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Chapter I. Complex Spaces

1. Complexes

Rings are assumed to be commutative and associative and with unit. Homo-
morphisms of rings are assumed to map the unit element into the unit ele-
ment. By an algebra over a ring A we understand a homomorphism of rings
f : A → B. A homomorphism between A-algebras A → B and A → C is just
a commutative diagram

A

�� ��@
@@

@@
@@

@

B // C

of rings.

An A-algebra f : A→ B carries a structure as A-module,

ab := f(a)b.

This is a functor from the category of A-algebras into the category of A-
modules. More general, every B-module carries a structure as A-module. This
is a functor from the category of B-modules into the category of A-modules.

Chain complexes

let A be an associative and commutative ring with unit. By a (chain-) complex
M. we understand a sequence of A-modules

· · · −→Mn
dn−→Mn−1 −→ · · ·

such that n runs over all integers and where dn−1 ◦ dn = 0 for all n. The
homology groups of the complex are

Hn(M.) =
kernel(Mn −→Mn−1)

image(Mn+1 −→Mn)
.

A homomorphism of complexes M. → N. is a commutative diagram

· · · // Mn+1

� �

// Mn

��

// Mn−1

��

// · · ·

· · · // Nn+1
// Nn // Nn−1

// · · ·
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So we can talk about the category of (chain-) complexes. This is an additive
category (morphisms can be added in a natural way) and even an abelian
category. The notions “subcomplex”, image of a homomorphism of complexes
is defined in the obvious way. A sequence M. → N. → P. is called exact
if the image of M

. → N
.
equals the kernel of N

. → P
.
, This means that

Mn → Nn → Pn is exact for all n.

A homomorphism of complexes induces natural maps of the homology
groups Hn(M.) → Hn(N.).

A sequence of complexes E
. → F

. → G
.
is called exact if En → Fn → Gn

is exact for every n.

Dqi1.1 Definition. A homomorphism of chain complexes f : E. → F. is called
a quasi-isomorphism if the induced homomorphisms Hn(E.) → Hn(F.) are
isomorphisms.

A fundamental lemma of homological algebra states.

LES1.2 Lemma. Let 0 → E. → F. → G. → 0 be an exact sequence of complexes.
Then there can be constructed combining homomorphisms ∂ : Hn(G.) →
Hn−1(E.) such that the long sequence

· · · −→ Hn(E.) −→ Hn(F.) −→ Hn(G.) ∂−→ Hn−1(E.) −→ · · ·
is exact.

In many cases one needs only the existence of ∂ but sometimes it is necessary
to know how it is constructed. We sketch the construction. One starts with
a ∈ Hn(G

.
). It is represented by b ∈ Gn. Its image in Gn−1 is zero. Let b ∈ Fn

be an inverse image of a. Its image in Fn−1 is in the kernel of Fn−1 → Gn−1.
Hence it is the image of a c ∈ En−1. One shows d(c) = 0 so c represents a
homology class in Hn−1(E

.
). tu

Dheq1.3 Definition. A homomorphism of chain complexes f. :M. → N. is called
null-homotopic if there exists a sequence hn :Mn → Nn+1 such that

fn = d ◦ hn + hn−1 ◦ d.

This condition can be visualized through a diagram

Mn+1
fn //

d

��

Nn+1

d

��
Mn

fn−1

//

hn

::vvvvvvvvv
Nn

Rizh1.4 Remark. If f. : M. → N. is null-homotopic, then it induces zero maps
in the homology.

The proof is easy. tu
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Dhen1.5 Definition. A homomorphism f. : M. → N. is called a homotopy
equivalence if there exists a homomorphism g. : N. → M. such that g. ◦ f.
and f. ◦ g. are homotopy equivalent to the identity maps.

On can consider g as a weak substitute of the inverse of f . So homotopy
equivalences admit inverses in some sense. But quasi-isomorphisms usually
can not be inverted. (We don’t want to introduce the concept of the derived
category, where quasi-isomorphisms can be inverted.)

Dhei1.6 Definition. Two homomorphisms of complexes

f., g. :M. −→ N.

are called homotopic if their difference is null-homotopic.

Rts1.7 Remark. Two homotopic homomorphisms of complexes induce the same
map in the homology.

Rhei1.8 Remark. Each homotopy equivalence is a quasi-isomorphism.

Dmc1.9 Definition. Let f. : M. → N. be a homomorphism of chain complexes.
The mapping cone C(f). is the following complex.

a) C(f)k =Mk−1 ⊕Nk.
b) The differential d is(

−d 0
−f d

)
:Mk−1 ⊕Nk −→Mk−2 ⊕Nk−1,

(a, b) 7−→ (−d(a), d(b)− f(a)).

We explain the meaning of the mapping cone. For this we introduce a notation.
LetM. be a complex of modules and let m be an integer. We define the shifted
complex M [m]. through M [m]n :=Mnm+n with the obvious differentials. For
a complex homomorphism M. → N. we can define complex homomorphisms

N. −→ C(f). and C(f). −→M [−1]..

The first one is given by b 7→ (0, b) the second one by (a, b) 7→ a. One can check
that this gives a short exact sequence of complexes

0 −→ N. −→ C(f). −→M [−1]. −→ 0

(Recall that a sequence E. → F. → G. is called exact if En → Fn → Gn is
exact for all n.) The long exact sequence that is associated to this short exact
sequence is

· · · −→ Hn(N.) −→ Hn(C(f).) −→ Hn−1(M.) ∂−→ Hn−1(N.) −→ · · · .
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A concrete calculation shows that the combining homomorphism ∂ equals the
map induced by f .

We consider exact sequences of A-modules

· · · −→ Ln
dn−→ Ln−1 −→ · · · −→ L0 −→M −→ 0

They are called resolutions of M from he left. Sometimes we interpret them in
the following way.

We make the sequence (Ln, dn) to a complex L. through Ln = 0 for n < 0,

· · · −→ L1 −→ L0 −→ 0 −→ · · ·
↑

zero-position

The homology groups are

H0(L.) = 0 for n 6= 0 and H0(L.) =M.

One introduces also the complex M.,

· · · −→ 0 −→ M −→ 0 −→ · · ·
↑

zero-position

where M0 =M and all other Mn are zero. Then one can express the sequence
above as a complex homomorphism L. −→M.. This is a quasi-isomorphism .
For sake of simplicity we identify M with the associated complex M. and then
can write also L. →M for this complex homomorphism

Let M be an A-module. A resolution of M

· · · −→ Fn
dn−→ Fn−1 −→ · · · −→ F0 −→M −→ 0

is called free if the modules Fn all are free (not necessarily finitely generated).
As above we consider the Fn as a complex (Fn, dn), n ∈ Z (Fn = 0 for n < 0)
and we write F. →M for the resolution.

Dlm1.10 Definition. Let F. → M and G. → N be two free resolutions and let
M → N be a linear map. A lifting of this map is a homomorphism F. → G.
such that the diagram

F. //

��

G.

��
M // N

commutes.
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This diagram stands of course for

· · · // F1
//

��

F0

��

// M

��

// 0

· · · // G1
// G0

// N // 0

Rlex1.11 Remark. Let F. → M and G. → N be two free resolutions and let
M → N be a linear map. There exists a lifting F. → G. and such a lifting is
unique up to homotopy.

Let M be another A-module. Then we can consider the complex M ⊗A F.,

· · · −→M ⊗A Fn+1 −→M ⊗A Fn −→ · · · .

The homology groups of this complex are the Tor groups

Torn(M,N) = Hn(M ⊗A F.).

Clearly Tor0(N,N) =M ⊗A N .

Cochain complexes

Besides chain complexesM. we can also consider cochain complexesM
.
. These

are sequences

· · · −→Mn dn−→Mn+1 −→ · · ·

such that n runs over all integers and where dn+1 ◦ dn = 0 for all n. There
is no essential difference between chain- and cochain complexes. If M. is a
chain complex than we can define the cochain complex Mn := M−n and con-
versely. We will call both kinds simply complexes. The context, in particular
the notations M., M.

will show which kind of complex we consider.

For sake of completeness we repeat shortly some basic notions of chain
complexes for cochain complexes.

The cohomology groups of a cochain complex are

Hn(M
.
) =

kernel(Mn −→Mn+1)

image(Mn−1 −→Mn)
.

The notion of homomorphism is the same as for chain complexes.

The definitions of “quasi-isomorphism”, “homotopy equivalence of com-
plexes” and “homotopic mappings of complexes” is literally the same and the
Remarks 1.7 and 1.8 hold.
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The notion of null homotopy is visualized by the diagram

Mn−1
fn−1 //

d

��

Nn−1

d

��
Mn

fn

//

hn

::uuuuuuuuu
Nn

Let f : M
. → N

.
be a homomorphism of cochain complexes. Then the map-

ping cone is defined through

C(f)k =Mk+1 ⊕Nk.

The differential d : C(f)k → C(f)k+1 is given by the same formula as in the
case of chain complexes,

d(a, b) = (−d(a), d(b)− f(a).

In this case the short exact sequence looks like

0 −→ F
. −→ C(f)

. −→ E[1]
. −→ 0.

2. Sheaves

Dpr2.1 Definition. Let X be a topological space. A presheaf F of sets on X is
an assignment that associates to each open subset U ⊂ X a set F (U) and to
each pair of open sets V ⊂ U a map rUV : F (U) → F (V ) such that rUU = id
for every open U and such that for every three open subsets W ⊂ V ⊂ U the
diagram

F (U)
rUV //

rUW
��

F (V )

rVW{{vvv
vv
vv
vv

F (W )

commutes.

The elements of F (U) often are called sections of F over U and the elements
of F (X) are called global sections. We will call rUV the restriction maps and we
will use frequently the notation

s|V = rUV (s).

In many cases the sections of a presheaf are functions or something similar. In
these cases the restriction maps are restrictions in the usual sense.
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Dms2.2 Definition. Let F,G be two presheaves of sets. A morphism (also called
simply a map) f : F → G is a collection of maps fU : F (U) → G(U) such that
for every pair V ⊂ U of open subsets the diagram

F (U) //

��

G(U)

��
F (V ) // G(V )

commutes.

We can talk about the category of presheaves of sets.

Dss2.3 Definition. A presheaf F of sets is called a sheaf if the following condi-
tions are satisfied.

1) F (∅) is a set that consists of one element.
2) Assume that U =

⋃
Ui is an open covering of an open subset U ⊂ X.

Assume that s, t ∈ F (U) are two sections with the property s|Ui = t|Ui for
all i, then s = t.

3) Assume that U =
⋃
Ui is an open covering of an open subset U ⊂ X. Let

si ∈ F (Ui) be sections with the property si|(Ui ∩ Uj) = sj(Ui ∩ Uj) for all
i, j. Then there exists s ∈ F (U) with the property s|Ui = si for all i.

By definition, the category of sheaves of sets is the full subcategory of the
category of sheaves whose objects are sheaves. There is a trivial functor from
the category of sheaves of sets into the category of presheaves of sets.

Stalks

Let F be a presheaf of sets on a topological space X and let a ∈ X. We want
to consider the direct limit

Fa := lim−→
a∈U⊂X open

F (U).

Its elements are classes [U,s] of pairs (U, s) where U is an open neighborhood
of a and where s ∈ U . Two such pairs are called equivalent, (U, s) ∼ (V, t), if
there exists an open W , a ∈ W ⊂ U ∩ V with the property s|W = t|W . The
elements of Fa are called germs and Fa is called the stalk of F at a. A map of
presheaves f : F → G induces for each a ∈ X a map fa : Fa → Ga. This is for
each a ∈ X a functor form the category of presheaves of sets into the category
of sets.

Let F be a presheaf. Assume that for each open U a subset G(U) ⊂ F (U)
is given such that the restriction maps F (U) → F (V ) map G(U) into G(V ).
Then the assignment U 7−→ G(U) (with the obvious restriction maps) is a
presheaf. We call it a subpresheaf. There is a natural homomorphism G→ F .
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It is easy to check that the canonical maps Ga → Fa are injective. Usually we
will consider Ga as a subset of Fa.

Let f : F → G be a map of presheaves. Then there is an obvious subpresheaf
fpre(F ) ind G such that f(F )(U) = fU (F (U)). We call it the presheaf image
of f . The presheaf image needs not to be a sheaf even if F,G both are sheaves.

The generated sheaf

Dgs2.4 Definition. Let F be presheaf of sets. A generated sheaf (F̂ , κ) is a sheaf
of sets F̂ together with a map κ : F → F̂ such that the following property holds.
Let f : F → G be a map of F into a sheaf G. Then there exists a unique map
of sheaves F̂ → G such the diagram

F //

��

F̂

����
��
��
��

G

commutes.

It is clear that the pair (F̂ , κ) is uniquely determined up to canonical isomor-
phism. Hence we can talk about the generated sheaf.

A concrete construction of F̂ runs a follows. First one treats a special case.
Let G be a sheaf and F be a subpresheaf. Then one can define a subpresheaf
F̃ ⊂ G in the following way.

F̃ (U) = {s ∈ G(U); sa ∈ Fa}.
One can also say that F̃ (U) consists of all s ∈ G(U) such there exists an open
covering U =

⋃
Ui such that s|Ui ∈ F (Ui).

We have F ⊂ F̃ ⊂ G. Let κ : F → F̃ be the canonical map. Then (F̃ , κ) is
a generated sheaf. So we can write

F̂ = F̃ .

Now we treat the general case. There is an obvious presheaf F (0) with the
property

F (0)(U) =
∏
a∈U

Fa.

It is obvious that this is a sheaf. One calls it the Godement sheaf related to F .
There is a natural map f : F → F (0). Then one defines

F̂ := ˜fpre(F ).
There is a natural map κ : F → F̂ . It is not difficult to check the universal
property.

It is also clear that the assignment F 7→ F̂ is a functor form the category
of presheaves of sets into the category of sheaves of sets.

Using this explicit construction one can show the following lemma.
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Lkb2.5 Lemma. Let F be a presheaf of sets. The canonical map κ : F → F̂
induces bijections

Fa −→ F̂a.

Let X be a topological space. We can consider (pre-)sheaves of sets or of groups
or of rings. Each of them defines a category. If F is a presheaf of groups (rings)
then the stalks Fa are groups (rings) in the obvious way. A homomorphism
F → G of presheaves of groups (rings) induces a homomorphism Fa → Ga of
groups (rings). Let F be a sheaf of groups (rings). Then the generated sheaf
carries a structure as sheaf of groups (rings).

We defined already the notion of the presheaf image fpre of a map f : F → G
of presheaves. In the case that F,G are sheaves. The presheaf image needs not
to be a sheaf. Hence we have to define the sheaf image fsheaf(F ) in a different
way

fsheaf(F ) = ˜fpre(F ).
There is a natural map fsheaf(F ) → G which is an isomorphism onto a subsheaf
of G. Hence we can identify fsheaf(F ) with a subsheaf of G.

Dss2.6 Definition. A map of presheaves f : F → G is called presheaf surjective
if fpre(F ) = G. Assume that F,G are sheaves. Then f is called sheaf surjective
if fsheaf(F ) = G.

Remarkably this difficulty does not occur for the notion of injectivity.

Dsis2.7 Definition. A map of presheaves (sheaves) f : F → G is called injective
if F (U) → G(U) is injective for all open U .

Let f : F → G be a map of sheaves. We assume that it is injective in the sense
of presehaves. Then the presheaf image is already a sheaf.

We turn now to sheaves of abelian groups. The kernel of a homomorphism
f : F → G of presheaves is the subpresheaf of f defined through

Kernel(f)(U) = Kernel(fU ).

Similarly to the notion of injectivity there is no difference between presheaf-
and sheaf kernel. The reason is a s follows. Let f : F → G be a homomorphism
of sheaves. Then the kernel is already a sheaf.

Dspe2.8 Definition. A sequence of presheaves of abelian groups F
f→ G

g→ H is
called presheaf exact if fpre(f) = Kernel(g) or, which means the same, F (U) →
G(U) → H(U) is exact for all open U .
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Dspe2.9 Definition. A sequence of sheaves of abelian groups F
f→ G

g→ H is
called sheaf exact if fsheaf(f) = Kernel(g).

Pssse2.10 Proposition. A sequence of sheaves F → G→ H is sheaf exact if and
only if the sequences Fa → Ga → Ha are exact for all points a.

We omit the proof. tu
Let F ⊂ G be a subpresheaf of a presheaf G. Then the presheaf quotient is

defined through
(F/preG)(U) = F (U)/G(U)

with obvious restriction maps. The sequence 0 → F → G → F/pre −→ 0G is
presheaf exact.

If F ⊂ G is a subsheaf of a sheaf then the factor sheaf is defined through

F/sheafG = ̂F/preG.
The sequence

0 → F → G→ F/sheafG→ 0

is sheaf exact.

Finally we mention.

Rfsa2.11 Remark. The functor “generated sheaf” from the category of presheaves
of abelian groups into the category of sheaves of abelian groups is exact.

We can talk about (chain- or cochain-) complexes of sheaves. Let

· · · −→ Fn−1 −→ Fn −→ · · ·

be a cochain complex. Then we can define its cohomology sheaves Hn(F
.
).

We also can talk about homomorphisms of complexes of shaves in the obvious
way and we we can say what it means that such a homomorphism is a quasi-
isomorphism.

Direct image

Let f : X → Y be a continuous map of topological spaces and let F be presheaf
of abelian groups on X. Then there is an obvious presheaf f∗(F ) on Y with
the property

f∗(F )(V ) = F (f−1(V )).

It is called the direct image of F . This is a functor of the category of sheaves of
abelian groups on X to those on Y . In the case that F is a sheaf, we have that
f∗(F ) is a sheaf. So we get a functor from the category of sheaves of abelian
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groups into those on Y . There is also a functor that associates to a sheaf on Y
a sheaf on X. We only need a special case of this which we explain now.

There is an obvious restriction of sheaves for open subsets U ⊂ X. A
(pre)sheaf F on X can be restricted to a (pre)sheaf F |U in a trivial way,

(F |U)(V ) = F (V ) (V ⊂ U open).

But there is also a restriction in the following situation. Let A ⊂ X be a closed
subset of a topological space and let F be a sheaf of abelian groups on X. We
make the strong assumption that

F |(X −A) = 0.

Let U1 ⊂ U2 ⊂ X be open subsets with the property U1 ∩ A = U2 ∩ A. Then
the restriction F (U1) → F (U2) is an isomorphism. This is easy to show by
means of the open coverings X = Ui∪ (X−A). Hence we can try the following
definition. For each open subset V ⊂ X one chooses an open U ⊂ X with the
property U ∩A = V . Then we define

(F |A)(V ) = F (U).

To avoid conflict with the axiom of choice, it looks natural to modify this
definition

(F |A)(V ) := lim−→
U⊂X open, U∩A=V

F (U).

Then the natural map to F (U) is an isomorphism for each open U ⊂ X,
U ∩A = V .

Let U be closed and open and assume F |(X −U) = 0, then the two restric-
tions agree

Laxi2.12 Lemma. Let A be a closed subspace of a topological space X and denote
by j : A→ X the canonical injection. Let F be a sheaf of abelian groups on A.
There is a canonical isomorphism

Fa
∼−→ j∗(F )a for a ∈ A.

Ljsr2.13 Lemma. Let A be a closed subspace of a topological space X and denote
by j : A→ X the canonical injection.

1) Let F be a sheaf of abelian groups on A. There is a natural isomorphism

F
∼−→ (j∗F )|A.

2) Let G be a sheaf of abelian groups on X whose restriction to X−A vanishes.
Then there is a natural isomorphism

G
∼−→ j∗(G|A).

We conclude this section with a remark that is occasionally useful.
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Rbdt2.14 Remark. Let F,G be two sheaves on X and let B be a basis of the
topology. Assume that for each U ∈ B a map F (U) → G(U) is given. Assume
also that this system of maps is compatible with restrictions. Then this system
extends in a unique way to a map of sheaves F → G.

The proof is easy and can be omitted. tu

3. Finitely generated sheaves

Let O be a sheaf of rings. There is the notion of an O-module M. This is a
sheaf of abelian groups together with a homomorphism of sheaves of abelian
groups

O ×M −→ M
such that the induced maps

O(U)×M(U) −→ M(U)

equip M(U) with a structure as O(U)-module. Here we use the obvious defi-
nition for the direct product of (pre-)sheaves.

(M×N )(U) = M(U)×N (U).

This definition can be extended to more than one factor and one can define

Mn = M× · · · ×M.

There is an obvious notion of an O-linear map M → N of O-modules. So we
can talk about the category of O-modules.

This category has the same exactness property as the category of abelian
groups. One can define the kernel and the sheaf image in this category and one
can define direct products. We also mention that the stalk Ma of an O-module
carries a natural structure as Oa-module.

In the following we will understand by an exact sequence of O-moduls a
sheaf exact sequence and we use the notations

f(M) := fsheaf(M) and M/N = M/sheafN .

(These are O-modules.)

Let M be an O-module and let Om → M be an O-linear map. There is
an induced map O(X)m → M(X). Hence there are m distinguished global
sections s1, . . . , sm ∈ M(X) (the images of the elements of the standard basis
e1, . . . , em of O(X)m). These global sections determine the map, since for
any open U ⊂ X an arbitrary section of Om can be written in the form s =
f1e1|U + · · · + fmem|U . The image of this section is f1s1|U + · · · + fmsm|U .
Conversely we obtain an O-linear map through this formula for any choice of
global sections s1 . . . , sm. This shows:
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FrtoM3.1 Lemma. There is a natural one to one correspondence between O-linear
maps Om → M and m-tuples of global sections of M.

An O-module is called finitely generated if there is a surjective map of O-
modules Om → M. Surjectivity of course is understood in the sense of sheaves.
So this means that Om

a → Ma is surjective for each point a ∈ X.

The support of a sheaf F of abelian groups, rings, algebras is defined as

suppF := {a ∈ F ; Fa 6= 0}.

SuppCl3.2 Lemma. Let M be a finitely generated O-module. The support of M is
a closed subset.

Proof. We show that the complement of the support is open. Let a be a point
such that Ma = 0. Consider generators s1, . . . , sm of M. The germs (si)a are
zero. Hence there exists an open neighborhood U such that all si|U = 0. This
shows Mb = 0 for all b ∈ U . tu

SubCon3.3 Lemma. Let M,N be two finitely generated submodules of an O-module
P. Let a be a point such that Ma ⊂ Na. Then there exists an open neighborhood
a ∈ U such that M|U ⊂ N|U .

Proof. Take generators s1, . . . , sm of M and t1, . . . , tn of N . Express the
germs (ti)a by the (sj)a. Since there are only finitely coefficients involved,
these equations extend to a small open neighborhood of a. tu

A similar argument gives:

SurUmg3.4 Lemma. Let M → N be an O-linear map of finitely generated O-
modules. Let a be a point such that Ma → Na is surjective. Then there exists
an open neighborhood U such that M|U → N|U is surjective.

Lifting of maps

A very simple fact of commutative algebra says. Let M → N be a surjective
R-linear map of R-modules and let Rn → N be a linear map too. Then there
exists a lift Rn →M . Denote the images of the standard basis e1, . . . , en in N
by b1, . . . , bn and take pre-images ai in M . Then map ei to ai.

To get an analogue for sheaves, we consider a surjective O-linear map M →
N of O-modules and an O-linear map On → N . Now we get a problem since
the map M(X) → N (X) needs not to be surjective. So we can not repeat the
above argument. We only can say:
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LiftLoc3.5 Lemma. Let M → N be a surjective O-linear map and On → N also
an O-linear map. For each point a there exists an open neighborhood U and
an O|U -linear map such the diagram

O|Un

�� ##G
GG

GG
GG

G

M|U // N|U

commutes.

4. Coherent sheaves

Let us recall a basic property of noetherian rings R. Let M be a finitely
generated module, i.e. there exists a surjective R-linear map Rn → M . Then
the kernel K of this map is finitely generated as well. Hence there exists an

exact sequence Rn
φ→ Rm →M . The map ϕ determines M ∼= Rn/Im(ϕ). The

map ϕ just given by a matrix with m rows and n columns. This is the way
how computer algebra can manage computations for finitely generated modules
over noetherian rings as polynomial rings. Serre found a weak substitute for
O-modules.

DCoh4.1 Definition. A sheaf of rings O is called coherent if for any open subset
U ⊂ X and any O|U -linear map On|U → Om|U the kernel is locally finitely
generated.

Recall that an O-module M is called locally finitely generated if there exists
an open covering X =

⋃
i Ui such that M|Ui is a finitely generated as OX |Ui-

module for all i.

CohMod4.2 Definition. Let O be a coherent sheaf of rings. An O-module M is
called coherent if for every point there exists an open neighborhood U and an
exact sequence

O|Un −→ O|Um −→ M|U −→ 0.

Of course O considered as O-module is coherent. Just consider 0 → O → O →
0.

An O-module is called a (finitely generated) free sheaf if it is isomorphic
to Om for suitable m. It is called locally free if every point admits an open
neighborhood such that the restriction to it is free. A locally free sheaf is also
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called a vector bundle. For trivial reasons a (finitely generated) free sheaf over
a coherent sheaf of rings is coherent. Since coherence is a local property, every
vector bundle is coherent. The property “coherent” is stable under standard
constructions. The proves are not difficult. We will keep them short:

First we treat some special cases for free O-modules. A first trivial obser-
vation is that the image of an O-linear map Op → Oq is coherent. The next
observation is that the intersection M∩N of two coherent subsheaves M,N
of On is coherent. (The intersection M ∩ N is defined in the naive sense as
presheaf and turns to be out a sheaf, more precisely an O-module.) The idea
is to write the intersection as a kernel. We explain the principle for individ-
ual modules M,N ⊂ Rn of finite type over a ring R: Let F : Rp → Rm,
G : Rq → Rm be linear maps and let M,N be their images. We denote by K
the kernel of the linear map

Rp+q −→ Rm, (m,n) 7−→ F (m)−G(n).

The image of K under the map

Rp+q −→ Rm, (m,n) 7−→ F (m).

is precisely the intersection M ∩N .

The last observation is the following. Let Op → Oq be O-linear and let
M ⊂ Oq be coherent. We claim that its inverse image in Op is coherent. We
explain again the algebra behind this result. Let F : Rm → Rl be a R-linear
map and N ⊂ Rl be an R-module of finite type. We assume that F (Rm)∩N is
finitely generated. Then there exists a finitely generated submodule P ⊂ Rm

such that F (P ) = F (Rm) ∩ N . We also assume that the kernel K of F is
finitely generated. It is easily proved that F−1(N) = P + K and we obtain
that the inverse image is finitely generated.

These observations carry over to arbitrary coherent O-modules.

ImCohCoh4.3 Lemma. Let M → N be an O-linear map of coherent sheaves. The
image sheaf is coherent.

Corollary. A locally finitely generated sub-sheaf of a coherent sheaf is coher-
ent.

Proof. It is sufficient to show that the image of a map Om → M is coherent.
By definition of coherence it is sufficient to show that the kernel K is locally
finitely generated. We can assume that there exists an exact sequence

Op −→ Oq −→ M −→ 0.
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Since Oq → M is surjective we can assume (use Lemma 3.5) that there exists
a lift Om → Oq such that the diagram

Om //

""D
DD

DD
DD

D M

Oq

OO

Op

OO

commutes. Take the image of Op → Oq and then its pre-image in Om It is
easy to check that this is the kernel K. tu

KeCohCoh4.4 Lemma. The kernel of a map M → N of coherent sheaves is coherent.

Proof. Because of Lemma 4.3 we can assume that M → N is surjective. We
choose presentations

Oa −→ Ob −→ M, Oc −→ Od −→ N .

We can assume that there is commutative diagram

0 // K // M // N // 0

Ob φ //

OO

Od

OO

Oa //

OO

Oc

ψ

OO

The existence of ϕ follows from Lemma 3.5 (after replacing X by a small open
neighborhood of a given point). The existence of Oa → Oc is trivial. Then we
get a natural surjection ϕ−1(ψ(Oc)) → K. tu

KoCohCoh4.5 Lemma. The cokernel N/ϕ(N ) of a map ϕ : M → N of coherent
sheaves is coherent.

Proof. We can assume that N is a sub-sheaf of M and that ϕ is the canonical
injection. We can assume that a commutative diagram with exact columns
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exists:
0 0

0 // N //

OO

M //

OO

M/N // 0

Ob //

OO

Od

OO

Oa //

OO

Oc

OO

It is easy to construct from this diagram an exact sequence

Ob ⊕Oc −→ Od −→ M/N −→ 0. tu.

TwoThree4.6 The two of three lemma. Let O be a coherent sheaf of rings and

0 −→ M1 −→ M2 −→ M3 −→ 0

an exact sequence of O-modules. Assume that two of them are coherent. Then
the third is coherent too.

Proof. All what remains to show is that M2 is coherent if M1,M2 are. We
can assume that there is a commutative diagram

0

0 // M1
// M2

// M3

OO

// 0

Oq

OO

α

bbEEEEEEEE

Op

OO

We use this to produce a map

M1 ⊕Oq −→ M2, (x, y) 7−→ x− α(y).

It is easy to check that this map is surjective. The kernel is defined by x = α(y).
Hence it can be identified with the part of Oq that is mapped into M1 under
α. But this precisely the kernel of Oq → M3 hence the image of Op. We get
an exact sequence

Op −→ M1 ⊕Oq −→ M2 −→ 0.

This shows that M2 is coherent (use Lemma 4.5). ). tu
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SubSc4.7 Lemma. The intersection of two coherent subsheaves of a coherent sheaf
is coherent.

Proof. One uses the fact that intersections can be constructed as kernels. Let
M,N ⊂ X be two submodules of an O-module X . Then M∩N is isomorphic
to the kernel of M×N → X , (a, b) 7→ a− b. tu

SupC4.8 Remark. Let M be a coherent O-module. Then the support of M is a
closed subset.

Proof. We show that the set of all a such that Ma = 0 is open. We can assume
that M is finitely generated by sections s1, . . . , sn. If there germs at a are zero
then s1, . . . , sn are zero in a full neighbourhood of a. tu

We collect some of the permanence properties of coherent sheaves.

PointEx4.9 Proposition.
1) Let M,N be two coherent sub-sheaves of a coherent sheaf. Assume Ma ⊂

Na for some point a. Then there exists an open neighborhood U such that
M|U ⊂ N|U .

2) Let M,N be two coherent subsheaves of a coherent sheaf. Assume Ma = Na

for some point a. Then there exists an open neighborhood U such that
M|U = N|U .

3) Let f, g : M → N be two O-linear maps between coherent sheaves such that
fa = ga for some point a. Then there exists an open neighborhood U such
that f |U = g|U .

4) Let M → N → P be O-linear maps of coherent sheaves and a a point. The
following two conditions are equivalent:

a) The sequence Ma → Na → Pa is exact.
b) There is an open neighborhood U such that the sequence M|U → N|U →

P|U is exact.

Proof.

1) Use that Ma ⊂ Na is equivalent to Na = Ma ∩Na (= (M∩N )a.

2) follows from 1).

3) Consider the kernel of f − g.

4) Consider the image A of M → N and the kernel B of N → P . Both are
coherent. We can assume that they are finitely generated. From assumption
we know Aa = Ba. tu

ExtPtoU4.10 Proposition. Let M,N coherent O-modules and Ma → Na an Oa-
linear map. There exists an open neighborhood U and an extension M|U →
N|U as O|U -linear map.

Additional remark. By Proposition 4.9 this extension is unique in the obvi-
ous local sense.
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Proof. We can assume that there is a surjective O-linear map On → M. We
consider the composed map On

a → Ma → Na. It is no problem to extend to
On
a → Na to an open neighborhoodO|Un → N|U . We can assume that U is the

whole space. The kernel of On
a → Ma is contained in the kernel of On

a → Na.
Since the kernels are coherent this extends to a full open neighborhood U .
Hence we get a factorization M|U → N|U . tu

CohSub4.11 Lemma. Let OX be a coherent sheaf of rings on a topological space X.
Let J ⊂ OX be a coherent sheaf of ideals. Let Y be the support of OX/J . Then
the restriction of OX/J to Y is a coherent sheaf of rings OY . The category of
coherent Y-modules is equivalent to the category of coherent OX modules which
are annihilated by J .

Proof. This is an application of Lemma 2.12. It is easy to see that OX/J |Y
is a sheaf Let M be an OX -module which is annihilated by J . (This means
J(U)M(U) = 0 for all open U). The support of M is contained in Y . Then
M|Y is defined and carries a natural structure as OY -module. The rest is
clear. tu

tu

5. Complex spaces

In the following by a ringed space (X,OX) we always understand a topological
space that has been equipped with a sheaf of C-algebras. By definition, a mor-
phism of ringed spaces (X,OX) → (Y,OY ) is a pair, consisting of a continuous
map f : X → Y and a homomorphism

ϕ : OY −→ f∗(OX)

of sheaves of C-algebras. In practice this means that we have homomorphisms

OY (V ) −→ OX(f−1(V )).

It is clear how to define the composition of two morphisms and there is the
identity morphism. (This means that we defined a category). In particular, we
have the notion of an isomorphism of ringed spaces. We write the morphism
as (f, ϕ), or simply by f it is clear which ϕ is considered. But one should have
in mind that ϕ is usually not determined by f .

We equip Cn with the sheaf of all holomorphic functions (on open subsets).
We denote this sheaf by OCn . The restricted sheaf to an open subset we denote
by OU = OCn |U . Let (f1, . . . , fm) a finite set of holomorphic functions on U .
Then we can consider the ideal sheaf I generated by the fi . The factor OU/J
is a sheaf of C-algebras. The support of this sheaf is

Y = {z ∈ Cn; f1(z) = · · · = fm(z) = 0}.
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which is a closed subset. Then we can consider the ringed space

(Y,OY ) where OY = (OX/I)|Y.

Of course OY depends on the choice of f1, . . . , fm. Such a ringed space is called
a model space.

Dcsp5.1 Definition. A complex space (in the sense of Grothendieck) is a
ringed space that is locally isomorphic to a model space. A holomorphic map
(X,OX) → (Y,OY ) is a morphism in the sense of ringed spaces.

Notice that a holomorphic map consists of two parts, a continuous map f :
X → Y and a homomorphism of sheaves ϕ : OY → f∗OX .

OC5.2 Oka’s coherence theorem. The structure sheaf of a complex space is
coherent.

We consider the stalk OX,a of a complex space. In the case Cn (equipped with
the sheaf of holomorphic functions this algebra is isomorphic as C-algebra to
the ring of convergent power series.

On := OCn,0 = C{z1, . . . , zn}.

An analytic algebra A is a C-algebra A that is different from 0 and is isomorphic
to a factor algebra of On, n suitable,

A = On/a, a 6= A.

Analytic algebras are local algebras. If On → A is a surjective algebra homo-
morphism then the image of the maximal ideal of On is the maximal ideal of
A. In particular we get an exact sequence

0 −→ C −→ A −→ A/m −→ 0

The composition C → A/m is an isomorphism. We will use it to identify
A/m = C. We finally mention that algebra homomorphisms A → B are
automatically local, i.e. the image of the maximal ideal of A is contained in
the maximal ideal of B. So we get a natural homomorphism

A/m(A) −→ B/m(B)

which is the identity if we identify both sides with C.

Let f ∈ OX(X) be a global section of the structure sheaf of a complex space
and let x ∈ X be a point. We can consider the germ fx and take its coset mod
m(OX,x). This is a number which we denote by f(x). In this way we get a
function

f̃ : X −→ C, f̃(x) := f(x).
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A look at the definition of model spaces shows that f̃ is continuous. Hence we
have constructed an algebra homomorphism

OX(X) −→ CX(X).

The same can be done for open subsets. We can read this as map of sheaves
of C-algebras

OX → CX .

We denote the kernel of this map by NX . Clearly NX(U) contains all nilpotent
elements of OX(U).

Let (X,OX) be an arbitrary ringed space. The nilradical N is the subsheaf
of OX that is defined through

U 7−→ {g ∈ OX(U), locally nilpotent}.

There is the subsheaf generated by the presheaf

U 7−→ {g ∈ OX(U), nilpotent}.

It also can be defined through

NX(U) = {f ∈ OX(U); fa nilpotent in OX,a for all a ∈ U}.

Basic results of local complex analysis show.

HR5.3 Hilbert-Rückert nullstellensatz. Let (X,OX) be a complex space.
Then the kernel of the natural map OX → CX is the nilradical NX .

CC5.4 Cartan’s coherence theorem. Let (X,OX) be a complex space. The
nilradical is coherent.

(This is equivalent to the fact that the nilradical is locally finitely generated.)

Holomorphic functions on complex spaces

By a holomorphic function on a complex space (X,OX) we understand a holo-
morphic map

(f, ϕ) : (X,OX) −→ (C,OC ).

So ϕ : OC → f∗OX . Such a morphism is determined by the image of the global
section 1 ∈ OC . This is an element of OX(X). This gives the following result.

Rhm5.5 Remark. The holomorphic mappings (X,OX) → (C,OC ) are in one-to-
one correspondence to the global sections in OX(X).
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Open subspaces

Let (X,OX) be a complex space and let U ⊂ X be an open subset. Then
(U,OX |U) is a complex space too, The natural inclusion i : U → X together
with the natural map ϕ : OU → i∗OX) gives a holomorphic map (U,OX |U) →
(X,OX). The following universal property is satisfied. Let (g, ψ) : (Z,OZ) →
(X,OX) be a holomorphic map of a third complex space Z into X such that
f(X) ⊂ U , then (p, ψ) factors through a unique holomorphic map (g0, ψ0) :
(Z,OZ) → (U,OX |U).

A holomorphic map (f, ϕ) : (X,OX) → (Y,OY ) is called an open embedding
if there is an open subset U ⊂ Y such that (f, ϕ) factors through an isomor-
phism (X,OX)

∼−→ (U,OX |U). The composition of two open embeddings is
an open embedding.

Closed subspaces

Let (X,OX) be a complex space and let J ⊂ OX be a coherent ideal sheaf. (It
is enough to know that J is locally finitely generated.) We then can consider
the sheaf OX/J . The support of this sheaf is a closed subset Y ⊂ X. We then
can consider the restriction

OY := (OX/J )|Y.

Then (Y,OY ) is a complex space. We call this the (closed) complex subspace
of (X,OX) related to the ideal sheaf J . There is a natural holomorphic map
i : (Y,OY ) → (X,OX). A holomorphic map j : (Z,OZ) → (X,OX) is called
a closed embedding (of complex spaces) if there exists a coherent ideal sheaf
J ⊂ OX) such that j factors through a biholomorphic map

(Z,OZ)
∼−→ (Y,OY ) where Y = supp(OX/J), OY = (OX/J)|Y.

It is easy to show that the composition of two closed embeddings is a closed
embedding.

Finally we call a holomorphic map f : (Y,OY ) → (X,OX) a locally closed
embedding if it is the composition of a closed embedding f : (Y,OY ) → (U,OU )
and an open embedding (U,OU ) → (X,OX).

Direct product of complex spaces

Let X,Y be two objects in a category. The direct product of X,Y is a triple
(X×Y, p, q) consisting of an object X×Y and two morphisms p : X×Y → X,
q : X × Y → Y such that the natural map

Mor(X × Y, Z) −→ Mor(X × Z)×Mor(X,Z)

is bijective. It is well-known and easy to show that the direct product is unique
up to canonical isomorphism in the obvious sense. On says that a category
admits direct products if the direct product for two arbitrary objects exists.
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Pdpcs5.6 Proposition. In the category of complex spaces direct products exist.

We will not give the proof in all details. But we will describe several tools
which lead to a proof.

1) The first is a gluing principle for sheafs. Assume that X =
⋃
Ui is an

open covering of a topological space. Assume also that for each i there is
given a sheaf Fi on Ui and for each pair (i, k) of indices there is given an
isomorphism hij : Fi|(Ui ∩ Uj) → Fj |(Ui ∩ Uj) with the conditions

hik = hij ◦ hjk on Ui ∩ Uj ∩ Uj .

Then there exists a sheaf F and a system of isomorphisms hi : F |Ui → Fi
with the properties

hik = hih
−1
k on Ui ∩ Uk.

2) Let (X,OX), (Y,OY ) be complex spaces such that their direct product
(X×Y,OX×Y ) exists. Assume that U ⊂ X, V ⊂ Y are open subsets. Then
the direct product of (U,OX |U) and (V,OY |V ) exists and can be identified
with

(U × V,OX×Y |U × V ).

3) Let X,Y be two model spaces which are closed in open subsets U ⊂ Cn and
V ⊂ Cm and which are defined through holomorphic functions f1, . . . , fν
on U and g1, . . . , gµ on V . Then the direct product of the complex spaces
X,Y exists. It can be identified with the model space in U × V defined
through the holomorphic functions fi(x)gk(y).

Complex spaces in the sense of Serre

A complex space is called a complex space in the sense of Serre, if the natural
map OX → CX is injective. Due to the nullstellensatz this is equivalent to the
fact that the rings OX,a are nilpotent-free. Then we can consider the elements
of OX(U) as usual functions in U . The category of complex spaces in the sense
of Serre is the full subcategory of the category of complex spaces in the sense
of Grothendieck. If (f, ϕ) : (X,OX) → (Y,OY ) is a holomorphic map between
complex spaces in the sense of Serre, then ϕ is determined by f . There is a
natural functor X 7→ Xred of the category of complex spaces of Grothendieck to
that of Serre. Just associate to (X,OX) the ringed space (X,OX/N ) where N
is the nil-radical. Due to Cartan’s coherence theorem this is a complex space.

Example of a non-reduced complex space

Consider the complec plane (C,OC ). Consider the ideal sheaf that is generated
by z2. This is coherent. Its support is one point (the origin) and the restricted
sheaf is given by C{z}/z2 ∼= C2. This ring is not nilpotent free. So the ringed
space (pt,C{z}/z2 ∼= C2) is a non-reduced complex space.
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6. Cohomomology of sheaves

Let X be a topological space and F a presheaf of abelian groups. We denote
the stalk of F at a point a by Fa. For an open subset U ⊂ X we defined already

F (0)(U) =
∏
a∈U

Fa.

The assignment U 7→ F (0)(U), with obvious restriction maps, is a presheaf of
abelian groups. It is in fact a sheaf. There is a natural homomorphism F →
F (0) and the assignment F 7→ F (0) is a functor, in particular a homomorphism
F → G induces a natural homomorphism F (0)(U) → G(0)(U).

Now we restrict to sheaves of abelian groups. The functor F 7→ F (0) is
exact. This means that for a exact sequence F → G → H of sheaves the
associated sequence F (0)(U) → F (0)(U) → F (0)(U) is exact.

The natural homomorphism F → F (0) is injective. So the sequence

0 −→ F −→ F (0)

is exact. We will extend this sequence as follows. Consider the factor sheaf
F/F (0) and define

F (1) = (F (0)/F )(0).

Inductively we can define

F (n+1) = (F (n)/F (n−1))(n−1).

This construction gives an exact sequence

0 −→ F −→ F (0) −→ F (1) −→ · · ·

Sometimes it is good to look in a different way at this sequence. We also have
to consider the reduced sequence (cancellation of F )

· · · −→ F (0) −→ F (1) −→ · · ·
↑

zero-position

This is a complex of sheaves which is exact outside the zero-position. We apply
the functor “global sections” to obtain a complex of abelian groups

· · · −→ F (0)(X) −→ F (1)(X) −→ · · ·
↑

zero-position
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We denote the cohomology groups of this complex by Hn(X,F ). This is zero
if n < 0. In the case n = 0 it is the kernel of F (0) → F (1) which is obviously
canonically isomorphic to F (X),

H0(X,F ) = F (X).

There is a generalization of the cohomology of sheaves. We consider a con-
tinuous map of topological spaces f : X → Y . We recall the functor “direct
image”. If F is a sheaf of abelian groups of Y , then f∗F is a sheaf of abelian
groups on Y . It is defined through (f∗F )(V ) = F (f−1(V )). The assignment
V 7→ Hn(F |U,U) defines a presheaf. Its associated sheaf is denoted by Rnf∗F .
Clearly Rnf∗ is zero for n < 0 and

R0f∗(F ) = f∗F.

The sheaves Rnf∗F are called the higher direct images of f .

Long exact sequences

Rle6.1 Remark. The functor “global sections” F 7→ F (X) for sheaves of
abelian groups on a topological space is left exact. This means the following.
Let 0 → F → G→ H → 0 be an exact sequence of sheaves, then

0 −→ F (X) −→ G(X) −→ H(X)

is exact.

Let f : X → Y be a continuous map. Then the functor “direct image” F 7→ f∗F
is also left exact.

Let 0 → F → G → H → 0 be an exact sequence of sheaves of abelian groups
on X. One can show that this induces a short exact sequence of complexes

0 −→ F (.)(X) −→ G(.)(X) −→ H(.)(X) −→ 0.

The associated long exact cohomology sequence gives the long exact cohomol-
ogy sequence of sheaf cohomology

0 −→ F (X) −→ G(X) −→ H(X) −→ H1(X,F ) −→ · · · .

A relative version of this is the long exact sequence for the higher direct images:
Let f : X → Y a continuous map of topological spaces and let 0 → F → G→
H → 0 be an exact sequence of sheaves of abelian groups on X. Then one gets
a long exact sequence of sheaves

0 −→ f∗(F ) −→ f∗(G) −→ f∗(H) −→ R1f∗(F ) −→ · · · .
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7. Cech cohomology

We have to work with open coverings U = (Ui)i∈I of the given topological space
X. For indices i0, . . . , ip we use the notation

Ui0,...,ip = Ui0 ∩ . . . ∩ Uip .

Let F be a sheaf on X. A p-cochain of F with respect to the covering U is a
family of sections is an element of∏

(i0,...,ip)∈Ip+1

F (Ui0,...,ip).

This means that to any (p + 1)-tuple of indices i0, . . . , ip there is associated
a section s(i0, . . . , ip) ∈ F (Ui0,...,ip). We denote the group of all cochains by
Cp(U, F ). The derivative ds of a p-cochain the (p+ 1)-cochain defined by

ds(s0, . . . sp+1) =

p+1∑
j=0

(−1)js(i0, . . . , îj , . . . , ip+1)|Ui0,...,ip+1 .

The rule d2 = 0 is obvious, hence we obtain a complex, the so called Cech
complex,

· · · −→ Cp−1(U, F ) −→ Cp(U, F ) −→ Cp+1(U, F ) −→ · · ·

Here for negative p we set Cp(U, F ) = 0. The cohomology groups of this
complex are the Čech cohomology groups Ȟ

p
(U, F ).

HnullC7.1 Lemma. There is a natural isomorphism

Ȟ
0
(U, F ) = H0(X,F ) (= F (X)).

Proof. A zero-cochain s is just a family si ∈ F (Ui). The condition ds = 0
means si|Ui ∩ Uj = sj |Ui ∩ Uj . By the sheaf axioms they glue to a global
section. tu

A sheaf F is called flabby if the restriction maps F (U) → F (V ) are surjec-
tive. The Godement sheaves F (0) are examples of flabby sheaves.

PCwv7.2 Proposition. Let F be a flabby sheaf. Then for every open covering

Ȟp(U, F ) = 0 for p > 0.
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ToL7.3 Theorem of Leray. Let F be a sheaf on X and U = (Ui) an open
covering of X. Assume that Hp(U,F |U) = 0 for all p > 0 and for arbitrary
intersection of finitely many Ui. Then there is a natural isomorphism

Hp(X,F ) ∼= Ȟp(U, F )

for all p.

Proof . We consider the Godement resolution 0 → F → F0 → F1 → · · ·. There
is a natural diagram

0 0 0 0
↓ ↓ ↓ ↓

0 → F (X) → F0(X) → F1(X) → F2(X) → · · ·
↓ ↓ ↓ ↓

0 → C0(U, F ) → C0(U, F0) → C0(U, F1) → C0(U, F2) → · · ·
↓ ↓ ↓ ↓

0 → C1(U, F ) → C1(U, F0) → C1(U, F1) → C1(U, F2) → · · ·
↓ ↓ ↓ ↓

0 → C2(U, F ) → C2(U, F0) → C2(U, F1) → C2(U, F2) → · · ·
↓ ↓ ↓ ↓
...

...
...

...

All rows but the first one are exact. Similarly all columns but first one are
exact. Now a homological lemma gives the desired result. tu

The oriented Čech complex

A Čech cocycle s is called alternating if for every permutation σ of 0, . . . p one
has

s(σ(0), . . . , σ(p)) = sgn(σ)s(0, . . . p)

The subspace of all alternating cocycles with values in a sheaf F is denoted by

Cpalt(U, F ) ⊂ Cp(U, F ).

This is a sub-complex, so, in particular, we have a homomorphism of complexes.
This is a homotopy equivalence. Hence it is a quasi-isomorphism of complexes.
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1. The notion of a Stein space

From now on we assume that all complex spaces are Hausdorff and with count-
able basis of the topology. If the reader wants, he can assume that the notion
of a complex space is understood in the sense of Serre.

Probably the reader knows that on a connected compact complex manifold
any holomorphic function is constant. Assume that the dimension is > 1. If
one removes from this manifold a single point the situation does not remedy,
since in more than one variable there do not exist isolated singularities. Hence
there exist also non-compact manifolds that admit no non-constant analytic
function. Stein spaces are opposite to this situation. They are spaces that
admit many holomorphic functions. We are going to explain in which sense
this has to be understood.

Let K be a non-empty compact subset of a topological space X. We use
the notation

||f ||K := max{|f(x)|; x ∈ K}

for a continuous function f on X.

HolCon1.1 Definition. Let K be a non-empty compact subset of a complex space.
The holomorphic convex hull K̂ of K is the set of all x ∈ X such that
|f(x)| ≤ ||f ||K for all f ∈ OX(X).

HolConS1.2 Definition. A complex space is called holomorphically convex if the
holomorphic convex hull of any compact subset is compact.

Assume thatX is a complex space with the following property: for every infinite
closed discrete subset S ⊂ X there exists a holomorphic function f : X → C
that is unbounded on S. Then X is holomorphically convex. This can be
seen by an indirect argument. Let K be a compact subset such that K̂ is not
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compact. Then there exists a sequence in K̂ with no convergent subsequence.
This gives an infinite subset S ⊂ K̂ that is closed in X and discrete. Then
there exists a global holomorphic function which is unbounded on K̂. This is
not possible.

From this observation we can deduce that open subsets U of the plane
C are holomorphically convex. To show this we consider an infinity closed
discrete subset S. If S is unbounded then we take f(z) = z. In the case that
S is bounded their must be an accumulation point a of S which lies on the
boundary of U . Then take f(z) = 1/(z − a).

In more then one variable the situation is completely different. A polydisk
(around 0)

U = Ur = Ur1 × · · · × Urn

is a cartesian product of discs in C around zero. On calls r = (r1, . . . , rn)
the multi-radius of U Let U = Ur be a polydisk. We claim that U − {0}
is not holomorphically convex. For this we consider the subset K consisting
of all z with |zi| = ri/2. We know that every holomorphic function f on
U − {0} extends holomorphically to U . From the maximum principle one
deduces K̂ = {z ∈ U ; |zi| ≤ ri/2}. This set is not compact.

SteinS1.3 Definition. A complex space X is called a Stein space if the following
conditions are satisfied:

1) It is holomorphically convex.
2) (Point separation) For two different points x, y ∈ X there exists a global

f ∈ OX(X) with f(x) = 0, f(y) = 1.
3) (Infinitesimal point separation) For any point a ∈ X there exist global

f1, . . . , fm ∈ OX(X) whose germs generate the maximal ideal of OX,x.

It is clear that open subsets of the complex plane are Stein spaces. More
generally it is clear that a cartesian product D = D1×· · ·×Dn of open subsets
Di ⊂ C is Stein. In particular, polydisks are Stein. It is already a deep result
that all non-compact connected Riemann surfaces are Stein spaces. We will
not proof this result here. A proof can be found in [Fo]. As we have seen it is
false that open subsets of Cn are always Stein in the case n > 1.

SubStein1.4 Remark. Let X be a Stein space. Then every closed analytic subspace
is a Stein space too.

2. Theorem A and B for Stein spaces

The basic theorems about Stein spaces are



30 Chapter II. Stein spaces

TheoA2.1 Theorem A for Stein spaces. Let X be a Stein space and M a coherent
sheaf. For each a ∈ X the stalk Ma can be generated by (the germs of) finitely
many global sections.

TheoA2.2 Theorem B for Stein spaces. Let X be a Stein space and M a coherent
sheaf. Then

Hq(X,M) = 0 for q > 0.

The formulation seems to indicate that we have two independent theorems.
Actually theorem A is an easy consequence of theorem B. To prove this we
consider the vanishing ideal sheaf J ⊂ OX of the point a and then for an
arbitrary natural number Then we use the exact sequence

0 −→ JM −→ M −→ M/J −→ 0.

From theorem B we get that M(X) → (M/J )(X) is surjective. Notice that
(M/J )(X) = Ma/mMa. Here m means the maximal ideal of OX,a. We
denote by M the submodule of Ma that is generated by the image of M(X)
and by N = Ma/M the factor module. The above argument shows Ma =
M +mMa or mN = N . The proof now follows from the lemma of Nakayama
of commutative algebra.

We formulate basic properties of Stein spaces which are related to Theorem
A and B. First we introduce a notation. Let X be a topological spaces and U
a subset. We will write

U ⊂⊂ X

if U is open in X and if the closure of U in X is compact.

PKop2.3 Proposition. Let X be a Stein space and K a compact subset. Then
there exists an open Stein subspace U of X with the property

K ⊂ U ⊂⊂ X.

Let

X =
⋃
i∈I

Ui =
⋃
j∈J

Vj

be two coverings of a set. One calls the second covering a refinement of the
first one if for every j ∈ J there exists i ∈ I with the property Vj ⊂ Ui. If one
chooses for each j an i one gets a so-called refinement map J → I (which is
not uniquely determined).
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PSc2.4 Proposition. Every open covering of a complex space admits a refinement
X =

⋃
i∈I Ui such that I is finite or countable and such that all Ui are Stein.

PVs2.5 Proposition. Let X =
⋃
i∈I Ui be a Stein covering of X. Then there

exists for each i
Vi ⊂⊂ Ui

such that X =
⋃
i∈I Vi is still a Stein covering of X.

Puv2.6 Proposition. Let X be a complex space and let U, V be two open Stein
subspaces. Then U ∩ V is Stein too.
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1. Locally convex spaces

A seminorm p on a complex vector space E is a map p : E → R with the
properties

a) p(a) ≥ 0 for all a ∈ E,
b) p(ta) = |t|p(a) for all t ∈ C, a ∈ E,
c) p(a+ b) ≤ p(a) + p(b).

A basic result for seminorms is the Theorem of Hahn-Banach.

THB1.1 Theorem of Hahn-Banach. Let p be a seminorm on a complex vector
space E. Let F ⊂ E be a C-linear subspace and let L : F → C be a linear
form with the property |L(a)| ≤ p(a) for all a ∈ F . Then there exists a linear
extension L : E → C of L with the property |L(a)| ≤ p(a) for all a ∈ E.

Corollary. Let p be a seminorm on a complex vector space E. Let a ∈ E.
Then there exists a linear form L on E with the property

L(a) = p(a), |L(x)| ≤ p(x) for all x ∈ E.

The ball of radius r > 0 around a and with respect to p is defined as

Ur(a, p) :=
{
x ∈ E; p(a− x) < r

}
.

Let P be a non-empty set of seminorms. We assume that P is filtrating. This
means that for any two p1, p2 ∈ P there exists a p ∈ P with p ≥ p1, p ≥ p2.
We will consider only filtrating sets of seminorms. This is not a big restriction,
since for any set of seminorms, one can consider the set of all seminorms Q
which consist of all max p where p runs through a finite subset of P. Then Q
is a filtrating set that contains P.
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A subset U of E is called open (with respect to P) if for every point a ∈ E
there exists a ball B around a with respect to a seminorm p ∈ P which is
contained U . It is easy to show that this defines a topology which equips E
with a structure as topological vector space. This means that the maps

E × E −→ E, C × E −→ E

(addition and scalar multiplication) are continuous. The balls are open subsets.
We call them also open balls to differ them from the closed balls

Ūr(a, p) :=
{
x ∈ E; p(a− x) ≤ r

}
.

These are closed subsets.

It is clear that all p ∈ P are continuous. (It is actually the weakest topology
with this property.)

We call P a defining set for this topology of E. Let Pmax be the set of all
continuous seminorms on E. It is clear that Pmax is also filtrating and defines
the same topology and even more: Two sets P, Q of seminorms define the same
topology if and only if Pmax = Qmax.

A subset M of a vector space is called convex if for any two points a, b ∈M
the straight line joining them is contained in M . Let (E,P) be a vector space
equipped with some filtrating set of seminorms. Then there exists a basis of
neighborhoods of the origin that consists of convex sets. This is trivial since
the balls obviously are convex.

Dlc1.2 Definition. A topological vector space is called locally convex if there
exists a filtrating set of seminorms wich defines its topology.

(One can show that this is equivalent to the fact that E admits a basis of
convex neighbourhoods of the origin. But we don’t need it.)

In an arbitrary topological vector space the notion of convergent sequences
and Cauchy sequences is defined.

A sequence (an) in a topological vector space E converges to a ∈ E if and
only if for every neighborhood U of the origin an − a ∈ U holds up to finitely
many n.

A sequence (an) in a topological vector space E is a Cauchy sequence if and
only if and only if for every neighborhood U of the origin there exists a natural
number N such that an − am ∈ U holds for all n,m ≥ N .

In the case of a locally convex space these notions can be defined as follows.
Let P be a defining system of seminorms.

A sequence (an) in E converges to a ∈ E if and only if p(an − a) → 0 for
all p ∈ P .



34 Chapter III. Nuclear spaces

And a sequence is a Cauchy sequence if for every ε > 0 and every p ∈ P
there exists a natural number N such that

p(an − am) < ε for n,m ≥ N.

Of course both statements carry over from P to Pmax. Clearly each convergent
series is a Cauchy sequence.

Dsc1.3 Definition. A topological vector space is called sequence complete if
every Cauchy sequence converges.

In the general context sequence completeness is not the correct definition for
completeness. One has to replace sequences by nets or filters. For our purpose
this is not necessary because the spaces which occur in our context have the
property that there exists a countable basis of neighbourhoods of the origin.
In this case the two notions of completeness agree, so we have not to deal with
filters or nets.

2. Fréchet spaces

A set P of seminorms on a vector space is called definite if

p(a) = 0 for all p ∈ P =⇒ a = 0.

It is easy to prove that P is definite if and only if the associated locally convex
space is a Hausdorff space.

DFs2.1 Definition. A Fréchet space is a locally convex vector space with the
following properties.

1) It is Hausdorff.
2) There exists a countable defining set of seminorms.
3) It is sequence complete.

Obviously 2) implies that there exists a countable basis of neighborhoods of
the origin and the converse is also true.

Let pn be a defining system pn of seminorms. We can replace it by the new
system

max{p1, . . . , pn}.
This gives the following remark.

Rcss2.2 Remark. On a Fréchet space E there exists a countable defining system
(pn) of seminorms with the property

p1 ≤ p2 ≤ · · · .
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Permanence properties of Fréchet spaces

A closed subspace F ⊂ E of a Fréchet space, equipped with the induced topol-
ogy, is a Fréchet space too. A defining system of seminorms is obtained if one
restricts the seminorms p of a defining system on E to F .

Let F ⊂ E a closed subspace of a Fréchet space. Then the quotient space
E/F equipped with the quotient topology, is a Fréchet space. A defining system
of seminorms is obtained as follows. Denote the quotient map by f : E → E/F .
Let p be a continuous seminorm on E (from a defining system is enough). Then

p̃(y) = inf
f(x)=y

p(x) (x ∈ E),

is a seminorm on E/F .

Let (Es)s ∈ I be a finite or countable family of Fréchet spaces. Then their
direct product

E =
∏
s∈S

Es

equipped with the product topology, is a Fréchet space. In terms of seminorms
this can be described as follows. Take a finite subset T ⊂ S and for each t ∈ T
take a continuous seminorm pi, i ∈ J on Ei (from a defining system is enough).
Then one can define a seminorm on the product

p((xi)) = max
j∈J

pj(xj).

Let E be a locally convex Hausdorff space such that there exists a countable
defining set of seminorms. A completion is a Fréchet space Ê with the following
properties.

1) E is a vector subspace of Ê.
2) It carries the induced topology.
3) It is dense in Ê.

A standard construction shows that a completion always exists. It is unique
up to canonical isomorphism, since it satisfies a universal property.

Let E → F be a continuous linear map into an arbitrary Fréchet space. Then
there exists a unique continuous linear extension Ê → F .

As a consequence, every continuous linear map E → F between locally convex
spaces with countable bases of the neighborhoods of 0 extends to the comple-
tions Ê → F̂ .

We recall some basic facts about Fréchet spaces.

TOmT2.3 Open mapping Theorem. Any linear continuous surjective map be-
tween Fréchet spaces is open. In particular, it is topological if in addition it is
bijective.
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Banach spaces

A seminorm p on a vector space E is called a norm if it is definite, p(a) =
0 ⇒ a = 0. Usually on writes ‖a‖ := p(a). A normed space is a pair (E, ‖·, ·‖)
consisting of a vector space and a distinguished norm. A normed space has
an underlying structure of a Hausdorff locally convex vector space. The origin
admits a countable basis of neighborhoods. Hence we can consider the com-
pletion Ê. The norm of E extends to a norm on Ê. So the completion can
be considered as normed space as well. A Banach space is a complete normed
space. We give two examples of Banach spaces.

`1 is the space of all sequences (an)n≥1 of complex numbers such that
∑

|an|
converges. Such sequences are also called absolutly summable. This is a Banach
space with respect to the norm

‖(an)‖1 =

∞∑
n=1

|an|.

A second example is `∞. It is the space of all bounded sequences of complex
numbers. This is Banach space with the norm

‖(an)‖ = sup
n

|an|.

These spaces admit an obvious generalization. We start with a Banach space
B. Then we define `1(E) to be the space of all sequences (an) in E such that∑

|an| converges. This is a Banach space with the norm ‖(an)‖ = supn |an|.
Similarly we define to be `∞(E) the space of all bounded sequences in E. We
equip this with the obvious norm to obtain a Banach space again.

In the next section we will generalize `1(E) to Fréchet spaces.

3. Summability in Fréchet spaces

We start with a locally convex space E. We assume that there exists a countable
system of neighborhoods of the origin. Then we want to consider sequences (an)
where an ∈ E. There are several generalizations of the notion “summable”.

Dwss3.1 Definition. A sequence (an) in a locally convex space is called weakly
summable if for each continuous linear form L ∈ E′ the sequence (L(an)) of
numbers is absolutely summable. We denote the space of all weakly summable
sequences by `1[E].

It is called summable if the following condition holds.
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For each continuous seminorm p (of a defining system is enough) and for
each ε > 0 there exists a finite set J ⊂ N such that for any two finite sets
J1, J2, J ⊂ J1, J2 ⊂ N, one has

p

(∑
n∈J1

an −
∑
n∈J2

an

)
< ε.

We denote the space of all absolutely summable sequences by `1(E).

It is called absolutely summable if for each continuous seminorm p (from a
defining system is enough) the sequence of numbers (p(an)) is summable. We
denote the space of all absolutely summable sequences by `1{E}.

It is known that for a Banach space the notions summable and absolutely
summable are the same.

Lta3.2 Lemma. One has

`1{E} ⊂ `1(E) ⊂ `1[E].

In the case E = C the three spaces agree.

Proof. Let (an) ∈ `1{E}. Fix a p and a ε. Then there exists a N such that∑
n>N

p(an) < ε.

Hence

p

(∑
n∈J1

an −
∑
n∈J2

an

)
< 2

∑
n>N

p(an) < 2ε.

This implies (an) ∈ `1(E).

Now we assume (an) ∈ `1(E). Let L ∈ E′. There exists a continuous
seminorm p such that |L| ≤ p. Then (p(an)) is a Cauchy sequence. Hence
(L(an) is a Cauchy sequence. Hence it converges. This remains true for any
reordering of (an). This means that the series converges unconditional. It is
known from basic calculus that this implies absolute convergence. tu

We want to equip each of the three spaces with a structure as locally convex
space. We start with `1[E]. For each continuous seminorm p on E (of a defining
system is enough) we define a seminorm εp on `1[E].

εp((an)) = sup
∑
n

|L(an)|, |L| ≤ p.

Here the supremum is taken over all L ∈ E′ such that |L(x)| ≤ p(x) for x ∈ E.
Of course one has to show that this supremum is finite. The family of all εp,
a defining system of p is enough, defines a structure as locally convex space
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on `1[E]. It is clear that `1[E] with this structure as locally convex space has
a countable basis of neighborhoods of the origin. We call this topology on
`1[E] the ε-topology. The restriction of this topology to `1(E) is also called
ε-topology.

There is also a natural topology on `1{E}. For each continuous seminorm
p (from a defining system is enough) we define

πp((an)) =
∑
n

p(an).

We call the topology defined through this system the π-topology on `1{E}.

Rnic3.3 Remark. The natural inclusion

(`1{E}, π-topology) −→ (`1(E), ε-topology)

is continuous.

Proof. This follows from the trivial inequality ε((an)) ≤ π((an) for (an) ∈
`1{E}. tu

Lepf3.4 Lemma. Let E be a Fréchet space. Then the spaces `1[E], `1(E),
equipped with the ε-topology or `1{E} equipped with the π-topology are Fréchet
spaces

4. Tensor products of locally convex spaces

We need the tensor product of vector spaces. Let E,F be two vector spaces.
Recall that the algebraic tensor product (E ⊗C F,B) is a pair, consisting of a
vector space E ⊗C F and a bilinear map

B : E × F −→ E ⊗C F,

such that the following universal property holds. Let β : E × F −→ X be a
bilinear map into an arbitrary vector space X, then there exists a unique linear
map L : E ⊗C F → X such the diagram commutes. Usually one writes

a⊗ b = β(a, b).

One can show that each element of E ⊗C F can be written as finite sum of
“pure” elements a⊗ b. But this presentation needs not to be unique.

Using bases it is easy to show that a tensor product exists and is unique up
to canonical isomorphism in an obvious sense. The tensor product is exact in
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the following sense. Let E1 → E2 → E3 be an exact sequence of vector spaces.
Then for each vector space F the sequence E1 ⊗C F → E2 ⊗C F → E3 ⊗C F
remains exact.

The tensor product can be generalized to more the two factors, E1⊗C . . .⊗C
En together with a multilinear map

E1 × . . .× En −→ E1 ⊗C . . .⊗C En, (e1, . . . , en) 7−→ e1 ⊗ . . .⊗ en,

that satisfies an obvious universal property. The natural map

E1 ⊗C E2 ⊗C E3 −→ (E1 ⊗C E2)⊗C E3

is an isomorphism. In this way one obtains the associativity law

(E1 ⊗C E2)⊗C E3 = E1 ⊗C (E2 ⊗C E3).

Let now E,F be two topological vector spaces. It is possible to equip the tensor
product E ⊗C F with a topology such that for every continuous bilinear map
E ×C F → X into a topological vector space the induced map E ⊗C F → X is
continuous. Unfortunately this topology has the bad property that E⊗F needs
not to be locally convex even if E,F are. Therefore we modify this construction
for locally convex spaces.

The idea is to combine two seminorms p, q on E,F to a seminorm p⊗ q on
E ⊗C F . It seems natural to demand

(p⊗ q)(a⊗ b) = p(a)q(b).

But there are problems. One problem is that not every element of E⊗C F can
be written in the form a ⊗ b. We only know that each element of the tensor
product can be written as finite sum of elements of this form.

We will describe now two seminorms p ⊗π q, p ⊗ε q which both have the
property (p⊗ q)(a⊗ b) = p(a)q(b). But in general they are different.

Dpit4.1 Definition. Let p, q be seminorms on vector spaces E,F . Their π-tensor
product is

(p⊗π q)(a) = inf
n∑
i=1

p(xi)q(yi)

where (x1, . . . , xn), (y1, . . . yn) runs through all presentations

a = x1 ⊗ y1 + · · ·+ xn ⊗ yn.

It is rather clear that this is a seminorm. Let E,F be two locally convex spaces
with defining systems P, Q, then

P ⊗π Q = {p⊗π q; p ∈ P , q ∈ Q}

defines the desired topology on the tensor product. This topology is indepen-
dent of the choice of the defining systems. We denote the corresponding locally
convex space by E ⊗π F .
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Ltt4.2 Lemma. Let E,F be two locally convex vector spaces. Then the space
E ⊗π F has the following universal property. For each locally convex vector
space X and each continuous bilinear map E × F −→ X the induced linear
map E ⊗C F → X is continuous.

Lthh4.3 Lemma. Let E,F be two Hausdorff locally convex spaces. Then their
π-tensor product is Hausdorff too.

Proof. Let a ∈ E ⊗π F be an element of the nullspace. We have to show that
a is zero. We argue indirectly and assume a 6= 0. It is sufficient to construct a
continuous linear form on E ⊗π F such that L(a) 6= 0. For this we write a in
the form

a = x1 ⊗ y1 + · · ·xnyn.

We can assume that the vectors x1, . . . , xn are linearly independent and the
same for y1, . . . , yn. We can find linear forms L1 ∈ E′, L2 ∈ F ′ such that

L1(x1) = 1, L2(y2) = 1 and L1(xi) = L2(yi) = 0 for i > 1.

Then we can consider the (continuous) bilinear form

E × F −→ C, (x, y) 7−→ L1(x)L2(y).

It factors through a linear form L : E ⊗π F → C. It has the desired property.
tu

Of course P ⊗π Q is countable if P, Q are. Hence we can complete E ⊗π F
if E,F are Fréchet spaces and we obtain a Fréchet space

E⊗̂πF = completion of E ⊗π F.

Lttz4.4 Lemma. Let E,F be two Fréchet paces. Then the space E⊗̂πF has the
following universal property. For each Fréchet space X and each continuous
bilinear map E×F −→ X there exists a unique continuous linear factorization
E⊗̂CF → X.

The proof is clear. tu

Ptass4.5 Proposition. The π-tensor product of locally convex vector spaces is
commutative and associative. This means that the natural (algebraic) isomor-
phism

E ⊗π F = F ⊗π E, (E ⊗π F )⊗π G = E ⊗π (F ⊗π G)

is an isomorphism of locally convex spaces.

Corollary. Let E,F,G be Fréchet spaces, then

E⊗̂πF = F ⊗̂πE, (E⊗̂πF )⊗̂πG = E⊗̂π(F ⊗̂πG).



§4. Tensor products of locally convex spaces 41

There are several other possible topologies on the tensor product. The topology
we have defined is called the projective topology or the π-topology.

Now we define another topology on the tensor product E⊗CF of two locally
convex spaces which will be denoted as ε-topology, written as E ⊗ε F .

For the construction we define also a tensor product p ⊗ε q for seminorms
p, q on E,F . The definition is related to the following lemma.

Lxxx4.6 Lemma. Let E be a vector space and let p be a seminorm on E. Then

p(a) = sup{|L(a)|; |L| ≤ p}.

This follows immediately from the Hahn Banach theorem. tu
Let E,F be two vector spaces and L : E → C, M : E → C be two linear

forms. Then one can consider the bilinear form

B : E × F −→ C, B(x, y) = L(x)M(y).

By the universal property of the tensor product it factors through a linear map

E ⊗C F −→ C, x⊗ y 7−→ L(x)M(y).

As a consequence the sum
n∑
i=1

L(xi)M(yi)

depends only on

a =
∑
i=1

xi ⊗ yi

(and not on the special decomposition).

Detp4.7 Definition. Let p, q be seminorms on vector spaces E,F . Their ε-tensor
product is

(p⊗ε q)(a) = sup
{ ∣∣∣∑

i

L(xi)M(yi)
∣∣∣}

where L,M run through all elements of E′, F ′ with the property |L| ≤ p, |M | ≤
q and where a =

∑
i xi ⊗ yi is an arbitrarily chosen decomposition of a.

It is clear that p ⊗ε q is a seminorm. Let E,F be two locally convex spaces
with defining systems P, Q, then

P ⊗ε Q = {p⊗π q; p ∈ P , q ∈ Q}

defines the desired topology on the tensor product. This topology is indepen-
dent of the choice of the systems. We denote the corresponding locally convex
space by E ⊗ε F .
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Lpiep4.8 Lemma. The π and the ε-tensor product of two seminorms have the
properties

p⊗ε q ≤ p⊗π q

and
(p⊗π q)(x⊗ y) = (p⊗ε q)(x⊗ y) = p(x)q(y).

Proof. The stated inequality is trivial, since∣∣∣∑
i

L(xi)M(yi)
∣∣∣ ≤ ∑

p(xi)q(xi).

The inequality (p⊗π q)(x, y) ≤ p(x)p(y) is also trivial. So it remains to prove

(p⊗ε q)(x⊗ y) ≥ p(x)p(y).

From the definition of the ε-tensor product we see

(p⊗ε q)(x⊗ y) ≥ |L(x)M(y)|

for all linear forms L,M with |L| ≤ p, |M | ≤ q. Due to the Hahn Banach
theorem we can find L,M such that |L(x)| = p(x) and similar for M . tu

For (an) in `1 and x ∈ E we obviously have (anx) ∈ `1{E}. So we get a
bilinear map

`1 × E −→ `1{E}.

This map induces a linear map

`1 ⊗C E −→ `1{E}.

Pnmrl4.9 Proposition. The natural map

`1⊗̂πE −→ `1{E}

is an isomorphism of topological vector spaces, where the right hand side is
equipped (as the left hand side) with the π-topology.

Proof. Here `1 is a locally convex space with a single norm ‖(α)n‖ =
∑
n |αn|

as defining family. Hence a defining family on `1 ⊗π E is given by ‖·‖ ⊗π p
where p runs through a defining family of E. Recall also that a defining family
on `1{E} is given by

πp((an)) =
∑
n

p(an).

Claim. If one pulls back the seminorm πp to `1 ⊗π E, one gets the seminorm
`1 ⊗π E (for the same p).
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Proof of the claim. Let a ∈ E ⊗π F . We write it in the form a = x(1) ⊗ y1 +
· · ·+ x(m) ⊗ ym. Here the x(i) are sequences in `1,

x(i) = x
(i)
1 , x

(i)
2 , x

(i)
3 , . . .

and yi ∈ E. Then

(‖·‖ ⊗π p)(a) = inf

∞∑
n=1

m∑
i=1

∣∣x(i)n ∣∣p(yi)
where the infimum runs over all these presentations. Now we consider the
image of a in `1{E}. It is the sequence (Sn) with

Sn =
m∑
i=1

(x(i)n )yi (sequence label n)

We get

πp((Sn)) =
∞∑
n=1

∣∣∣∣ m∑
i=1

x(i)n p(yi)

∣∣∣∣.
We get

(‖·‖ ⊗π p)(a) ≥ πp((Sn)).

It follows that the map `1 ⊗π E → `1{E} is continuous. Now we construct
a new presentation for a =

∑
i x

(i) ⊗ yi. We will use that the natural map
`1 × E → `1 ⊗π E is bilinear and continuous. We want to use the equality (in
the Banach space `1).

x(i) =
∞∑
n=1

x(i)n e(n) = lim
N→∞

N∑
n=1

x(i)n e(n).

Here e(n) is the sequence that has 1 at the nth place and 0 else. Now we obtain

a =
∑
i

x(i) ⊗ yi = lim
N→∞

∑
i

N∑
n=1

x(i)n e(n) ⊗ yi = lim
N→∞

N∑
n=1

e(n) ⊗
∑
i

x(i)n yi.

Using this presentation of a we derive the inequaltity

(‖·‖ ⊗π p)(a) ≤ πp((Sn)).

So the equality must hold. This proves the claim.

Proof of Proposition 4.9 continued. The equality of the two seminorms shows
that the map `1 ⊗π E → `1{E} is an embedding of topological spaces. So
`1 ⊗π E can be considered as subspace of `1{E} and its π-topology is the
induced topology. It is easy to show that this subspace consists of all sequences
(an) such that the a(n) generate a finite dimensional vector space. It is also
clear that this space is dense in `1{E}. This shows that the induced map
`1⊗̂πE → `1{E} is a topological isomorphism. tu
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Pnmrlz4.10 Proposition. The natural map

`1⊗̂ϵE −→ `1(E)

is an isomorphism of topological vector spaces, where the right hand side is
equipped (as the left hand side) with the ε-topology.

The proof is similar to that of Proposition 4.10. We omit it. tu

5. Trace class operators in Hilbert spaces

All Hilbert spaces are assumed to be separable. This means that they admit a
finite or countable orthonormal basis. Let H be a separable Hilbert space and
let f : H → H be a bounded linear operator. If H is finite dimensional, one
can define the trace tr(f) through

tr(f) =
∑

〈f(en), en〉

where en denotes an orthonormal basis. It is known from linear algebra that
the trace is independent of the choice of the basis.

We want to carry over the notion of the trace for a certain class of trace
class operators. The idea is to consider an orthonormal basis e1, e2, . . . and
then to define

tr(f) =

∞∑
n=1

〈fen, en〉.

Of course there is a problem with convergence and questions like independence
of the choice of the basis have to be settled. We introduce now the so-called
trace class operators, also called nuclear operators , which allow an easy defini-
tion of the trace.

Dsk5.1 Definition. A bounded linear operator f : H1 → H2 of Hilbert spaces is
called of trace class or nuclear if there exist sequences (xn ∈ H1), (yn ∈ H2)
such that

1)

∞∑
n=1

‖xn‖ <∞, ‖yn‖ = 1 for all n.

2) f(x) =
∞∑
n=1

〈x, xn〉yn.

Notice that 2) converges absolutely as consequence of 1).

Let (em) be an orthonormal basis on a Hilbert space H. Then the following
formula holds for x, y ∈ H,∑

m

〈x, em〉〈em, y〉 = 〈x, y〉,
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where the left hand side converges absolutely. This formula holds for basis
elements x, y for trivial reason and then carries over to the general case.

We derive a consequence. Let f : H → H be a nuclear operator of a Hilbert
space into itself. Let (xn), (yn) be defining sequences for f and let (em) be an
orthonormal basis. Then the following formula∑

m

〈fm(em), em〉 =
∑
n

〈xn, yn〉

holds where both sides converge absolutely. We obtain the following important
result.

Rtr5.2 Remark. For a nuclear operator on a Hilbert space f : H → H, the trace
tr(H) can be defined through the formula

tr(f) =
∑
m

〈f(em), em〉

where (em) is an arbitrary orthonormal basis.

The condition “nuclear” is sometimes difficult to check. There is a related
condition which is easier.

DbHS5.3 Definition. A bounded linear operator f : H1 → H2 of Hilbert spaces
is called a Hilbert-Schmidt operator if there exists an orthonormal basis
e1, e2, . . . such that ∑

n

‖f(en)‖2 <∞.

It is easy to show that then the sum converges for all orthonormal bases and
that this sum is independent of the choice of this basis.

PHnc5.4 Proposition.
1) Nuclear operators between Hilbert spaces are Hilbert Schmidt operators.
2) The composition of two Hilbert Schmidt operators H1 → H2 → H3 is nu-

clear.
3) Hilbert Schmidt operators (hence nuclear ones) are compact operators.

We omit the proof. tu
Sometimes the following reformulation of nuclearity is useful. Let

f(x) =

∞∑
n=1

〈x, xn〉yn,
∞∑
n=1

‖xn‖ <∞, ‖yn‖ = 1 for all n.

be a nuclear operator. We can assume that all xn are different form 0. We
consider the continuous linear forms Ln(x) = 〈x, xn〉. We know (Theorem of
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Riesz) that every continuous linear form L : H → C is of the form L(x) = 〈x, a〉
with a unique a ∈ H. The space of all continuous forms H ′ carries an obvious
structure as Banach space. With this structure we have ‖L‖ = ‖a‖. Now we
rewrite the formula of the presentation:

f(x) =
∑
n

Ln(x)yn,
∑
n

‖Ln‖ <∞, ‖yn‖ = 1.

We rewrite this in the form

f(x) =
∑
n

λnL̃n(x)yn

where

λn = ‖Ln‖ , L̃n =
Ln
‖Ln‖

.

Then
∑
λn converges absolutely. These presentations have the following prop-

erties.

a) λn converges absolutely.

b) The sequence yn is bounded.

c) The sequence L̃n(x) is bounded for each x. Now it is easy to prove the
following result.

Lcbo5.5 Lemma. A bounded linear operator f : H1 −→ H2 is nuclear if and only
it has a presentation of the form

f(x) =
∑
n

λnLn(x)yn

where λn is a sequence of complex numbers such that
∑
n |λn| converges, Ln is

a bounded sequence of continuous linear forms and (yn) is bounded in H.

This formulation carries over form Hilbert to Banach spaces. But more is true,
it is the basis of the definition of nuclearity for Fréchet spaces.

6. Nuclear operators for locally convex spaces

The notion “nuclear operator” can be generalized from Hilbert spaces to Fréchet
spaces. This is due to Alexander Grothendieck.

We need the notion of a bounded set in a locally convex space.
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Dlcb6.1 Definition. A subset M ⊂ E of a locally convex space is bounded if it
is bounded with respect to each continuous seminorm of E.

It is easy to show that it is enough to have boundedness for a defining system
of seminorms. If M is a bounded set and U any neighborhood of the origin
then one has

M ⊂
⋃
t>0

tU.

It is also easy to show the converse. Hence a subset M of E is bounded if and
only M ⊂

⋃
t>0 tU for any neighborhood of the origin. (One can use this to

extend the notion of a bounded set to arbitrary topological vector spaces.)

Dac6.2 Definition. A subset A ⊂ E of a vector space is called absolutely
convex if for a, b ∈ E and complex numbers α, β with the property |α|+ |β| ≤ 1
one has αa+ βb ∈ A.

An easy result whose proof we omit says.

Lbca6.3 Lemma. Each bounded subset of a locally convex space is contained in a
closed, absolutely convex, bounded subset.

Subsets as in the lemma can be used to define certain normed spaces.

Rean6.4 Remark. Let A closed, absolutely convex, bounded subset of a Fréchet
space E. We denote by E(A) the subspace generated by A. This is a Banach
space if one equips it with the norm

‖x‖A := inf{t > 0; x ∈ tA}.

The proof is easy and can be omitted. tu
There is second way to associate Banach spaces to Fréchet spaces. Let E

be a locally convex space and p a continuous seminorm. It is easy to show that
the nullspace Np = {x ∈ E; p(x) = 0} is a vector subspace. The seminorm p
factors through E → E/Np and defines a norm on E/Np. We denote by Ep
the completion of this normed space. We will denote the norm on Ep that is
induced by p by ‖·‖p. Let q ≥ p two continuous seminorms. Then there is a
natural continuous linear map Eq → Ep of Banach spaces.

We also have to work with the dual space E′. This is the space of all
continuous linear forms E → C. It can be defined for every topological vector
space E. We mention that a linear form L : E → C on a locally convex space
is continuous if there exists a continuous seminorm p with the property

|L(a)| ≤ p(a).
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We call a sequence (Ln) of continuous linear forms on a locally convex space
equicontinuous if there exists a continuous seminorm such that

|Ln(x)| ≤ p(x) for all n, x.

Let E be a Banach space with norm ‖·‖, then E′ is a Banach space too with
the norm

‖L‖ = sup{|L(x)|; ‖x‖ = 1}.
A sequence of continuous linear forms on a Banach space E is equicontinuous
if and only if it is bounded with respect to the norm on E′.

Dclfn6.5 Definition. A continuous linear operator f : E → F between Fréchet
spaces is called nuclear if it has a presentation

f(x) =
∑
n

λnLn(x)yn

where
1) (λn) is a sequence of complex numbers such that

∑
|λn| <∞.

2) (yn) is a bounded sequence in F .
3) Ln is an equicontinuous sequence of linear forms.

It is clear that the series in the Definition converges absolutely. Lemma 5.5
shows that in the case of Hilbert spaces this agrees with Definition 5.3. There
is a more general result for Banach spaces.

Dskz6.6 Lemma. A bounded linear operator f : E1 → E2 of Banach spaces spaces
is nuclear if there exist sequences (bn ∈ E2), (Ln ∈ E′

1) such that

1)

∞∑
n=1

‖Ln‖ <∞, ‖yn‖ = 1 for all n,

2) f(x) =

∞∑
n=1

Ln(x)yn.

A simple result about nuclear maps is the “ideal property”.

Rnn6.7 Remark. Let f : E → F and g : F → G be continuous linear maps of
Fréchet spaces. Assume that f or g is nuclear. Then g ◦ f is nuclear.

The proof is trivial. tu

Pfee6.8 Proposition. Assume that f : E → F be a nuclear map of Fréchet
spaces. Then there exists a commutative diagram of continuous linear maps

E
f //

��

F

E1
f1

// F1

OO

such that E1, F1 are Banach spaces an that f1 is nuclear.
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Proof. Let f be nuclear as in Definition IV.3.1. Since the Ln are equicontinuous
there exists a continuous seminorm p on E such that |L|n ≤ p for all n. We
can consider the Banach space E1 := Ep. The natural map E → E1 clearly is
continuous. The map E → F factors as

E //

��

F

E1

>>}}}}}}}}

Let f be nuclear as in Definition IV.3.1. Choosing a natural number N we
can separate f into two parts,

f = f ′ + f ′′ =
N∑
n=1

Ln(x)yn +
∞∑

n=N+1

Ln(x)yn.

Then the image of f ′ is finite dimensional. If we take N big enough we get
‖f‖′′ < 1. It follows

(id+f)E + f ′′E = (id+f ′ + f ′′)E + f ′′E = (id+f ′)E + f ′′E.

But id+f ′ is invertible (geometric series). Hence the right hand side is E. This
gives us the following result.

Pkc6.9 Proposition. Let f : E → E be a nuclear map of Banach spaces, then
the cokernel of id+f is finite dimensional.

7. Nuclear spaces

DnS7.1 Definition. A Fréchet space E is called nuclear if for every continuous
seminorm p there exists a seminorm q ≥ p such that Eq → Ep is nuclear.

This means concretely the following. There exists a sequence Ln of continuous
seminorms on Eq and a sequence (bn) in Ep with the following properties.∑

‖Ln‖q <∞, ‖bn‖p = 1,

(image in Ep of) a =
∞∑
n=1

Ln(a)bn (a ∈ Eq).

The elements bn actually can be taken from E/Nq. To prove this we mention
that each b ∈ Eq can be written as absolutely convergent series of elements in
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E/Np. Just write b = limBm, Bm ∈ E. One can achieve that ‖b−Bm‖ ≤ 2m.
Then one gets

b =

∞∑
m=1

bm = B1 + (B2 −B1) + (B3 −B2) + · · ·

and this series is absolutely convergent. Wy apply this to bn and obtain

bn =

∞∑
m=1

bmn, bmn ∈ E/Np.

Now we get

∞∑
n=1

Ln(a)bn =
∞∑
n=1

∞∑
m=1

Ln(a)bmn

∞∑
n=1

∞∑
m=1

(Ln(a) ‖bmn‖)
bmn
‖bmn‖

.

Now we use a bijection N × N → N, (m,n) → k. Then we set

L̃k(a) = Ln(a) ‖bmn‖ .

We obtain
∞∑
n=1

Ln(a)bn =
∑
k

L̃k(a)bk.

In the following we identify continuous linear forms on the Banach space Eq
with continuous linear forms on the normed space E/Nq. The latter can be
identified with linear forms on E which are vanish along Np and are continuous
with respect to q.

LFc7.2 Lemma. A Fréchet space E is nuclear if for every continuous seminorm
p there exists a continuous seminorm q ≥ p such that there exists a sequence
Ln of continuous seminorms on Eq and a sequence (bn) in E with the following
properties. ∑

‖Ln‖q <∞, ‖bn‖p = 1,

lim
N→∞

p

(
a−

∞∑
n=1

Ln(a)bn

)
(for a ∈ E).

It is sufficient to show this identity for all a from a dense subspace of E.

Pnipe7.3 Proposition. Let E be a nuclear space. Then there is a natural isomor-
phism of topological vector spaces

`1⊗̂πE = `1⊗̂ϵE.
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Proof. We know already εp ≤ πp. Hence it suffices to prove the following. Let
p be an arbitrary continuous seminorm on E. Then there exists a continuous
seminorm q such that

πp((an)) ≤ εq((an).

We start with a q such that Ep −→ Eq is nuclear. By definition of nuclearity
there exists a sequence of linear forms continuous linear forms Lm on Ep and
a sequence bm ∈ E/Np such that

∑
m

Lm(a)bm = (image in Eq of) a.

We apply this to each member of the sequence (an),

∑
m

Lm(an)bm = an.

This implies

πq((an)) ≤
∑
m,n

|Lm(an)|.

The definition of εp gives

∑
n

|L(an)| ≤ εp((an)) for |L| ≤ p.

A simple consequence is

∑
n

|L(an)| ≤ ε((an)) ‖L‖p for all L.

Here ‖L‖p denotes the norm of the linear form L : Ep → C. From the assump-
tion of the nuclearity we know that

C :=
∑

‖L‖p <∞.

Now we get

πq((an)) ≤ Cεp((an).
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8. Tensor product of nuclear spaces

Tvpa8.1 Theorem. Let E,F be two Fréchet spaces, one of them nuclear. Then
the ε- and the π-tensor product agree.

If E,F are two spaces, we will use the notation

E⊗̂CF = E⊗̂εF = E⊗̂πF.

Proof of the theorem. Let E be nuclear. We will show that for each continuous
seminorm P on E ⊗π F there exists a continuous seminorm Q on E ⊗ε F such
that P (z) ≤ CQ(z) with a constant C that is independent of z ∈ E ⊗C F .
(Then the ε-topology is finer than the π-topology. Recall that the reverse is
always true.) We can assume that P = p ⊗π q, p ∈ E′, q ∈ F ′. Then we will
construct Q in the form Q = r ⊗ε q. The condition for r ∈ E′ is that r ≥ q
and that Er → Eq is nuclear. We apply Lemma 7.2 to an element a that is in
the image of E → Er. We get that there exist sequences Ln ∈ E′

r and bn ∈ E
with the properties ∑

n

‖Ln‖p <∞, ‖bn‖q = 1

and such that for a ∈ E we have∥∥∥∥∥a−
N∑
n=1

Ln(a)bn

∥∥∥∥∥ −→ 0 for N −→ ∞.

So we have to prove

(p⊗π r)(z) ≤ C(q ⊗ε r)(z) (z ∈ E ⊗C F ).

For the constant we will take

C =
∑
n

‖Ln‖p .

The proof will use the following inequality. Let z be an element of E ⊗C F .
We can write it in the form

z =
∑
finite

xi ⊗ yi, xi ∈ E, yi ∈ F.

Let now L ∈ E′
r (for example one of the Ln. We will write

L(x) = L(image in Er of) x for x ∈ E
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and similar for other linear forms. Then∥∥∥∥∥∑
i

L(xi)yi

∥∥∥∥∥
r

= sup

{∣∣∣∣M(∑
i

L(xi)yi

)∣∣∣∣, M ∈ F ′
q, |M | ≤ q

}
= sup

{∣∣∣∣(∑
i

L(xi)M(yi)
)∣∣∣∣, M ∈ F ′

q, |M | ≤ q

}
≤ ‖L‖r (r ⊗ε q)(z).

By the Hahn Banach theorem there exists a linear form N on E⊗C F with the
property

N(z) = (p⊗π q)(z) and |N(z′)| ≤ (p⊗π q)(z′) for all z′ ∈ E ⊗C F.

We apply this to an element z′ of the form z′ = a⊗ b, a ∈ E, b ∈ F to obtain

|N(a⊗ b)| ≤ ‖a‖p ‖b‖q .

N(a⊗ b) =
∞∑
n=1

Ln(a)N(bn ⊗ b).

This implies

(p⊗π q)(z) = N(z) =

∞∑
n=1

N

(∑
i

Ln(xi)(bn ⊗ yi)

)

=
∞∑
n=1

N

(
bn ⊗

(∑
i

Ln(xi)yi

))

≤
∞∑
n=1

‖bn‖p

∥∥∥∥∥∑
i

Ln(xi)yi

∥∥∥∥∥
q

=
∞∑
n=1

∥∥∥∥∥∑
i

Ln(xi)yi

∥∥∥∥∥
q

≤
∞∑
n=1

‖Ln‖r r ⊗ε q)(z)

= C(r ⊗ε q)(z).

This proves Theorem 8.1. tu

Tnasw8.2 Theorem. Let E1, E2 be nuclear spaces, then E1⊗̂CE2 is nuclear as
well.
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Proof. We will show this for the ε-tensor product. We will show that for any
continuous seminorm P on E1⊗CE2 there exists a continuous seminorm Q ≥ P
such that Lemma 7.2 applies to E1⊗̂εE2 (instead of E). We can assume that
P = p1 ⊗ε p2. The we choose q1 ≥ p1 and q2 ≥ p2 such that there exist for
i = 1, 2 sequences of linear forms Lin on Eqi and sequences of elements bin ∈ E
such that ∑

‖Lin‖qi <∞, ‖bin‖pi = 1,

lim
N→∞

pi

(
ai −

N∑
n=1

Lin(ai)bin

)
= 0 (for ai ∈ Ei).

We abbreviate for i = 1, 2

Si =
N∑
n=1

Lin(ai)bin.

We consider

(p1 ⊗ε p2)(a1 ⊗ a2 − S1 ⊗ S2) = (p1 ⊗ε p2)(a1 ⊗ (a2 − S2) + (a1 − S1)⊗ S2)

≤ p1(a1)p2(a2 − S2) + p1(a1 − S1)p2(S2).

This tends to zero if N → ∞. Now we consider

S1 ⊗ S2 =
∑

1≤m,n≤N

L1m(a1)L2n(a2)b1m ⊗ b2n.

Now we choose a bijection N × N → N, (m,n) 7→ k. If we set

Lk = L1m ⊗ L2n, bk = b1m ⊗ b2n

we get

S1 ⊗ S2 −
∑

1≤k≤N

Lk(a1 ⊗ a2)bk −→ 0 for N −→ ∞.

9. Exactness of the completed tensor product

We recall that a sequence of topological vector spaces E1 → E2 → E3 is called
exact if it is exact in the algebraic sense, i.e. the image of E1 → E2 equals the
kernel of E2 → E3. There is a problem with completion. Completion usually
does not preserve exactness. So the following theorem is remarkable.
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Texact9.1 Theorem. Let 0 → E1 → E2 → E3 → 0 be an exact sequence of nuclear
spaces. and let F be another nuclear space. Then the sequence

0 → E1⊗̂CF → E2⊗̂CF → E3⊗̂CF → 0

is exact.

The goal of the section is to give the proof of this theorem. We will use the
following notation. An embedding f : E → F of Fréchet spaces is a linear
continuous map such that E → f(E) is a topological isomorphism if f(E) is
equipped with the induced topology. In particular f(E) is a Fréchet space and
hence closed in F .

Leeps9.2 Lemma. Let E1 → E2 be an embedding of Fréchet spaces and let F
be another Fréchet space. Then E1⊗̂εF → E1⊗̂εF is an embedding of Fréchet
spaces too.

Proof. It is clear that this map is injective. Hence it remains to show that the
topology on E1 ⊗ε F is induced from E2⊗̂εF . It is enough to prove that the
topology E1 ⊗ε F is induced from E2 ⊗ε F . The topology on E2⊗̂εF is given
by seminorms p2 ⊗ε q where p2 is a continuous seminorm on E2 and q on F .

(p2 ⊗ε q)
(∑

i

ai ⊗ bi

)
= sup

{∣∣∣∑
i

L2(ai)M(ai)
∣∣∣}

where L2 runs all linear forms on E2 with |L2| ≤ p2 and M runs to all linear
forms on F with |M | ≤ q. Let p1 = p2|E1. Then we have similarly that

(p1 ⊗ε q)
(∑

i

ai ⊗ bi

)
= sup

{∣∣∣∑
i

L1(ai)M(ai)
∣∣∣}

where L1 runs all linear forms on E1 with |L1| ≤ p1 and M runs to all linear
forms on F with |M | ≤ q. By the Hahn Banach theorem each L1 is the
restriction of an L2. This means

(p2 ⊗ε q)|E1 ⊗ε F = p1 ⊗ε q.

This proves Lemma 9.2. tu
Let E be a Fréchet space and let (an) a sequence in E such that

∑
n p(an)

converges for each continuous seminorm (for each defining system is enough).
Then

a =
∑
n

an := lim
N→∞

an

converges. We claim that every element of E can be written in this form.
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Lfsur9.3 Lemma. Let E be a Fréchet space and let E0 ⊂ E be a dense subspace.
Then every element a ∈ E can be written in the form

a =
∞∑
n=1

an, an ∈ E0,

such that
∑
p(an) converges for each p.

Proof. Let
p1 ≤ p2 ≤ · · ·

be a defining system of seminorms. Let a = limαn, αn ∈ E0. The idea is to
write

a = α1 + (α2 − α1) + (α3 − α2) + · · · .

We want to do this in such a way that

pn(αn+1 − αn) < 2−n.

It is clear that this can be obtained if one replaces (αn) by a suitable subse-
quence. tu

Pcab9.4 Proposition. Let E and F be two Fréchet spaces with defining systems
p1 ≤ p2 ≤ · · · and q1 ≤ q2 ≤ · · · Then every element c ∈ E⊗̂πF can be written
in the form

c =

∞∑
n=1

an ⊗ bn

such that ∑
p(an)q(bn)

converges for each continuous seminorm p on E and q on F .

Proof. This follows easily from Lemma 9.3.

Pepi9.5 Proposition. Let E1 → E2 and F1 → F2 be surjective continuous linear
maps of Fréchet spaces Then E1⊗̂πF1 → E2⊗̂πF2 is surjective too.

Proof. Let
p1 ≤ p2 ≤ · · ·

be a defining system of seminorms on E1. We take there quotient norms on F1

p̄1 ≤ p̄2 ≤ · · · .

Similarly q1 ≤ q2 · · · and q̄1 ≤ q̄2 ≤ · · · of E2 Let c ∈ F1⊗̂πF2. We write it in
the form

c =

∞∑
n=1

an ⊗ bn
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such that ∑
p̄k(an)q̄k(bn) <∞ for all k

Due to the definition of the quotient norm we find inverse images αn ∈ E1 of
an and similarly βn ∈ Fn such that

pk(αn)qk(βn) ≤ p̄k(an)q̄k(bn) + 2−n.

But then

γ :=
∞∑
n=1

αn ⊗ βn

converges and gives a preimage of c. tu



Chapter IV. Nuclear modules over nuclear algebras

1. Nuclear algebras and nuclear modules

DnFa1.1 Definition. A nuclear algebra A is a nuclear space that in addition
carries a structure as associative and commutative C-algebra with unit such
that the multiplication A×A→ A is continuous.

In the following A denotes such a nuclear algebra. Next we introduce the notion
of a nuclear module over A.

DnFm1.2 Definition. A nuclear module over A is a module E over A in the sense
of commutative algebra that carries an additional structure as nuclear space
such that A× E −→ E is continuous.

The collection of all nuclear modules is a category where the morphisms are
continuous A-linear maps.

A sequence E → F → G of Fréchet modules is called exact if it is exact in
the algebraic sense, i.e. the image of E → F equals the kernel of F → G. The
open mapping theorem shows that E → kernel(F → G) is a continuous open
map.

This is not an abelian category. The image of a morphism is not necessarily
closed and hence needs not to be a nuclear module. In the case A = C we get
back the category of nuclear spaces.

Let A be a nuclear algebra and let V be a nuclear vector space. Then A⊗̂CV
is a nuclear space which carries an obvious structure as nuclear module over A.
Such a nuclear module is called nuclear free.

Dll1.3 Definition. A nuclear module E over A is called nuclear free if there
exists a nuclear space V such that

E ∼= A⊗̂CV.
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We want to define a tensor product for nuclear algebras. For this we mention a
simple algebraic fact. Let A → B be a unital homomorphism of commutative
and associative rings and let M,N be two B-modules. Then one can consider
the map

d :M ⊗A B ⊗A N −→M ⊗A N, d(m⊗ b⊗ n) = (am)⊗ n−m⊗ (an).

It is easy to verify that

M ×N −→M ⊗A N/d(M ⊗A B ⊗A N −→M ⊗A N)

satisfies the universal property of M ⊗B N . Hence we can write

M ⊗B N =M ⊗A N/d(M ⊗A B ⊗A N −→M ⊗A N).

We use this observation to define the complete tensor profuct E⊗̂AF for nuclear
A-modules Now we start with

d : E⊗̂CA⊗̂CF −→ E⊗̂CF

and take the cokernel of this map

E⊗̂AF := E⊗̂CF/d(E⊗̂CA⊗̂CF ).

Notice that these are locally convex spaces with countable basis of neighbor-
hoods of the origin. But they need not to be separated. But their quotient by
the nullspace carries a natural structure as nuclear space. We denote this by

(E⊗̂AF )sep.

This has a universal property in the category of Fréchet algebras.

Every continuous A-bilinear map E×F → G into a Fréchet A-module G admits
a unique continuous A-linear factorisation (E⊗̂AF )sep → G.

Dnfr1.4 Definition. Let M be a nuclear module. A nuclear free resolution is
a sequence

· · · −→ Ln
dn−→ Ln−1 −→ · · · −→ L0 −→M −→ 0

with the following properties:

1) Ln are nuclear free Fréchet modules.
2) The dn are linear and continuous.
3) The sequence is exact (in the usual algebraic sense).
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Dnfd1.5 Definition. A nuclear free resolution as in Definition 1.4 is called
direct if for each n the image d(Ln) is closed and if there exists a closed vector
subspace Yn ⊂ Ln−1 such that

Ln−1 = d(Ln)⊕ Yn,

(direct sum in the sense of topological vector spaces, i.e. Ln−1 carries the prod-
uct topology)

Dnfh1.6 Lemma. Two direct nuclear free resolutions are homotopic.

Lnfr1.7 Lemma. Each nuclear module admits a direct nuclear free resolution.

Proof. Let F be a nuclear space. We set S0 = A⊗̂CF which is a nuclear module
through the left standing A. Then we set Sn = A⊗̂CSn−1 which also gets its
A-modules structure through the left standing A. So we have

Sn = A⊗̂CA⊗̂C · · · ⊗̂CA⊗̂CF (n+ 1 factors A).

We define the complex mappings. The map d0 : L0 → M is the obvious map.
In general

dn(a0⊗· · · am⊗x) =
n−1∑
i=0

(−1)a0⊗· · ·⊗aiai+1⊗ai+2⊗· · ·⊗x+(−1)na0⊗· · ·⊗anx.

We denote this resolution the canonical direct free resolution.

It remains to show that the complex

· · · // S1
// S0

// M // 0 // · · ·

is exact. For this we show that the identity map of this complex is null-
homotopic. This shows the homotopy

hn : Sn −→ Sn+1, n ≥ 0,

a0 ⊗ · · · ⊗ an ⊗ x 7−→ 1⊗ a0 ⊗ · · · ⊗ an ⊗ x.

h−1 :M −→ S0, x 7−→ 1⊗ x

(and hn = 0 for n < −1). tu
Let F be a nuclear module over A. We consider the canonical direct free

resolution S. = S.(F ). Let E be another nuclear module over A. The sequence

· · ·E⊗̂AS1(F ) −→ E⊗̂AS0(F ) −→ 0

needs not to be exact.
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Dtg1.8 Definition. The Tor groups of two nuclear modules are

T̂or
A

n (E,F ) =
kernel(Sn⊗̂AF −→ Sn−1⊗̂AF )
image(Sn+1⊗̂AF −→ Sn⊗̂AF )

.

In the case n = 0 this is, by definition of the tensor product,

T̂or
A

0 (E,F ) = E⊗̂AF.

We notice

E⊗̂ASn(F ) = E⊗̂AA⊗̂C · · · ⊗̂CA⊗̂CF (n+ 1 factors A),

= E⊗̂CA⊗̂C · · · ⊗̂CA⊗̂CF (n factors A).

From the commutativity of the tensor product we get a canonical isomorphism

E⊗̂ASn(F ) = F ⊗̂ASn(E).

Up to a sign this is compatible with the derivations. In this way one obtains
the following result.

RcEF1.9 Remark. There is a canonical isomorphism

T̂or
A

n (E,F ) = T̂or
A

n (F,E).

Dtntr1.10 Definition. Two nuclear A-modules E,F are called transversal if

E⊗̂AF is separated and if T̂or
A

n (E,F ) = 0 for n > 0.

Lnnf1.11 Proposition. Let E,F be two nuclear A-modules, one of them nuclear
free. Then they are transversal.

Proof. We can assume that F = A⊗̂CV is nuclear free. Then

E⊗̂AF = E⊗̂CV

is nuclear free too.

It remains to show the vanishing of the higher Tors. Because of the ho-
motopy invariance we can compute the Tors by means of an arbitrary direct
nuclear resolution instead of the standard resolution. We can take for F the
resolution

· · · −→ 0 −→ F −→ F −→ 0.
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For this resolution the calculation of the Tors is trivial. tu

Let 0 → F1 → F2 → F2 → 0 be an exact sequence of nuclear modules and
let E be a nuclear module. Then

En =M⊗̂CA⊗̂C · · · ⊗̂CA (n factors A).

is a nuclear space too and the sequence

0 −→ En⊗̂CF1 −→ En⊗̂CF2 −→ En⊗̂CF3 −→ 0

remains exact. This sequence can be identified with the sequence

0 −→ E⊗̂ASn(F1) −→ E⊗̂ASn(F2) −→ E⊗̂ASn(F3) −→ 0.

We can look at this as an exact sequence of complexes

0 −→ E⊗̂AS.(F1) −→ E⊗̂AS.(F2) −→ E⊗̂AS.(F3) −→ 0.

By a fundamental lemma of homological algebra this induces a long Tor se-
quence

· · · −→ T̂or
A

n (E,F1) −→ T̂or
A

n (E,F2) −→ T̂or
A

n (E,F3)

−→ T̂or
A

n−1(E,F1) −→ · · ·

Now we can apply Proposition 1.11.

PTgc1.12 Proposition. Let E,F be two nuclear modules and let L. a free resolu-

tion of F . Then the Tor groups T̂or
A

n (E,F ) equal the cohomology of E⊗̂AL..

Another application of the long exact Tor sequence is the following result.

Lntt1.13 Lemma. Let 0 → F1 → F2 → F3 → 0 be an exact sequence of nuclear
modules and E be also a nuclear module. If E is transversal to F1 und F2 then
it is transversal to E3.

Lett1.14 Lemma. Let A1 → A2 → A3 be homomorphisms of nuclear algebras
and let E be a nuclear module over A. Assume that E is transversal to A1 and
to A2. Then E⊗̂A1

A2 is transversal to A3 over A2.
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2. Complex spaces and nuclear spaces

The polydisk in Cn of the multi-radius r = (r1, . . . , rn), ri > 0 is the set

P = {z ∈ Cn; |zi| < ri}.

We consider the space of holomorphic functions O(P ). For each compact subset
K ⊂ P we can consider the seminorm on O(P ),

pK(a) = max
a∈P

|f(a)|.

The set of all of these seminorms equips O(P ) with a structure as locally convex
space. Due to the well known theorem of Weierstrass this space is sequence
complete. If one takes only compact subsets of the form

Kn = {z ∈ P ; |zi| ≤ ri(1− 1/n)} (n ≥ 2)

one gets a defining system of seminorms. Hence O(P ) has been equipped with
a structure as Fréchet space.

We also have to consider the seminorms

qν(f) =

∫
Kn

|f(z)|2dvz

where dvz denotes the standard measure on Cn = R2n.

LOnsp2.1 Lemma. The seminorms qν give a defining system of the Fréchet space
O(P ). The spaces (P(P ), qν) are Hilbert spaces and the operators

(O(P ), qµ) −→ (O(P ), qν), µ < ν

are Hilbert Schmidt operators.

Corollary. O(P ) is a nuclear space.

Next we consider complex spaces X that can be embedded into a polydisk as
closed complex subspace, X ↪→ P . This means that X maps biholomorphically
onto a closed complex subspace of P . From Cartan’s theorem B we know that
the restriction map O(P ) → O(X) is surjective. Clearly the kernel of this map
is closed. Hence we can identify O(X) with a factor space of O(P ) by a closed
subspace. In this way we can equip O(X) with a structure as nuclear space.
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Lsic2.2 Lemma. Let X be a complex space that can be embedded as closed sub-
space into a polydisk. The structure of O(X) as a nuclear space is independent
of the choice of the embedding.

Let (X,OX) be an arbitrary complex space. Recall that we assume that X is
Hausdorff and has a countable basis of the topology. Hence X is “countable
at infinity” which means that X can be written as countable union of com-
pacta. Every point in X admits am open neighborhood U such that U can be
embedded into a polydisk. As a consequence there exists a countable covering
X = U1 ∪U2 ∪ . . . of open subsets with this property. So the O(Ui) are nuclear
spaces. But then their direct product is also a nuclear space. It is clear that
the image of

O(X) −→
∏
i

O(Ui)

is closed. So O(X) inherits a structure as nuclear space. This structure is
independent of the choice of the covering.

Now we consider a general coherent sheaf M on a complex space. We will
equip M(X) with a structure as nuclear space. The procedure is as follows.
Consider an countable open covering X =

⋃
Ui of open subsets such that each

Ui admits a closed embedding into some polydisk. Assume also that each M|Ui
is finitely generated,

Om
X −→ M|Ui −→ 0.

From Theorem B follows that O(Ui)
m → M(Ui) is surjective. One can show

that the kernel of this map is closed. Then one can equip M(Ui) with the
quotient structure.

DNfs2.3 Theorem. There can be defined for complex space (X,OX) and each
coherent OX-module M a structure as nuclear space on M(X) such that the
following conditions are satisfied:

1) For a polydisk and M = OX we get the structure defined above.
2) Let X =

⋃
Ui be a finite or countable covering by open subsets. Then

M(X) −→
∏
i

M(Ui)

is a closed embedding of nuclear spaces (i.e. M(X) carries the induced topol-
ogy of the product topology).

3) Let Y ↪→ X be a closed embedding of complex spaces and let M be a coherent
sheaf on X. Then the topologies on M(Y ) and on (i∗M)(X) are the same.

4) Let X be a Stein space and let M → N be a surjective map of OX-modules.
Then N (X) carries the quotient structure of M(X). (Notice that M(X) →
N (X) is surjective by Cartan’s theorem B.)
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Pnis2.4 Proposition. Let (S,OS) be a complex space and U ⊂ Cn a polydisk.
The natural map

OS(S)⊗̂COU (U) −→ OS×U (S × U)

is an isomorphism of topological vector spaces.

Proof. The natural bilinear map

OS(S)×OU (U) −→ OS×U (S × U), (f(x), g(y)) 7−→ f(x)g(y),

is continuous. We prove the universal property for the completed π-tensor
product. So let B : OS(S)×OU (U) →W be a continuous bilinear map into a
Fréchet space. We have to construct a factorization OS×U (S × U) → W . For
this it is convenient to write an element f ∈ OS×U (S × U) as power series in
the variable z ∈ U ,

f(s, z) =
∑

aν1,...,νnz
ν1
1 · · · zνnn .

For sake of simplicity we assume (without loss of generality) that the multi-
radius of U is (1, . . . , 1). Then we can attach to each continuous seminorm p
on OS(S) and each 0 < t < 1 a seminorm pt on OS×U (S × U),

pt(f) =
∑

p(aν1,...,νn)t
ν1+···νn .

It is easy to show that this is a defining system of seminorms for the topology
that we already have introduced. Now it is clear the the map that sends f to

lim
N→∞

∑
ν1+···+νn≤N

B(aν1,...,νn , z
ν1
1 · · · zνnn )

is continuous. tu

Lsss2.5 Lemma. Let U0 ⊂ Cn be a Stein open subset of Cn and let S0 be a Stein
space. Let U ′ ⊂ U ⊂⊂ U0 be open Stein subsets and S′ ⊂ S ⊂⊂ S0 open Stein
subspaces.

U ′ ⊂ U ⊂⊂ U0

S′ ⊂ S ⊂⊂ S0

Assume that M is a coherent sheaf on S0×U0. Then the O(S)-modules O(S′)
and M(S × U) are transversal.

Proof. We know O(S ×U) = O(S)⊗̂CO(U). Hence O(S ×U) is a nuclear free
O(S)-module. Due to Theorem A there exists a free resolution of the sheaf M
on S × U ,

F. −→ M −→ 0.
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From theorem B follows that

F(S × U). −→ M(S × U)

is a nuclear free resolution of O(S)-modules. We have

O(S′)⊗̂O(S)O(S × U) = O(S′)⊗̂O(S)O(S)⊗̂CO(U) = O(S′ × U).

It follows
O(S′)⊗̂O(S)F.(S × U) = F.(S′ × U).

But F.(S′ × U) is an resolution of M(S′ × U). So we get

O(S′)⊗̂O(S)M(S × U) = M(S′ × U) and T̂orq(O(S′),M(S × U)) = 0.

This finishes the proof of the lemma. tu

Pazaz2.6 Proposition. Let E
.
be (cochain-) complex of nuclear A-modules which

is bounded from the right (En = 0 for big enough n). Let F be a nuclear A-
module, transversal to all En. Assume that k is an integer with the property
Hn(E

.
) = 0 for n ≥ k. Then the analogue is true for the complex F ⊗̂AE

.
.

Cqq2.7 Corollary. Let E
.
, F

.
be two complexes of nuclear A-modules which

both are bounded from the right. Let f : E
. → F

.
be a quasi-isomorphism of

nuclear complexes and let M be a nuclear A-module, transversal to all En, Fn.
Then

id⊗f :M⊗̂E. −→M⊗̂F .

is also a quasi-isomorphism.

3. Nuclear mappings and subnuclear mappings between
Fréchet modules

Dclfn3.1 Definition. Let A be a Fréchet algebra. A continuous A-linear oper-
ator f : E → F between A-Fréchet modules is called A-nuclear if it has a
presentation

f(x) =
∑
n

λnLn(x)yn

where
1) (λn) is a sequence of complex numbers such that

∑
|λn| <∞.

2) (yn) is a bounded sequence in F .
3) Ln is an equicontinuous sequence of continuous A-linear maps E → A.

The operator f is called subnuclear if there exists an A-Fréchet module
G and a commutative diagram such that G → E is surjective and such that
G→ F is nuclear.

As in the case A = C (Remark 3.2) we have
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Rnn3.2 Remark. Let f : E → F and g : F → G be continuous A-linear maps of
Fréchet modules Assume that f or g is nuclear. Then g ◦ f is nuclear.

The proof is also trivial. tu
Let E be a Fréchet space. Then A⊗̂CE is a Fréchet A-module in the obvious

way.

Refn3.3 Remark. Let E → F be a nuclear map of Fréchet spaces. Then A⊗̂CE →
A⊗̂CF is A-nuclear.

This follows from the Definition. tu

Puvr3.4 Proposition. Let S be a Stein space and let be V ⊂⊂ U two Stein
subspaces. Then the natural restriction

O(S × U) −→ O(S × V )

is an O(S)-linear nuclear map.

Let M be a coherent sheaf on S × U and let U ′ ⊂⊂ U , V ′ ⊂⊂ U ′ be Stein
subspaces, then

M(S × U ′) −→ M(S × V ′)

is O(S)-subnuclear.

4. The lemma of Schwartz

The classical lemma of Schwartz can be formulated as follows.

LS4.1 Lemma of Schwartz. Let E, F be two Fréchet spaces and let f : E → F
be surjective and u : E → F be a compact map. Then E/(f + u)F is finite
dimensional.

Proof in the nuclear case. We will not need this lemma in the following. Nev-
ertheless we want to prove it in the special case that E,F are nuclear spaces
and that u is a nuclear map. (This special case can be generalized to nuclear
modules.) In a first step we prove that there exists a nuclear map v : E → E
such that the following diagram is commutative.

E
f // F

E

v

OO

u

??~~~~~~~~
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To prove this, we use Definition 3.1 of a nuclear map

u(x) =
∞∑
n=0

λnLn(x)yn.

Recall that the series
∑
λn converges absolutely. It is possible to decompose

λn = λ′nλ
′′
n such that

∑
n λ

′
n still converges absolutely and λ′′n → 0. We can

replace λn by λ′n and yn by λ′′nyn. This consideration shows that we can
assume without loss of generality that yn → 0. From the surjectivity of f
in combination with the open mapping theorem we deduce the existence of a
sequence xn ∈ E, xn → 0 and f(xn) → yn. Now we can define v.

v(x) =
∑
n

λnLn(x)xn.

This makes the diagram commutative.

In a second step we reduce the lemma to the case E = F , f = id. As in the
first step we decompose u = f ◦ v. The natural map

Coker(id−v) −→ Coker(f − u)

is surjective which gives the desired result.

In the third and last step it remains to treat the case E = F and f = id.
Notice that an analogous result has been proved for Banach spaces E instead
of nuclear spaces (Proposition III.6.9). The following argument shows how
one can reduce to this case. For this we consider again a presentation as in
Definition 3.1.

f(x) =
∞∑
n=0

λnLn(x)yn.

For each x ∈ E the sequence

α(x) := (λnLn(x))

is absolutely convergent. So we get a map α : E → `1. There is another map

β : `1 −→ E, (xn) 7−→
∑

xnyn.

The diagram

E
f //

α
��

E

`1
β

? ?~~~~~~~~
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commutes, f = β ◦α. We also can consider γ := α◦β : `1 → `1. Obviously α is
nuclear. Hence γ is nuclear and we can apply Proposition III.6.9 to show that
the cokernel of idℓ1 +γ is finite dimensional. It is easy to check that α induces
a natural map

Coker(idℓ1 +γ) −→ Coker(idE +f)

which can be checked to be an isomorphism. This finishes the proof of the
Lemma of Schwartz in the nuclear case. tu

There is another way to express the Lemma of Schwartz.

TS4.2 Theorem of Schwartz. Let E
.
, F

.
be two complexes of Fréchet spaces

which are bounded from the right and let f
.
: E
. → F

.
be a quasi-isomorphism.

Assume that the fn are compact. Then there exists a complex L
.
of finite

dimensional vector spaces and a quasi-isomorphism L
. → E

.
.

Corollary. The vector spaces Hn(E
.
) = Hn(F

.
) are finite dimensional.

Proof. In a first step we prove the following. Let n be an integer such that
Hk(E

.
) = 0 for n > k. Then Hn(E

.
) is finite dimensional. We denote the

kernel of Ek → Ek+1 by Z(E
.
)k. In the case n > k the natural sequence

0 −→ Z(E
.
)k −→ Ek −→ Z(E

.
)k+1 −→ 0.

is exact. The image of Z(E
.
) with respect to the map En → Fn is contained

in Z(F
.
)n and the map

Z(E
.
)n −→ Z(F

.
)n

is also nuclear. The map

(d, fn) : Fn−1 × Z(E
.
)n −→ Z(F

.
)n

is surjective. It differs from (d, 0) by a nuclear map. Hence the Schwartz lemma
applies and shows that the cokernel of d : Fn−1 → Z(F

.
)n is finite dimensional.

We have to construct a complex L
.
. Assume it has been constructed already.

Then we can consider the truncated complexes L
.
(n)

· · · −→ 0 −→ Ln −→ Ln+1 −→ · · ·
↑

position n

Actually we shall construct Ln and L
.
(n) be descending induction. We will

construct it together with a complex homomorphism L
.
n → E

.
. The following

condition has to hold.

The maps L
.
(n) → E

.
induce isomorphisms for the coho-

mology groups in degree ≥ n.
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We denote by M
.
(n) the mapping cone of this morphism. Recall

Mk
(n) = Lk+1

(n) ⊕ Ek.

The above condition means that the cohomology groups of M
.
(n) vanish in

degree > n. We have to consider also the composition of L
.
(n) → E

. → F
.

and its mapping cone N
.
(n). Its cohomology groups also vanish in degree > n.

Due to the first step the vector space Hn(M
.
) is finite dimensional. Therefore

we can find a finite dimensional vector space Ln → Mn such the image is
contained in Zn(M

.
) and such the the composition Ln → Zn(M

.
) → Hn(M

.
)

is surjective. The map Ln → Mn = L(n+1) ⊕ En consists of two components.
The first one is used to prolongate the complex L

.
(n+1) to a complex L

.
(n). and

is hence denoted by dn : Ln → Ln+1. The second component Ln → En is used
to extend the map L

.
(n+1) → E

.
to a map L

.
(n) → E

.
. This solves the problem.

Details are left to the reader. tu

5. The lemma of Kiehl

Kiehl succeeded to generalize the Schwartz lemma form nuclear spaces to nu-
clear modules. In a first step one obtains a generalization of Proposition III.6.9
to Fréchet modules over Banach algebras.

LPkc5.1 Lemma. Let E be a Fréchet module over a Banach algebra A and let
u : M → M be an A-nuclear map. Then the cokernel of id+u is a finitely
generated A-module.

The proof is the same as that of Proposition III.6.9. tu

LSK5.2 Lemma of Kiehl. Let A be a nuclear algebra and let E, F be two nuclear
A-modules and let f : E → F be surjective, continuous and A-linear and let
u : E → F be a A-subnuclear map. Assume that a commutative diagram

A //

��

A1

B

>>}}}}}}}}

with a Fréchet algebra A1 and Banach algebra B is given. Then the cokernel
of

id⊗f : A1⊗̂AE −→ A1⊗̂AF

is a finitely generated A1-module.
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Proof. As we know there exists a nuclear A-module E1 and a surjective A-linear
and continuous map E1 → E. The composition with E1 → F is nuclear. We
also know that there exists a nuclear free A-module E2 and a surjective and
continuous map E2 → E1. The composition E2 → E1 → E is still nuclear.
Hence it is sufficient to prove the lemma under the additional assumptions
that E is nuclear free and that u is A-nuclear. Hence we can assume that E is
nuclear free and that u is nuclear.

Now we can use the same argument as in the first step of the proof of the
Lemma of Schwartz 4.1 to reduce to the case E = F , nuclear free, and f = id.

Warning

Let A be a Fréchet algebra and let E,F be two A-Fréchet modules, F1 ⊂ F a
closed submodule. Assume that there is given a commutative diagram

E
f //

f1   A
AA

AA
AA

A F

F1

(inclusion)

OO

such that f is nuclear. Then f1 needs not to be nuclear (even if A,E, F and
hence F1 are). Here is a special situation where a deformed f1 can be shown
to be subnuclear.

Pss5.3 Proposition. Let A,B be nuclear algebras and E,F nuclear A-modules.
Assume that a continuous homomorphism % : A → B is given and that this
homomorphism is C-nuclear. Let F1 ⊂ F be a closed A-submodule and assume
that B is A-transversal to E,F and to F/F1. Let

E
f //

f1   A
AA

AA
AA

A F

F1

(inclusion)

OO

be a commutative diagram. Assume that f is subnuclear. Then

id⊗f1 : B⊗̂AE −→ B⊗̂AF1

is subnuclear.

Proof. In a first step we assume that f is nuclear. In this case we can show
that id⊗f1 is nuclear too. There exists a commutative diagram

A
ϱ //

α

��

B

A1 ϱ1
// B1

β

OO
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where %1 : A1 → B1 is a nuclear map of Banach spaces. We have to consider
the map

%⊗ f : A⊗A E −→ B ⊗A F.
This can be considered as map E → B ⊗A B. Now we can construct the
commutative diagram

E
ϱ⊗f1 //

u

��

B ⊗A F1

`∞(A1)
R // `1(B1)

v

OO

where
u(x) = (α(Ln(x))),

v((bn)) =
∑
n

β(bn)⊗ yn,

R((an)) = (λnan).

The map R is a nuclear map of Banach spaces. Hence u⊗ f1 is nuclear.

Now we come to the general case. We assume that there is a commutative
diagram

M

h
��

g

  A
AA

AA
AA

A

E
f

// F

where h is surjective and f is nuclear. Then we can consider the diagram

B⊗̂CM //

��

B⊗̂C (B⊗̂AF1)

��
B⊗̂AE // B⊗̂AF1

The first row is nuclear and the first column is surjective. Hence the second
row is subnuclear. tu

We need the notion of a nuclear chain.

DnK5.4 Definition. A nuclear chain is a family (At), 0 ≤ t ≤ 1 of nuclear
algebras together with a family

%t2t1 : At1 −→ At2 , 0 ≤ t1 ≤ t2 ≤ 1,

of algebra homomorphisms with the properties

%tt = id, %t3t2 ◦ %
t2
t1 = %t3t1 .

We assume that each %t2t1 is nuclear and that it factorizes through a Banach
algebra.
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TSK5.5 Theorem of Kiehl. Let (At)t∈[0,1] be a nuclear chain and let E
.
, F

.
be two complexes of nuclear A0-modules which are bounded from the right and
let f

.
: E

. → F
.
be a quasi-isomorphism and such that all fn are nuclear.

Let At be transversal to all En, Fn for all t . Then there exists a complex L
.

of finitely generated free A1-modules and a quasi-isomorphism of complexes of
A1-modules L

. → A1⊗̂CE
.
.

6. The proof of the finiteness theorem

There is another tool which we need for the proof.

LAtF6.1 Lemma. Let E
.
be a complex, bounded from the right, of nuclear A-

modules and let F be a nuclear A-module, transverse to all En. Assume that
E
.
is exact. Then F ⊗̂AE

.
is exact too.

Proof. Let Zn := Kernel(En → En+1). Since E
.
is exact, the short exact

sequences 0 → Zn → En → Zn+1. Descending induction shows that all Zn are
transverse to F . The sequence remains exact if one tensors it with F . tu

Cefm6.2 Corollary. Let E
.
, F
.
be two complexes, bounded from the right, of

nuclear A-modules and let f : E
. → F

.
be a quasi-isomorphism. Furthermore

let M be a nuclear A-module that is transverse to all En, Fn. Then

id⊗f :M⊗̂AE
. −→M⊗̂AF

.

is a quasi-isomorphism too.

Proof. Apply the previous lemma to the mapping cone of f . tu

Dech6.3 Definition. Let π : X → P a holomorphic map of a complex space into
a polydisk. A relative chart is a triple (U,Q, ϕ) where U is an open subset of
X, Q is a polydisk and ϕ : U → Q×P is a closed embedding such the diagram
commutes.

We show that for each point a ∈ X there exists a relative chart (U,Q, ϕ) with
x ∈ U . To prove this, we take an open neighborhood U von x that admits a
closed embedding into a polydisk, ψ : U → Q. Then we consider

ϕ : U → Q× P, ϕ(x) = (π(x), ψ(x)).

This is the desired relative chart.

Let X → P be a holomorphic map of a complex space into a polydisk.
Sometimes we have to replace P by smaller polydisk P0 ⊂⊂ P and X by the
inverse image of P0 in X. We express this by saying that we allow shrinking of
P .
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Lcsh6.4 Lemma. Let π : X → P be a proper holomorphic map of a complex space
into a polydisk. After possible shrinking of P there exist

1) finitely many relative charts (Xi, Qi, ϕi),
2) shrinks Q′′

i ⊂⊂ Q′
i ⊂⊂ Qi,

3) a shrink P (r) ⊂⊂ P ,

such that the followings holds. Let X ′′ be the family of relative charts

(X ′′
i , Q

′′
i , ϕi); where X ′′

i = ϕ−1(Q′′
i × P (r))

(similarly X ′), then X ′′ is an open covering of π−1(P (r)).

Proof of Grauert’s finiteness theorem. Let π : X → S a proper holomorphic
map between complex spaces and let M be a coherent sheaf on X. We have
to prove that the higher direct images of M are coherent. This is a local
result in S. That means that we can replace a given point s ∈ S by an open
neighbourhood U and X be the inverse image. Hence we can assume that S
admits a closed embedding into a polydisk P . The higher direct images of M
in P are the direkt images of the direct images in S. Hence it is sufficient
to treat the case S = P and, even more, we are allowed to shrink P (and to
replace X by the inverse image.

So we can apply Lemma 6.4. We use the notations of this lemma. We use
the notation

E
.
= Čech complex of the covering X ′′,

F
.
= Čech complex of the covering X ′,

At = O(P (r(t− 1/2)), 0 ≤ t ≤ 1.

So At is a nuclear chain starting from A0 = O(P (r)) and ending with A1 =
O(P (r/2)). There is a natural restriction map f : E

. → F
.
. It is a quasi-

isomorphism.

All conditions of the Schwartz-like theorem are fulfilled. Hence there exists
a complex L

.
of A1-modules and a quasi-isomorphism

L
. −→ A1 ⊗A0

E
.
,

such that each Ln is a finitely generated free A1-module.

Now we consider the free sheaves Ln over P (r/2) such that

Ln(P (r/2) = Ln.

We can extend L
.
to a complex L. of free OP (r/2)-modules. We can also

sheafify the Čech complex E
.
as follows. For an open U ⊂ P (r/2) one can

define in the obvious way the covering

X ′′ ∩ ϕ−1(U)
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We denote its Čech complex by E.(U). Then

U 7−→ En(U)

is a sheaf and E. is a complex of sheaves. The cohomology sheaves of this
complex are Rnπ∗M. Now we assume that U is Stein. Then we have a natural
isomorphism

Ln(U)
∼−→ En(U).

The open Stein subsets give a basis of the topology. Due to the transversality
results this map extends to a quasi-isomorphism of complexes of sheaves

Ln ∼−→ En.

Hence the higher direct images of M are isomorphic to the cohomology sheaves
of the complex Ln. But these are clearly coherent. tu
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