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Introduction V

Introduction

This book contains a focused introduction into the theory of Kähler manifolds.
The main result is Kodaira’s embedding theorem which characterizes compact
complex manifolds that are biholomorphic equivalent to a projective algebraic
manifold. The necessary and sufficient condition is the existence of a positive
holomorphic line bundle. This is a a great generalization of the classical result
that a complex torus Cn/L is projective algebraic if and only there exists a
positive Hermitian form on Cn which is integral on L×L. Another special case
of Kodaira’s embedding theorem is the fact that all compact Riemann surfaces
are projective algebraic.

The proof of the embedding theorem is founded on the study of holomorphic
vector bundles on complex manifolds. From the beginning, we consider them
as sheaves and already our introduction to differentiable am complex manifolds
is sheaf theoretic. In the appendices (Chapter V und VI) we give a complete
introduction into the theory of sheaves and their cohomology. The cohomology
groups are introduced through the Godement resolution (canonically flabby
resolution) and not through Čech cohomology as in many other approaches.
This is easy and has the further advantage that this approach works also in
modern algebraic geometry. We also need some Čech cohomology but here it
is sufficient to treat the first Čech cohomology group which is very simple.

The contents of the book are as follows. In the first chapter we give a quick
introduction into real and complex manifolds and into vector bundles. Here
real manifolds means what is often called differentiable and complex manifolds
are the usual complex analytic manifolds. This introduction is given sheaf
theoretic. Vector bundles can be treated via the transition functions. This
gives the link to other approaches as for example by means of the bundle
spaces.

In the second chapter we start with the calculus of differentiable forms on
differentiable and complex manifolds. In the case of complex manifolds the
space of alternating differential forms can be decomposed into to (p, q)-types.
This is fundamental since this decomposition reflects the complex structure of
the manifold. The lemma of de Rham characterizes the cohomology groups
Hq(X,R) as cohomology groups of the de Rham complex, a certain complex of
differential forms. In the complex case the sheaf ΩX of holomorphic differential
forms comes into the game. Here the groups Hq(X,

∧p
Ω) are treated. The de

Rham complex has to be replaced by the Dolbeault complex. The proof rests
on the lemmas of de Rham and Dolbeault which we formulate without proof.

In Chapter III we treat the Hodge theory, first for compact Riemannian
manifolds. It states that Hq(X,R) is isomorphic to the space of harmonic p-
forms Hq(X). There is a generalization to compact complex manifold. Here
the cohomology groups Hq(X,

∧p
Ω) are isomorphic to certain spaces Hp,q(X)

of harmonic forms. This theory can be generalized to Hq(X,
∧p

Ω ⊗OX M)
where M is a holomorphic vector bundle. The Hodge theorem makes use of
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the main result about linear elliptic differential equations. We formulate the
result but do not prove it.

Chapter IV contains the main results. We introduce Kähler manifolds.
Kähler manifolds are special complex manifolds which admit an embedding

Hq(X,
∧p

Ω) −→ Hp+q(X,C).

So there is a link between real and complex Hodge theory. A highlight of this
chapter is the proof of Kodaira’s vanishing theorem which prepares the decisive
tool for the proof of the embedding theorem.

The book ends with Appendices, Chapter V and VI. Chapter V contains
an introduction into sheaf theory and Chapter VI into their cohomology.



Chapter I. Real and complex manifolds

1. Geometric spaces

Let X be a topological space. In these notes we denote by CX the sheaf of
all real valued continuous function. We will often consider complex valued
functions. The sheaf of all of them can be identified with CX ⊗R C.

1.1 Definition. A (real or complex) geometric space (X,OX) is a topological
space X together with a subsheaf of rings of OX ⊂ CX or OX ⊂ CX ⊗R C. We
assume that the constant functions (with values in R or C) are contained in
OX and we assume that for a function f ∈ OX(U) without zeros the function
1/f is also contained in OX(U).

These assumptions have consequences for the ring of germs

OX,a = lim
−→
O(U) (a ∈ U ⊂ X open).

The set mX,a of all elements whose germ vanish at a is an ideal. It is obviously
the unique maximal ideal. Hence OX,a is a local ring. The natural map

C −→ OX,a/mX,a (R −→ OX,a/mX,a)

in the complex case (and similarly in the real case) is an isomorphism of fields.

1.2 Definition. A morphism f : (X,OX) → (Y,OY ) of geometric spaces is
a continuous map f : X → Y with the following additional property. If V ⊂ Y
is open and g ∈ OY (V ) then g ◦ f is contained in OX(f−1(V )).

Quite trivial facts are:

The composition of two morphisms is a morphism.
The identical map (X,OX)→ (X,OX) is a morphism.

A morphism f : (X,OX) → (Y,OY ) of geometric spaces is called an isomor-
phism if f is topological and if f−1 : (Y,OY ) → (X,OX) is also a morphism.
This means that the rings OX(U) and OY (f(U)) are naturally isomorphic.

Let U ⊂ X be an open subset of a geometric space (X,OX). We can define
the restricted geometric structure OX |U by

(OX |U)(V ) := OX(V ) (V ⊂ U open).

It is clear that the natural embedding i : (U,OX |U) ↪→ (X,OX) is a morphism
and moreover that a map f : Y → U from a geometric space (Y,OY ) into
(U,OX |U) is a morphism if and only if i ◦ f is a morphism.
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2. Vector bundles

Let R be a ring (commutative and with unit). We denote the set of all m× n-
matrices (m rows and n columns) by Rm×n. The standard action

Rm×n ×Rn −→ Rn

can be described as follows. Write the elements a ∈ Rn as columns. Then A(a)
is the matrix product A · a.

We consider a topological space X and a sheaf OX of rings. We call the pair
(X,OX) a ringed space. We allways assume that OX(U) is not the zero ring
for arbitrary non-empty U . For example geometric spaces are ringed spaces
with this property. We are interested in OX -modulesM. Recall that these are
sheaves of abelian groups such thatM(U) carries for open U ⊂ X a structure as
OX(U)-module such that the restriction maps are compatible with this module
structure. An example is OX or, more generally, OnX for natural numbers n
are OX -modules. An OX -module M is called free if it is isomorphic (as OX -
module) to OnX for suitable n. This n is uniquely determined if OX(U) are
not all zero rings. We call it the rank of M. An OX -module is called locally
free if every point a ∈ X admits an open neighbourhood such U that M|U is
free as OX |U -module. The rank is independent of the choice of U and is called
the rank of M at a. This is a locally constant function, hence constant if X
is connected. We say that M has rank n if it has rank n everywhere. By a
vector bundle on a ringed space we just understand a locally free sheaf.

Transition functions

Let M be a vector bundle of rank n on (X,OX). Let X =
⋃
Ui be an open

covering such that M|Ui is free. Choose isomorphisms

ϕi :M|Ui
∼−→ (OX |Ui)n.

We restrict them to Ui ∩ Uj and obtain then an isomorphism

hij : (OX |Ui ∩ Uj)n
∼−→ (O|Ui ∩ Uj)n, hij=ϕiϕ

−1
j .

This isomorphism is determined by its action on the global sections (Lemma
V.7.1) and hence given by a matrix gij in

OX(Ui ∩ Uj)n×n.

This is a system of transition functions in the following sense.
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2.1 Definition. Let (X,OX) be a ringed space. A system of transition
functions (of degree n) consists of an open covering X =

⋃
Ui and a system of

matrices
gij ∈ GL(n,OX(Ui ∩ Uj))

such that
gijgjkgki = E (unit matrix) on Ui ∩ Uj ∩ Uk.

So we have seen that one can associate to a vector bundle of rank n a system
of transition functions. This system is not uniquely determined. It depends
on the choice of the covering and on the choice of the local trivializations ϕi.
We say that a system of transition functions that comes through the above
construction from a vector bundle (of pure degree) is associated to this vector
bundle. (The notion “function” reflects the fact that in many applications OX
is a sheaf of functions.)

Next we describe a reverse construction. We assume now that a system of
transition functions X =

⋃
Ui, gij is given. We want to associate a sheaf M.

First we define the global sectionsM(X). They consist of systems fi ∈ O(Ui)
n

such that
fi = gijfj on Ui ∩ Uj .

For arbitrary open U we can do the same. We just restrict everything to the
covering U =

⋃
(Ui∩U). It is easy to check that this is a sheaf and, even more,

it is a OX -module. So we obtain the following result.

2.2 Lemma. Let X be a topological space, OX a sheaf of rings and let
X =

⋃
Ui, gij ∈ GL(n,O(Ui ∩ Uj)) be a system of transition functions. The

associated sheaf M is a vector bundle of rank n. If the system is associated to
some vector bundle N , then M and N are isomorphic.

We call two systems of transition functions equivalent if the associated vector
bundles are isomorphic. So we see that the set of all isomorphy classes of vector
bundles is in bijection with the set of equivalence classes of systems of transition
functions. (By the way, this shows also that the totally of all isomorphy classes
of vector bundles is a set.)

Some constructions

The sheaf OX is a vector bundle of rank 1. Vector bundles of rank 1 are called
also line bundles. Let M,N be two vector bundles. Then M×N is a vector
bundle too. In the same way one can define the product of finitely many vector
bundles. The sheaf OnX is called the trivial bundle of rank n. We also can
consider the tensor product M⊗OX N of two vector bundles Recall that we
have a natural map

M(U)⊗OX(U) N (U) −→ (MOXN )(U).



§2. Vector bundles 9

This is an isomorphism for small enough U (in the sense thatM|U andN|U are
free.) More generally one can define the product of a finite system of vector
bundles. In particular, the tensor product of two vector bundles is a vector
bundle too. If M, N is of rank m,n then the tensor product has rank mn.
One also can define the tensor product of a finite system of vector bundles.
The usual commutativity and associativity rules for the tensor product hold.
Finally one can define the exterior powers

∧mM of a vector bundle. If M
is of rank n then this exterior power is a vector bundle of degree

(
n
m

)
. The

case p = n is of particular importance. Here one obtains a line-bundle that
sometimes is called the determinant

detM :=
∧n
M.

Fibres of a vector bundle

LetM be a vector bundle on the ringed space (X,OX). Assume that all stalks
OX,a are local rings. This means that there is a unique maximal ideal mX,a.
It consists of all non-units. We denote the residue field by Ka = OX,a/mX,a.
For any OX -module we can consider the K-vector space

M(a) =Ma/mX,aMa =Ma ⊗OX,a Ka.

We call this space the fibre of M at a. If M is locally free, then Ma is a
Ka-vector space of dimension n. For any open neighborhood a ∈ U we have
natural maps

M(U) −→Ma −→M(a).

Recall that the image of s ∈ M(U) in Ma is called the germ of s in a and is
denoted frequently by sa. We can also consider the image in M(a). We call
this the value of s at a and denote it by s(a). Usually the values s(a), a ∈ U ,
do not determine the section s. If for example M = OX and s is nilpotent,
then all the values are 0, since in a field there are no nilpotents besides 0. For
geometric spaces the situation is better. For example the following is trivially
true.

2.3 Remark. Assume that (X,OX) is a geometric space. Let M be a vector
bundle on (X,OX). Then a section s ∈ M(U), U ⊂ X open, is uniquely
determined by its values s(a), a ∈ X.

Proof. Since this is a local question we can reduce to the case M = OnX . Here
the statement is trivial. tu

IfM→N is a OX -linear map of vector bundles andMa → Na the induced
map of stalks. For trivial reason we have mX,aMa → mX,aNa. Hence we get a
map M(a)→ N (a).
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2.4 Remark. Let (X,OX) be a geometric space and let f : M → N be an
OX-linear map of vector bundles. Then f is an isomorphism if an only if the
induced map M(a)→ N (a) in the fibres is an isomorphism.

Proof. We have to show that Ma → Na is an isomorphism if M(a) → N (a)
is so. The injectivity follows from Remark 2.3. Hence we have to show that
Ma → Na is surjective if M(a) → N (a) is so. We can assume M = OnX ,
N = OmX . The map f than can be considered as a m × n-matrix of functions
on X. It is easy to restrict the claim to the case n = m. Hence we assume this.
We than get that the matrix f(a) is an invertible matrix of complex numbers.
We can assume that f has no zero on X. Then we can define f−1. tu

It is a good device to pursue constructions with vector bundles first along
the fibres because this makes the linear algebra background clearer. LetM, N
be two vector bundles and M(a), N (a) their fibres at a point a. Then fibres
ofM×N are Ma×Na, the fibres ofM⊗OX N are Ma⊗Ka Na. The fibres of
HomOX (M,N ) are HomK(M(a),N (a)) and the fibres of

∧mM are
∧mM(a).

The fibre of the dual bundle M equals the dual vector space of M(a).

Let V,W be two finite dimensional vector spaces over a fieldK. Assume that
there is given a bilinear map β : M ×N → K. Then we obtain a natural map
M → N∗ that sendsm to the linear form `m(x) = β(m,x). The pairing is called
non-degenerated if M → N∗ is an isomorphism. Then the natural map N →
M∗ is also an isomorphism as a dimension argument shows. This generalizes
to vector bundles M,N . It is clear what a OX -bilinear form M×N → OX
means. And it is clear how it induces an OX -linear map M→ N ∗. Again we
call the pairing non-degenerated of this is an isomorphism.

2.5 Lemma. Let (X,OX) be a geometric space and let f :M×N → OX be
an OX-bilinear map of vector bundles. It is non-degenerated if and only if it is
fibre wise non-degenerated.

In Remark V.7.2 we introduced also Mult (M1, . . . ,Mn,N ) for OX -modules
and in the case M1 = · · · = Mn = M the module Alt (calM, . . . ,M,N ).
Both are vector bundles if Mi and N are.

2.6 Remark. Let M1, . . . ,Mn be vector bundles. The natural OX-linear
maps

M∗1 ⊗OX . . .⊗OX M∗n −→Mult (M1 × · · · ×Mn,OX).

and ∧n
M∗ −→Alt (M1 × · · · ×Mn,OX)

are isomorphisms.

A final comment to the tensor product. The tensor product of two OX -
modules (OX any sheaf of rings) is the generated sheaf of the presheaf
U 7→ M(U) ⊗OX(U) N (U). The reader should not be scared from the con-
struction “generating” because the following two facts.
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a) There is the general rule

(M⊗OX N )|U =M|U ⊗OX |U N|U.
b) WhenM and N are free then U 7→ M(U)⊗OX(U)N (U) is already a sheaf.

This shows that for two vector bundles M,N the rule

(M⊗OX N )(U) =M(U)⊗OX(U) N (U)

holds for small open subsets U .

3. The tangent bundle

Tangents always are related to differentiation. There is an algebraic notion of
derivation. Let K by a ring and K → R be a K-algebra and let M be an
R-module. A K-derivation D : R → M is K-linear map such that D(ab) =
aD(b) + bD(a) for all a, b ∈ R. The set DerK(R,M) of all K-derivations is an
R-module in the obvious way. Let (X,OX) be a ringed space. Assume a little
more, namely that OX is a sheaf of K-algebras and let M be an OX module.
By definition, a K-derivation D : OX →M is a K-linear map of sheaves such
that D(U) is a derivation for all open U . We denote the set of all derivations
by

DerK(OX ,M).

Similarly to Hom this construction can be sheafified. So we get a sheaf, actually
an OX -module.

DerK(OX ,M)

with the property

DerK(OX ,M)(U) = DerK(OX |U,M|U).

We are interested in the case M = OX . Then we consider

TX = DerK(OX ,OX).

There are many geometric situations in which this sheaf is locally free and
serves as tangent bundle. Then the dual bundle T ∗ is called the cotangent
bundle or the bundle of differentials and the sections of the bundle

TX ⊗OX . . .⊗OX TX ⊗OX T ∗X ⊗OX . . .⊗OX T ∗X
are called mixed tensors. Let A,B be two vector fields. Then A ◦B is usually
no vector field but [A,B] := A ◦B −B ◦A is.

3.1 Definition. The alternating OX-bilinear map

TX × TX −→ TX , (A,B) 7−→ [A,B],

is called the Lie bracket.

It is not the goal of these notes to develop a general theory of ringed spaces.
So we switch now to sheaves of differentiable and holomorphic functions.
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4. Calculus

We recall some basic facts of calculus. For sake of simplicity, we will use
the notion “differentiable” in the sense of “C∞-differentiable”. Sometimes, for
example for curves, we use the notation smooth instead of differentiable. We
collect some basic facts.

A function
f : D −→ R, D ⊂ Rn open,

is called differentiable if all partial derivatives of arbitrary order exist and are
continuous. We denote by C∞(D) = C∞(D,R) the set of all these functions.
In the case n = 1 one can take as domains of definition besides open sets also
arbitrary (open, half-open, closed) intervals. But this not a new concept since
one can show the following fact.

Let be f : I → Rn a differentiable function on some interval I, then there exists
a differentiable function on an open interval J ⊃ I which extends f .

Let U ⊂ Rn, V ⊂ Rm be open subsets. A map f : U → V can be decomposed
into its m components,

f(x) = (f1(x), . . . , fm(x)), fi : U −→ R (1 ≤ i ≤ m).

We denote by C∞(U, V ) the set of all maps whose components are contained
in C∞(U).

The matrix of partial derivatives of f at a point a ∈ U we denote by

J(f, a) =

 ∂f1/∂x1 . . . ∂f1/∂xn
...

...
∂fm/∂x1 . . . ∂fm/∂xn

 (a).

We recall the chain rule. If

U
f−→ V

g−→ X, U ⊂ Rn open, V ⊂ Rm open, X ⊂ Rp,

are differentiable, then the composition is differentiable too and one has

J(g ◦ f, a) = J(g, f(a)) · J(f, a) (matrix product).

We recall the theorem of invertible functions.

4.1 Theorem of invertible functions. Let

ϕ : D −→ Rn, D ⊂ Rn open,

be differentiable and let a ∈ D be a point for which the Jacobi-matrix J(ϕ, a)
is invertible, then there exists an open neighborhood a ∈ U ⊂ D such that its
image V = ϕ(U) is open as well and such that the restriction of ϕ induces a
diffeomorphism

ϕ : U
∼−→ V.
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(For sake of simplicity we use often for the restriction of a map the same letter,
as long as it is clear what is meant.) A diffeomorphism is a bijective map
between two open subsets of Rn which is differentiable in both directions.

The theorem of implicit functions looks like a generalization of the theorem
of invertible functions. There are several versions. We will formulate them
when we need them. Here we just mention that all are consequences of the
theorem of invertible functions and the following lemma.

4.2 Lemma. Let a ∈ U ⊂ Rn be some point in an open subset of Rn and
let f : U → Rm be a differentiable map such that the Jacobi-matrix J(f, a)
has rank m. Then there exists a linear map L : Rn → Rn−m such that the
Jacobi-matrix of the function F (x) = (f(x), L(x)) has invertible Jacobi matrix
at a.

Complex calculus

We will frequently identify C and R2 by means of

z = x+ iy ←→ (x, y)

and more generally Cn and R2n by means of

(z1, . . . , zn)←→ (x1, y1, . . . , xn, yn).

A C-linear endomorphism of Cn is given by a complex n×n-matrix in the usual
way. The same linear map can be considered as R-linear and then is given by
a real 2n × 2n-matrix Ã. This matrix is obtained from A if one replaces each
entry a by

ã =

(
Re a − Im a
Im a Re a

)
.

One has
det Ã = |detA|2 (≥ 0).

The Wirtinger operators are defined as

∂

∂zν
,

∂

∂z̄ν
: C∞(U,C) −→ C∞(U,C)

by
∂f

∂zν
:=

1

2

( ∂f
∂xν
− i

∂f

∂yν

)
,

∂f

∂z̄ν
:=

1

2

( ∂f
∂xν

+ i
∂f

∂yν

)
.

In the case n = 1 one writes d/dz instead of ∂/∂z (similarly with z̄ instead of
z). The Wirtinger operators satisfy the usual product law. Hence it is easy to
apply them to polynomial expressions in zν and z̄ν . We write down the rules
in the case n = 1, the generalizations to arbitrary n are quite obvious:

dzm

dz
= mzm−1,

dzm

dz̄
= 0.

This shows that a polynomial P in the variables zν , z̄ν is a polynomial in the
variables zν alone if and only if ∂P/∂z̄ν = 0.
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4.3 Definition. A differentiable function f ∈ C∞(U,C) on an open subset of
Cn is called complex differentiable or holomorphic or complex analytic
if

∂f

∂z̄ν
= 0 (1 ≤ ν ≤ n).

Then ∂f/∂zν are called the complex derivatives of f .

So for holomorphic functions f we have the Cauchy-Riemann differential equa-
tions

∂f

∂zν
=

∂f

∂xν
= −i

∂f

∂yν
.

It is clear that constant functions are holomorphic and that the set

O(U) ⊂ C∞(U,C)

of all holomorphic functions is a subring of the ring of all differentiable func-
tions.

All definitions and statements for differentiable functions in this section can
be give literally in the holomorphic world. One just has to replace differentiable
by complex differentiable or holomorphic as we prefer here. So for open subsets
U ⊂ Cn, V ⊂ Cm we can define the set O(U, V ) of holomorphic mappings.
We can introduce the complex Jacobian matrix JC (f, a) which is a complex
m × n-matrix. Since we have identified Cn and R2n. a holomorphic map is
also differentiable in the real sense and the real Jacobi matrix JR (f, a) is a
2m× 2n-matrix. Both matrices are related by

JR (f, a) = ˜JC (f, a).

The chain rule and the theorem of invertible functions hold also in the obvious
complex sense. In Theorem 4.1 one has just to replace “diffeomorphism” by
“biholomorphic” (bijective and holomorphic in both directions).

5. Differentiable and complex manifolds

Topological spaces

We use the language of topological spaces. All topological spaces which we
consider are assumed to be Hausdorff. Each metric space has an underlying
topological space. If X is a topological space, then every subset Y can be
equipped with a topology too. It is called the induced topology. Here a subset
V ⊂ Y is called open when there exists an open subset U ⊂ X such that V =
U∩Y . In particular, every subset of Rn inherits a structure as topological space.
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In the following we always tacitly assume, if nothing else is explicitly stated,
that every topological space is Hausdorff and that it admits a countable basis of
topology. The latter means that there exists a system (Ui)i∈I of open subsets
with countable index set I such that each open subset can be written as union
of certain sets in this system. For example Rn has countable basis of topology.
One considers the countable system of all open balls with rational radius and
whose centers have rational coordinates. If X is a space with countable basis
of the topology, then each subspace (equipped with the induced topology) has
the same property.

The advantage of spaces with countable basis of topology is that they admit
many real valued continuous functions. For example they admit partition of
unity.

We equip Rn with the sheaf C∞Rn of all real valued differentiable functions.

5.1 Definition. A differentiable manifold is a geometric space (X, C∞X ) such
that for every point a ∈ X there exists an open neighborhood a ∈ U ⊂ X and an
open subset V ⊂ Rn such that the geometric spaces (U, CX |U) and (V, C∞Rn |V )
are isomorphic. Such an isomorphism

ϕ : (U, CX |U)
∼−→ (V, C∞Rn |V )

is called a differentiable chart.

(By a chart on a topological space one understands a topological map of an
open subset of X onto an open subset of Rn. Hence on a differentiable manifold
certain charts have been distinguished and are called differentiable). For triv-
ial reason Rn and its open subsets carry a natural structure as differentiable
manifold.

A map between two differentiable manifolds X → Y is called differentiable
if it is a morphism of geometric spaces. It is called a diffeomorphism if it is
an isomorphism of geometric spaces. Let U ⊂ Rn and V ⊂ Rm open sets.
A map U → V is differentiable in the usual sense if it is differentiable in
the sense of differentiable manifolds. A differentiable chart is nothing than a
diffeomorphism of an open subset of X onto an open subset of Rn.

For two differentiable charts ϕ,ψ on X, one defines the chart transformation
by

γ : ϕ(Uϕ ∩ Uψ) −→ ψ(Uϕ ∩ Uψ), γ(x) = ψ(ϕ−1(x)).

This is a diffeomorphism. At variance with the strong principles of set theory,
we frequently write

γ = ψ ◦ ϕ−1.

Of course the chart transformation is only of interest if the intersection Uϕ∩Uψ
is not empty. But it is not necessary to assume this since we follow the con-
vention such there exists exactly one map from the empty set into an arbitrary
set.
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For trivial reason a map f : X → Y is differentiable if it is continuous and
if for every point a ∈ X there exist differentiable charts

ϕ : Uϕ → Vϕ, a ∈ Uϕ ⊂ X and Uψ → Vψ, f(a) ∈ Uψ ⊂ Y
such that ϕ◦f ◦ψ−1 (defined on Uϕ∩f−1Uψ is differentiable in the usual sense.

The direct product of differentiable manifolds

Let X,Y be two topological spaces. We equip X×Y with the product topology.
A subset in X ×Y is called open if it is the union of “rectangles” U ×V where
U ⊂ X, V ⊂ Y are open subsets. Let ϕ : Uϕ → Vϕ be a chart on X and let
ψ : Uψ → Vψ be a chart on Y . Then we can consider the product chart

ϕ× ψ : Uϕ × Uψ −→ Vϕ × Vψ.
Assume now that X,Y are differentiable manifolds. Let ϕ run through all
differentiable charts of X and let ψ run through all differentiable charts on Y .

5.2 Remark. Assume that X,Y are differentiable manifolds. Then there
exists a unique structure of differentiable manifold on X × Y (equipped with
the product topology) such that the product charts of differentiable charts are
differentiable.

It is clear that the two projections p : X × Y → X and q : X × Y → Y are
differentiable. Moreover a map f : Z → X × Y of some differentiable manifold
Z into X × Y is differentiable if and only if p ◦ f and q ◦ f are differentiable.

Submanifolds

5.3 Definition. A subset Y ⊂ X of a differentiable manifold is called smooth
if, for every a ∈ Y , there exists a differentiable chart ϕ on X where a ∈ Uϕ,
0 ∈ Vϕ, ϕ(a) = 0, such that

ϕ(Y ∩ Uϕ) =
{
x ∈ Vϕ, xd+1 = · · · = xn = 0

}
for suitable d, 0 ≤ d ≤ n.

The special case d = n is not excluded. Hence open subsets of X are smooth.
We equip Y with a differentiable structure. By restriction of ϕ in Definition
5.3 we obtain a bijective map

ϕ0 : Y ∩ Uϕ −→
{
x ∈ Rd; (x, 0, . . . , 0) ∈ Vϕ

}
.

This is a chart on Y . It is rather clear that there exists a unique structure
as differentiable manifold such that these charts are differentiable. In the case
that Y is open this agrees with the trivial restricted structure defined above.

The natural inclusion i : Y → X, i(x) = x, is differentiable. Even more
holds. A map f : Z → Y of another differentiable manifold Z into Y is
differentiable if and only if the composition i ◦ f : Z → X with the natural
inclusion is differentiable.
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5.4 Definition. A differentiable map f : X → Y of differentiable manifolds
is called an embedding if f(X) is smooth and if X → f(X) is diffeomorphic.

A differentiable map f : X → Y of differentiable manifolds is called a local
embedding at a ∈ X if there exists an open neighborhood U of a such that the
restriction U → Y is an embedding.

A variant of the theorem of implicit functions says.

A differentiable map f : X → Y of differentiable manifolds is a local embedding
at a ∈ X if and only if the tangent map at a is injective.

It is not true that a injective f : X → Y which is a local embedding at all a is
an embedding. The problem is that f(X) needs not to be closed. The situation
improves if one assumes that X is compact (f proper is enough).

5.5 Lemma. Let f : X → Y an injective differentiable map and let X be
compact. Assume that f is a local embedding at each point. Then f is an
embedding.

Instead of (Rn, C∞Rn) we can consider (Cn,OCn) where OCn denotes the sheaf of
holomorphic functions. This leads to the notion of a complex manifold (X,OX).
As in the differentiable case defines the notion of holomorphic maps between
complex manifold, one defines the cartesian product of two complex manifolds
and one defines the notion of a complex submanifold. One also defines the
notions of (local and global) holomorphic embedding. Lemma 5.5 is true in the
holomorphic case.

6. Examples of manifolds

We give some examples of differentiable and complex manifolds. Some con-
structions are based on the following general construction for geometric spaces.
Let (X,OX) be a geometric space and let G be a group of automorphisms of
(X,OX). (An automorphism is an isomorphism of geometric spaces onto itself.)
We recall that G induces an equivalence relation on X. Two points a, b are
called equivalent if there exists a g ∈ Γ with g(a) = b. We denote by Y := X/Γ
the set of equivalence classes. There is a natural projection π : X → Y . We
equip Y with the quotient topology. This means that a subset V ⊂ Y is open if
and only if π−1(V ) is open in X. Then π : X → Y is continuous (which means
that inverse images of open sets of Y are open) and also open (which means that
images of open sets of X are open). We equip Y with a geometric structure.
A function h : V → C is called distinguished if and only if h ◦ π : π−1(V )→ C
is distinguished. It is easy to see that this is a geometric structure OY . The
geometric space obtained in this way is called the quotient space. We use the
notation

(Y,OY ) = (X,OX)/G.
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A good way to look at this structure is as follows: Consider for open V ⊂ Y
the natural map

OY (V ) −→ OX(π−1(V )).

It is clear that this map is injective and that its image consists of all G-invariant
elements, i.e. of functions f ∈ OX(π−1(V )) with the property

f(g(x)) = f(x) (π(x) ∈ V, g ∈ G).

In a self explaining notation this means

OY (V ) ∼= OX(π−1(V ))G.

(If a group arises as upper index this usually means “taking invariants”.)

When X has countable basis of topology then the same is true for Y . But,
even when X is a Hausdorff, the quotient Y needs not to be Hausdorff. The
condition that Y is separated means that two points x1, x2 ∈ X with different
image points in Y admit neighborhoods U1, U1 ⊂ X such that no point of U1 is
equivalent to some point of U2. Recall that by our assumption X and Y both
have to be separated.

The projective space

We give an example. Let X = Rn+1−{0} considered as differentiable manifold
and let G be the group of all mappings of the form

g(x) = ax, a ∈ R∗.
This group is isomorphic to R∗, an isomorphism is given by g 7→ a. We consider
the quotient (as geometric space)

Pn(R) := (Rn+1 − {0}, C∞)/G.

It is called the real projective space. We claim that it is a differentiable man-
ifold. First we notice that Pn(R) is Hausdorff. Even more, it is a compact
space since it is the image of the sphere

Sn = {x ∈ Rn+1,
∑
i

x2
i = 1}.

Next we prove that Pn(R) is a differentiable manifold. We write the points of
Pn(R) in the form x = [x0, . . . , xn]. Then we consider the open subspace

Pni (R) = {x ∈ Pn(R); xi 6= 0}.
We claim that this subspace is isomorphic as (geometric space) to Rn (equipped
with the sheaf of differentiable functions.) It is sufficient to do this for i = 0.
Then the isomorphism is given by

Rn ∼−→ Pni (R), (x1, . . . , xn) 7−→ [1, x1, . . . , xn].

It is clear that this is an isomorphism of geometric spaces.

In the same way we can introduce the complex projective space Pn(C) as
complex manifold. It is the quotient of Cn − {0}, equipped with the sheaf of
holomorphic functions, by the obvious group isomorphic to C∗.



§6. Examples of manifolds 19

Freely acting groups

By definition, the group G acts freely on X if the map π : X → X/G is
locally topological. This is equivalent to the following fact: Every point a ∈
X contains an open neighborhood U such that two different points of U are
inequivalent mod G. Then V = π(U) is open in Y and the restriction of
π defines a topological map from U onto V . We assume that X carries a
geometric structure such that G respects this structure. Then it is clear that
the map (U,OX |U)→ (V,OX/Γ|V ) is an isomorphism of geometric spaces. We
obtain:

6.1 Remark. Let X be a differentiable manifold and Γ a group of diffeomor-
phisms of X onto itself, which acts freely. Then X/Γ carries also a structure
as differentiable manifold. A map X/Γ → Y to another differentiable mani-
fold is differentiable if and only if its composition with the natural projection
X → X/G is differentiable.

The same is true in the world of complex manifolds.

Important examples are complex tori. Here one considers a lattice L ⊂ Cn.
Then Cn/L is a complex torus.

Algebraic varieties

Let P be a homogenous complex polynomial in n + 1 variables z0, . . . , zn.
Homogenous of degree k means P (tz) = tkP (z). When P vanishes at a point
a ∈ Cn+1 it vanishes on the whole Ca. Hence we can consider the set of zeros
of P on the projective space Pn(C) := P (Cn+1). By definition, a projective
algebraic variety is a subset of Pn(C) which can be defined as the set of common
zeros of a finite system of homogenous polynomials

X =
{
x ∈ Pn(C); P1(z) = . . . = Pm(z) = 0

}
.

It may happen that X is a (complex) smooth submanifold. From the theorem of
implicit functions one can deduce that this is the case if the complex functional
matrix (∂Pi/∂zj) has rank m at all points of X. Then the dimension of X is
n−m.

There is a famous theorem of Chow which we will not use in these notes
but which is behind the scenes:

Every closed complex submanifold of Pn(C) is algebraic.

We give an example. Consider the polynomial

P (t, z, w) := t4w2 − 4t3z3 − g2t
5z − g3t

6.

We assume that g2, g3 are arbitrary complex numbers such that g3
2 6= 27g2

3 .
One can check that this means nothing else but that the cubic polynomial



20 Chapter I. Real and complex manifolds

4z3 − g2z − g3 has no multiple zero. It can be checked that the set of zeros
X(g2, g3) of P is smooth in P 2(C). It is a so-called elliptic curve. From the
theory of elliptic functions follows that X(g2, g3) is biholomorphic equivalent to
a complex torus C/L and conversely that every complex torus is biholomorphic
to such an elliptic curve. The affine part X(g2, g2) ∩ P 2

0 C corresponds to
w2 = 4z3 − g2z − g3 = 0.



Chapter II. Differential forms

1. The calculus of differential forms.

Let X be a differentiable manifold. Recall that we introduced the space
DerR (C∞X , C∞X ) whose elements are systems of R-linear mappings

D : C∞(U) −→ C∞(U)

which are compatible with restriction and which satisfy the product rule
D(fg) = fD(g) + gD(f). Now we assume that X = U is an open subset
of Rn. Then we have obvious elements

Df =
∂f

∂xν
.

We denote them simply by ∂/∂xν .

1.1 Proposition. Let U ⊂ Rn open. Then

DerR (C∞U , C∞U )

is a free module over C∞(U) generated by

∂

∂xν
, ν = 1, . . . , n.

Corollary. For an arbitrary differentiable manifold of dimension n

DerR (C∞X , C∞X )

is a vector bundle of rank n.

Proof. Let D be a derivation. We can apply it to the natural projections
pν(x) = xν . This gives us n functions

Dν := D(pν).

It is sufficient to prove D =
∑
Dν∂/∂xν , i.e.

(Df)(a) =
∑

Dν(a)
∂f

∂xν
(a).
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This identity is true for the function constant 1, since D(1 · 1) = D(1) +D(1),
hence for constant functions. By definition of Dν it is true for linear functions
and by the product rule for arbitrary polynomials. The rest is an application
of Taylors formula (with an explicit remainder term in form of an integral).
From this formula follows that f on any convex open neighborhood of a can
be written as

f(x)− f(a) +
n∑
ν=1

∂f

∂xν
(a)(xν − aν) +

∑
1≤µ,ν≤n

(xµ − aµ)(xν − aν)hµν(x),

where hµν are differentiable functions. tu
We call

TX = DerR (C∞X , C∞X )

the (real) tangent bundle of a differentiable manifold. Its sections are called
vector fields. Its dual bundle is the cotangent bundle, also called bundle of
differentials.

T ∗X = HomC∞
X

(TX , C∞X ).

We also will consider its exterior powers

ApX =

p∧
T ∗X .

The sections of this sheaf are called alternating differential forms of degree p.
So

A0
X = C∞X , A1

X = T ∗X .
From Remark I.2.6 follows that there is a natural isomorphism of sheaves

ApX
∼−→ Alt (TX × · · · × TX , C∞X ).

This means that an element ω ∈ ApX(X) can be considered as family of alter-
nating multilinear forms (over the ring C∞X (U))

ωU : TX(U)× · · · × TX(U)→ C∞X (U)

that are compatible with restrictions.

We also have a look at the fibres. For this we introduce the vector space

TaX = DerR (C∞X,a,R).

It is called the tangent space of X at a. In the special case where X = U is an
open subset of Rn we obtain special elements as[ ∂

∂xi

]
a

(taking partial derivatives an evaluating at a. The same proof as of Lemma 1.1
shows that these elements are a basis. Hence TaX are n-dimensional vec-
tor spaces for n-dimensional differentiable manifolds. There is a natural map
TX,a → TaX.
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1.2 Lemma. The natural map TX,a → TaX induces an isomorphism of
vector spaces

TX,a/mX,aTX,a
∼−→ TaX.

Hence the tangent space can be identified with the fibre of the tangent bundle.

Proof. Since this is a local question, we can assume that X = U is an open
subset of Rn. Then we can use the constructed bases. tu

In the same way one sees that the fibre of AmX at a point a ∈ X can be
identified with the vector space

∧m
TaX

∗ = AltR (TaX × · · · × TaX,R).

1.3 Lemma. Let (X, C∞X ) be a differentiable manifold. An alternating differ-
ential form ω of degree m is uniquely determined through its values

ω(a) ∈ AltR (TaX × · · · × TaX,R).

How can the differential form reconstructed from its values. This is very simple.
A differential form on X has to be evaluated at m vector fields A1, . . . , Am (on
arbitrary open subsets U and ω(A1, . . . , Am) are functions with the property

ω(A1, . . . , Am)(a) = ω(a)(A1(a), . . . , Am(a)).

This gives the following result.

1.4 Lemma. A system of alternating forms

ω(a) ∈ AltR (TaX × · · · × TaX,R)

comes from a differential form if and only if the function

ω(a)(A1(a), . . . , Am(a))

is differentiable for arbitrary vector fields A1, . . . , Am on some open subset.

This differentiability is usually no problem, since it can be tested locally where
one can use charts.

Pulling back differential forms
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Pulling back differential forms rests on a functoriality property of the tangent
space. Let f : X → Y be a differentiable map of differentiable manifolds.
Let a ∈ X. Pulling back functions on Y means to compose them with f .
This pull back induces an obvious ring homomorphism C∞Y,f(a) → C

∞
X,a. This

homomorphism induces an obvious map

DerR (C∞X,a,R) −→ DerR (C∞Y,f(a),R).

In other words, we obtain a linear map

TaX −→ Tf(a)Y.

This is called the tangent map. It is compatible with the composition of dif-
ferentiable maps. One can it consider as abstract version of the Jacobi matrix.
In the following we denote by Am(U) the space of all differentiable alternating
forms over an open subset U ⊂ X. It is enough to treat the case U = X,
because open subsets can be considered as differentiable manifolds as well. We
collect the operations obtained so far and add one more:

1. Am(X) is a module over the ring of differentiable functions. In the case
m = 0 it equals the ring of differentiable functions. On has Am(X) = 0 for
m < 0 and m > dimX.

2. There is a “skew product”

Ap(X)×Aq(X) −→ Ap+q(X)

In the case p = 0 the skew multiplication is simply the standard multipli-
cation with functions.

3. The skew product is associative and skew commutative. The latter means

α ∧ β = (−1)pqβ ∧ α (α ∈ Ap(X), β ∈ Aq(X)),

in particular
ω ∧ ω = 0 for odd d (ω ∈ Am(X)).

From the associativity follows that ω1 ∧ . . . ∧ ωm is defined.
4. We introduce a new operation. the exterior differentiation. Here we make

use of the fact that differential forms can be considered as alternating mul-
tilinear forms on vector fields and that vector fields operate on functions.

1.5 Definition. The exterior differentiation

d : Am(X) −→ Am+1(X)

is defined by

(dω)(A1, . . . , Am+1) :=
m+1∑
i=1

(−1)i+1Aiω(A1, . . . , Âi, . . . , Am+1)+∑
i<j

(−1)i+jω([Ai, Aj ], A1, . . . , Âi, . . . , Âj , . . . , Am+1).
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One can check that this is alternating and multilinear over the ring of differen-
tiable functions and hence defines a differential form. It can read as a map of
sheaf of vector spaces

d : AmX −→ Am+1
X .

This formula will be clearer in the local version.

5. The exterior differentiation is a vector space homomorphism which satisfies

d ◦ d = 0.

6. The following product rules hold: For functions one has

d(fg) = fd(g) + gd(f)

or more general for differential forms

d(α ∧ β) = (−1)pα ∧ d(β) + d(α) ∧ β (α ∈ Ap(X)).

As a consequence one has

d(ω1) = 0, . . . , d(ωm) = 0 =⇒ d(ω1 ∧ . . . ∧ ωm) = 0.

A special case is also
d(df1 ∧ . . . ∧ dfm) = 0.

7. There is a pull-back map for a differentiable map f : X → Y :

f∗ : Am(Y ) −→ Am(X).

In the case d = 0 this is the usual composition of maps. The pull-back
is a vector space homomorphism and even more there are the following
compatibilities:

f∗(α ∧ β) = f∗(α) ∧ f∗(β), f∗(dω) = df∗(ω).

8. All these constructions are compatible with restrictions to open submani-
folds.

A differential form ω on X is known if its restrictions to the members Ui
of an open covering is known. Hence the whole calculus is regulated locally.
Using charts this means that it is enough to know the calculus for open subsets
U ⊂ Rn. We reformulate the calculus in this case:

Recall that ∂/∂x1, . . . , ∂/∂xn are basis vector fields on U . Every vector field
can be written as linear combinations of them using differentiable functions as
coefficients:
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1.6 Definition. For an open subset U ⊂ Rn we define the differentials

dx1, . . . , dxn

by
dxi(∂/∂xj) = δij .

What is then
(dxi1 ∧ . . . ∧ dxip)(∂/∂xj1 , . . . ∂/∂xjp)?

We can assume that i1 < · · · < ip and j1 < · · · < jp. Then we get 1 or 0 related
to wether (i1, . . . , ip) = (j1, . . . , jp) or not.

Every differential can be written in the form

ω = f1dx1 + · · ·+ fndxn.

More generally, every element ω ∈ Am(U) has a unique representation of the
form

ω =
∑

1≤i1<i2<···<id

fi1,...,iddxi1 ∧ . . . ∧ dxid

with differentiable functions f....

The alternating product is regulated by the conditions that it is distributive
and associative and that

dxi ∧ dxj = −dxj ∧ dxi (=⇒ dxi ∧ dxi = 0).

The exterior differentiation of a function is given by

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn

and more general for forms by

d
∑

1≤i1<i2<···<id

fi1,...,iddxi1∧. . .∧dxid =
∑

1≤i1<i2<···<id

dfi1,...,id∧dxi1∧. . .∧ dxid .

Let V ⊂ Rm be another open subset and U → V a differentiable map. The
pullback is regulated by

f∗(dyi) =

n∑
j=1

∂fi
∂xj

dxj (1 ≤ i ≤ m).

Notice that this follows from the compatibility f∗(dg) = d(f∗(g)) applied to
the projection g(y) = yi.
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2. Differential forms on complex manifolds

We consider a complex manifold (X,OX). It looks natural to introduce the
holomorphic tangent bundle

T hol
X = DerC (OX ,OX).

There is an obvious analogue of Proposition 1.1. For an open subset U ⊂ Cn we
can consider the partial derivatives ∂f/∂zi applied to holomorphic functions f .
We denote these holomorphic vector fields by ∂/∂zi. There is a small problem
with this notation. We used this notation already for a Wirtinger operator
that acts on complex valued differentiable functions in the real sense. But
we know that its restriction to holomorphic functions gives the holomorphic
differentiation. Nevertheless, a very careful reader might prefer a more careful
notation as ∂/∂zi|OX . We renounce this.

2.1 Proposition. Let U ⊂ Cn open. Then

DerC (OU ,OU )

is a free module over OU generated by the complex derivatives

∂

∂zν
, ν = 1, . . . , n.

Corollary. For an arbitrary complex manifold of dimension n

DerC (OX ,OX)

is a vector bundle of rank n.

We call this bundle the holomorphic tangent bundle and denote it by

T hol
X = DerC (OU ,OU )

Its dual bundle is called the holomorphic cotangent bundle and is denoted as

ΩX = HomOX (T hol
X ,OX).

The sections of ΩX are called holomorphic differentials. More generally, the
sections of

∧p
ΩX are called alternating holomorphic differential forms of degree

p.
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2.2 Definition. For an open subset U ⊂ Cn we define the holomorphic
differentials

dz1, . . . , dzn

by

dzi(∂/∂zj) = δij .

Then every holomorphic differential can be written in the form

ω = f1dz1 + · · ·+ fndzn

with holomorphic coefficients. More generally, every element ω ∈
∧d

Ω(U) has
a unique representation of the form

ω =
∑

1≤i1<i2<···<id

fi1,...,iddzi1 ∧ . . . ∧ dzid

with holomorphic functions f....

The holomorphic tangent bundle is related to the holomorphic tangent space
that is defined as

T hol
a X = DerC (OX,a,C).

Similar to Lemma 2.3 we have

2.3 Lemma. The natural map Thol
X,a → T hol

a X induces an isomorphism of
vector spaces

Thol
X,a/mX,aT

hol
X,a

∼−→ T hol
a X.

where mX,a now denotes the maximal ideal of OX,a. Hence the holomorphic
tangent spaces are the fibres of the holomorphic tangent bundle.

So the calculus of holomorphic differential forms on a complex manifold is
analogous to the calculus of differential forms on a differentiable manifold. But
there are closer relations. We now make use of the fact that a complex manifold
(X,OX) has an underlying differentiable manifold (X, C∞X ). We leave its precise
definition to the reader and give just the hint that one can use holomorphic
charts. We are looking for a link between the holomorphic and the differentiable
tangent bundle. First we look at the fibres. We have to compare

T hol
a X and TaX.

The right hand side is a real vector space of dimension 2n and the left hand
side is a complex vector space of dimension n. So both sides are real vector
spaces of dimension 2n. Hence both vector spaces are isomorphic as R-vector
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spaces. Is there a natural isomorphism? The answer is yes. We consider the
complexified real tangent space

DerR (C∞X,a,R)⊗R C = DerR (C∞X,a,C).

Every such derivation extends C-linearly to Der(C∞X,a⊗R C),C). This gives an
isomorphism

DerR (C∞X,a,C) = DerC (C∞X,a ⊗R C,C).

Now we use that OX ⊂ C∞X ⊗R C. So we can take the natural restriction to
get a natural map

TaX −→ TaX ⊗R C −→ T hol
a X.

2.4 Proposition. Let X be a complex manifold of dimension n. For every
point a ∈ X the natural map

TaX
∼−→ T hol

a X

defines an isomorphism of real vector spaces. In local coordinates it is given by

∂

∂xν
7−→ ∂

∂zν
,

∂

∂yν
7−→ i

∂

∂zν .

Proof. This is a local question. Hence we can assume that X = U is an open
subset of Cn. tu

We can use the isomorphism in Proposition 2.4 to equip the real tangent
space TaX of a complex manifold with a structure as complex vector space.
To avoid confusion we denote by J the multiplication by i with respect to this
complex structure. This means

J
[ ∂

∂xi

]
a

=
[ ∂
∂yi

]
a
, J

[ ∂
∂yi

]
a

= −
[ ∂

∂xi

]
a
.

The operator J can be extended to an operator on vector fields

J : TX −→ TX .

The local formula now reads as

J
∂

∂xi
=

∂

∂yi
, J

∂

∂yi
= − ∂

∂xi
.

A confusion might come up for the following reason. We can also consider the
complexification TaX ⊗R C. This is also complex vector space. But multipli-
cation with i and J on TaX are something different.
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By means of the isomorphism T hol
a X ∼= TaX we get a natural embedding

HomC (T hol
a X,C) −→ HomR (TaX,C).

Assume now that X = U is an open subset of Cn. On the left hand side we
can consider [dzi]a (the dual basis of [∂/∂zi]a) and on the right hand side we
can consider [dxi]a + i[dxi]a.

Claim. Under the above embedding [dzi]a maps to [dxi]a+i[dyi]a. In particular,
this element is C-linear.

Proof. Recall that [∂/∂zi]a ∈ T hol
a X corresponds to [∂/∂xi]a ∈ TaX and

i[∂/∂zi] ∈ T hol
a X corresponds to [∂/∂yi]a ∈ TaX Hence we have to show (we

omit indices a)

dzi(∂/∂zj) = (dxi + idyi)(∂/∂xj), dzi(i∂/∂zj) = (dxi + idyi)(∂/∂yj).

Both equalities are trivial. tu
We want to extend this to differential forms.

Complex valued differential forms

Let X be a differentiable manifold. We can consider complex valued differential
forms. These are elements of Am(X) ⊗R C. They can be written as ω1 + iω2

where ωi ∈ Am(X). They are sections of the sheaf

AmX ⊗R C.

The fibres of this sheaf are(∧m
T ∗X,a

)
⊗R C =

∧m
HomR (TaX,C).

We extend the wedge product

∧ : (ApX ⊗R C)×AqX ⊗R C −→ Ap+qX ⊗R C.

C-linearly.

Now we assume that X is a complex manifold. Then the space TaX has a
structure as complex vector space. Hence HomC (TaX,C) is defined. But this
space is the fibre of the sheaf ΩX of holomorphic differentials. In this way we
can get the following result.

2.5 Remark. Let X be a complex manifold. Then there is a natural embed-
ding

ΩX −→ A1
X ⊗R C.

In the local case (X = U some open subset of Cn it maps

dzi 7−→ dxi + idyi.
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We will identify ΩX with its image in A1
X ⊗R C. Then we can write dzi =

dxi + idyi. More generally we have an embedding∧m
ΩX −→ AmX ⊗R C.

We do a little linear algebra.

Let T be a finite dimensional real vector space. (We will apply this to
T = TaX.) There are canonical isomorphisms

HomR (T,R)⊗R C = HomR (T,C),
(∧m

R
T ∗
)
⊗R C =

∧m

C
(T ∗ ⊗R C).

(The subscript under the
∧

indicates which ground field has to be taken. In
most cases it is clear from the circumstances what is the ground field. Then
we can omit this index.) On the vector space HomR (T,C) we have a natural
conjugation L 7→ L̄. It is defined by

L̄(v) := L(v).

(Notice that on an abstract complex vector space complex conjugation is not
well-defined. Therefore one needs that the complex vector space is the com-
plexification of a real vector space.) We use the notation

Am =
∧m

HomR (T,R).

Then we have
Am ⊗R C =

∧m
HomR (T,C).

Now we assume that T is a complex vector space. Since it can be considered as
real vector space, the previous constructions work. We consider the subspace
of C-linear maps

HomC (T,C) ⊂ HomR (T,C).

A dimension consideration shows

HomR (T,C) = HomC (T,C)⊕HomC (T,C).

Elements of HomC (T,C) are so-called C-antilinear maps. They follow the rule
L(Cv) = C̄L(v). Nevertheless HomC (T,C) is a complex vector space. We
want to study the Grassmann algebra

Am ⊗R C =
∧m

HomR (T,C).

So we have to understand the Grassmann algebra of a direct sum W = A⊕B
of two (in our case complex) vector spaces. There is a linear map∧p

A⊗
∧q

B −→
∧m

W (m = p+ q),
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which sends

(a1 ∧ . . . ∧ ap)⊗ (b1 ∧ . . . ∧ bq) 7−→ a1 ∧ . . . ∧ ap ∧ b1 ∧ . . . ∧ bq.

The image of this map is denoted by∧p,q
W ⊂

∧m
W.

For example by means of bases it is easy to check: The map∧p
A⊗

∧q
B

∼−→
∧p,q

W

is an isomorphism. One has the direct sum decomposition∧m
W =

⊕
p+q=m

∧p,q
W.

In our case we get a decomposition

Am ⊗R C =
⊕

p+q=m

Ap,q.

Here Ap,q is generated by all a1∧ . . .∧ap∧b1∧ . . .∧bq where ai ∈ HomC (T,C),

bi ∈ HomC (T,C).

We apply this to the (real) tangent space T = TaU of an open subset U ⊂ X.
In HomR (T,C) we consider dzi = dxi + dyi We know that this element is C-
linear. So we get

dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq ∈ Ap,q.

We extend this to differential forms

A (complex valued) differential form ω is called of type (p, q) if

ω(a) ∈
∧p,q

HomR (TaX,C)

for all points a. We denote by

Ap,q(X) ⊂ Am(X)⊗R C

the subspace of all forms of type (p, q). They can be described easily locally.

2.6 Proposition. Let U ⊂ Cn be an open subset. Elements of Ap,q(U) have
a unique representation in the form

ω =
∑

1≤i1<···<ip
1≤j1<···<jq

f i1<···<ip
j1<···<jq

dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq .

Now we obtain the following decomposition.
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2.7 Proposition. There is a decomposition

Am(X)⊗R C =
⊕

p+q=m

Ap,q(X).

This decomposition induces of course a decomposition of sheaves

AmX ⊗R C =
⊕

p+q=m

Ap,qX

where the sheaves Ap,qX are defined in the obvious way. The wedge product
preserves this graduation, i.e. it defines maps

Ap,q(X)×Ap
′,q′(X)

∧−→ Ap+p
′,q+q′(X).

The total derivative d does not preserve the bi-graduation. To remedy this
situation we observe that there are projections

Am(X) −→ Ap,q(X) (n = p+ q).

2.8 Definition and Remark. Let X be a complex manifold. The composi-
tion of d with the natural projections gives operators

∂ : Ap,q(X) −→ Ap+1,q(X), ∂̄ : Ap,q(X) −→ Ap,q+1(X).

These operators satisfy

d = ∂ + ∂̄ (on Ap,q(X))

and

∂ ◦ ∂ = 0, ∂̄ ◦ ∂̄ = 0, ∂ ◦ ∂̄ = −∂̄ ◦ ∂.

Finally we mention ∂ω = ∂̄ω̄.

We express the complex calculus in local coordinates: Let U ⊂ Cn be an open
subset. We recall that dzi = dx1 + idyi is of type (1, 0). We also set

dz̄i = dxi − idyi

which is of type (0, 1).
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2.9 Proposition. Let U ⊂ Cn be an open subset. The operators ∂ and ∂̄ are
given for functions by

∂f =

n∑
i=1

∂

∂zi
dzi, ∂̄f =

n∑
i=1

∂

∂z̄i
dz̄i

and on forms by

∂̄
∑

1≤i1<···<ip
1≤j1<···<jq

f i1,...,ip
j1,...,jq

dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq =

∑
1≤i1<···<ip
1≤j1<···<jq

∂̄f i1,...,ip
j1,...,jq

∧ dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq .

and similarly for ∂ instead of ∂̄.

We conclude this section with some remark about holomorphic differential
forms. We recall that there is a natural embedding

∧p
ΩX −→ Ap,0X

which we can use to identify
∧p

ΩX with its image.

2.10 Lemma. A differential form ω on a complex manifold is holomorphic
if and only if it satisfies the following two conditions:

a) It is of type (p, 0)
b) ∂̄ω = 0.

In particular, dω = ∂ω for holomorphic forms.

Finally we mention that there is a natural isomorphism

(∧p
ΩX
)
⊗OX

(
C∞X ⊗R C

) ∼−→ Ap,0X .

So the transfer from holomorphic to differentiable differential forms follows
the following general construction. Let X be a topological space, O → O′ a
homomorphism of sheaves of rings and letM be an O-module. ThenM⊗OO′
is an O′-module. It is called the extension of M to O′. This extension is a
vector bundle if M is. So each vector bundle M on a complex manifold X
induces a vector bundle MOX ⊗ (C∞X ⊗R C) on the underlying differentiable
manifold.
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3. The lemmas of Poincarè and Dolbeault

Let X be a differentiable manifold: The sequence

· · · −→ Am−1(X)
d−→ Am(X)

d−→ Am+1 · · ·

is called the de-Rham complex. A differential form ω is called closed if dω = 0
and total if it is of the form ω = dω′. Hence total differential forms are closed.
We are interested in converse results. i.e. in conditions under which the de-
Rham complex is exact. For this purpose we introduce the de-Rham cohomology
which measures the non-exactness. We set

Hm
dR(X,R) :=

Kernel(Am(X) −→ Am+1(X))

Image(Am−1(X) −→ Am(X))
.

Recall that we can consider differential forms real- and complex-valued. There
is also a complex version which leads to

Hm
dR(X,C) :=

Kernel(Am(X)⊗R C −→ Am+1(X)⊗R C)

Image(Am−1(X)⊗R C −→ Am(X)⊗R C)
.

There is not much difference between the real and complex version. This comes
from the fact that an exact sequence of R-vector spaces remains exact if one
tensors it with C over R. Hence one has

Hm
dR(X,C) = Hm

dR(X,R)⊗R C = Hm
dR(X,R)⊕ iHm

dR(X,R).

Of course
Hm

dR(X,C) = 0 for m < 0 and m > dimX.

In the case m = 0 this space can be identified with all functions from C∞(X),
which are annihilated by d. These are the locally constant functions. When X
is connected we see

H0
dR(X,C) ∼= C (and H0

dR(X,R) ∼= R).

The higher cohomology groups are involved. A basis result is:

3.1 Lemma of Poincarè. Let U be an open convex subset of Rn. The
sequence

0 −→ R −→ A0(U) −→ · · · −→ An(U) −→ 0

is exact. Here R −→ A0(U) means the map which assigns to a real number the
corresponding constant function. Hence H0

dR(U,R) = R and

Hm
dR(U,R) = 0 for m > 0,
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i.e. every closed differential form is total.

Corollary. Let X be a differentiable manifold of dimension n. The sequence

0 −→ RX −→ A0
X −→ · · · −→ AnX −→ 0

is an exact sequence of sheaves of R-vector spaces. Hence the sheaf cohomology
of the sheaf RX of all real valued locally constant functions equals the de-Rham
cohomology.

Hm(X,R) = Hm
dR(X,R).

(The same is true for C instead of R.)

Recall that for an abelian group A we set Hm(X,A) = Hm(X,AX) where AX
denotes the sheaf of locally constant functions. In this context we mention that
for a sheaf F of R-vector spaces there is a canonical isomorphism

Hp(X,F )⊗R C ∼= Hp(X,F ⊗R C).

The lemma of Poincarè has a holomorphic version which we don’t need but
which we formulate just for the sake of completeness.

3.2 Holomorphic lemma of Poincarè. Let U ⊂ Cn be an open convex
subset. The sequence

0 −→ C −→ O(U) −→
∧1

Ω(U) −→ · · · −→
∧n

Ω(U) −→ 0

is exact.

The lemma of Poincarè has another complex version which is fundamental for
us: The so-called Dolbeault complex or ∂̄-complex on a complex manifold is

· · · −→ Ap,q−1(X)
∂̄−→ Ap,q(X)

∂̄−→ Ap,q+1 ∂̄−→ · · ·
Because of ∂̄ ◦ ∂̄ = 0 we can define the Dolbeault cohomology

Hp,q(X) :=
Kernel(Ap,q(X) −→ Ap,q+1(X))

Image(Ap,q−1(X) −→ Ap,q(X))
.

By a polydisc in Cn we understand the cartesian product of n disks.

3.3 Lemma of Dolbeault. Let U be a polydisc. The sequence

0 −→
∧p

Ω(U) −→ Ap,q(U) −→ Ap.q+1(U) −→ · · · −→ Ap,n(U) −→ 0

is exact. Hence Hp,0(U) = Ω(U) and

Hp,q(U) = 0 for q > n.

Corollary. Let X be a complex manifold of dimension n. The sequence

0 −→
∧p

ΩX −→ Ap,0X −→ · · · −→ A
p,n
X −→ 0

is an exact sequence of sheaves of C-vector spaces. Hence the sheaf cohomology
of the sheaf

∧p
ΩX equals the Dolbeault cohomology.

Hp(X,
∧q

ΩX) = Hp,q(X).
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Later we will need the following corollary.

3.4 Proposition. Let U ⊂ Cn a polydisc and let

α ∈ A1,1(U) ∩A2(U), dα = 0.

Then
α = i∂∂̄f

with a real differentiable function f

Proof. From the lemma of Poincarè we know α = dβ. We decompose β = γ+ γ̄
with γ ∈ A1,0. We have ∂γ = 0 and, using the lemma of Dolbeault, γ = ∂h.
Set f = i(h− h̄). tu

4. Comparison between Čech- and de Rham cohomology

Let X be a differentiable manifold. We denote by ApX closed the subsheaf of all
closed p forms of ApX . The higher cohomology groups of ApX vanish since it is
an C∞X -module. But this is not true for the subsheaf of closed forms. From the
exact sequence

0 −→ RX −→ C∞X −→ A1
X closed −→ 0

we obtain a combining isomorphism

δ : H1(X,A1
X, closed)

∼−→ H2(X,R).

We call it the natural isomorphism. Considering the resolutions

0 −→ A1
X closed −→ A1

X −→ A2
X −→ · · ·

0 −→ RX −→ A0
X −→ A1

X −→ A2
X −→ · · ·

we obtain a second isomorphism

H1(X,ApX closed)
∼−→ H2(X,R) (= A2

closed(X)/dA1(X)).

It can be also called a natural isomorphism. From Remark VI.2.8 follows:

4.1 Lemma. The two natural isomorphisms

H1(X,A1
X, closed)

∼−→ H2(X,R)

agree. The diagram

A2
closed(X)

&&MM
MMM

MMM
MMM

vvnnn
nnn

nnn
nnn

H1(X,A1
X, closed) // H2(X,R)

is commutative.
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We consider an element of H2(X,R) and represent it by a closed differential
form ω ∈ A2(X). Then we consider an open covering X =

⋃
Ui such that

ω|Ui = dαi, αi ∈ A1(Ui). The αij = αi−αj are closed on Ui∩Uj . They define
a Čech cocycle and hence an element of H1(X,A1

X, closed).

4.2 Lemma. Let ω be a closed element of A2(X) and let X =
⋃
Ui be an

open covering such that ω|Ui = dαi. Then αij = αi − αj is a Čech cocycle. It
represents the image of ω in H1(X,A1

X closed) (see Lemma 4.1).

Proof. Use Remark VI.4.4. tu
From the exact sequence

0 −→ ZX −→ C∞X ⊗R C −→ (C∞X ⊗R C)∗ −→ 0

follows.

4.3 Proposition. The combining homomorphism

H1(X, (C∞X ⊗R C)∗)
∼−→ H2(X, Z)

is an isomorphism.

Proof. This follows from the long exact cohomology sequence and the fact that
the higher cohomology groups of C∞X (and its complex variant) vanish. tu

We need another commutative diagram. There is a natural map of sheaves

(C∞X ⊗R C)∗ −→ A1
X, closed ⊗R C.

It is defined as following. Let f be a differentiable function without zeros.
Write locally f = e2πig. The differentials dg then glue. We obtain a map

H1(X, (C∞X ⊗R C)∗) −→ H1(X,A1
X, closed ⊗R C).

4.4 Lemma. The diagram

H1(X, (C∞X ⊗R C)∗)

��

// H1(X,A1
X, closed ⊗R C)

��
H2(X, Z) // H2(X,C)

is commutative.
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Proof. There is a general result about sheaf cohomology. Let

0

��
G

��
0 // F //

>>}}}}}}}}
F0

��

// F1

~~||
||
||
||

// 0

G1

��
0

be a commutative diagram of sheaves with exact row and column. Then the
induced diagram

H1(X,F1) //

��

H1(X,G1)

��
H2(X,F ) // H2(X,G)

is commutative. (The vertical arrows are combining ones.) We leave this a s
an exercise to the reader. tu

Finally we recall that the canonical map Hp(X,R)→ Hp(X,C) is injective,
even more we have, as we already mentioned, Hp(X,C) = Hp(X,R) ⊗R C.
But the map j : Hp(X, Z)→ Hp(X,R) needs not to be injective.
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1. Integration

We need the notion of orientation of a finite dimensional real vector space
V 6= 0. Two bases of V are called orientation compatible if the base transition
matrix has positive determinant. The set of all bases decomposes into two
classes in which each two are orientation compatible. An orientation of V is
the choice of one of the two. They are then called oriented bases. Hence every
basis induces an orientation and two bases define the same orientation if they
are orientation compatible. The standard orientation of Rn is defined by the
standard basis. Let L : V → W be an isomorphism of oriented vector spaces.
This isomorphism is called orientation preserving if oriented bases are mapped
to oriented bases.

1.1 Definition. An orientation of a differentiable manifold X is a choice of
an orientation on each tangent space TaX, such that the following condition
is satisfied: The manifold X can be covered by charts ϕ : Uϕ −→ Vϕ with the
property that the tangent maps

TaUϕ −→ Tϕ(a)Vϕ = Rn

are orientation preserving. The charts with this property are called oriented
charts.

Let ϕ,ψ be two oriented charts. Then the functional matrix of ψϕ−1 has every-
where positive determinant. Let conversely an atlas be given, such that every
two charts from this atlas have this property, then there exists an orientation
of X, such that the charts of this atlas are orientable.

Integration

Let X be an oriented differentiable manifold of pure dimension n. Let ω be a
differential form. The support is defined as

supp(ω) :=
{
a ∈ X; ω(a) 6= 0

}
.

This is the biggest closed subset A such that ω|(X − A) = 0. We denote by
Anc (X) the set of compactly supported top-differential forms. The support of
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an ω ∈ Anc (X) is called small if there exists an oriented chart ϕ with supp(ω) ⊂
Uϕ. The form ω can be written in this chart as f(x)dx1 ∧ . . .∧ dxn. We define∫

X

ω :=

∫
Vϕ

f(x) dx1 . . . dxn.

From the transformation formula for integrals one can see that this definition
is independent from the choice of ϕ. (Here one has to use that the chart
transformations have positive Jacobi determinant.)

Using the technique of decomposition of one, one can show:

There exists a unique linear form

Anc (X) −→ C, ω 7−→
∫
X

ω,

which agrees with the above construction for forms with small support.

This integral can be extended by the standard techniques of integration theory
to a large class of even not continuous differential forms and one uses this
technique also to define

∫
A
ω for subsets A ⊂ X. We need only little of these

constructions, for example we will use that
∫
U
ω can be defined for open subsets

and differential forms ω ∈ An(X) such that supp(ω) ∩ Ū is compact.

The theorem of Stokes

Let U ⊂ X be an open subset of an oriented differentiable manifold. Let a be
a boundary point of U . We say that a is a smooth boundary point of U if there
is an oriented chart ϕ around a such that

ϕ(U ∩ Uϕ) = {x ∈ Vϕ, x1 < 0}.
Then automatically

ϕ(U ∩ ∂Uϕ) = {x ∈ Vϕ, x1 = 0}.
We denote by ∂0U the smooth part of the boundary. It is clear that ∂0X is a
smooth subset and hence a differentiable manifold. A chart around a is given
by the restriction of ϕ when we consider {x ∈ Vϕ, x1 = 0} as an open subset
of Rn−1. It can be checked that there is an orientation on ∂0X such that these
charts are orientable. The theorem of Stokes states:

Let ω ∈ An−1(X) be a differential form of degree n− 1 such that

supp(ω) ∩ Ū
is compact. Then ∫

U

dω =

∫
∂U

ω | ∂U.

A special case says that for compact X and arbitrary ω ∈ An−1(X)∫
X

dω = 0

(because one take U = X with ∂U = ∅.)
We need some more linear algebra.
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1.2 Definition. Let V be an n-dimensional oriented real vector space. An
element of

∧n
V is called positive if it is of the form Ce1 ∧ . . . ∧ en, C > 0,

with an oriented basis.

It is clear that this definition is independent of the choice of the oriented basis.
Another way to express this, is to say that

∧n
V has been oriented. A top-

differential form ω ∈ An(X) is called positive if ω(a) ∈
∧n

TaX is positive for
all a. We write ω > 0. Similarly one defines ω ≥ 0. If x1, . . . , xn denotes an
oriented chart and if ω corresponds to f(x)dx1 ∧ . . . ∧ dxn in this chart then
ω ≥ 0 means f(x) ≥ 0. Hence∫

X

ω ≥ 0 if ω ≥ 0.

2. Elliptic differential operators

Let U ⊂ Rn be an open subset. We are interested in maps

D : C∞(U) −→ C∞(U)

which can be written as finite sum

Df =
∑

hi1,...,in
∂i1+···+inf

∂xi11 . . . ∂xinn

with differentiable coefficients h... ∈ C∞(U), which are uniquely determined.
We call D a local linear differential operator. When D is non-zero, there exists
a maximal m such that hi1,...,in is non-zero for some index with i1+· · ·+in = m.
We call m the degree of this operator and the function on U × Rn

P (x1, . . . , xn, X1, . . . , Xn) =
∑

i1+···+in=m

hi1,...,im(x)Xi1
1 . . . Xin

n

is called the symbol of D. This is a homogenous polynomial of degree m for
fixed x. The operator D is called elliptic if

P (x,X) 6= 0 for all X ∈ Rn, X 6= (0, . . . , 0).

We need a slight generalization of this. We consider operators

D : C∞(U)p −→ C∞(U)q.

They can be considered as p×q matrices as well as the coefficients. The degree
now is defined to be the biggest number m such that one of the coefficients
of hi1,...,in is different from zero for some index with i1 + · · · + in = m. The
symbol now is a p× q matrix of functions on U × Rn.



§2. Elliptic differential operators 43

2.1 Definition. A local linear differential operator

D : C∞(U)p −→ C∞(U)q (U ⊂ Rn open)

is called elliptic if p = q and if the symbol P (x,X) is an invertible matrix for
every x ∈ D and every real X 6= 0.

Example. The Laplace operator

∆ :=
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

.

There are two simple observations:

a) Let V ⊂ UsubsetRn be open subsets and let D be a local linear differ-
ential operator on U . Then there is a natural restriction to a local linear
differential operator on V .

b) Let ϕ : U → V be a diffeomorphism between open subsets of Rn and let
D be a local linear differentiable operator on U . Then the transported
operator to V is a local linear differential operator as well.

Ellipticity is preserved in both cases.

We want to generalize the notion of an elliptic operator to vector bundles
on differentiable manifolds. Let E ,F be two real differentiable vector bundles
over a differentiable manifold.

2.2 Definition. An linear differential operator D : E → F by definition is
an R-linear map of sheaves

D : E −→ F

with the following property: Let U → V a differentiable chart and assume that
there exists trivializations of E|U and F|U , then the induced maps C∞(V )p →
C∞(V )q are local linear differential operators. D is called elliptic if they are
elliptic in the sense of 2.1.

It is sufficient to take all U = Uϕ from an atlas for each chart one trivialization
of E|U and F|V .

So far we treated the real valued case. But the whole thing can be done
over C as well. We can define C-linear differential operators

D : C∞(U,C)p −→ C∞(U,C)q

and there symbol P (x,X). It is called elliptic if p = q and if detP (x,X) is
non-zero for all x ∈ U and X ∈ Rp, X 6= 0. In particular, we can define for
complex valued bundles E ,F the notion of a C-linear differential operator and
define when it is elliptic.

One of the basic facts about elliptic operators D on a compact differentiable
manifold say that the kernel and the cokernel of D : E(X) → F(X) is finite
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dimensional. (The cokernel of a linear map L : V →W is defined as W/L(V ).)
This and a refinement will be formulated as a theorem a little later: Let E
be a vector bundle on a differentiable manifold. As in the case of differential
forms one can define the support of a section s ∈ E(U). It is called compactly
supported if the support is compact. This means that there exists a compact
subset K ⊂ U such that the restriction of s to U −K is zero. We denote by
Ec(U) the space of compactly supported sections.

2.3 Definition. Let E, F be two real or complex vector bundles over an
oriented differential manifold. Assume that an everywhere positive top form
ω ∈ An(X) has been distinguished. Two linear differential operators

D : E −→ F , D∗ : F∗ −→ E∗

are called formally adjoint (with respect to ω if for all sections s ∈ Ec(X),
t ∈ Fc(X) the formula ∫

X

〈Ds, t〉ω =

∫
X

〈s,D∗t〉ω

holds.

Any bundle map (= C∞X map) f : E → F can be considered as a linear differen-
tial operator (m = 0). In this case the dual operator and the formally adjoint
operator agree, since the equality of scalar products agree already before inte-
gration.

2.4 Remark. Let X be a differentiable manifold and let E and F be real
or complex differentiable vector bundles. Assume that an everywhere positive
top form ω ∈ An(X) has been distinguished. Every linear differential operator
D : E → F admits a unique formally adjoint D∗ : F∗ → E∗ and this is elliptic
when D is elliptic. The formally adjoint of D∗ is D.

Proof. We want to give just the idea of the proof and treat a special case
X = R, E = F = C∞X , D = d/dx and ω = dx. Then the formula reads as∫ ∞

−∞
f ′(x)g(x)dx =

∫ ∞
−∞

f(x)g′(x)dx

(partial integration of functions with compact support). tu

2.5 Definition. Let E be a real vector bundle on a differentiable manifold X.
A Euclidean metric on E is a C∞X -bilinear map

E × E −→ C∞X ,

such that
Ea × Ea −→ R

is symmetric and positive definite for all a.
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The usage of a Euclidian metric is often to identify E and E∗. There is an
obvious isomorphism of vector bundles E → E∗ that is constructed in the
same way as the isomorphism V → V ∗ for a real Euclidian finite dimensional
vector space. There is an analogue for complex bundles. Here we want to
use Hermitian forms. A Hermitian form on a complex vector space V is a
complex valued pairing 〈·, ·〉 that is C-linear in the first variable and that
satisfies 〈a, b〉 = 〈b, a〉.

2.6 Definition. Let E be a complex vector bundle on a differentiable manifold
X. A Hermitian form on E is a C∞X -bilinear map

E × E −→ C∞X ⊗R C

such that
Ea × Ea −→ C

is Hermitian for all a. In the case that these forms are positive definite we call
h a Hermitian metric.

We want to use the metric to identify E and E∗. But in the Hermitian case we
have to be a little more careful. Let V be a finite dimensional complex vector
space with a positive definite Hermitian form. And let V ∗ = HomC (V,C) be
the dual space. Then we get a bijection f : V → V ∗ that sends a to the linear
form x 7→ 〈a, x〉. But this bijection is only R-linear. It is antilinear in the sense
f(Ca) = C̄f(a).

2.7 Remark. Let E be a real or complex vector bundle with a Euclidean or
Hermitian metric 〈·, ·〉. Then there is a natural C∞X -linear isomorphism

] : E ∼−→ E∗, (]s)(t) = 〈t, s〉.

It is C-antilinear in the complex case.

Assume that we have two real or complex vector bundles E ,F on the differ-
entiable manifold. We assume that on both a Euclidean or Hermitian metric
has been distinguished. Let D : E → F be a linear differentiable operator and
let D : F∗ → E∗ its formally adjoint. Identifying the bundles with their duals,
we can read D∗ as operator F → E . Notice that this operator is C-linear in
the Hermitian case. It is a linear differentiable operator too and it is elliptic if
D is elliptic. When it is clear which Euclidian or Hermitian metrics are used,
we denote this operator by D∗ : F → E and call it also the formally adjoint
operator. The adjointness formula reads now∫

X

〈Ds, t〉Fω =

∫
X

〈s,D∗t〉Eω, , s ∈ Fc(U) t ∈ Ec(U).

We formulate now without proof a fundamental result of the theory of partial
differential equations:
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2.8 Theorem. Let E ,F be real or complex vector bundles with Euclidian
or Hermitian metric on a oriented compact differentiable manifold of (pure)
dimension n. Assume that an everywhere positive top form ω ∈ An(X) has
been distinguished. Let D : E → F be an elliptic operator. Then the kernel and
cokernel of the map

D : E(X) −→ F(X)

are finite dimensional. Moreover

E(X) = Kernel
(
D : E(X)→ F(X)

)
⊕ Image

(
D∗ : F(X)→ E(X)

)
.

3. Real Hodge theory

3.1 Definition. A Riemannian manifold is a differentiable manifold together
with a Euclidean metric g on the tangent bundle.

If U ⊂ Rn is an open subset, than a Riemannian metric on U is given by a
n × n-matrix g(x) = (gik(x)) of differentiable functions, which is symmetric
and positive definit at every point. (Identify the tangent space with Rn.)

3.2 Lemma. Let (V, 〈·, ·〉) be a finite dimensional real Euclidian vector space.
It is possible to extend the Euclidian metric to Euclidian metrics to all

∧m
V

by the such that the following condition is satisfied:

〈a1 ∧ . . . ∧ ad, b1 ∧ . . . ∧ bd〉 = det
(
〈ai, bj〉

)
1≤i,j≤n.

Proof. Define the metric such that this formula is true for all ai, bj from an
oriented orthonormal basis and then make use from the multilinearity. tu

The lemma carries over to a real vector bundle E on a differentiable manifold
that has been equipped with a Euclidian metric (Definition 3.1). Then there
exist Euclidian metrics on

∧p E such that the formula in Lemma 3.2 holds. We
also recall that we have a natural isomorphism E → E∗ (Remark 2.7). Hence
we get also a Euclidian metric on E∗ and then on

∧p E∗. We apply this to
an oriented Riemannian manifold (X, g). The (real) tangent bundle TX then
carries a Euclidean metric.
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3.3 Lemma. Let (X, g) be a Riemannian manifold. The vector bundles ApX
carry unique Euclidian metrics such that for every open U ⊂ X we have

〈α1 ∧ . . . ∧ αp, β1 ∧ . . . βp〉 = det
(
〈αi, βj〉

)
1≤i,j≤n (αi, βj ∈ A1(U)).

We assume now that V is oriented. In the top space
∧n

V we now can choose
the unique positive element ω with the property 〈ω, ω〉 = 1. We call this the
volume element. The volume element defines an isomorphism

R ∼−→
∧n

V, C 7−→ Cω.

The dual space of an oriented space is oriented as well (by the dual bases of the
oriented bases). Hence we can consider the volume element of the top space∧n

(TaX)∗. This defines a top-differential form ω on X. We want to compute
it in local coordinates. First we describe the isomorphism ] : TX → T ∗X locally.
By definition 〈A,B〉 := g(A,B) = ](A)(B). Hence

gik = 〈∂/∂xi, ∂/∂xk〉 = 〈]∂/∂xi, ∂/∂xk〉.

3.4 Remark. Let U ⊂ Rn be open then the isomorphism TX ∼= T ∗X is given
through

∂/∂xi 7−→
∑
j

gijdxj , dxi 7−→
∑
j

gij∂/∂xj .

Here (gij) denotes the inverse matrix of (gij)

A consequence is 〈dxi, dxj〉 = g(dxi, dxj) = gij .

3.5 Remark. Let (X, g) be an oriented Riemannian manifold of pure di-
mension n. The volume element in

∧n
(TaX

∗) defines a top-differential form
ω ∈ An(X). In the case of an open subset U ⊂ Rn it is given by√

det g(x) dx1 ∧ . . . ,∧dxn.

This form is called the volume form of X. Its integral (it can be infinite) is
called the volume of X.

Proof. From 〈dxi, dxj〉 = gij we get

〈dx1 ∧ . . . ∧ dxn, dx1 ∧ . . . ∧ dxn〉 = det g−1.

This gives the proof of the remark. tu
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The star operator

If V is an oriented Euclidian real vector space of dimension n then we defined
an isomorphism

∧n
V ∼= R. Hence we obtain a pairing

p∧
V ×

n−p∧
V −→ R, (A,B) 7−→ “A ∧B”.

This pairing is non-degenerated and induces an isomorphism

p∧
V

∼−→
( n−p∧

V

)∗
.

As we mentioned already, the Euclidean metric extends to the exterior powers.
Hence we obtain an isomorphism, the so-called star operator

p∧
V

∼−→
n−p∧

V, A 7−→ ∗A.

It is characterized by

〈∗A,B〉ω = A ∧B
(
A ∈

∧p
V, B ∈

∧n−p
V
)
.

We compute the star operator by means of an oriented orthonormal basis.
e1, . . . , en. For a subset a of {1, . . . , n} we define ea := ea1∧. . .∧eap where a1 <
· · · < ap are the elements of a in their natural order. From the characteristic
equation we get

∗ea = ε(a, b)eb.

Here b is the complement of a and ε(a, b) is the sign of the permutation that
brings a, b into the natural ordering. Clearly ε(a, b)ε(b, a) = (−1)p(n−p). We
deduce ∗∗a = (−1)p(n−p)a. This construction extends to oriented Riemannian
manifolds:

3.6 Remark. Let (X, g) be an oriented Riemannian manifold of pure dimen-
sion n. The star operators for tangent spaces induce an isomorphism

∗ : Ap(X)
∼−→ An−p(X).

This has the properties
α ∧ ∗β = 〈α, β〉ω,

where ω denotes the volume form. We also have

∗ ∗ α = (−1)p(n−p)α for α ∈ Ap(X).
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Proof. The map C∞X → AnX , f 7→ fω is an isomorphism as can be checked
locally. Hence the wedge product gives a map ApX × A

q
X → C∞X . This map

induces a map ApX → (AqX)∗. The metric gives an isomorphism (AqX)∗ → AqX .
Both together give the star operator. tu

We can integrate top differential forms with compact support on oriented
differentiable manifolds.

Let (X, g) be an oriented Riemannian manifold. Then one can define

Apc(X)×Apc(X) −→ R, (α, β)g :=

∫
X

〈α, β〉ω =

∫
X

α ∧ ∗β.

This is a symmetric positive definit bilinear form.

The codifferentiation

We define the codifferentiation by

d∗ : Ap+1(X) −→ Ap(X), d∗ = −(−1)np ∗ d ∗ .

3.7 Proposition. The codifferentiation d∗ satisfies.

(dα, β) = (α, d∗β), α ∈ Apc(X), β ∈ Ap+1
c (X)

Proof. One has to use Stoke’s formula
∫
X
d(α ∧ ∗β) = 0 and the product rule.

tu
The operators d and d∗ can be defined for any open subset U instead of X.

Hence they are operators on vector bundles

d : ApX −→ A
p+1
X , d∗ : Ap+1

X −→ ApX .

They are linear differentiable operators.

3.8 Lemma. The operators

d : ApX −→ A
p+1
X , d∗ : Ap+1

X −→ ApX

are formally adjoint.

(Notice that we have an Euclidian metric on all ApX and a distinguished top
differential form ω on X. These are the ingredients to define the formal adjoint
operator.)
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The Laplace-Beltrami operator

The Laplace-Beltrami operator on an oriented Riemannian manifold X is de-
fined by

∆ : Ap(X) −→ Ap(X), ∆ = dd∗ + d∗d.

The simplest case is the Euclidean metric on an open subset U ⊂ Rn and the
case p = 0. Here

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

.

This example makes plausible:

3.9 Remark. The Laplace-Beltrami operator can be considered as linear
differential operator of the bundle ApX into itself. This operator is elliptic and
it is its own adjoint.

We denote by
Hp(X) =

{
α ∈ Ap(X); ∆α = 0

}
the kernel of ∆. Its elements are called harmonic forms. Now we can apply
the theory of partial differential equations to conclude in case of a compact
oriented Riemannian manifold X:

Ap(X) = Hp(X)⊕∆(Ap(X)).

In the case of a compact manifold harmonic forms are easy to characterize:

3.10 Proposition. A differential form α on a compact oriented Riemannian
manifold X is harmonic if and only if

dα = 0 and d∗α = 0.

If X is connected then every harmonic function (=zero-form) is constant.

The proof follows from

(∆α, α) = (dα, dα) + (d∗α, d∗α). tu.

As a consequence of Proposition 3.10 we obtain for α ∈ Ap(X) a representation

α = α0 + dβ + d∗γ, α0 harmonic.

We apply this to closed forms α. From dα = 0 and Proposition 3.10 follows
dd∗γ = 0, hence

(d∗γ, d∗γ) = (γ, dd∗γ).

It follows
α = α+ dβ

and this is a direct decomposition

Kernel(Ap(X) −→ Ap+1(X)) = Hp(X) ⊕ Image(Ap−1(X) −→ Ap(X)).

This means that every class of closed forms in Hp
dR(X,R) contains a unique

harmonic representant. This means:
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3.11 Main theorem of real Hodge theory. Let X be a compact oriented
Riemannian manifold. Then Hp(X) is contained in the space of closed forms
and the natural homorphism

Hp(X)
∼−→ Hp

dR(X,R)

is an isomorphism. These vector spaces are finite dimensional.

Hence the so-called Betti numbers

bp(X) := dimHp
dR(X,R)

are well defined numbers.

As an application we derive the duality theorem. When α is harmonic then
for trivial reasons ∗α is harmonic too. This obviously defines an isomorphism

Hp(X)
∼−→ Hn−p(X).

3.12 Poincarè duality. Let X be a pure n-dimensional compact oriented
Riemannian manifold. The pairing (·, ·)

Hp
dR(X,R)×Hn−p

dR (X,R) −→ R,
∫
X

α ∧ β,

is non-degenerated, hence bp(X) = bn−p(X).

Here α, β denote differential forms that represent de-Rham cohomology classes.
The integral is independent of their choice due to the theorem of Stokes.
The pairing is non-degenerate, since

∫
X
α ∧ β for all β implies

∫
X
α ∧ α =∫

X
〈α, α〉ω = 0, hence α = 0. tu

4. Complex Hodge theory

Again we start with a little linear algebra. Recall that a Hermitean form h
on a complex vector space V is a map V × V → C which is linear in the first
variable and such that

h(a, b) = h(b, a).

The form h is called positive definit if (the real expression) h(a, a) is positive
for non-zero a. A positive Hermitian form is called a Hermitian metric. It is
clear that

g(a, b) := Reh(a, b) =
1

2
(h(a, b) + h(b, a))



52 Chapter III. Hodge theory

is a bilinear form on the underlying real vector space. Hence a Hermitian metric
has an underlying Euclidean metric. One calculates

g(a, b) + ig(a, ib) = h(a, b).

Hence h is determined by g. Conversely this formula defines a Hermitian form
for a given real bilinear form if and only if

g(a, b) = g(ia, ib).

It is also interesting to look at the imaginary part of h (or on its negative),

h(a, b) = g(a, b)− iΩ(a, b).

Obviously Ω is a real bilinear form which is alternating,

Ω(a, b) = −Ω(b, a).

It is closely related to g, one checks easily

Ω(a, b) = g(ia, b).

Hence Ω determines h and moreover:

A real alternating bilinear form on V defines a Hermitian form if and only if

Ω(a, b) = Ω(ia, ib).

We generalize this to complex vector bundles E on a differentiable manifold
X. Recall (Definition 2.6) that a Hermitian form h on E is a family of Hermi-
tian forms ha on Ea which depends differentiably on a. We denote by Ω the
imaginary part of h. This is a section of the bundle∧2

HomC∞
X

(E , C∞X ).

Let now X be a complex manifold. We apply this to the real tangent bundle TX .
Recall that the real tangent bundle of a complex manifold carries a complex
structure. There are reasons to write the multiplication with i by a new letter

J : TX −→ TX .

Let h be a Hermitian form on this bundle, in particular h(JA,B) = ih(A,B).
We can consider the real part g = Reh. This is a symmetric bilinear form on
the real tangent bundle. But we can also consider the imaginary part Ω of h.
As we have seen this is a section of the bundle∧2

HomC∞
X

(TX , C∞X ) =
∧2
T ∗X .

This means that Ω is a real alternating differential form of degree 2.
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4.1 Definition. Let X be a complex manifold and let h be a Hermitian form
on the real tangent bundle (considered as complex bundle). The real differential
form

Ω = − Imh ∈ A2(X)

is called the fundamental form of the pair (X,h).

It is easy to verify that Ω is of type (1, 1), hence

Ω ∈ A2(X) ∩A1,1(X).

This can be also seen form the following formulae in local coordinates:

Let U ⊂ Cn be an open subset. The real tangent space TaU is generated
as R-vector space by ∂/∂xi, ∂/∂yi. But it has also a complex structure. Mul-
tipliplication by i with respect to this structure is given by J(∂/∂xi) = ∂/∂yi
and J(∂/∂yi) = −∂/∂xi. Hence a complex basis of TaX is given by ∂/∂xi. We
use this basis to define the Hermitian matrix

hij = h
( ∂

∂xi
,
∂

∂xj

)
.

Since h is Hermitian we have h(J∂/∂xi, ∂/∂xj) = ih(∂/∂xi, ∂xj). In this way
we get

h
( ∂

∂xi
,
∂

∂xj

)
= ih

( ∂

∂xi
,
∂

∂yj

)
= −ih

( ∂

∂yi
,
∂

∂xj

)
= h

( ∂

∂yi
,
∂

∂yj

)
.

The fundamental form can be computed.

4.2 Lemma. Let U ⊂ Cn an open subset and h a Hermitian form on the
tangent bundle, given by the Hermitian matrix

hij = h
( ∂

∂xi
,
∂

∂xj

)
.

Then the corresponding fundamental two form is

Ω =
i

2

∑
1≤i,j≤n

hij dzi ∧ dz̄j .

Proof. We remind our definition how the wedge product is related to alternating
multilinear forms (Remark V.6.3): let α, β be two one-forms. Then

(α ∧ β)(A,B) = α(A)β(B)− α(B)β(A).

It follows

dzi ∧ dz̄j
( ∂

∂xα
,
∂

∂xβ

)
= δiαδjβ − δiβδjα.

This implies

i

2

∑
i,j

hijdzi ∧ dz̄j
( ∂

∂xα
,
∂

∂xβ

)
=

i

2
(hαβ − hβα) = − Imhαβ .

This proves Lemma 4.2. tu
We collect what we have seen so far.
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4.3 Remark. Let X be a complex manifold. Every Hermitian form h on the
real tangent bundle (with its complex structure) induces a real differential form
Ω = − Imh of type (1, 1). Conversely every form Ω ∈ A2(X) ∩ A1,1(X) is the
negative of the imaginary part of a uniquely defined h.

Our main interest is in positive definite Hermitian forms.

4.4 Definition. A Hermitian manifold (X,h) is a complex manifold together
with a positive definite Hermitian form on the real tangent bundle (considered
as complex bundle).

Since a Hermitian manifold can be considered also as Riemannian manifold
(g = Reh) we have also a fundamental form ω ∈ A2n(X), and we have a
Euclidean metric

ApX ×A
p
X −→ C

∞
X .

We extend this to a Hermitian pairing

(ApX ⊗R C)× (ApX ⊗R C) −→ C∞X ⊗R C.

(Notice, we could also take the C-linear extension, but we do not.) By restric-
tion we get a positive definite Hermitian pairing

Ap,qX ×A
p,q
X −→ C

∞
X ⊗R C.

For the fibres this means the following. The space TaX carries a Euclidian
metric g = Reh. This carries over to a Euclidean metric on HomR (TaX,R).
This extended to a Hermitian metric on HomR (TaX,C) and then we get a
Hermitian metric on Ap,q :=

∧m
HomR (TaX,C).

4.5 Definition. Let X be a Hermitian manifold. We denote the natural
Hermitian pairing on Ap,qX by 〈·, ·〉.

Since X has an underlying structure as Riemannian manifold, we have the
star operator, provided we have an orientation. But complex manifolds are
always naturally oriented. This comes form the following simple observation.
Let e1, . . . , en be a basis of the complex vector space. Then e1, ie1, . . . , en, ien
is a basis of the underlying real vector spaces. Bases obtained in this way
are orientation compatible. (When f1, . . . , fn is a second basis, then one has
a complex n × n-transition matrix A and a 2n × 2n-transition matrix for the
corresponding real bases. One has detB = |detA|2 > 0.) We use these
real bases to define the orientation of V . Now we can consider the operator
∗ : Ap(X)→ A2n−p(X). We extend this to a C-linear operator

∗ : Ap(X)⊗R C −→ A2n−p(X)⊗R C.

Here we denote by n the complex dimension of X which is assumed to be pure
dimensional.
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4.6 Lemma. The star operator on a Hermitian manifold of pure dimension
n preserves the (p, q)-graduation as follows:

Ap,q(X) −→ An−q,n−p(X).

It satisfies ∗∗ = (−1)p+q.

Proof. Let T be a complex vector space of dimension n and let h be a positive
definit Hermitian form. In our application T = TaX is the tangent space of a
complex manifold. For this reason we write J for the multiplication by i in T
We choose an orthonormal complex basis E1, . . . , En of T with respect to h. A
real basis of T is given by

E1, JE1, . . . En, JEn.

This is an orthonormal basis with respect to g = Imh. Its dual basis in
HomR (T,R) is denoted by

X1, Y1, . . . Xn, Yn.

This is a orthonormal basis of HomR (T,R) (with respect to the transferred
metric g). Then we consider Zi = Xi + iYi, Z̄1 = X1 − iYi. One checks that
Zi ∈ HomC (T,C). Even more, Z1, . . . , Zn is the dual basis of E1, . . . , En. We
have that Zi is of type (1, 0) and Z̄i is of type (0, 1). Recall that we extend the
Euclidean metric to a Hermitian metric on HomR (T,C). One computes

〈Zi, Zj〉 = 〈Z̄i, Z̄j〉 = 2δij , 〈Zi, Z̄j〉 = 2.

Next we express the volume element ω in terms of the Zi, Z̄i. We have

ω = X1 ∧ Y1 ∧ . . . ∧Xn ∧ Yn.

The formula Z ∧ Z̄ = −2iX ∧ Y shows

ω =
( i

2

)n
Z1 ∧ Z̄1 ∧ . . . ∧ Zn ∧ Z̄n.

The space Ap,q =
∧p,q

HomR (TaX,C) is generated by Za ∧ Z̄b. Here a, b are
subsets of {1, . . . , n} and Za = Za1 ∧ . . . ∧ Zan where ai are the elements of a
in their natural ordering (similar for Z̄b). One computes

〈Za ∧ Z̄b, Zα ∧ Z̄β〉 =
{

2m if a = α, b = β,
0 else

(m = #a+ #b).

From this follows that the spaces Ap,q ⊂ Am ⊗R C are pairwise orthogonal.
Now the defining equation for this Hermitian scalar product shows

∗(Za ∧ Z̄b) = 2m−ninδn(a, b)Zb̄ ∧ Z̄ā.
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Here ā denotes the complement of a in {1, . . . , n} (the same for b). And δn(a, b)
denotes the sign of the permutation that brings Za ∧ Z̄b ∧ Z̄b̄ ∧ Zā into the
ordering Z1 ∧ Z̄1 ∧ · · ·Zn ∧ Z̄n. We see that the star operator maps Ap,q into
An−q,n−p. tu

We now define the complex codifferentiations as

∂̄∗ = − ∗ ∂∗ = −∗̄∂̄∗̄ : Ap,q+1(X) −→ Ap,q(X),

∂∗ = − ∗ ∂̄∗ = −∗̄∂∗̄ : Ap+1,q(X) −→ Ap,q(X).

It can be checked that for forms α, β with compact support this operator sat-
isfies

(∂̄α, β) = (α, ∂̄∗β) where (α, β) :=

∫
X

α ∧ ∗β̄

and similarly ∂α, β) = (α, ∂∗β).

4.7 Lemma. For α, β ∈ Ap,q(X) the formula

α ∧ ∗β̄ = 〈α, β〉ω

holds. The operators ∂̄ and ∂̄∗ are formally adjoint. The same holds for ∂ and
∂∗.

We define the complex Laplace-Beltrami operators as:

t̄u := ∂̄∂̄∗ + ∂̄∗∂̄ : Ap,q(X) −→ Ap,q(X)

and similarly

tu = ∂∂∗ + ∂∗∂.

We denote by

Hp,q(X) ⊂ Ap,q(X)

the kernel of t̄u.

The point is that t̄u is also an elliptic operator. Similar arguments as in the
real case show:

4.8 Main theorem of complex Hodge theory. Let X be a compact
Hermitean manifold. Then Hp,q(X) is contained in the space of ∂̄-closed forms
and the natural homomorphism

Hp,q(X)
∼−→ Hp,q(X) := Hq(X,

∧p
Ω)

is an isomorphism. These vector spaces are finite dimensional.
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Hence the so-called Hodge numbers

hp,q(X) := dimC H
p,q(X)

are well defined numbers.

There is also a duality result: Before we formulate it, we introduce a slight
generalization of the notion of a non-degenerated pairing. Let V,W be two
finite dimensional complex vector spaces. Consider a R-bilinear map (·, ·) :
V ×W → C which is C-linear in the first variable. Then we get a natural R-
linear map V → HomC (W,C), which sends a ∈ V to the linear form x 7→ (a, x).
We call the pairing non-degenerated, if this map is an isomorphism. Then
dimC V = dimC W .

4.9 Duality. Let X be a pure n-dimensional compact Hermitean manifold.
The integral

∫
X
α ∧ ∗β̄ induces a non-degenerated pairing

Hp,q(X)×Hn−p,n−q(X) −→ C,

hence hp,q(X) = hn−p,n−q(X).

The proof is similar to the proof of the Poincarè duality 3.12. tu
We finally remark that there is also an analogous result for the ∂-complex.

One has to replace t̄u by tu.

5. Hodge theory of holomorphic bundles

Let E be a complex vector bundle over a differentiable manifold, i.e. a locally
free C∞X ⊗R C-module. Then

AmX ⊗C∞X E

is a complex vector bundle too. Its fibres are

d∧
HomR (TaX,R)⊗R Ea.

Its sections are denoted by Am(X, E). One calls them differential forms with
values in E or differential forms twisted by E. There is no directly available
operator d : Am(X, E)→ Am+1(X, E). Nevertheless reasonable operators exist
in some circumstances and are called connections of E . We will study them in
more detail in Chap. IV, Sect. 3.

We assume now that X is a complex manifold and that E is a complex
vector bundle on the underlying differential manifold. We consider the bundle

Ap,qX ⊗(C∞
X
⊗R C) E
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with the fibres
p,q∧

HomR (TaX,C)⊗C Ea.

Its differentiable sections are denoted by

Ap,q(X, E).

Again we cannot expect natural operators

∂̄ : Ap,q(X, E) −→ Ap,q+1(X, E).

But the situation improves if we assume that E comes from a holomorphic
bundle M,

E =M⊗OX (C∞X ⊗R C).

Then we have
Ap,qX ⊗(C∞

X
⊗R C) E = Ap,qX ⊗OX M.

So in the case that E comes from a holomorphic bundle M, the elements of
Ap,q(X, E) can be identified with the global sections of Ap,qX ⊗OX M. We will
use the notation

Ap,q(X,M) := Ap,q(X, E).

We want to define an OX -linear map

∂̄ : Ap,qX ⊗OX M−→ A
p,q+1
X ⊗OX M.

Due to the universal property of the tensor product, it is sufficient to define an
OX -bilinear map

Ap,qX ×M −→ A
p,q+1
X ⊗OX M.

We take
(ω, s) 7−→ ∂̄ω ⊗ s.

The essential point is the OX -linearity in the first variable. Actually we have

∂̄(fω) = f∂̄ω (f holomorphic).

This is true because ∂̄f = 0.

5.1 Proposition. Let X be a complex manifold and let M be a holomorphic
vector bundle. There is a natural OX-linear map

∂̄ : Ap,qX ⊗OX M−→ A
p,q+1
X ⊗OX M

It has the property ∂̄ ◦ ∂̄ = 0.

Hence we can define the generalized Dolbeault-cohomology

Hp,q(X,M) :=
Kernel(Ap,q(X,M) −→ Ap,q+1(X,M))

Image(Ap,q−1(X,M) −→ Ap,q(X,M))
.

Our construction showed that there is a sequence of sheaves

0 −→
∧p

ΩX ⊗OX M−→ A
p,0
X ⊗OX M

∂̄−→ · · · ∂̄−→ Ap,nX ⊗OX M−→ 0.

From the Lemma of Dolbeault follows that this sequence is exact. (This is a
local property and M is locally free.) Hence we obtain.
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5.2 Proposition. Let (X,OX) be a complex manifold and let M be a
holomophic vector bundle. There is an isomorphism

Hp,q(X,M) ∼= Hq(X,
∧p

ΩX ⊗OX M).

We want to define a Laplace-Beltrami operator in this context. The operator
∂̄ is a linear differential operator. It is naturally to look for its formally adjoint
operator

∂̄∗ : Ap,q+1
X ⊗OX M−→ A

p,q
X ⊗OX M.

Recall that for this we need a Hermitian metric on the bundle Ap,qX ⊗OX M.

To get one, we now make the assumption that X carries a Hermitian metric
and that also M carries a Hermitian metric. Recall that then Ap,qX carries a
Hermitian metric. We denote these Hermitian metrics by 〈·, ·〉.

5.3 Remark. Let X be a complex manifold with Hermitian metric, and let
M be a holomorphic vector bundle with Hermitian matric. Then there exists a
unique Hermitian metric on Ap,qX ⊗OX M such that

〈α⊗ s, β ⊗ t〉 = 〈α, β〉〈s, t〉.

Proof. This follows not quite directly from the universal property of the tensor
product. Therefore we explain the linear algebra behind it. Let V be a com-
plex vector space. We denote by V̄ the following complex vector space. The
underlying abelian group is V , but the multiplication by constants is defined
by C · v := C̄v. Then a Hermitian form V × V → C is nothing else but a
C-bilinear form V × V̄ → C. Let W be a second space with Hermitian form.
Then we can consider the map

V × W̄ × V × W̄ → C, (a, b, c, d) 7−→ 〈a, b〉〈c, d〉.

This is C-multilinear and induces by the universal property of the tensor prod-
uct a C-linear map V ⊗C W̄ ⊗C V × W̄ → C, or, equivalently a linear map
V ⊗C W ⊗C V̄ ⊗C W̄ → C. Again from the universal property of the tensor
product we get a natural isomorphism V̄ ⊗C W̄

∼−→ V ⊗C W . This gives a
Hermitian form on V ⊗C W .

Now we have a Hermitian metric on Ap,qX ⊗OX M and we have a volume
form ω. So it makes sense to ask for the formally adjoint of ∂̄.

It is natural to imitate the absolute case (absence ofM) and to define star-
and wedge operators in this more general context.

Ap,q(X,M)
∗−→ An−q,n−p(X,M),

Ap,q(X,M)×An−p,n−q(X,M∗) ∧−→ An,n(X) = A2n(X)⊗R C.
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The star operator is no problem. In the case whereM is absent it was induced
by a bundle map and this bundle map can be tensored with M. This means
locally ∗(ω ⊗ s) = (∗ω) ⊗ s. In a similar way we get the generalized wedge
product (locally (α⊗ s, β ⊗ `) 7→ `(s)α ∧ β.)

When V is a Hermitian vector space with Hermitian form 〈·, ·〉 we get a
natural map

] : V −→ V ∗ = HomC (V,C)

It maps an a ∈ V to the linear form x 7−→ 〈x, a〉. This map is an isomorphism
of real vector spaces and satisfies ](Ca) = C̄](a). We call such a map an
antilinear map.

Let A → B and C → D be two antilinear maps of complex vector spaces,
then the linear maps A→ B̄ and C → D̄ induce an antilinear map A⊗C C →
B ⊗C D.

Using these general remarks, we get an antilinear map

\ := ∗̄ ⊗ ] : Ap,q(X,M) −→ An−p,n−q(X,M∗).

Its inverse is (−1)p+q ∗̄ ⊗ ]−1.

Now can define the operator

∂̄∗ = −\ ∂̄ \ = −\̄∂\̄ : Ap,q+1(X,M) −→ Ap,q(X,M)

and the generalized Laplace-Beltrami operator

t̄u := ∂̄∂̄∗ + ∂̄∗∂̄ : Ap,q(X,M) −→ Ap,q(X,M).

As we have seen Ap,q ⊗OX M carries a Hermitian metric. One can check

〈α, β〉ω = α ∧ \β.

This allows us to verify the following result.

5.4 Proposition. Assume that X is a compact connected complex mani-
fold with Hermitian metric and that M is a holomorphic vector bundle with
Hermitian metric. The operators

∂̄ : Ap,qX ⊗OX M−→ A
p,q+1
X ⊗OX M, ∂̄∗ : Ap,q+1

X ⊗OX M−→ A
p,q
X ⊗OX M

are formally adjoint differential operators (similarly ∂ and ∂∗). In particular,
t̄u is a formally self adjoint operator from Ap,qX into itself.

We denote by Hp,q(X,M) ⊂ Ap,q(X,M) the kernel of t̄u. As in the usual case
we obtain now the main theorem for the bundle valued Hodge theory.
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5.5 Hodge theory for holomorphic vector bundles. Let X be a compact
complex connected manifold with a Hermitian metric and let E be a holomor-
phic vector bundle which has been equipped with a Hermitian metric. Then
Hp,q(X,M) is contained in the space of ∂̄-closed forms and the natural homo-
morphism

Hp,q(X,M)
∼−→ Hp,q(X,M)

is an isomorphism. These vector spaces are finite dimensional.

Hence the so-called Hodge-numbers

hp,q(X,M) := dimC H
p,q(X,M)

are well defined numbers.

There is also a duality result:

5.6 Duality. Let X be a pure n-dimensional compact Hermitian manifold
and M a holomorphic vector bundle. The integral

∫
X
α ∧ \β induces a non-

degenerated pairing

Hp,q(X,M)×Hn−p,n−q(X,M∗) −→ C,

hence
hp,q(X,M) = hn−p,n−q(X,M∗).

There is a well-known special case p = 0. In this case on the right hand side
the so-called canonical line bundle KX =

∧n
ΩX appears. If one uses

KX ⊗OX M∗ = HomOX (M,KX).

one obtains the famous Serre duality

5.7 Serre duality. Let X be a pure n-dimensional compact complex mani-
fold and M a holomorphic vector bundle and KX =

∧n
ΩX the canonical line

bundle. Then there is an isomorphism

Hq(X,M)∗ ∼= Hn−q(X,HomOX (M,KX)).

We have to remark, that in the formulation of the Serre duality no metrics of
X and of M occur. We mention that using the technique of partition of unity
it is easy to show that such Hermitian metrics always exist. Hence the Serre
duality 5.7 is true in general.
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6. Complex line bundles and their Chern classes

Let (X,OX) be a ringed space. We are interested in the set of all isomorphy
classes of line bundles L. (We will see in a minute that this is really a set). We
denote by [L] the isomorphy class of L. We define an addition on this set. It
comes from the tensor product.

[L1] + [L2] := [L1 ⊗OX L2].

This addition of classes is commutative and associative because of correspond-
ing properties of the tensor product and there is a zero element coming form
the trivial bundle OX . We claim that we have an abelian group. Therefore we
have to show that there exists a negative of [L]. Actually

−[L] = [L∗]

where L∗ = HomOX (L,OX) is the dual bundle. We want to attach to an
isomorphy class [L] an element of H1(X,O∗X), where O∗X denotes the (mul-
tiplicative) sheaf of invertible elements of OX . For this we consider an open
covering X =

⋃
Ui with local trivalizations hi : L|Ui → OX |U . Recall that

this induces transition functions

gij ∈ O∗(Ui ∩ Uj).

The basic observation is now that this is a Čech 1-cocycle for the sheaf O∗X . It
is easy to check and left to the reader that the corresponding cohomology class
does only depend on the isomorphy class of L. And even more, one can check
that two line bundles that give the same cohomology class are isomorphic. So
we have seen the following result.

6.1 Proposition. The group of all isomorphism classes of line bundles on
a ringed space (X,OX) is isomorphic to H1(X,O∗X), the isomorphism induced
through the transition functions via Čech cohomology.

Is there an analogous result for vector bundles? The answer is no. The reason
is that the transition functions for vector bundles have values in some GL(n)
which is for n > 1 a non abelian group. But our general approach to sheaf
cohomology works only for sheaves of abelian groups. Hence the theory of line
bundles is easier than that of vector bundles. This gets visible if one considers
the complex projective space. It can be shown that the group of holomorphic
line bundles is isomorphic to Z, but the classification of vector bundles already
on P 2(C) is unsolved.

Let now (X,OX) be a geometric space. In many cases we have an exact
sequence of sheaves

0 −→ Z −→ OX −→ O∗X −→ 0,
f 7−→ e2πif
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for example for complex manifolds, but also for differentiable manifolds if one
takes for OX the sheaf of all complex valued differentiable functions (compare
Proposition II.4.3). In these cases there is a combining homomorphism

δ : H1(X,O∗X) −→ H2(X, Z).

6.2 Definition. Let (X,OX) be a topological space or a differentiable manifold
or a complex manifold equipped with the sheaf of complex valued continuous
functions or complex valued differentiable functions or holomorphic functions.
The Chern class

c(L) ∈ H2(X, Z)

of a line bundle is the image of its cohomology class under the combining ho-
momorphism H1(X,O∗X) −→ H2(X, Z).

It may happen that Hp(X,OX) = 0 for p > 0. Then the long exact cohomol-
ogy sequence shows that H1(X,O∗X) −→ H2(X, Z) is an isomorphism. This is
the case if OX is the sheaf of continuous differentiable functions on a differen-
tiable manifold. This has an interesting application. Let X be a differentiable
manifold. Every continuous line bundle carries a differentiable structure. This
means the following. Assume that there is a locally free CX -module E . Then
there exists a locally free C∞X -module F such that E = F ⊗C∞

X
CX .

We now assume that X is a complex manifold and that L is a holomorphic
line bundle. We consider the image j(c(L)) under the map

j : H2(X, Z) −→ H2(X,R) ⊂ H2(X,C).

Sometimes we will call the image of j(c(L)) in H2(X,R) or in H2(X,C) the
Chern class of L. The circumstances will show where we consider the Chern
class.

This image must be representable by a differential form ω ∈ A2(X) via
the de Rham-isomorphism. We are going to define such a differential form
explicitly. To construct it, we need a Hermitian metric h : L×L → C∞X ⊗R C on
L. We know that there exists one. The form ω (but not its class in H2(X,R))
will depend on the choice the Hermitian metric. Let X =

⋃
Ui be an open

covering such there exist trivializations OX |Ui → L|Ui, 1 7→ si. Then hi :=
h(si, si) : Ui → R is a real everywhere positive function. We consider the
transition functions fij ∈ O∗X(Ui ∩ Uj), si = fijsj . Then we have

hi = |fij |2hj on Ui ∩ Uj .

The point now is that the function log |fij |2 = log(fij f̄ij) is annihilated by the
operator ∂∂̄. This means that the differential forms ∂∂̄ log hi glue to a global
differential form which we denote by ∂∂̄h. This is a form of type (1, 1) and it
is in iA2(X), Hence we have

1

2πi
∂∂̄ log h ∈ A1,1(X) ∩A2(X).
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6.3 Definition. Let X be a complex manifold and L a holomorphic line
bundle equipped with a Hermitian metric h. The differential

1

2πi
∂∂̄ log h.

is called the Chern form of (L, h).

This differential form is annihilated by ∂ and by ∂̄, hence also by d. It defines
via the de-Rham isomorphism cohomology class in H2(X,R).

6.4 Proposition. Let L be a holomorphic line bundle, equipped with a
Hermitian metric h. Then

j(c(L)) =
1

2πi
∂∂̄ log h (considered in H2(X,R))

is the cohomology class of the Chern form. As a consequence we obtain

j(c(L)) ∈ j(H2(X, Z)) ∩H1,1(X).

Proof. We make use of the commutative diagram of Lemma II.4.4,

H1(X, (C∞X ⊗R C)∗)

��

// H1(X,A1
X closed ⊗R C)

��
H2(X, Z) // H2(X,C)

We look at the first line via Čech cohomology. The cocycle (fij) (transition
functions of L) is mapped to the cocycle (1/2πi)d log fij . Notice that log fij
exists only locally as differentiable function but the ambiguity is killed by d.
The claim is that the cohomology class of this cocycle is represented by the
differential form (1/2πi)∂∂̄ log h. Recall that this differential form represents
an element of H2(X,R). The lemmas II.4.1 and II.4.2 explain how the image
in H1(X,A1

X closed ⊗R C) can be computed in terms of Čech cohomology. We
have to write ∂∂̄ log hi = dαi. We can take αi = −∂ log hi. Then we have to
consider the Čech cocycle

αi − αj = ∂ log hi − ∂ log hj .

From the (locally valid) equation log hi = log hj + log fij + log f̄ij we get

∂ log hi − ∂ log hj = ∂ log fij = d log fij .

This finishes the proof of Proposition 6.4. tu
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7. The cohomology of the complex projective space

We consider the natural map Cn+1−{0} → Pn(C). Recall that Pni C is defined
through zi 6= 0. There is a biholomorphic map

Pni C
∼−→ Cn, Z 7−→ (z1, . . . , zn) =

(Z0

Zi
, . . .

Ẑi
Zi
, . . .

Zn
Zi

)
.

A basic role will play the function log(|Z|20 + · · ·+ |Z|2n) on Cn+1 − {0}. This
function does not come from a function on Pn(C). But the following holds.

7.1 Lemma. The differential form

∂∂̄ log(|Z0|2 + · · ·+ |Zn|2)

is the pull-back of a differential form on Pn(C) which on Pni C corresponds to

∂∂̄ log(1 + |z1|2 + · · ·+ |zn|2).

The differential form in the Lemma can be evaluated explicitly. We use the
notation |z|2 = |z1|2 + · · ·+ |zn|2.

7.2 Remark und Definition. The differential forms

i

2

∑
hijdzi ∧ dz̄j

on Pni (C) given by

hij =
1

(1 + |z|2)2


1 + |z|2 − |z1|2 −z̄1z2 · · · −z̄1zn
−z̄2z1 1 + |z|2 − |z|22 · · · −z̄1zn

...
...

. . .
...

−z̄nz1 −z̄nz2 · · · 1 + |z|2 − |zn|2


glue to a differential form Ω on Pn(C). It is called the Fubini-Study form.

Recall that Ω determines a unique Hermitian form h on the tangent bundle
such that Ω = − Imh.

7.3 Proposition. On the projective space there exists a unique Hermitian
metric h, the Fubini-Study metric, such that Ω = − Imh is the Fubini-Study
form.

Proof. We have to show that the matrix (hij) in Remark 7.2 is positive definit.
tu

So we have equipped the projective space with a distinguished Hermitian
metric. We introduce now a fundamental holomorphic line bundle L on the
projective space. For this we use the vanishing ideal sheaf (Definition V.9.1).
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7.4 Remark and notation. Let Y ⊂ X be a (holomorphically) smooth closed
subset of the complex manifold (X,OX) of pure codimension one (dima Y =
dimaX − 1 for a ∈ Y ). The ideal sheaf JY associated to Y is locally free of
rank one, i.e. a holomorphic line bundle.

We denote this line bundle by JY .

Proof. It is sufficient to treat the local case where X is an open neighborhood
of 0 in Cn and Y is defined by zn = 0. Then the vanishing ideal sheaf is znOU
which is a line bundle. tu

There is a generalization. Let k be an integer. Let X be a complex manifold
of dimension n and let Y ⊂ X be a submanifold of pure codimension one. A
holomorphic function f : X−Y → C is called merormorphic of order ≥ k along
Y if for every open subset U ⊂ X and any generator g ∈ JY (U) of JY |U (this
means JY |U = gOX |U), the function fg−k extends to a holomorphic function
on U . It is clear how to sheafify this definition to get a sheaf JY (k). We have

JY = JY (1).

There is an obvious pairing

JY (k1)× JY (k2) −→ JY (k1 + k2).

It induces a map

JY (k1)⊗OX JY (k2) −→ JY (k1 + k2).

This map is obviously an isomorphism. This shows that JY (k) and JY (−k)
are dual bundles. So we have

J⊗kY = JY (k)

first for k > 0 but then for all integers by definition.

We apply this to the embedding

Pn−1(C) −→ Pn(C), [z1, . . . , zn] 7−→ [0, z1, . . . , zn].

We denote the image by H. This is a smooth submanifold of dimension n− 1.
The complement of the image is the affine space Pni C. The associated line
bundle, actually an ideal sheaf, is denoted by O(−1). So O(−1) = J (1), more
generally we introduce the tensor powers

O(k) = J (−k).

We call O(−1) the hyperplane bundle.

There is another important line bundle KX =
∧n

ΩX , the determinant of
the sheaf of holomorphic differentials. This bundle can be defined for every
complex manifold of pure dimension. It is called the canonical bundle.
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7.5 Lemma. The canonical bundle K on Pn(C) is isomorphic to O(−n−1).

Proof. For simplicity we treat the typical case n = 2. We consider on
P 2

0 (C) the holomorphic differential α = dz1 ∧ dz2, where z1, z2 are the stan-
dard coordinates. We consider it on Pn1 C. (The same argument works for
Pn2 (C).) We denote the standard coordinates on P 2

1 (C) by (w1, w2). Here α
writes as f(w1, w2)dw1 ∧ dw2 where f is a holomorphic function on w1 6= 0
which corresponds to our hyperplane P 1(C). The chart transformation is
(w1, w2) = (1/z1, z2/z1). This gives f(w1, w2) = −w−3

1 dw1 ∧ dw2. So we
see that multiplication gives a pairing

K ×O(3) −→ O.

It induces a map K → O(3)∗ = O(−3) that is obviously an isomorphism.
tu

Next we define a Hermitian metric on L. For this we consider the differen-
tiable function

Cn+1 − {0} −→ R>0, h(Z) =
|Z0|2

|Z0|2 + · · ·+ |Zn|2
.

It is invariant under Z 7→ λZ and hence comes from a differentiable function h
on Pn(C). Then we can define the Hermitian form

L × L −→ C∞ ⊗R C, (f, g) 7−→ fḡ

h
.

It is easy to check that it is positive definite. We compute the corresponding
differential form. It is enough to do this on Pn0 C. Here it is given by ω =
−(1/2πi)∂∂̄ log h. We obtain:

7.6 Proposition. The projective space Pn(C) is a Hermitian manifold such
that the associated class Ω ∈ H1,1(X) equals the Chern class of the bundle
O(−1). In particular, the class Ω is integral, i.e. contained in the image of
H2(Pn(C), Z).

This is all what we need in the following. For sake of completeness we describe
the complete picture without proof (which is easy if one uses a little algebraic
topology):

7.7 Theorem. Every holomorphic line bundle on Pn(C) is isomorphic to
precisely one O(n). Hence Pic(Pn(C)) = Z.



7.8 Theorem. The natural map

j : Hm(Pn(C), Z) −→ Hm(Pn(C),R)

is injective, the image generates Hm(Pn(C),R) as vector space. The space
Hm(Pn(C), Z) is zero for odd m (and for m > 2n and m < 0). Moreover

Hm(Pn(C), Z) ∼= Z, m even and 0 ≤ m < 2n.

A generating element is Ωm := Ω ∧ . . . ∧ Ω.

Chapter IV. Kaehler manifolds

1. Effective forms

This section contains some non-standard linear algebra. We make the following
assumptions:

1.1 Assumptions. Let
(Vm)m∈Z

be a sequence of complex vector spaces. Assume that for each m two C-linear
maps

L : Vm −→ Vm+2, Λ : Vm+2 −→ Vm

are given such that the following two conditions hold.

1) Vm = Kernel(Λ)⊕ Image(L).

2) There exists a natural number n such that

Vm = 0 for m < 0, and m > 2n

and such that
[L,Λ]u = (n−m)u for u ∈ Vm.

We call an element u ∈ Vm primitive if Λu = 0. Hence every α can be written
in the form α = α0 +L(β) with a primitive α0. Repeating this argument for β
we obtain the following result.



§1. Effective forms 69

1.2 Proposition. Under the above assumptions every α ∈ Am admits a
decomposition

α =
∑

2t≤m

Lt(αt)

with primitive αt ∈ Am−2t.

Another result is the following remark.

1.3 Remark. Assume that u ∈ Vm is primitive and m > n. Then u = 0.

Proof. From the relation 2) in the Assumptions we obtain

(ΛLk − LkΛ)u = k(n− k −m+ 1)Lk−1u for u ∈ Am.

We apply this relation to a primitive form u. We notice L2n+1−mu = 0 because
we are out of the range. From the corollary we see L2n−mu = 0 because the
factor in front (2n+1−m)n is different from zero. We can apply this argument
again and repeat this as long the factor in front is different form 0. We come
down to u = L0u = 0 if m > n. tu

In the rest of this section we treat a basic example. We take up the com-
putations behind Lemma III.4.6. We consider a complex vector space T of
dimension n which is equipped with a positive definit Hermitian form h(A,B).
In our application T will be the tangent space TaX of a Hermitian manifold.
(Recall that this is a priori the real tangent space which has been equipped
with a complex structure.) Compare also with the constructions for differen-
tial forms in Chapt. III, Sect. 4.

We consider the space HomR (T,C), which is a complex vector space of
complex dimension 2n. The complex structure comes from the C in the Hom.
A homomorphism h is multiplied by a complex number C through (Ch)(x) =
Ch(x). Recall that there is a decomposition

HomR (T,C) = HomC (T,C)⊕HomC (T,C)

into two complex sub-vector spaces. Here the complex structure of T has to be
used of course. We set

Am :=
∧m

R
HomR (T,R).

Recall that the above decomposition generalizes to

Am ⊗R C =
∧m

C
HomR (T,C) =

⊕
p+q=m

Ap,q,
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where Ap,q is generated by elements of the form

a1 ∧ . . . ,∧ap ∧ b1 ∧ . . . ∧ pq, ai ∈ HomC (T,C) bj ∈ HomC (T,C).

To be more precise: There is an isomorphism∧p
HomC (T,C) ⊗C

∧q
HomC (T,C)

∼−→ Ap,q.

The space T carries a real symmetric positive definit bilinear form g = Reh.
Recall that the real bilinear form g on T induces an R-isomorphism T →
HomR (T,R) and hence, by transport, a symmetric positive definite bilinear
form on HomR (T,R). This form induces real symmetric positive definite bilin-
ear forms 〈·, ·〉 on

Am =
∧m

HomR (T,R).

They are extended to positive definite Hermitian forms 〈·, ·〉 on Am ⊗R C. We
choose a (complex) basis E1, . . . , En of T which is orthonormal with respect to
h. The dual basis in HomC (T,C) is denoted by Z1, . . . , Zn, hence Zi(ej) = δij .

A basis of HomC (T,C) is given by Z̄1, . . . , Z̄n. A real basis of HomR (T,R) is
X1, Y1, . . . , Xn, Yn, where

Xi = ReZi, Yi = ImZi.

This basis is oriented and orthonormal with respect to g. Hence the distin-
guished (volume) element is

ω = X1 ∧ Y1, . . . , Xn ∧ Yn =
1

(−2i)n
Z1 ∧ Z̄1 ∧ . . . ∧ Zn ∧ Z̄n.

The space Ap,q =
∧p,q

HomR (TaX,C) is generated by Za ∧ Z̄b. Here a, b are
subsets of {1, . . . , n} and Za = Za1 ∧ . . . ∧ Zan where ai are the elements of a
in their natural ordering (similar for Z̄b). One computes

〈Za ∧ Z̄b, Zα ∧ Z̄β〉 =
{

2m if a = α, b = β,
0 else

(m = #a+ #b).

The star operator ∗ :
∧m

HomR (T,R)→
∧2n−m

HomR (T,R) has been defined
by

a ∧ ∗b = 〈a, b〉 ω.

Recall that we extended the star operator C-linearly to
∧m

HomR (T,C). We
can restrict it to a Hermitian form on Ap,q (compare Definition III.4.5). The
extended star operator can be characterized by

a ∧ ∗b̄ = 〈a, b〉 ω.
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The star operator defines actually an operator

∗ : Ap,q −→ An−p,n−q

as we have seen during the proof of Lemma III.4.6. There we have seen

∗(Za ∧ Z̄b) = 2m−ninδn(a, b)Zb̄ ∧ Z̄ā.

Here ā denotes the complement of a in {1, . . . , n} (the same for b). And δn(a, b)
denotes the sign of the permutation that brings Za ∧ Z̄b ∧ Z̄b̄ ∧ Zā into the
ordering Z1 ∧ Z̄1 ∧ · · ·Zn ∧ Z̄n. tu

We have to consider the alternating form Ω = − Imh. Recall that there is
a canonical isomorphism∧2

HomR (T,R)
∼−→ AltR (T × T,R)

This extends C-linearly to∧2
HomR (T,C)

∼−→ AltR (T × T,C).

Hence Ω can be considered as element of
∧2

HomR (T,C). Actually

Ω ∈
∧1,1

HomR (T,C),

as for example the formula

Ω =
i

2

n∑
i=1

Zi ∧ Z̄i

shows. This element is fundamental in what follows. It defines an operator

L : Ap,q −→ Ap+1,q+1, L(u) := Ω ∧ u.

It is correlated with the operator

Λ = ∗−1L∗ : Ap+1,q+1 −→ Ap,q.

We also can consider L and Λ as operators

L : Am ⊗R C −→ Am+2 ⊗R C, Λ : Am+2 −→ Am.

1.4 Lemma. The operators L and Λ are adjoint,

〈Lα, β〉 = 〈α,Λβ〉.

Moreover L and Λ are real operators (i,e. they preserve Am).

Proof. Check this with a real oriented orthonormal basis U1, . . . U2n. tu
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1.5 Definition. A form α ∈ Am is called primitive if Λ(α) = 0.

Because of the adjointness we have

Am = Kernel(Λ)⊕ Image(L) (orthogonal decomposition).

The following relation can be checked by means of a basis:

1.6 Lemma. One has

[Λ, L]u = (n−m)u for u ∈ Am.

Remark 1.3 applies to our case:

1.7 Proposition. Primitive forms of degree m > n are zero.

We will use this in the proof of the Kodaira vanishing theorem.

2. Kaehler metrics

Let (X,h) be a Hermitian manifold of pure (complex) dimension n. Recall
that this is a complex manifold such that the tangent bundle is equipped with
a positive definit Hermitian metric. Recall that the imaginary part of h can be
considered as a differential form. Its negative is

Ω ∈ A1,1(X), Ω = Ω̄.

Due to our notations A2(X) is the space of real differential forms. Hence we
can write

Ω ∈ A1,1(X) ∩A2(X).

Let conversely Ω ∈ A1,1(X) ∩ A2(X). Then there exists a unique Hermitian
form

h(a) : TaX × TaX −→ C

whose real part equals −Ω. In the case that h(a) is positive definit for all a we
obtain a Hermitian metric h on X.

In the special case, where X is an open subset U ⊂ Cn, the Hermitean
metric is given by a Hermitian matrix h(z) = (hµν) and one has

Ω =
i

2

∑
hµν(z)dzµ ∧ dz̄ν .

It may happen that this differential form is closed, for example when h(z) is
constant. It turns out that this is a very important property.
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2.1 Definition. A Kähler manifold is a Hermitian manifold such that Ω is
closed.

Usually we consider only compact Kähler manifolds. We give some examples:

1) Complex tori (with the standard metric) are Kählerian.
2) The projective space (with standard metric) is Kählerian.
3) Compact Riemann surfaces (with any Hermitian metric) are Kählerian.

We also mention the following. Let Y be a closed complex submanifold of
a Kählerian manifold (X,h). The restriction of the Hermitian metric h to
Y equips Y with a structure as Kählerian manifold. As a consequence each
projective algebraic manifold admits a structure as Kählerian manifold.

2.2 Proposition. Let X be a Kähler manifold. For every point a ∈ X there
exists a holomorphic chart ϕ around a which maps a ∈ Uϕ to 0 ∈ Vϕ and such
that the corresponding Hermitian matrix h(z), z ∈ Vϕ, satisfies the following
condition:

hµν(0) = δµν ,
∂h

∂xi
(0) =

∂h

∂yi
(0) = 0.

We mention by the way that this property also implies that X is Kählerian,
because this property implies that dΩ is zero at the point a. But a is arbitrary.
The point is that d involves only first partial derivatives. Assume dΩ = 0. We
can assume that X is an open set U ⊂ Cn and that a = 0 is the origin. Recall

Ω =
i

2

∑
ij

hijdzi ∧ dz̄j .

First we use a linear transformation z 7→ Az, A ∈ GL(n,C). The matrix h
has to be replaced by Ā′hA. We use the well-known result of linear algebra
that each positive definite Hermitian matrix h can be transformed by such a
transformation into the unit matrix. Hence we can assume that h(0) is the unit
matrix. This property will be preserved during the rest of the proof.

We introduce the numbers

aijk =
∂hij
∂zk

(0), bijk =
∂hij
∂z̄k

(0).

Then we have

hij = δij +
∑
k

aijkzk +
∑

bijkz̄k + rij ,

where the remainder rij and its first partial derivatives vanish at 0. We de-
compose

Ω = Ωmain +R,
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where
R =

∑
ij

rijdzi ∧ dzj .

From dΩ = 0 and form hij = h̄ji one derives the relations

aijk = akji, bijk = aikj and bijk = ājik.

The transformation

wk = zk +
1

2

n∑
i,j=1

aijkzizj

maps a small open neighborhood of U biholomorphically onto an open neigh-
borhood V . We have to transform Ω into V . We denote the transformed form
by Ω̃. We have Ω̃ = Ω̃main + R̃ with obvious notation. The form R̃ is without
interest, since R̃ and its first derivatives vanish at the origin. This is easily
proved by means of the chain rule. So we have to determine Ω̃main. A straight
forward calculations gives

i

2

n∑
j=1

dwj ∧ dw̄j = Ω̃main.

This completes the proof of 2.2. tu
We derive some relations between the operators Lα = Ω∧α and the deriva-

tive operators ∂, ∂̄ and the coderivative operators ∂∗, ∂̄∗. We prefer the notation
L∗ instead of Λ for the adjoint operator.

2.3 Theorem. On a Kähler manifold the following relations hold.

[L, ∂] = [L, ∂̄] = [L∗, ∂∗] = [L∗, ∂̄∗] = 0,

[L, ∂∗] = i∂̄, [L, ∂̄∗] = −i∂,

[L∗, ∂] = i∂̄∗, [L∗, ∂̄] = −i∂∗.

Proof. These formulae can be checked directly in the case

Ω =
i

2

∑
dzν ∧ dz̄ν .

Because they obtain only first derivatives they follow in general by 2.2. tu
There can be derived some relations which also involve second derivatives,

(which could not be proven directly by using Proposition 2.2). For example

∂∂̄∗ = ∂(−i[L∗, ∂]) = −i∂L∂.

In the same manner one proves:
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2.4 Corollary. One has

∂∂̄∗ = −∂̄∗∂ = −i∂̄∗L∂̄∗ = −i∂L∗∂,

∂̄∂∗ = −∂∗∂̄ = i∂∗L∂∗ = i∂̄L∗∂̄.

Recall that the Laplacians on a Hermitian manifold are defined by

∆ = dd∗ + d∗d, tu = ∂∂∗ + ∂∗∂, t̄u = ∂̄∂̄∗ + ∂̄∗∂̄.

A formal consequence of the above Kähler relations is

2.5 Theorem. On a Kähler manifold the relations

∆ = 2tu = 2t̄u

hold.

2.6 Main theorem of Hodge theory for Kähler manifolds. For a
compact Kaehler manifold X one has in addition to III.5.5

Hm(X,C) ∼=
⊕

p+q=m

Hp,q(X).

Morover

Hp,q(X) ∼= Hq,p(X).

This implies for the Betti- and Hodge numbers the following relations:

bm =
∑

p+q=m

hp,q, hp,q = hq,p = hn−p,m−q.

There are many important consequences: For example bm is even for odd m.
Moreover b1 = 2h1,0, hence the dimension of the space of holomorphic differ-
entials is a topological invariant.
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3. The canonical connection of a holomorphic bundle

We want to carry over part of the Kähler identities to bundle valued differential
forms. LetM be a holomorphic bundle over a complex manifold. Our problem
is that we could define (Proposition III.5.1)

∂̄ : Ap,q(X,M) −→ Ap,q+1(X,M)

in a naive way, but up to now there is no operator ∂. We will see that there is
a natural one if M carries a Hermitian metric.

It is worthwhile to start with some generalities about connections. We
consider a differentiable vector bundle E over a differentiable manifold X. In
principle E can be thought to be real or complex. For sake of simplicity we
restrict to complex bundles which are more important for us. We use the
notation

ApX(E) = ApX ⊗C∞X E .

Recall that we introduced bundle valued differential forms Am(X, E). They are
sections of AmX ⊗C∞X E . This is the same as

AmX(E) = (AmX ⊗R C)⊗(C∞
X
⊗R C) E .

(Compare with the formula R ⊗R C = C ⊗C C = C.)

3.1 Definition. Let E be differentiable complex vector bundle over a differ-
entiable manifold. A connection is a C-linear maps of sheaves

D : E −→ A1
X(E),

such that
D(fs) = df ⊗ s+ fD(s),

where f is a complex valued differentiable function and s ∈ E(U).

Connections can be extended to various types of tensors. We only need the
following case.

3.2 Lemma. Let D be a connection on E. There is a unique extension to a
family of C-linear maps of sheaves

D : AmX(E) −→ Am+1
X (E)

such that
D(ω ⊗ s) = dω ⊗ s+ (−1)mω ∧D(s)

for ω ∈ Ap(U) and s ∈ E(U).
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Proof. It is sufficient to prove the existence and uniqueness for small open U ,
which are contained in the domain of definition of a chart and such that E|U
is trivial. A little calculation shows

d(fω)⊗ s+ fω ∧D(s) = dω ⊗ fs+ ω ∧D(fs). tu

We consider
D2 : E −→ A2

X(E).

A priori this is a C-linear map of sheaves of vector spaces. The basic fact is
that this map is not zero in general. But it has the property

D2(fs) = fD2(s)

for differentiable functions f . This implies that D2 is a bundle map. Hence
R := D2 can be considered as en element of a certain Hom-bundle, namely the
bundle with fibre

HomC

(
Ea,

∧2
HomR (Ta(X),R)⊗R Ea

)
.

This can be also written as

HomC

(
Ea,

∧2
Hom(Ta(X),C)⊗C Ea

)
.

This can be reinterpreted as follows. Let A be a complex and B be a real vector
space (both of finite dimension). Let A∗ = HomC (A,C). There are canonical
isomorphisms

HomC (A,B ⊗R A) = A∗ ⊗C (B ⊗R A) = B ⊗R (A∗ ⊗C A) = B ⊗R Hom(A,A).

Hence we can consider R as a global section of the bundle with the fibre∧2
HomR (Ta(X),C)⊗C HomC (Ea, Ea).

It can be written also as∧2
HomR (Ta(X),R)⊗R HomC (Ea, Ea).

3.3 Definition. Let D be a connection on a differentiable complex vector
bundle E. The curvature form of D is R = D2, which can be considered as
bundle valued differential form with values in the bundle

Hom(E , E).

(The Hom is taken over C∞X ⊗R C.)
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Consider now a holomorphic vector bundle M over a complex manifold. We
denote by

E =M⊗OX (C∞X ⊗R C)

the underlying differentiable vector bundle. It is naturally to set

AmX(M) = (AmX ⊗R C)⊗OX M, Ap,qX (M) = Ap,qX ⊗OX M.

But this is nothing new since standard ruled of the tensor product show

AmX(M) = AmX(E), Ap,qX (M) = Ap,qX (E).

We have a decomposition

A1
X(E) = A1,0

X (E)⊕A0,1
X (E).

This gives us a decomposition of a connection D into two parts,

D = D′ +D′′, D′ : E → A1,0
X (E), D′′ : E → A0,1

X (E).

Similarly the extension of D to Ap,qX (E) (Lemma 3.2 ) decomposes into a sum
D = D′ +D′′, where

D′ : Ap,qX (E)→ Ap+1,q
X (E), D′′ : Ap,qX (E)→ Ap,q+1

X (E).

We now assume thatM carries a Hermitian metric 〈·, ·〉. Of course this extends
to a Hermitian metric on E . Then we can construct a distinguished connection.
The idea is to construct D′, D′′ separately. We have a candidate for D′′, namely
the naive ∂̄ (Proposition III.5.1). For the definition of the complete D we need
the pairing

(ApX ⊗OX M)× (AqX ⊗OX M)
[·,·]−→ Ap+qX

which is locally given by

[α⊗ s, β ⊗ t] = 〈s, t〉α ∧ β.

In the case p = q = 0 we have [·, ·] = 〈·, ·〉 (the Hermitian metric on E). Notice
that the squared bracket here has nothing to with a Lie bracket.

3.4 Proposition. Let M be a holomorphic vector bundle over a complex
manifold X and let E be the associated differentiable bundle. Assume that M
(hence E) is equipped with a Hermitian metric 〈·, ·〉. Then there exists a unique
connection D – called the canonical connection – such that for all sections
s, t ∈ E(U)

a) d[s, t] = [Ds, t] + [s,Dt] for s, t ∈ E(U).
b) D′′ = ∂̄.

The formulae a) and b) carry over to Ap,qX (M).
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Proof. It is enough to prove the existence and uniqueness locally. Hence we can
assume that X = U is an open subset of Cn and that M is free. We choose a
basis e1, . . . , en ofM. This is a also a C∞X ⊗R C-basis of E . Hence it is enough
to define Dei. We set

Dei =
∑
j

θij ⊗ ej , θij ∈ A1,0(X).

The matrix θ = (θij) is called the connection matrix with respect to the basis
e1, . . . , en. We have

d〈ei, ej〉 = [Dei, ej ] + [ei, Dej ] =
[∑
k

θik ⊗ ek, ej
]

+
[
ei,
∑
k

θjk ⊗ ek
]

=
∑
k

θik〈ek, ej〉+
∑
k

θ̄jk〈ei, ek〉.

Comparing types, we get

∂〈ei, ej〉 =
∑
k

θik〈ek, ej〉, ∂̄〈ei, ej〉 =
∑
k

θ̄ik〈ek, ej〉.

We use now the notation H = (〈ei, ej〉) and ∂H. The latter means the compo-
nentwise application of ∂ to the matrix H.. It is easy to check that the only
solution of these equations is

θ = (∂H)H−1 (matrix product)

This finishes the proof of Proposition 3.4. tu
If L is a line bundle on a ringed space (X,OX), then HomOX (L,L) is canon-

ically isomorphic to OX . Hence for a connection on a holomorphic line bundle
over a complex manifold the curvature can be considered as a usual differential
form

R ∈ A2(X).

3.5 Proposition. Let L be a holomorphic line bundle over a complex manifold
X. Assume that L carries a Hermitian metric H. Let R be the curvature of
the canonical connection. Then

R = −∂∂̄ logH,

hence R/2πi represents the Chern class of L (more precisely its image in
H2(X,R)).
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Proof. Again we can assume that X = U is an open subset of Cn and that L
is free. Let s ∈ L(X) be a basis element of L. Every element of A1

X ⊗ L is of
the form α⊗ s with a 1-form α (on some open subset of X). In particular, we
can write D(s) = θ ⊗ s. (Here the connection matrix is the 1 × 1-matrix (θ)
From the product rule in Lemma 3.2 we get

D(Ds) = (dθ)⊗ s− θ ∧ (θ ⊗ s) = (dθ)⊗ s.

It follows
R = dθ.

During the proof of Proposition 3.4 we computed the connection matrix (framed
formula). In our case we get θ = ∂ log〈s, s〉. We obtain

R = dα = ∂̄∂ log〈s, s〉 = −∂∂̄ log〈s, s〉.

This finishes the proof of Proposition 3.5. tu
We mention without proof that for any differentiable complex line bundle

over an arbitrary differentiable manifold the class of R in H2(X,R) is the same
for all connections.

Proposition 3.5 is very important. It enables to define Chern classes for
vector bundles where the direct cohomological approach does not work. We
will not need this in this book.

Now we assume that X carries also a Hermitian metric. Recall that then
Ap,qX ⊗OX M carries a Hermitian metric. Hence we can ask for the formally
adjoint operator D. We know already the formally adjoint of D′′ = ∂̄ (Propo-
sition III.7.3). It is ∂̄∗ = −\∂̄\. Hence it remains to compute the formally
adjoint D′∗ of D′. We also have the operator

L : Ap,qX ⊗OX L −→ A
p+1,q+1
X ⊗OX L

and the star operator

∗ : Ap,qX ⊗OX L −→ A
p+1,q+1
X ⊗OX L.

They act as L(α⊗s) = (Lα)⊗s and ∗(α⊗s) = (∗α)⊗s. We also set L∗ = −∗L∗
which acts as L∗(α⊗ s) = (L∗α)⊗ s.

3.6 Proposition. Let (X,h) be a Kähler manifold and (L, H) be a holomor-
phic line bundle equipped with a Hermitian metric. Let D = D′ +D′′ = D+ ∂̄
be the canonical connection (considered on Ap,qX ⊗OX L). Then

(D′)∗ = i(L∗∂̄ − ∂̄L∗) = ∗∂̄ ∗ .
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Proof. The second relation involves only operators of the form α⊗ s 7−→ β⊗ s.
Hence it follows from the Hodge relations in the absolute case (Theorem 2.3).
So it remains to prove the first relation. Again we can assume that L is free
and that X = U is an open subset of Cn. Let s be a generator. An arbitrary
section of Ap,qX ⊗OX L can be written in the form α⊗ s with a differential form
α of type (p, q). From the definition we have

D(α⊗ s) = (dα)⊗ s+ α ∧D(s).

We write D(s) = θ ⊗ s where θ is the connection “matrix”. So the above
formula reads

D(α⊗ s) = (dα)⊗ s+ (α ∧ θ)⊗ s.
We separate into types

D′(α⊗ s) = (∂α)⊗ s+ (α ∧ θ)⊗ s,
D′′(α⊗ s) = (∂̄α)⊗ s.

We compute the formally adjoint operators. From the definition of the formally
adjoint operator it follows easily that the adjoint operators of α⊗ s 7→ ∂α⊗ s
is the operator β ⊗ s 7→ ∂∗β ⊗ s (where ∂∗ is the formally adjoint of ∂ in the
absolute case). The same is true for ∂̄ instead of ∂. The formally adjoint of the
operator α⊗ s 7→ α∧ θ⊗ s is easy, since this is a bundle operator. This implies
that the formally adjoint operator can be computed pointwise. We consider
now a special point a where θ(a) = 0. Then we get(

D′∗(α⊗ s)
)
(a) =

(
(∂∗β)⊗ s)

)
(a) =

(
(∗∂̄ ∗ α)⊗ s)

)
(a).

We see that the identity D′ = ∗∂̄∗ holds in all points a where θ(a) = 0. But this
identity is independent from the choice of a generator s. Hence it is sufficient
to show that for each point a there exists a generator (in a small neighborhood
of a is enough) such that θ(a) = 0. To prove this we take a new generator
s̃ = fs where f is a holomorphic function without zeros. The new connection
form connects as θ̃ = θ+d log f . We can assume that a holomorphic logarithm
g = log f exists. Since θ is a form of (1, 0) its evaluation at a point is given by n
constants C1, . . . , Cn. We can take for g a linear function C1z1 + · · ·+Cnzn and
then f = eg to cancel these constants. This finishes the proof of Proposition 3.6.

tu

4. Kodaira’s vanishing theorem

Let ω ∈ A1,1(X) ∩ A2
R (R) be a differential form on a complex manifold. We

recall that ω(a) can be considered as a alternating bilinear form

ω(a) : Ta(X)× Ta(X) −→ R.
We recall that then there exists a unique Hermitian form on TaX with imagi-
nary part ω(a).
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4.1 Definition. A holomorphic line bundle (L, H) on a complex manifold
equipped with a Hermitian metric is called positive, if the Hermitian form on
X corresponding to the Chern form of H is positive definite.

A line bundle L is called positive if there exists a Hermitian metric H on L
such that (L, H) is positive.

We see that a positive (L, H) is related to a Kähler metric. Hence positive
bundles can only exist on Kähler manifolds. We also mention that one can
define what it means that (L, H) is semipositive, even more, it is possible to
define what it means that (L, H) is positive or semipositive at some point.

(Semi-) positivity of a bundle depends only on its class in PicX. Hence we
can talk about (semi-) positive elments of PicX.

Let (L1, H1), (L2, H2) be two line bundles with Hermitian metrics. Then
L1 ⊗OX L2 carries an obvious tensor product metric H = H1 ⊗ H2. One
has

∂∂̄ log(H1 ⊗H2) = ∂∂̄ logH1 + ∂∂̄ logH2.

Hence the sum of two semipositive bundles is semipositive. If one of them is
positive, then the sum is positive. We also can define L1 > L2 if L1 − L2 > 0
(the same with ≥).

4.2 Proposition. Let L be a positive line bundle over a compact Kähler
manifold with Kähler form Ω. Assume that Ω represents the Chern class of L.
There exists a Hermitian metric H on L such that

Ω = i∂∂̄ logH.

Proof. We choose a Hermitian metric H of L as in Definition 4.2. Hence
we have a metric H on the bundle and a Kähler metric h on X. We define
Ω0 = i∂∂̄ logH. We know already that Ω0 and Ω define the same class in
H2(X,R). We want to modify H such they get equal. We can replace H by
ehH with a real differentiable function h. Hence we have to find h such that
Ω0 − Ω = i∂∂̄h, This global version of Proposition II.3.4 is proved as follows.

Ω0 − Ω = dη, η ∈ A1(X).

We decompose η = α+ ᾱ with α ∈ A1,0. From dη ∈ A1,1(X) we obtain ∂α = 0
and ∂̄α + ∂ᾱ = dη. Using Hodge theory we obtain α = α0 + ∂f with a tu-
harmonic α0 and a function f . Now we use in an essential manner that X is
Kählerien. The form α0 is also t̄u-harmonic and hence ∂̄α0 = 0. This gives
dη = ∂̄∂f + ∂∂̄f̄ . Set h = i(f̄ − f). tu
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4.3 The Kodaira-Nakano vanishing theorem. Let L be a positive (holo-
morphic) line bundle on a compact complex manifold. Then

Hp,q(X,L) = 0 for p+ q > n.

Proof. We choose a Hermitian metric H on the bundle L and a Hermitian
metric h on the manifold X which are tied together in the sense that i∂∂̄ logH
is the imaginary part of h (which can be considered as differential form as we
explained). We want to make use of the canonical connection (Proposition 3.4)

D = D′ +D′′.

Recall that D′′ = ∂̄ is defined in a naive way and that the operator D′ depends
on the use of the Hermitian metric H and should be considered as substitute
for ∂ in the case of the trivial bundle.

We use for simplicity the notation D′ = ∂ for the rest of this section.

But be aware that ∂̄ is a naive generalization from the absolute case (absence
of L) but ∂ depends on the choice of Hermitian metrics on L and X. We need
also an operator ∂∗. We do not want to compute the adjoint operator of ∂.
Instead of this we will make use of the following relation.

From Proposition 3.6 we have

∂∗ = ∗∂̄∗ = i(L∗∂̄ − ∂̄L∗).

4.4 Basic identity. Let (X,h) be an Hermitian manifold and let (L, H) be a
holomorphic line bundle with Hermitian metric. Then on AX ⊗C∞

X
L we have

the identities

∂∂̄ + ∂̄∂ = −iL, ∂̄∗∂∗ + ∂∗∂̄∗ = −iL∗.

Proof. This follows from the fact that Ω is the curvature form of D. Recall
that the curvature form is defined by D2. tu

The proof of the vanishing theorem now is very short. Let ω ∈ Ap,q(X,L)
be a t̄u-harmonic form. We want to prove that ω = 0 in the case p+ q > n. It
suffices to prove that ω is primitive, L∗ω = 0. We have ∂̄ω = 0 and ∂̄∗ω = 0.
Using the above formula for ∂∗ we obtain(

∂∗ω, ∂∗ω
)

=
(
i(L∗∂̄ − ∂̄L∗)ω, ∂∗ω

)
=
(
−i∂̄L∗ω, ∂∗ω

)
=
(
−iL∗ω, ∂̄∗∂∗ω

)
=
(
−iL∗ω, (∂̄∗∂∗ + ∂∗∂̄∗)ω

)
.
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Here (·, ·) denotes the scalar produce on Ap,q(L) (integrating 〈·, ·〉). Using the
basic identity we get (

∂∗ω, ∂∗ω
)

= −
(
iL∗ω, iL∗ω

)
.

The left hand side is ≥ 0, but the right hand side is ≤ 0. Hence both sides
have to be zero, in particular L∗ω = 0. Hence ω is a primitive form of degree
p + q > n. Such forms are zero (Proposition 1.7). This proves the vanishing
theorem. tu

We exhibit a special case of the Kodaira-Nakano vanishing theorem, namely
the case p = n. Recall that KX =

∧n
ΩX is called the canonical line bundle.

4.5 Kodaira vanishing theorem. Let L be a positive line bundle on the
compact complex manifold X. Then

Hq(X,KX ⊗OX L) = 0 for q > 0.

5. Blowing up

Let U, V be open subsets of C and assume that there is a holomorphic map
f : U → V . Assume furthermore that there is a point a ∈ V such that the
restriction f0 : U − f−1(a)→ V − {a} is biholomorphic. Then f is biholomor-
phic. Hence f−1(a) consists of only one point. We will not make use of this
and leave the proof to the interested reader.

In the case n > 1 the situation is different. Consider for example the
holomorphic map

C × C −→ C × C, (z, w) 7−→ (z, zw).

Then each point different from (0, 0) on the right hand side has just one inverse
image, but the inverse image of (0, 0) consists of all (z, 0) and is isomorphic to
C. One says that this C is an exceptional fibre. One can refine this construction
to get P 1(C) as exceptional fibre.

For this we consider V = Cn. Notice that the (n− 1)-dimensional complex
projective space P (V ) = Pn−1(C) can be identified with the set of lines (=one-
dimensional sub-vector spaces) in V . We just replace [z] by the line Cz. We
consider the complex manifold V × P (V ). We consider the subset

V̂ :=
{

(a, L) ∈ V × P (V ); a ∈ L
}
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and equip it with the induced topology (of the product topology). There are
natural projections p : V̂ → V and q : V̂ → P (V ). We determine the fibres
p−1(a). This fibre consists of precisely one point if a 6= 0, namely the point
(a,Ca). The fibre over 0 consists of all (0, L) and hence can be identified with
the full P (V ). We will denote it by Y = p−1(0) and call it the exceptional fibre.

Next we will define a complex structure on V̂ . Recall

Pi(V ) = {L = Ca; ai 6= 0}.

This is an open subset of P (V ). The complex structure of P (V ) has been made
such that

Cn−1 ∼−→ Pi(V ), (z1, . . . , zn−1) 7−→ (̧z1, . . . , zi−1, 1, zi, . . . , zn),

is a holomorphic chart. Similarly we define

V̂i = {(a, L) ∈ V̂ ; L ∈ Pi(V )}.

We may assume V = Cn. We consider in Pn−1(C) = P (Cn) the open subset
Pn−1
i C consisting of all [z1, . . . , zn] such that zi 6= 0. We denote by V̂i its

inverse image in V̂ . We construct a bijective map

CN ∼−→ V̂i.

(z1, . . . , zn) 7−→
(
(z1zi, . . . zi−1zi, zi, zi+1zi, . . . , znzi), [1, z2, . . . , zn]

)
.

It is clear that there exists a unique complex structure on V̂ such that these
maps are holomorphic charts. The projection V̂ → V clearly is holomorphic.
It is also easy to show that V̂ is a smooth submanifold of V × P (V ).

It is important to understand the blowing up construction. Therefore we
repeat it in the case V = C2. Then we have to consider two maps

C2 −→ V̂ , (z, w) 7−→
(
(z, zw), [1, w]

)
,

C2 −→ V̂ , (z, w) 7−→
(
(zw,w), [z, 1]

)
.

The image of them is V̂1 and V̂2. The union of both is V̂ . The inverse image
of V̂1 ∩ V̂2 is C∗ × C in the first case and C × C∗ in the second. The chart
transformation is

C∗ × C ∼−→ C × C∗, (z, w) 7−→
(
zw,

1

z

)
.

Now we consider the function HY : V̂ → R≥0 that is the composition of the

natural map V̂ → V and the function |z|2 := |z1|2 + · · ·+ |zn|2. This function
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vanishes on the exceptional fibre Y . We use it to define a Hermitian form on
the bundle JY (Remark III.7.4) through

〈f, g〉 =
fḡ

HY
.

At the first glance it is defined only outside Y , but we will see that it extends to
V̂ . To avoid many dots we restrict now to n = 2. The general case then should
be clear. We look at the Hermitian form on the two charts. Let a ∈ C∗ × C
be a point in the first chart and let U some open neighborhood. A section of
JY vanishes along Y ∩U and hence is of the form f = zf ′ with a holomorphic
function. So we see that we have a Hermitian form on the first chart and
similarly on the second chart. This carries over to arbitrary n. So we have
constructed a Hermitian metric on the bundle JY on V̂ . We compute its
Chern form. Again we restrict to n = 2 and to the first chart.

〈z, z〉 =
zz̄

zz̄ + zz̄ww̄
=

1

1 + ww̄
.

So the Chern form (in the first chart) is

1

2πi
∂∂̄ log

1

1 + ww̄
= − 1

2πi

1

1 + ww̄
dw ∧ dw̄.

We are more interested in the dual bundle J ∗Y we can equip it with the Hermi-
tian form H−1

Y .

5.1 Lemma. The Chern form bundle of JY , considered on the blow up of
Cn in the origin, and equipped with the Hermitian metric H−1

Y is given on the

ith chart V̂i through
1

2πi

∑
j 6=i

1

1 + zj z̄j
dzi ∧ dz̄j .

The associated Hermitian form is positive semidefinite.

We treat another example of a Chern form. We start with some Hermitian
metric on the trivial bundle OV . It is just given by an everywhere positive
differentiable function H : V → R>0, namely 〈f, g〉 = Hfḡ. We can pull back
H to a positive function Ĥ on V̂ . This defines in the same way a Hermitian
metric on OV̂ . We recall OV̂ = π∗OV . The Chern form ω̂ agrees with ω
outside the exceptional locus. Hence it must be ω̂ = π∗ω. This generalizes to
holomorphic line bundles L on V since they are trivial in an open neighborhood
of the origin. So we see the following result.

5.2 Remark. Let (L, H) be a holomorphic line bundle on V with Hermitian
form. This form extends to a Hermitian form Ĥ on the inverse image L̂ on
V̂ .

Assume now that (L, H) is positive. Then (L̂, Ĥ) is semipositive and definite
outside the exceptional fibre. Combining this with Lemma 5.1 we get the
following result.
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5.3 Lemma. Let (L, H) be a positive line bundle on V = Cn. Then

L̂ ⊗OX̂ JY

is positive (with respect to the tensor product of the Hermitian forms Ĥ and
HY ).

Proof. We consider the blow up construction in a chart (z, w) 7→ (u, v) =
(z, zw). We have to pull back a differential form h0du∧dū+h1du∧dv̄+ h̄1dv∧
dū+h2dv∧dv̄ whose associated Hermitian 2×2-matrix is positive definit. The
pulled back form has been restriced to the exceptional divisor z = 0. The result
is (

h0 + h1w̄ + h̄1w + h2ww̄ 0
0 0

)
.

The first diagonal element is positive for all w. By Lemma 5.1 the bundle
JY leads to a matrix such that the second diagonal element is positive and the
other entries are zero. The sum of the two matrices is positive definite. tu

We need a generalization of the blow up construction. Let X be a complex
manifold and let a ∈ X be point. Consider a holomorphic chart U → U ′ ⊂ V ,
a 7→ 0 around a. Denote by Û ′ the inverse image of U ′ in V̂ . Then consider
the disjoint union

X̂ = (X − U) ∪ Û ′

There is an obvious structure as complex manifold on X̂ such that X̂ → X
is holomorphic. The inverse image Y of a is biholomorphic to Pn−1(C) and
X̂−Y ∼−→ X−{a} is biholomorphic. We call X̂ the blow-up of X of the point
a. It is uniquely determined in an obvious sense.

6. Maps into the projective space

Let L be a holomorphic line bundle on a compact complex manifold (X,OX)
Assume that a basis of L(X)

s0, . . . , sN ∈ L(X)

has been selected. We consider the set X0 of all points x ∈ X such that at least
one of the values si(x) is different from zero. Recall that si(x) is an element
of the vector space L(x) ∈ Lx/mX,xLx. The set X0 is open. Let U ⊂ X0 be
an open subset over which L is trivial. Choosing a (holomorphic) trivialization
LU ∼= U × C, we can define (s0(x), . . . , sN (x)). Changing the trivialization
means to multiply (s0(x), . . . , sN (x)) by a joint factor. Hence the point

[s0(x), . . . , sN (x)] ∈ PN (C)
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is independent of the choice of the local trivialization. This means that we
obtain a map

X0 −→ PN (C).

Clearly this is a holomorphic map. The famous Kodaira embedding theorem
states that under certain circumstances X0 = X and moreover that

X −→ PN (C)

is a closed embedding, i.e. a biholomorphic map onto a smooth closed complex
submanifold.

6.1 Theorem. Let X be a compact complex manifold equipped with a positive
holomorphic line bundle L. Then there exists a number k0 suche that for each
k ≥ k0 and for each a there exists a section s ∈ L⊗k(X) such that s(a) 6= 0

All ideas of the proof of Kodaira’s embedding theorem are contained in the
proof of this theorem. The rest of this and the following section are dedicated
its proof. In the last section we then will complete the proof of the embedding
theorem.

For the proof we will make use of the blow up of a point a

X̂ −→ X

and the pull back L̂ of the line bundle L to X̂. This is a line bundle on X̂. The
construction of the pull back gives a natural map L(X) −→ L̂(X̂).

6.2 Lemma. Let X be a complex manifold, X̂ → X the blow up in a point
and L a holomorphic line bundle on X The natural map

L(X) −→ L̂(X̂)

is an isomorphism.

Proof. We can assume that the dimension is > 1. Then we have to apply an
elementary result of complex analysis, which we state without proof (absence
of isolated singularities in more than one variable):

Let U ⊂ Cn, n > 0 be an open subset and a ∈ U a point. Every holomorphic
function on U − {0} extends to a holomorphic function on U .

A consequence of this remark is: Let s by a section of L over X − {a}. Then
s extends to a global holomorphic section. The implies Lemma 6.2. tu

In the following we denote by Y the exceptional fibre of X̂ and by J ⊂ OX̂
the vanishing sheaf of Y . This is a line bundle. We consider the short exact
sequence

0 −→ J L̂ −→ L̂ −→ L̂/J −→ 0.
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We claim
H0(X̂, L̂/J ) = C.

This is clear if L is the trivial bundle OX , since then

ÔX/J = j∗(OY ).

The global sections are holomorphic functions on Y (Riemann sphere) and
hence constant. The general case follows from this special one, since L is
trivial in some open neighborhood of a.

We now apply the long exact cohomology sequence and obtain the exact
sequence

L(X) −→ C −→ H1(X,J L̂).

It may happen that H1(X,J L̂) vanishes. In this case we obtain that L(X)→
C is surjective and hence the existence of a non-trivial global section. If one
looks how this map is defined on sees:

6.3 Lemma. Let X be a complex manifold, X̂ → X the blow up in a point a
and let L be a holomorphic line bundle. We denote by Y ⊂ X̂ the exceptional
fibre. Assume H1(X̂,JY L̂) = 0. Then there exists a global section of L which
doesn’t vanish at a.

Let R be a ring, M a free R-module and a an ideal of R. The natural map
a⊗RM → aM is an isomorphism. Hence

J L̂ = J ⊗OX̂ L̂

is the tensor product of two line bundles and hence a line bundle too. This
gives us hope that Kodaira’s vanishing theorem(applied to X̂) will help us to
prove the existence of global sections. For this we need positive bundles on the
blow up X̂.

7. Positive bundles on the blow up

In this section X is a connected compact complex manifold of dimension n
and (L, H) is a positive holomorphic line bundle on X. The blow up of X in
some point a is denoted by X̂ and L̂ is the inverse image of L on X̂. The
exceptional fibre is denoted by Y ⊂ X̂. We want to construct positive bundles
on X̂. The first candidate could be L̂. But we will see that this bundle is not
positive. Nevertheless it carries an (uniquely determined) Hermitian metric Ĥ
that agrees with H outside the exceptional locus. We repeat the construction
from Remark 5.2 in our new context. We can assume that L = OX . But then
the Hermitian metric is just given by a positive function H. We can pull back
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this function to a function Ĥ on X̂ and use it to define a Hermitian metric on
OX̂ = π∗OX . In this way, we get a Hermitian metric Ĥ on L̂. We want to

compute the corresponding Chern form ω̂ = ∂∂̄ log Ĥ. This must be of course
the pull back of the Chern form ω of L.

7.1 Lemma. There exists a number k0, independent of the base point a, such
that the bundle

kL̂+ [Y ], k ≥ k0,

is positive.

(Recall that kL̂ is the image of L̂⊗k in the Picard group.)

Proof. We have a Hermitian metric H such that (L, H) is positive on X. As
we have seen this extends to a Hermitian metric Ĥ on L̂ that is semipositive
and positive definite outside the exceptional fibre. We need a Hermitian met-
ric on LY . We have one in some open neighborhood of the exceptional fibre
(Lemma 5.1). We can use it to construct a Hermitian metric on LY (considered
on X) which coincides with this one in some open neighborhood of Y ⊂ X̂.
The bundle L̂ ⊗OX̂ LY then can be equipped with the product metric. The
Chern form of this product metric has the desired positivity condition on this
neighborhood. The complement of this neighborhood is compact. Hence we
find a number k0 such that for all k ≥ k0 the bundle L̂⊗k⊗OX̂ LY gets positive
on this compact subset and hence everywhere. It is clear that k0 can be taken
constant on some neighborhood of a. A compactness argument shows that it
can be chosen independently on a. tu

We need the vanishing of the cohomology of kL̂+[Y ] for big enough k. (Then
if not L but Lk admits a global section that does not vanish at a). We want to
apply Kodaira’s vanishing theorem. Therefore we need that kL̂+ [Y ]−KX̂ is

positive. So we have to understand the canonical class KX̂ on X̂. We make use
of the pull back construction for OX -module and consider π∗KX . We denote
its class by K̂X . There should be a relations to the canonical class KX̂ on X̂.

7.2 Lemma. Let X̂ the blow up of a complex manifold X at some point a.
Then KX̂ equals K̂X + (n− 1)[Y ].

Proof. The claim is π∗(KX) ∼= KX̂ ⊗OX̂ L
⊗(1−n)
Y , or, by functoriality,

KX ∼= π∗
(
KX̂ ⊗OX̂ L

⊗(1−n)
Y

)
.

This means that we have to define for each open U ∈ X a map(
KX̂ ⊗OX̂ L

⊗(1−n)
Y

)
(π−1U) −→ KX(U).

This map will be induced by sheafifying of a map

KX̂(π−1U)⊗OX̂(π−1U) L
⊗(1−n)
Y (π−1U) −→ KX(U).
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Instead of this we can construct a bilinear map

KX̂(π−1U)× L⊗(1−n)
Y (π−1U) −→ KX(U).

tu
Now we attack kL̂ + [Y ] −KX̂ . First we notice that kL̂ − n[Y ] is positive

for big k (namely k ≥ k0n). We write k = k1 + k2 and get

kL̂+ [Y ]−KX̂ = (k1L̂+ (n− 1)[Y ]) + (k2L̂− K̂X) + (1− n)[Y ].

But k2L̂ − K̂X is the pull back of the bundle k2L + KX . Since X is compact
and L is positive this bundle is positive for big k2. Its pull back remains
semipositive. Hence kL̂+ [Y ]−KX̂ is the sum of a positive and a semipositive
bundle and hence positive. This proves Theorem 6.1. tu

8. The Kodaira embedding theorem

We can now formulate the main result.

8.1 Kodaira’s embedding theorem. Every compact complex manifold
which admits a positive line bundle is biholomorphic to a complex submanifold
of some projective space.

The idea is to use the techniques of the previous section and to embed the
manifold by means of a positive line-bundle L into some projective space. It
is easy to work out the conditions that L leads to an embedding. We need a
notation.

A section s ∈ L(U) of a holomorphic line bundle vanishes at point a ∈ L(U) in
at least in second order, if its germ sa is contained in m2

X,aLa, where mX,a ⊂ Oa
denotes the maximal ideal.

For L = OX this just means that the derivatives of order ≤ 2 of the function
s vanish at a.

8.2 Definition. A holomorphic line bundle L on a compact connected com-
plex manifold is called strict ample, if for every point a ∈ X there exist a
global (holomorphic) section s, which doesn’t vanish at a and such that the in-
duced map X → Pn(C) defines a biholomorphic map onto a smooth complex
submanifold of Pn(C).

The line bundle is called ample if there is some tensor power L⊗m which is
strict ample.

There are three necessary and sufficient conditions for a line bundle to be strict
ample.
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8.3 Definition. A holomorphic line bundle L on a compact complex manifold
is strict ample if the following three conditions are satisfied.

(C1) For every point a ∈ X there exist a global (holomorphic) section s, which
does not vanish at a.

(C2) Point separation: If a, b are two different points, then there exists a global
section s with s(a) = 0, s(b) 6= 0.

(C3) Infinitesimal separation: Let t ∈ L(U) be a holomorphic section in some
neighborhood of a point a. There exists a global section s such that s− t
vanishes at a in at least second order.

The condition (C1) can of course be cancelled. We left it, because it is the
basic starting condition. It implies that

X −→ Pm(C), x 7−→ [s0(x), . . . , sm(x)]

is a everywhere defined holomorphic map where s0, . . . , sm denotes a basis of
the space of global sections. The condition (C2) says that this map is injective
and (C3) shows that the tangent map is injective everywhere. Because X is
compact, the above map is a topological map from X onto its image. Now
it is clear that the image is smooth and that X is mapped biholomorphically
onto its image. Kodaira’s embedding theorem hence follows from the following
theorem.

8.4 Theorem. Positive line bundles are ample.

The converse is also true but we do not need this. The rest of this section
is dedicated the proof of this theorem. In the previous section we formulated
already a sufficient cohomological condition for (C1), namely H1(X̂,JY L̂) = 0
for all blow ups X̂ of X in arbitrary point, Y denotes the exceptional fibre
(=inverse image of a in X̂). It is easy to derive similar conditions for (C2) and
(C3). Hence we concentrate to (C1). At the end we indicate how the argument
has to modified to get (C2) and (C3).

We change a little bit the notations: Recall that the set of isomorphy classes
of holomorphic line bundles is an abelian group Pic(X). The composition is
induced by the tensor product. Following usual conventions, we use the sign
“+” for the composition in Pic(X). We also use the following notations. If L
is a holomorphic line bundle then we denote by L its image in PicX. If Y ⊂ X
is a smooth submanifold of a connected complex manifold X, then we use the
notation [Y ] = [JY ]. So in the new notation

[Y ] + L (replaces JY L̂ = JY ⊗OX̂ L̂).

8.5 Lemma. A line bundle L is strict ample if the following conditions are
satisfied:
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(C1’) Let X̂ → X the blow up of X in a point. Denote by Y the exceptional
fibre and by L̂ the pull back of L. The first cohomology of [Y ]+L̂ vanishes.

(C2’) Let a1, a2 be two different points of X and X̂ → X the blow up of X in
the two points a, b. Let Y1, Y2 be the two exceptional fibres and L̂ the pull
back of L. The first cohomology of [Y1] + [Y2] + L̂ vanishes.

(C3’) Let X̂ → X the blow up of X in a point. Denote by Y the exceptional
fibre and by L̂ the pull back of L. The first cohomology of [Y ] + [Y ] + L̂
vanishes.

We settled already the first case, The two others are similar. We skip them.
tu

Now the Kodaira vanishing theorem comes into the game. We denote by
KX ∈ Pic(X) the image of the canonical bundle of a compact complex manifold
X. By the vanishing theorem the first cohomology of a line bundle L vanishes
if L−KX is positive.

8.6 Lemma. A line bundle L is ample if there exists a natural number k0

such that for k ≥ k0 the following conditions are satisfied: In the notations of
Lemma 8.5 the following (classes of) bundles

kL̂+ [Y ]−KX̂ , kL̂+ [Y1] + [Y2]−KX̂ , kL̂+ 2[Y ]−KX̂

are positive.

Now we are ready for

The proof of the embedding theorem

We have to prove that alle positive line bundles on X satisfy the conditions
of the Lemma. We settled in Theorem 6.1 the first case. The two others are
similar. tu

Hodge manifolds

We want to give another formulation of the embedding theorem. It rests on
the following theorem.

8.7 Theorem. Let X be a complex manifold and α ∈ A1,1(X) be a real closed
differential form whose class is in the image of H2(X, Z). Then there exists a
holomorphic line bundle together with a Hermitian metric (L, h) such that

α =
1

2πi
∂∂̄ log h.
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Proof. One ingredient of the proof is Proposition II.3.4. It says that there
exists an open covering X =

⋃
Ui with the property α|Ui = (1/2πi)∂∂̄gi. Here

gi is a real differentiable function on Ui. Another ingredient is the isomorphism
H2(X, Z) ∼= H1(X, (C∞X ⊗R C)∗). It tells us that every element of H2(X, Z)
is the Chern class of a differentiable line bundle. We assume that it is given
through transition functions fij : Ui ∩ Uj → C∗ with respect to some open
covering. We can assume that it is the same covering X =

⋃
Ui. Our problem

is that the fij need not to be holomorphic. There is a corresponding element
in H1(X,A1

X closed). This is represented by the cocycle (1/2πi)d log fij . This
cocycle corresponds to the differentiable form α. Recall that this cocycle related
to α can to be taken as ∂gi − ∂gj . So we have two equivalent cocycles and we
get

d log fij = (∂gi − ∂gj) + (γi − γj).

Here γi is a closed 1-form on Ui. We can shrink the covering and assume that
γi = dbi. Now we replace fij by the equivalent cocycle fije

bi−bj . This cancels
the γi and we can assume

d log fij = ∂gi − ∂gj .

The differential form on the right hand side is of type (1, 0). Hence ∂̄ log fij
must vanish. This implies that log fij and then fij is holomorphic. We get
∂ log fij = ∂gi − ∂gj or

log fij = gi − gj + Fij

with an antiholomorhic function Fij . Its imaginary part equals the imaginary
part of log fij . Since an antiholomorphic function is determined by its imagi-
nary part up to an additive constant, we obtain Fij = − log fij +Cij with some
constant Cij . This shows

log(|fij |2) = gi − gj + Cij .

We modify fij and consider

f̃ij = fije
−Cij/2.

This defines also a holomorphic line bundle. This is the line bundle that gives
the solution for Theorem 8.7. We have

log(|f̃ij |2) = hj/hi, hi = egi .

So the (hi) define a Hermitian metric. The pair (L̃, h) has the desired property.
tu
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8.8 Definition. A connected compact complex manifold X is called a Hodge
manifold if there exist a Kähler metric such that the corresponding Kähler
class is integral, i.e. in the image of H2(X, Z)→ H2(X,R).

If X is a Hodge manifold, h a corresponding Kähler metric and Ω associated
Kähler form. By assumption, its cohomology class is contained in H2(X, Z)→
H2(X,R). We know from Theorem 8.7 that there exists a holomorphic line
bundle L whose Chern class equals this cohomology class. This line bundle is
positive.

Assume conversely that L is a positive line bundle on a complex manifold.
Then from the Definition 4.1 there exists a Kähler metric with the desired
property. This shows the following result.

8.9 Theorem. A connected compact complex manifold X is projective alge-
braic if and only if it is a Hodge manifold.

In this context one should mention that by Chow’s theorem every complex
submanifold of a projective space is algebraic. Hence Hodge manifolds are
“projective algebraic”.
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Appendices



Chapter V. Sheaves

1. Abelian groups

We assume that the reader is familiar with the notion of an abelian group and
homomorphism between abelian groups. If A is a subgroup of an abelian group
B, then the factor group B/A is well defined. All what one needs usually is
that there is a natural surjective homomorphism f : B → B/A with kernel A.
Let f : B → X be a homomorphism into some abelian group. Then f factors
through a homomorphism B/A→ X if and only if the kernel of f contains A.
That f factors means that there is a commutative diagram

B //

��

X

B/A

=={{{{{{{{

Let f : A → B be a homomorphism of abelian groups. Then the image f(A)
is a subgroup of B. If there is no doubt which homomorphism f is considered,
we allow the notation

B/A := B/f(A).

1.1 Lemma. A commutative diagram

A //

��

B

��
C // D

induces homomorphisms

B/A −→ D/C, C/A −→ D/B.

A (finite or infinite) sequence of homomorphisms of abelian groups

· · · −→ A −→ B −→ C −→ · · ·
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is called exact at B if

Kernel(B −→ C) = Image(A −→ B).

It is called exact if it is exact at every place. An exact sequence A → B → C
induces an injective homomorphism

B/A
� � // C .

The sequence 0 → A → B is exact if and only if A → B is injective. The
sequence A→ B → 0 is exact if and only if A→ B is surjective. The sequence

0 −→ A −→ B −→ C −→ 0

is exact if and only if A → B is injective and if the induced homomorphism
B/A → C is an isomorphism. A sequence of this form is called a short exact
sequence. Hence the typical short exact sequence is

0 −→ A −→ B −→ B/A −→ 0 (A ⊂ B).

2. Presheaves

We introduce the language of presheaves of abelian groups. This consists
mainly of definitions and simple remarks whose proofs are very simple. In
many cases they can be left to the reader.

2.1 Definition. A presheaf F (of abelian groups) on a topological space X is
a map which assigns to every open subset U ⊂ X an abelian group F (U) and
to every pair U, V of open subsets with the property V ⊂ U a homomorphism

rUV : F (U) −→ F (V )

such that rUU = id and such that for three open subsets U, V,W with the property
W ⊂ V ⊂ U the relation

rUW = rVW ◦ rUV
holds.

Example: F (U) is the set of all continuous functions f : U → C and rUV (f) :=
f |V (restriction).

Many presheaves generalize this example. Hence the maps rUV are called
“restrictions” in general and one uses the notation

s|V = s|FV := rUV (s) for s ∈ F (U).

The elements of F (U) sometimes are called “sections” of F over U . In the
special case U = X they are called “global” sections.
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2.2 Definition. Let X be a topological space. A homomorphism of presheaves

f : F −→ G

is a family of group homomorphisms

fU : F (U) −→ G(U),

such that the diagram
F (U) −→ G(U)
↓ ↓

F (V ) −→ G(V )

commutes for every pair V ⊂ U of open subsets, i.e. fU (s)|GV = fV (s|FV ).

It is clear how to define the identity map idF : F → F of a presheaf and the
composition g ◦ f of two homomorphisms f : F → G, g : G→ H of presheaves.

There is also a natural notion of a sub-presheaf F ⊂ G. Besides F (U) ⊂
G(U) for all U , one has to demand that the restrictions are compatible. This
means:

The canonical inclusions iU : F (U)→ G(U) define a homomorphism i : F → G
of presheaves.

When f : F → G is a homomorphism of presheaves, the images fU (F (U))
define a sub-presheaf of G. We call it the presheaf-image and denote it by

fpre(F ).

It is also clear that the kernels of the maps fU define a sub-presheaf of F . We
denote it by Kernel(f : F → G). When F is a sub-presheaf of G, then one
can consider the factor groups G(U)/F (U). It is clear how to define restriction
maps to get a presheaf G/preF . We call this presheaf the factor presheaf.

Since we have defined kernel and image, we can also introduce the notion
of a presheaf-exact sequence. A sequence F → G→ H is presheaf-exact if and
only if F (U) → G(U) → H(U) is exact for all U . presheaf-exact sequences of
presheaves of abelian groups.

3. Germs and Stalks

Let F be a presheaf on a topological space X and let a ∈ X be a point.
We consider pairs (U, s), where U is an open neighbourhood of a and where
s ∈ F (U) is a section over U . Two pairs (U, s), (V, t) are called equivalent if
there exists an open neighborhood a ∈ W ⊂ U ∩ V , such that s|W = t|W .
This is an equivalence relation. The equivalence classes

[U, s]a :=
{

(V, t); (V, t) ∼ (U, s)
}
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are called germs of F at the point a. The set of all germs

Fa :=
{

[U, s]a, a ∈ U ⊂ X, s ∈ F (U)
}

is the so-called stalk of F at a. The stalk carries a natural structure as abelian
group. One defines

[U, s]a + [V, t]a := [U ∩ V, s|U ∩ V + t|U ∩ V ]a.

We use sometimes the simplified notation

sa = [U, s]a.

For every open neighborhood a ∈ U ⊂ X there is an obvious homomorphism

F (U) −→ Fa, s 7−→ sa.

A homomorphism of presheaves f : F → G induces natural mappings

fa : Fa −→ Ga (a ∈ X).

The image of a germ [U, s]a is simply [U, fU (s)]a. It is easy to see that this is
well-defined.

3.1 Remark. Let F → G and G → H be homomorphisms of presheaves
and let a ∈ X be a point. Assume that every point a contains arbitrarily
small open neighborhoods U such that F (U) → G(U) → H(U) is exact. Then
Fa → Ga → Ha is exact.

Corollary. If F → G→ H is presheaf-exact then Fa → Ga → Ha is exact for
all a.

(“Arbitrarily small” means that each neighborhood W of a contains a U .) The
proof is easy and can be omitted. tu

For a sub-presheaf F ⊂ G the natural homomorphisms Fa → Ga are in-
jective. Usually we will identify Fa with its image in Ga. In particular, for a
homomorphism F → G of presheaves and a point a ∈ X, fa(Fa) and fpre(F )a
both are subgroups of Ga. It is easy to check that they are equal.

fpre(F )a = fa(Fa).

If F is a presheaf on X, one can consider for each open subset U ⊂ X
F (0)(U) :=

∏
a∈U

Fa.

The elements are families (sa)a∈U with sa ∈ Fa. There is no coupling between
the different sa. Hence F (0)(U) usually is very monstrous.

For open sets V ⊂ U , one has an obvious homomorphism (projection)
F (0)(U) → F (0)(V ). Hence we obtain a presheaf F (0) together with a nat-
ural homomorphism F −→ F (0). Each homomorphism F → G of presheaves
induces a homomorphism F (0) → G(0) such that the diagram

F −→ G
↓ ↓

F (0) −→ G(0)

commutes.



§4. Sheaves 101

4. Sheaves

4.1 Definition. A presheaf F is called a sheaf if the following conditions
are satisfied:

(G1) When U =
⋃
Ui is an open covering of an open subset U ⊂ X and if

s, t ∈ F (U) are sections with the property s|Ui = t|Ui for all i, then
s = t.

(G2) When U =
⋃
Ui is an open covering of an open subset U ⊂ X and if

si ∈ F (Ui) is a family of sections with the property

si|Ui ∩ Uj = sj |Ui ∩ Uj for all i, j,

then there exists a section s ∈ F (U) with the property s|Ui = si for all i.

(G3) F (∅) is the zero group.

The presheaf of continuous functions clearly is a sheaf, since continuity is a
local property. An example of a presheaf F , which usually is not a sheaf, is
the presheaf of constant functions with values in Z (F (U) = {f : U → Z, f
constant}). But the set of locally constant functions with values in Z is a sheaf.

By a subsheaf of a sheaf F we understand a sub-presheaf G ⊂ F which
is already a sheaf. If F,G are sheaves, then a homomorphism f : F → G of
presheaves is called also a homomorphism of sheaves.

4.2 Remark. Let F ⊂ G be a sub-presheaf. We assume that G (but not
necessarily F ) is a sheaf. Then there is a smallest subsheaf F̃ ⊂ G which
contains F . For an arbitrary point a ∈ X the induced map fa : Fa → F̃a is an
isomorphism.

Proof. It is clear that F̃ (U) has to be defined as set of all s ∈ G(U) such that
there exists an open covering U =

⋃
Ui, such that s|Ui is in F (Ui) for all i.

This is equivalent with: the germ sa is in Fa for all a ∈ U , i.e.

F̃ (U) = {s ∈ G(U); sa ∈ Fa for a ∈ U}. tu

We mention the trivial fact that a section s ∈ F (U) of a sheaf is zero if all its
germs sa ∈ Fa are zero for a ∈ U .

4.3 Definition. Let F → G be a homomorphism of sheaves. The sheaf-
image fsheaf(F ) is the smallest subsheaf of G, which contains the presheaf-image
fpre(F ).

We mentioned above the formula fpre(F )a = fa(Fa). Applying Remark 4.2
gives the formula fsheaf(F )a = fa(Fa) for a homomorphism F → G of sheaves.

We have to differ between two natural notions of surjectivity.
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4.4 Definition.
1) A homomorphism of presheaves f : F → G is called presheaf-surjective

if fpre(F ) = G.

2) A homomorphism of sheaves f : F → G is called sheaf-surjective if
fsheaf(F ) = G.

When F and G both are sheaves, then sheaf-surjectivity and presheaf-surjecti-
vity are different things. We give an example which will be basic.

Let O be the sheaf of holomorphic functions on C, hence O(U) is the set of
all holomorphic functions on an open subset U . This is a sheaf of abelian groups
(under addition). Similarly, we consider the sheaf O∗ of holomorphic functions
without zeros. This is also a sheaf of abelian groups (under multiplication).
The map f → ef defines a sheaf homomorphism

exp : O −→ O∗.

The map O(U) → O∗(U) is not always surjective. For example for U = C.

the function 1/z is not in the image. Hence exp is not presheaf-surjective. But
it is know from complex calculus that exp : O(U) → O∗(U) is surjective if U
is simply connected, for example for a disk U . Since a point admits arbitrarily
small neighborhoods which are disks, it follows that exp is sheaf-surjective.

4.5 Remark. A homomorphism of sheaves f : F → G is sheaf-surjective if
and only if the maps fa : Fa → Ga are surjective for all a ∈ X.

We omit the simple proof. tu
Fortunately, the notion “injective” does not contain this difficulty. For

trivial reason the following remark is true.

4.6 Remark. Let f : F → G be a homomorphism of sheaves. The kernel in
the sense of presheaves is already a sheaf.

Hence we don’t have to distinguish between presheaf-injective and sheaf-
injective and also not between presheaf-kernel and sheaf-kernel.

4.7 Remark. A homomorphism of sheaves f : F → G is injective if and only
if the maps fa : Fa → Ga are injective for all a ∈ X.

A homomorphism of (pre)sheaves f : F → G is called an isomorphism if all
F (U)→ G(U) are isomorphisms. Their inverses then define a homomorphism
f−1 : G→ F .

4.8 Remark. A homomorphism of sheafs F → G is an isomorphism if and
only if Fa → Ga is an isomorphism for all a.

For presheaves this is false. As counter example one can take for F the presheaf
of constant functions and for G the sheaf of locally constant functions.

It is natural to introduce the notion of sheaf-exactness as follows:
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4.9 Definition. A sequence F → G→ H of sheaf homomorphisms is sheaf-
exact at G if the kernel of G→ H and the sheaf-image of F → G agree.

Generalizing the remarks 4.5 and 4.7 one can easily show the following propo-
sition.

4.10 Proposition. A sequence F → G → H is exact if and only if Fa →
Ga → Ha is exact for all a.

We indicate the proof. We make use of the mentioned formula fsheaf(F )a =
fa(Fa). This shows that we can replace F by its sheaf image in G. Hence we
can assume that F is a subsheaf of G and F → G is the natural injection.
We have to show that the exactness of the sequences Fa → Ga → Ha implies
that F is the kernel of G → H. It is clear that F is contained in the kernel.
Hence it suffices to show the following. Let s ∈ G(U) be an element of the
kernel G(U) → H(U). Then we know that the germs sa are in the kernel of
Ga → Ha. Hence they are contained in Fa. This means that there exists an
open covering U =

⋃
Ui such that s|Ui ∈ F (Ui). The sheaf axiom G2 implies

that they glue to an element of F (U). The sheaf axiom G1 then shows that
this element agrees with s. tu

Our discussion so far has obviously one gap. Let F ⊂ G be a subsheaf of a
sheaf G. We would like to have an exact sequence

0 −→ F −→ G −→ H −→ 0.

The sheaf H should be the factor sheaf of G by F . But up to now we only
defined the factor presheaf G/preF which usually is not a sheaf. In the next
section we will give the correct definition for a factor sheaf G/sheafF .

5. The generated sheaf

For a presheaf F we introduced the monstrous presheaf

F (0)(U) =
∏
a∈U

Fa.

Obviously F (0) is a sheaf. Sometimes it is called the “Godement sheaf” or the
“associated flabby sheaf”. There is a natural homomorphism

F −→ F (0).

We can consider its presheaf-image and then the smallest subsheaf which con-
tains it. We denote this sheaf by F̂ and call it the “generated sheaf” by F .
There is a natural homomorphism

F −→ F̂ .

From the construction follows immediately
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5.1 Remark. Let F be a presheaf. The natural maps

Fa
∼−→ F̂a

are isomorphisms.

A homomorphism F → G of presheaves induces a homomorphism F (0) → G(0).
Clearly F̂ is mapped into Ĝ. This gives us the following result.

5.2 Remark. Let f : F → G be a homomorphism of presheaves. There is a
natural homomorphism F̂ → Ĝ, such that the diagram

F −→ G
↓ ↓
F̂ −→ Ĝ

commutes.

When F is already a sheaf, then F → F (0) is injective. Then the map of F into
the presheaf-image is an isomorphism. This implies that the presheaf-image is
already a sheaf.

5.3 Remark. Let F be a sheaf. Then F → F̂ is an isomorphism.

If F is a sub-presheaf of a sheaf G, then the induced map F̂ → Ĝ ∼= G is
an isomorphism F̂ → F̃ between F̂ and the smallest subsheaf F̃ of G, wich
contains F .

Hence we can identify F̃ and F̂ .

Factor sheaves and exact sequences of sheaves

Let F → G be a homomorphism of presheaves. We introduced already
the factor presheaf G/preF which associates to an open U the factor group
G(U)/F (U). Even if both F and G are sheaves this will usually be not a sheaf.
Hence we define the factor sheaf as the sheaf generated by the factor presheaf.

G/sheafF := Ĝ/preF.

Since we are interested mainly in sheaves, we will write usually for a homomor-
phism of sheaves f : F → G:

G/F := G/sheafF (factor sheaf)

f(F ) := fsheaf(F ) (sheaf image)

Notice that there is no need to differ between sheaf- and presheaf-kernel. When
we talk about an exact sequence of sheaves

F −→ G −→ H,



§6. Some commutative algebra 105

we usually mean “sheaf exactness”. All what we have said about exactness
properties of sequences of abelian groups is literally true for sequences of
sheaves. For example: a sequence of sheaves 0 → F → G (0 denotes the
zero sheaf) is exact if and only if F → G is injective. A sequence of sheaves
F → G→ 0 is exact if and only if F → G is surjective (in the sense of sheaves
of course). A sequence of sheaves 0→ F → G→ H → 0 is exact if and only if
there is an ismomorphism H ∼= G/F which identifies this sequence with

0 −→ F −→ G −→ G/F −→ 0.

5.4 Remark. Let 0 → F → G → H → 0 be an exact sequence of sheaves.
Then for open U the sequence

0→ F (U)→ G(U)→ H(U)

is exact.

Corollary. The sequence

0→ F (X)→ G(X)→ H(X)

is exact.

The simple proof can be left to the reader. tu
Usually G(X) −→ H(X) is not surjective as the example

0 −→ ZX −→ O
f 7→e2πif

−→ O∗ −→ 0

shows. Here ZX denotes the sheaf of locally constant functions with values in
Z. Cohomology theory will measure the absence of right exactness. The above
sequence will be part of a long exact sequence

0 −→ F (X) −→ G(X) −→ H(X) −→ H1(X,F ) −→ · · ·

6. Some commutative algebra

In the following all rings are assumed to be commutative and with unit element.
Modules M always are assumed to have the property 1 ·m = m. Let M,N be
two R-modules, we set

Hom(V,W ) = HomR(V,W ) =
{
f : V −→W ; f R-linear

}
.

This is R-module too.
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A special case is the dual module

M∗ = HomR(M,R).

The dual module is contravariant, i.e. a linear map f : M → N induces an
obvious linear map f∗ : N∗ → M∗. A module M is called free if it admits a
basis. By definition, a basis here means subset B ⊂ M that each element of
m ∈M can be written in a unique way as linear combination

m =
∑
b∈B

rbb

where all but finitely many rb are different from zero. This means that M
is isomorphic to a module M I . It consists of all maps I → M which are
zero outside a finite map. We are mainly interested in finitely generated free
modules. They are isomorphic to Rn. If R is not the zero ring, the number
n is uniquely determined and called the rank of R. (This is well known for
fields and follows then in general. Use the existence of a maximal ideal m and
consider the field R/m.) Let e1, . . . , en be a basis of M then one obtains a basis
e∗1, . . . , e

∗
n of M∗ by

e∗i (ej) := δij =
{

1 if i = j
0 else.

Hence M and M∗ have the same rank. Hence they are isomorphic, but the
isomorphim is not canonical, it depends on the choice of bases.

Pairings

Let M,N be R-modules and let

M ×N −→ R, (a, b) 7−→ 〈a, b〉.

be a bilinear form (i.e. R-linear in both variables) There are induced two linear
maps

M −→ N∗, N −→M∗.

For example the first one attaches to an element a ∈M the linear form

la(x) := 〈a, x〉 (x ∈ N).

There are two important special cases:

In the case
M ×M∗ −→ R, 〈a, l〉 := l(a)

one obtains a linear map M∗ → M∗ which turns out to be the identity and a
linear map

M −→M∗∗
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which is more interesting. In the case that M is finitely generated free, one
sees that this map is an isomorphism. (This depends heavily on our assumption
that M is free and of finite rank.) We say that M and M∗∗ are canonically
isomorphic.

Another interesting case is M = N , i.e.

M ×M −→ K.

Hence we get two maps M → M∗. We are mainly interested in the case
that this pairing is symmetric, then both maps agree: Following properties are
equivalent: If e1, . . . , en is a basis, then the so-called Gram-matrix

(〈ei, ej〉)1≤i,j≤n

is invertible.

If this is the case, we call the pairing non-degenerated.

The tensor product

For two modules M,N over R we now want to study bilinear maps M×N → P
into arbitrary R-modules. There exists a distinguished one which we call the
tensor product.

6.1 Definition. Let M,N be R-modules. There exists a pair, consisting of
an R-module M ⊗R N and a bilinear map M × N → M ⊗R N such that for
each bilinear map M×N → P into an arbitrary module P there exists a unique
linear map M ⊗R P such that the diagram

M ×N //

##G
GG

GG
GG

GG
M ⊗R N

zzvv
vv
vv
vv
v

P

commutes.

We denote the defining bilinear map by

M ×R N −→M ⊗R N, (a, b) 7−→ ab.

We just indicate the proof of the existence. When we have M = RI then we
can set M ⊗R N = N I with an obvious map M × N → N I . In general we
choose an exact sequence

RJ −→ RI −→M −→ 0.
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and define M ×R ⊗N through the exact sequence

NJ −→ N I −→M ⊗R N −→ 0.

The tensor product M ⊗R N is generated by the special elements m⊗ n.

If f : M →M ′ and g : N → N ′ are R-linear maps, then one gets a natural
R-linear map

f ⊗ g : M ⊗R N −→M ′ ⊗R N ′, a⊗ b 7−→ f(a)⊗ g(a).

It is clear that this map is uniquely determined by this formula. The existence
follows from the universal property applied to the map (a, b) 7→ f(a)⊗ g(b).

Basic properties of the tensor product

There is a natural isomorphism

R⊗RM
∼−→ M, r ⊗m 7−→ rm,

and more generally
Rn ⊗RM

∼−→ Mn.

As a special case we get
Rn ⊗R Rm ∼= Rn×m.

This is related also to the formula

(M ×N)⊗R P ∼= (M ⊗R P )× (N ⊗R P ) (canonically).

There is an obvious generalization. Let M1, . . . ,Mn be a finite system of mod-
ules. Then there exists a module M1⊗R · · · ⊗RMn together with a multilinear
map

M1 × · · · ×Mn −→M1 ⊗ · · · ⊗Mn

in an obvious sense. By means of the universal property one proves easily
the associativity of the tensor product: For 1 < a < n one has the following
isomorphism

(M1 ⊗R · · · ⊗RMa)⊗ (Ma+1 ⊗ · · · ⊗Mn)
∼−→ M1 ⊗ · · · ⊗Mn,

(n1 ⊗ · · · ⊗ma)⊗ (ma+1 ⊗ · · · ⊗mn) 7−→ m1 ⊗ · · · ⊗mn.

and also the commutativity: Let σ be a permutation of the digits 1, . . . , n. One
has the isomorphism

M1 ⊗R · · · ⊗RMn
∼−→ Mσ(1) ⊗R · · · ⊗RMσ(n),

m1 ⊗ · · · ⊗mn 7−→ mσ(1) ⊗ · · · ⊗mσ(n).
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Since the tensor product is associative, it is mostly enough to treat the case
n = 2. There is also a commutativity rule for the tensor product.

For R-modules M1, . . . ,Mn and an R-module N we denote by

MultR(M1, . . . ,Mn, N)

the set of all multilinear maps from M1 × . . . ×Mn into N . There exists a
natural R-linear map

M1 ⊗R · · · ⊗RMn −→ MultR(M∗1 × · · · ×M∗n, R)

that sends m1 ⊗ · · · ⊗mn to the multilinear form

(L1, . . . , Ln) 7−→ L1(m1) · · ·Ln(mn).

Usually this is no isomorphism. But if the Mi are finitely generated free mod-
ules, for example finite dimensional vector spaces over a field, then this is an
isomorphism.

6.2 Remark. Let M1, . . . ,Md be finitely generated free R-modules. Then the
natural map

M1 ⊗R · · · ⊗RMn −→ MultR(M∗1 × · · · ×M∗n, R)

is an isomorphism.

Hence for finite dimensional vector spaces one can take this space of multilinear
forms as definition of the tensor product. But from standpoint of commutative
algebra this is the wrong approach. An interesting case is also the tensor
product of d copies of the same module M :

M⊗d :=

d︷ ︸︸ ︷
M ⊗R · · · ⊗RM .

We set additionally
M⊗0 = R, M⊗1 = M.

We consider the submodule C of M⊗d that is generated by all m1 ⊗ . . .⊗md

such that two of the mi are equal. We can define∧d
M := M⊗d/C.

There is a natural alternating multilinear map

Md = M × · · · ×M −→
∧d

M
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which we denote by m1 ∧ . . . ∧md. It satisfies an obvious universal property
for alternating multilinear forms of Md into an arbitrary module P . Here a
multilinear form f : Md → P is called alternating if f(m1, . . . ,md) = 0 if two
mi agree. Then

f(m1, . . . ,md) = sgn(σ)f(mσ(1), . . . ,mσ(d))

for all permutations σ. The R-module of all alternating multilinear maps is
denoted by

AltR(M, . . . ,M,N).

We give an example for an alternating map. The map

M∗ × . . .×M∗ −→ Alt(M × . . .×M,R)

that sends (L1, . . . , Ld) to the multilinear form

(x1, . . . , xd) 7−→ det((Li(xj))

is an alternating multilinear form.

6.3 Remark. There is a natural R-linear map∧d
M∗ −→ Alt(M × . . .×M,R)

that sends L1 ∧ . . . ∧ Ld to the multilinear form

det((Li(xj)).

There is a natural map

MultR(M × . . .×M,R) −→ AltR(M × . . .×M,R), f 7−→ falt,

where
falt(m1, . . . ,md) =

∑
σ

sgn(σ)f(mi1) · · · f(mid).

The diagram

(M∗)⊗d //

��

Mult(M × · · · ×M,R)

alt

��∧d
M∗ // Alt(M × · · · ×M,R)

is commutative. Of course Alt can also be considered as submodule of Mult.
But this fits not quite well in our point of view. The reason is that for an
alternating form f ∈ Alt(M × · · · ×M,R) we have

falt = d!f.

6.4 Remark. Let M ∼= Rn be a finitely generated free R-module and let R
be of characteristic 0. Then the natural arrow∧d

M∗ −→ Alt(M × · · · ×M,R)

is an isomorphism.
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7. Sheaves of rings and modules

Let A be a (commutative and unital) ring. A sheaf of A-modules is a sheaf F of
abelian groups such that every F (U) carries a structure as A-module and such
the the restriction maps F (U) → F (V ) for V ⊂ U are A-linear. A homomor-
phism F → G is called A-linear if all F (U) → G(U) are so. Then kernel and
image carry natural structures of sheafs of A-modules. Also the stalks carry
such a structure naturally. Hence the whole canonical flabby resolution is a
sequence of sheafs of A-modules. This implies that the cohomology groups also
are A-modules.

There is a refinement of this construction: By a sheaf of rings O we under-
stand a sheaf of abelian groups such that every O(U) is not only an abelian
group but a ring and such that all restriction maps O(U) → O(V ) are ring
homomorphisms. Then the stalks Oa carry a natural ring structure such that
the homomorphisms O(U) −→ Oa (U is an open neighborhood of a) are ring
homomorphisms.

By an O-module we understand a sheaf M of abelian groups such that
every M(U) carries a structure as O(U)-module and such that the restriction
maps are compatible with the module structure. To make this precise we give
a short comment. Let M be an A-module and N be a module over a different
ring B. Asssume that a homomorphism r : A→ B is given. A homomorphism
f : M → N of abelian groups is called compatible with the module structures
if the formula

f(am) = r(a)f(m) (a ∈ A, m ∈M)

holds. An elegant way to express this is as follows. We can consider N also as
an module over A by means of the definition an := r(a)n. Sometimes this A-
module is written as N[r]. Then the compatibility of the map f simply means
that it is an A-linear map

f : M −→ N[r].

Usually we will omit the subscript [r] and simply say that f : M → N is
A-linear.

If M is an O-module, then the stalk Ma is naturally an Oa-module. An
O-linear map f : M → N between two O-modules is a homomorphism of
sheaves of abelian groups such the maps M(U) → N (U) are O(U)-linear.
Then the kernel and image also carry natural structures of O-modules. Clearly,
the canonical flabby resolution of an O-module is naturally a sequence of O-
modules.

Since for every open subset U ⊂ X we have a ring homomorphism O(X)→
O(U), allM(U) can be considered as O(X)-modules. Hence an O-module can
be considered as sheaf of O(X)-modules.

Let M, N be two OX -modules. We denote by HomOX (M,N ) the set of
all OX -linear maps M→ N . This is an OX(X)-module. The case OnX →M
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is of particular interest. The induced map OX(X)n →M(X) distinguishes n
elements s1, . . . , sn in M(X).

7.1 Lemma. The natural map

Hom(OnX ,M)
∼−→ M(X)n

is an isomorphism.

Proof. The map OX(U)n −→ M(U) is necessarily of the form (f1, . . . , fn) 7→∑
fisi|U . tu
More generally, we can consider for every open U ⊂ X

U 7−→ HomOX |U (M|U,N|U).

It is clear that this is presheaf. It is easy to check that it is actually a sheaf
and moreover an OX -module. We denote it by

HomOX (M,N ).

We denote by OX(U)p×q the set of all p×q-matrices with entries from OX(U).
This is a free OX(U)-module. From Lemma 5.7.1 we get an

HomOX (OnX ,OmX )
∼−→ OX(X)m×n.

This extends to an isomorphism

HomOX (OpX ,O
q
X)

∼−→ Oq×pX .

There is another construction which rests on the tensor product of modules.
Let M, N be two OX -modules. The assignment

U 7−→M(U)⊗OX(U) N (U)

defines a presheaf. This is usually not a sheaf. Hence we consider the generated
sheaf and denote it byM⊗OXN . Clearly this is an OX -module. The notion of
an OX -bilinear map M×N → P for OX -modules M,N ,P and the following
universal property should be clear. For an OX -bilinear map M×N → P of
OX -modules there exists a unique commutative diagram

M×N //

##G
GG

GG
GG

GG
M⊗OX N

zzttt
ttt

ttt
t

P
with an OX -linear map M⊗OX N → P.

One also has OnX⊗OX OmX ∼= O
n×m
X . The construction of the tensor product

is compatible with the restriction to open subsets,

(M⊗OX N )|U ∼=M|U ⊗OX |U N|U.

This follows from the fact the construction of the generated sheaf F̂ is compat-
ible with restriction to open subsets.

Similarly to Hom we can define Mult and Alt.
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7.2 Remark. LetM1, . . . ,Mn be OX-modules. There is a natural OX-linear
map

M∗1 ⊗OX . . .⊗OX M∗n −→Mult (M1 × · · · ×Mn,OX).

In the case M1 = · · · =Mn =M there is a natural map∧n
M−→Alt (M1 × · · · ×Mn,OX).

8. Direct and inverse images

Let f : X → Y be a continuous map of topological spaces and let F be a
presheaf of abelian groups on X. Then one can define for an arbitrary open
subset V ⊂ Y

(f∗F )(V ) := F (f−1(V )).

With obvious restriction maps this defines a presheaf f∗F on X. It is called
the direct image. If F is a sheaf, then f∗F is a sheaf too. A homomorphism
of presheaves F → G induces a natural homomorphism f∗F → f∗G. We also
mention that there is a natural homomorphism

(f∗F )f(a) −→ Fa (a ∈ X).

There is a similar, but not quite so easy construction, which associates to a
presheaf G on Y a presheaf, actually a sheaf, f−1G on X. In the case of the
identity map we will obtain the generated sheaf F̂ . If i : U ↪→ X is the canonical
inclusion of an open subset and if G is a sheaf on X, then i−1G is naturally
isomorphic to the restriction G|U . Actually, we will construct a subgroup

(f−1G)(U) ⊂
∏
a∈U

Gf(a).

By definition, a family (ta)a∈U , ta ∈ Gf(a), belongs to this subgroup if it is
compatible in the following obvious sense. For each a ∈ U there exists a small
open neighborhood f(a) ∈ V ⊂ Y and a section t ∈ G(V ) with the property
ta = [V, t]f(a) for all a ∈ U such that f(a) ∈ V . It is easy to verify that this de-
fines a sheaf f−1G. A homomorphism of presheaves G→ H induces a natural
homomorphism f−1G→ f−1H. Notice that id−1G equals the generated sheaf.
For an open neighborhood a ∈ U ⊂ X there is a natural projection homomor-
phism (f−1G)(U) −→ Gf(a). It induces a homomorphism (f−1G)a → Gf(a).
This is actually an isomorphism.
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8.1 Lemma. Let f : X → Y be a continuous map and let G be a sheaf on
Y . There is a natural isomorphism

(f−1G)a
∼−→ Gf(a).

Let V ⊂ Y be an open subset. For each a ∈ f−1(V ) we can consider the
natural homomorphism G(V )→ Gf(a) and collect them to

G(V ) −→
∏

a∈f−1(V )

Gf(a).

The right hand side contains f−1(G)(f−1(V )) = f∗f
−1(G)(V ). It is easy to

check that the image of G(V ) is contained in this subgroup. So we obtain a
homomorphism G(V ) → f∗f

−1(G)(V ). It is easy to check that this gives a
homomorphism of sheaves.

8.2 Lemma. Let f : X → Y be a continuous map and let G be a sheaf on
Y . There is a natural homomorphism of sheaves

G −→ f∗f
−1(G).

Now we consider a sheaf F on X and we consider the sheaf f−1f∗F . Let
U ⊂ X be an open subset. Then (f−1f∗F )(U) is contained in

∏
a∈U (f∗F )f(a)

which can be identified with
∏
a∈U Fa. The module F (U) is embedded in this

product. It is easy to check that we obtain a homomorphism of f−1f∗F into
F .

8.3 Lemma. Let f : X → Y be a continuous map and let F be a sheaf on
X. There is a natural homomorphism of sheaves

f−1f∗F −→ F.

Assume now that a sheaf F on X and a sheaf G on Y is given. Let f−1G →
F be a homomorphism. It induces a homomorphism f∗f

−1G → f∗F , and,
making use of Lemma 8.2, we get a homomorphism G→ f∗F . Conversely, let
G → f∗F be a homomorphism. It induces f−1G → f−1f∗F and, by means
of Lemma 8.3, we get a homomorphism f−1G → F . It is easy to check that
the two construction are inverse. If we denote by Hom(F1, F2) the set of all
homomorphisms of one sheaf into another (on the same space), then we can
formalize this as follows.
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8.4 Proposition. Let f : X → Y be a continuous map, let F be a sheaf on
X, and let G be a sheaf on Y . There is a natural bijection

Hom(f−1G,F )
∼−→ Hom(G, f∗F ).

If one specializes this formula to G = f∗F , then one can consider the identity
on the right hand side. The corresponding homomorphism on the left-hand
side is that in Lemma 8.3. If one specializes it to F = f−1G, the identity on
the left hand side corresponds to Lemma 8.2.

Direct and inverse images of modules

We now assume that we have a morphism f : (X,OX)→ (Y,OY ) of geometric
spaces. Recall that we have for each open subset V ⊂ Y a natural homomor-
phism OY (V )→ OX(f−1V ). This can be read as a homomorphism of sheaves
OY → f∗OX . In fact, this is a homomorphism of sheaves of rings. (This
means that the occurring homomorphisms are homomorphisms of rings and
not only of abelian groups.) Using Proposition 8.4 we obtain a homomorphism
f−1OY → OX . It is easy to verify that f−1OY is a sheaf of rings and that this
homomorphism is a homomorphism of sheaves of rings. In particular, OX car-
ries a natural structure as f−1OY -module. Assume that M is an OX -module.
Then f∗M carries a natural structure as f∗OX -module. Using the homomor-
phism OY → f∗OX , we obtain a structure as OY -module. We say simply that
f∗M is an OY -module if M is an OX -module.

The situation for the inverse image is slightly more complicated. Let N be
an OY -module. It is no problem to equip f−1N with a structure as f−1OY -
module but there is no natural way to get a structure as OX -module. What
we can do is to consider

f∗N := f−1N ⊗f−1OY OX .

This carries a natural structure as OX -module. An OY -linear map N1 → N2

induces an OX -linear map f∗N1 → f∗N2. If we denote the set of all OY -linear
maps betweenN1 andN2 by HomOY (N1,N2), we obtain the following analogue
of Proposition 8.4.

8.5 Proposition. Let f : (X,OX) → (Y,OY ) be a morphism of geometric
spaces, let M be an OX-module, and let be N be a OY -module. There is a
natural bijection

HomOX (f∗N ,M)
∼−→ HomOY (N , f∗M).
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This includes natural homomorphisms

N −→ f∗f
∗N , f∗f∗M−→M.

8.6 Proposition. Let f : (X,OX) → (Y,OY ) be a morphism of geometric
spaces. There is a natural isomorphism

f∗OY ∼= OX .

Proof. By definition,

f∗OY = f−1OY ⊗f−1OY OX ∼= OX .

An easy consequence is f∗OnY ∼= OnX . The constructions f−1, the tensor prod-
uct and f∗ are all compatible with restriction to open subsets, for example
(f∗N )|U ∼= f∗(N|U). This proves Proposition 8.6. tu

9. Subspaces and sheaves

We are interested in the following situation. Let (X,OX) be a geometric space
(in our application a complex manifold) and let Y ⊂ X a closed subset. We
are interested in OX -modulesM with the propertyM|(X − Y ) = 0. We want
to show that such sheaves correspond to sheaves on Y . For this we want to
define the restriction N := M|Y . (The following looks natural: consider the
natural inclusion j : Y → X and define N = j−1M. This is indeed possible,
but we prefer another more direct way.) we have to consider an open subset
V ⊂ X. This is the intersection V = U ∩ Y . We want to define

N (V ) =M(U).

The problem is of course the uniqueness of this definition. Let U ′ be another
open subset of X with V = U ′ ∩ Y . Using the fact that Y is closed in X and
that M vanishes outside Y is it easy to see, that the restriction maps

M(U),M(U ′)
∼−→ M(U ∩ U ′)

are isomorphisms. This shows the claimed independence. To get a logical clean
definition one should better define

N (V ) := lim
−→
M(U).

Now we show that N and j−1M can be identified. For this we need a map
N −→ j−1M or, equivalently, j ∗ N →M. But this is clear.

The construction has a lack. At the moment we do not have a sheaf of rings
on OY , so M|Y is just a sheaf of abelian groups. We want to remedy this
situation.
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9.1 Definition. Let (X,OX) be a geometric space and let Y ⊂ X be a closed
subset. The vanishing ideal sheaf JY ⊂ OX consist of all functions in OX(U)
which vanish at Y ∩ U .

Clearly JX is an ideal sheaf (i.e. a sub-module of OX). Moreover OX/JY is a
sheaf of rings that vanishes on X − Y . We consider OY := (OX/JY )|Y . This
is a sheaf of rings. The elements of OY can be considered as functions and Y .
This defines a geometric structure.The natural inclusion j : (Y,OY )→ (X,X )
is a morphism of geometric spaces. Notice that for a OX -module that vanishes
outside X − Y the constructions j−1M and j∗M agree.

There is a converse construction Let N be an OY -module. Recall that j∗N
is a sheaf on X, actually an OX -module defined through

(j∗N )(U) := N (U ∩ Y ).

It vanishes outside Y , hence we should consider j∗(N|Y ).

9.2 Proposition. Let (X,OX) be a geometric space and let j : Y ↪→ X be the
natural inclusion of a closed subset. Let M be an OX-module which vanishes
outside Y . There is a natural isomorphism

M ∼−→ j∗(M|Y ).

Moreover there are natural isomorphisms of the stalks

Ma
∼−→ (M|Y )a (a ∈ Y ).

Let N by an OY module. There is a natural isomorphism

N ∼−→ (j∗N )|Y.

We treat an example of complex analyis. Let U ⊂ Cn an open subset and let
OU be the sheaf of holomorphic functions. Let f ∈ OU (U) be a holomorphic
function on U and assume that it vanishes along the set of all z ∈ U , z1 = 0.
Then f = z1g with g ∈ OU (U).

9.3 Remark. Let X be a complex manifold and Y a smooth subset of pure
codimension one. The ideal sheaf JY of Y is a line bundle. Let j : Y ↪→ X be
the natural injection. There is a natural exact sequence of OX-modules

0 −→ JY −→ OX −→ j∗OY −→ 0.
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There are various generalizations: Let M be a module over a ring R (commu-
tative and with unit). Let a ⊂ R be an ideal then aM is defined as the set of all
finite sums of elements of the form am, a ∈ a, m ∈M . This is a submodule of
M . Let more generally O be a sheaf of rings andM an O-module and J ⊂M
an ideal sheaf. Then U 7→ J (U)M(U) is a presheaf. The generated sheaf is
denoted by JM. This is is a O-submodule ofM. It is easy to prove that there
is a natural isomorphism

JaMa
∼−→ (JM)a.

In other words, the sequence

0 −→ JM −→M−→M/(JM) −→ 0

is exact.

10. Vector bundles

Let (X,OX) be a ringed space. A vector bundleM is a locally free OX -module.
The rank of M is locally constant, hence constant if X is connected. We say
that the rank of M is n if it is constant n. A vector bundle of rank 1 is called
a line bundle.

Let M,N be two vector bundles. Then HomOX (M,N ) is a vector bundle.
It is a line bundle if both are line bundles. The dual bundle of a vector bundle
M is defined as

M∗ := HomOX (M,OX).

It has the same rank as M.

Let M,N be two vector bundles. Then M⊗OX N is a vector bundle too.
This follows from the fact that the tensor product is compatible with restriction
to open subsets and that

OpX ⊗OX O
q
X
∼= Op×qX .

Recall that we have a natural bilinear map M ×M∗ −→ R. It induces a linear
map M ⊗RM∗ → R. Sheafifying we get an OX -bilinear map

M⊗OX M∗ −→ OX .

This is an isomorphism if M is a line bundle.
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10.1 Remark. Let M1, . . . ,Mn be vector bundles. The natural OX-linear
maps

M∗1 ⊗OX . . .⊗OX M∗n −→Mult (M1 × · · · ×Mn,OX).∧n
M−→Alt (M1 × · · · ×Mn,OX)

are isomorphisms.

10.2 Proposition. Let f : (X,OX) → (Y,OY ) be a morphism of geometric
spaces. Let N be a vector bundle on (Y,OY ) Then f∗N is a vector bundle too.
The rank is preserved.

10.3 Lemma. Let f : (X,OX) → (Y,OY ) be a morphism of geometric
spaces, let N be a vector bundle on Y , and let a be a point in X. There is a
natural isomorphism

(f∗N )a ∼= Nf(a) ⊗OY,f(a) OX,a.

Proof. It is sufficient to prove this for N = OY . In this case the proof is
trivial. tu

The Picard group

Let (X,OX) be a ringed space. One can show that there exists a set of line bun-
dles such that every line bundle is isomorphic to a line bundle of this set. (Look
at the transitions functions.) Therefore one can talk from the set Pic(X,OX)
of all isomorphy classes of line bundles. There is a composition in this set
induced by the tensor product. This composition is commutative and associa-
tive as from the corresponding properties of the tensor product follows. The
trivial line bundle OX defines a neutral element in Pic(X,OX). The inverse
comes from the constriction L∗. So we see that Pic(X,OX) has a structure as
commutative group.
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1. Some homological algebra

A complex A
.

is a sequence of homomorphisms of abelian groups (parameter-
ized by Z)

· · · // An−1

dn−1 // An
dn // An+1

// · · ·

such that the composition of two consecutive is zero, dn ◦ dn−1 = 0. Usually
one omits indices at the d-s and writes simply d = dn and hence d◦d = 0, which
sometimes is written as d2 = 0. The cohomology groups of A

.
are defined as

Hn(A
.
) :=

Kernel(An → An+1)

Image(An−1 → An)
(n ∈ Z).

They vanish if and only if the complex is exact. Hence the cohomology groups
measure the absence of exactness of a complex.

A homomorphism f
.

: A
. → B

.
of complexes is a commutative diagram

· · · // An−1 //

fn−1

��

An //

fn

��

An+1 //

fn+1

��

· · ·

· · · // Bn−1 // Bn // Bn+1 // · · ·

It is clear how to compose two complex homomorphisms f
.

: A
. → B

.
, g

.
:

B
. → C

.
to a complex homomorphism g

. ◦ f. : A
. → C

.
. A sequence of

complex homomorphisms

· · · −→ A
. −→ B

. −→ C
. −→ · · ·

is called exact if all the induced sequences

· · · −→ An −→ Bn −→ Cn −→ · · ·

are exact. There is also the notion of a short exact sequence of complexes

0 −→ A
. −→ B

. −→ C
. −→ 0.
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Here 0 stands for the zero complex (0n = 0, dn = 0 for all n).

A homomorphism of complexes A
. → B

.
induces natural homomorphisms

Hn(A
.
) −→ Hn(B

.
)

of the cohomology groups. These homomorphisms are compatible with the
composition of complex-homomorphisms. A less obvious construction is as
follows. Let

0 −→ A
. −→ B

. −→ C
. −→ 0

be a short exact sequence of complexes. We construct a homomorphism

δ : Hn(C
.
) −→ Hn+1(A

.
).

Let [c] ∈ Hn(C
.
) be represented by an element c ∈ Cn. Take a pre-image

b ∈ Bn and consider β = db ∈ Bn+1. Since β goes to d(c) = 0 in Cn+1 there
exists a pre-image a ∈ An+1. This goes to 0 in An+2 (because An+2 is imbedded
in Bn+2 and b goes to d2(b) = 0 there). Hence a defines a cohomology class
[a] ∈ Hn+1(A

.
). It is easy to check that this class doesn’t depend on the above

choices.

1.1 Fundamental lemma of homological algebra. Let

0 −→ A
. −→ B

. −→ C
. −→ 0

be a short exact sequence of complexes. Then the long sequence

· · · → Hn−1(C
.
)
δ→ Hn(A

.
)→ Hn(B

.
)→ Hn(C

.
)
δ→ Hn+1(C

.
)→ · · ·

is exact.

We leave the details to the reader. tu

There is a second lemma of homological algebra which we will need.
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1.2 Lemma. Let

0

��

0

��

0

��

0

��
0 // A00 //

��

A01 //

��

A02 //

��

A03 //

��

· · ·

0 // A10 //

��

A11 //

��

A12 //

��

A13 //

��

· · ·

0 // A20 //

��

A21 //

��

A22 //

��

A23 //

��

· · ·

0 // A30 //

��

A31 //

��

A32 //

��

A33 //

��

· · ·

...
...

...
...

be a commutative diagram where all lines and columns are exact besides the
first column and the first row (those containing A00). Then there is a natu-
ral isomorphism between the cohomology groups of the first row and the first
column,

Hn(A
., 0) ∼= Hn(A0, .)

For n = 0 this is understood as

Kernel(A00 −→ A01) = Kernel(A00 −→ A10).

The proof is given by “diagram chasing”. We only give a hint how it works.
Assume n = 1. Let [a] ∈ H1(A0,.) be a cohomology class represented by an
element a ∈ A0,1. This element goes to 0 in A0,2. As a consequence the image
of a in A1,1 goes to 0 in A1,2. Hence this image comes from an element α ∈ A1,0.
Clearly, this element goes to zero in A2,0 (since it goes to 0 in A2,1.) Now α
defines a cohomology class [α] ∈ H1(A

.,0). There is some extra work to show
that this map is well-defined. tu

2. The canonical flabby resolution

A sheaf F is called flabby if F (X) → F (U) is surjective for all open U . Then
F (U)→ F (V ) is surjective for all V ⊂ U . An example for a flabby sheaf is the
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Godement sheaf F (0). Recall that we have the exact sequence

0 −→ F −→ F (0).

We want to extend this sequence. For this we consider the sheaf F (0)/F and
embed it into its Godement sheaf,

F (1) := (F (0)/F )
(0)
.

In this way we get a long exact sequence

0 −→ F −→ F (0) −→ F (1) −→ F (2) −→ · · ·

If F (n) has been already constructed, then we define

F (n+1) :=
(
F (n)/F (n−1)

)(0)
.

The sheaves F (n) are all flabby. We call this sequence the canonical flabby
resolution or the Godement resolution. Sometimes it is useful to write the
resolution in the form

· · · // 0 //

��

F //

��

0 //

��

0 //

��

0 //

��

· · ·

· · · // 0 // F (0) // F (1) // F (2) // F (3) // · · ·

Both lines are complexes. The vertical arrows can be considered as a complex
homomorphism. The induced homomorphism of the cohomology groups are
isomorphisms. Notice that only the 0-cohomology group of both complexes is
different from 0. This zero cohomology group is naturally isomorphic F .

Now we apply the global section functor Γ to the resolution. This is

ΓF := F (X).

We obtain a long sequence

0 −→ ΓF −→ ΓF (0) −→ ΓF (1) −→ ΓF (2) −→ · · ·

The essential point is that this sequence is no longer exact. We only can say
that it is a complex. We prefer to write it in the form

· · · // 0 //

��

ΓF //

��

0 //

��

0 //

��

0 //

��

· · ·

· · · // 0 // ΓF (0) // ΓF (1) // ΓF (2) // ΓF (3) // · · ·
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The second line is

· · · −→ 0 −→ΓF (0) −→ ΓF (1) −→ ΓF (2) −→ · · ·
↑

zero position

Now we define the cohomology groups H
.
(X,F ) to be the cohomology groups

of this complex:

Hn(X,F ) :=
Kern(ΓF (n) −→ ΓF (n+1))

Image(ΓF (n−1) −→ ΓF (n))
.

(We define ΓF (n) = 0 for n < 0.) Clearly

Hn(X,F ) = 0 for n < 0.

Next we treat the special case n = 0,

H0(X,F ) = Kernel(ΓF (0) −→ ΓF (1)).

Since the kernel can be taken in the presheaf sense, we can write

H0(X,F ) = ΓKernel(F (0) −→ F (1)).

Recall that F (1) is a sheaf which contains F (0)/F as subsheaf. We obtain

H0(X,F ) = ΓKernel(F (0) −→ F (0)/F )

This is the image of F in F (0) and hence a sheaf which is canonically isomorphic
to F .

2.1 Remark. There is a natural isomorphism

H0(X,F ) ∼= ΓF = F (X).

If F → G is a homomorphism of sheaves, then the homomorphism Fa → Ga
induces a homomorphism F (0) → G(0). More generally, one has an obvious
natural homomorphism F (n) → G(n) for all n. This gives a homomorphism of
the Godement resolution. Hence we obtain a natural homomorphism

Hn(X,F ) −→ Hn(X,G).

If F → G → H is an exact sequence, then F (0) → G(0) → H(0) is also exact
(already as sequence of presheaves). More generally, the following lemma holds.
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2.2 Lemma. Let F → G → H be an exact sequence of sheaves. Then the
induced sequence F (n) → G(n) → H(n) is exact for every n.

Proof. By a general principle it is sufficient to prove that F 7→ F (n) maps
short exact sequences 0 → F → G → H → 0 into short exact sequences
0→ F (n) → G(n) → H(n) → 0. The reason is that an arbitray exact sequence

F
f→ G

g→ H can be splitted into short exact sequences

0 −→ Kernel(f) −→ F −→ f(F ) −→ 0,

0 −→ f(F ) −→ G −→ g(G) −→ 0,

0 −→ g(G) −→ H −→ H/g(G) −→ 0.

So we start with a short exact sequence 0 → F → G → H → 0. The proof
can now be given by induction. One needs the following lemma about abelian
groups:

Let

0

��

0

��

0

��
0 // A00 //

��

A01 //

��

A02 //

��

0

0 // A10 //

��

A11 //

��

A12 //

��

0

0 // A20 //

��

A21 //

��

A22 //

��

0

0 0 0

be a commutative diagram such that the three columns and the first two lines
are exact. Then the third line is also exact.

The proof is easy and can be omitted. tu
Before we continue, we need a basic lemma:

2.3 Lemma. Let 0→ F → G→ H → 0 be a short exact sequence of sheaves.
Assume that F is flabby. Then

0 −→ ΓF −→ ΓG −→ ΓH −→ 0

is exact.
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Proof. Let h ∈ H(X). We have to show that h is the image of an g ∈ G(X).
For the proof one considers the set of all pairs (U, g), where U is an open subset
and g ∈ G(U) and such that g maps to h|U . This set is ordered by

(U, g) ≥ (U ′, g′)⇐⇒ U ′ ⊂ U and g|U ′ = g′.

From the sheaf axioms follows that every inductive subset has an upper bound.
(Take the union of all open subsets which occur in the inductive set.) By
Zorns’s lemma there exists a maximal (U, g). We have to show U = X. If this
is not the case, we can find a pair (U ′, g′) in the above set such that U ′ is not
contained in U . The difference g− g′ defines a section in F (U ∩U ′). Since F is
flabby, this extends to a global section. This allows us to modify g′ such that
it glues with g to a section on U ∪ U ′. tu

An immediate corollary of Lemma 2.3 states:

2.4 Lemma. Let 0 → F → G → H → 0 an exact sequence of sheaves. If F
and G are flabby then H is flabby too.

Let 0 → F → G → H → 0 be an exact sequence of sheafs. We obtain a
commutative diagram

...
...

...
↓ ↓ ↓

0 −→ F (n−1) −→ G(n−1) −→ H(n−1) −→ 0
↓ ↓ ↓

0 −→ F (n) −→ G(n) −→ H(n) −→ 0
↓ ↓ ↓

0 −→ F (n+1) −→ G(n+1) −→ H(n+1) −→ 0
↓ ↓ ↓
...

...
...

From Lemma 2.2 we know that all lines of this diagram are exact. From
Lemma 2.3 follows that they remain exact after applying Γ. Hence the diagram

...
...

...
↓ ↓ ↓

0 −→ ΓF (n−1) −→ ΓG(n−1) −→ ΓH(n−1) −→ 0
↓ ↓ ↓

0 −→ ΓF (n) −→ ΓG(n) −→ ΓH(n) −→ 0
↓ ↓ ↓

0 −→ ΓF (n+1) −→ ΓG(n+1) −→ ΓH(n+1) −→ 0
↓ ↓ ↓
...

...
...

can be considered as a short exact sequence of complexes. We can apply
Lemma 1.1 to obtain the long exact cohomology sequence:
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2.5 Theorem. Every short exact sequence 0→ F → G→ H → 0 induces a
natural long exact cohomology sequence

0→ ΓF −→ ΓG −→ ΓH
δ−→ H1(X,F ) −→ H1(X,G) −→ H1(X,H)

δ−→ H2(X,F ) −→ · · ·

The next Lemma shows that the cohomology of flabby sheaves is trivial.

2.6 Lemma. Let
0→ F −→ F0 → F1 −→ · · ·

be an exact sequence of flabby sheaves (finite or infinite). Then

0→ ΓF −→ ΓF0 → ΓF1 −→ · · ·

is exact.

Corollary. For flabby F one has:

Hi(X,F ) = 0 for i > 0.

Proof. We use the splitting principle. The long exact sequence can be splitted
into short exact sequences

0 −→ F −→ F0 −→ F0/F −→ 0, 0 −→ F0/F −→ F1 −→ F1/F0 −→ 0, . . . .

From Lemma 2.4 we get that F0/F, F1/F0, . . . are flabby. The claim now follows
from Lemma 2.3. tu

A sheaf F is called acyclic if Hn(X,F ) = 0 for n > 0. Hence flabby sheaves
are acyclic. By an acyclic resolution of a sheaf we understand an exact sequence

0 −→ F −→ F0 −→ F1 −→ F2 −→ · · ·

with acyclic Fi.

2.7 Proposition. Let 0 → F → F0 → F1 → · · · be an acyclic resolution of
F . Then there is a natural isomorphism between the n-the cohomology group
Hn(X,F ) and the n-th cohomology group of the complex

· · · −→ 0 −→ΓF0 −→ ΓF1 −→ ΓF2 −→ · · ·
↑

zero position
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Proof . Taking the canonical flabby resolutions of F and of all Fn on gets a
diagram

0

��

0

��

0

��

0

��
0 // F //

��

F0
//

��

F2
//

��

F3
//

��

· · ·

0 // F (0) //

��

F
(0)
0

//

��

F
(0)
1

//

��

F
(0)
2

//

��

· · ·

0 // F (1) //

��

F
(1)
0

//

��

F
(1)
1

//

��

F
(1)
2

//

��

· · ·

0 // F (2) //

��

F
(2)
0

//

��

F
(2)
1

//

��

F
(2)
2

//

��

· · ·

...
...

...
...

All lines and columns are exact. We apply Γ to this complex. Then all lines
and columns besides the first ones remain exact. We can apply Lemma 1.2.

tu
One may ask what “natural” means in Proposition 2.7. It means that

certain diagrams in which this ismomorphism appears are commutative. Since
it is the best to check this when it is used we give just one example: Let 0 →
F → F0 → . . . be an acyclic resolution. Then we get an acyclic resolution 0→
F0/F → F0 → . . .. This gives us an isomorphism Hp(X,F0/F )→ Hp+1(X,F )
for p > 0 which we call the natural isomorphism. The exact sequence 0→ F →
F0 → F0/F → 0 gives another (the combining) isomorphism Hp(X,F0/F ) →
Hp+1(X,F ) which can be called natural with the same right.

2.8 Remark. Let 0 → F → F0 → F1 → . . . be an acyclic resolution. The
two natural isomorphism Hp(X,F0/F )→ Hp+1(X,F ) agree.

3. Paracompact spaces

We consider a very special case. We take for O the sheaf C of continuous
functions. There are two possibilities: CR is the sheaf of continuous real-valued
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and CC the sheaf of continuous complex-valued functions. If we write C we
mean one of both. The sheaf C or more generally a module over this sheaf have
over paracompact spaces a property which can be considered as a weakend
form of flabbyness.

3.1 Remark. Let X be a paracompact space and let M be a C-module on
X. Assume that U is an open subset and that V ⊂ U is an open subset whose
closure is contained in U . Assume that s ∈ M(U) is a section over U . Then
there is a global section S ∈M(X) such that S|V = s|V .

Proof. We choose a continuous real valued function ϕ on X, which is one on
V and whose support is contained in U . Then we consider the open covering
X = U ∪ U ′, where U ′ denotes the complement of the support of ϕ. On U
we consider the section ϕs and on U ′ the zero section. Since both are zero on
U ∩ U ′ they glue to a section S on X. tu

3.2 Lemma. Let X be a paracompact space and let M→ N be a surjective
C-linear map of C-modules. Then M(X)→ N (X) is surjective.

Proof. Let s ∈ N (X). There exists an open covering (Ui)i∈I of X such that
s|Ui is the image of a section ti ∈M(Ui). We can assume that the covering is
locally finite. We take open subsets Vi ⊂ Ui whose closure is contained in Ui
and such that (Vi) is still a covering. Then we choose a partition of unity (ϕi)
with respect to (Vi). By Remark 3.1 there exists global sections Ti ∈ M(X)
with the property Ti|Vi = ti|Vi. We now consider

T :=
∑
i∈I

ϕiTi.

Since I can be infinite, we have to explain what this means. Let a ∈ X a point.
There exists an open neighborhood U(a) such Vi ∩ U(a) 6= ∅ only for a finite
subset J ⊂ I. We can define the section

T (a) :=
∑
i∈J

ϕiTi|U(a).

The sets U(a) cover X and the sections T (a) glue to a section T . Clearly T
maps to s. tu

3.3 Lemma. Let X be a paracompact space and let M → N → P be an
exact sequence of C-modules. Then M(X)→ N (X)→ P(X) is exact too.

Proof. As mentioned during the proof of Lemma 2.2, it is sufficient to show
that a short exact sequence is led to a short exact sequence. The only problem
is the surjectivity at the end of the sequence. But this follows from Lemma
3.2. tu

LetM be a C-module over a paracompact space. Then the canonical flabby
resolution is also a sequence of C-modules. From 3.3 follows that the resolution
remains exact after the application of Γ. We obtain the following proposition.
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3.4 Proposition. Let X be paracompact. Every C-module M is acyclic, i.e.
Hn(X,M) = 0 for n > 0.

4. Čech Cohomology

Here we will consider only the first Čech cohomology group of a sheaf. We
have to work with open coverings U = (Ui)i∈I of the given topological space
X. Let F be a sheaf on X. A one-cocycle of F with respect to the covering U
is a family of sections

sij ∈ F (Ui ∩ Uj), (i, j) ∈ I × I,

with the following property: for each triple i, j, k of indices one has

sik = sij + sjk on Ui ∩ Uj ∩ Uk.

In more precise writing this means

sik|(Ui ∩ Uj ∩ Uk) = sij |(Ui ∩ Uj ∩ Uk) + sjk|(Ui ∩ Uj ∩ Uk).

We denote by C1(U, F ) the group of all one-cocycles. Assume that a family of
sections si ∈ F (Ui) is given. Then

sij = si|(Ui ∩ Uj)− sj |(Ui ∩ Uj)

obviously is a one-cocycle. We denote it by

δ(si)i∈I .

A one-cocycle of this form is called a one-coboundary . The set of all one-
coboundaries is a subgroup

B1(U, F ) ⊂ C1(U, F ).

The (first) Čech cohomology of F with respect to the covering U is defined as

Ȟ
1
(U, F ) := C1(U, F )/B1(U, F ).

A homomorphism of sheaves F → G induces a homomorphism

Ȟ
1
(U, F ) −→ Ȟ

1
(U, G).
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Let f : G→ H be a surjective homomorphism of sheaves and U = (Ui) an open
covering of X. We denote by

HU(X) = HU,f (X)

the set of all global sections of H with the following property.

For every index i there is a section ti ∈ G(Ui) such that f(ti) = s|Ui.
By definition of (sheaf-)surjectivity, for every global section s ∈ H(X), there
exists an open covering U with s ∈ HU(X). It follows

H(X) =
⋃
U

HU(X).

Let 0→ F → G→ H → 0 be an exact sequence and let U be an open covering.
There exists a natural homomorphism

δ : HU(X) −→ Ȟ1(U, F ),

which is constructed as follows. Let be s ∈ HU(X). We choose elements
ti ∈ G(Ui) which are mapped to s|Ui. The differences ti − tj come from
sections tij ∈ F (Ui ∩ Uj). They define a one-cocycle δ(s). It is easy to check
that the corresponding element of Ȟ1(U, F ) does not depend on the choice of
the ti.

4.1 Lemma. Let 0→ F → G→ H → 0 be an exact sequence of sheaves and
let U be an open covering. The sequence

0→ F (X) −→ G(X) −→ HU(X)
δ−→ Ȟ1(U, F ) −→ Ȟ1(U, G) −→ Ȟ1(U, H)

is exact.

Remark. This sequence does not extend naturally to a long exact sequence.

The proof is easy, since all maps are given by explicit formulae. tu
This Lemma indicates that Čech cohomology must be related to usual co-

homology. Another result in this direction gives the following remark.

4.2 Remark. Let F be a flabby sheaf. Then for every open covering

Ȟ1(U, F ) = 0.
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Proof. We start with a little remark. Assume that the whole space X = Ui0
is a member of the covering. Then the Čech cohomology vanishes (for every
sheaf): if (sij) is a one-cocycle, one defines si = si,i0 . Then δ((si)) = (sij).
For the proof of Remark 4.2 we now consider the sequence

0 −→ F (X) −→
∏
i

F (Ui) −→
∏
ij

F (Ui ∩ Uj) −→
∏
ijk

F (Ui ∩ Uj ∩ Uk)

s 7−→ (s|Ui)
(si) 7−→ (si − sj)

(sij) 7−→ (sij + sjk − sik).

We will prove that this sequence is exact. (Then Remark 4.2 follows.) The
idea is to sheafify this sequence: For an open subset U ⊂ X one considers F |U
and also the restricted covering U ∩ Ui. Repeating the above construction for
U instead of X one obtains a sequence of sheaves

0 −→ F −→ A −→ B −→ C.

Since F is flabby, also A,B, C are flabby. The remark at the beginning of the
proof shows that 0 −→ F (U) −→ A(U) −→ B(U) −→ C(U) is exact, when U
is contained in some Ui. Hence the sequence is sheaf-exact. From Lemma 2.6
follows that the exactness is also true for U = X. tu

Let now F be an arbitrary sheaf, F (0) the associated flabby sheaf. We get
an exact sequence 0 → F → F (0) → H → 0. Let U be an open covering. We
know that Ȟ1(U, F (0)) vanishes (Remark 4.2). From Lemma 4.1 we obtain an
isomorphy

Ȟ1(U, F ) ∼= HU(X)/F (0)(X).

From the long exact cohomology sequence we get for the usual cohomology

H1(X,F ) ∼= H(X)/F (0)(X).

This gives an injective homomorphism

Ȟ1(U, F ) −→ H1(X,F ).

We obtain the following result.

4.3 Proposition. Let F be a sheaf. Then

H1(X,F ) =
⋃
U

Ȟ1(U, F ).

The following commutative diagram shows that the homomorphism δ from
Lemma 4.1 and that of general sheaf theory Theorem 2.5 coincide:
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4.4 Remark. For a short exact sequence 0→ F → G→ H → 0 the diagram

0 −→ F (X) −→ G(X) −→ HU(X)
δ−→ Ȟ1(U, F )

‖ ‖ ↓ ↓
0 −→ F (X) −→ G(X) −→ H(X)

δ−→ H1(X,F )

is commutative.

Proof. The Godement resolutions of F,G,H give a short exact sequence of
complexes. The groups in the Remark can be expressed explicitly inside this
sequence. So the proof can be given by a straight forward computation which
can be left to the reader. tu

Let V = (Vj)j∈J be a refinement of U = (Ui)i∈I and ϕ : J → I a refinement
map (Vϕ ⊂ Ui). Using this refinement map one obtains a natural map

Ȟ1(U, F ) −→ Ȟ1(V, F ).

This shows the following result.

4.5 Remark. Let V be an refinement of U and ϕ : J → I a refinement map.
The diagram

Ȟ1(U, F ) //

&&MM
MMM

MMM
MM

Ȟ1(V, F )

xxqqq
qqq

qqq
q

H1(X,F )

commutes. As a consequence, it doesn’t depend on the choice of the refinement
map.

Usually it is of course very difficult to control all open coverings of a topological
space. (There is also the logical difficulty that the �set of all coverings does not
exist. It is easy to overcome this difficulty, we omit it.) But sometimes a single
covering is sufficient:

4.6 Theorem of Leray. Let F be a sheaf on X and U = (Ui) an open
covering of X. Assume that H1(Ui, F |Ui) = 0 for all i. Then

H1(X,F ) = Ȟ1(U, F ).
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Proof . Since two coverings admit a joint refinement, it is sufficient to prove that
Ȟ1(U, F ) → Ȟ1(V, F ) is an isomorphism for each refinement V of U. Since
the map is injective (use Proposition 4.3), it remains to prove surjectivity. We
choose a refinement map ϕ : J → I. We denote the indices in I by i, j, . . . and
those of J by α, β, . . .. Let be (sα,β) ∈ C1(V, F ). We consider the covering
Ui ∩V := (Ui ∩Vα)α of Ui. From the assumption Ȟ1(Ui ∩V, F |Ui) = 0 we get
the existence of tiα ∈ F (Ui ∩ Vα) such that

sαβ = tiα − tiβ on Ui ∩ Vα ∩ Vβ .

From this equation follows that

tiα − tjα = tiβ − tjβ on Ui ∩ Uj ∩ Vα ∩ Vβ .

Hence these differences glue to a section Tij ∈ F (Ui ∩ Uj),

Tij = tiα − tjα on Ui ∩ Uj ∩ Vα.

Clearly (Tij) is a one-cocycle in C1(U, F ). We consider its image (T(ϕα,ϕβ) in
C1(V, F ). It is easy to check that this one-cocycle, and the one we started with
(sαβ), defines the same cohomology class: they differ by the one-coboundary
(hβ − hα) with hα = tϕα,α ∈ F (Vα). tu

5. Some vanishing results

Let X be a topological space and A an abelian group. We denote by AX the
sheaf of locally constant functions with values in A. This sheaf can be identified
with the sheaf that is generated by the presheaf of constant functions. We will
write

Hn(X,A) := Hn(X,AX).

We mention that these groups under reasonable assumptions (for example for
paracompact manifolds) agree with the singular cohomology in the sense of
algebraic topology.

5.1 Proposition. Let U be an open and convex subset of Rn. Then for every
abelian group A

H1(U,A) = 0.

This is actually true for all Hn, n > 0. The best way to prove this is to use the
comparison theorem with singular cohomology as defined in algebraic topology.
But we do not want to use this. Therefore we restrict to H1, where we can
give a simple argument.
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Proof of 5.1. Every convex open subset of Rn is topologically equivalent to
Rn. Hence it is sufficient to restrict to U = Rn. Just for simplicity we assume
n = 1. (The general case then should be clear.) We use Čech cohomology.
Because of Proposition 4.3 and Remark 4.5 it is sufficient to show that every
open covering admits a refinement U such that Ȟ1(U, AX) = 0. To show this
we take a refinement of a very simple nature. It is easy to show that there
exists a refinement of the following form. The index set is Z. There exists a
sequence of real numbers (an) with the following properties:

a) an ≤ an+1

b) an → +∞ for n→∞ and an → −∞ for n→ −∞
c) Un = (an, an+2).

Assume that sn,m is a one-cocycle with respect to this covering. Notice that Un
has non empty intersection only with Un−1 and Un+1. Hence only sn−1,n is of
relevance. This is a locally constant function on Un−1∩Un = (an, an+1). Since
this is connected, the function sn−1,n is constant. We want to show that it is
a one-coboundary, i.e. we want to construct constant functions sn on Un such
that sn−1,n = sn − sn−1 on (an, an+1). This is easy. One starts with s0 = 0
and then constructs inductively s1, s2, . . . and in the same way for negative
n. tu

Consider on the real line R the sheaf of complex valued differentiable func-
tions C∞. Taking derivatives one gets a sheaf homomorphism C∞ → C∞,
f 7→ f ′. The kernel is the sheaf of all locally constant functions, which we
denote simply by C. Hence we get an exact sequence

0 −→ C −→ C∞ −→ C∞ −→ 0.

This sequence is exact since every differentiable function has an integral. Hence
this sequence can be considered as an acyclic resolution of C. We obtain
Hq(R,C) = 0 for all q > 0. For q = 1 this follows already from Proposition 5.1.
There is a generalization to higher dimensions. For example, a standard result
of vector analysis states in the case n = 2.

5.2 Lemma. Let E ⊂ R2 be an open and convex subset and let f, g ∈ C∞(E)
be a pair of differentiable functions with the property

∂f

∂y
=
∂g

∂x
.

Then there is a differentiable function h with the property

f =
∂h

∂x
, g =

∂h

∂y
.
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In the language of exact sequences this means that the sequence

0 −→ C −→ C∞(E) −→ C∞(E)× C∞(E) −→ C∞(E) −→ 0

f 7−→
(
∂f
∂x
,
∂f
∂y

)
(f, g) 7−→ ∂f

∂y
− ∂g
∂x

is exact. When E is not convex, this sequence needs not to be exact. But since
every point in R2 has an open convex neighborhood, the sequence of sheaves

0 −→ CX −→ C∞X −→ C∞X × C∞X −→ C∞X −→ 0

is exact for every open subset X ⊂ R2. This is an acyclic resolution and we
obtain the following proposition:

5.3 Proposition. For convex open E ⊂ R2 we have

Hi(E,C) = 0 for i > 0.

One can of course consider real valued differentiable functions and the same
proof shows Hi(E,R) = 0 for i > 0.

As an application we prove the following proposition.

5.4 Proposition. For convex open E ⊂ Rn one has

H2(E, Z) = 0.

Proof. We consider the homomorphism

C −→ C.
, z 7−→ e2πiz.

The kernel is Z. This can be considered as an exact sequence of sheaves for
example on an open convex E ⊂ Rn. A small part of the long exact cohomology
sequence is

H1(E,C.
) −→ H2(E, Z) −→ H2(E,C).

Since the first and the third member of this sequence vanish (Propositions 5.1
and 5.3), we get the proof of Proposition 5.4. tu

Next we treat an example of complex analysis.
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5.5 Lemma of Dolbeault. Let E ⊂ C be an open disk. For every function
f ∈ C∞(E) there exists g ∈ C∞(E) with

f =
∂g

∂z̄
:=

1

2

(∂g
∂x

+ i
∂g

∂y

)
.

A proof can be found in [Fo], Satz 13.2. We give a short sketch here. In a first
step one restricts to the case where f has compact support. In this case the
function g can be constructed as an integral:

g(z) = − 1

π

∫ 2π

0

∫ 1

0

f(z + reiϕ)e−iϕdrdϕ.

One can show that ∂g/∂z̄ = f . But this is not trivial. One has to make use of
the Theorem of Stokes.
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