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Chapter I. Differential geometry

1. Differentiable manifolds

Topological spaces always are assumed to be locally compact and with count-
able basis of the topology if nothing else is stated. Such spaces always are
metrizable. Hence it would be no restriction to consider only metric instead of
topological spaces, but this is unnatural.

A chart on a topological space X is a topological map

ϕ : Uϕ −→ Vϕ, Uϕ ⊂ X, Vϕ ⊂ Rn open.

The number n is called the dimension of the chart. An atlas A is a set of charts
with the property

X =
⋃

ϕ∈A
Uϕ.

If ϕ,ψ are two charts on X then the chart transformation is the topological
map

γ := ψ ◦ ϕ−1 : ϕ(Uϕ ∩ Uψ) −→ ψ(Uϕ ∩ Uψ).

An atlas A is called differentiable, if all chart transformations inside A are
differentiable. Here “differentiable” is always understood in the C∞-sense if
nothing else is stated. Two differentiable atlases A,B are called equivalent if
A∪B is differentiable as well. This is an equivalence relation. A differentiable
manifold is a topological space that is equipped with a distinguished equivalence
class of differentiable atlases. They are called defining atlases. The union
of all defining atlases in the equivalence class of an differentiable atlas A is
an differentiable atlas too. It is the unique maximal atlas in the equivalence
class of A. We denote it by Amax. The elements of the maximal atlas of a
differentiable manifold are called differentiable charts.

Sub-manifolds

If U ⊂ X is an open subset of a differentiable manifold then one can restrict an
defining atlas of the differentiable structure of X in an obvious way to X. So
every open subset of an differentiable manifold carries a structure as differen-
tiable manifold as well. This observation admits an important generalization:
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A subset Y ⊂ X of a differentiable manifold is called smooth at some point
a ∈ Y if there exists a differentiable chart

ϕ : U −→ V, ϕ(Y ∩ U) = {x ∈ V ; xd+1 = · · · = xn = 0}.

If one identifies {x ∈ V ; xd+1 = · · · = xn = 0} in the obvious way with an
open subset of Rd, one obtains a chart on Y ∩ U . If Y is smooth at all points
than the set of these charts is a differentiable atlas on Y . In this way a smooth
subset of a differentiable manifold gets a structure as differentiable manifold
too.

Differentiable maps

A continuous map f : X → Y between differentiable manifolds is called differ-
entiable at a point a ∈ X if there exist differentiable charts ϕ on X, a ∈ Uϕ

and ψ on Y , f(a) ∈ Uψ such that ψ ◦f ◦ϕ−1 is differentiable at ϕ(a). It is clear
that this does now depend on the choice of ϕ,ψ. One calls f differentiable if it
is differentiable everywhere. A diffeomorphism is a bijective map f : X → Y
between differentiable manifolds such that f and f−1 are differentiable.

The maximal atlas now gets a more natural explanation. First we notice
that Rn is a differentiable manifold, taking the tautological chart id as defining
atlas. A chart ϕ : U → V on X is differentiable (i.e. in the maximal atlas) if
and only it is a diffeomorphism. (Both sides are differentiable manifolds.)

2. Tangent space

The tangent space can be defined for arbitrary differentiable manifold in an
abstract way:

2.1 Definition. Let a ∈ X be a point in a differentiable manifold. A
derivation at a is a family of maps

D : C∞(U) −→ R,

where U runs through all open neighborhoods of a such that the following two
conditions hold:
1) It is compatible with restriction.
2) It is R-linear.
3) It satisfies the product rule

D(fg) = f(a)D(g) + g(a)D(f).
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“Compatibility with restriction” means D(f)|V = D(f |V ). Here f ∈ C∞(U)
and a ∈ V ⊂ U is a smaller neighborhood. More cautious persons may write
DU instead of D. Then the formula means DU (f)|V = DV (f |V ). But we
will prefer convenient writing with not too many indices (violating sometimes
strong set theoretic conventions).

It is clear how derivations are added and multiplied with constants and it is
also clear that the result is a derivation again. Hence we see that the set TaX
of tangent vectors is a vector space. It is also clear that tangent vectors can be
pushed forward under a differentiable map f : X → Y . This means that there
is a natural map

Taf : TaX −→ Tf(a)Y.

It is defined as follows. Let D ∈ Taf and ϕ a differentiable function on some
open neighborhood of f(a) ∈ Y . We apply D to the function ϕ ◦ f and obtain
in this way a derivation Ta(D).

2.2 Remark. The set of tangent vectors TaX is a vector space. A differen-
tiable map f : X → Y induces a linear map

Taf : TaX −→ Tf(a)Y .

If g : Y → Z is a second differentiable map then the chain rule

Ta(g ◦ f) = Tf(a)g ◦ Taf

holds.
When f is a diffeomorphism then Taf is an isomorphism.
Let a ∈ U ⊂ X be an open neighborhood. Then the natural map

TaU −→ TaX

is an isomorphism.

Usually we will identify TaU and TaX. Let ϕ : U → V be some differentiable
chart with a ∈ U . Recall that V ⊂ Rn is an open subset. Applying 2.2 to the
diffeomorphism ϕ we obtain an isomorphism

TaX
∼−→ Tϕ(a)(Rn).

Hence, to understand the concept of tangent space it is sufficient to understand
the special case X = Rn.

So let a ∈ Rn be some point. An obvious derivation is given by

f 7−→ (∂if)(a), ∂i :=
∂

∂xi
.

We write for this derivation ∂i|a or by (∂/∂xi)|a. If we are lazy or if we want
to increase the readability we omit |a and simply write ∂i or by ∂/∂xi for the
tangent vector.
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2.3 Lemma. The tangent space Ta(Rn) is a vector space of dimension n
spanned by the basis ∂1, . . . , ∂n.

Proof. This result is basic. We give the proof in the case n = 1 only to make it
as simple as possible. It is no problem to generalize the argument to the case
n > 1. This is left to the reader. We also can assume a = 0. The basic result
needed for the proof is the following:
Let f : (−r − r) → R be a C∞-function with the property f(0) = 0. Then
f(x) = xg(x) with a C∞-function g : (−r, r) → R.
The proof follows from the formula

f(x) =

x∫

0

f ′(t)dt = x

1∫

0

f ′(tx)dt.

Let now D be a derivation D ∈ T0R. We write f(x) − f(0) = xg(x). Then
g(a) = f ′(a). Hence

f(x) = f(0) + xf ′(0) + xh(x), h(0) = 0.

From the product rule follows that D(C) = 0 for a constant function C (since
D(1) = D(1 · 1) = 2D(1)). The product role also shows D(f1f2) = 0 if
f1(0) = f2(0) = 0. Hence we get

D(f) = Cf ′(0) (C = D(x)).

This shows D = C · d/dx. tu
So any tangent vector can be written in the form

n∑

i=1

Ai ∂i|a.

It is useful to have the formula

Af =
∑

Ai∂if(a) =
d

dt
f(a + tA)

in mind that follows form the chain rule. The right hand A here stands for the
vector (A1, . . . , An). By definition the right hand side is the derivative of f at
a in the direction given by the vector A. Hence the notion of a tangent vector
should be considered as an abstract version of the notion of “derivative in a
direction”.

Vector fields

By a vector field A on some subset M ⊂ X of a differentiable manifold one
simply understands a family (Aa)a∈M of tangent vectors Aa ∈ TaX. In the case
where M is an open subset we want to define what it means that A depends
differentiably on a. There are several equivalent possibilities to do this. We
can restrict to the case M = X since an open subset can also be considered as
differentiable manifold.
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2.4 Definition. A differentiable vector field on a differentiable manifold
X is a collection of tangent vectors A = (Aa)a∈X , Aa ∈ TaX, such for all
differentiable functions f : U → R, U ⊂ X open, the function U → R that
sends a to Aaf is differentiable.

This means that a differentiable vector field induces for each open subset U ⊂ X
an operator —also denoted by A—

A : C∞(U) −→ C∞(U).

Sometimes it may be necessary to write AU here instead of U . We simply
express this as:

Vector fields operate on differentiable functions.
A very good example for this is the vector field on Rn (or some open subset).

∂i := (∂i|a)a∈Rn .

It operates on differentiable functions by f 7→ ∂if and the result is a differen-
tiable function. It is very important that the vector field is determined by the
associated operators:

2.5 Lemma. There is a one-to one correspondence between differentiable
vector fields and families of operators

A : C∞(U) −→ C∞(U), U ∈ X open,

with the following properties:
1) It is compatible with restrictions.
2) It is R-linear.
3) It satisfies the product rule A(fg) = fA(g) + gA(f).

The proof is trivial: We already associated to a vector field operators. Con-
versely one associates to a family of operators the tangent vectors

Aaf := (Af)(a).

Usually we will use the same letter for a a vector field and the associated
operators and we jump freely between the two concepts. So

Differentiable vector fields are operators with certain properties.
Of course vector fields can be added and multiplied with real numbers. But
even more they can be multiplied with differentiable functions f ∈ C∞(X).
For example in the operator language the definition is (fA)(g) = fA(g). Each
vector field on an open subset U ⊂ Rn has a unique expression in the form

n∑

i=1

Ai∂i, Ai ∈ C∞(U).
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If f : X → Y is a diffeomorphism then vector fields can be pushed forward
(and pulled back using f−1). For a vector field A on X one defines

(f∗A)b = (Taf)(Aa) where a = f−1(b).

This gives an identification between differentiable vector fields on X and Y .

Warning. Since the formula for f∗A involves f and f−1, it is not possible to
define the push forward (or pull back) for differentiable maps which are not
diffeomorphisms.

If ϕ : U → V is a differentiable chart on a differentiable manifold X and A a
differentiable vector field on X, then we can restrict A to U and push forward
to Vϕ. This gives us a vector field

∑
Ai∂i. The functions Ai are called the

components of A with respect to the chart ϕ. Sometimes it may be necessary
to add a label ϕ to the components and to write Ai

ϕ.

Of course a differentiable vector field is determined be the knowledge of its
components for all differentiable charts (from some defining atlas is enough).

2.6 Lemma. There is a one-to one relation between differentiable vector
fields on X and families

(A1
ϕ, . . . , An

ϕ), Ai
ϕ ∈ C∞(Vϕ),

where ϕ runs through all differentiable charts (from a defining atlas is enough)
such that the following compatibility condition is satisfied.

If ψ is another chart and γ = ψ ◦ ϕ−1 the chart transformation then

Ai
ψ(γx) =

n∑

j=1

∂γi

∂xj
Aj

ϕ(x).

We skip the proof and mention that for this and other properties it is useful to
have the following gluing property:

2.7 Remark. Vector fields can be restricted to open subsets. If X =
⋃

Ui

is an open covering and Ai a differentiable vector field on Ui for each label i.
Then a differentiable vector field A on X with the condition A|Ui = Ai exists
if and only if the gluing condition

Ai|(Ui ∩ Uj) = Aj |(Ui ∩ Uj)

is satisfied.
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3. Differentials

Differentials are dual to vector fields. To understand this one should have in
mind the dual vector space V ∗ of a (here real) vector space V . It consists of
all linear forms on V .

V ∗ = HomR (V,R).

There is a remarkable map form V into its double dual

V −→ V ∗∗, (a ∈ V ) 7−→ (La ∈ V ∗), La(f) = f(a).

For finite dimensional vector spaces this turns out to be an isomorphism. The
essential point is that this isomorphisms doesn’t depend on the choice of a basis
or anything else. It is “canonical” in the best sense. So one can identify V and
V ∗∗ (but one has to keep in mind how this identification is done).

By a dual field on some subset M of a differentiable manifold X one under-
stands a collection

ω = (ωa)a∈M , ωa ∈ (TaX)∗.

Again we have to explain for open M what it means that ω depends in a
differential way from a. We can assume M = X. We make use of the fact that
for any vector field A on some open subset U ⊂ X the function a 7→ ωa(Aa)
can be defined. We denote this function simply by ω(A).

3.1 Definition. A dual field ω on X is called differentiable if if for each
differentiable vector field A on the some open subset the function ω(A) is dif-
ferentiable on U .

Hence differentiable dual fields act on differentiable vector fields and produce
differentiable functions. Again this construction has an inverse:

3.2 Proposition. We denote by T (X) the space of all differentiable vector
fields on X. Differentiable dual fields on X are in one-to-one correspondence
with families of operators

ω : T (U) −→ C∞(U)

with the following properties:
1) They are compatible with restriction.
2) They are C∞(U)-linear, i.e they are additive and satisfy

ω(fA) = fω(A), f ∈ C∞(U), A ∈ T ∞(U).
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Proof. We already attached to a dual field the operators. Now we have do the
converse. Assume that a family with the properties 1) and 2) is given. We
have to define for each point a ∈ X a linear form TaX → R. For this purpose
we can replace X by some open neighborhood of a and hence assume that X
is diffeomorphic to an open set of Rn. Then it is sufficient to assume that X
is an open subset U ⊂ Rn.

The proof now will follow form an explicit description of dual fields on U .
Recall that we have a basis ∂1|a, . . . , ∂n|a of TaU . We make use of the notion
of a dual basis: The dual basis of TaU is denoted by dx1|a, . . . , dxn|a. It is
defined by the condition

dxi|a(∂j |a) = δij .

Next we consider the dual field

dxi := (dxi|a)a∈U .

Its evaluation on vector fields is

dxi(∂j) = δij .

Of course dxi is a differentiable dual field. Now we come back to our given
family ω with the properties 1) and 2) (now on U). We evaluate ω at some
differentiable vector field A =

∑
Ai∂i (on some open subset of U . Now we use

the condition 2) in an essential way:

ω(A) = ω
(∑

Ai∂i

)
=

∑
Aiω(∂i).

Now it is clear how to define ωa : TaU → R:

ωa

(∑
Ci∂i|a

)
=

∑
Ciω(∂i)|a.

The rest should be clear. tu
We should keep in mind that this simple proof heavily rests on the condition

2) (C∞-linearity). The proof also shows that in the local case (X = U open
subset of Rn) every differentiable dual form can be written in the form

ω =
n∑

i=1

Aidxi

with differentiable functions Ai. From now on we will call differentiable dual
fields also differentials. As vector fields, differentials can be pushed forward and
pulled back with respect to a diffeomorphism. Especially for a differentiable
chart ϕ the differential ω can be considered on Vϕ where it gets the form∑

Aϕ
i dxi. The functions Aϕ

i ∈ C∞ are the so-called components of ω with
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respect to the chart ϕ. There is an analogue of 2.6 for differentials. The
formula there has to be replaced by

Aϕ
i (x) =

n∑

j=1

∂γj

∂xi
Aψ

j (γ(x)).

As we mentioned, differentials as vector fields can be pulled back under diffeo-
morphisms. But the situation is much better than in the case of vector fields:
Differentials can be pulled back under arbitrary differentiable maps f : X → Y .
The procedure is quite clear: Let ω be a differential form on Y . We want to
define a differential f∗ω on X. This means that for any point a ∈ X we have
to define a linear map TaX → R. We have a linear map Tf(a)Y → R coming
form ω. We also have a map TaX → Tf(a)Y (the tangent map Taf). Com-
posing both we get the desired map TaX → R. It is clear that this dual field
is differentiable and it is also clear that this pull back is transitive: For two
differentiable maps f : X → Y and g : Y → Z and a differential ω on Y the
formula

(g ◦ f)∗ω = f∗(g∗(ω))

holds. One can express the pull back also in local coordinates: Let

f : U → V, U ⊂ Rn, V ⊂ Rm open,

then

f∗(dyi) =
n∑

j=1

∂fi

∂xj
dxi.

Finally we mention that for an open subset U ⊂ X the already considered
trivial restriction ω|U and the pull back i∗(ω) are the same. Here i : U → X
denotes the canonical injection.

4. Alternating differential forms

Let V be a finite dimensional real vector space. We consider the vector space
Multp(V ) of all multilinear forms

M : V × · · · × V −→ R.

We allow p do be an arbitrary integer with the convention

Multp(V ) =
{
R if p = 0,
0 if p < 0.
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There is a natural map

Multp(V )×Multq(V ) −→ Multp+q(V ), (M, N) 7−→ M ⊗N

defined by

(M ⊗N)(a1, . . . , ap, b1, . . . , bq) = M(a1, . . . , ap)N(b1, . . . , bq).

A multilinear form is called alternating, if M(a1, . . . , ap) is zero if two of the
ai agree. Then one can show that for any permutation σ of the digits 1, . . . , p
the formula

M(aσ(1), . . . , aσ(n)) = sgn(σ)M(a1, . . . , ap)

holds. We denote the space of alternating forms by Altp(V ). There is a natural
projection

Multp(V ) −→ Altp(V ), M 7−→ Malt

which is defined by

Malt(a1, . . . , ap) =
1
p

∑

σ∈Sp

sgn(σ)(aσ(1), . . . , aσ(p)).

The form M is alternating iff M = Malt.
One defines a bilinear map

Altp(V )×Altq(V ) −→ Altp+q(V ), (A,B) 7−→ A ∧B,

through the formula

A ∧B =
(

p + q
p

)
(A⊗B)alt.

The binomial coefficient here is not important. For our purposes it could be
skipped. One reason to insert it is just to avoid denominators in formulas. For
example in the case p = q = 1 one gets

A ∧B = A⊗B −B ⊗A.

Without the binomial factor one would get a denominator 2. The following
facts can easily be checked:
The associative law (A∧B)∧C = A∧ (B∧C) holds. Especially one can define
A1 ∧ . . . ∧Am for arbitrary m.
One has skew-commutativity

A ∧B = (−1)pqB ∧A, A ∈ Altp(V ), B ∈ Altq(V ).
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If e1, . . . , en is a basis of V ∗ then the

ei1 ∧ . . . ∧ eip
, 1 ≤ i1 < · · · < ip ≤ n

form a basis for Altp(V ).
We conclude the multilinear algebra with the remark:

Alt0(V ) = R, Alt1(V ) = V ∗

and we mention

Altp(V ) = 0 for p < 0 and p > dim V.

This system of vector spaces together with the alternating product is called a
Grassmann algebra. Since its first essential part Alt1(V ) agrees with the dual
space, it is called the Grassmann algbra over V ∗.

A (covariant) tensor field T on a differential manifold X is a collection
T = (Ta)a∈X of elements Aa ∈ Multp(TaX). One can evaluate such a tensor
field on tuples (A1, . . . , Ap) of vector fields (defined on some open subset U ⊂ X.
The result is function on U , namely

a 7−→ Ta((A1)a, . . . , (Ap)a).

We denote this function simply by T (A1, . . . , Ap). The tensor field is called
differentiable if all these functions are differentiable. Similarly to the case of
vector fields and differentials one has (compare 3.2):

4.1 Lemma. Differentiable tensor fields T are in on-to-one correspon-
dence to collections (TU )U⊂X open, where TU is map that associates to each
tuple (A1, . . . , Ap) of differentiable vector fields on U a differentiable function
TU (A1, . . . , Ap) on U sich the following conditions are satisfied:
1) It is compatible with restrictions.
2) Is C∞(U)-multilinear.

it should be clear what C∞(U)-multilinear means: TU (A1, . . . , Ap) is additive
in each of the variables and futhermore

TU (f1A1, . . . , fpAp) = f1 · · · fpTU (A1, . . . , Ap) for f1, . . . fp ∈ C∞(U).

Like differentials covariant tensor fields can be pulled back under arbitrary
differentiable maps f : X → Y . If a ∈ X is some point one X one considers the
tangent map Taf : TaX → Tf(a)Y . Let T be a tensor field on Y . One defines

(f∗T )(A1, . . . , Ap) := Tf(a)(Taf(A1), . . . , Taf(Ap)).
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If f is a diffeomorphism, one can use f−1 to transform in the other direction.
If T is a differentiable tensor field on X then one can consider for each differ-
entialble chart ϕ the transformed tensor of T |Uϕ on Vφ. We call it Tϕ. Using
the standard basis we may may define its components by

Ti1,...,ip
= Tϕ(∂i1 , . . . , ∂ip

).

with respect to a chart transformation γ = ψ ◦ϕ−1 one has the transformation
formula

Tϕ
i1,...,ip

=
∑

ν1,...,νp

∂γν1

∂xi1

· · · ∂γνp

∂xip

Tψ
ν1,...,νp

.

(Functions have to be evaluated at corresponding places x, γ(x).)
As in the case of differentials each system of differentiable functions Tϕ

i1,...,ip

with this transformation property comes from a differentiable tensor field on
X. This leads to the old-fashioned definition:

A tensor is a tensor iff it transforms like a tensor.
It is clear what it means that covariant tensor fields are alternating.

4.2 Definition. An alternating differential form of degree p (in short p-form)
on a differentiable manifold is an alternating differentiable tensor field of degree
p.
Notation. Ap(X) = space of all p-forms on X.

Alternating differential forms of degree 1 are just differentials. The special
importance of differential forms rests on the existence of the exterior derivative:

4.3 Proposition. There is a unique way to define for each differentiable
manifold X and for each p ∈ Z an R-linear map

d : Ap(X) −→ Ap+1(X)

such that the following properties are satisfied:
1) It is compatible with pulling back for a differentiable map f : X → Y ,

f∗(dω) = d(f∗ω).

2) On differentiable functions f it is defined as

df(A) = A(f).

Here A is some differentiable vector field on an open subset of X.
3) For differentiable functions f, f1, . . . , fp the rule

d(f df1 ∧ . . . ∧ dfp) = df ∧ df1 ∧ . . . ∧ dfp
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holds.
Moreover the following rules hold:
a) It is compatible with wedge product,

d(α ∧ β) = (dα) ∧ (dβ).

b) The rule
d(d(ω)) = 0

always holds.
c) The product rule

d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ dβ (ω ∈ Ap(X))

holds.

Scetch of two proofs. The first proof rests on coordinates. One first studies the
local case where X is an open set U ⊂ Rn. For functions f we have by 3) the
formula df(∂i) = ∂if . This means

df =
n∑

i=1

∂f

∂xi
dxi.

the rule 4) enforces the definition

d
∑

1≤i1<···<ip≤n

fi1,...,ipdxi1∧ . . .∧dxip =
∑

1≤i1<···<ip≤n

dfi1,...,ip∧dxi1∧ . . .∧dxip .

With this definitions one has to verify the proposition in the local case. Then
one glue the local definition to a global one (essentially using the transformation
invariance 3). Since this has been done in detail in my analysis 3 course we
skip details.

In some sense this proof is not satisfactory since it uses coordinates in the
old-fashioned way. One may ask whether there is a coordinate free definition.
Just for fun we give but we have to confess that it is not very simple. Here is
it:

(dω)(A1, . . . , Ad+1) :=
d+1∑

i=1

(−1)i+1Aiω(A1, . . . , Âi, . . . , Ad+1)+

∑

i<j

(−1)i+jω([Ai, Aj ], A1, . . . , Âi, . . . , Âj , . . . , Ad+1).

In the formula the so-called Lie-bracket [A,B] of two vector fields occurs. It
uses the interpretation of vector fields as operators and is defined by [A,B] =
A ◦ B − B ◦ A. This is an operator acting on differentiable functions on open
sets. It is easy to check that it satisfies the product rule (in contrast to A ◦B
alone) and hence is an vector field.
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5. The de-Rham complex

For a differentiable manifold the de-Rham complex is defined to be the sequence
of maps

· · · −→ Ap−1(X) −→ Ap(X) −→ Ap+1(X) −→ · · ·
We use the notation

Cp(X) : = kernel(d : Ap(X) −→ Ap+1(X)),

Bp(X) : = image(d : Ap(X) −→ Ap+1(X)).

The elements of Cp(X) are called closed (dω = 0) and the elements of Bp(X)
are called exact. They are of the form dω′. Because of d◦d = 0 exact forms are
closed. The converse is not always true and it is important to understand this.
To measure the difference between exact and closed forms on introduces the
de-Rham cohomology groups. (One should better say “de-Rham cohomology
vector spaces”, but this is unusual.) They are defined as factor space of Cp(X)
by the subspace Bp(X).

Hp(X,R) = Cp(X)/Bp(X).

The elements of Hp(X,R) are classes of elements from Cp(X). The class [ω] of
an element ω ∈ Cp(X) consists of all elements of the form ω+dα, α ∈ Ap−1(X).
The set of all classes can be made to a vector space in a natural way. The vector
space structure is defined through the fact that the natural projection

Cp(X) −→ Hp(X), ω 7−→ [ω],

is a linear map. This linear map is surjective and its kernel is Bp(X). Hence we
see: The group Hp(X,R) vanishes if and only of each closed p-form is exact.

Let X be a differentiable manifold of dimension n. (This means that all
charts land in Rn.) Then of course Hp(X,R) = 0 for p > n. Of course
Hp(X,R) = 0 for p < 0 is always true. Let’s consider the case p = 0. Clearly
B0(X) = 0 since every form of degree −1 is zero. Hence H0(X,R) = C0(X).
The space C0(X) consists of all functions with df = 0. Such functions are
locally constant. If we assume that X is connected then the are constant.
Hence H0(X,R) for a connected differentiable manifold can be identified with
R.

5.1 Remark. For each connected differentiable manifold one has

H0(X,R) = R.

A basic result is the
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5.2 Lemma of Poincaré. Let U ⊂ Rn be an open convex subset. Then

Hp(U,R) = 0 for p > 0.

Proof. Let ω be a closed form. We decompose it as

ω = α + β ∧ dxn,

where α doesn’t contain any term with dxn. We write

β =
∑

fada

where a are subsets of {1, . . . , n − 1} that do nor contain n. Integrating with
respect to the last variable we find differentiable functions Fa such that ∂nFa =
fa. Now the difference ω− d

∑
a Fadxa doesn’t contain any term in which dxn

occurs. Hence we can assume that in ω no term with dxn occurs. We write

ω =
∑

a

gadxa,

where all a are subsets of {1, . . . , n − 1}. Now we use dω = 0. We obtain
∂nga = 0. Hence ga do not depend on xn. But now ω can be considered
as differential form in one dimension less (on the image of U with respect to
the projection map that cancels the last variable) and an induction argument
completes the proof. tu

Next we want to give an important class of examples for a non-vanishing
de-Rham cohomology groups. It rests on the theorem of Stokes and hence on
integration of differential forms. We just recall the basic concept.

First one has to introduce the concept of orientation: A differentiable man-
ifold X is called orientable, if there exists a defining atlas A such that all
chart transformations inside A have positive functional determinant every-
where. Two such atlases are called oriented equivalent if their union is oriented
as well. An orientation of a differentiable manifold is given by an equivalence
class of oriented equivalent atlases (consisting of differentiable charts with re-
spect to the given differentiable structure on X). In this equivalence class there
exists a unique maximal (oriented) atlas A+. The elements of this atlas are
called the oriented differentiable charts on X.

Let now X be of dimension n and ω a top form ω ∈ An(X). We assume
that ω has compact support. Then one can define

∫

X

ω.
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We recall the definition. First one considers the case where the support of
ω (which has to be defined in an obvious way) is contained in the domain of
definition of an oriented differentiable chart ϕ. Then one defines

∫

X

ω :=
∫

vϕ

fϕ(x)dx,

where the function fϕ : Vϕ → R is the component of ω with respect to this
chart. then one has to show that this definition is independent of the choice of
ϕ. This uses the transformation property of the components and the transfor-
mation formula for the integral.

For the general case one uses the technique of partition of one. We skip
details.

Since we have an oriented manifold it makes sense to say when a top form ω
is positive in some point. It just means fϕ(ϕ(a)) > 0 is positive for an oriented
differentiable chart ϕ with a ∈ Uϕ. This is independent of the choice of the
chart since chart transformations have positive functional determinant in the
oriented world.

Using a partition of unity it is easy to show that one any compact ori-
ented differential manifold of dimension n there exists a top form ω which is
everywhere positive. Now we assume that X is compact. We have

∫

X

ω > 0.

Let now be a form α of degree n − 1. The theorem of Stokes states that for
every (n− 1)-form α one has

∫

X

dα = 0 (α with compact support).

5.3 Proposition. Let X be a compact oriented differentiable manifold of
dimension n. Then

Hn(X,R) 6= 0.

This indicates that the de-Rham cohomology groups are related to the geometry
of differentiable manifolds.
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1. Riemannian manifolds

Let X be a differentiable manifold. We consider a covariant tensor field g of
degree two. We always assume that it is differentiable. Recall that this means
that we have a bilinear form

TaX × TaX −→ R

for each point a. Now we are interested in the case where this bilinear form is
symmetric and positive definite for all a. (Hence g is no differential form).

1.1 Definition. A Riemannian metric on a differentiable manifold X is a
collection of postive definite bilinear forms

ga : TaX × TaX −→ R

that is differentiable at a (i.e. a differentiable tensor field).

A Riemannian manifold is a pair (X, g) consisting of a differentiable manifold
and a Riemannian metric on it.

If X = U is some open subset of Rn than a Riemann metric is nothing else but
a symmetric n× n-matrix of differentiable functions that is positive definit at
every point.

2. The star operator

The background of the star operator is simple linear algebra. Consider a finite
dimensional vector space V together with a positive definite bilinear form g :
V × V → R. The pair (V, g) is called an euclidian vector space. It is a very
important concept that g induces an isomorphism σ : V → V ∗. To define it
one has to associate to a vector a ∈ V a linear form la : V → R. One simply
defines

la(x) = g(a, x).
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It is easy to check that this is an isomorphism (using bases). The isomorphism
enables to carry over the bilinear form to V ∗. It is defined by

V ∗ × V ∗ −→ R, (x, y) 7−→ g(σ−1x, σ−1(y)).

We denote this new bilinear form with the letter g∗. Hence

g∗(x, y) := g(σ−1x, σ−1(y)) for x, y ∈ V ∗.

Bilinear forms can be described by matrices using bases: Let e1, . . . , en be an
arbitrary basis of V . The the Gram matrix of g is defined as

gik := g(ei, ek).

This is a symmetric and positive definite matrix. Now let e1
∗, . . . , en

∗ be the
dual basis. We denote the corresponding Gram matrix of g∗ by

gik := g∗(ei
∗, ek

∗).

2.1 Lemma. Let g be a euclidian metric on V and e1, . . . , en a basis of
V . and (gik) the corresponding Gram matrix. Similarly let (gik) be the Gram
matrix of g∗ with respect to the dual basis. The matrices (gik and (gik) are
inverse matrices).

Proof. We denote by Ei the image of ei under the isopmorphism V → V ∗

induced by g. By definition Ei(ej) = g(ei, ej). On the other side the dual basis
is defined by e∗i (ej) = δij . This shows

Ei =
n∑

ν=1

giνe∗ν equivalently e∗i =
n∑

ν=1

hiνEν .

Here we denoted by (hik) the inverse matrix of (gik). From this formula we
can compute gik = g∗(e∗i , e

∗
k). A sraight forward calculation shows gik = hik.

tu
We consider now V ∗ = Alt1(V ) as part of the Grassmann algebra. It is

natural to ask whether the bilinear form extends to Altp(V ) in a natural way.
The answer is yes:

2.2 Lemma. Assume that (V, g) is a finite dimensional Euclidean vector
space. There is a unique positive definite bilinear form g∗ on Altp(V ) with the
following property: Let a1, . . . , ap and b1, . . . , bp be elements of V ∗ then

g∗(a1 ∧ . . . ,∧ap, b1 ∧ . . . ,∧bp) = det((g∗(ai, bj)).
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Proof. We choose an orthonormal bases e1, . . . , en of V ∗. This means
g(ei, ej) = δij . Then we define the scalar product on Altp(V ) such that the
basis ei1∧, . . . , eip

, 1 ≤ i1 < · · · < ip is orthonormal. Then the formula

g∗(ei1 ∧ . . . ∧ eip
, ej1 ∧ . . . ∧ ejp

) = det((g∗(eiµ
, ejν

)))

is valid under the condition i1 < · · · < ip and j1 < · · · < jp. But it is also true
in the case where two of the indices agree since both sides then are zero. And
also the ordering condition can be omitted since both sides pick up the same
sign if one reorders the terms. Now consider on Alt2p(V ) the two functions

M1(a1, . . . , ap, b1, . . . , bp) = g∗(a1 ∧ . . . ∧ ap, b1 ∧ . . . ∧ bp),
M2(a1, . . . , ap, b1, . . . , bp) = det((g∗(ai, bj)).

Obviously both are multilinear forms. Since they agree for basis elements, they
agree. tu

Especially Altn(V ) with n = dim V is a one dimensional euclidian vector
space. Hence this space contains precisely two elements of ω with the property
g∗(ω, ω) = 1. It easy to construct them. Let e1, . . . , en be a basis of V . Then

e1 ∧ . . . ∧ en√
det(g∗(ei, ej))

has the desired property. We prefer to start with a basis e1, . . . , en and then
to use the dual basis e∗1, . . . , e

∗
n as basis for V ∗. Using 2.1 we get that

ω =
√

det(gik) e∗1 ∧ . . . ∧ e∗n

is an element of euclidian norm 1. As we mentioned already the element ω only
depends up to a sign on the choice of the basis e1 . . . , en.

2.3 Lemma. Let e1, . . . , en and f1, . . . , fn be two bases of V . Assume the
the determinant of the transition matrix (defined by fi =

∑
j aijej) has positive

determinant then both bases give the same element ω. In the case where the
determinant is negative the element ω changes its sign.

The proof is straight forward an can be omitted.
To select one of the ±ω is a question of orientation: Here it is useful to in-

troduce the notation of orientation for real vector spaces. To do this we call two
bases e1, . . . , en and f1, . . . , fn orientation equivalent if the transition matrix
has positive determinant. By definition an orientation of V is an equivalence
class of orientation equivalent bases. In the case n > 1 there are two possible
orientations. An oriented vector space is a pair consisting of a real finite di-
mensional vector space and a distinguished orientation. In an oriented vector
space it makes sense to talk about oriented bases. By definition these are the
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bases in the distinguished equivalence class. Using oriented bases one can now
define the element ω ∈ Altn(V ) without sign ambiguity. Using the element we
get a natural isomorphism

R ∼−→ Altn(V ), t 7−→ tω.

Now we use the wedge product

Altp(V )×Altp(V ) −→ Altn(V ) for p + q = n.

Using the above isomorphism we get a bilinear form

Altp(V )×Altp(V ) −→ R for p + q = n.

As usual this induces a linear map

Altp(V ) −→ Altq(V )∗.

Since we have an euclidian metric on Altq(V )∗ we have a natural isomorphism
Altq(V ) ∼= Altq(V )∗. Hence we obtain a natural linear map

Altp(V ) −→ Altn−p(V ).

This map is called the star operator.

2.4 Remark. Let V be a finite dimensional oriented vector space together
with a distinguished symmetric and positive definit bilinear form. There is a
natural linear map

Ap(V ) −→ An−p(V ), α 7−→ ∗α.

It has the following property and is characterized by it:

α ∧ ∗β = g∗(α, β)ω, for α, β ∈ Altp(V ).

The star operator gets a very simple explicit form if one uses an orthonormal
basis e1, . . . , en. We can assume that it is oriented (eventually changing the
sign of one basis element). Then we have ω = e∗1 ∧ . . .∧ e∗n and it is very simple
to show:

2.5 Lemma. Let e1, . . . , en be an oriented orthonormal basis of V ∗. Then

∗ (ei1 ∧ . . . ∧ eip
) = ±ej1 ∧ . . . ∧ ejn−p

.

Here j1, . . . , jn−p means just the complementary tuple order in the natural way.
The sign in this formula is given by the sign of the permutation that brings
i1, . . . , ip, j1, . . . , jn−p in its natural ordering.

From this description one sees:

2.6 Lemma. The star operator Altp(V ) → Altn−p(V ) has the property

∗(∗α) = (−1)p(n−p)α.

As a consequence it is an isomorphism.
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3. The Laplace Beltrami operator

In the following X oriented differentiable manifold of dimension n. a ∈ X be
a point and ϕ an oriented chart with a ∈ Uϕ. We denote by x the variable in
Vϕ. The chart ϕ induces a basis of TaX which we denote by ∂/∂x1, . . . , ∂/∂xn

(using the isomorphism TaUϕ → Tϕ(a)Vϕ). Let ψ be a second oriented chart.
We denote the variable in Vψ by y and the corresponding basis of TaX by
∂/∂y1, . . . , ∂/∂yn. The transition matrix between the two basis is given by
the Jacobi matrix of the chart transformation γ = ψ ◦ ϕ−1 evaluated at ϕ(a).
Since the charts are oriented the determinant of this matrix is positive. Hence
the vector space TaX can be oriented in such a way that the bases above are
oriented bases.

As a consequence the element ωa ∈ Altn(V ) is defined. If U ⊂ Rn is an open
subset and if the Riemannian matrix is given by the (symmetric and positive
definite) matrix g then the formula for ω at an arbitrary point is given by

ω =
√

det g(x) dx1 ∧ . . . ∧ dxn.

This formula shows that ωa depends differentiable form a. Hence we obtain a
top form

ω ∈ Altn(X).

It is clear that this is positive in the sense that its components with respect to
arbitrary oriented charts are positive everywhere. We call ω the volume form
of X. Clearly ∫

X

ω > 0.

This is called the volume of (X, g).
Now let α ∈ Ap(X) be a p-form on X. For each point we can define ∗αa.

It follows from 2.4 that this depends differentiable from a. Hence we obtain a
differential form ∗α ∈ An−p. The operator

∗ : Ap(X) ∼−→ An−p(X)

is an isomorphism. It is compatible with multiplication with C∞-functions,

∗(fα) = f ∗ α,

and its satisfies
∗ ∗ α = (−1)p(n−p)α.

Finally we mention that one obtains ω if one applies ∗ to the function “constant
one” and conversely.

Let α be a p-form. Then ∗α is a (n − p)-form and d(∗α) is a (n − p + 1)
form. Applying the star operator again, we get the (p− 1)-form ∗d(∗α). Up to
a sign this operator is the so-called codifferentiation:
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3.1 Definition. The codifferentiation is the operator

d∗ := (−1)n(p+1) ∗ d∗ : Ap(X) −→ Ap−1(X).

The sign needs an explanation. We give it in the case of a compact X. In this
case the theorem of Stokes states∫

X

dα = 0 for α ∈ An−1(X).

In the following we use the notation

Ap(X)×Ap(X) −→ C∞(X), 〈α, β〉 = g∗(α, α).

Hence 〈α, β〉 is a function. But we can integrate this function to get a pairing,
which produces scalars, more precisely:
Let (X, g) be a compact oriented Riemannian manifold. Then one can define

Ap(X)×Ap(X) −→ R, (α, β) :=
∫

X

〈α, β〉ω =
∫

X

α ∧ ∗β.

This is a symmetric positive definit bilinear form.

3.2 Proposition. The codifferentiation on a compact oriented Riemannian
manifold satisfies

(dα, β) = (α, d∗β), α ∈ Ap−1(X), β ∈ Ap(X),

hence d∗ is the adjoint for d.

Proof. One has to use Stokes formula
∫

X
d(α ∧ ∗β) = 0 and the product rule.

tu
3.3 Definition. The Laplace Operator

∆ : Ap(X) −→ Ap((X)

is defined by
∆ := d ◦ d∗ + d∗ ◦ d.

It is hard to get explicit formulas in local coordinates and we will not use them.
In the case p = 0 and for an open domain in Rn the reader may try to proof

∆f =
1

det g

∑

ij

∂i(
√

det g gij)∂jf.

If g is the unit matrix (euclidian case) then the formula reduces to the usual
Laplace operator.

We denote by

Hp(X) =
{

α ∈ Ap(X); ∆ω = 0
}

the kernel of ∆. Its elements are called harmonic forms.
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3.4 Proposition. A differential form α on a compact oriented Riemannian
manifold X is harmonic if and only if

dα = 0 and d∗α = 0.

If X is connected then every harmonic function (=zero-form) is constant.

The proof follows from

(∆α, α) = (dα, dα) + (d∗α, d∗α)

which is a consequence of 3.2. This also shows that ∆ is formally self adjoint
in the sense

(∆α, β) = (α, ∆β).

We recall a simple fact about linear algebra: Let V be a finite dimensional
euclidian vector space and A : V → V a self adjoint linear map, (Aa, b) =
(a,Ab). Then the Kernel of A and the image of A obviously are orthogonal.
Since the dimension of V equals the dimension of the kernel and the image we
get

V = kernel(A)⊕ image(A).

This argument of course breaks down for vector spaces of infinite dimension.
Nevertheless:

3.5 Theorem. Let X be a compact Riemannian manifold. Then

Ap(X) = Hp(X)⊕∆Ap(X).

The space Hp(X) is finite dimensional.

This is a special case of a general theorem about elliptic differential equations.
We will give comments about this theorem in an appendix. As a consequence
of 3.5 we obtain for α ∈ Ap(X) a representation

α = α0 + dβ + d∗γ, α0 harmonic.

We apply this to closed forms α. From dα = 0 and 3.4 follows dd∗γ = 0, hence

(d∗γ, d∗γ) = (γ, dd∗γ).

It follows dγ = 0 and
α = α + dβ

This gives a direct decomposition

Kernel(Ap(X) −→ Ap+1(X)) = Hp ⊕ Image(Ap−1(X) −→ Ap(X)).

This means that every class of closed forms in Hp
dR(X,R) contains a unique

harmonic representant:
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3.6 Main theorem of real Hodge theory. Let X be a compact oriented
Riemannian manifold. Then Hp(X) is contained in the space of closed forms
and the natural homorphism

Hp(X) ∼−→ Hp(X,R)

is an isomorphism. These vector spaces are finite dimensional.

Hence the so-called it Betti-numbers

bp(X) := dim Hp(X,R)

ere well defined (finite) numbers.

As an application we derive the duality theorem. When α is harmonic then
by trivial reasons ∗α is harmonic too. This obviously defines an isomorphism

Hp(X) ∼−→ Hn−p(X).

This shows bp = bn−p. There is a better way to interpret this result. For
this we just remind what it means that bilinear map B : V × W → R is
non-degenerated. Here V,W are finite dimensional (real) vector spaces. By
definition it means that the induced map

V 7−→ W ∗, a 7−→ (b 7−→ B(a, b)),

is an isomorphism. Then V and W must have the same dimension and one can
see that the map

W 7−→ V ∗, b 7−→ (a 7−→ B(a, b))

is an isomorphism as well. One just has to check that it is injective. Now we
consider for compact X the pairing

C(X)× Cn−p(X), (α, β) 7−→
∫

X

α ∧ β.

By Stokes theorem on gets 0 if α or β is closed. Hence there is induced a pairing

Hp(X)×Hn−p(X), (α, β) 7−→
∫

X

α ∧ β.

Looking at the harmonic forms it is clear that this pairing is non-degenerate.
This gives:
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3.7 Poincaré duality. Let X be a pure n-dimensional compact oriented
Riemannian manifold. The pairing (·, ·)

Hp(X,R)×Hn−p(X,R) −→ R, (α, β) 7−→
∫

X

α ∧ β,

is non-degenerated and one has

bp(X) = bn−p(X).

If X is connected, we have b0(X) = bn(X) = 1.

An example

Let L ⊂ Rn a lattice and X = Rn the corresponding torus. There is a Riemann
metric on X such that the pull-back to Rn is the standard euclidian metric
that is defined by the unit matrix. From the general theory we know that each
harmonic function is constant (since b0 = 1). A straight forward calculation
shows

∆
∑

fi1,...,ipdxi1 ∧ . . . ∧ dxip =
∑

∆fi1,...,ipdxi1 ∧ . . . ∧ dxip.

Hence a differential form is harmonic if and only if its components is constant.
The number of components is

(
n
p

)
. So we obtain:

3.8 Proposition. The Betti numbers of a torus are

bn =
(

n

p

)
.

So Poincaré duality is in concordance with
(
n
p

)
=

(
n

n−p

)
.
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1. Holomorphic maps

Let U ⊂ Cn be an open subset. A map f : U → Cm is called totally complex
differentiable if for any point a ∈ U there exists a C-linear map A : Cn → Cm

such that

f(z) = f(a) + A(z − a) + r(z), lim
z→a

r(z)
‖z − a‖ = 0.

Here ‖·‖ denotes one of the (equivalent) standard norms of Cm. We will identify
Cn with R2n using

(z1, . . . , zn) ←→ (x1, y1, . . . , xn, yn).

Then a totally complex differentiable map can be considered as totally real dif-
ferentiable map. From the real theory one knows that A is uniquely determined
and we use the usual notation

J(f, a) : Cn −→ Cm.

But we have two ways to associate to J(f, a) a matrix. Since it is C-linear, it
can be described by complex m× n-matrix. Sometimes we denote this matrix
by JC (f, a) and since it is also R-linear we can describe it by a real (2n)×(2m)-
matrix which we denote by JR (f, a). We describe the relation between these two
matrices. This is problem in linear algebra. We start with the case m = n = 1.
A C-linear map l : C → C is given by multiplication with a fixed complex
number a (= l(1)). If we write a = α + iβ then

l(z) = az = (αx− βy) + i(αy + βx).

Hence the real 2-by-2 matrix associated to a is the matrix

ã =
(

α −β
β α

)
.

Let more general l : Cn −→ Cm be a C linear map and denote A the corre-
sponding complex n×m-matrix. If one replaces each entry a of A by the real
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2× 2-matrix then one obtains the real (2n)× (2m)-matrix Ã associated to l if
one considers l as R-linear map.

Exercise. Let m = n. Then the formula

| detA|2 = det Ã (=⇒ det Ã ≥ 0).

holds.

It is natural to use for the entries of JC (f, a) the notation ∂fi/∂zj(a). They
are called the complex derivatives. We use the notation

fi = ui + ivi.

The corresponding real 2× 2-bloc in JR (f, a) is

∂fi

∂zj
←→




∂ui

∂xj

∂ui

∂yj

∂vi

∂xj

∂vi

∂yj


 .

From this description we can see:

1.1 Proposition. A totally real differentiable function f : U → Cm (U ⊂ Cn

open) is totally complex differentiable if and only if the Cauchy-Riemann
differential equations hold:

∂ui

∂xj
=

∂vi

∂yj
,

∂ui

∂yj
= − ∂vi

∂xj

and in this case one has
∂fi

∂zj
=

∂ui

∂xj
+ i

∂vi

∂xj
.

This shows that complex differentiability is very restrictive property with the
consequence that complex analysis is something very special. Without proof we
formulated two results that emphasize this difference. (The proofs are given in
the case n = 1 in any course on complex analysis. The generalization to several
variables can be done using the same arguments.

1) Let f : U → C (U ⊂ Cn open) be complex totally differentiable. Then any
point a ∈ U admits a neighborhood a ∈ W ⊂ U such that f can be written in
this neighborhood as absolutely convergent power series:

f(z) =
∑

0≤ν1,...,νn

aν1...νn(z1 − a1)ν1 · · · (zn − an)νn .
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Functions that locally can be expanded into power series often are called ana-
lytic. For this reason totally complex differentiable functions are called complex
analytic. They also are called holomorphic.
2) Principle of analytic continuation. Let f, g be two holomorphic func-
tions on an open connected set U ⊂ Cn. Assume that f and g agree on some
open non empty subset of U . Then f and g agree on the whole U .
3) Maximum principle. Let f : U → C be a holomorphic function on an
open an connected subset of Cn such that |f(z)| attains a maximum in U .
Then f is constant.

We conclude this section with a simple remark:
The chain rule is literarily true for holomorphic as for real functions. It simply
follows from the real case, since the composite of two C-linear maps is C-
linear. Similarly the theorem of invertible functions holds for holomorphic
functions. Again this follows from the real case, since the inverse of a bijective
C-linear map is automatically C-linear. A formal consequence of the theorem
of invertible functions is the theorem of implicit functions, which therefore
carries over to the complex case.

2. Complex manifolds

A complex chart on a topological space X is a topological map

ϕ : U −→ V, U ∈ X, V ∈ Cn both open.

Two complex charts are called holomorphically equivalent if the chart trans-
formation is biholomorphic (holomorphic in both directions.) A holomorphic
atlas is an atlas of charts such that alle chart transformations inside it are
holomorphically compatible. Two such atlases are called equivalent if there
union is holomorphic equivalent. A complex manifold is a topological space
together with an equivalent class of holomorphically equivalent holomorphic
atlases. This equivalence class contains a unique maximal atlas. We call this
atlas be O and call its elements holomorphic charts.

It is clear how the notion of holomorphic map f : X → Y between complex
manifolds has to be defined. It is also clear that the identity map of a com-
plex manifold is holomorphic and that the composition of holomorphic maps is
holomorphic. The map f is called biholomorphic if f is bijective and if f and
f−1 are holomorphic.

Also the notion of “sub manifold” carries over to the complex case. A first
remark in this direction is that open subsets of complex manifolds inherit a
structure of complex manifold. Analytic charts ϕ : U → V turn now out to
be nothing else than biholomorphic maps. A subset Y ⊂ X is called smooth
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in the complex analytic sense if every point a ∈ Y admits a chart ϕ : U → V ,
a ∈ U , such that ϕ(Y ∩ U) can be defined by complex linear equations. One
can always manage that these equations are zd+1 = · · · = zn = 0. It should be
clear that such subsets inherit a structure as complex manifold. Such manifolds
are called complex sub-manifolds.

From the theorem of implicit functions follows:

Let U ⊂ Cn be an open subset and let f : U → Cm be a holomorphic map.
Assume that the complex Jacobi matrix of f has rank m at every point of the
zero set N = {a ∈ U ; f(a) = 0}. Then N is a complex manifold. Its (complex)
dimension is n−m.

Examples of complex manifolds

A lattice L ⊂ V of a finite dimensional subgroup is a a subset with the following
property: There exists a basise e1, . . . , en, such that

L = Ze1 + · · ·+ Zen.

Lattices are subgroups. The associated torus is the factor group X = V/L
equipped with the quotient topology. It is easy to equip X with a structure as
differentiable manifold. For this an open subset V ⊂ V is called small, if the
projection V → X is injective. Then the image U is open and the inverse map
U → V is a chart on X. The set of all these charts is a differentiable atlas and
defines a structure as differentiable manifold.

Let now V be a finite dimensional complex vector space. By definition a
lattice in V is a lattice of the underlying real vector space. The same construc-
tion as above shows that X = V/L carries a structure as complex manifold. It
is called a complex torus.

A Riemann surface is a complex manifold of complex dimension one. They
also are called “complex curves”. The simplest examples are open subsets of
C. Less trivial examples are complex one dimensional complex tori C/L.

We give another example. We extend C by some additional symbol ∞ to a
set C̄ = C ∪ {∞}. We make use of the convention

1
0

= ∞,
1
∞ = 0.

W call a subset U ⊂ C̄ open if the following two conditions are satisfied

1) The intersection U ∩ C is open in the usual sense.

2) Assume ∞ ∈ U . Then the set

{z ∈ C; 1/z ∈ U}



§2. Complex manifolds 33

is open in C in the usual sense. It is clear that by this definition C̄ gets
a compact topological space. It contains C as open subset and the induced
topology on C is the usual one. A typical neighborhood of ∞ is the set

{z ∈ C; |z| > r} ∪ {∞} (r > 0).

each neighborhood of∞ contains one of this type. It is clear form the definition
that the map

σ : C̄ −→ C̄, σ(z) = 1/z,

is a topological map. We define two charts:

C̄ − {∞} −→ C, z 7−→ z, C̄ − {0} −→ C, z 7−→ 1/z.

The chart transformation

C − {0} −→ C − {0}, z 7−→ 1/z,

is biholomorphic. Hence the two charts define an holomorphic atlas and hence
a structure of Riemann surface on C̄.

We want to generalize this example to the case of several variables. This
leads to the complex projective space.

We denote by Pn(C) the set of all one dimensional subvector spaces of
Cn+1. If a ∈ Cn+1 is not the zero vector, it generates a one dimensional space
[a] := Ca. We obtain a surjective map

Cn+1 − {0} −→ Pn(C), a 7−→ [a].

We have [a] = [b] if and only if there exist a complex number t with b = ta.
Hence we can consider alternatively [a] as equivalence class with respect to the
equivalence relation

a ∼ b ⇐⇒ b = ta (a, b ∈ Cn+1 − {0}).
We equip Pn(C) with the quotient topology. It is not difficult to show that it
is a compact topological space. We consider the part

Ui := {[a] ∈ Pn(C), ai 6= 0}.
Notice that the condition ai does not depend on the choice of the representant.
Obviously Ui is an open subset. The map

Ui −→ Cn, [a0, . . . , an] 7−→
(a0

ai
, . . . ,

âi

ai
, . . . ,

an

ai

)

is topological. The hat means that the element beyond it should be canceled.
The inverse map is given by

Cn −→ Ui, (z1, . . . , zn) 7−→ [z1, . . . , zi−1, 1, zi, . . . , zn].

So the maps Ui → Cn are charts that define an atlas. The chart transforma-
tions are biholomorphic. Hence we obtain a structure as complex manifold on
Pn(C). This is the complex projective space.
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Projective manifolds

A polynomial P ∈ C[z0, . . . , zn] is called homogenous of degree d if

P (tz) = tdP (z) (t ∈ C).

This means tht P is of the form

P (z) =
∑

ν0+···+νn=0

aν0,...,νn
zν0
0 · · · zνn

n .

Let [a] ∈ Pn(C). For homogenous P the condition P (a) = 0 is independent
of the choice of the representant a. Hence we can talk of the zero set of P in
Pn(C). A subset X ⊂ Pn(C) is called algebraic, if there exist finitely many
homogenous polynomials such that X their joint set of zeros.

Algebraic sets need not to be complex sub-manifold, they can have “singu-
larities”. For example z0z1z2 = 0 defines not a sub-manifold in P 2(C). Very
remarkable is the following

2.1 Theorem of Chow. Let X ⊂ Pn(C) be a closed complex submanifold.
Then X is algebraic.

2.2 Definition. A complex manifold X is called projective algebraic, if
there exists for some suitable n a complex submanifold Y ⊂ Pn(C) that is also
an algebraic set and such that Xand Y are biholomorphic equivalent.

Clearly projective complex manifolds are compact.

3. Differential forms on complex manifolds

Complex manifolds can also be considered as (real) differential manifolds (iden-
tifying Cn with R2n). The real dimension is the double of the complex dimen-
sion. Hence the space C∞(X) is defined also for complex manifolds. In this
connection it is natural to introduce complex valued differentiable functions
and more general complex valued differential forms even in the case of a (real)
differentiable manifold X. For this one introduces Altp

C (V ) for a real vector
space V to be the set R-alternating forms V × . . .× V → C. They are simply
of the form ω = ω1 + iω2 with elements ωi ∈ Altp(V ). Now Altp

C (V ) is a
complex vector space in an obvious way. A complex differential form ω is a
family ωa ∈ Altp

C (TaX) that depends differentiable from a. This just means
by definition that the real and imaginary part of ω are differentiable. We de-
note the space of complex valued differential forms by Ap

C ). They just are of
the form ω = ω1 + iω2 with ωi ∈ Ap(X). In the special case p = 0 we can
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identify the elements A0
C (X) with complex valued functions on X whose real-

and imaginary part is differentiable. The space of these function is denoted by
C∞C (X). Using this decomposition it is clear how to define the wedge product
and the exterior differentiation. We can define the complex version of the de
Rham complex

· · · −→ Ap−1
C (X) −→ Ap

C (X) −→ Ap+1
C (X) −→ · · ·

and its cohomology groups which now note by Hp(X,C). There is a natural
R-linear map

Hp(X,R) −→ Hp(X,C).

This is injective. We define Hp(X,R) with its image. One has

Hp(X,C) = Hp(X,R) + iHp(X,R).

Hence the Betti numbers are

bp(X) = dimR Hp(X,R) = dimC Hp(X,C).

It should be clear that the complex version of the de-Rham complex just con-
tains the same information as the real one. In the following we will use only
the complex variant. Hence we change the notation:
From now now on Altp(V ) denotes the space of complex valued R-alternating
forms on the real vector space V , and Ap(X) denotes the space of complex
valued differential forms and C∞(X) = A0(X) the space of complex valued
differentiable functions.
For the cohomology groups of the (complex) de-Rham complex we keep the
notation Hi(X,C).

Decomposition of differential forms

We start with the local case: let U ⊂ Cn be an open subset. We introduce

dzi := dxi + idyi, dz̄i := dxi − idyi.

Then we have
dxi =

dzi + idz̄i

2
, dyi =

dzi − idz̄i

2i
.

3.1 Definition. A differential form is called of type (p, q) if it can be written
in the form

ω =
∑

1≤i1<···<ip≤n

1≤j1<···<jq≤n

f i1...ip
j1...jq

dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq .

The space of all (p, p)-forms is denoted by

Ap,q(U).

It is easy to show that the components f i1...ip
j1...jq

are uniquely determined. So one

obtains:
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3.2 Lemma. There is a direct sum decomposition

Am(X) =
⊕

p+q=m

Ap,q(X).

Now complex analysis comes into the game:

3.3 Proposition. Let

ϕ : U −→ V, U ⊂ Cn, V ⊂ Cm both open,

be a holomorphic map. Then (p, q)-types are preserved under pulling back.
This means that we get

ϕ∗ : Ap,q(V ) −→ Ap,q(U).

Proof. We treat the case m = n = 1 that is typical. The general case is
essentially the same. We compute ϕ∗(dz). For this we decompose ϕ = ϕ1 +iϕ2

into real and imaginary part. Then (using the coordinates w = u + iv for V )

ϕ∗(dw) = ϕ∗(du) + iϕ∗(dv) = (∂xϕ1dx + ∂yϕ1dy) + i(∂xϕ2dx + ∂yϕ2dy).

The Cauchy Riemann differential equation gives ∂yϕ2 = ∂xϕ1. Hence we get

ϕ∗(dw) = (∂zϕ) dz.

Here we used the usual notations as ∂x = ∂/∂x. tu
Since ϕ is a holomorphic function of one variable, one can also use standard

notations like
∂ϕ

∂z
=

dϕ

dz
= ϕ′.

The fact that (p, q)-types are preserved under holomorphic transformations,
allows us to generalize the types to arbitrary complex manifolds:

3.4 Definition and Remark. A differential form ω ∈ Am(X) on a complex
manifold is called of type (p, q) if this is the case for all components ωϕ ∈
Am(Vϕ) for any holomorphic chart. It is sufficient to check this for a defining
atlas. Especially for open subsets of Cn one obtains the original notion of
(p, q)-type.
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We denote the space of (p, q)-forms on a complex manifold by Ap,q(X). Again
it is true that

Am(X) =
⊕

p+q=m

Ap,q(X).

For holomorphic maps f : X → Y of complex manifolds pilling back gives an
operator

ϕ∗ : Ap,q(Y ) −→ Ap,q(X).

Now a basis fact arises. The (p, q) types are not preserved under exterior
differentiation. For example, let f ∈ C∞(C). Then

df = (∂xf)dx + (∂yf)dy =
∂xf − i∂yf

2
dz +

∂xf + i∂yf

2
dz̄.

More generally the product rule in connection with the rule d ◦ d = 0 implies

d(fdzi1 ∧ . . .∧dzip ∧dz̄j1 ∧ . . .∧dz̄jq ) = (df)∧dzi1 ∧ . . .∧dzip ∧dz̄j1 ∧ . . .∧dz̄jq .

This formula shows that d defines an operator

d : Ap,q(X) −→ Ap+1,q(X)⊕Ap,q+1(X).

Hence we can define unique operators

∂ : Ap,q(X) −→ Ap+1,q(X), ∂̄ : Ap,q(X) −→ Ap,q+1(X)

such that
d = ∂ + ∂̄.

The Wirtinger calculus

The Wirtinger calculus is a very convenient tool to handle the operators ∂, ∂̄.
It rests on the formula

df =
∂xf − i∂yf

2
dz +

∂xf + i∂yf

2
dz̄.

This formula implies

∂f =
∂xf − i∂yf

2
dz, ∂̄f =

∂xf + i∂yf

2
dz̄.

This formula is valid for arbitrary differentiable functions. In the case of a holo-
morphic function f it simplifies. Obviously the Cauchy-Riemann differential
equations can be written in the form

∂xf + i∂yf = 0.



38 Chapter III. Complex Hodge theory

And the complex derivative of f is

∂zf =
∂xf + i∂yf

2
.

Hence for a holomorphic function the formula simplifies to

∂f = ∂zfdz.

These formula indicate that one should define the operators

∂

∂zi
=

∂x − i∂y

2
and

∂

∂z̄i
=

∂x + i∂y

2
.

They act on arbitrary differentiable functions on open subsets U ⊂ Cn. Such
a function is holomorphic if and only if

∂f

∂z̄i
= 0

and then ∂f/∂zi is the usual complex derivative (which justifies the notation.)

3.5 Remark. let f be a differentiable function on some open subset of Cn.
Then

∂f =
n∑

ν=1

∂f

∂zν
dzν and ∂̄f =

n∑
ν=1

∂̄f

∂z̄ν
dz̄ν .

The function f is holomorphic if and only if ∂̄f = 0.

4. The Dolbeault complex

For a fixed p we consider the complex

· · · −→ Ap,q−1(X) ∂̄−→ Ap,q(X) −→ Ap,q+1(X) ∂̄−→ · · · .

“Complex” means that ∂ ◦ ∂ = 0. We then can define

Cp,q(X) = kernel(Ap,q(X) −→ Ap,q+1(X)),

Bp,q(X) = kernel(Ap−1,q(X) −→ Ap,q(X)).

The complex vector spaces

Hp,q(X) = Cp,q(X)/Bp,q(X)
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are the so-called Dolbeault cohomology groups. The numbers

hp,q = hp,q(X) := dimC Hp,q(X) (≤ ∞)

are called the Hodge numbers. We will see that they are finite for compact X.
Biholomorphic equivalent complex manifolds have the same Hodge numbers.
Of course Ap,q(X) vanishes if p < 0 or q < 0 or p + q > n. Hence the Hodge
numbers can be written in a table which has the form of a diamond, for example
in the case of dimension n = 3:

h00

h10 h01

h20 h11 h20

h30 h21 h12 h03

h31 h22 h13

h32 h23

h33

Before we continue we introduce the notion of a holomorphic differential form.
In the local theory this means that it is of the form

ω =
∑

i1<···<···ip

fi1,...,ipdzi1 ∧ . . . ∧ dzip

with holomorphic functions fi1,...,ip . This are two conditions:

a) ω is of type (p, 0).
b) One has ∂̄ω = 0.

Observe that the first condition implies that the second is equivalent to
the holomorphy of the components. The conditions a) and b) make sense for
arbitrary complex manifolds.

4.1 Definition. A differential form one a complex manifold is called holo-
morphic if it is of type (p, 0) and if it is in the kernel of ∂̄.

We denote the space of all holomorphic forms of type (p, 0) by

Ωp(X).

Clearly Ω0(X) can be identified with the space O(X) of holomorphic functions.

There is a relation to Hp,0(X). Since Ap,−1(X) = 0 we have Bp,0(X) = 0.
Hence we have

Hp,0(X) = Cp,0(X) = Ωp(X).
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4.2 Remark. There is a natural isomorphism

Ωp(X) ∼= Hp,0(X).

Already the case p = 0 is interesting here. One a connected compact complex
manifold every holomorphic function is constant by the maximum principle.
Hence we see

h00(X) = 1 (X connected).

There are two complex variants of the Lemma of Poincaré. We formulate them
without proof. We will not need them in the rest of the text.

4.3 Holomorphic Lemma of Poincaré. Let U ⊂ Cn an open convex do-
main. Every holomorphic differential form ω of degree p > 0 with the property
dω = 0 can be written in the form ω = dα with a holomorphic differential form
α.

The proof is similar to the proof of the real Lemma of Poincaré and hence very
easy.

By a polydisk in Cn one understands an open subset of the form U1×. . .×Un,
where Ui are open discs in C.

4.4 Lemma of Dolbeault. Let ω be a differential form on a polydisk of
degree (p, q) with q > 0. Assume that ∂̄ω = 0. Then there exists a differential
form α of degree (p, q − 1) such that ω = ∂̄α

The proof is much more involved as that of the Lemmas of Poincaré. Already
the case n = 1 is difficult.

5. A complex structure on the real tangent space of a
complex manifold

The tangent space of Rn has been identified with Rn. Hence the tangent
space of Cn can be identified with Cn. This indicates that the tangent space
TaX (taken from the real theory) should have a structure as complex vector
space. Notice: The dimension of TaX is 2n. Hence if TaX is equipped with
a structure as complex vector space, the complex dimension should be n. For
this construction it is convenient to introduce the holomorphic tangent space
T hol

a (X) for a point a on a complex manifold. This is analogous to Definition
5.1.
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5.1 Definition. Let a ∈ X be a point in a complex manifold. A holomorphic
derivation at a is a family of maps

D : O(U) −→ C,

where U runs through all open neighborhoods of a such that the following two
conditions hold:
1) It is compatible with restriction.
2) It is C-linear.
3) It satisfies the product rule

D(fg) = f(a)D(g) + g(a)D(f).

The set of holomorphic derivations is a complex vector space. We denote it
by T hol

a X. As in the real case a holomorphic map f : X → Y induces now a
C-linear map

T hol
a f : T hol

a X −→ T hol
f(a)Y.

This is compatible with composition of holomorphic maps and it is an isomor-
phism for biholomorphic maps. The space T hol

a Cn is n-dimensional a (complex)
basis is given by the derivations ∂/∂zν , 1 ≤ ν ≤ n. The proof is the same as
in the real case. So for a n-dimensional complex manifold T hol

a X is a complex
vector space of dimension n. We want to compare it with the tangent space
TaX of the real theory. This is a real vector space of dimension 2n. Hence
both tangent spaces have real dimension 2n and hence are isomorphic as real
vector spaces. We want to define a natural (R-linear) isomorphism

TaX
∼−→ T hol

a X.

For this consider a derivation A ∈ TaX. Recall that A acts on real valued
differentiable functions. We can extend a to complex valued differentiable
functions (defined in some open neighborhood) of a by the definition D(u+iv) =
D(u) + iD(v). Then we can restrict D to holomorphic functions. We call this
the natural map.

5.2 Lemma. The natural map
TaX −→ T hol

a X

is an isomorphism of real vector spaces.

Proof. Since both are vector spaces of the same (real) dimension, it is sufficient
to show surjectivity. Using a chart this can be reduced to the case X = Cn.
But for holomorphic (!) functions we have

∂

∂xi
7−→ ∂

∂zi
and

∂

∂yi
7−→ i

∂

∂zi
.

Since ∂/∂zi and i∂/∂zi generate T hol
a Cn as real vector space we get surjectivity.

tu
Now make use of the fact that T hol

a X is complex vector space. We can
transport this structure to get a structure as complex vector space on TaX.
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5.3 Proposition. Let X be a complex manifold. The real tangent space TaX
at a point a ∈ X carries a structure as complex vector space, such that the
natural map

TaX −→ T hol
a X

is a C-linear isomorphism.

How is the complex structure on TaX defined concretely? On could think that
multiplication by i of a derivation A is defined by (iA)(f) = iA(f). But this is
nonsense. Of course one can define the operator iA by this formula. But iA is
no longer contained in the real tangent space TaX. Hence multiplication with
i inside TaX must be something different. For this reason we use a different
notation:

The operator J : TaX → TaX means multiplication with i with respect to the
introduced complex structure,

So J(A) must be contained in TaX and has nothing to do with iA as defined
above. In local coordinates it is easy to make J concrete:

5.4 Lemma. The operator J : TaCn → TaCn is given by

J(∂/∂xi) = ∂/∂yi, J(∂/∂yi) = −∂/∂xi.

At the first glance it looks strange that J has to do something like multiplying
with i. But notice that one holomorphic functions J is the usual multiplication
with i.

Linear algebra background

Using the complex structure on the real tangent space TaX the decomposition
of differential forms can be reconsidered in pure algebraic context. Recall for
a real vector space V we meanwhile use the notation

Alt1(V ) = HomR (V,C).

In the case that V is the underlying real vector space of a complex vector
space —now called V — this space gets some extra structure. Namely one can
consider the subspaces

Alt1,0(V ) := HomC (V,C), Alt0,1(V ) := HomC (V,C).

It is easy to see that

Alt1(V ) = Alt1,0(V )⊕Alt0,1(V ).
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More generally one defines Altp,q(V ) to be the vector space generated by

a1 ∧ . . . ,∧ap ∧ b1 ∧ . . . bq, ai ∈ Alt1,0(V ), bi ∈ Alt(0,1).

Using bases it is easy to show

Altm(V ) =
⊕

p+q=m

Altp,q(V ).

5.5 Remark. Let X be a complex manifold. A differential form ω ∈ Am(X)
is of type (p, q) iff for every point a ∈ X one has

ωa ∈ Ap,q(TaX).

Proof. This is local problem. Hence X can be assumed to be an open subset
of Cn. All what we have to show is that

dzi : TaU −→ C

is C-linear. Here TaX of course carries the complex structure defined by J .
Hence we have to show for example

dzi(∂/∂xj) = idzi(J(∂/∂xj)).

To see this one has to use J(∂/∂xj) = i∂/∂y) and the fact that by definition
dx1, dy1, . . . , dxn, dyn is dual to ∂/∂x1, ∂/∂y1, . . . , ∂/∂xn, ∂/∂yn. This implies
dzi(∂/∂xj) = δij and dzi(∂/∂yj) = iδij .

The complexified real tangent space

We also can give an algebraic interpretation of the operators ∂/∂zi and ∂/∂z̄i.
For this one introduces the complexified tangent space

T Ca X = TaX + iTaX.

Its elements are complex valued derivations that can be written (uniquely) in
the form A+iB, A,B ∈ Ta. We can apply them to complex valued differentiable
functions by C-linear extension. Hence elements of T Ca X act on complex valued
differentiable functions on open neighborhoods of a and they produce complex
numbers. In the local case where X is an open subset U ∈ Cn we can consider
the complex tangent vectors

∂/∂zi|a =
∂/∂xi|a − i∂/∂yi|a

2
, ∂/∂z̄i|a =

∂/∂xi|a + i∂/∂yi|a
2

.

The operators ∂/∂zi, ∂/∂z̄i now can be considered as complex valued vector
fields.

Also the operator J can be extended as C-linear map to T Ca X. The action
on ∂/∂zi, ∂/∂z̄i is given by (we omit “|a” in the notation)

J(∂/∂zi) = i∂/∂zi, J(∂/∂z̄i) = −i∂/∂̄zi.

So we see:
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5.6 Remark. Let X be a complex manifold. The complexified tangent space
T Ca decomposes as direct sum of two subspaces

T Ca X = T 1,0
a X ⊕ T 0,1

a X,

where J acts on = T 1,0
a X by multiplication with i and on T 0,1

a X by multiplica-
tion with −i. In the local case these subspaces are generated by ∂/∂zi resp. by
∂/∂z̄i.

Recall that we have a natural restriction map

T Ca X −→ T hol
a X.

Its restriction TaX −→ T hol
a X is an R-linear isomorphism that has been used

to define the operator J . Of course the restriction

T 1,0
a X −→ T hol

a X

is also an isomorphism. In some sense it looks more natural because J and
mutiplication with i are the same on T 1,0

a X. Notice also that ∂/∂zi ∈ T 1,0X
maps to ∂/∂zi (considered now as operator that acts on holomorphic functions).
Hence T 1,0

a X can be identified with the T hol
a very naturally and sometimes the

holomorphic tangent space is defined to be T 1,0
a X.

tu

6. Hermitian manifolds

We want to generalize the notion of Riemannian manifold to the complex case.
We start with some elementary linear algebra. Let V a finite dimensional
complex vector space. A hermitian form on V is a map

h : V × V −→ C

with the following properties.
1) It is C-linear in the first variable.
2) It has the property h(a, b) = h(b, a).
As a consequence h(a, a) is always real. The hermitian form is called positive
definite if h(a, a) > 0 for all non-zero a. The standard example of a positive
definite hermitian form is V = Cn and h(z, w) =

∑
ziw̄i. This is essentially

the unique example. More precisely: Every positive definite hermitian form
admits an orthonormal basis e1, . . . , en in the sense h(ei, ej) = δij .

The real part
g(a, b) = Re h(a, b)
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of a hermitian form is a symmetric real bilinear form (on the underlying real
vector space). It is positive definite if h is so.

The imaginary part
A(a, b) = Im h(a, b)

is an alternating real bilinear form (A(a, b) = −A(b, a)). The real part g
determines h because of the formula

h(a, b) = g(a, b) + ig(a, ib).

But also A determines g and hence also h, since

A(a, b) = g(a,−ib).

Not every real symmetric bilinear form g comes from a hermitian on. A neces-
sary condition is

g(a, b) = g(ia, ib).

But this condition is also sufficient, since then one can check that h(a, b) =
g(a, b) + ig(a, ib) is hermitian. Similarly one can check that an alternating
real bilinear form A is the imaginary part of a hermitian form if and only if
A(a, b) = A(ia, ib).

6.1 Definition. A hermitian metric h on a complex manifold is a collection
of positive definite hermitian forms ha on the tangent space TaX that depend
differentiable on a. A hermitian manifold (X, h) is a pair consisting of a com-
plex manifold and a hermitian metric on it.

It should be clear what differentiable means. For example it is sufficient to
demand that ga = Re ha is differentiable in a. Hence a hermitian manifold also
can be considered as a Riemannian manifold.

Let U ⊂ Cn be an open subset and h an hermitian metric on it. This is
just given be a matrix hij = h(∂/∂zi, ∂/∂zj) of differentiable functions that is
hermitian and positive definite at every point.

6.2 Lemma. Let h be a hermitian metric on an open subset U ⊂ Cn and
g = Re h the associated Riemannian metric. Then

g(∂/∂xi, ∂/∂xj) = g(∂/∂yi, ∂/∂yj), g(∂/∂xi, ∂/∂yj) = 0

and conversely every Riemann metric with this property comes from a hermitian
one.
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Proof. One just has to use the formula g(a, b) = g(Ja, Jb) and the formula how
J acts on the ∂/∂xi and ∂/∂xi. tu

This implies that the star operator is defined. Originally the star operator
has been defined of real differential forms through the formula

α ∧ ∗β = g∗(α, β)ω (ω volume form.

We extend ∗ to complex valued differential forms as C-linear map. Similarly we
extend g∗ to complex valued forms as C-bilinear map. The the above defining
formula remains valid in the complex valued case.

The star operator has special properties if the Riemann metric g is the real
part of a hermitian metric. In this case it preserves (p, q)-types in a certain
sense:

6.3 Lemma. Let (X, h) be a hermitian manifold. The star operator preserves
the (p, q) in the sense that it defines maps

∗ : Ap,q(X) −→ An−q,n−p(X).

Proof. We use the linear algebra description. We have to show for a complex
vector space with hermitian metric the star operator induces a map

Altp,q(V ) −→ Altn−q,n−p(V ).

For this it is convenient to use an orthonormal basis e1, . . . , en of V . Ob-
viously then e1, ie1, . . . , en, ien then is an orthonormal basis of the under-
lying real euclidian space. We denote the dual basis in HomR (V,R) by
A1, B1, . . . , An, Bn. Obviously this is a orthonormal basis of HomR (V,R). It
is also a C-basis of Alt1(V ) = HomR (V,C), where we use the natural inclusion
HomR (V,R) ↪→ HomR (V,C). We denote the symmetric C-bilinear pairing on
Alt1(V ) that is induced by g simply by

〈A,B〉 = g∗(A, B).

So we have
〈Ai, Aj〉 = 〈Bi, Bj〉 = δij , 〈Ai, Bj〉 = 0.

Now we introduce the elements

Li := Ai + iBi.

They are C-linear and they define a C-basis of A1,0(V ) = HomC (V,C). More-
over the L̄i = Ai − iBi form a C-basis of A1,0(V ). One also checks

〈Li, Lj〉 = 〈L̄i, L̄j〉 = 0, 〈Li, L̄j〉 = 2δij .



§7. The complex Laplace Beltrami operator. 47

Let a ⊂ {1, . . . , b} be a subset. We define

La = La1 ∧ . . . ∧ Lap
, L̄a = L̄a1 ∧ . . . ∧ L̄ap

,

where a1 < · · · < ap are the elements of a in their natural order. We claim

〈La ∧ L̄b, Lα ∧ L̄β〉 6= 0 =⇒ a = β, b = α.

This is a simple consequence of the formula

〈α1 ∧ . . . ∧ αp, β1 ∧ . . . βp〉 = det(〈αi, βj〉).

(We derived this formula in the real valued case. The same argument works
in the complex valued case.) Using the definition of the star operator one now
obtains

∗(La ∧ L̄b) = C · Lα ∧ L̄β ,

where α is the complement of b and β is the complement of a. This finishes
the proof of 6.3. tu

7. The complex Laplace Beltrami operator.

We introduced the operator

∂̄ : Ap,q(X) −→ Ap,q+1(X).

Similar to the operator d∗ we are looking for a complex codifferentiation

∂̄∗ : Ap,q(X) −→ Ap,q−1(X).

One can get a natural one as follows. Let α ∈ Ap,q(X). Then ∗α ∈ An−q,n−p.
We take its complex conjugate

∗̄α := ∗α ∈ An−p,n−q.

Then we differentiate
∂̄∗̄α ∈ An−p,n−q+1

and apply the operator ∗̄ again,

∂̄∗ := −∗̄ ∂̄ ∗̄ : Ap,q(X) −→ Ap,q−1(X).

An equivalent definition is
∂̄∗ = − ∗ ∂ ∗ .
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The sign can be explained as follows: It can be checked that for forms with
compact support this operator satisfies

(∂̄α, β) = (α, ∂̄∗β) where (α, β) :=
∫

X

α ∧ ∗β̄.

We define the complex Laplace-Beltrami operators as

t̄u := ∂̄∂̄∗ + ∂̄∗∂̄ : Ap,q(X) −→ Ap,q(X)

We denote by
Hp,q(X) ⊂ Ap,q(X)

the kernel of t̄u.
The point is that t̄u is also an elliptic operator. Similar arguments as in the

real case show:

7.1 Main theorem of complex Hodge theory. Let X be a compact
Hermitean manifold. Then Hp,q(X) is contained in the space of ∂̄-closed forms
and the natural homomorphism

Hp,q(X) ∼−→ Hp,q(X)

is an isomorphism. These vector spaces are finite dimensional.

Hence the so-called Hodge-numbers

hp,q(X) := dimC Hp,q(X)

are well defined numbers.
There is also a duality result. The operator ∗̄ clearly maps harmonic to

harmonic forms. hence we get that Hp,q(X) and Hn−p,n−q(X) are isomorphic.
Similar to the real case II.3.7 this can be reformulated as in terms of a duality
pairing.

7.2 Duality. Let X be a pure n-dimensional compact hermitian manifold.
The integral

∫
X

α ∧ ∗̄β induces a non-degenerated pairing

Hp,q(X)×Hn−p,n−q(X) −→ C

in the sense that the induced map

Hn−p,n−q(X) −→ HomC (Hp,q(X),C)

is an (only R-linear) isomorphism. So one has

hp,q(X) = hn−p,n−q(X).
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We finally remark that there is also an analogous result for the complex ∂ :
Ap,q(X) → Ap+1,q. Here one defines an Laplace Beltrami operator

tu = ∂∂∗ + ∂∗∂, where ∂∗ = −∗̄∂∗̄ = − ∗ ∂̄∗,

and gets completely analogous results. But there is no need to formulate them,
since the two variants of the theory are interchanged by complex conjugation.
There is no reason to prefer the ∂̄ or the ∂-complex. Finally we mention

∂∗ + ∂̄∗ = d∗.



IV. Kähler manifolds

1. Kähler metrics

We already mentioned that also the imaginary part of a hermitian form is of
interest. It is an alternating bilinear form. If (X, h) is a hermitian manifold,
then

Ω := Im h

is a (real) alternating differential form of degree two. We compute it local
coordinates. So let h be a hermitian metric on some open domain U ⊂ C. The
tangent space TaU at some point a has the real basis

∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . , ∂/∂yn.

We want to use a complex basis. Recall that the complex structure in Ta is
defined by an operator J with J2 = − id and J(∂/∂xi) = i∂/∂y1. Hence as
complex basis we can take the ∂/∂xi. The matrix

hij = h(∂/∂xi, ∂/∂xj)

is a positive definite hermitian matrix. We get

h(∂/∂xi, ∂/∂xj) = hij ,

h(∂/∂yi, ∂/∂yj) = hij ,

h(∂/∂xi, ∂/∂yj) = −ihij ,

h(∂/∂yi, ∂/∂xj) = ih̄ij .

Taking the imaginary part A we get

A(∂/∂xi, ∂/∂xj) = Im hij ,

A(∂/∂yi, ∂/∂yj) = Im hij ,

A(∂/∂xi, ∂/∂yj) = Re hij ,

A(∂/∂yi, ∂/∂xj) = −Re h̄ij .

Another way to write this is

A =
∑

ij

Im hijdxi ⊗ dxj +
∑

ij

Im hijdyi ⊗ dyj+

∑

ij

Re hijdxi ⊗ dyj −
∑

ij

Re hijdyi ⊗ dxj .
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It is easy to check that this equals

A =
∑

ij

i
2
hij(dzi ⊗ dzj − dzj ⊗ dzi).

Using our definition of the wedge product we get the formula

Ω =
i
2

∑

1≤i,j≤n

hij dzi ∧ dzj

In the case of the standard metric of Cn the components hij are constant. In
this case we have that Ω is a closed form, dΩ = 0. This property has turned
out to be very basis. It leads to the following definition:

1.1 Definition. A compact hermitian manifold is called Kählerian, if the
form Ω is closed, dΩ = 0.

We give some examples:
1) Complex tori (with the standard metric) are Kählerian.
2) The projective space (with standard metric) is Kählerian.
3) Compact Riemann surfaces (with any hermitian metric) are Kählerian.
We also mention the following. Let Y be a closed complex submanifold of
a Kählerian manifold (X, h). The restriction of the hermitian metric h to
Y equips Y with a structure as Kählerian manifold. As a consequence each
projective algebraic variety admits a structure as Kählerian manifold.

1.2 Theorem. A Hermitian metric h is Kählerian if and only if the following
is true: For every point a ∈ X there exists a holomorphic chart ϕ : U → V ,
a ∈ U , ϕ(a) = 0, such that the components hij of the fundamental form Ω with
respect to this chart satisfy:

hij(0) = δij , ∂hij/∂xk(0) = ∂hij/∂xk(0) = 0.

It is clear that this condition implies dΩ = 0. So we have to prove the converse.
Assume dΩ = 0. We can assume that X is an open set U ⊂ Cn and that a = 0
is the origin. Recall

Ω =
i
2

∑

ij

hijdzi ∧ dz̄j .

First we use a linear transformation z 7→ Az, A ∈ GL(n,C). The matrix h
has to be replaced by Ā′hA. We use the well-known result of linear algebra
that each positive definite hermitian matrix h can be transformed by such a
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transformation into the unit matrix. Hence we can assume that h(0) is the unit
matrix. This property will be preserved during the rest of the proof.

We introduce the numbers

aijk =
∂hij

∂zk
(0), bijk =

∂hij

∂z̄k
(0).

Then we have
hij = δij +

∑

k

aijkzk +
∑

bijkz̄k + rij ,

where the remainder rij and its first partial derivatives vanish at 0. We de-
compose

Ω = Ωmain + R,

where
R =

∑

ij

rijdzi ∧ dzj .

From dΩ = 0 and form hij = h̄ji one derives the relations

aijk = akji, bijk = aikj and bijk = ājik.

The transformation

wk = zk +
1
2

n∑

i,j=1

aijkzizj

maps a small open neighborhood of U biholomorphically onto an open neigh-
borhood V . We have to transform Ω into V . We denote the transformed form
by Ω̃. We have Ω̃ = Ω̃main + R̃ with obvious notation. The form R̃ is without
interest, since R̃ and its first derivatives vanish at the origin. This is easily
proved by means of the chain rule. So we have to determine Ω̃main. A straight
forward calculations gives

i
2

n∑

j=1

dwj ∧ dw̄j = Ω̃main.

This completes the proof of 1.2.

Examples of Kähler manifolds

Usually one describes the Kähler form Ω if one wants to define a Kähler struc-
ture. So one has to define a (1, 1)-form Ω. In local coordinates it is given by a
hermitian matrix (hij).

Ω =
i
2

∑

ij

hijdzi ∧ dzj .
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The matrix h = (hij) has to be positive definit for every holomorphic chart
(from a defining atlas is enough). Then Ω comes form a hermitian metric. It
is Kählerian if dΩ = 0.

Complex tori. Let L ⊂ Cn be lattice. We consider the differential form

Ω =
i
2

n∑

i=1

dzi ∧ dz̄i.

This form is invariant under translations. This implies that there is a differ-
ential form on the torus X = Cn/L whose inverse image on Cn with respect
to the natural projection is Ω. We denote this form on the torus by Ω too. It
defines a Kähler metric on the torus.

The projective space. We consider the open subset of Pn(C) that is defined
by zi 6= 0 and we consider the chart

ϕi : Ui −→ Cn, (z0, . . . , zn) 7−→
(z0

zi
, . . . ,

ẑi

zi
, . . . ,

zn

zi

)
.

We wirite w1, . . . , wn for the coordinates in Cn. We consider the differential
form

Ωi =
i

2π
∂∂̄ log

( n∑

i=1

|wi|2 + 1).

One can check that there is a differential form Ω on Pn(C) which has the
forms Ωi as components. On also can check that this defines a Käehler metric
on Pn(C). This metric is called the Fubini-Study metric.

If (X, Ω) is Kähler manifold and if Y ⊂ X is a complex submanifold then
(Y, Ω|Y ) is a Kähler manifold too. As a consequence each projective complex
manifold carries a structure as Kähler manifold. For this reason, the Kähler
theory is a basic tool for algebraic geometry.

2. The Hodge decomposition

We introduce two basic operators. Let (X,h) be a hermitian manifold and Ω
the associated fundamental form:
The Lefschetz operator is

L : Ap,q(X) −→ Ap+1,q+1(X), α 7−→ α ∧ Ω.

The dual Lefschetz operator is

Λ : Ap,q(X) −→ Ap−1,q−1(X), Λ = ∗−1 ◦ L ◦ ∗.
In the Kählerian case there are fundamental commutation rules between the
complex derivatives. We recall the notation [A,B] = A ◦B −B ◦A.
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2.1 Theorem (Kähler relations). Let (X,h) be a Kähler manifold. Then
the follwing relations hold:
1) [∂̄, L] = [∂, L] = 0 and [∂̄∗, Λ] = [∂∗,Λ] = 0.
2) [∂̄∗, L] = i∂, [∂∗, L] = −i∂̄ and [Λ, ∂̄] = −i∂∗, [Λ, ∂] = i∂̄∗.

Since these formulas only involve first derivatives it is sufficient to very them for
the standard metric in Cn. This can be done be a straight forward calculation.

tu
A basic consequence of the Kähler relations is:

2.2 Theorem. On a Kähler manifold the relation

∆ = 2t̄u

holds.

Proof. We have

∆ = (∂ + ∂̄)(∂∗ + ∂̄∗) + (∂∗ + ∂̄∗)(∂ + ∂̄)

= tu+ t̄u+ (∂∂̄∗ + ∂̄∗∂) + (∂∂̄∗ + ∂̄∗∂).

We first show
(∂∂̄∗ + ∂̄∗∂) = 0.

Actually
i(∂∂̄∗ + ∂̄∗∂) = ∂[Λ, ∂] + [Λ, ∂]∂ = ∂Λ∂ − ∂Λ∂ = 0.

It remains to show tu = t̄u. This is done by the same method. One uses the
formulae

[Λ, ∂̄] = −i∂∗, [Λ, ∂] = i∂̄∗

to express tuand t̄u merely by ∂, ∂̄ and Λ. Then the identity gets obvious if one
uses also

[∂̄∗, Λ] = [∂∗, Λ] = 0. tu
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1. Differential operators

Let Ω ⊂ Rn be an open subset. We are interested in maps

D : C∞(Ω) −→ C∞(Ω)

which can be written as finite sum

Df =
∑

hi1...im

∂i1+···+imf

∂xi1
1 . . . ∂xin

n

with differentiable coefficients h.... Clearly they are uniquely determined. We
call D a linear differential operator. When D is non-zero there exists a maximal
m such that hi1,...,in is non-zero for some index with i1 + · · ·+ in = m. We call
m the degree of this operator and the function on Ω× Rn

P (x1, . . . , xn, X1, . . . , Xn) =
∑

i1+···+in=m

hi1,...,im(x)Xi1
1 . . . Xin

n

is called the symbol of D. This is homogenous polynomial of degree m for fixed
x. The operator D is called elliptic, if it is not zero and if

P (x,X) 6= 0 for all X 6= (0, . . . , 0).

2. Oscillating integrals

In the following we denote the euclidian scalar product simply by

xy =
∑

xiyi

and by
|x| = √

xx

the euclidian norm.
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We fix two natural numbers ν, n. In our applications we will have ν = n
or ν = 2n. Let Ω ⊂ Rν be an open subset and P ∈ C∞(Ω × Rn). For multi
indices α = (α1, . . . , αν) and β = (β1, . . . , βn) we use the notation

P β
α (x, ξ) :=

( ∂

∂x

)α( ∂

∂ξ

)β

P (x, ξ).

2.1 Definition. let m be a real number. The space Sm(Ω,Rn) consists of all
functions P ∈ C∞(Ω× Rn) with the following property: For each pair of multi
indices (α, β) there exists a locally bounded function cα,β on Ω such that

∣∣P β
α (x, ξ)

∣∣ ≤ cα,β(x)
(
1 + |ξ|)m−|β|

.

Here we use the usual notation |β| = β1 + · · ·+ βn for multi indices. A locally
bounded function is bounded on each compact subset. Hence on could also say
that the estimate holds for each compact subset with a constat cα,β that may
depend on K.

By trivial reason we have

Sm(Ω,Rn) ⊂ Sm′
(Ω,Rn) for m < m′.

We define

S∞(Ω,Rn) =
⋃

m∈R
Sm(Ω,Rn), S−∞(Ω,Rn) =

⋂

m∈R
Sm(Ω,Rn).

Example. The function
(1 + |ξ|2)−m/2

is contained in Sm(Ω,Rn). The Leibniz product rule on Rn stats

∂α(fg) =
∑

β≤α

(
α

β

)
(∂βf)(∂α−βg)

where the usual multi-index conventions are used. Hence β ≤ α means βi ≤ αi

for 1 ≤ i ≤ n and
(
α
β

)
=

∏(
αi

βi

)
. From this rule one deduces

f ∈ Sm(Ω,Rn), g ∈ Sm′
(Ω,Rn) =⇒ fg ∈ Sm+m′

(Ω,Rn).

In the following we use the notations

D(X) = C∞c (X), E(Ω) = C∞(X)

for a differentiable manifold (at the moment always an open subset of some
Rn).
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Let be P ∈ Sm(Ω,Rn). We introduce the oscillating integral

Au = (2π)−n

∫

Rn

∫

Ω

eixξP (x, ξ)u(x) dx dξ for u ∈ D(Ω).

The problem is that this integral does not exists in the usual sense of a Lebesgue
integral though we assume that u has compact support. Of course the inner
integral exists without any problem but then we get a problem since after
integrating over x there is no need that resulting function in ξ has compact
support. Nevertheless we want to make sense of the integral in all cases.

One idea is to integrate first over ξ and then look what happens. Hence we
are lead to look at an integral of the kind

∫

Rn

eiaξP (ξ)dξ.

Here we assume that

|∂βP (ξ)| ≤ cβ(1 + |ξ|)m−|β|

for all multi-indices β. We just write Sm(Rm) for this class of functions. (At
the moment we don’t need the variable x ∈ Ω.) This integral will not exist in
the usual sense, as the example P (ξ) = ξ2 shows already. To get existence of
the integral we introduce a cut-off function χ : R → R that is decreasing and
such that

χ(ξ) = 1 for ξ ≤ 1 and χ(ξ) = 0 for ξ ≥ 2.

We then have
lim

ε→0+
χ(εξ) = 1 (pointwise limit).

The integral
∫
Rn eiaξP (ξ)χ(εξ)dξ exists for ε > 0 by trivial reason and we can

try to take the limit ε > 0. This actually works:

2.2 Lemma. Let P ∈ Sm(Rn) and let a 6= 0. Then the limit

lim
ε→0+

∫

Rn

eiaξP (ξ)χ(εξ)dξ

exists.
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We will simply write
∫

Rn

eiaξP (ξ)dξ := lim
ε→0+

∫

Rn

eiaξP (ξ)χ(εξ)dξ

Since the convergence is caused by the oscillation of the function eixξ will call
this kind of integral an oscillating integral.
Proof of 2.2. We use partial integration:

∫

Rn

eiaξP (ξ)χ(εξ)dξ =
1

(ia)|β|

∫

Rn

eiaξ∂β
ξ (P (ξ)χ(εξ))dξ.

Now we use the well known fact from real analysis that the integral
∫

Rn

(1 + |ξ|)mdξ

exists for m < −n. Hence if we choose |β| big enough the above integral exists
in the usual sense also for ε = 0 and one can apply the Lebesgue limit theorem
to show

lim
ε→0+

∫

Rn

eiaξP (ξ)χ(εξ)dξ =
1

(ia)|β|

∫

Rn

eiaξ∂β
ξ (P (ξ))dξ.

Especially the integral exists. tu
In our application (definition of Au the function P also depends on a variable

x ∈ Ω and we want to integrate also over x. Lemma 2.2 shows that this is
possible if 0 is not contained in Ω. But we must include the case 0 ∈ Ω. Since
0 is a single point, it is possible of course that integration over x exists. This
needs a refinement of the above argument of partial integration which we are
going to explain now in some detail.

In the definition of Au the function P occurs in the combination P (x, ξ)u(x)
where u has compact support. As P this product is also contained in
Sm(Ω,Rn). Hence functions P ∈ Sm that are compactly supported with re-
spect to x come into our interest:

2.3 Lemma. Let P ∈ Sm(Ω,Rn). Assume that there exists a compact set
K ⊂ Ω such that P (x, ξ) = 0 for x /∈ K. In the case m + n < 0 the integral

∫

Ω×Rn

P (x, ξ)dxdξ

exists in the Lebesgue sense.
Corollary. In the case m + n < 0 the oscillating integral exists in the sense of
the usual Lebesgue integral.
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Again this follows form the fact that
∫
Rn(1 + |ξ|)mdξ exists for m < −n. We

don’t give more details. tu
In the case m + n < 0 we get from the Lebesgue limit theorem

∫

Ω×Rn

eixξP (x, ξ)u(x) dx dξ = lim
ε→0+

∫

Ω×Rn

eixξP (x, ξ)χ(εξ)u(x) dx dξ.

Of course the integral

∫

Ω×Rn

eixξP (x, ξ)χ(εξ)u(x) dx dξ (ε > 0)

exists for all m. One can try to take the limit. This actually works:

2.4 Proposition. Let P ∈ Sm(Ω,Rn) and u ∈ D(Ω). The limit

lim
ε→0+

∫

Ω×Rn

eixξP (x, ξ)χ(εξ)u(x) dx dξ

exists.

We will denote this limit simply by

∫

Ω×Rn

eixξP (x, ξ)u(x) dx dξ or by
∫

Rn

∫

Ω

eixξP (x, ξ)u(x) dx dξ

and call it an oscillating integral.

Using 2.2 (to be correct one should say that one needs a version of 2.2 that
includes a x-dependency) one sees immediately that the limit exists if 0 /∈ Ω.
But we definitely want to include the origin. This needs a refinement of the
technique of partial integration

Proof of 2.4. Again we want to apply integration by parts but in a refined
form: We use differential operators of the form

L =
n∑

i=1

ai(x, ξ)
∂

∂ξi
+

ν∑

j=1

bj(x, ξ)
∂

∂xj
+ c(x, ξ).

Here ai, bj , c are differential functions. The so-called formal adjoint of L is
defined by

L′ =
n∑

i=1

αi(x, ξ)
∂

∂ξi
+

ν∑

j=1

βj(x, ξ)
∂

∂xj
+ γ(x, ξ),
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where

αi = −ai, βj = −bj , γ = c−
n∑

i=1

∂ai

∂ξi
−

ν∑

j=1

∂bj

∂xj
.

The meaning of the formal adjoint is as follows: Let f1, f2 be differentiable
functions on Ω× Rn with compact support then

∫

Ω×Rn

(L′f1) · f2 dxdξ =
∫

Ω×Rn

f1 · Lf2 dxdξ.

We only want to consider operators with the property

L′eixξ = eixξ.

Then we get

∫

Rn

∫

Ω

eixξP (x, ξ)χ(εξ)u(x) dx dξ =
∫

Rn

∫

Ω

eixξL(P (x, ξ)χ(εξ)u(x)) dx dξ

We can iterate this with the same operator several times to get

∫

Rn

∫

Ω

eixξP (x, ξ)χ(εξ)u(x) dx dξ =
∫

Rn

∫

Ω

eixξLk(P (x, ξ)χ(εξ)u(x)) dx dξ

We introduce
Qε(x, ξ) = P (x, ξ)χ(εξ)u(x).

This is a function from Sm(Ω,Rn) and there exists a compact subset K ⊂ Ω
such that Qε vanishes outside K × Rn.

Now the idea is to construct L in such a way that

L : Sq(Ω,Rn) −→ Sq−1(Ω,Rn) (for all q).

Assume for a moment that this has been done. Then for sufficiently large k
the integral ∫

Rn

∫

Ω

eixξLk(Qε(x, ξ)) dx dξ

exists for ε = 0 and their is a good chance that its value at ε = 0 is its limit
for ε → 0+. So this limit would exist!

So we have to construct an appropriate L.
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2.5 Lemma. There exists an operator

L =
n∑

i=1

ai(x, ξ)
∂

∂ξi
+

ν∑

j=1

bj(x, ξ)
∂

∂xj
+ c(x, ξ)

with the properties
a) L′eixξ = eixξ.
b) ai ∈ S0, bj , c ∈ S−1.

Proof. For simplicity of notation (but not essentially) we assume n = ν = 1.
Then we define

α =
1− χ(|ξ|)
i(1 + x2)

x, β =
1− χ(|ξ|)
i(1 + x2)ξ

, γ = χ(|ξ|).

In the formula for β the denominator ξ appears. But the nominator vanishes
in a neighborhood of ξ = 0. Hence β can be defined as a differentiable function
that vanishes in a neighborhood of ξ = 0.

It is no problem that the operator L′ fixes eixξ. The corresponding operator
L is given by the data

a = −α, b = −β, c = γ − ∂α

∂ξ
− ∂β

∂x
.

For large ξ the function a is independent of ξ. This shows a ∈ S0. The function
b grows as 1/ξ and is contained in S−1. Similarly one sees that c ∈ S−1.

tu
Now we know that the integral

∫

Rn

∫

Ω

eixξLk(Qε(x, ξ)) dx dξ

exists for ε ≥ 0 but we still have to prove that as a function of ε its is continuous
at ε = 0.

A limit theorem

Just for convenience we replace the limit ε → 0+ by (an arbitrary) sequence
εµ → 0. Using the notation of the previous section we set

fµ(x, ξ) := eixξLk(Qεµ(x, ξ)) and f = eixξLk(Q0(x, ξ)).

Recall that these are functions from Sm−k and that we choose k such that
m− k + n < 0. We know fµ → f . It is clear that this convergence is uniform
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on each compact subset and that this is true also for all derivatives of arbitrary
order. Unfortunately this is not enough to prove

lim
µ→∞

∫

Ω×Rn

fµ(x, ξ)dxdξ =
∫

Ω×Rn

f(x, ξ)dxdξ.

(The integrals exist because of m−k+n < 0.) We want to apply the Lebesgue
limit theorem and for this one needs other conditions for the kind of the con-
vergence fµ → f . For example it would be sufficient to have an estimate
(independent of µ) of the form

|fµ(x, ξ)| ≤ C(1 + ξ)m−k.

(Notice that m + k < n.) Actually we shall be able to prove a slightly weaker
result which is enough for our purpose. We will see:
For each ε > 0 there exists an estimate

|fµ(x, ξ)| ≤ C(1 + ξ)m−k+ε (C = C(ε)).

This is enough since we can choose ε > 0 such that m− k + ε < n.
The rest of this section is devoted the proof of this estimate. We introduce the
following notation:
Let K ⊂ Ω be a compact subset and l ≥ 0 an integer. Then we set for P ∈ Sm:

Nm
K,l(P ) := sup

(x,ξ)∈K×Rn

|α|+|β|≤l

∣∣∣∣
P β

α (x, ξ)
(1 + |ξ|)m−|β|

∣∣∣∣ .

This number is finite due to the definition of Sm. One can use these functions to
define a topology on Sm. For our purpose it is enough to explain the resulting
notion of convergent sequences:

2.6 Definition. Let Pµ be a sequence in Sm and P a fixed element in Sm.
The sequence Pµ converges to P in Sm if Nm

K,l(Pµ − P ) converges to zero for
all K and l.

There are two obvious stability properties:
1) Assume Pµ → P in Sm and P ′µ → P ′ in Sm′

. Then PµP ′µ → PP ′ in Sm+m′
.

2) Assume Pµ → P in Sm. Then LPµ → LP in Sm−1.
It is good to understand the convergence χµ → χ with χµ(ξ) = χ(εµξ). As
we mentioned already this convergence is locally uniform and this is true for
all higher derivatives. But it is not true that χµ converges to χ uniformly
on the whole Rn. The reason for this is that χµ − χ takes the value 1 for
each µ somewhere. We can consider χµ as element of S0(Ω,Rn). But this
consideration shows that χµ does not converge to χ in S0. But we can consider
χµ also as sequence in Sε for arbitrary ε > 0. The following simple lemma is
left as an exercise to the reader:
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2.7 Remark. For each ε > 0 the sequence χµ converges to χ in Sε.

Using this remark and the stability properties we obtain the convergence fµ →
f in Sm−k+ε. This shows especially

|fµ(x, ξ)− f(x, ξ| ≤ C(1 + ξ)m−k+ε

Since f are contained in Sm−n and hence in Sm−n+ε we get

|fµ(x, ξ)| ≤ C(1 + ξ)m−k+ε

which allows to apply the Lebesgue limit theorem.
This completes the definition of the oscillating integral and we get two

different possible definitions for it:
∫

Rn

∫

Ω

eixξP (x, ξ)u(x) dx dξ

= lim
ε→0+

∫

Rn

∫

Ω

eixξP (x, ξ)χ(εξ)u(x) dx dξ

=
∫

Rn

∫

Ω

eixξLk(P (x, ξ)u(x)) dx dξ (m− k + n < 0).

3. Pseudodifferential operators

From now on Ω is an open subset of Rn. We are interested in the space
Sm(Ω,Rn) (ν = n). We also are interested Sm(Ω × Ω,Rn) (ν = 2n). Then
for fixed x ∈ Ω, the function (y, ξ) 7→ P (x, y, ξ) is contained in Sm(Ω,Rn). We
can consider the oscillating integral now to produce a function in x:

Au(x) = (2π)−n

∫

Ω

∫

Rn

ei(x−y)ξP (x, y, ξ)u(y)dydξ.

Here u ∈ D(X) (differentiable function with compact support.

3.1 Lemma. let P ∈ Sm(Ω× Ω,Rn). Then for each u ∈ D(Ω) the function
Au is differentiable. Hence the oscillating integral defines an operator

LP : D(Ω) −→ E(Ω).
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Proof. We consider the operator L as in 2.5 but for the domain Ω×Ω instead
of Ω. Hence the functions aj , bj , c there are defined on Ω× Ω× Rn. We write
the oscillating integral in the form

Au(x) = (2π)−n

∫

Ω

∫

Rn

ei(x−y)ξLk(P (x, y, ξ)u(y))dydξ

with a big enough k. We want to differentiate by x. This means that we only
have to consider x from some compact subset. Since u has compact support, we
can get a compact subset K ⊂ Ω×Ω such that in the following argument only
elements of (x, y) ∈ K occur. We investigate the derivatives ∂α with respect to
x of the integrand. Using the produce rule for differentiation one derives that
there is an estimate by C(1 + ξ)(1 + |ξ|)|α|+m−k. The constant is independent
of (x, y) ∈ K. We can k take large enough (for given α) such that the integral
exists. Now one can apply the Lebesgue version of the Leibniz rule that allows
to interchange integration and taking derivatives. tu

3.2 Definition. An operator A : D(Ω) −→ E(Ω) is called a pseudodiffer-
ential operator if it is of the form A = LP for a suitable P ∈ Sm(Ω×Ω,Rn)
(with a suitable n). The set of all these operators is denoted by Lm(Ω).

There is a very important special case where P is independent of y. The ele-
ments of Sm(Ω×Ω,Rn) with this property can be identified with the elements
of Sm(Ω,Rn). In this case we have

Au(x) = (2π)−n lim
ε→0

∫

Ω

∫

Rn

ei(x−y)ξP (x, ξ)χ(εξ)u(y)dydξ.

The integral over y is a Fourier transformation. The function u can be extended
by zero to a function of C∞c (Rn) and we can write

Au(x) = (2π)−n lim
ε→0

∫

Rn

eixξP (x, ξ)χ(εξ)û(ξ)dξ,

where û denotes the Fourier transform of u. Since the Fourier transform of
a compactly supported C∞-function is temperated, the integral exists also for
ε = 0 and the Lebesgue limit theorem allows to interchange the limit and
integration. Hence we obtain:

3.3 Lemma. If the function P ∈ Sm(Ω × Ω) is independent of y then the
associated pseudodifferential operator can be written as

Au(x) = (2π)−n

∫

Rn

eixξP (x, ξ)û(ξ)dξ

which is a usual Lebesgue integral.
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Examples of pseudodifferential operators

Let K(x, y) be a differentiable function on Ω × Ω. Then one can define for
u ∈ D(Ω)

Au(x) =
∫

Ω

K(x, y)u(y)dy.

It is clear that this function depends differentiably on x. Hence we get an
operator

A : D(Ω) −→ E(Ω).

An operator of this kind is called an integral operator. The function K is
determined by the operator A. It is called the kernel function of A. It is clear
that K is determined by A.

3.4 Remark. Integral operators are pseudodifferential operators. More pre-
cisely: The set L−∞(Ω) agrees with the set of integral operators.

Proof. First let A we an integral operator defined by the kernel K. We choose
a function g ∈ D(Rn) with the property

∫
Rn g(ξ)dξ = 1 and define

P (x, y, ξ) = ei(y−x)ξg(ξ)K(x, y).

Then P ∈ S−∞ and one easily checks LP = A. This also shows that in contrast
to the kernel of an integral operator, the function P is not determined by the
corresponding pseudodifferential operator.

Now let P ∈ S−∞. We want to show that the corresponding pseudodiffer-
ential operator is an integral operator. One takes

K(x, y) =
∫

Rn

ei(x−y)ξP (x, y, ξ)dξ.

Since P ∈ S−∞ this integral exists and is a differentiable function. The same
argument as in the proof of 3.1 shows that K is differentiable. That the inte-
gral operator of K and the pseudodifferential operator LP agree follows from
Fubini’s theorem.

3.5 Lemma. Each differential operator —considered as map A : D(Ω) →
E(Ω) is a pseudodifferential operator. More precisely: If A is of degree m then
A ∈ Lm(Ω).

Proof. Using multi-indices we can write a linear differential operator A in the
form

A =
∑
α

hαDα, D =
1
i
(∂1, . . . , ∂n).
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The Fourier inversion formula for u ∈ D(Ω), considered as function form D(Rn)
states

u(x) = (2π)−n

∫

Rn

eixξû(ξ)dξ.

Differentiating under the integral we get

(Au)(x) = (2π)−n
∑
α

hα(x)Dαeixξû(ξ)dξ

= (2π)−n

∫

Rn

eixξP (x, ξ)û(ξ)dξ.

Here we use the notation

P (x, ξ) =
∑
α

hα(x)ξα.

This can be considered as element Sm(Ω,Rn), where m is the degree of A. We
can consider P also as element of Sm(Ω×Ω,Rn) (independent of y) and we A
turns out to be the associated pseudodifferential operator. tu

4. Asymptotic expansion of symbols

In this section we consider an open set Ω ⊂ Rν with arbitrary ν. We introduce
an equivalence relation in S∞. By definition P ∼ P ′ means P − P ′ ∈ S−∞.

We need another notation: Let Pk be a sequence of elements of S∞(Ω,Rn)
and P a further element from this set. By definition the notation

P ∼
∞∑

k=1

Pk

means:
a) There exists a sequence mk → −∞ such that Pk ∈ Smk .
b) There exists a sequence m′

k → −∞ such that

P −
k∑

j=1

Pj ∈ Sm′
k .

The function P is not determined by the Pk. If Q is another function with the
same property, then P ∼ P ′. We call P ∼ ∑∞

k=1 Pk an asymptotic expansion
of P .

There is a fundamental existence result:
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4.1 Theorem. Let Pk ∈ Smk be a sequence such that mk → −∞. Then there
exists a P such that P ∼ ∑

Pk.

Proof. It is sufficient to assume mk ≤ −1 and one also easily reduces to the
case Pk ∈ S−k−1. So let’s assume this. The idea is to replace Pk be some
equivalent P̃k ∼ Pk such that the sum

∑
k P̃k converges in a good sense. For

this we consider an increasing function ϕ ∈ C∞(R) with the property ϕ(x) = 0
for x ≤ 1 and ϕ(x) = 1 for x ≥ 2.

Now we choose a sequence λk of positive numbers. Then we define

P̃k(x, ξ) = Pk(x, ξ)ϕ
( |ξ|

λk

)
.

Then clearly P̃k − Pk ∈ S−∞. We want to arrange the sequence λk in such a
way that

∑
P̃k converges. For this we need an estimate of P̃k and its derivatives

P̃ β
k,α.

4.2 Lemma. For each k, α, β there exists a locally bounded function dβ
k,α on

Ω such that
(1 + |ξ|)k+|β||P̃ β

k,α(x, ξ)| ≤ dβ
k,α(x)λ−1

k

for all k, α, β, x, ξ.

Proof of 4.2. In the case α = 0 and β = 0 the inequality states

(1 + |ξ|)k|Pk(x, ξ)|ϕ
( |ξ|

λk

)
≤ dk(x)λ−1

k .

This case is very easy. The left hand side vanishes if |ξ| ≤ λk or if |ξ| ≥ 2λk.
Hence only the range λk ≤ |ξ| ≤ 2λk is of interest. Since Pk ∈ S−k−1 the left
hand side can be compared in this range with (1 + |ξ|)k(1 + |ξ|)−1−k and this
is ≤ λ−1

k .

The general case can be treated in a similar but notational more involved
way. One has to apply the product rule to get the derivatives of P̃k and use
the same method for the pieces which arise. We omit details. tu

So far we needed no conditions for the constants λk. But now we have to
adapt them to get good convergence of

∑
P̃k. For this we choose an exhaustion

Ω =
⋃

Kk by compact subsets such that Ki is contained in the interior of its
successor Ki+1. We denote the interior of Ki by Ui. Then Ω =

⋃
Ui and each
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compact set in Ω is contained in one of the Ui. Now we choose the constants
λk. We can choose them inductively such the that estimate

∑

|α|+|β|≤k

(1 + |ξ|)k+β |P̃ β
k,α(x, ξ)| ≤ 2−k

is valid for all x ∈ Uk, ξ ∈ Rn and all α, β with |α| + |β| ≤ k. Especially
we have |P̃k(x, ξ)| ≤ 2−k for x ∈ Uk. This shows that the series P =

∑
P̃k

converges locally uniformly on Ω×Rn. The estimate for the higher derivatives
gives that this also true for the series of the higher derivatives. This shows that
P is a C∞-function.

It remains to show that for all N

P −
∑

k≤N

P̃k ∈ S−N (Ω× Rn).

The condition P −∑k
j=1 Pj ∈ Sm′

k is hard to check since it involves all deriva-
tives. Actually this condition can be weakened:

4.3 Proposition. Let be P ∈ E(Ω,Rn) and let be Pk ∈ Smk such that mk is
a decreasing sequence that tends to −∞. We assume:

a) There exist numbers mα,β such that

|P β
α (x, ξ)| ≤ Cα,β(x)(1 + ξ)mα,β

with certain locally bounded functions Cα,β.
b) For all N we have

∣∣P (x, ξ)−
N∑

k=1

Pk(x, ξ)
∣∣ ≤ CN (x)(1 + |ξ|)mN

with locally bounded functions CN .
Then one has

P ∈ S∞ and P ∼
∞∑

k=1

Pk.

Asymptotic expansion of pseudodifferential operators



§5. Pseudo differential operators and distributions 69

Integral operators are in some sense trivial operators. Two pseudodifferential
operators P1, P2 are called equivalent, P1 ∼ P2 if there difference is an integral
operator. In other words we consider the factor space

Lm(Ω)/L−∞(Ω).

We have a natural surjective map

Sm(Ω× Ω,Rn)/S−∞(Ω× Ω,Rn) ∼−→ Lm(Ω)/L−∞(Ω).

An element P ∈ Sm(Ω × Ω,Rn) is called a symbol of a pseudodifferential
operator L if L ∼ LP .

As for symbols we define: Let A be a pseudo differential operator and Ak a
sequence of them. Then A ∼ ∑

Ak means that Ak ∈ Lmk(Ω) with mk → −∞
and A − ∑A

j=1 Pj ∈ Lm′
k(Ω) with m′

k → ∞. So P ∼ ∑
k Pk clearly implies

LP ∼ ∑
k LPk

for the associated operators.

4.4 Theorem. Let Ak ∈ Lk(Ω) be a sequence of pseudodifferential operators
such that k → −∞. Then there exists a pseudo differential operator A ∼ ∑

Ak.
This operator is unique up to an integral operator.

This is a reformulation of 4.1. tu

5. Pseudo differential operators and distributions

Let Ω ⊂ Rν be an open subset. One can introduce a structure as Fréchet
space on E(Ω). This structure is characterized by the following property. A
sequence (fn) converges in E(Ω) then fn and all its partial derivatives converge
uniformly on compact subsets. The usual limit of this sequence then also is
the limit in the Fréchet space E(Ω). We consider the dual E ′(Ω). This is the
set of all continuous linear forms on E(Ω). The elements f E ′(X) are called
distributions with compact support.

We consider the scalar product

〈f, g〉 =
∫

Ω

f(x)g(x)dx.

Here f, g ∈ E(Ω) and at least one of the two has to be in D(Ω). This scalar
produce enables to define an injective maps

D(Ω) −→ E ′(Ω), f 7−→ (g 7→ 〈f, g〉).
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We identify D(Ω) with their images. Hence the elements of D(Ω) are consid-
ered as special distributions with compact support. If D is a distribution one
sometimes writes

〈D,u〉 := D(u).

One also can define D′(Ω). One cannot take the induced topology of E(Ω)
since it may happen that a sequence (fn) in D(Ω) converges with respect to the
topology of E(Ω) against a function that is not compactly supported. Therefore
we consider for a compact subset K ⊂ Ω the space

DK(Ω) := {f ∈ E(Ω); support(f) ⊂ G}.
It is easy to see that this is a closed subset of E(Ω) and hence a Fréchet space.
The union of all DK(Ω) is D(Ω). A linear form on D(Ω) is called continuous
if the restrictions to the DK(Ω) are continuous. We denote by D′(Ω) the set
of all linear forms in this sense. The elements of D′(Ω) are called distributions
on Ω. We have an obvious embedding

E(Ω) −→ D′(Ω), f 7−→ (g 7→ 〈f, g〉).
Hence the elements of E(Ω) can be considered as special distributions.

It looks strange that we defined the notion of continuous linear forms on D(Ω) without

defining a topology on D(Ω). Actually one can do this. One can equip D(Ω) with the

inductive limit topology of the DK(Ω). This means that an subset of D(Ω) is called

open if and only if its intersection with each DK(Ω) is open. A sequence fn in D(Ω)

with respect to this topology converges if it converges in E(Ω) and if in addition there

exists a compact subset K ⊂ Ω such that the supports of all fn are contained in K.

The inclusion map D(Ω) ↪→ E(Ω) is continuous. One can show that this topology

defines a structure as locally vector space on D(Ω). But it is not possible to find

a countable system of semi norms that defines the topology. So D(Ω) is no Fréchet

space. Nevertheless it is complete in the sense that each Cauchy sequence converges.

A linear map A : D(Ω) → E(Ω) is called continuous if the restriction to each
DK(Ω) is continuous. For a a continuous linear map the dual map

A′ : E ′(Ω) −→ D′(Ω), A′(f)(g) = A(g ◦ f)

is well defined, One can restrict this map to D(Ω). It may happen that the
image of D(Ω) is contained in E(Ω). If this is the case we denote this operator
by A∗ : D(Ω) → E(Ω). It is called then the formal adjoint of A. This again is
continuous and we can consider its dual again,

A∗′ : E ′(Ω) −→ D′(Ω).

It is easy to see that the restriction of A∗′ to D(Ω) coincides with A. Hence
we have constructed a canonical extensions of the operator A to an operator
that is defined on E ′(Ω). This is the natural extension of A to distributions.
Usually we denote it by A again,

A : E ′(Ω) −→ D′(Ω)

is it exists. This can be applied to pseudodifferential operators:
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5.1 Proposition. Pseudodifferential operators A : D(Ω) → E(Ω) are continu-
ous. The formal adjoint operator A∗ exists and is a pseudodifferential operator
too. As a as a consequence there is a natural extension

A : E ′(Ω) −→ D′(Ω).

More precisely one has: If A is defined by P ∈ Sm(Ω× Ω,Rn) then A∗ can be
defined by P ∗(x, y, ξ) = P (y, x, ξ).

This extension allows to characterize integral operators in a nice way:

5.2 Proposition. A pseudodifferential operator is an integral operator if an
only it defines a map E ′(Ω) → E(Ω).

Differential operators have the property that they map D(X) into D(X) and
that they extend to continuous operators E(X) → E(X). Not all pseudodiffer-
ential operators have this property. Counter examples can be given by means
of integral operators.

5.3 Definition. A pseudodifferential operator A is called proper if it defines
a map A : D(Ω)) → D(Ω) and if it extends to a continuous operator A : E(Ω) →
E(Ω).

Of course this extension is unique since D(Ω) is a dense subset of E(Ω).
We need a criterion for an operator defined by Sm to ne proper: For this

we need the concept of the support of a distribution. Let D ⊂ D′(Ω) be a
distribution. Let U ⊂ Ω be an open subset. Using the natural inclusion
D(U) ↪→ D(Ω) (extension by zero) and can restrict the distribution to U and
obtains a distribution D|U ∈ D′(U). When this distribution vanishes we say
that D vanishes on U . It can be shown that there is a largest open subset of Ω
with this property. Its complement is called the support of D and is denoted
by support(D).

let now P ∈ Sm(Ω × Ω × Rn). We consider the following distribution
(oscillating integral) KP ∈ D′(Ω× Ω),

〈KP , w(x, y)〉 =
∫

Ω×Ω×Rn

ei(x−y)ξP (x, y, ξ)w(x, y)dxdydξ

In the case P ∈ S−∞ this agrees with the distribution that is associated to
the corresponding kernel function K(x, y). Hence KP is called the associated
kernel distribution.

5.4 Lemma. let P ∈ Sm(Ω× Ω,Rn) and KP the associated kernel distribu-
tion. We restrict to the two projections p(x, y) = x, q(x, y) = y to the support
of KP . The following conditions are equivalent:
a) The pseudodifferential operator A = LP is proper.
b) The two projections

p, q : support(KP ) −→−→ Ω
are proper.
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Proof. We only will need b) ⇒ a). Hence we will prove only this direction. So
let’s assume that b) is satisfied. We have to prove to facts:

First Fact: Let K ⊂ Ω be a compact subset. Then there exists a compact
subset K ′ ⊂ Ω such that for u ∈ D(Ω) the following holds:

u|K ′ = 0 =⇒ Au|K = 0.

Second Fact: Let K ⊂ Ω be a compact subset. Then there exists a compact
subset K ′ ⊂ Ω such that for u ∈ D(Ω) the following holds

support(u) ⊂ K =⇒ support(Au) ⊂ K ′.

We assume that the facts have been proved.

The second second fact already shows that A defines a map DK(Ω) →
DK′(Ω). Especially we get a map D(Ω) → D(Ω).

It remains to show that we get an extension E(X) → E(X). So let u ∈ E(Ω)
and a ∈ Ω a point. We have to define (Au)(a). We set K = {a} and choose
a compact subset K ′ as in the first fact has been formulated. Then we choose
a function ϕ ∈ D(Ω) which is one on K ′. We define Au(a) = A(ϕu)(a). This
definition is independent of the choice of ϕ. Hence we obtain a function Au
on Ω. If one repeats the same construction with a compact neighborhood K
of a one sees that Au is differentiable. It is easy to show that this extension
A : E(Ω) → E(Ω) is continuous. Thus 5.4 has been reduced to the two facts.

We prove the first fact. (The proof of the second fact is similar an will be
omitted.) We use that the second projection q : support(KP ) → Ω is proper.
let K ⊂ Ω be a compact subset. We consider its inverse image q−1(K) in
support(KP ) and project it by means of the first projection p to a (compact)
subset K ′ ⊂ Ω. Now let u ∈ DK(Ω). We want to show Au ∈ DK′(Ω). So we
have to show that Au vanishes on the complement of K. This is equivalent to

∫

Ω

ϕ(x)Au(x)dx

for each function ϕ ∈ D(Ω) whose support is in the complement of K. We have

∫

Ω

ϕ(x)Au(x)dx = 〈KA, ϕu〉.

The support of ϕu is contained K × supportϕ and this set is disjoint to the
support of KP by definition of K ′. This finishes the proof. tu

As we have seen the pseudodifferential operator LP is an integral operator
if P ∈ S−∞. Actually one can weaken this condition:
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5.5 Lemma. Let P ∈ S∞(Ω × Ω,Rn). Assume that there exists an open
subset U ⊂ Ω × Ω that contains the diagonal and such that the restriction of
P to U × Rn belongs to S−∞(U,Rn). Then the associated pseudodifferential
operator LP is an integral operator.

Proof. First we treat the case that there exists U in such a way that P vanishes
on U × Rn. From 2.2 we know that the function

K(x, y) =
∫

Rn

ei(x−y)P (x, y, ξ)dξ

exists (as an oscillating integral). It is easy to show that this is a C∞-function
and that LP is the integral operator defined by K (compare with the proof of
3.4). Now we treat the general case.

We consider a function ψ ∈ E(Ω × Ω) that is one on the diagonal and has
support in U . Then we decompose P = P1 + P2, where

P1(x, y, ξ) = ψ(x, y)P (x, y, ξ), P2(x, y, ξ) = (1− ψ(x, y))(P (x, y, ξ).

by the first step P2 defines an integral operator. The function P1 is contained in
S−∞(Ω×Ω,Rn) by the assumption in 5.5 and therefore also defines an integral
operator.

5.6 Proposition. Each pseudodifferential operator is equivalent to a proper
one.

We consider a closed neighborhood W of the diagonal in Ω×Ω such that both
projections W −→−→ Ω are proper. Then we choose a function ψ ∈ E(Ω×Ω) such
that its support is contained in W and such that it is one on a full neighborhood
of the diagonal. Now we decompose P = P1 + P2, where

P1(x, y, ξ) = ψ(x, y)P (x, y, ξ), P2(x, y, ξ) = (1− ψ(x, y))(P (x, y, ξ).

Obviously the support of P1 is contained in V . Hence P1 defines a proper
operator (By 5.4). The function P2 is an integral operator by 5.5. tu

6. The calculus of symbols

Let A be a pseudodifferential operator. By definition there exists a function
P ∈ S∞(Ω × Ω,Rn) such that A = LP . We called P a symbol for A. The
symbol is not at all unique:
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6.1 Lemma. Let P (x, y, ξ) be a symbol. Then for each multiindex α

(x− y)α(P (x, y, ξ) and
1

i|α|

( ∂

∂ξ

)α

P (x, y, ξ)

define the same pseudodifferential operator.

The proof can be given by induction on |α|. We omit it. tu
There is one problem with the symbols It can happen that a symbol P

defines an operator LP that is contained in some Lm(Ω) but P /∈ Sm(Ω ×
Ω,Rn). This can be illustrated by the following

6.2 Lemma. Let P ∈ Sm(Ω× Ω,Rn). Assume that all partial derivatives
( ∂

∂y

)α

P (x, y, ξ)

of order |α| ≤ N vanish on the diagonal of Ω× Ω. Then LP ∈ Lm−N (Ω).

(In the case that P vanishes in a full neighborhood of the diagonal we get
LP ∈ L−∞(Ω). This we already have seen in 5.5.)
Proof of 6.2. We have to use Taylor’s formula with explicit remainder term:
We keep x and ξ fixed and expand the resulting function in y around the center
x. The result is:

P (x, y, ξ) =
∑

|α|≤N

[( ∂

∂y

)α

P (x, y, ξ)
]

y=x

+

1∫

0

(1− t)N−1

(N − 1)!

∑

|α|=N

N !
α!

(y − x)α
( ∂

∂y

)α

P (x, x + t(y − x), ξ)dt.

If we set

Qα(x, y, ξ) =

1∫

0

(1− t)N−1 N

α!

( ∂

∂y

)α

P (x, x + t(y − x), ξ)dt

and if we make use of the assumption in 6.2 we get

P (x, y, ξ) =
∑

|α|=N

(y − x)αQα(x, y, ξ).

It is easy to check that Qα as P lies in Sm. Now we modify the symbol and
define

Q(x, y, ξ) = i−N
∑

|α|=N

( ∂

∂ξ

)α

Qα(x, y, ξ).

We know from 6.1 that P and Q define the same pseudodifferential operator.
But now

Q ∈ Sm−N (Ω× Ω,Rn)

since derivation by ξ makes the order smaller. This completes the proof of
6.2. tu
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6.3 Theorem. Each pseudodifferential operator is equivalent to an operator
LP , where P (x, y, ξ) is a symbol that is independent of y.

Corollary. It is also equivalent to a LP where P is independent of x.

The functions P ∈ Sm(Ω× Ω,Rn) that are independent of x can be identified
with the functions P ∈ Sm(Ω,Rn).

Proof of 6.3. We set

Pα(x, ξ) =
i−|α|

α!

( ∂

∂ξ

)α
[( ∂

∂ξ

)α

P (x, y, ξ)
]

y=x

.

Then P ∈ Sm−|α|(Ω,Rn) ⊂ Sm−|α|(Ω× Ω,Rn). From 6.1 and 6.2 follows

LP (x,y,ξ) ∼
∑
α

LPα(x,ξ).

(The multi indices are thought to be ordered with increasing |α|.) the basic
existence theorem 4.1 implies the existence of a Q ∈ S∞(Ω,Rn) such that

Q(x, ξ) ∼
∑
α

Pα(x, ξ).

This relation has to been read in S∞(Ω,Rn). But then it is also true in
S∞(Ω× Ω,Rn). We get LP = LQ.

For the proof of the Corollary one uses the formal adjoint operator which
causes a switch between x and y, tu

We can express 6.3 in the following way: The map

Sm(Ω,Rn) −→ Lm(Ω)/L−∞(Ω)

is surjective. Clearly S−∞ is in the kernel of this map. Hence we obtain a
(surjective) linear map

Sm(Ω,Rn)/S−∞(Ω,Rn) −→ Lm(Ω)/L−∞(Ω).

Actually this map is an isomorphism:

6.4 Theorem. The natural map P 7→ LP , where P (x, ξ) is considered as
element of S(Ω× Ω,R) that is independent of y, induces an isomorphism

Sm(Ω,Rn)/S−∞(Ω,Rn) −→ Lm(Ω)/L−∞(Ω).
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During this proof we use the following notation. Let K ⊂ Ω be a compact
subset. Then Sm(K,Rn) for m ∈ R denotes the set of all P ∈ E(Ω× Rn) that
satisfy an estimate

∣∣P β
α (x, ξ)

∣∣ ≤ Cα,β

(
1 + |ξ|)m−|β| (x ∈ K)

and we define

S−∞((K,Rn) =
⋂

m
Sm(K,Rn), S∞((K,Rn) =

⋃
m

Sm(K,Rn).

Obviously Sm(Ω,Rn) is the intersection of all Sm(K,Rn).

Proof of 6.4. Let P (x, ξ) be a symbol, independent of y, such that LP ∈ L−∞.
We have to show P ∈ S−∞. We fix a compact set K ⊂ Ω and choose a
function ϕ ∈ D(Ω) which is constant 1 on a full neighborhood of K. Let
A = LP the pseudodifferential operator associated to P . For fixed ξ we can
apply the operator A to the function x 7→ eixξϕ(x). Then we can define

Pϕ(x, ξ) = e−ixξA(x 7→ eixξϕ(x)).

Claim 1. Pϕ ∈ S−∞(Ω,Rn).

Claim 2. Pϕ − P ∈ S−∞(K,Rm).

From the two claims we get P ∈ S−∞(K,Rm). Since this is true for all K we
get S−∞(Ω,Rm). This is what we have to prove. The two claims are special
cases of more general facts. We treat them in the following Lemma:

6.5 Lemma. Let A be the pseudodifferential operator defined by the symbol
P (x, ξ) ∈ Sm(Ω,R) (independent of y). For ϕ ∈ D(Ω) the function

Pϕ(x, ξ) = e−ixξA(x 7→ eixξϕ(x)).

is contained in Sm(Ω,Rn). Moreover one has

Pϕ(x, ξ) ∼
∑
α

1
α!

((1
i

∂

∂x

)α

ϕ(x)
) (1

i
∂

∂ξ

)α

P (x, ξ).

In the situation of the claims we have that ϕ is constant on some neighborhood
of K. Hence on K only the term for α = 0 in the sum. This gives the second
claim.

Proof of 6.5.
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7. Composition of pseudodifferential operators

We are now in the position to consider compositions of pseudodifferential op-
erators. Let A,B : D(Ω) → E(Ω) two pseudodifferential operators. We assume
that one of them is proper. Then one can define the composite

B ◦A : D(Ω) −→ E(Ω).

This is clear when A is proper, since then A can be considered as map A :
D(Ω) → D(Ω). But it is also clear if B is proper, since then B extends to a
map B : E(Ω) → E(Ω). It is natural to ask whether B◦A is a pseudodifferential
operator. First we treat a special case:

7.1 Lemma. Let A,B be two pseudodifferential operators, one of them proper
and the other an integral operator. Then A ◦B is an integral operator too.

7.2 Theorem. The composite of two pseudodifferential operators A,B, one
of them proper, is a pseudodifferential operator.
Assume that A can be defined by a symbol P (x, ξ) from that is independent of
x and that B can be defined by a symbol Q(y, ξ) that is independent of x then
A ◦B can be defined by the symbol P (x, ξ)Q(y, ξ).

Recall (6.4) that we have an isomorphism

Sm(Ω,Rn)/S−∞(Ω,Rn) ∼−→ Lm(Ω)/L−∞(Ω)

where the elements in Sm(Ω,Rn) are considered as elements of Sm(Ω×Ω,Rn)
that are independent of y. We denote the inverse map by

σ : Lm(Ω)/L−∞(Ω) ∼−→ Sm(Ω,Rn)/S−∞(Ω,Rn).

If P is an pseudodifferential operator we use the notation

σ(P ) := σ(P mod L−∞(Ω)).

One can ask how σ(AB) can be computed from σ(A) and σ(B).

7.3 Proposition. Let A,B be two pseudo-differential operators, one of them
proper. We denote by σ0(A), σ0(B), σ0(AB), representatives of the symbols
σ(A), σ(B), σ(AB). One has

σ0(AB) ∼
∑
α

i−α

α!

( ∂

∂ξ

)α
(

σ0(A)
( ∂

∂x

)α

σ0(B)
)

.
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The principal part of the symbol

There is a natural projection

Sm(Ω,Rn)/S−∞(Ω,Rn) −→ Sm(Ω,Rn)/Sm−1(Ω,Rn).

For an pseudodifferential operator A ∈ Lm(Ω) we denote by σm(A) the image
of σ(A) with respect to this project. We call σm(A) the principal part of the
symbol of the operator L ∈ Lm(Ω). (So it depends on the chosen m.)

7.4 Proposition. The map P 7−→ LP induces a map

Sm(Ω,Rn)
Sm−1(Ω,Rn)

−→ Lm(Ω)
Lm−1(Ω)

.

This map is an isomorphism, the inverse is induced by σm.

Recall that multiplication induces a map Sm×Sm′ → Sm+m′
. Hence we get a

multiplication map

Sm

Sm−1
× Sm′

Sm′−1
−→ Sm+m′

Sm+m′−1
.

7.5 Theorem. Let A ⊂ Lm(Ω) and B ⊂ Lm′
(Ω) be two pseudodifferential

operators. Then
σm+m′(AB) = σm(A)σm′(B).

8. Elliptic pseudodifferential operators

We introduced in the previous section the multiplication map

Sm

Sm−1
× Sm′

Sm′−1
−→ Sm+m′

Sm+m′−1
.

A special case is m′ = m:

Sm

Sm−1
× S−m

S−m−2
−→ S0

S−1
.

In S0 we have the function “constant one”. Its image in S0

S−1 can be denoted
the “unit element”.
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An element a ∈ Sm/Sm−1 is called invertible, if there exist an element
b ∈ S−m/S−m−1 such that ab is the unit element in S0/S−1.

We give an example. Let P (x, ξ) be a homogenous polynomial of degree
m in the variable ξ over the ring E(Ω). Using the function We assume that
P (x, ξ) = 0 can happen only for ξ = 0. By means of the function ϕ

we define

Q(x, ξ) =
ϕ(ξ)

P (x, ξ)
(:= 0 if ξ = 0).

Then Q ∈ S−m and QP − 1 ∈ S−1. Hence Q defines an invertible element in
Sm/Sm−1.

8.1 Definition. A pseudodifferential operator A is called elliptic of order m,
if A ∈ Lm(Ω) and if σm(A) is invertible in the above sense.

The example above shows:

8.2 Remark. Elliptic differential operators are also elliptic pseudodifferential
operators.

Let A by a pseudodifferential operator. By definition a parametrix of A is a
pseudodifferential operator B such that A ◦ B − id and B ◦ A − id both are
integral operators.

8.3 Main theorem for elliptic operators. Each elliptic pseudodifferential
operator admits a parametrix.

Proof. By assumption we find a proper operator Q′ such that

PQ′ = id−H, H ∈ L−1.

Since there is no need for H to be proper we decompose

H = H ′ + R, H ′ proper, R integral operator.

Now we can define powers of H ′ and we find by the fundamental existence
theorem an Q′′ with

Q′′ ∼
∑

H ′n.

Now Q = Q′Q′′ has the property PQ ∼ id. It is clear that Q also is elliptic.
We still have to prove QP ∼ id. This is done by a simple algebra argument
the image of the set of elliptic operators in S∞/S−∞ is a semigroup with unit
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element. We have shown that each element has a left inverse. From groups
theory one knows that this is enough to ensure that it is a group. tu

An important application of the existence of a parametrix is the smoothing
lemma (should better be called “smoothing theorem”). First we recall that a
pseudodofferential A : D(Ω) → E(Ω) extends to A : E ′(Ω) → D′(ω).

8.4 Smoothing Lemma. Let A be an elliptic pseudodifferential operator
and f ∈ E ′(Ω) be a distribution with compact support such that A(f) ∈ E(X).
Then f ∈ D(X).

There is a variant of 8.4 in the case of a proper elliptic operator A : D(Ω) →
D(Ω). In this case we get an extension D′(Ω) → D′(Ω). Then the following is
true:
Let f ∈ D′(Ω) be a distribution such that Af ∈ E(Ω) then f ∈ E(X).
Usually one wants to solve equations Af = g where g is given function. The
solutions f can be distributions. In this case one talks about weak solutions.
More interesting are strong solutions where f is a differentiable function and
not only a distribution. The smoothing lemma tells that in the weak solutions
are automatically strong in the case of elliptic operators.
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In the appendices we consider vector spaces over the field of real numbers. The
case of complex vector spaces needs only minor modifications.

1. Topological facts

1.1 Proposition. Let (X, d) be a metric space such that each sequence admits
a comvergent sub-sequence. Then X is compact.

First we claim that for each r > 0 the space X can be covered by finitely many
open balls of radius r. We prove this by contradiction and hence assume that
this is false for some r. Then one inductively can construct a sequence of balls
Ur(an) such that an is not contained in any of its precursors Ur(aν), ν < n.
Then the distance between any two of the mid-points an is ≥ r. But then the
sequence (an) cannot have a convergent subsequence which contradicts to our
assumption about X.

Next we construct a countable dense subset S ⊂ X. For each natural n we
cover X by finitely many balls of radius 1/n. This gives a countable system of
balls and their centers define a dense subset of X.

A metric space that admits a countable dense subset has countable basis of
the topology. This means that there exists a countable system of open subset
such that each open subset is the union of sets of the countable system. One
just takes the open balls with rational radii around points of a countable dense
set.

It is well-known that a topological Hausdorff space with countable basis of
the topology is compact if every sequence admits a convergent sub-sequence.

tu
A subset of a metric space is called bounded if it is contained in some ball.

For a bounded non-empty set A the diameter can be defined as

diam(A) := sup{d(x, y); x, y ∈ A}.
1.2 A variant of the nested interval nesting theorem. Let X be a com-
plete metric space and A1 ⊃ A2 ⊃ . . . a descending chain of non-empty closed
subsets such that the diameter diam(An) tends to zero. Then the intersection⋂

An is not empty.

Proof. Choose for each An an element an ∈ An and prove that the sequence
(an) is a Cauchy sequence. tu
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1.3 The Baire category theorem. Let X be a complete metric space
(every Cauchy sequence converges). Let A1, A2, . . . be a countable system of
closed subset such that X =

⋃
An. Then at least one An has an interior point

(this means that a full ball is contained in An).

Proof. On constructs inductively a sequence of open balls U1 ⊃ U2 ⊃ . . .
such that Ūn ⊂ X − An and such that the diameter of Ūn is ≤ 1/n. For the
construction of U1 (begin of the induction) one just observes that A1 must be
different from X and hence in X −A1 there exists a closed open ball. Assume
that Un has already been constructed. Of course Un cannot be contained in
An. Since An is closed, Un − An is open and non empty and we can choose a
ball of diameter ≤ 1/n + 1 inside this set. By the nested interval theorem we
find a point a ∈ ⋂

Ūn. But a cannot by contained in any An. tu

2. Hilbert spaces

Let H be a (real) vector space. A scalar product 〈·, ·〉 on H is a symmetric
positive definit bilinear form. Then

‖a‖ :=
√
〈a, a〉

defines a norm on H and hence a structure as metric space, d(a, b) := ‖a− b‖.
One calls (H, 〈·, ·〉) a Hilbert space if every Cauchy sequence converges. Ex-
amples of Hilbert spaces are provided through Radon measures (X, dx). The
space L2(X, dx) is a Hilbert space with the scalar product

〈f, g〉 =
∫

X

f(x)g(x)dx.

A special example is the Hilbert space l2, which can be considered as the Hilbert
space that is associated to the Radon measure on X = N, equipped with the
discrete topology and the integral

∫

X

f(x)dx :=
∑

n∈X

f(n).

Recall that then l2 consists of all sequences (an) such that
∑ |an|2 converges.

Let M ⊂ H be a subset of a Hilbert space. We define its orthogonal
complement by

M⊥ := {a ∈ H; 〈a, x〉 = 0 for all x ∈ M}.
This is a subvector space and it is also clear that it is a closed subset. The
starting result in the theory of Hilbert spaces is:
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2.1 Proposition. Let A ⊂ H be a closed subvector space of H. Then

H = A⊕A⊥.

The proof is not difficult. One has to construct for given a ∈ H a vector
b ∈ A such that a − b is orthogonal to A. It is easy to see that such a b has
the property that it it minimizes the ‖a− x‖, x ∈ A. This gives the idea of
the construction: Choose a sequence xn ∈ A such that ‖a− xn‖ tends to the
infimum of ‖a− x‖, x ∈ A. One can show that this is a Cauchy sequence and
can then consider its limit b.

The Proposition has the following consequence:

2.2 Theorem of Riesz. Every continuous linear function L : H → R on a
Hilbert space is of the form L(x) = 〈a, x〉 with a unique a ∈ H.

For the proof one applies 2.1 to the kernel of A.
A subset B ⊂ H of a Hilbert space is called an orthonormal system if

〈a, b〉 =
{ 1 if a = b,

0 else.

A maximal orthonormal system is called a Hilbert space basis. By means of
Zorn’s Lemma Hilbert space bases exist. One can show even more, namely that
each orthonormal system is contained in a maximal one. For a Hilbert space
of infinite dimension the following conditions are equivalent:

1) Every Hilbert space basis is countable.
2) There exists a countable Hilbert space basis.
3) There exists a countable dense subset.
Hilbert spaces with the properties 1)–3) are called separable. Usually only
separable Hilbert spaces are of interest. Two Hilbert spaces H1 and H2 are
called isomorphic (as Hilbert spaces) if there exists an isomorphism H1 → H2

that preserves the scalar products. From linear algebra one knows that Hilbert
spaces of finite dimension are isomorphic if and only if their dimensions agree.

2.3 Proposition. Two separable Hilbert spaces of infinite dimension are
isomorphic.
More precisely: Let e1, e2 . . . be an orthonormal basis of the Hilbert space H (of
infinite dimension). There exists a unique isomorphism

l2
∼−→ H, Ei 7−→ ei.

Here Ei (unit vector) denotes the sequence with a 1 at the ith position and zeros
else.
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3. Banach spaces

A norm ‖·‖ on a (real) vector space V is a function V → R with the properties
1) ‖a‖ ≥ 0 and (‖a‖ = 0 =⇒ a = 0).
2) ‖ta‖ = |t| ‖a‖ (t ∈ R, a ∈ V ).
3) ‖a + b‖ ≤ ‖a‖+ ‖b‖.
A normed space is a space that has been equipped with a distinguished norm.
A normed space is called a Banach space if every Cauchy sequence (with respect
to the metric d(a, b) = ‖b− a‖) converges. So Hilbert spaces can be considered
as Banach spaces. Two norms ‖·‖1 and ‖·‖2 are called equivalent if there exist
constants C1, C2 with the property

‖a‖1 ≤ C1 ‖a‖2 , ‖a‖2 ≤ C2 ‖a‖1 .

Of course equivalent norms lead to the same topologies.

3.1 Proposition. One a finite dimensional normed vector space any two
norms are equivalent. Each finite dimensional normed vector space is a Banach
space.

A linear form L : V → R on a normed vector space is continuous if and only
of there exists a number C with the property

‖L(a)‖ ≤ C ‖a‖ .

The infimum of all possible C is called the norm of L. We denote it by ‖L‖.
We denote by V ′ the set of all continuous linear forms on V . This is a vector
space. Through the just introduced ‖L‖ this space get’s also a normed space.
But even more: It is easy to show that V ′ with this norm is a Banach space.

So far the dual V ′ could be zero even if V is not zero. Immediately one
can see that this happens not for Hilbert spaces since there we have the linear
forms x 7→ 〈a, x〉 for a given a. But also in the case of Banach spaces continuous
linear forms do exist:

3.2 Theorem of Hahn Banach for normed vector spaces.
Let V be a normed space and W ⊂ V a subvector space, equipped with the
restricted norm. Each continuous linear form on W extends to a continuous
linear form on V .

Since the dual V ′ of a normed space is a normed space again we can consider
the double dual V ′′. As usual there is a natural map

V −→ V ′′, a 7−→ (L 7→ L(a)).



§4. Fréchet spaces 85

Of course one has to show that L 7→ L(a) is continuous on V ′ but this is easy.
The Hahn Banach theorem shows that V → V ′′ is injective and one can show
even more, namely that this map is norm preserving. Hence we can think of V
as a subspace of the Banach space V ′′ equipped with the restricted norm. We
denote by V̄ the closure of V in V ′′ and equip it also with the restricted norm.
It is clear that V̄ is a Banach space. The space V̄ is called the completion of
V . It is a Banach space that contains V as a dense subspace and such that V
carries the restricted norm. These properties characterize V̄ :

3.3 Lemma. Let V be a normed vector space. Assume that there are two
Banach spaces V̄1, V̄2 so that both contain V as subvector space. Assume that
V is dense in both and that the norm on V is the restrictions of the norms on
V̄1, V̄2. Then there exists a unique norm preserving isomorphism V̄1 → V̄2 that
induces the identity on V .

There is basic characterization of finite dimensional vector spaces:

3.4 Proposition. A normed vector space V is of finite dimension if and only
if the ball

{a ∈ V ; ‖a‖ ≤ 1}
is compact.

4. Fréchet spaces

A (real) topological vector space is a R-vector space V that has been equipped
with a topology such that the maps

V × V −→ V, (a, b) 7−→ a + b, R × V −→ V, (t, a) 7−→ ta,

are continuous.
A semi-norm p on a R vector space V is a map p : V → R with the

properties

a) p(a) ≥ 0 for all a ∈ V ,
b) p(ta) = |t|p(a) for all t ∈ R, a ∈ V ,
c) p(a + b) ≤ p(a) + p(b).

The ball of radius r > 0 with respect to p is defined as

Ur(a, p) :=
{

x ∈ V ; p(a− x) < r
}
.

Let M be a set of semi-norms. A subset B ⊂ V is called a semi-ball around a
with respect to M if there exists a finite subset N ⊂M and a r > 0 such that

B =
⋂

p∈N
Ur(a, p).
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A subset U of V is called open (with respect to M) if for every a ∈ U there
exists a semi-ball B around a with B ⊂ U .

It is clear that this defines a topology on V such that all p : V → R are
continuous. (It is actually the weakest topology with this property.) It is also
easy to to see that this topology gives V a structure as topological vector space.
Moreover a sequence (an) in V converges to a ∈ V if and only if p(an− a) → 0
for all p ∈M.

4.1 Definition. A toplogical vector space is called locally convex if there
exists a set M of semi norms that induces the topology of V .

This notion results form the fact the semi-balls are convex sets.
The set M is called definit, if

p(a) = 0 for all p ∈M =⇒ a = 0.

It is easy to prove that V is a Hausdorff space for definit M.
A sequence (an) in a topological vector space V is called a Cauchy sequence

if for each neighborhood U of the origin there exists N such that an − am ∈ U
for all n, m ≥ N . If V is locally convex and M a defining set of semi-norms
this means that for every ε > 0 and every p ∈ M there exists an N = N(p, ε)
such that

p(an − am) < ε for n, m ≥ N.

Of course Cauchy sequences converge.

4.2 Definition. A topological space V is called a Fréchet space if its topol-
ogy can be defined by a countable definit set of semi-norms and such that any
Cauchy sequence converges.

Notice that a Banach space can be considered as a Fréchet space. Here M can
to taken as the set consisting of a single element (the defining norm).

4.3 Lemma. Fréchet spaces are metrizable.
Corollary. A subset K of a Fréchet space is compact if any sequence admits
a subsequence that has a limit in K.

Proof. We choose some ordering of a countable defining sets of semi-norms
M = {p1, p2, . . .}. Then one defines

d(a, b) =
∞∑

n=1

2−n pn(a− b)
1 + p(an) + p(bn)

.

It is easy to show that this is a metric which defines the original topology.
tu
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Basic examples of Fréchet spaces

Let X be a locally compact topological space and K an open subset. We define
on C(X) the semi-norm

pK(f) = max
x∈K

|f(x)|.

We consider the locally convex space defined by these semi-norms. We want
to have that this set is of countable type. For this we assume that X has
countable topology. Then X can be written as a union

K1 ⊂ K2 ⊂ · · ·

of an ascending chain of compact subsets. One can achieve that each member
Ki is contained in the interior of its successor Ki+1. Then each compact subset
of X is contained in some Ki. As a consequence the set of norms pKi already
defines the topology. A Cauchy sequence in this space is a sequence whose
restriction to each compact subset is a usual Cauchy sequence with respect to
the maximum norm. Since the space of continuous functions on a compact
space is a Banach space we easily can derive that C(X) is a Fréchet space. A
sequence converges in this Fréchet space if and only if it converges uniformly
on each compact subset.

A closed subspace of a Fréchet space, equipped with the induced topology,
is a Fréchet space as well. This gives the possibility to define more Fréchet
spaces.

Let now X be an analytic manifold (with countable basis of the topology)
and let O(X) be the space of all holomorphic functions. From complex analysis
it is known that the limit of a sequence of holomorphic functions that converges
uniformly on compact subsets is holomorphic too. This shows that Ω(X) is a
closed subspace of X. Hence Ω(X) is a Fréchet space.

If X is a differentiable manifold (with countable basis of the topology) then
E(X) = C∞(X) usually is not closed in C(X). Hence it is no Fréchet space with
the topology induced form C(X). But there is an other topology that makes
C∞(X) in natural way to a Fréchet space. We treat the local case first:

4.4 Lemma. Let Ω ⊂ Rn be an open subset. There is a unique structure as
Fréchet space on E(Ω) with the following property: A sequence (fm) converges
to f if and only if it converges locally uniformly and if this is true for for all
derivatives of arbitrary order.

Proof. The uniqueness is clear since the topology of a metric space is determined
by the convergent sequences. So we have to construct suitable semi-norms. Let
K be a compact subset and m ≥ 0 an integer. We define a semi-norm on C∞(Ω):

pK,m(f) = max
|α|≤m, x∈K

|(∂αf)(x)| (α = (α1, . . . , αm)).
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The set of these semi-norms defines a structure as locally convex space on
C∞(Ω). It is sufficient to take the compacta K from an exhausting system
as above. Hence a countable system of semi-norms is enough to define the
topology. A sequence fm converges to a function f with respect to this topology
if an only if it converges uniformly on each compact subset and if the same is
true for all derivatives of arbitrary order. So it is clear that C∞(Ω) gets a
Fréchet space with this structure.

We briefly explain that more generally for a differentiable manifold X one
can equip C∞(X) with a natural structure of a Fréchet space. Instead of com-
pact subsets one now considers pairs (K, ϕ) where K is a compact subset of X
and ϕ : U → V is a differentiable chart such that K ⊂ U . Then for integral
m ≥ 0 one can define the semi-norm pK,ϕ,m on C∞(X). For this one transports
a function f ∈ C∞(X) to a function fϕ on V . Then one defines

pK,ϕ,m(f) = pϕ(K),m(fϕ).

The set of these semi-norms gives a structure as locally convex space. In the
case of an open subset of Rn we get the old structure. It is easy to see that
one gets a Fréchet space.

4.5 Proposition. Let X be a differentiable manifold (with countable basis of
the topology). Then the space

E(X) := C∞(X)

is a Fréchet space.

Direct product of Fréchet spaces

4.6 Lemma. Let E1, . . . , En be Fréchet spaces. Then the direct product

E = E1 × · · · × En,

equipped with the product topology is a Fréchet space too.

The proof uses the following construction. Let pi be semi-norms on Ei then

p(a1, . . . , an) = max
1≤i≤n

pi(ai)

is semi-norm. tu

Factor spaces of Fréchet spaces
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4.7 Lemma. Let F be a closed subspace of a Fréchet space E. We equip
the factor space E/F with the quotient topology. Then E/F is a Fréchet space
too.

The proof uses the following construction. Let p by a semi-norm on E then

p̄(a) = inf{p(a + x); x ∈ F}

is a semi-norm on E. tu

The dual of a Fréchet space

Let V be a locally convex vector space. The dual V ′ of V is the set of all
continuous linear forms on V . We want to equip V ′ with a structure as locally
convex space.

4.8 Definition. A set B of a topological vector space is called bounded if for
each open neighborhood 0 ∈ U ⊂ F there exists a constant ε > 0 with εB ⊂ U .

If V is a locally convex space and M is a set of semi-norms that defines the
topology, then this means that for each p ∈M there exists a constant Cp such
that

p(a) ≤ Cp for all p ∈M.

Let B ⊂ V be a non-empty bounded set. Then each linear form L ∈ V ′ is
bounded on B. This is clear since one just can choose an open neighborhood
U of zero such that L(U) ⊂ (−1, 1). We define

pB(L) := sup{|L(a)|; a ∈ B}.

It is easy to see that this is a semi-norm. The set of these semi-norms equips
V ′ with a structure es locally convex space.

4.9 Lemma. If V is a Fréchet space than its dual V ′ is also a Fréchet space.

The Hahn-Banach theorem holds also for Fréchet spaces.

4.10 Theorem of Hahn-Banach for locally convex spaces. Let V be a
locally convex space and W ⊂ V a subspace which is equipped with the induced
topology. Each continuous linear on W extends to continuous linear form on
V .
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5. Montel spaces

A basic theorem which will needed in the following is:

5.1 Open mapping theorem. Let f : E → F a surjective continuous linear
map between Fréchet spaces. Then f is open, i.e. the images of open sets are
open.

5.2 Definition. A Montel space is a topological vector space such that the
closure of each bounded set is compact.

For example a Banach space is a Montel space if and only if it is of finite
dimension. But there exist Montel spaces of infinity dimension:

5.3 Theorem. Let X be a differentiable manifold (with countable basis) of
topology. Then E(X) is a Montel space.

For a complex analytic manifold X we used the inclusion O(X) ⊂ C(X) to
equip O(X) with a structure as Fréchet space. But we can consider it also as
subspace of E(X). Actually the induced topology of E(X) is the same as that of
C(X). This comes from the well-known fact from complex analysis that taking
complex derivatives is compatible with locally uniform convergence. This also
shows that O(X) is closed in E(X). So we see:

5.4 Theorem. Let X be an analytic manifold (with countable basis) of topol-
ogy. Then O(X) (equipped with the topology of locally uniform convergence)
convergence of all derivatives) is a Montel space.

6. Distributions, elementary calculus

let Ω ⊂ Rn be an open subset.

6.1 Definition. A distribution on Ω is a linear form D : D(Ω) → R with the
following properties. Let (hm) be a sequence in D(Ω) and h ∈ D(Ω). Assume
that there is a compact subset K ⊂ Ω such that all supports of the functions hm

and h are contained in K. Assume furthermore that (hm) converges uniformly
on K to f and that this is true for all derivatives of arbitrary order. Then
limm→∞D(hm) = D(h).

We denote the vector space of all distributions by D′(Ω). There is also the
notion of a distribution with compact support.
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6.2 Definition. A distribution with compact support on Ω is a linear form
D : E(Ω) → R with the following properties. Let (hm) be a sequence in D(Ω)
and h ∈ D(Ω). Assume that (hm) converges locally uniformly to h and that this
is true for all derivatives of arbitrary order. Then limm→∞D(hm) = D(h).

We denote the vector space of all distributions with compact support by E ′(Ω).
If D is a distribution with compact support, then the restriction D|D(Ω) is
a distribution. This gives an injective linear map E ′(Ω) ↪→ D′(Ω). Its is not
difficult to show that this map is injective. Usually we will identify D and
D|D(Ω). Hence distributions with compact support are just distributions with
an additional property.

Some examples of distributions

Let f ∈ E(Ω). Then

Df (h) = 〈f, h〉 :=
∫

Ω

f(x)h(x)dx (h ∈ D(Ω).

is a distribution. This gives an embedding

E(Ω) −→ D′(Ω).

Frequently we identify f with its associated distribution Df and we consider
distributions as generalized functions. For a distribution D we use also the
notation

〈D, h〉 = D(h).

Similarly we can embed
D(Ω) −→ E ′(Ω).

This example Df can be generalized considerably. Why should one assume
that f is differentiable? All what we need is that f is integrable over each
compact subset K ⊂ Ω. Then fh is integrable over Ω for all h ∈ D(Ω) and it
is easy to see that Df = 〈f, h〉 is a distribution. For example each continuous
function defines a distribution in this way.

Differentiation of distribution

We define the derivative ∂D/∂xi of a distribution D by the formula

∂D

∂xi
(h) := −D

( ∂h

∂xi

)
.

The minus sign has the following meaning. Let f ∈ D(Ω) and Df the associated
distribution. Then one has

∂Df

∂xi
= D∂f/∂xi

.
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This follows easily using partial integration. Just to make the idea clear, we
consider the case Ω = R. Then partial integration gives for h ∈ D(R)

∞∫

−∞
f ′(x)h(x)dx = −

∞∫

−∞
f(x)h′(x)dx

which is the desired formula. Hence we have shown:

6.3 Remark. The definition of the derivative ∂D/∂xi of a distribution by
means of the formula

∂D

∂xi
(h) := −D

( ∂h

∂xi

)

generalizes the usual derivative of a function f ∈ D(X).

We consider some examples:

The Heaviside function

The Heaviside function by definition is the function

Y : R −→ R, Y (x) =
{

0 for x < 0,
1 for x ≥ 0.

It is integrable over each compact set and hence defines a distribution. The
derivative of the distribution is

Y ′(h) = −
∞∫

−∞
(Y (x)h′(x)dx = −

∞∫

0

h′(x)dx = h(0).

This is the so-called delta distribution

δ(h) = h(0).

It can be considered as distribution with compact support. The delta distri-
bution is an example of a distribution that is not induced by a function f .
The reason is that this function would be zero outside 0 and one would have
〈f, 1〉 =

∫∞
−∞ f(x)dx = 1. Such a function cannot exist. (The delta “function”

in physics should be considered as distribution.)
One can of course take higher derivatives of distributions and as a conse-

quence one can apply the Laplace operator ∆ to a distribution.
We give an example: Consider the function r(x, y) =

√
x2 + y2 on Rn. We

then can consider the function
log

1
r
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on R2. In the origin, where it is a priori not defined we take an arbitrary value,
for example zero. Using polar coordinates it is easy to see that this function is
integrable over a disk r ≤ 1. This implies that this function is integrable over
each compact set. Hence it defines a distribution. We can apply the Laplace
operator. The formula

∆ log
1
r

= 2πδ

is left as an exercise.

7. Distributions and topological vector spaces

In the following Ω ⊂ Rn is an open subset. We equipped already the space
E(Ω) with a structure as Fréchet space and we proved that the space E ′(Ω)
of all continuous linear forms carries a structure as Fréchet space again. The
elements of E ′(Ω) are the distributions with compact support. Since E ′(Ω) is a
Fréchet space we can define the double dual E ′′(Ω) and equip it with a structure
as Fréchet space.

7.1 Proposition. The canonical map

E(Ω) −→ E ′′(Ω)

is an isomorphism of topological vector spaces.

One may ask whether D(Ω) is aFréchet space too. Here is a problem. If one
equips D(Ω) with the induced topology of E(Ω) it will not be complete. The
reason that a sequence (fm) from D(Ω) may converge in E(Ω) but the limit
needs not to be compactly supported. The situation is better if we consider for
a compact subset K ⊂ Ω the space

DK(Ω) := {f ∈ E(Ω); support(f) ⊂ K}.

This is a closed subspace of E(Ω) and hence carries an induced structure as
Fréchet space. We use the topologies on the DK(Ω) to define a topology on
their union which is D(Ω):

A subset U ⊂ D(Ω) is called open if for every a ∈ U there exists a convex
subset W ⊂ D(Ω) which has the following two properties:
1) The intersection W ∩ DK(Ω) is a neighborhood of the origin in DK(Ω) for

each compact subset K ⊂ Ω.
2) a + W ⊂ U .

The condition that W is convex is essentially for the proof of:
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7.2 Proposition. With the topology described above, D(Ω) get’s a locally
convex vector space. A sequence (fm) in D(Ω) converges to f , if there exists a
K such that all fm and f are contained in DK(Ω) and fm → f there. Every
Cauchy sequence converges. A linear form D : D(Ω) → R is continuous if
and only if its restriction to every DK(Ω) is continuous. Hence the space of
continuous linear forms is the usual space D′(Ω) of distributions.

But D(Ω) is no Fréchet space. The reason that it is not possible to find a
countable system of semi-norms that define the topology.

Recall that D′(Ω) carries a structure as locally convex space. (To each
bounded set B there is an associated semi-norm.)

7.3 Proposition. A sequence of distributions Dm converges in D′(Ω) against
zero if and only of for each bounded subset B ⊂ D(Ω) the sequence Dm(h) con-
verges to 0 uniformly for h ∈ B. Every Cauchy sequence in D′(Ω) converges.

But D′(Ω) is no Fréchet space. As in the case D(Ω), the topology cannot be
defined by a countable set of semi-norms. Since D′(Ω) is topological vector
space we can consider the double dual D′′(Ω) and equip it with a structure as
locally convex space. There is a natural map D(Ω) → D′′(Ω). Again we have:

7.4 Proposition. The canonical map

D(Ω) −→ D′′(Ω)

is an isomorphism of topological vector spaces.

Some density results

Recall that D(Ω) has been embedded into E ′(Ω).

7.5 Lemma. The set D(Ω) is a dense subset of E ′(Ω) with respect to the
Fréchet space structure of E ′(Ω).

8. The Schwartz lemma for Banach spaces

A continuous linear map f : E → F between Fréchet spaces is a compact
operator, if there exists a non-empty open subset of E such that the closure
of its image is compact. It is clear that this is the case if f(E) is of finite
dimension. We give an important example where this is not the case:

Let X be a compact differentiable manifold and dx a Radon measure. We
assume that for a non negative function f ∈ Cc(X) that is not identicall zero
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we have
∫

X
f(x) > 0. Let K ∈ C∞(X ×X). We call K a kernel function. It

defines an operator

A : E(X) −→ E(X), (Af)(x) =
∫

X

K(x, y)f(y)dy.

It is clear that this integral exists (X is compact) and that Af actually is
differentiable (Leibniz-criterion). It is also easy to see that A is continuous
operator. It is easy to see that the kernel K is determined by the operator A.
We call K the kernel of A.

8.1 Lemma. Let X be a compact differentiable manifold with a Radon
measure such that the integral of a nonnegative function f ∈ Cc(X) is positive
if f doesn’t vanish identically. Let A be the integral operator with kernel K ∈
C∞(X ×X). The operator

A : E(X) −→ E(X)

is compact.

Proof.
A linear map f : V → W is called nearly surjective if f(V ) is closed in W

and if W/f(V ) has finite dimension. This is automatically the case when W is
finite dimensional.

8.2 Theorem of Schwartz. Let f : E → F be a surjective continuous linear
map between Fréchet spaces and let g : E → F be a compact operator. Then
f + g is nearly surjective.

If one applies Schwartz’s theorem in the case E = F , f = − id and g = id on
obtains:

8.3 Corollary. When the identity operator id : E → E of a Fréchet space is
compact, then E is finite dimensional.

9. The Schwartz lemma for Fréchet spaces

We need a technique to link Fréchet spaces to Banach spaces. Let p be a
semi-norm on a Vector space E. Then the null space

N(p) := {a ∈ E; p(a)}

is a subvector space. The semi-norm p factors through a norm on the factor
space E/N(p). We denote this normed vector space by Ep.



96 Chapter VI. Appendices

9.1 Lemma. Let E be a Fréchet space and p a continuous semi-norm on E.
Then Ep is a Banach space. The natural projection E → Ep is continuous.

Fréchet spaces as projective limits of Banach spaces

Actually E can be reconstructed from the Ep. In the literature this is written
as “projective limit”

E = lim
←−

Ep.

There is no need for us to introduce the definition of a projective limit here.
Instead of this we only formulate, what is behind this formula.

9.2 Lemma. Let E be a Fréchet space and M be a defining system of semi-
norms. We assume that for each p1, p2 ∈ M there exists a semi-norm p ∈ M
such that p ≥ p1, p2. Then each open subset U ⊂ E is the union of finite
intersections of inverse images of open sets in Ep.

Applications

We want to give a direct proof of the following theorem:

9.3 Theorem. Let X be a compact complex manifold. Then the space Ωp(X)
of holomorphic differential forms of degree p is finite dimensional for all p.

it is possible to equip each complex manifold with a hermitian metric. Then
we can apply our deep theorems (resting on the elliptic operator theory) to
get this result. Instead of this we give here a more direct proof which has the
advantage that it admits generalizations on complex spaces.
Proof of 9.3.

10. Elliptic operators on compact manifolds

Let X be a differentiable manifold. Since the notion of pseudodifferential op-
erator on open subsets of Rn is invariant under diffeomorphism and since it
is a local notation, it is possible to define the notion of a pseudodifferential
operator

A : D(X) −→ E(X).

It is also possible to define what it means that A is an elliptic operator.
We assume that a Radon-measure dx is given on X such that the integral of

function f ∈ Cc(X), f ≥ 0, is not zero if f is not identically zero. This measure
then induces an embedding

D(X) −→ E ′(X), f 7−→
(
g 7→

∫

X

f(x)g(x)dx
)
.
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For K ∈ C∞(X ×X) we can define the associated integral operator

A : D(X) −→ E(X), Af(x) =
∫

X

K(x, y)f(y)dy.

As in the local case one can prove the existence of a parametrix B for a given
proper elliptic operator A. This is an elliptic operator such that A◦B− id and
B ◦A− id are integral operators as explained above.

Now we assume that X is compact. Then D(X) = E(X) and each pseudif-
ferential operator is proper. Since a pseudifferential operator is continuous in
the topology of E(X), the dual operator

A′ : E ′(X) → E ′(X)

is defined. Recall that E(X) has been embedded into E ′(X). As in the local
case we have that A′ maps E(X) into E(X). Restricting A′ we get an operator

A∗ : E(X) −→ E(X).

This is also en elliptic operator. It is the formal adjoint of A which means that
it has the property

〈Af, g〉 = 〈f,A∗g〉,
where 〈·〉 denotes the scalar product

〈f, g〉 =
∫

X

f(x)g(x)dx.

The basic theorem is:

10.1 Theorem. Let A : E(X) → E(X) be an elliptic operator on a compact
differentiable manifold. Then the kernel of A is finite dimensional and one has

E(X) = kernel(A)⊕ image(A∗).

Proof. We choose a parametrix B. The kernel of A is contained in the kernel
of B ◦A and this space is finite dimensional by the theorem of Schwartz. One
has to use that B ◦ A is the sum of a surjective operator (namely id) and a
compact operator (actually an integral operator on the compact manifold X).

It is clear that the intersection of kernel(A) and image(A∗) is zero. Next
we show that image(A∗) is closed in E(X). For this we use that image(A∗) ⊂
image(A∗ ◦B∗). We have that A∗ ◦B∗ = (B ◦A)∗. We know that B ◦A− id is
an integral operator. The same is true then for (B ◦A− id)∗. We obtain that
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image(A∗ ◦B∗) is a closed subspace of finite codimension in E(X). The Fréchet
space E(X)/image(A∗ ◦B∗) is finite dimensional. Hence each subspace of it is
closed. This implies that image(A∗) is closed and since kernel(A) is closed we
get that kernel(A)⊕ image(A∗) is closed in E(X).

Now we can consider E(X)/(kernel(A) ⊕ image(A∗)) as a Fréchet space.
Our claim is that it is zero. We argue by contradiction. Then there exists a
(continuous) linear form that is not identically zero. In other words there exists
an element D ∈ E ′(X) that is not identically zero but vanishes on kernel(A) and
on image(A∗). Especially we have D(A∗f) = 0 for all f ∈ E(X). By definition
of the dual operator we have D(A∗f) = A′(D)(f). So we see A′(D) = 0. The
smoothing theorem gives that D is already contained in E(X). (The smoothing
theorem is an immediate consequence of the existence of a parametrix.) We
write D = f and we have 〈f,A∗g〉 = 0 for all g. This gives 〈Af, g〉 = 0 for all
g and hence Af = 0. Since D vanishes on the kernel of f we get 〈f, f〉 = 0
and hence f = 0. This contradicts to the assumption that D is different form
zero. tu


