute for
O-modules.

DCoh8.1 Definition. A sheaf of rings O is called coherent if for any open subset
U ⊂ X and any O|U -linear map On|U → Om|U the kernel is locally finitely
generated.

Recall that an O-module M is called locally finitely generated if there exists
an open covering X =

⋃
i Ui such that M|Ui is a finitely generated as OX |Ui-

module for all i.
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CohMod8.2 Definition. Let O be a coherent sheaf of rings. An O-module M is
called coherent if for every point there exists an open neighborhood U and an
exact sequence

O|Un −→ O|Um −→ M|U −→ 0.

Of course O considered as O-module is coherent. Just consider 0 → O → O →
0.

An O-module is called a (finitely generated) free sheaf if it is isomorphic
to Om for suitable m. It is called locally free if every point admits an open
neighborhood such that the restriction to it is free. A locally free sheaf is also
called a vector bundle. For trivial reasons a (finitely generated) free sheaf over
a coherent sheaf of rings is coherent. Since coherence is a local property, every
vector bundle is coherent. The property “coherent” is stable under standard
constructions. The proves are not difficult. We will keep them short:

First we treat some special cases for free O-modules. A first trivial ob-
servation is that the image of an O-linear map Op → Oq is coherent. The
next observation is that the intersection M ∩ N of two coherent subsheaves
M,N of On is coherent. (The intersection M ∩ N is defined in the naive
sense as presheaf and turns to be out a sheaf, more precisely an O-module.)
The idea is to write the intersection as a kernel. We explain the principle for
individual modules M,N ⊂ Rn of finite type over a ring R: Let F : Rp → Rn,
G : Rq → Rn be linear maps and let M,N be their images. We denote by K
the kernel of the linear map

Rp+q −→ Rn, (a, b) 7−→ F (a)−G(b).

The image of K under the map

Rp+q −→ Rn, (a, b) 7−→ F (a)

is precisely the intersection M ∩N .

The last observation is the following. Let Op → Oq be O-linear and let
M ⊂ Oq be coherent. We claim that its inverse image in Op is coherent. We
explain again the algebra behind this result. Let F : Rm → Rl be a R-linear
map and N ⊂ Rl be an R-module of finite type. We assume that F (Rm)∩N is
finitely generated. Then there exists a finitely generated submodule P ⊂ Rm

such that F (P ) = F (Rm) ∩ N . We also assume that the kernel K of F is
finitely generated. It is easily proved that F−1(N) = P + K and we obtain
that the inverse image is finitely generated.

These observations carry over to arbitrary coherent O-modules.
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ImCohCoh8.3 Lemma. Let M → N be an O-linear map of coherent sheaves. The
image sheaf is coherent.

Corollary. A locally finitely generated sub-sheaf of a coherent sheaf is coher-
ent.

Proof. It is sufficient to show that the image of a map Om → M is coherent.
By definition of coherence it is sufficient to show that the kernel K is locally
finitely generated. We can assume that there exists an exact sequence

Op −→ Oq −→ M −→ 0.

Since Oq → M is surjective we can assume (use Lemma 7.5) that there exists
a lift Om → Oq such that the diagram

Om //

""❉
❉❉

❉❉
❉❉

❉ M

Oq

OO

Op

OO

commutes. Take the image of Op → Oq and then its pre-image in Om It is
easy to check that this is the kernel K. ⊔⊓

KeCohCoh8.4 Lemma. The kernel of a map M → N of coherent sheaves is coherent.

Proof. Because of Lemma 8.3 we can assume that M → N is surjective. We
choose presentations

Oa −→ Ob −→ M, Oc −→ Od −→ N .

We can assume that there is commutative diagram

0 // K //M // N // 0

Ob
ϕ //

OO

Od

OO

Oa //

OO

Oc

ψ

OO

The existence of ϕ follows from Lemma 7.5 (after replacing X by a small open
neighborhood of a given point). The existence of Oa → Oc is trivial. Then we
get a natural surjection ϕ−1(ψ(Oc)) → K. ⊔⊓
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KoCohCoh8.5 Lemma. The cokernel N /ϕ(N ) of a map ϕ : M → N of coherent
sheaves is coherent.

Proof. We can assume that N is a sub-sheaf of M and that ϕ is the canonical
injection. We can assume that a commutative diagram with exact columns
exists:

0 0

0 // N //

OO

M //

OO

M/N // 0

Ob //

OO

Od

OO

Oa //

OO

Oc

OO

It is easy to construct from this diagram an exact sequence

Ob ⊕Oc −→ Od −→ M/N −→ 0. ⊔⊓.

TwoThree8.6 The two of three lemma. Let O be a coherent sheaf of rings and

0 −→ M1 −→ M2 −→ M3 −→ 0

an exact sequence of O-modules. Assume that two of them are coherent. Then
the third is coherent too.

Proof. All what remains to show is that M2 is coherent if M1,M2 are. We
can assume that there is a commutative diagram

0

0 //M1
//M2

//M3

OO

// 0

Oq

OO

α

bb❊❊❊❊❊❊❊❊

Op

OO

We use this to produce a map

M1 ⊕Oq −→ M2, (x, y) 7−→ x− α(y).
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It is easy to check that this map is surjective. The kernel is defined by x = α(y).
Hence it can be identified with the part of Oq that is mapped into M1 under
α. But this precisely the kernel of Oq → M3 hence the image of Op. We get
an exact sequence

Op −→ M1 ⊕Oq −→ M2 −→ 0.

This shows that M2 is coherent (use Lemma 8.5). ). ⊔⊓

SubSc8.7 Lemma. The intersection of two coherent subsheaves of a coherent sheaf
is coherent.

Proof. One uses the fact that intersections can be constructed as kernels. Let
M,N ⊂ X be two submodules of an O-module X . Then M∩N is isomorphic
to the kernel of M×N → X , (a, b) 7→ a− b. ⊔⊓

SupC8.8 Remark. Let M be a coherent O-module. Then the support of M is a
closed subset.

Proof. We show that the set of all a such that Ma = 0 is open. We can assume
that M is finitely generated by sections s1, . . . , sn. If there germs at a are zero
then s1, . . . , sn are zero in a full neighbourhood of a. ⊔⊓

We collect some of the permanence properties of coherent sheaves.

PointEx8.9 Proposition.
1) Let M,N be two coherent sub-sheaves of a coherent sheaf. Assume Ma ⊂

Na for some point a. Then there exists an open neighborhood U such that
M|U ⊂ N|U .

2) Let M,N be two coherent subsheaves of a coherent sheaf. Assume Ma = Na

for some point a. Then there exists an open neighborhood U such that
M|U = N|U .

3) Let f, g : M → N be two O-linear maps between coherent sheaves such that
fa = ga for some point a. Then there exists an open neighborhood U such
that f |U = g|U .

4) Let M → N → P be O-linear maps of coherent sheaves and a a point. The
following two conditions are equivalent:

a) The sequence Ma → Na → Pa is exact.
b) There is an open neighborhood U such that the sequence M|U → N|U →

P|U is exact.

Proof.

1) Use that Ma ⊂ Na is equivalent to Na = Ma ∩Na (= (M∩N )a.

2) follows from 1).

3) Consider the kernel of f − g.

4) Consider the image A of M → N and the kernel B of N → P. Both are
coherent. We can assume that they are finitely generated. From assumption
we know Aa = Ba. ⊔⊓
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ExtPtoU8.10 Proposition. Let M,N coherent O-modules and Ma → Na an Oa-
linear map. There exists an open neighborhood U and an extension M|U →
N|U as O|U -linear map.

Additional remark. By Proposition 8.9 this extension is unique in the obvi-
ous local sense.

Proof. We can assume that there is a surjective O-linear map On → M.
We consider the composed map On

a → Ma → Na. It is no problem to extend
On
a → Na to an open neighborhoodO|Un → N|U . We can assume that U is the

whole space. The kernel of On
a → Ma is contained in the kernel of On

a → Na.
Since the kernels are coherent this extends to a full open neighborhood U .
Hence we get a factorization M|U → N|U . ⊔⊓

CohSub8.11 Lemma. Let OX be a coherent sheaf of rings on a topological space X.
Let J ⊂ OX be a coherent sheaf of ideals. Let Y be the support of OX/J . Then
the restriction of OX/J to Y is a coherent sheaf of rings OY . The category of
coherent Y-modules is equivalent to the category of coherent OX modules which
are annihilated by J .

Proof. This is an application of Lemma ???. It is easy to see that OX/J |Y
is a sheaf Let M be an OX -module which is annihilated by J . (This means
J(U)M(U) = 0 for all open U). The support of M is contained in Y . Then
M|Y is defined and carries a natural structure as OY -module. The rest is
clear. ⊔⊓

⊔⊓
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