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Chapter I. Local complex analysis

1. The ring of power series

All rings are assumed to be commutative and with unit element. Homomor-
phisms of rings are assumed to map the unit element into the unit element.
Modules M over a ring R are always assumed to be unitary, 1Rm = m.

Recall that an algebra over a ring A by definition is a ring B together with
a distinguished ring homomorphism ϕ : A→ B. This ring homomorphism can
be used to define on B a structure as A-module, namely

ab := ϕ(a)b (a ∈ A, b ∈ B).

Let B,B′ be two algebras. A ring homomorphism B → B′ is called an algebra
homomorphism if it is A-linear. This is equivalent to the fact that

B // B′

A

>>}}}}}}}}

__@@@@@@@@

commutes.

The notion of a formal power series can be defined over an arbitrary ring
R. A formal power series just is an expression of the type

P =
∑
ν

aνz
ν , aν ∈ R,

where ν runs through all multi-indices (tuples of nonnegative integers). Here
z = (z1, . . . , zn) and zν = zν11 · · · zνnn just have a symbolic meaning. Strictly
logically, power series are just maps Nn

0 → R. Power series can be added and
multiplied formally, i.e.∑

ν

aνz
ν +

∑
ν

bνz
ν =

∑
ν

(aν + bν)zν ,∑
ν

aνz
ν ·
∑
ν

bνz
ν =

∑
ν

( ∑
ν1+ν2=ν

aν1bν2

)
zν .
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The inner sum is finite. In this way we get a ring R[[z1, . . . , zn]]. Polynomials
are just power series such that all but finitely many coefficients are zero. In this
way, we can consider the polynomial ring R[z1, . . . , zn] as subring of the ring
of formal power series. The elements of R can be identified with polynomials
such that all coefficients aν with ν 6= 0 vanish. We recall that for a non-zero
polynomial P ∈ R[z] in one variable the degree degP is well-defined. It is
the greatest n such the the nth coefficient is different from 0. Sometimes it is
useful to define the degree of the zero polynomial to be −∞. If R is an integral
domain, the rule deg(PQ) = degP + degQ is valid.

There is a natural isomorphism

R[[z1, . . . , zn−1]][[zn]]
∼−→ R[[z1, . . . , zn]]

whose precise definition is left to the reader. In particular, R[[z1, . . . , zn−1]]
can be considered as a subring of R[[z1, . . . , zn]]. One can use this to show that
R[[z1, . . . , zn]] is an integral domain if R is so.

Let now R be the field of complex numbers C. A formal power series is called
convergent if there exists a small neighborhood (one can take a polydisk) of
the origin where it is absolutely convergent. It is easy to show that this means
just that there exists a constant C such that |aν | ≤ Cν1+···+νn . The set

On = C{z1, . . . , zn}

of all convergent power series is a subring of the ring of formal power series.
There is a natural homomorphism

On −→ C, P 7−→ P (0),

that sends a power series to its constant coefficient. Its kernel mn is the set of
all power series whose constant coefficient vanishes. The power mkn is the ideal
generated by P1 · · ·Pk where Pi ∈ mn. It is easy to see that a power series P
belongs to mkn if and only if

aν 6= 0 =⇒ ν1 + · · ·+ νn ≥ k.

As a consequence we have ⋂
mkn = 0.
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2. Holomorphic Functions and Power Series

Complex analysis deals with holomorphic functions. They can be introduced
as complex differential functions. These can be considered as special real dif-
ferentiable functions if one identifies Cn and R2n.

2.1 Definition. A map f : U → V between open subsets U ⊂ Cn, V ⊂ Cm

is called complex differentiable if it is (totally) differentiable in the sense of real
analysis and if the Jacobi map J(f, a) : Cn → Cm is C-linear for all a ∈ U .

Instead of “complex differentiable”, one uses the notation “analytic” or “holo-
morphic”. From definition 2.1 some basic facts can be deduced from real analy-
sis, for example that the composition of complex differentiable maps is complex
differentiable and that the chain rule holds. The same is true for the theorem
of invertible functions.

2.2 Proposition. Let f : U ⊂ Cn, U ⊂ Cn open, be a holomorphic map,
and let a ∈ U be a point such that the Jacobi matrix at a is invertible. Then
there exists an open neighborhood a ∈ V ⊂ U such that f(V ) is open and such
that f induces a biholomorphic map V → f(V ).

The theorem of inverse functions is a special case of the theorem of implicit
functions (but the latter can be reduced to the first one). We formulate a
geometric version of it:

2.3 Proposition. Let

f : U −→ V, U ⊂ Cn, V ⊂ Cm open,

be a holomorphic map and let a ∈ U be a point. We assume that the Jacobi
matrix J(f, a) has rank n (in particular n ≤ m). After replacing U, V by
smaller open neighborhoods of a, f(a) if necessary the following holds: There
exists a biholomorphic map ϕ : V → W onto some open subset W ⊂ Cm such
that

ϕ(f(U)) =
{
z ∈W ; zn+1 = · · · = zm = 0

}
.

Moreover, the following is true: If one sets W ′ = {z ∈ Cn, (z, 0) ∈W} then
ϕ ◦ f induces a biholomorphic map V →W ′.

We also mention that the map f : U → Cm is complex differentiable if and
only if its components fν (f(z) = (f1(z), . . . , fm(z))) are so.

It is a basic fact that these are functions that locally can be expanded into
power series. More precisely this is true on any polydisk. By definition, a
polydisk is a cartesian product of discs:

Ur(a) = Ur1(a)× . . .× Urn(a) =
{
z ∈ Cn; |zν − aν | < rν (1 ≤ ν ≤ n)

}
.

Here r = (r1, . . . , rn) is a tuple of positive numbers. It is called the multi-radius
of the polydisk. The basic fact is:
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2.4 Proposition. Every complex differentiable function f on a polydisk Ur(a)
can be expanded in the whole polydisk as an absolutely convergent power series

f(z) =
∑
ν

aν(z − a)ν .

Conversely any power series that converges absolutely on the polydisk is an
analytic function there. The coefficients aν are uniquely determined by f .

Here ν = (ν1, . . . , νn) runs through all multi-indices. This means that νi are
nonnegative integers. We use the usual multi-index notation

(z − a)ν := (z1 − a1)ν1 · · · (zn − an)νn .

The proof of 2.4 is the same as in the case n = 1. We just sketch it: One can
assume a = 0. We choose positive numbers. %ν < rν . It is sufficient to prove
the expansion in the smaller polydisk U%(0). First we apply the usual Cauchy
integral formula to the analytic function in the single variable z1,

z1 7−→ f(z1, . . . , zn),

keeping z2, . . . , zn fixed. We obtain

f(z1, . . . , zn) =
1

2πi

∮
|ζ1|=%1

f(ζ1, z2, . . . , zn)

ζ1 − z1
dζ1.

Now we apply the Cauchy integral formula step by step for the variables
(z1, . . . , zn). We obtain the

Cauchy integral formula in several variables

f(z1, . . . , zn) =
1

(2πi)n

∮
|ζ1|=%1
· · ·

∮
|ζn|=%n

f(ζ1, . . . , ζn)

(ζ1 − z1) · · · (ζn − zn)
dζ1 . . . dζn.

Now the power series expansion of f can be obtained as in the case n = 1. One
expands the integrand into a geometric series and interchanges integration and
summation.

We give two simple applications.

2.5 Lemma. An element P ∈ On is a unit (i.e. an invertible element) if an
only if P (0) 6= 0.

Proof. The power series defines a holomorphic function f in a small neighbour-
hood U of the origin without zeros. The function 1/f is holomorphic as well
and can be expanded into a power series. tu

As a consequence of Lemma 2.5, the ring On is a local ring. Recall that a
ring R is called local if the sum of two non-units is a non-unit. Then the set of
all non-units is an ideal, obviously the only maximal ideal.
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2.6 Remark. The ring On is a local ring. The maximal ideal mn consists of
all P with P (0) = 0.

The ring On contains C as a subring (constant power series). Hence it is a
C-algebra.

Our next task is to describe the algebra homomorphisms f : Om → On.
First we claim that non-units are mapped to non-units. This means that f
is a local homomorphism. Otherwise there would be non-unit P ∈ Om such
that Q = f(P ) is a unit. Then we would have f(P −Q(0)) = Q −Q(0). The
element P −Q(0) is a unit but its image Q−Q(0) is not. This is not possible.

There is a special kind of such a homomorphism which we call a “substitu-
tion homomorphism”. It is defined by means of elements P1, . . . , Pn ∈ Om that
are contained in the maximal ideal. If P (z1, . . . , zn) is an element of On, one
can substitute the variables zi by the power series Pi. For a precise definition
one can interprets P, Pi as holomorphic maps, and use then that the composi-
tion of holomorphic maps is holomorphic In this way, we obtain a power series
P (P1, . . . , Pn). Another way to see this is to apply standard rearrangement
theorems. This substitution gives a homomorphism

On −→ Om, P 7−→ P (P1, . . . , Pn).

We call it a substitution homomorphism.

2.7 Lemma. Each algebra homomorphism On → Om is a substitution
homomorphism.

Proof. Let ϕ : On → Om an algebra homomorphism. Since it is local, the
elements Pi := ϕ(zi) are contained in the maximal ideal. Hence one can con-
sider the substitution homomorphism ψ defined by them. We claim ϕ = ψ.
At the moment we only know that ϕ and ψ agree on C[z1, . . . , zn]. Let
P =

∑
ν aνz

ν ∈ On. We claim ϕ(P ) = ψ(Q). For this we decompose for
a natural number k

P = Pk +Qk, Pk =
∑

ν1+···+νn≤k

aνz
ν .

Then Qk is contained in the k-the power mk of the maximal ideal. (Obviously
mk is generated by all zν where ν1 + · · ·+ νn ≥ k.) We get

ϕ(P )− ψ(P ) = ϕ(Qk)− ψ(Pk) ∈ mk.

This is true for all k. But the intersection of all This argument shows more.
There is a big difference between analysis of one and many complex variables.
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2.8 Proposition. Assume n > 1. Let % and r be two multi-indices such
that 0 < %i < ri. Every holomorphic function f on Ur(0)− U%(0) extends to a
holomorphic function on Ur(0).

As a consequence any holomorphic function on Ur(0) − {0} extends to Ur(0).
This means: In more than one complex variables there are no isolated singu-
larities.

Proof of 2.8. Since we could make r a little smaller, we can assume that f is
holomorphic on some UR(0) − U%(0) with Ri > ri. To simplify notation we
assume n = 2. Let z1 be a fixed number with %1 < |z1| < r1. Then all (z1, z2)
with |z2| < r2 are contained in Ur(0) − U%(0). Applying Cauchy’s integral
formula to this z2-disk we get

f(z1, z2) =
1

2πi

∫
|ζ|=r2

f(z1, ζ)

ζ − z2
dζ (%1 < |z1| < r1, |z2| < r2).

The point now is that this formula defines an analytic function in the bigger
domain Ur(0). tu

3. The Preparation and the Division Theorem

We mentioned already that polynomials are special power series and constants
can be considered as special polynomials. Hence we have natural inclusions of
C-algebras

C ⊂ C[z1, . . . , zn] ⊂ C{z1, . . . , zn} ⊂ C[[z1, . . . , zn]].

The ring On−1 can be identified with the intersection On ∩ C[[z1, . . . , zn−1]]
and there is a natural inclusion

On−1[zn] −→ On.
We have to introduce the fundamental notion of a Weierstrass polynomial. This
notion can be defined for every local ring R. Let P be a normalized polynomial
of degree d over R. This polynomial is called a Weierstrass polynomial if its
image in R/m[X] is Xd. For the ring of our interest R = On this means:

3.1 Definition. A polynomial

P ∈ On−1[z] = C{z1, . . . , zn−1}[zn]

is called a Weierstrass polynomial of degree d, if it is of the form

P = zdn + Pd−1z
d−1
n + . . .+ P0

where all the coefficients besides the highest one (which is 1) vanish at the
origin,

P0(0) = . . . = Pd−1(0) = 0.
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To formulate the Weierstrass preparation theorem we need the notion of a
zn-general power series.

3.2 Definition. A power series

P =
∑

aνz
ν ∈ C{z1, . . . , zn}

is called zn-general, if the power series P (0, . . . , 0, zn) does not vanish. It is
called zn-general of order d if

P (0, . . . , 0, zn) = bdz
d
n + bd+1z

d+1
n + . . . where bd 6= 0.

A power series is zn-general, if it contains a monomial which is independent
of z1, . . . zn−1. For example z1 + z2 is z2-general, but z1z2 not. A Weierstrass
polynomial is of course zn-general and its degree and order agree. If P is a
zn-general power series and U is a unit in On then PU is also zn-general of the
same order.

3.3 Weierstrass preparation theorem. Let P ∈ On be a zn-general power
series. There exists a unique decomposition

P = UQ,

where U is a unit in On and Q a Weierstrass polynomial.

There is an division algorithm in the ring of power series analogous to the
Euclidean algorithm in a polynomial ring. We recall this Euclidean algorithm.

The Euclidean Algorithm for Polynomials

let R be an integral domain and let

a) P ∈ R[X] be an arbitrary polynomial,
b) Q ∈ R[X] be a normalized polynomial, i.e. the highest coefficient is 1.

Then there exists a unique decomposition

P = AQ+B.

where A,B ∈ R[X] are polynomials and

deg(B) < d.

This includes the case B = 0 if one defines deg(0) = −∞. The proof of this
result is trivial (induction on the degree of P ). tu
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3.4 Division theorem. Let Q ∈ On−1[z] be a Weierstrass polynomial of
degree d. Every power series P ∈ On admits a unique decomposition

P = AQ+B where A ∈ On, B ∈ On−1[zn], degzn(B) < d.

Here degzn(B) means the degree of the polynomial B over the ring On−1 (again
taking −∞ if B = 0).

The preparation theorem is related to the division theorem which – not
correctly – sometimes is also called Weierstrass preparation theorem. Its first
prove is due to Stickelberger.

The division theorem resembles the Euclidean algorithm. But there is a
difference. In the Euclidean algorithm we divide through arbitrary normal-
ized polynomials. In the division theorem we are restricted to divide through
Weierstrass polynomials. But due to the preparation theorem, Weierstrass
polynomials are something very general. This also shows the following simple
consideration.

Let A = (aµν)1≤µ,ν≤n be an invertible complex n× n-matrix. We consider
A as linear map

A : Cn −→ Cn z 7−→ w, wµ =
n∑
ν=1

aµνzν .

For a power series P ∈ On, we obtain by substitution and reordering the power
series

PA(z) := P (A−1z).

Obviously the map

On
∼−→ On, P 7−→ PA,

is an ring automorphism, i.e.

(PQ)A = PAQA.

The inverse map is given by A−1.

3.5 Remark. For every finite set of convergent power series P ∈ On , P 6= 0 ,
there exists an invertible n× n-matrix A, such that all PA are zn-general.

Proof. There exists a point a 6= 0 in a joint convergence poly-disk, such that
P (a) 6= 0 for all P . After the choice of suitable coordinate transformation
(choice of A), one can assume A(0, . . . , 0, 1) = a. Then all PA are zn-general.

tu
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Proof of the Preparation and the Division Theorem

The prove that we will give here, depends on the Cauchy integral. The prepa-
ration theorem is related to the shape of the zero set of a power series. For
Weierstrass polynomials, the following Lemma is obvious. Our proof of the
division- and preparation theorem makes use of the fact that it can be proven
for zn-general series directly.

3.6 Lemma. Let P be a zn-general power series of order d > 0. The number
r > 0 can be chosen, such that P converges absolutely for |zν | ≤ r and such
that P (0, . . . , 0, zn) has in the disk |zn| ≤ r besides 0 no zero. Then there exists
a number ε, 0 < ε < r with the following properties:

1. One has P (z1, . . . , zn−1, zn) 6= 0 for |zn| = r and |zν | < ε (1 ≤ ν ≤ n− 1).

2. For fixed (z1, . . . , zn−1) with |zν | < ε the function zn 7→ P (z1, . . . , zn) has
precisely d zeros for |zn| < r (counted with multiplicity).

Proof. The first statement is clear for each fixed chosen zn by a continuity
argument. For the general case one has to use a simple compactness argument.

The second statement follows by means of the zero counting integral of usual
complex analysis ([FB], III.5.7). This integral shows that the number of zeros
depends continuously on z1, . . . , zn−1. Since it is integral, it must be constant,
and hence be equal to the value for z1 = . . . = zn−1 = 0. tu

Lemma 3.6 states that the set of zeros of an analytic function is “some-
thing (n − 1)-dimensional”. Later we will give a precise formulation for this
(Proposition II.5.3).

3.7 Lemma. Let Q ∈ On−1[zn] be a Weierstrass polynomial and let A ∈ On
be a power series with the property

P = AQ ∈ On−1[zn].

Then A ∈ On−1[zn] too.

For arbitrary polynomials Q ∈ On−1[zn] instead of Weierstrass polynomials
this statement is false as the example

(1− zn)(1 + zn + z2
n + · · ·) = 1

shows.

Proof of 3.7. By means of polynomial division, we can assume that the degree
of P (as polynomial over On−1) is smaller than the degree of Q. In this case
we show A = 0. We choose r > 0 small enough, such that all occurring power
series converge for |zν | < r. Then we choose ε = ε(r) > 0 small enough, such
that ε ≤ r and such that each zero

Q(z1, . . . , zn) = 0, |zν | < ε for ν = 1, . . . , n− 1,
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automatically has the property |zn| < r. Then the polynomial

zn 7−→ P (z1, . . . , zn)

has for each (n − 1)-tuple (z1, . . . , zn−1), |zν | < ε, as Q, at least d = degQ
zeros, counted with multiplicity. Because of degP < degQ we get

P (z1, . . . , zn) ≡ 0 for |zν | < ε, ν = 1, . . . , n− 1.

We obtain P = 0 and A = 0. tu
Proof of the division theorem.

For an arbitrary power series P ∈ On we have to construct a decomposition

P = AQ+B, B ∈ On−1[zn], degB < degQ,

and to show that it is unique.

Uniqueness. From AQ + B = 0, we get that A ∈ On−1[zn] because of 3.7.
Comparing degrees we get A = B = 0.

Existence. We want to define

A(z1, . . . , zn) :=
1

2πi

∮
|ζ|=r

P (z1, . . . , zn−1, ζ)

Q(z1, . . . , zn−1, ζ)

dζ

ζ − zn
.

For this we have to explain how r > 0 has to be chosen. It has to be so small
that the power series P and Q converge in

U = { z; ‖z‖ < 2r }, ‖z‖ := max {|zν |, ν = 1, . . . , n }.

Then their exists a number ε, 0 < ε < r, such that

Q(z1, . . . , zn) 6= 0 for |zn| ≥ r, |zν | < ε for 1 ≤ ν ≤ n− 1.

The function A is analytic in ‖z‖ < ε and can be expanded into a power series
there. We denote this power series by A again. What we have to show now is
that

B := P −AQ

is a polynomial in zn, and that its degree is smaller than that of Q. By means
of the Cauchy integral formula for P one obtains (with z := (z1, . . . , zn−1))

B(z, zn) =
1

2πi

∮
|ζ|=r

P (z, ζ)

ζ − zn
dζ − 1

2πi

∮
|ζ|=r

Q(z, zn)
P (z, ζ)

Q(z, ζ)

dζ

ζ − zn

=
1

2πi

∮
|ζ|=r

P (z, ζ)

Q(z, ζ)

[
Q(z, ζ)−Q(z, zn)

ζ − zn

]
dζ.
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The variable zn only occurs inside the big brackets. For fixed z1, . . . , zn−1, ζ we
know that Q(z1, . . . , zn−1, ζ)−Q(z1, . . . , zn) is a polynomial of degree d = degQ
in zn. This has a zero at zn = ζ and hence is divisible by zn− ζ, such that the
quotient is a polynomial of degree d − 1. Hence B is a polynomial of degree
< d in zn. tu

Now we prove a special case of the preparation theorem. Let P ∈ On an
arbitrary zn-general power series and Q a Weierstrass polynomial. Both are
assumed to converge in ‖z‖ ≤ r. We also assume that there exist a number
ε, 0 < ε < r, such that for each fixed (z1, . . . , zn−1) with |zν | < ε for (1 ≤ ν ≤
n− 1) the functions

zn 7−→ Q(z1, . . . , zn), zn 7−→ P (z1, . . . , zn)

have the same zeros —counted with multiplicity— in the disk |zn| < r. We
claim that

P = UQ

with a unit U .

Proof. We can choose ε so small that all d zeros of Q are contained in |zn| < r.
By the division theorem we have

P = AQ+B, B ∈ On−1[zn], degB < degQ.

We can assume that A and B both converge in |zn| < r. The polynomial

zn 7−→ B(z1, . . . , zn)

has for each (z1, . . . , zn−1), |zν | < ε, 1 ≤ ν ≤ n− 1, more zeros than its degree
predicts. Hence it is identically zero. The same consideration shows that A is
a unit. tu
Now we are able to prove the preparation theorem in full generality. Let P be
a zn-general power series, and d, 0 < d <∞ the zero order of P (0, . . . , 0, zn) at
zn = 0. The numbers 0 < ε < r are chosen as in 3.6. We consider the functions

σk(z1, . . . , zn−1) =
1

2πi

∮
|ζ|=r

ζk
∂P (z, ζ)

∂ζ

dζ

P (z, ζ)
, k = 0, 1, 2, . . . .

They are analytic in the domain

z ∈ Cn−1, ‖z‖ < ε.

By the residue theorem from complex analysis (zero-counting integral) in one
variable, we know that σ0(z1, . . . , zn−1) is the number of zeros

zn 7−→ P (z1, . . . , zn)
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in |zn| < r (counted with multiplicity). As a consequence σ0 is integral, hence
constant. We order the d = σ0(z1, . . . , zn−1) zeros arbitrarily,

t1(z), . . . , td(z).

Of course we can not expect that tν(z) are analytic functions in z. But a simple
generalization of the zero-counting integral gives

σk(z) = t1(z)k + . . .+ td(z)
k.

Therefore the symmetric expressions t1(z)k+ . . .+ td(z)
k are analytic functions

in z. By a result of elementary algebra, which we want to use without proof,
we have:

The νth elementary symmetric polynomial (1 ≤ ν ≤ d)

Eν(X1, . . . , Xd) = (−1)ν
∑

1≤j1<...<jν≤d

Xj1 . . . Xjν

can be written as polynomial (with rational coefficients) in the

σk(X1, . . . , Xd) =
d∑
j=1

Xk
j

(1 ≤ k ≤ d is enough).

Example.

E2(X1, X2) = X1X2 =
1

2

[
(X1 +X2)2 − (X2

1 +X2
2 )
]

=
1

2
[σ2

1 − σ2].

Especially the elementary symmetric functions t1(z), . . . , td(z) are analytic. We
use them to define the Weierstrass polynomial

Q(z1, . . . , zn−1, zn) = zdn+E1 (t1(z), . . . , td(z)) z
d−1
n +. . .+Ed (t1(z), . . . , td(z)) .

For fixed ‖z‖ < ε the zeros of these polynomials are t1(z), . . . , td(z) by the
(trivial) “Vieta theorem”. By the second step P and Q differ only by a unit.
This proves the preparation theorem. tu
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4. Algebraic properties of the ring of power series

The ring O0 just coincides with the field of complex numbers. The ring O1 is
also very simple. Every element can be written in the form znP where P is a
unit and n ≥ 0 an integer. It follows that each ideal of O1 is of the form O1z

n.
The rings On, n > 1, are much more complicated.

Let Q ∈ On−1[zn] be a Weierstrass polynomial. We can consider the natural
homomorphism

On−1[zn]/QOn−1[zn] −→ On/QOn.

The division theorem implies that this is an isomorphism.

4.1 Theorem. For a Weierstrass polynomial Q ∈ On−1[zn] the natural
homomorphism

On−1[zn]/QOn−1[zn] −→ On/QOn
is an isomorphism.

Proof. The surjectivity is an immediate consequence of the existence statement
in the division theorem. The injectivity follows from the uniqueness statement
in this theorem as follows. Let P ∈ On−1[zn] a polynomial that goes to 0,
i.e. P = SA, Q ∈ On. We have to show that S is a polynomial in zn. We
compare with the elementary polynomial division P = AQ+B. The uniqueness
statement in the division theorem shows A = S and B = 0. tu

Recall that an element a ∈ R is a prime element if and only if Ra is a non-
zero prime ideal. (A prime ideal p ⊂ R is an ideal such that R/p is an integral
domain.) By our convention the zero ring is no integral domain. Hence prime
ideals are proper ideals and prime elements are non-units. From Theorem 4.1
we obtain the following result.

4.2 Lemma. A Weierstrass polynomial P ∈ On−1[zn] is a prime element in
On, if and only if it is a prime element in On−1[zn].

We recall that an integral domain R is called a UFD-domain if every nonzero
and non-unit element of R can be written as a finite product of prime elements.
This product then is unique in an obvious sense. Every principal ideal domain
is UFD. As a consequence every field is UFD. But also Z and O1 are principal
ideal rings and hence UFD. A famous result of Gauss states that the polynomial
ring over a UFD domain is UFD. A non-unit and non-zero element a of an
integral domain is called indecomposable if it cannot be written as product
of two non-units. Primes are indecomposable. The converse is true in UFD-
domains. It is often easy to show that any element of an integral domain is the
product of finitely many indecomposable elements. For example this is case in
On. On can prove this by induction on

o(P ) := sup{k; P ∈ mkn}.
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An integral domain is UFD if and only of every element is the product of finitely
many indcomposable elements and if each indecomposable element is a prime.

4.3 Theorem. The ring On is a UFD-domain.

Proof. We have to show that every indecomposable element P ∈ On is a
prime. The proof is given by induction on n. By the preparation theorem one
can assume that P ∈ On−1[zm] is a Weierstrass plynomial. It can be checked
that P is also indecomposable in On−1[zn]. By induction assumption On−1 is
UFD. The theorem of Gauss implies that On−1[zn] is UFD. Hence P is a prime
element in On−1[zn]. By theorem 4.1 then P is prime in On. tu

Recall that a ring R is called noetherian if each ideal a is finitely generated,
a = Ra1 + · · · + Ran. Then any sub-module of a finitely generated module is
finitely generated.

4.4 Theorem. The ring On is noetherian.

Proof. Again we argue by induction on n. Let a ⊂ On be an ideal. We want to
show that it is finitely generated. We can assume that a is non-zero. Take any
non-zero element P ∈ a. By the preparation theorem we can assume that P is
a Weierstrass polynomial. It is sufficient to show that the image of a in On/(P )
is finitely generated. This is the case, since On−1 is noetherian by induction
hypothesis and then On−1[zn] is noetherian by Hilbert’s basis theorem. tu

5. Hypersurfaces

Under a hypersurface we understand here the set of zeros of a non-zero analytic
function on a domain D ⊂ Cn. For their study we will make use the theory
of the discriminant. It can be used to characterize square free elements of a
polynomial ring over factorial rings.

An element a of an integral domain is called square free if a = bc2 implies
that c is a unit. Primes are square free. Notice our convention: units are square
free but they are no primes.

There is a close relation between the question of divisibility of power series
and their zeros.

5.1 Proposition. Let P,Q ∈ On , Q 6= 0, be two power series. We assume
that there exists a neighborhood of the origin in which both series converge and
such that every zero of Q in this neighborhood is also a zero of P . Then there
exist a natural number n such that Pn is divisible by Q,

Pn = AQ, A ∈ On.

If Q is square free, one can take n = 1, i.e. then P is divisible by Q.
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Proof. Because of the existence of the prime decomposition, we can assume
that Q is square free. By our standard procedure, we can assume that Q is a
Weierstrass polynomial. From the division theorem we obtain

P = AQ+B, B ∈ On−1[zn], degzn B < d.

By assumption we know in a small neigborhood of the origin

Q(z) = 0 =⇒ B(z) = 0.

Now we make use of the fact that Q is a square free element of On. We know
then that Q is square free in On−1[zn]. Hence the discriminant of Q is different
from 0. Now we consider the polynomial

Qa(z) = Q(a1, . . . , an−1)(z) ∈ C[z]

for fixed sufficiently small a = (a1, . . . , an−1). The discriminant dQa can be
obtained from dQ by specializing z1 = a1, . . . , zn−1 = an−1. This follows for
example from the existence of the universal polynomial ∆n. Therefore there
exists a dense subset M of a small neighborhood of 0 such that dQa is different
from 0 for a ∈ M . This means that Qa is a square free element from C[z].
Since C is algebraically closed, this means nothing else that Qa has no multiple
zeros. Hence Qa has d pairwise distinct zeros (for a ∈M). As we pointed out
several times the d zeros are arbitrarily small if a is sufficiently small. We
obtain that z 7→ B(a, z) has d pairwise distinct zeros if a lies in a dense subset
of a sufficiently small neighborhood of the origin. It follows that Ba vanishes
for these a. By a continuity argument we obtain B = 0. tu

5.2 Definition. A holomorphic function

f : D −→ C (D ⊂ Cn open)

is called reduced at a point a ∈ D if the power series of f at a is a square free
element of C{z1 − a1, . . . zn − an}.

(The notation C{z1 − a1, . . . zn − an} has been introduced for the same time.
This ring is just the usual ring of power series. The notation just indicates
that the elements now are consider as functions around a. It is the same to
consider f(z − a) and then to take the power series expansion around 0.) If a
is a non-zero element of an UFC-domain one can define its “square free part”
b. This is a square free element which divides a and such that a divides a
suitable power of a. The square free part is determined up to a unit of R. The
definition of b is obvious fron the prime decomposition of a. For example the
square free part of z2

1z
3
2 is z1z2. If we want to investigate local properties of a

hypersurface A around a given point a ∈ A we can assume that the defining
equation f(z) = 0 in a small neighborhood of a is given by a function f which
is reduced at a.
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5.3 Proposition. Let f be a holomorphic function on an open set U ⊂ Cn.
The set of all points a ∈ U in which f is reduced is an open set.

For the prove of 5.3 we need the following two remarks:

5.4 Remark. Let P ∈ On−1[zn] be a normalized polynomial, which is square
free in the ring On−1[zn]. Then P is square free in the bigger ring On.

We already used this result for Weierstrass polynomials where it is a conse-
quence of 4.2. For the general case, we use the preparation theorem

P = UQ, U unit in On, Q Weierstrass polynomial.

We know that U is a polynomial in zn (3.7). This implies that Q is square free
in the ring On−1[zn] and therefore in On. But U is a unit in On ist.Therefore
P is square free in On. tu

The same argument shows:

5.5 Remark. Let P ∈ On−1[zn] be a normalized polynomial which is prime
in the ring On−1[zn]. Then P either is a unit in On or it is a prime in On
Proof of 5.3. Let a ∈ D be a point in which f is reduced. We can assume a = 0
and that the power series P = f0 is a Weierstrass polynomial. We consider the
power series of f in all points b in a small polydisk around 0.

fb ∈ C{z1 − b1, . . . , zn − bn}

This power series is still a normalized polynomial in C{z1 − b1, . . . , zn−1 −
bn−1}[zn − bn] but usually not a Weierstrass polynomial. By assumption P
is square free (in On but then also in On−1[zn] since it is a Weierstrass poly-
nomial). Therefore the discriminant does not vanish. This (and the universal
formula for the discriminant) shows that the discriminant of Pb does dot vanish
if b is close to 0. This means that Pb is square free in the polynomial ring and
square free in Oa by 5.4. tu

6. Analytic Algebras

All rings are assumed to be commutative and with unit element. Homomor-
phisms of rings are assumed to map the unit element into the unit element.

Recall that an algebra over a ring A by definition is a ring B together with
a distinguished ring homomorphism ϕ : A→ B. This ring homomorphism can
be used to define on B a structure as A-module, namely

ab := ϕ(a)b (a ∈ A, b ∈ B).
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Let B,B′ be two algebras. A ring homomorphism B → B′ is called an algebra
homomorphism if it is A-linear. We will consider C-algebras A. If A is different
form zero then the structure homomorphism C → A is injective. Usually
identify complex numbers with their image in A. So each non-zero C-algebra
contains the field of complex numbers as sub-field.

6.1 Definition. An analytic algebra A is a C-algebra which is different from
the zero algebra and such there exist an n and a surjective algebra homomor-
phism On → A.

A ring R is called a local ring if it is not the zero ring and if the set of non-
units is an ideal. This ideal is then a maximal ideal and moreover, it is the
only maximal ideal. We denote this ideal by m(R). Hence R−m(R) is the set
of units of R. The algebra On is a local ring. The maximal ideal mn consists
of all P with P (0) = 0.

Let A be a local ring and A ⊂ m be a proper ideal. Then A/a is a local ring
too and the maximal ideal of A/a is the image of a. The shows the following.
If A is a local ring and A→ B is a surjective homomorphism onto a non-zero
ring, then B is also a local ring and the maximal ideal of A is mapped onto the
maximal ideal of B. In general a homomorphism A → B between local rings
is called local if it maps the maximal ideal of A into the maximal ideal of B.
The natural map A/m(A)→ B/m(B) is an isomorphism.

In particular, analytic algebras are local rings and the homomorphismOn →
A in Definition 6.1 is a local homomorphism. The natural maps

C −→ On/mn −→ A/m(A)

are isomorphisms. For a ∈ A we denote by a(0) the its image in A/m(A) by
a(0). Recall that we identify this with a complex number. The maximal ideal
of A consists of all a ∈ A such that a(0) = 0.

We notice that an arbitrary algebra homomorphism f : A → B between
analytic analytic algebras is local. Otherwise there would be non-unit a ∈ A
such that b = f(a) is a unit. Then we would have f(a− b(0)) = b− b(0). The
element a− b(0) is a unit but its image b− b(0) is not. This is not possible.

Our next task is to describe the homomorphisms Om → On. In Lemma
1.6.4 we already introduced substitution homomorphisms They are defined by
means of elements P1, . . . , Pn ∈ Om that are contained in the maximal ideal.
If P (z1, . . . , zn) is an element of On, one can substitute the variables zi by the
power series Pi. This substitution gives a homomorphism

On −→ Om, P 7−→ P (P1, . . . , Pn).

6.2 Lemma. Each algebra homomorphism On → Om is a substitution
homomorphism.
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Proof. Let ϕ : On → Om an algebra homomorphism. Since it is local, the
elements Pi := ϕ(zi) are contained in the maximal ideal. Hence one can con-
sider the substitution homomorphism ψ defined by them. We claim ϕ = ψ.
At the moment we only know that ϕ and ψ agree on C[z1, . . . , zn]. Let
P =

∑
ν aνz

ν ∈ On. We claim ϕ(P ) = ψ(Q). For this we decompose for
a natural number k

P = Pk +Qk, Pk =
∑

ν1+···+νn≤k

aνz
ν .

Then Qk is contained in the k-the power mk of the maximal ideal. (Obviously
mk is generated by all zν where ν1 + · · ·+ νn ≥ k.) We get

ϕ(P )− ψ(P ) = ϕ(Qk)− ψ(Pk) ∈ mk.

This is true for all k. But the intersection of all mk is zero. This proves 6.4.
tu

We have to generalize 6.4 to homomorphisms ϕ : A → B of arbitrary
analytic algebras A,B. There is one problem. Let m(B) be the maximal ideal
of B. It is not obvious that the intersection of all powers of m(B) is zero. But it
is true by general commutative algebra (Krull’s intersection theorem, Theorem
VII.5.3).

6.3 Lemma. Let A → B a homomorphism of analytic algebras. Assume
that surjective algebra homomorphism On → A and Om → B are given. There
exists a (substitution) homomorphism On → Om such the the diagram

A −→ B
↑ ↑
On −→ Om

commutes.

The proof should be clear. The variable zi ∈ On is mapped to an element of
A then of B. Consider in Om an inverse image Pm. These elements define
a substitution homomorphism On → Om. From Krull’s intersection theorem
follows that the diagram commutes. tu

From 6.3 follows:

6.4 Lemma. Let f1, . . . , fm be elements of the maximal ideal of an analytic
algebra A. There is a unique homomorphism C{z1, . . . , zn} → A such that
zi 7→ fi.

We denote the image by C{f1, . . . , fn} and call it the analytic algebra gener-
ated by f1, . . . , fn. We want to derive a criterion that C{f1, . . . , fn} = A. A
necessary condition is that f1, . . . , fn generate the maximal ideal. Actually it
is also sufficient:
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6.5 Lemma. Let f1, . . . , fn be elements of the maximal ideal of an analytic
algebra A. Then the following conditions are equivalent:

a) They generate the maximal ideal.

b) A = C{f1, . . . , fn}.

It is easy to reduce this to the ring A = C{z1, . . . , zn}. Let P1, . . . , Pm be
generators of the maximal ideal. We can write

zi =
∑
ij

AijPj .

Taking derivatives and evaluating at 0 we get: The rank of the Jacobian matrix
of P = (P1, . . . , Pm) is n. We can find an system consisting of n elements, say
P1, . . . , Pn, such that the Jacobian is invertible. Now one can apply the theorem
of invertible functions. tu

7. Noether Normalization

We consider ideals a ∈ On and their intersection b := a ∩ On−1 with On−1.

7.1 Lemma. Let a ⊂ On ba a zn-general ideal. Then On/a is a On−1/b-
module of finite type with respect to the natural inclusion

On−1/b ↪→ On/a (b = On−1 ∩ a).

Additional remark. If a contains a Weierstrass polynomial of degree d, then
On/a is generated as On−1/b-module by the images of the powers

1, zn, . . . , z
d−1
n .

The proof is an immediate consequence of the division theorem. tu

7.2 Noether normalization theorem. Let A be an analytic algebra. There
exists an injective homomorphism of analytic algebras

C{z1, . . . , zd} ↪→ A (d suitable)

such that A is a module of finite type over C{z1, . . . , zd}. The number d is
unique (it is the Krull dimension).
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Proof. The existence of such an embedding follows from 7.1 by repeated appli-
cation. One makes use of the following simple fact. If A ⊂ B and B ⊂ C are
finite then A ⊂ C is finite too. The essential point is the uniqueness of d. It
follows from the characterization as Krull dimension. tu

The Noether normalization admits a refinement if the starting ideal a is a
prime ideal. Recall that an ideal p ⊂ R in a ring R is called a prime ideal if
the factor ring is an integral domain.

So let P ⊂ On be a prime ideal and p = On−1 ∩P. We have an injective
homomorphism

On−1/p ↪→ On/P

which shows that p is also a prime ideal. Let K resp. L be the field of quotients
of On−1/p resp. On/p. We have a commutative diagram

On−1/p ↪→ On/P
∩ ∩
K ↪→ L .

We distinguish two cases which behave completely different:

7.3 Theorem, the first alternative. Let P ⊂ On = C{z1, . . . , zn} be a
zn-general prime ideal. Assume

P ∩ On−1 = {0}.

Then P is a principal ideal (i.e. generated by one element).

Proof. Let Q ∈ P be a zn-general element. One of the prime divisors of Q must
be contained in P. It is zn-general too. Hence we can assume that Q is prime.
We will show that Q generates P. By the preparation theorem we can assume
that Q is a Weierstrass polynomial. Let P ∈ P be an arbitrary element. From
7.1 applied to the ideal a = (Q) we get an equation

P k +Ak−1P
k−1 + . . .+A0 ≡ mod (Q), Ai ∈ On−1 (0 ≤ i < k).

The equation shows that A0 is contained in P, hence in P∩On−1. By assump-
tion this ideal is 0 and we obtain A0 = 0. We see

P · (P k−1 + . . .+A1) ≡ 0 modQ.

But (Q) is a prime ideal and we get

either P ∈ (Q) or P k−1 + . . .+A1 ≡ mod (Q).

Repeated application of this argument shows P ∈ (Q) in any case. tu
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7.4 Theorem, the second alternative. Let

P ⊂ On = C{z1, . . . , zn}

be a prime ideal which is not a principal ideal. After a suitable linear transfor-
mation of the coordiantes we can obtain:

a) P is zn-general.
b) The rings

On−1/p ↪→ On/P (p = On−1 ∩P)

have the same field of quotients K = L.

“After a suitable linear transformation of the coordinates” means that we allow
to replace P by its image under the automorphism

On → On, P (z) 7→ P (Az),

for suitable A ∈ GL(n,C).

Proof of 7.4. We may assume that P is already zn-general. From 7.3 we know
that

p = P ∩ On−1

is different from 0. After a linear transformation of the variables (z1, . . . , zn−1)
we can assume that p is zn−1-general. The ideal P remains zn-general. Now
we consider

q = p ∩ On−2 = p ∩ On−2.

The extension

On−2/q ⊂ On/P

is of finite type. We denote the fields of fractions by K ⊂ L. This is a finite
algebraic extension and we have L = K[z̄n−1, z̄n]. The bar indicates that we
have to take cosets mod P . From elementary algebra we will use

Theorem of primitive element. Let K ⊂ L be a finite algebraic extension
of fields of characteristic zero, which is generated by two elements, L = K[a, b].
Then for all x ∈ K but a finite number of exceptions one has

L = K[a+ xb].

As a consequence every finite algebraic extension of fields of characteristic zero
is generated by one element. This is the usual formulation of this theorem.
The above variant is contained in the standard proofs.

We obtain that

L = K[z̄n−1 + az̄n].
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for almost all a ∈ C. We consider now the following (invertible) linear trans-
formation of variables,

wn−1 = zn−1 + azn, wj = zj for j 6= n− 1.

We have to take care that P remains general in the new coordinates, which now
means wn-general. This possible because we have infinitely many possibilities
for a.

Thus we have proved that we can assume without loss of generality L =
K[z̄n−1]. But then the quotient fields of On−1/p and On/p agree. tu

8. Geometric Realization of Analytic Ideals

Let a ⊂ On be a proper ideal of power series. The ring On being noetherian
we can choose a finite system of generators a = (P1, . . . , Pm). The generators
converge in a common polydisk U around 0 and in this polydisk the set

X := {z ∈ U ; P1(z) = · · · = Pm(z) = 0}

is well defined. We call X a geometric realization of a. This realization depends
on the choice of the generators and of U . But it is clear that two geometric
realizations X,Y agree in a small neighborhood of the origin. This means that
for all local questions around the origin the geometric realization behaves as if
it were unique.

The technique of the last section was to consider the intersection b = a ∩
On−1. Let X resp. Y be geometric realizations of a resp. b. We consider the
projection (cancelation of the last variable)

Cn −→ Cn−1, (z1, . . . , zn) 7−→ (z1, . . . , zn−1).

The generators of b can be expressed by means of the generators of a. Therefore
a point a ∈ X which is sufficiently close to the origin will be mapped to a point
of Y . If we replace X by its intersection with a small polydisk around Y , we
obtain a map

X −→ Y

induced by the projection. We call this map the geometric realization of the
pair (a, b = a ∩ On−1). Again this realization is uniquely determined in an
obvious local sense around 0.

An ideal a ⊂ On is called zn-general if it contains a zn-general element.
For the theory of ideals in On it is sufficient to restrict to zn-general ideals,
since every non-zero ideal can be transformed into a zn-general one by means
of linear change of coordinates.
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8.1 Remark. Let a be a zn-general ideal in On and b = a ∩ On−1. There
exists a geometric realization f : X → Y of (a, b) such that the inverse image
of 0 ∈ Y consists of only one point, namely 0 ∈ X. Furthermore for every
neighborhood 0 ∈ U ⊂ X there exists a neighborhood 0 ∈ V ⊂ Y such that

f−1(V ) ⊂ U.

Proof. There exists a Weierstrass polynomial P ∈ a. Close to the origin
the inverse image is contained in the set of zeros of P (0, . . . , 0, zn) = 0. But
P (0, . . . , 0, zn) = zdn implies that 0 is the only solution. The rest comes from the
frequently used argument of “continuity of zeros” of a Weierstrass polynomial.

tu
We want to mention here an important result, which we cannot prove at the

moment but which is always behind the scenes and motivates our constructions:

The geometric realization X → Y (under the assumption that a is zn-general)
can be chosen such that it is surjective and proper and such that the fibres are
finite.

We consider now the case that P ⊂ On is a prime ideal of the second alternative,
i.e. it is zn-general and On/P and On−1/p (p := P∩On−1) have the same field
of fractions. We consider a geometric realization f : X → Y of the pair (P, p).
We may assume that X is closed in the polydisk U(%1,...,%n)(0) and Y is closed
in U(%1,...,%n−1)(0).

8.2 Proposition. Let P ⊂ On be a zn-general prime ideal and p := P ∩
On−1. We assume that the fieds of fractions of On/P and On−1/p agree (second
alternative). There exists a geometric realization f : X → Y of the pair (P, p)
such the following holds:

There exists a power series A ∈ On−1 which is not contained in p and which
converges in a polydisk containing Y . Let be

S :=
{
z ∈ Y ; A(z) = 0

}
and T := f−1(S).

The restriction
f0 : X − T −→ Y − S

of f is topological.

Proof. We make use of the fact that the two fields of fractions agree. Expressing
the coset of zn as a fraction we obtain:

There exist power series A,B ∈ On−1 with the properties

A 6∈ p Azn −B ∈ P.
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We can choose our realization X → Y such that A and B both converge in a
polydisk containing Y . Especially the sets S and T are defined now. All points
z ∈ X satisfy

znA(z1, . . . , zn−1) = B(z1, . . . , zn−1).

This means

zn =
B(z1, . . . , zn−1)

A(z1, . . . , zn−1)

if z is not contained in T . So we have proved the injectivitiy of the map
f0 : X − T → Y − S.

It remains to show that f0 is surjective for properly chosen X and Y . To
do this we choose X and Y as closed subsets of polydisks. This is of course
possible,

Y ⊂ U(%1,...,%n−1)(0), X ⊂ U(%1,...,%n)(0) (both closed).

We assume furthermore %1 = · · · = %n−1 and write

r := %1 = · · · = %n−1, ε := %n.

We define

g(z1, . . . , zn−1) := (z1, . . . , zn), zn :=
B(z1, . . . , zn−1)

A(z1, . . . , zn−1)
.

What we need is g(z) ∈ X for z ∈ Y − S. In a first step we show:

8.3 Lemma. Let P ∈ P ∩ On−1[zn]. There exists a r′, 0 < r′ ≤ r, such that

P (g(z)) = 0 for all z ∈ Y − S, ||z|| < r′.

(|| · || denotes the maximum norm.)
Proof. We choose r′ small enough such that the coefficients of P converge in
the polydisk with multiradius (r′, . . . , r′). Let d be the degree of P . Then AdP
can be written as polynomial in Azn with coefficients from On−1. By means of
Azn = (Azn −B) +B we can rearrange P as polynomial in Azn −B,

P =

d∑
j=0

(Azn −B)dPj (Pj ∈ On−1).

We want to show P (g(z)) = 0 which is equivalent to P0(z) = 0. But this is clear
because P0 ∈ P ∩ On−1 = p. This completes the proof of the Lemma. tu

We continue the proof of 8.2 and claim:
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There exists r′, 0 < r′ ≤ r, such that

|zn| < ε for ||(z1, . . . , zn−1)|| < r′.

One applies the Lemma 8.3 to a Weierstrass polynomial Q contained in P and
uses the standard argument of “continuity of roots”.

The set X can be defined by a finite number of equations P1(z) = · · · =
Pm(z), Pj ∈ P, which converge in the polydisk of multiradius (r, . . . , r, ε). By
means of the division theorem (Pj = AjQ + Bj) and the above lemma 8.3 we
obtain Pj(g(z)) = 0 and hence g(z) ∈ X for ||z|| < r′ and suitable r′ ≤ r. If
we replace Y resp. X by their intersections with the polydisks of multiradius
(r′, . . . , r′) resp. (r′, . . . , r′, ε) we obtain that f0 is surjective and then that f0 is
bijective. The above formula for zn shows that the inverse of f−1

0 is continuous.
tu

Lemma 8.2 should be interpreted as a result which states that the realization
X → Y in case of the second alternative is close to a biholomorphic map. One
could say that f is bimeromorphic. But there is a big problem up to now. In
principle it could be that S equals the whole Y . The Rückert Nullstellensatz
will show that this is not the case. This nullstellensatz will be the goal of the
next section.

9. The Nullstellensatz

A subset X ⊂ Cn is called an analytic subset, if for every point a ∈ X there
exists an open neighborhood a ∈ U ⊂ Cn and finitely many holomorphic
functions f1, . . . , fm : U → C such that

X ∩ U =
{
z ∈ U ; f1(z) = · · · = fm(z) = 0.

}
.

A pointed analytic set (X, a) is an analytic set with a distinguished point a.
We are interested in local properties of X at a and can assume for this purpose
that a = 0 is the origin. For an ideal a ⊂ On that is contained in the maximal
ideal we considered the notion of a geometric realization X. This is an analytic
set with distinguished point 0.

We associate to a an ideal A ⊂ On. A power series P ∈ On belongs to A if
there exists a small polydisk U around 0 such that P converges in U and such
that p vanishes on X ∩ U . The ideal A is called the vanishing ideal of (X, 0).
It is a proper ideal, i.e. contained in the maximal ideal mn. It is clear that the
vanishing ideal A of the realization only depends on a and that a ⊂ A. We call
A the saturation of a.
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The Radical of an Ideal

Let R be a ring. The radical rad a of an ideal a is the set of all elements a ∈ R
such that a suitable power an, n ≥ 1 is contained in a. It is easy to prove
that rad a is an ideal which contains a. Furthermore rad rad a=rad a. An ideal
is called radical ideal is it coincides wit its radical. This equivalent with the
property that R/a is a reduced ring, i.e. a ring which contains no nilpotent
elements differen form 0. Let R be a UFD-domain. A principal ideal Ra, a 6= 0
is a radical ideal if and only if a is square free. We are able to state and prove
a fundamental result of local complex analysis:

9.1 The Rückert nullstellensatz. The saturation A of a proper ideal
a ⊂ On is the radical of a,

A = rad a.

Proof. We want to reduce the nullstellensatz to prime ideals a. Prime ideals
are of course radical ideals. The easiest way to do this reduction is to use a
little commutative algebra, namely:

Every proper radical ideal in a noetherian ring is the intersection of finitely
many prime ideals.

We use this and write the radical of our given ideal as intersection of prime
ideals:

rad a = p1 ∩ . . . ∩ pm.

The saturation A of a is contained in the intersection of the of the saturations
of the prime ideals. If we assume the nullstellensatz for prime ideals we obtain

A ⊂ p1 ∩ . . . ∩ pm = rad a

This implies A = rad a because the converse inclusion is trivial.

Now we can assume that P := a is a prime ideal. We have to distinguish
the two alternatives:

First alternative. The ideal P is principal, P = (P ). The element P is a prime
element in On. In this case the nullstellensatz is a consequence of the theory
of hypersurfaces (5.1).

Second alternative. P is not a principal ideal. Then we can assume that P is
zn-general, that the extension

On−1/p ↪→ On/P (p = P ∩ On−1).

is module-finite and that the two rings have the same field of fractions. We
make use of the geometric realization 8.2.

f : X −→ Y
∪ ∪

f0 : X − T ∼−→ Y − S .
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We indicated already in the last section that in principle S could be the whole
Y before the nullstellensatz is known. But now we are in better situation. We
can prove the nullstellensatz by induction on n and therefore assume:

The nullstellensatz is true for p.

From this we derive:

Let P0 ∈ On−1 be a power series which converges in a small polydisk V around
0 and vanishes on (Y − S) ∩ V . Then P0 is contained in p.

This is quite clear, because AP0 (A as in 8.2) vanishes on Y ∩ V . The nullstel-
lensatz for p gives AP0 ∈ p and get P0 ∈ p because p is a prime ideal and A is
not contained in p.

So in some sense the set S is negligible. The proof of the nullstellensatz now
runs as follows. We take an element P from the saturation of P. The claim is
P ∈ P. The idea is to use an integral equation

Pm + Pm−1P
m−1 + . . .+ P0 ∈ P, Pi ∈ On−1 (0 ≤ i < m).

We take a minimal degree m. We distinguish two cases:

First case. P0 is contained in p: Then

P · (Pm−1 + Pm−1P
m−2 + . . .+ P1) ∈ P.

Because of the minimality of M the expression in the bracket is not contained
in P. But P is a prime ideal and we obtain P ∈ P what we wanted to show.

Second case. P0 is not contained in p: We know that P vanishes on X in a
neighborhood of 0. We can assume that P vanishes on the whole X (use 8.1).
Using the bijection X − T → Y −S we obtain that P0 vanishes on Y −S. But
as we have seen this implies P0 ∈ p which is a contradiction. This completes
the proof of the nullstellensatz. tu

We want to introduce the notion “thin at” which reflects that the set S is
negligible in Y in a certain sense.

9.2 Definition. Let Y ⊂ X ⊂ Cn be analytic sets and a ∈ Y a distinguished
point. We call Y thin at a if the following is true:

If f is an analytic function on a neighborhood a ∈ U ⊂ Cn which vanishes
on (X − Y )∩U then f vanishes on X in a (possibly smaller) neighborhood
of a.

So the essential part of the proof of the nullstellensatz was to show:

9.3 Remark. Let P ⊂ On be a prime ideal with geometric realization X. Let
P ∈ On be a power series which is not contained in P. Assume that P converges
in a polydisk around 0 which contains X. Then Y := {z ∈ X; P (z) = 0} is
thin at 0.
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Again we get an obvious problem. On should expect that the property “thin
at a” extends to a full neighborhood of a and that Y is thin in the usual
topological sense in X (in this neighborhood). At the moment we are not able
to prove this. This needs the principle of coherence which will be our next goal.
Before we have developed this basic tool we must (and can) be content with
the notion “thin at”. But the reader should have in mind that “thin at” is in
reality the same as thin in a neighborhood.

10. Oka’s Coherence Theorem

We introduced already the ring

C{z1 − a1, . . . , zn − an}

of power series. Every holomorphic function f on an open neighborhood of a
has a power series expansion in this ring. Instead of this one could consider
the function f(z− a) and take its power series expansion around 0. We have a
natural injection

C{z1 − a1, . . . , zn−1 − an−1} −→ C{z1 − a1, . . . , zn − an}

and can define the ring

C{z1 − a1, . . . , zn−1 − an−1}[zn − an] ⊂ C{z1 − a1, . . . , zn − an}

in an obvious way. An element P of this ring is called a Weierstrass polyno-
mial, if it is normalized as polynomial in zn − an and if it has the property
P (a1, . . . , an−1, zn−an) = (zn−an)d, where d is the degree of P in the variable
zn − an.

Let m be a natural number. We are interested in OU,a-submodules of the
free module OmU,a. In the case m = 1. Such a submodule is nothing else but
an ideal and ideals are the modules in which we are interested. For technical
reasons it is important to allow arbitrary m. Every submodule ofOmU,a is finitely
generated because the ring of power series is noetherian.

We are not only interested in individual modules but in systems of modules.
This means that we assume that for every a ∈ U a submodule

Ma ⊂ OmU,a

is given. We denote this system usually by a single letter,

M = (Ma)a∈U .

If V is an open subset of U one defines in an obvious way the restricted system
M|V := (Ma)a∈V .
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10.1 Definition. A system

M = (Ma)a∈U , Ma ⊂ OmU,a,

is called finitely generated, if there exist finitely many vectors of holomorphic
functions

f (j) ∈ O(U)m for 1 ≤ j ≤ k,

such that the Oa-module Ma is generated by the germs

(f (1))a, . . . , (f
(k))a.

The germs are taken of course componentwise.

10.2 Definition. The system M = (Ma)a∈U is called coherent, if it is
locally finitely generated, which means that every point a ∈ U admits an open
neighborhood a ∈ V ⊂ U such that M|V is finitely generated.

Let p, q be natural numbers and let

F =

F11 . . . F1p

...
...

Fq1 . . . Fqp


by a matrix of holomorphic functions on U . We can consider the O(U)-linear
map

F : O(U)p −→ O(U)q

which is defined by

Ff := g; gi :=

p∑
j=1

Fijfj (1 ≤ i ≤ q).

As the notation indicates we identify the matrix and the linear map. For every
point a ∈ U we can consider the germ Fa = ((Fik)a) and the corresponding
map

Fa : OpU,a → O
q
U,a.

10.3 Oka’s coherence theorem. Let

F : O(U)p → O(U)q (U ⊂ Cn open)

be an O(U)–linear map. The system

M = (Ma)a∈U Ma := kernel (Fa)

is coherent.
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The proof will be given in three steps:
First step, reduction to the case q = 1. This will be done by induction on q.
So let’s assume q > 1 and that the theorem is proved for q − 1 instead of q.
Let a0 ∈ U be a distinguished point. We want to prove that M is finitely
generated in a neighborhood of a. For this purpose we can replace U by a
smaller neighborhood of a0. We consider the two projections

O(U)q = O(U)q−1 ×O(U)
α−→ O(U)
β−→ O(U)q−1.

By the induction hypothesis, applied to

α ◦ F : O(U)p → O(U)q−1

we can assume that there exist a finite system

A(1), . . . , A(m) ∈ O(U)p,

such that the germs A
(1)
a , . . . , A

(m)
a generated the kernel of (α ◦ F )a for each

point a ∈ U . Now we consider the linear map

G : O(U)m −→ O(U)p, (f1, . . . , fm) 7−→ f1A
(1) + . . .+ fmA

(m),

and compose it with the projection β,

β ◦A : O(U)m → O(U).

We assumed that the case q = 1 is proved and can therefore assume that there
exists a finite system

B(1), . . . , B(l) ∈ O(U)m,

whose germs in an arbitrary point a ∈ U generate (β ◦ A)a. It is easy to see
that the germs of

C(i) = G(B(i)) ∈ O(U)p (1 ≤ i ≤ m).

generate the kernel of our original Fa. Thus we have show:

If Oka’s theorem is true for q = 1 in a given dimension n then it is true for all
q in this dimension.

Second step. The proof of Oka’s theorem rests on Oka’s Lemma, which is a
lemma for an individual ring of power series (not a system). Before we cam
formulate it, we need a notation:

On−1[zn : m] =
{
P ∈ On−1[zn]; degzn P < m

}
.

This is a free module over On−1 with basis 1, zn, . . . , z
m−1
n ,

On−1[zn : m] ∼= Omn−1.
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10.4 Oka’s Lemma. Let
F : Opn → On

be a On-linear map and let K be its kernel.

Assumption. The components of the matrix F are normalized polynomials in
On−1[zn] of degree < d (in the variable zn).

We consider the restriction of F

On−1[zn : m]p → On−1[zn : m+ d]

and denote by Km its kernel.

Claim. The On-module K is generated by Km for m ≥ 3d.

Proof. In a first step we assume that the first component of the map
F = (F1, . . . , Fp) is aWeierstrass polynomial (and not only a normalized po-
lynomial). We will prove Oka’s Lemma in this case with the better bound 2d
instead of 3d. Let G = (G1, . . . , Gp) ∈ K be an element of the kernel. The
division theorem gives

G = F1A+B, A ∈ Opn, B ∈ On−1[zn : d]p.

We notice that the elements

H(j) = (−Fj , 0, . . . , 0, F1, 0, . . . , 0) (1 < j ≤ p)

are contained in the kernel. The trivial formula

F1A =

p∑
j=2

AjH
(j) + (A1F1 + . . .+ApFp, 0, . . . , 0)

shows that besides G also the element H := B + (A1F1 + . . .+ApFp, 0, . . . , 0)
is contained in the kernel, i.e.

F1(B1 +A1F1 + . . .+ApFp) + F2B2 + . . .+ FpBp = 0.

This equation shows

F1(A1F1 + . . .+ApFp) ∈ On−1[zn : 2d].

Using again that F1 is a Weierstrass polynomial we obtain

A1F1 + . . .+ApFp ∈ On−1[zn : 2d].

Now we see that the components of H are contained in K2d. The trivial formula

G =

p∑
j=2

AjH
(j) +H
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finally shows that G is contained in the module which generated by the H(j)

and H, which are elements of K2d.

Now we treat the general case where F1 is not necessarily a Weierstrass
polynomial. We apply the preparation theorem

F1 = Q · U, Q Weierstrass polynomial, U unit in On.

We are interested in the solutions of the equation F1P1 +F2P2 + . . .+FpPp = 0
or equivalently

QP̃1 + F2P2 + . . .+ FpPp = 0 (P̃1 = UP1).

Since Q is a Weierstrass polynomial, this system is generated by solutions of
zn-degree < 2d. But UP1 is of degree < 3d if P1 is of degree < 2d. This
completes the proof of Oka’s lemma.

Third step, the proof of Oka’s theorem in the case q = 1.
The proof now is given by induction on n. As beginning of the induction can
be taken the trivial case n = 0. We have to consider a O(U)-linear map

F : O(U)p −→ O(U),

which is given by a vector (F1, . . . , FP ). We want to show that the kernel sys-
tem is finitely generated in a neighborhood of a given point and can assume
that this point is the origin 0 and that U is a polydisk with center 0. After a
suitable linear coordinate transformation we can assume that the power series
expansions of F1, . . . , Fp in the origin are zn-general. By the preparation the-
orem we can assume that the all are Weierstrass polynomials. If we consider
the power series expansions in other points a ∈ U we still have normalized
polynomials

(Fi)a ∈ C{z1 − a1, . . . , zn−1 − an−1}[zn − an].

(but usually not Weierstrass polynomials). The degree of all those polynomials
is bounded by a suitable number d. We write U in the form

U = V × (−r, r) (V ⊂ Cn−1)

and denote by O(V )[zn : m] the set of all holomorphic functions on U which
are polynomials in zn of degree < m with coefficients independent of zn. This
is a free O(V ) module,

O(V )[zn : m] ∼= O(V )m.

Our given map F induces an O(V )-linear map

O(V )[zn : m]p −→ O(V )[zn : m+ d]

‖ ‖
O(V )mp −→ O(V )m+d.

From the induction hypothesis we can assume that the kernel of this map is
finitely generated. From Oka’s lemma we obtain that the kernel system of F
is finitely generated. Oka’s theorem is proved. tu
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Some Important Properties of Coherent Systems

The following trivial property of coherent systems will be used frequently:

10.5 Remark. Let M,N be two coherent systems on an open set U ⊂ Cn.
AssumeMa0 ⊂ Na0 for a distinguished point a0. ThenMa ⊂ Na in a complete
neighborhood of a0 holds.

Corollary. Ma0 = Na0 implies M|V = N|V for an open neighborhood V of
a0.

Another trivial observation is

10.6 Remark. Let

F : O(U)m → O(U)l (U ⊂ Cn open)

be an O(U) linear map and let

M = (Ma)a∈U , Ma ⊂ OmU,a,

be a coherent system. The the image system

N = (Na)a∈U , Na := Fa(Ma) ⊂ OlU,a.

is coherent. (The same is true already for “finitely generated” instead for “co-
herent”.)

The next result is not trivial, it uses Oka’s theorem:

10.7 Proposition. Let M,N be two coherent systems on the open set
U ∈ Cn,

Ma,Na ⊂ OmU,a (a ∈ U).

The the intersection system M∩N which is defined by

(M∩N )a :=Ma ∩Na (a ∈ U)

is coherent too.

Proof. The idea is to write the intersection as a kernel. We explain the principle
for individual modules M,N ⊂ Rn of finite type over a ring R instead of a
system: We can write M resp. N as image of a linear map F : Rp → Rm resp.
G : Rq → Rm. We denote by K the kernel of the linear map

Rp+q −→ Rm, (m,n) 7−→ F (m)−G(n).

The image of K under the map

Rp+q −→ Rm, (m,n) 7−→ F (m).

is precisely the intersection M ∩N . The proof of 10.7 is clear now. On “reads”
M,N as coherent systems. By Oka’s theorem K now stands for a coherent
system and the image M ∩N is is coherent by 10.6. tu
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10.8 Proposition. Let

F : O(U)m → O(U)l (U ⊂ Cn open)

be an O(U)-linear map and let

N = (Na)a∈U , Na ⊂ OlU,a,

be a coherent system. The inverse image system

M = (Ma)a∈U , Ma := F−1
a (Na) ⊂ OmU,a,

is coherent.

In the special case N = 0 this is Oka’s theorem.
Proof. We explain again the algebra behind this result. Let F : Rm → Rl

be a R-linear map and N ⊂ Rl be a R-module of finite type. We assume
that F (Rm) ∩ N is finitely generated. Then there exists a finitely generated
submodule P ⊂ Rm such that F (P ) = F (Rm) ∩N . We also assume that the
kernel K of F is finitely generated. It is easily proved that F−1(N) = P + K
and we obtain that the inverse image is finitely generated. Thees argument
works in an obvious way for coherent systems and gives a proof of 10.8.

tu

11. Rings of Power Series are Henselian

The fact that power series are henselian rings can be considered as an ab-
stract formulation of the Weierstrass theorems. We don’t need the notion of
a henselian ring to formulate this result, but for sake of completeness we give
the definition of this property.

A local ring R with maximal ideal m and residue field k = R/m is called a
henselian ring if the following is true:

Let P ∈ R[X] be a normalized polynomial. We denote by p its image in k[X].
Assume that a, b ∈ k[X] are two coprime normalized polynomials with the prop-
erty p = ab. Then there exist normalized polynomials A,B ∈ R[X] with cosets
a, b such that P = AB.

We recall that the polynomial ring in one variable over a field is a principal ideal
ring. Therefore two polynomials a, b are coprime if and only if they generate
the unit ideal k[X].

We consider the special case where k is algebraically closed. Then every
normalized polynomial p ∈ k[X] is a product of linear factors, if b1, . . . bm are
the pairwise distinct zeros and d1, . . . , dm their multiplicities then

p(X) =

m∏
j=1

(X − bj)dj .
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This is a decomposition of p into m pairwise coprime factors. So the henselian
property means in this case:

There exists a decomposition P = P1 · · ·Pm of P as product of normalized
polynomials such that pj(X) = (X − bj)dj where pj denotes the image of Pj in
k[X].

We want to show that the ring of power series On = C{z1, . . . , zn} is henselian.
The residue field On/mn can be identified with C and the projection On →
On/mn corresponds to the map

C{z1, . . . , zn} −→ C, P 7−→ P (0).

We have to consider the polynomial ring over C{z1, . . . , zn}. Therefore we need
a letter for the variable. To stay close to previous notations we consider On−1

instead of On and formulate the Hensel property for this ring. Then we have
the letter zn free for the variable of the polynomial ring. After this preparation
we see that the following theorem expresses precisely that the rings of power
series are henselian.

11.1 Theorem. Let P ∈ On−1[zn] be a normalized polynomial of degree d > 0
and let β be a zero with multiplicity dβ of the polynomial z 7−→ P (0, . . . , 0, z).
Then there exists a unique normalized polynomial P (β) ∈ On−1[zn] which di-
vides P and such that

P (β)(0, . . . , 0, z) = (z − β)dP .

Moreover
P =

∏
P (0,...,0,β)=0

P β .

(Here β runs through the zeros of z 7→ P (0, . . . , 0, z).)

For the proof of this theorem we need three lemmas:

11.2 Lemma. Let P ∈ On−1[zn] be an irreducible normalized polynomial
with the property P (0) = 0. Then P is a Weierstrass polynomial.

Proof. By the preparation theorem we have P = UQ with a Weierstrass poly-
nomial and a unit U . We know that U is a polynomial. But P is irreducible.
We obtain U = 1 and P = Q. tu

11.3 Lemma. Let P ∈ On−1[zn] be an irreducible normalized polynomial of
degree d > 0. Then

P (0, . . . , 0, z) = (z − β)d

with a suitable complex number β.

Proof. Let β be a zero of the polynomial z 7→ P (0, . . . , 0, z). We rearrange
P as polynomial in zn − β and obtain by 11.2 a Weierstrass polynomial in
On−1[zn − β]. tu
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11.4 Lemma. Let P,Q be two normalized polynomials in On−1[z]. The poly-
nomials p(z) = P (0, . . . , 0, z), q(z) = P (0, . . . , 0, z) are assumed to be coprime.
(This means that have no common zero.) Then P and Q generate the unit
ideal ,

(P,Q) = On−1[zn].

Proof. The proof will use the theorem of Cohen Seidenberg: The ring polyno-
mial in one variable over a field is a principal ideal ring. Therefore

(p, q) = C[z].

We obtain that P and Q together with the maximal ideal mn−1 ⊂ On−1 gen-
erate the unit ideal,

(P,Q,mn−1) = On−1[zn].

Now we consider the natural homomorphism

On−1 −→ On−1[zn]/(P,Q).

This ring extension is module-finite. This follows immediately if one applies
the Euclidean algorithm to one of the polynomials P,Q. The theorem of Cohen
Seidenberg deals with module finite ring extensions. We give here a formulation
which is not the standard one but usually a lemma during the proof:

Let A be a noetherian local ring and A→ B a ring homomorphism such that B
is an A-module of finite type. We assume that B is different from the zero ring
(1B 6= 0B). Then there exists a proper ideal in B which contains the image of
the maximal ideal of A.

(One can take the ideal which is generated by the image of the maximal ideal
of A. The problem is to show that this is different form B.)

We continue the proof of 11.4. We want to show that P and Q generate
the unit ideal. We give an indirect argument and assume that this is not
the case. Then by Cohen Seidenberg we obtain that the image of mn−1 in
On−1[zn]/(P,Q) does not generate the unit ideal. This means the same that
(P,Q,mn−1) is not the unit ideal, which gives a contradiction. tu
Proof of theorem 11.1. Let P be a normalized polynomial of degree d >
0 in On−1[zn]. We decompose P into a product of irreducible normalized
polynomials

P = P1 · ·Pm.

From 11.3 we obtain

Pi(0, . . . , 0, z) = (z − βi)di (1 ≤ i ≤ m).

The numbers βi are the zeros of the polynomial P (0, . . . , 0, z). There is no need
that the βi are pairwise distinct. But we can collect the Pi for a fixed zero and
multiply them together. tu
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We need a further little lemma from algebra:

Let R be a UFD-domain and a, b two coprime elements. The natural homo-
morphism

R/(ab) −→ R/(a)×R/(b)

is injective. It is an isomorphism if a and b generate the unit ideal.

We apply this to thorem 11.1 and obtain:

11.5 Proposition. (We use the notations of 11.1.) The natural homomor-
phism

On−1[zn]/(P )
∼−→
∏
β

On−1[zn]/(P (β))

is an isomorphism.

We recall the the P β are Weierstrass polynomials in the ring On−1[zn − β].
From the division theorem we obtain

On−1[zn]/(P (β)) = C{z1, . . . , zn−1, zn − β}/(P (β)).

Now we can conclude from the Hensel property the following generalization of
the division theorem for normalized polynomials instead of Weierstrass poly-
nomials:

11.6 Proposition. (We use the notations of 11.1.) The natural homomor-
phism

C{z1, . . . , zn−1}[zn]/(P )
∼−→
∏
β

C{z1, . . . , zn−1, zn − β}/(P (β))

is an isomorphism. This remains true if one replaces P (β) by the power series
expansion of P in (0, . . . , 0, β).

The last statement uses the decomposition P =
∏
γ P

(γ) and the fact that all

factors besides the considered P (β) do not vanish at (0, . . . , 0, β) and hence
define units in C{z1, . . . , zn−1, zn − β}.
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12. A Special Case of Grauert’s Projection Theorem

Let U ⊂ Cn be an open domain. We consider a coherent system of ideals

a = (aa)a∈U , aa ∈ OU,a.

12.1 Definition. The support of a coherent system a of ideals is the of all
a ∈ U such that aa is different from the unit ideal.

If the system is finitely generated, let’s say by f1, . . . , fm then the support is
nothing else but the set of common zeros as follows from the nullstellensatz.
So we see:

12.2 Remark. The support of a coherent system of ideals is a closed analytic
subset of U .

Conversely analytic sets can be obtained at least locally as the support of
coherent systems.

Now we assume that U = V × C with a polydisk V ⊂ Cn−1. We consider
the projection

π : U −→ V, (z, zn) 7−→ Z.

It may happen that the image of an closed analytic set X ⊂ U in V is a closed
analytic set Y ⊂ V but this must be not the case. We want to give a sufficient
condition where it is the case. The idea is to consider rather coherent systems
than analytic sets. So let’s assume that X is the support of the coherent system
a. We expect that in good situations Y is the support of certain coherent system
on V . It’s not difficult to guess what this system should be.

12.3 Defintion. Let V ⊂ Cn−1 be a polydisk and a a coherent system of
ideals on U × V . We define for a point b ∈ V the ideal

bb := OV,b ∩
⋂

a∈U, π(a)=b

aa.

and call b := (bb)b∈V the projected system.

We recall that the projection π defines a natural inclusion OV,b ↪→ UU,a for all
a, b with π(a) = b.

Projections of analytic sets of the above kind can be very bad and similarly
the projected systems can be bad and need not to be coherent. But there exist
“good” projections:
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12.4 Theorem. Assume that V ⊂ Cn−1 is a polydisk and that a is a coherent
system on U = V × C, which can be generated by finitely many functions
f1, . . . , fm ∈ O(V )[zn]. We assume that P := f1 is a normalized polynomial.
Then the projected system b is coherent.

Additional remark. If X is the support of a, then Y = π(X) is the support
of b. Especially π(X) is a closed analytic subset of V . The map π : X → Y
has finite fibres.

(The truth is that the projection X → V is a proper analytic map with finite
fibres. The above theorem can be considered as a special case of the deep
projection theorem of Grauert.)

Proof of 12.4. The proof will use Oka’s coherence theorem and the Hensel
property of rings of power series. The ideal aa is the unit ideal if P (a) 6= 0.
For every b ∈ V the number of a ∈ U with π(a) = b and P (a) = b is finite.
Therefore bb is the intersection of finitely many ideals:

bb := OV,b ∩
⋂

π(a)=b, P (a)=0

aa.

The ideal bb contains 1 if and only this is the case for all aa, π(a) = b. We see
that the additional remark will follow automatically from the coherence of b.

We want to consider the ideal

Ib ⊂ OV,b[zn]/(Pb),

which is generated by the f1, . . . , fn (more precisely by their images). We have
to consider this ideal also as OV,b-module. It is of finite type over this ring,
more precisely it is generated as module over this ring by the elements

fiz
j
n (1 ≤ i ≤ m, 0 ≤ j < d).

This uses the Euclidean algorithm, which gives an isomorphism

OdV,b
∼−→ OV,b[zn]/(Pb).

A vector (H0, . . . ,Hd) is mapped to
∑
Hjz

j
n. We take the inverse image of Ib

and get a submodule
Mb ⊂ OdV,b.

From the given generators we see that the system M = (Mb)b∈V is finitely
generated hence coherent on V . This system is closely related to our projected
ideals bb:

Claim. The projected ideal bb is precisely the inverse image of Ib with respect
to the natural map

OV,b −→ OV,b[zn]/(Pb).
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We assume for a moment that the claim is proved. Then b can be considered as
inverse image of the coherent system M. But Oka’s coherence theorem (10.8)
then implies that b is coherent. So it remains to prove the claim:

Proof of the claim. In this proof the Hensel property of rings of power series
will enter. We have to make further use of our normalized polynomial P ∈
O(V )[zn],

P = zdn + Pd−1z
d−1
n + . . .+ P0.

Its coefficients Pj are holomorphic functions on V . We will use the power
series expansion (Pj)b ∈ OV,b for varying points b ∈ V . We have to consider
the image of P in OV,b[zn],

Pb = zdn + (Pd−1)bz
d−1
n + . . .+ (P0)b ∈ OV,b[zn].

We also have to use the ring OV,b[zn]/(Pb). The Hensel property of rings of
power series gave us important information for this ring. Applying 11.6 we
obtain a natural isomorphism*)

OV,b[zn]/(Pb)
∼−→
∏
β

OU,(b,β)/(P
(β)
b ).

Here β runs over the zeros P (b, β) = 0. The elements P
(β)
b ∈ OV,b come from

the “Hensel decomposition”

Pb =
∏
β

P
(β)
b , P

(β)
b (b, zn) = (zn − β)dβ .

We determine the image of Ib under this isomorphism. For this we use the
simple fact that an ideal c ⊂ A×B in the cartesian product of two rings always
is the direct product of two ideals, c = a× b, where a ⊂ A and b ⊂ B are the
projections of c. Using this and the definition (12.4) of a we see:

The image of the ideal Cb in
∏
β OU,(b,β)/(P

(β)
b ) is the direct product of the

ideals ā(b,β), which mean the images of a(b,β) in OU,(b,β)/(P
(β)
b ).

We have to determine the inverse image of this ideal under the natural map

OV,b −→
∏
β

OU,(b,β)/(P
(β)
b ).

The claim states that this inverse image is the projection ideal bb. But this
inverse image is the intersection of the inverse images of ā(b,β) under

OV,b −→ OU,(b,β)/(P
(β)
b ).

But P
(β)
b is contained in a(b,β) (s. 11.6). Therefore it is the same to take the

inverse image of a(b,β) under

OV,b −→ OU,(b,β).

This is OV,b ∩ a(b,β) and the intersection of all of then is bb. tu

*) In 11.6 the result has been formulated only for b = 0 which is no loss of generality.
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13. Cartan’s Coherence Theorem

There is a second basic coherence theorem. Oka contributes this theorem to
Cartan, but as Grauert and Remmert pointed out in there book

”
Coherent

analytic sheaves“, the essential parts of the proof are already in Oka’s papers.
We give three different formulations for Cartan’s theorem:

13.1 Cartan’s coherence theorem. Let a = (aa)a∈U be a coherent system
of ideals on an open domain U ⊂ Cn. Then its radical

rad a := (rad aa)a∈U

is coherent too.

let X ⊂ U be a closed analytic subset. The vanishing ideal system AX is the
system of ideals Aa, a ∈ U which consists of all elements from OU,a, which
vanish in a small neighborhood of a on X. If a is not in X then Aa = OU,a.
For this one has to use that X is closed in U . A second form of Cartan’s
theorem is:

13.2 Cartan’s coherence theorem. Let X ⊂ U be a closed analytic subset
of an open set U ⊂ Cn. The vanishing ideal system A is coherent.

To see the equivalence one has to have in mind that the support of a coherent
ideal system a is a closed analytic set and that by the nullstellensatz the radical
of a is the complete vanishing ideal system A. One also has to use the trivial
fact the every analytic set locally is the support of a coherent system. Another
formulation is

13.3 Cartan’s coherence theorem. Let a be coherent system of ideals.
The set of all points a such that aa = rad aa is open.

We show that 13.3 implies 13.2. Let a ∈ U a point. The ideal rad aa is finitely
generated. Therefore there exists a coherent system b on an open neighborhood
a ⊂ V ⊂ U auch that ba = rad aa and ab ⊂ bb ⊂ rad ab. Now 13.3 implies that
in a full neighborhood bb = rad ab. The conclusion 13.2 ⇒ 13.3is also clear.
One uses the fact that two coherent systems which agree in a point agree in a
full neighborhood.

The rest of this section is dedicated the proof of Cartan’s theorem. We need
some preparations:

In a first step we give a reduction. We can assume that the origin is con-
tained U and that a0 = rad a0. We have to prove that aa = rad aa in a full
neighborhood of 0. We want to show that it is enough to treat the case of a
prime ideal a0. For this we use again the fact that any reduced ideal is the in-
tersection of finitely many prime ideals. Because any ideal is finitely generated
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we can find (in a small neighborhood of 0) coherent systems a(1), . . . , a(m) such
that

a0 = a
(1)
0 ∩ . . . ∩ a

(m)
0 .

From our assumption we know that the
(j)
a are reduced (in a small neigh-

borhood). We also know from Oka’s coherence theorem that the intersection
system a(1) ∩ . . . ∩ a(m) is coherent. Tis intersection system and a agree in the
origin and hence in a full neighborhood,

aa = a(1)
a ∩ . . . ∩ a(m)

a .

Using the trivial fact that the intersection of reduced ideals is reduced we obtain
that the aa are reduced.

From now on we assume that 0 ∈ U and that

P := a0

is a prime ideal. We will show that aa is reduced in a neighborhood of 0. We
need some preparations for the proof:

An element a of a ring R is called non-zero-divisor if multiplication with a

R −→ R, x 7−→ ax,

is injective.

13.4 Lemma. Let a be a coherent system on an open set U ⊂ Cn and let
f ∈ O(U) be an analytic function on U . The set of all points a ∈ U such that
the germ fa is a non-zero-divisor in OU,a is open

Proof. We denote the map “multiplication by a” by

mf : OU,a −→ OU,a.

The element fa is non-zero-divisor if and only if

m−1
f (aa) = aa.

From Oka’s coherence theorem we know that the system
(
m−1
f (aa)

)
a∈U is co-

herent. The coincidence set of two coherent systems is open. tu
After this preparations the proof of Cartan’s theorem runs as follows. Recall

that 0 ∈ U and that P = a0 is a prime ideal. We have to show that aa is reduced
in a full neighborhood of 0. We distinguish the two “alternatives”.

1. Alternative. P = (P ) is a principal ideal. The element P is a prime
element, especially square free. The theory of the discrimant gave us that
there exists a small polydisk around 0 in which P converges and such that
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Pa is square free in this polydisk. Coherence gives us that aa = (Pa) in a
full neighborhood. But a principal ideal generated ba a square free element is
reduced. What we see that in the case of hypersurfaces the properties of the
discriminant imply Cartan’s theorem. tu
2. Alternative. This case is more involved. We will have to use the special case
od Grauert’s projection theorem. As usual we can assume that P = gota0 is
zn-general and that

On−1/p −→ On/P (gotp := On−1 ∩P)

have the same field of fractions. The ideal P is finitely generated,

P = (Q1, Q2, . . . , Qm).

We can assume that Q := Q1 is a Weierstrass polynomial and then by the
division theorem that all Qi are polynomials over On−1. We can take U in
the form U = V × (−r, r), where V ⊂ Cn is a polydisk around 0. We can
assume that the coefficients of the Qj converge in V and that the zeros of the
polynomial z 7→ Q(b, z) for all b ∈ V have absolute value < r. From the special
case of Grauert’s projection theorem we obtain that the system

bb = OV,b ∩
⋂

a=(b,β), Q(a)=0

aa

is coherent on V . Because Q is a Weierstrass polynomial we have

b0 = p.

We want to prove Cartan’s theorem by induction on n. Therefore we can
assume that alle the projected ideals bb are reduced. We will make use of the
natural homomorphism

OV,b/bb −→
∏

a=(b,β), Q(a)=0

OU,a/aa.

It is quite clear that that this homomorphism is an injection. In the case a = 0
this is the homomorphism

On−1/p −→ On/P.

Now we make use of the basic fact that the fields of fractions of both rings
agree. We find elements

A,B ∈ On−1, A 6∈ p, Azn −B ∈ P.
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We can assume that A and B converge in V and furthermore because of co-
herence

Ab(zn − a)−Bb ∈ aa (a = (b, β) ∈ U).

We have to combine this fact that OU,a/aa is a module of finite type*) over
OV,b/bb. More precisely it is generated by the powers

(zn − an)ν , 0 ≤ ν < d,

where d is the zn-degree of Q. Now we consider the analytic function f := Ad

on U . The germ f0 defines a non-zero element of OU,0/gotP and hence non-
zero-divisor, because this ring is an integral domain. Because of the coherence
result 13.4 we can assume that the multiplication map mf : OU,a/aa → OU,a/aa
is injective of all a. This map is no ring homomorphism but it is good enough
to test nilpotency: First we collect all points a = (b, β) over a given b and
consider

mf :
∏

a=(b,β), Q(a)=0

OU,a/aa −→
∏

a=(b,β), Q(a)=0

OU,a/aa.

The construction of A shows that the image of mf is already contained in the
subring

OV,b/bb ↪→
∏

a=(b,β), Q(a)=0

OU,a/aa.

The proof of Cartan’s theorem now can be completed as follows: Let C ∈∏
a=(b,β), Q(a)=0OU,a/aa be a nilpotent element, Ck = 0. Then mf (Ck) =

faC
k = 0. But this implies (faC)k = 0. We recall that mf (C) = faC is

contained in the subring OV,b/bb. But this ring is reduced (by our induction
hypothesis). Hence mf (C) = 0. But mf is injective (!) and we obtain C = 0.
Hence the ring

∏
a=(b,β), Q(a)=0OU,a/aa is free of nilpotents and the same is

true for each of its factors. This completes the proof of Cartan’s coherence
theorem. tu

Because of the importance of this theorem we formulate again the decisive
consequence:

13.5 Theorem. Every analytic set can be written locally as the set of common
zeros of a finite system of analytic functions

f1, . . . , fm : U −→ C (U ⊂ Cn open),

such that the germs in any point a ∈ U generate the full vanishing ideal in
OU,a.

*) This true because Qa ∈ aa is a normalized polynomial, hence zn-general, hence

the product of a unit and a Weierstrass polynomial of degree ≤ d.
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1. The notion of a complex space in the sense of Serre

We introduce the notion of a concrete ringed space.

1.1 Definition. A concrete ringed space (X,OX) is a topological space
together with a subsheaf of C-algebras OX ⊂ CX .

Here CX denotes the sheaf of complex valued continuous functions.

1.2 Definition. A morphism f : (X,OX) → (Y,OY ) of concrete ringed
spaces is a continuous map with the property. For all open subsets V ⊂ Y and
all h ∈ OY (V ) one has h ◦ f ∈ OX(f−1(U)).

It is clear that the identity map defines a morphism id : (X,OX) → (X,OX).
The composition of two morphisms is a morphism. Hence the notion of iso-
morphism of concrete ringed spaces is explained. A morphism f : (X,OX) →
(Y,OY ) is an isomorphism if and only if it is topological and if it induces for any
open subset U ⊂ X a bijection between OX(U) and OY (V ) where V = f(V ).

Let Y be a subset of a concrete ringed space (X,OX). We equip Y with
a structure OY of a concrete ringed space. The topology of Y is the induced
topology. Let V ⊂ Y an open subset. We define:

A function f : V → C on some open subset of X belongs to OY (V ) if for
every a ∈ W there exists an open neighborhood a ∈ W̃ ⊂ X and a function
h ∈ OX(W ) such that f(x) = h(x) for all x ∈ U ∩W .

It is clear that that (Y,OY ) is a concrete ringed space. Such a space is called a
subspace of (X,OX). In the case that Y is an open subset of X the definition
can be made easier. In this case on has OY (V ) = OX(V ).

The canonical injection (Y,OY ) → (X,OX) is a morphism and moreover
the following is true:

1.3 Remark. Let (X,OX) and (Z,OZ) be concrete ringed spaces and (Y,OY )
a geometric subspace of (X,OX). Let f : Z → Y be a continuous map. Then
f : (Z,OZ) → (Y,OY ) is a morphism if and only if the composition with the
canonical injection is a morphism (Z,OZ)→ (X,OX).
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We mention without proof that the notion of subspace is transitive: If (Z,OZ)
is a geometric subspace of (Y,OY ) and (Y,OY ) is a geometric subspace of
(X,OX) then (Z,OZ) is a geometric subspace of (X,OX).

The following simple remark indicates that the notion of morphism of a
concrete ringed space is useful:

1.4 Remark. Let U ⊂ Cn and V ⊂ Cm be open subset. We equip them
with the sheaves OU ,OV of holomorphic functions in the usual sense. A map
f : U → V is holomorphic in the usual sense if and only if it as morphism
(U,OU )→ (V,OV ).

In the following we understand byOCn always the sheaf of holomorphic function
in the usual sense. Moreover for an analytic subset A ⊂ Cn we denote denote by
OA always the geometric structure that defines (A,OA) as geometric subspace
of (Cn,OCn).

1.5 Definition. A complex space (X,OX) in the sense of Serre is a concrete
ringed space such that for each point the exists an open neighborhood U and an
analytic subset A ⊂ Cn for suitable n such that the geometric subspace (U,OU )
and (A,OA) are isomorphic concrete ringed spaces.

Let (X,OX) and (Y,OY ) be complex spaces. A map f : X → Y is called
a holomorphic map if it is a morphism of concrete ringed spaces. Clearly
(Cn,OCn is a complex space. For a function f : X → C the following two
conditions are equivalent:

1) f ∈ OX(X),
2) f : (X,OX)→ (C,OC ) is a morphism.

The simple proof is left to the reader. Since we use the notation OX for the
structure sheaf of a complex space, there is no need to mention it always. Hence
we frequently write X instead of (X,OX).

Another simple property of complex spaces is the following. Let (X,OX)
be complex space, let U ⊂ X be an open subset and f ∈ OX(U) a holomorphic
function without zeros. Then 1/f ∈ OX(U).

The notation of analytic subsets generalizes to complex spaces: A subset
Y ⊂ X of a complex space is called analytic if the following condition is sat-
isfied: For each a ∈ Y there exists an open neighborhood a ∈ W ⊂ X and
finitely many f1, . . . , fn ∈ OX(W ) such that

Y ∩W = {x ∈W ; f1(x) = · · · = fn(x) = 0.}.
Open subsets are very special cases of analytic subsets. (Take fi = 0.)

1.6 Lemma. If Y is an analytic subset of an complex space. Then one easily
can show that the subspace (Y,OY ) is a complex space as well.

Such a space is called a complex subspace of X.

Usually one only considers only complex subspaces that either are open or
closed. This is sufficient because of the following simple
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1.7 Remark. Let Y ⊂ X be an analytic subset of the complex space X.
There exists an open subset U ⊂ X that contains Y and such that Y is closed
in U .

1.8 Lemma. Let A,B be two closed analytic subsets of a complex space.
Then A ∩B and A ∪B are analytic too.

1.9 Lemma. Let f : X → Y be a holomorphic map of complex spaces and
B ⊂ Y a closed analytic subset. Then f−1(B) is analytic too.

2. The general notion of a complex space

We introduce the general notion of a complex space in the sense of Grothen-
dieck. This is not really necessary for what follows, so the reader can skip this
section.

2.1 Definition. A ringed space (X,OX) is a topological space together with
a sheaf of C-algebras OX .

2.2 Definition. A morphism

(f, ϕ) : (X,OX) −→ (Y,OY )

between ringed spaces is a pair, consisting of a continuous map f : X → Y and
a homomorphism ϕ : OY → f∗OX of sheaves of C-algebras.

It is clear that the identity map is a morphism and how one composes two
morphisms (f, ϕ) : (X,OX) −→ (Y,OY ), (g, ψ) : (Y,OY ) −→ (Z,OZ). Let
U ⊂ Cn be an open domain and f1, . . . , fm analytic functions on U . We
consider the ideal sheaf J generated by f1, . . . , fm in OU . The support of the
sheaf OU/J is the set X of joint zeros of the fi. We restrict the sheaf to X
and define

OX = (OU/J )|X.

This is a sheaf of C-algebras on X.

2.3 Definition. A complex space (X,OX) is a ringed space which is locally
isomorphic to a model space. A morphism between complex spaces is simply
called a holomorphic map.

Id U ⊂ X is an open subspace then (U,OX |U) is a complex space too. We call
it a open analytic subspace.
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2.4 Remark. Let (X,OX) be a complex space and J ⊂ OX) a coherent
ideal sheaf. The support Y of OX/J is a closed subset and (Y,OY ) where
OY = (OX/J )|Y is complex space too.

We call such a space that is defined through a coherent ideal sheaf a closed
analytic subspace.

3. Complex spaces and holomorphic functions

Let X be a topological space and let OX be a sheaf of C-algebras. We assume
that OX,a are local rings with maximal ideal ma and that

C −→ OX,a −→ OX,a/ma

is an isomorphism. Then we can associate to any section f ∈ OX(U), U ⊂ X
open, a function f ′ : U → C which assigns to each point a ∈ U the image f(a)
of f in OX,a/ma. These functions are continuous. So we obtain a morphism

OX −→ CX .

We denote by O′X the image (in the sense of sheaves) of this morphism. If
we denote the kernel of this morphism by JX we get a canonical isomorphism
O′X = OX/JX . There are two basic results about this morphism.

Let R be a ring. The nilradical n is the set of all nilpotent elements a
(an = 0 for som natural number). It is easy to see that n is an ideal. Let O
be a sheaf of rings on a topological space X. The nilradical of O is the sheaf
J ⊂ O generated by n(O(U). Concretely this is

J (U) = {f ∈ O(U); fa nilpotent in Oa for all a ∈ U}.

3.1 Theorem (Rückert). The ideal sheaf J is the nilradical of OX .

3.2 Theorem (Cartan). Let (X,OX) be a complex space. The nilradical is
coherent.

A complex space (X,OX) is called reduced if the natural map OX → CX is
injective. By Rückert’s theorem this means that the nilradical is zero. For a
reduced complex space we can consider OX as a subsheaf of CX , i.e. the sections
are functions. Reduced complex spaces are also called complex spaces in the
sense of Serre.

Let X = (X,OX) be a complex space. Then Xred = (X,O′X) is a complex
space in the sense of Serre. This defines a functor from the category of complex
spaces into the category of complex spaces in the sense of Serre.



§5. The singular locus 49

Why nilpotents?

Consider the topological space pn consisting of one point and equip it with the
sheaf that is associated to the C-algebra Cn (pointwise multiplication, C → Cn

the diagonal embedding. We claim that this is a complex space. To see this we
consider the complex plane (C,OC ) and the ideal sheaf J generated by zn+1.
The associated complex space is isomorphic to pn. The associated reduced
complex space is the p1.

3.3 Lemma. Let (X,OX) be a complex space. The morphisms p2 → X are
in one-to one correspondence with the pairs (a, T ) where a is a point in X and
T ∈

(
m(OX,a)/m(OX,a)2

)∗
.

4. Germs of complex spaces

We consider the category of complex spaces. A pointed complex space (X, a)
is a complex space with a distinguished point a ∈ X. We can consider also
the category of pointed complex spaces. Morphisms are morphisms of complex
spaces that map the distinguished point to the distinguished point.

4.1 Theorem. The category of germs of complex spaces is dual to the category
of analytic algebras.

5. The singular locus

Complex manifolds

A point a ∈ X of a complex space is called smooth or regular if there exists
an open neighborhood a ⊂ U ⊂ X such that U is bihomorphically equivalent
to a an open subset of some Cn. This is equivalent to the fact that OX,a is
isomorphic to the ring of power series. A point is called singular if it is not
regular. The set S of singular points is called the singular locus of X. This is
a closed subset. A complex manifold is a complex space such that the singular
locus is empty. Hence complex manifolds are locally biholomorphic to open
subsets of suitable Cn.

There is another possible introduction to smoothness. It rests on the fol-
lowing:
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5.1 Proposition. Let X be a complex manifold and Y a complex subspace
that is smooth at some point a ∈ X. Then there exists a biholomorphic map
f : U → V of an open neighborhood of a onto some open subset V ⊂ Cn such
that

f(Y ∩ V ) =
{
z ∈ V ; z1 = · · · = zm = 0

}
(m suitable).

Proof. The proof is a consequence of the implicit function theorem I.2.3. On
can assume that X = Cn and a = 0. We also can assume that there exist an
open subset 0 ∈W ⊂ Cd and a biholomorphic map ϕ : W → Y , ϕ(0) = 0. The
components of ϕ−1 can be assumed to be restrictions of holomorphic functions
fi on some neighborhood of 0 ∈ Cn. We get

f(ϕ(z)) = z (f = (f1, . . . , fn)).

Now the chain rule shows that the rank of the Jacobi matrix J(f, 0) is d. The
claim now follows from the implicit function theorem. tu

It is basic to have a dimension theory for complex spaces. Historically one
used quite involved topological concepts (Hausdorff dimension). We use here
an algebraic approach. It has the advantage to be very clear, but it needs some
commutative algebra.

5.2 Definition. Let X be a complex space. The dimension X at some point
a ∈ X is the Krull dimension of OX,a. The space X is called pure dimensional
if this dimension is independent of a. In this case we call this number the
dimension of X.

It is clear that for complex manifolds we get the usual notion of dimension.
Connected complex manifolds are pure dimensional. But this is not true for
arbitrary complex spaces. Take for example the analytic set z1z2 = z1z3 = 0
in C3. This is the union of a line and a plane that intersect in the origin. In
this example the local ring at the origin is not an integral domain.

One hint to the correctness of our definition is:

5.3 Proposition. Let f : U → C be a holomorphic function on some open
connected subset U ⊂ Cn. We assume that f doesn’t vanish identically. Then
the analytic set {z ∈ U ; f(z) = 0} is of pure dimension n− 1.

This is an application of the theorem of Cohen Seidenberg. tu
We want to study the local behavior of the dimension dimaX for varying

a.

5.4 Lemma. Let (X, a) be a pointed complex space. There exists a neighbor-
hood a ∈ U ⊂ X such that

dimbX ≤ dimaX for all b ∈ U.
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Proof. The proof uses Noether normalization: We can assume X ⊂ Cn and
a = 0. The vanishing ideal a of X in a can be assumed zn-general, We
denote by b = a ∩ On−1 the projected ideal. let Y be a geometric real-
ization of Y . We can assume that the projection (cancellation of the last
variable) defines a mapping f : X → Y . We can assume that a contains
a Weierstrass polynomial Q ∈ On−1[zn], whose coefficients converge on a
polydisc which contains Y . Furthermore we can assume that for all a ∈ X
the polynomal Q(a1, . . . , an−1, zn − an) is not identical 0, hence general in
C{z1 − a1, . . . , zn−1 − an−1}[zn − an]. This implies that the ring homomor-
phism

f∗a : OY,f(a) −→ OX,a

is module-finite for all a ∈ X. This homomorphism is not surjective but from
Cohen Seidenberg we obtain still

dimOY,f(a) ≥ f∗a (dimOY,f(a)) = OX,a.

For a = 0 the homomorphism is injective, i.e.

dimOY,0 = f∗a (dimOY,0) = OX,0.

This comes from the fact that b is a radical ideal and hence the full vanishing
ideal. We will proof 5.4 by induction on n and can therefore assume

dim0 Y ≥ dimb Y (b ∈ Y ).

We obtain

dim0X = dim0 Y ≥ dimf(a) Y ≥ dimaX,

which completes the proof of lemma 5.4. tu
tu

Assume that f : (X,OX) → (Y,OY ) is a morphism of concrete ringed
spaces and that M is an OX -module. Then f∗M carries an obvious structure
as OY -module.

We can reformulate Cartan’s coherence theorem as follows.

5.5 Cartan’s coherence theorem. Let J ⊂ OU be a coherent sheaf of
ideals in the structure sheaf of an open subset U ⊂ Cn. Then the radical of J
is coherent too.

The Hilbert Rückert vanishing theorem implies now that the full vanishing ideal
sheaf of a closed analytic subset X ⊂ of an open subset U ⊂ Cn is coherent.
From this we derive the following generalization of Oka’s theorem.
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5.6 Theorem. The structure sheaf of a complex space is coherent.

Proof. We can assume that the complex space X is a closed analytic subset of
an open subset U ⊂ Cn. We have to show that the kernel of an OX -linear map
OpX → O

q
X is locally finitely generated. We consider the natural embedding

i : X → U . We have an obvious exact sequence

0 −→ J −→ OU −→ 〉∗OX .

This shows that i∗OX is coherent. As a consequence the kernel of the induced
map i∗OpX → i∗OqX is coherent. We can assume that it is finitely generated.
We choose a finite system of generators in i∗OpX(X) = OpX(X). Obviously they
generate the kernel of OpX → O

q
X . tu

In Lemma 5.7.9 we have seen that the support of a coherent sheaf is closed.
For complex spaces a better result holds.

5.7 Remark. Let M be a coherent sheaf on a complex space. Then the
support of M is a closed analytic subset.

Proof. We can assume that there exists a presentation

OpX −→ O
q
X −→M −→ 0.

Recall that there is an underlying matrix F ∈ OX(X)q×p. The stalk Ma is
not zero of and only if

[F ]a : OpX,a −→ O
q
X,a

is not surjective.

Claim. The map [F ]a is surjective if and only if

F (a) : Cp −→ Cq.

is surjective.

If [F ]a is surjective then F (a) clearly is surjective. Hence it is sufficient to proof
the converse. Assume that F (a) is surjective. This means that the matrix F (a)
has rank q and that p ≥ q. We can select an invertible q×q-sub-matrix of F (a).
This shows that F has a q × q-sub-matrix whose determinant at a is not zero.
By continuity the determinant is different from zero for all points in a full
neighbourhood U of a. By Cramer’s rule this sub-matrix of F is invertible in
OX(U)q×q. But then it follows that [F ]b is surjective for all b ∈ U . This proves
the claim.

The rest of the proof is clear now. A matrix A ∈ Cp,q has rank < q if and
only of all determinants of q × q-matrices vanish. Hence the locus where Ma

is different from zero equals the locus of all a where all q× q-sub-determinants
of F vanish. This an analytic locus. tu

We give a typical application of coherence:
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5.8 Lemma. Let (X, a) be a pointed complex space and f : X → C an
analytic function on X. We assume that the germ fa is a non-zero divisor in
OX,a. Then there exists an open neighborhood a ∈ U ⊂ X such fb is not a zero
divisor in OX,b.
Corollary. The zero locus

Y :=
{
x ∈ U ; f(x) = 0

}
is thin in U .

Proof. We consider the map that is induced by multiplication with f . It can
be considered as a map OX -linear map of sheaves OX → OX . By assumption
the stalk of the kernel at a is zero. By coherence this remains true in a full
neighborhood. Especially the germ fb is non-zero for b ∈ U . Hence in any
neighborhood of of b there exist points which belong to Y but not to X.

tu

5.9 Lemma. Let Y be a complex subspace of the complex space Y and a ∈ Y
a distinguished point. We assume

a) OX,a is an integral domain.
b) The vanishing ideals of Y and X in a are different.

Then there exists an open neighborhood a ∈ U ⊂ Cn, such that Y ∩ U is thin
in X ∩ U .

One can assume that there exists a holomorphic function f on X whose germ
in a is not contained in the vanishing ideal of (Y, a). Since OX,a is an integral
domain, fa can not be a zero divisor. Now we can apply 5.8. tu

5.10 Proposition. Let a be a point in a complex space X such that OX,a is
an integral domain. Then there exists a pure dimensional open neighborhood
U of a.

Proof. We can assume that 0 ∈ X ⊂ Cn is defined by a prim ideal P. We use
induction by n. we can assume a = 0. We distinguish the “two alternatives”.

1. Alternative. P is a principal ideal. Then we can use the theory of hypersur-
faces.

2. Alternative. P is not a principal ideal. We can assume (5.4) dimaX ≤
dim0X for all a ∈ X and by induction dimb Y = dim0 Y for all b ∈ Y . Let now
a ∈ X be an arbitrary point. Because T is thin, we find in any neighborhood
of a a point x ∈ X − T . Because of 5.4 we can assume dimxX ≤ dimaX. We
obtain

dim0X ≥ dimaX ≥ dimxX = dimf(x) Y = dim0 Y = dim0X. tu

An important result of Krull dimension theory is:
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5.11 Proposition. Let Y ⊂ X be analytic sets and a ∈ Y a point such that
OX,a is an integral domain. Assume

dima Y ≥ dimaX.

Then X and Y agree in a full neighborhood of a.

We have seen that it is often useful to reduce statements about radical ideals
to prime ideals. This is possible because every radical ideal is the intersection
of finitely many prime ideals. We describe the geometric counterpart of this
algebraic fact in more detail:

Local irreducible components

Let R be a noetherian ring. A prime ideal p which contains a given ideal a is
called minimal with this property, if any prime ideal q, a ⊂ q ⊂ p, agrees with
p. A refinement of the already used statement about radical ideals is:

Let a be an ideal in a noetherian ring R. There exist only finitely many minimal
prime ideals containing a. Their intersection is rad a. Every prime ideal that
contains a contains one of the minimals.

Now we consider the geometric counter part of this decomposition: Let X be a
complex space. We want to study local properties of X at a given point a ∈ X
(and allow therefore to replace U by a smaller neighborhood if necessary).
Since OX,a is reduced, the zero ideal is a radical ideal. We can write it as the
intersection of pairwise distinct minimal prime ideals

(0) = p1 ∩ . . . ∩ pm.

We allow that X is replaced by a small neighborhood of a. Therefore we can
assume that there are closed analytic sets Xj ⊂ X whose vanishing ideals at a
are pj ⊂ OX,a. Again replacing X by a smaller neighborhood if necessary we
can assume

X = X1 ∪ . . . ∪Xm.

We call the Xj the local irreducible components of X at a. They are unique
up to ordering and in an obvious local sense.

5.12 Lemma. Let (X, a) be a pointed analytic set and

X = X1 ∪ . . . ∪Xm

be a decomposition into the local irreducible components of X at a. Then

dimaX = max
1≤j≤m

dimaXj .

if Y ⊂ X be an analytic subset which contains a and such that OY,a is inte-
gral. After replacing X by a small neighborhood of a if necessary, the set Y is
contained in one of the components Xj.
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Proof. The dimension of X at a is defined by means of sequences of prime
ideals in OX,a. Let a ⊂ On be the vanishing ideal of X at a. The chains of
prime ideals in OX,a correspond to chains

a ⊂ p0 ⊂ . . . ⊂ pm ⊂ On.

The ideal p0 must contain one of the minimal prime ideals containing a. This
proofs the statement about the dimension. The last statement is also clear
because the vanishing ideal of Y in a must contain one of the minimal prime
ideals containing a. tu

Now we are in the state to prove a main result of local complex analysis:

5.13 Theorem. The singular locus S of a complex space is a thin closed
analytic subset of X.

Proof. Since the statement is of local nature we can replace X be a small open
neighborhood of a given point. Therefore we can assume that X = X1∪. . .∪Xm

is a decomposition into local irreducible components at a. We can assume that
the Xi are pure dimensional. The points the intersections of two different Xi

are singular points since the local rings there are not integral domains. Hence
the singular locus ofX is the union of the pairwise intersections and the singular
loci of the Xi. Since the finite union of closed analytic subsets is analytic we
reduced 5.13 to the pure dimensional case.

In the pure dimensional case we will make use of a differential criterion of
smoothness: This rests on the implicit function theorem. One version of it
states:

Let X be the zero set of m holomorphic functions f1, . . . , fm on some open
subset U ⊂ Cn. Assume that the (complex) Jacobian matrix J(f, a) has rank
r at some point a ∈ X. Then a is a smooth point of X and dimaX = n− r.
There is an immediate consequence:

5.14 Lemma. Let X ⊂ Cn be an analytic set that is defined by analytic
equations

f1(z) = · · · = fm(z) = 0

in some open neighborhood 0 ∈ U ⊂ Cn. Let a ∈ X be a point. The rank r of
the Jacobian of f = (f1, . . . , fm) at a is r ≤ n − d, where d = dimX. In the
case r = n− d the point a is smooth.

Proof of the lemma. We can choose r of the functions fi whose Jacobi matrix
has rank r at a. We can assume that f1, . . . , fr is this system. The set of zeros
of this system is a analytic set X̃ that is smooth and of dimension n− r at a.
Since X ⊂ X̃ we have d ≤ n − r or equivalently r ≤ n − d. When equality
holds X and X̃ agree close to a. Hence X is smooth in a like X̃. tu
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The converse of 5.14 is not true in general. Consider for example the equa-
tion z2 = 0 in C. The dimension d is zero but the rank r of the Jacobi matrix
at a = 0 is 0. Hence the equation d+ r = n is false. The reason is that z2 = 0
is the false description. One should better use the equation z = 0. The correct
converse of 5.14 is:

5.15 Lemma. Let X ⊂ Cn be an analytic set that is defined by analytic
equations

f1(z) = · · · = fm(z) = 0

in some open neighborhood 0 ∈ U ⊂ Cn. Let a ∈ X be a point. Assume that
the germs of the fi generate the full vanishing ideal of X in OCn,a. Then a
is a smooth point of X if and only if the Jacobi matrix J(f, a) has the correct
rank n− dimaX.

Proof. It remains to proof that the condition is necessary. So let’s assume that
a is smooth. Due to the implicit function theorem 5.1 we can assume that X
is given by equations zd+1, . . . , zn=0. For these equations the rank condition
is trivial. But we may have different equations. From the assumption about
the vanishing ideal we know that both generate the same ideal. Hence the
statement follows from

5.16 Lemma. Let P = (P1, . . . , Pm) and Q = (Q1, . . . , Ql) be two systems
of power series which generate the same ideal in On. Then the Jacobians of P
and Q at the origin have the same rank.

The easy proof is left to the reader. tu
Now we are able to prove the main result 5.13. We reduced already to the

case of a pure dimension case d = dimX. We can assume that X is defined
inside some open subset U ⊂ Cn as zero set of a finite number of holomorphic
functions f1, . . . , fn. We choose some point a ∈ X. We can replace U be
a smaller neighborhood since the question is od local nature. Since Oa is
noetherian we can assume that (f1, . . . , fn)a is a radical ideal in the point a.
By Cartan’s coherence theorem this then is true in a full neighborhood. We
can assume that this is true in U . Now the singular locus is described as set
of all z ∈ U such fi(z) = 0 and such that the rank of J(f, z) is smaller than
r = n − d. This means that all determinants of r × r-matrices vanish. Hence
the singular locus can be defined by a finite set of analytic equations. tu

6. Finite maps

A holomorphic map f : (X,OX) → (Y,OX) is called finite, if the underlying
map between topological spaces is finite. This means that it is proper and the
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fibres are finite sets. A holomorphic map f : X → Y is locally finite at a
point a ∈ X if there exist open sets a ∈ U ⊂ X and f(a) ∈ V ⊂ Y such that
f(U) ⊂ V and that f : U → V is finite.

6.1 Theorem. A holomorphic map f : X → Y is locally finite at a if an only
if the corresponding map of analytic algebras OY,f(a) → OX,a is finite.

An important result of Grauert states.

6.2 Theorem. Let X → Y be a finite holomorphic map between complex
spaces. Let M be a coherent sheaf on X. Then the direct image f∗M is
coherent too. The functor M 7→ f∗M, starting from the category of coherent
sheaves on X is exact.



Chapter III. Stein spaces

1. The notion of a Stein space

Probably the reader knows that on a connected compact complex manifold any
holomorphic function is constant. Assume that the dimension is > 1. If one
removes from this manifold a single point the situation does not remedy, since
in more than one variable there do not exist isolated singularities. Hence there
exist also non-compact manifolds that admit no non-constant analytic function.
Stein spaces are opposite to this situation. They are spaces that admit many
holomorphic functions. We are going to explain in which sense this has to be
understood.

Let K be a non-empty compact subset of a topological space X. We use
the notation

||f ||K := max{|f(x)|; x ∈ K}

for a continuous function f on X.

1.1 Definition. Let K be a non-empty compact subset of a complex space.
The holomorphic convex hull K̂ of K is the set of all x ∈ X such that
|f(x)| ≤ ||f ||K for all f ∈ OX(X).

1.2 Definition. A complex space is called holomorphically convex if the
holomorphic convex hull of any compact subset is compact.

Assume that X is a complex space with the following property: For every
infinity closed discrete subset S ⊂ X there exists a holomorphic function f :
X → C that is unbounded on S. Then X is holomorphically convex. This can
be seen by an indirect argument. Let K be a compact subset such that K̂ is not
compact. Then their exists a sequence in K̂ with no convergent subsequence.
This gives an infinite subset S ⊂ K̂ that is closed in X and discrete. Then
there exists a global holomorphic function which is unbounded on K̂. This is
not possible.

From this observation we can deduce that open subsets U of the plane
C are holomorphically convex. To show this we consider an infinity closed
discrete subset S. If S is unbounded then we take f(z) = z. In the case that
S is bounded their must be an accumulation point a of S which lies on the
boundary of U . Then take f(z) = 1/(z − a).
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In more then two variables the situation is completely different. Let U =
Ur(0) be a polydisk around zero. We claim that U−{0} is not holomorphically
convex. For this we consider the subset K consisting of all z with |zi| = ri/2.
We know that every holomorphic function f on U−{0} extends holomorphically
to U . From the maximum principle one deduces K̂ = {z ∈ U ; |zi| ≤ ri/2}.
This set is not compact.

1.3 Definition. A complex space X is called a Stein space if the following
conditions are satisfied:

1) It is holomorphically convex.
2) (Point separation) For two different points x, y ∈ X there exists a global

f ∈ OX(X) with f(x) = 0, f(y) = 1.
3) (Infinitesimal point separation) For any point a ∈ X there exist global

f1, . . . , fm ∈ OX(X) whose germs generate the maximal ideal of OX,x.

It is clear that open subsets of the complex plane are Stein spaces. More
generally it is clear that a cartesian product D = D1 × · · · × Dn of open
subsets Di ⊂ C is Stein. It is already a deep result that all non-compact
connected Riemann surfaces are Stein spaces. We will not proof this result
here completely. A proof can be found in [Fo]. As we have seen it is false that
open subsets of Cn are always Stein in the case n > 1.

1.4 Remark. Let X be a Stein space. Then every closed analytic subset is a
Stein space too.

1.5 Definition. An Oka domain in a complex space X is an open subset
U ⊂ X and such that there exists a closed analytic subset A of a polydisk in
some Cn such there exist holomorphic functions f1, . . . , fn on the whole X
whose restriction define a biholomorphic map U → A.

The basic exhaustion theorem states:

1.6 Theorem. Let X by a Stein space. Any compact subset K is contained
in an Oka domain U .

Additional remark. In the case that K = K̂ and W is some open subset
containing K one can get U ⊂W .

Before we start with the proof we formulate a technical lemma:

1.7 Lemma. Let f : X → Y be a holomorphic map of complex spaces. We
make two assumptions:

a) The induced map X → f(X) is topological.
b) For each point a ∈ X there exists an open neighborhood U such that f(U)

is an analytic subset of Y and such that U → f(U) is biholomorphic.

Then f(X) is an analytic set and X → f(X) is biholomorphic.
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Proof of the lemma. Let a ∈ X be a point and U a neighborhood with prop-
erty b). Then we know from a) that f(U) is an open subset from f(X). By
assumption b) f(U) is analytic. This means that every point of f(X) admits
an open neighborhood that is analytic. But then f(X) is analytic. The inverse
map f(X)→ X is analytic since this is locally the case. tu

Property a) has been used essentially in the proof. So one should have in
mind that bijective continuous maps between topological spaces need not to be
topological. There is an exceptional case where the situation is better.

Recall that a continuous map f : X → Y between locally compact Hausdorff
spaces is called proper, if the inverse image of any compact set K ⊂ Y is
compact. Proper maps have the basic property that they are closed. This
means that the images of closed subsets of X are closed in Y . This immediately
gives:

Let f : X → Y be a bijective continuous and proper map between complex
Hausdorff spaces. Then f is topological.

This is clear: The inverses under f−1 are the images under f . Hence the
assumption says that the inverse images of closed sets under f−1 are closed.
This means that f−1 is open.

Proof of 1.6 continued. We can assume that K = K̂. We will prove the
sharpened form where we have to consider an open neighborhood W of K. For
each a ∈ K we can choose finitely many global functions that map an open
neighborhood U(a) of a biholomorphically onto an analytic subset of some Cn.
The compact subset K can be covered by finitely many of these neighborhoods,
K ⊂ U(a1) ∪ · · · ∪ U(am). We collect the functions for each a and obtain a
holomorphic map such is locally biholomorphic on U(a1) ∪ · · · ∪ U(am). We
choose an open neighborhood U of W whose closure is compact and contained
in U(a1)∪ · · · ∪U(am). We would like to manage that f is injective on U . For
this we consider the set A of all (a, b) ∈ Ū × Ū such that f(a) = f(b). The
diagonal ∆ of Ū × Ū is contained in A. Actually ∆ is an open subset of A.
To show this we consider some diagonal point (a, a). Then a ∈ U(ai) for some
i. Then all points. Then U(i) × U(i) is an open neighborhood of (a, a) in X.
Its intersection with A is contained in ∆ since f is injective on U(ai). Since
∆ is open in A we get that the complement A −∆ is compact. For each pair
(a, b) ∈ A−∆ we can choose a global holomorphic function h with h(a) 6= h(b).
Then h(x) 6= h(y) for all (x, y) in a full open neighborhood of (a, b) in A−∆.
We can cover A−∆ by finitely many such open sets. We add the finitely man
functions h as new components to the map f . In this way we produce a globally
defined map that is injective. Without loss of generality we can assume that f
is injective on Ū (and locally biholomorphic on U).

It remains to manage that f defines a proper map of U onto an analytic set
of some polydisk. The polydisk we want to take is just the product of unit discs
(|zj | < 1). For this we can assume without loss of generality |fi(z)| ≤ 1 for z
in K. One just has to multiply f with a suitable constant. Now we will make
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use of the holomorphic convexity: For each boundary point a ∈ ∂U we can
choose a global holomorphic function g such that ||g||K < g(a). Multiplying
with a suitable constant we can get ||g||K < 1 < |g(a)|. This inequality remains
true in a full open neighborhood of a. We can cover ∂U with finitely many
of these neighborhoods. We add the corresponding functions g as additional
components to f . Now we modify U . We replace U by the set of all x ∈ U such
that |fi(x)| < 1. We still have that f is injective and locally biholomorphic on
this new U ⊃ K. But now we have the advantage that f defines a proper map
of U into the polydisk. For this one has just to show that the inverse image
of the compact set |zi| ≤ % < 1 is compact in U . This is clear since this set is
away from the boundary of U . tu

2. Approximation theorems for cuboids

In the theory of Stein spaces it turned out to be of some advantage to work
with rectangles of the form

Q = {z ∈ C; a1 < x1 < a2; b1 < y1 < b2}.

Here a1 < a2 and b1 < b2 real numbers. In the following we understand by an
open cuboid a set Q = Q1× · · ·×Qn, where the Qi are rectangles in the above
sense. Cuboids are Stein spaces and every closed analytic subset of a cuboid is
Stein.

A very special case of the so-called Runge approximation theorem states:

2.1 Runge’s approximation theorem (special case). Every holomorphic
function on a cuboid is the locally uniform limit of a sequence of polynomials.

We just give a hint to the proof in the one-dimensional case. Let f : Q → C
be a holomorphic map on a rectangle Q. We have to show that for each
shrunken rectangle Q0 ⊂ Q and for each ε > 0 there exists a polynomial P
with |P (z) − f(z)| < ε for all z ∈ Q0. Cauchy’s integral formula gives for
z ∈ Q0

f(z) =
1

2πi

∫
∂Q1

f(ζ)

ζ − z
dζ.

Here we have chosen some cuboid Q1 between Q0 and Q. Using an approx-
imation by step functions we can approximate f by functions of the type
C/(z − a) where a is on the boundary of Q1. Hence it is sufficient to as-
sume f(z) = C/(z − a). Since a is outside of the closure of Q0, we find a disk
that contains the closure of Q0 but not a. In this disc we can expand C/(z−a)
into a power series and then approximate it by its Taylor polynomials.
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We need a certain matrix valued version of this approximation theorem.
For this it is convenient to use the matrix norm for a square matrix A.

|A| = max{|Az|; |z| = 1}.

Here |z| denotes the Euclidean norm of a vector z. This matrix norm has the
properties:

a) |aik| ≤ |A|.
b) |AB| ≤ |A||B|.
c) |A+B| ≤ |A|+ |B|.
From these inequalities immediately follows that the series

eA : =
∞∑
ν=0

Aν

ν!
,

log(E −A) : = −
∞∑
ν=1

Aν

ν
for |A| < 1

converge. The rule
Alog(E−A) = E −A

holds. It follows from the known case n = 1 since it can be expressed as a formal
relation in factorials. We have to give some warning. The rule eA+B = eAeB

is usually false. It holds if the matrices A,B commute.

We will have to consider matrix valued function F : D → C(m,m) on open
subsets D ⊂ Cn. Of course holomorphy means that each component of is
holomorphic. An immediate application of the above consideration is:

2.2 Lemma. Let F : D → C(m,m) be some matrix valued holomorphic
function on an open subset D ⊂ Cn. Assume that |F (z) − E| < 1 for all

z ∈ D, Then there exists a holomorphic function G : D ⊂ C(m,m) with the
property F = eG.

In contrast to the case m = 1 it is very difficult to get holomorphic logarithms
without an estimate as in 2.2. This will cause some difficulties. To come around
them we prove:

2.3 Lemma. Let F : D → GL(m,C) be an invertible holomorphic matrix
valued function on an open convex subset D ⊂ Cn. Let K ⊂ D be a compact
subset and ε > 0. Then F = F1 · · ·Fk can be written as finite product of
holomorphic functions

Fi : D → GL(m,C), |Fi(z)− E| ≤ ε for z ∈ K.
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Proof. We will use a simple fact about togological groups. Let G be the set of all
holomorphic maps F : D → GL(m,C). This is a group under multiplication.

For any holomorphic F : D → C(m,m) and a compact subset K ⊂ D we define

||F ||K = max{|F (z)|, z ∈ K}.

Eventually replacing K by a bigger compact set (with non-empty interior) we
can assume that || · || is definite. Then ||F −G||K defines a metric on G and G
gets a topological space. It is clear that multiplication G×G→ G and inversion
G → G are continuous. This means that G is a topological group. We claim
that this topological space is arcwise connected. To show this we can assume
that 0 ∈ D. For any F ∈ G we can consider Ft(z) = F (tz), 0 ≤ t ≤ 1. Notice
that Ft ∈ G and that t→ Ft is continuous. Hence it defines a curve in G that
combines F with the constant function F0. Now the connectedness of G follows
from the known fact that GL(m,C) is connected. For sake of completeness we
recall the argument. Any invertible matrix can be written as finite product of
diagonal matrices and strict triangular matrices. Each of them, hence also an
finite product of them can be combined with the unit matrix. This follows just
from the connectedness of C.

and C.

Proof of 2.3 continued. We denote by U ⊂ G the set of all F ∈ G with
||F ||K < ε and ||F−1||K < ε. This is an open subset. Then we denote by
G0 the subgroup of G generated by U . It consists of all finite products of
elements of U . Since G0 is the union of translates of G it is an open subgroup
of G. But an open subgroup is automatically closed. This follows from the
decomposition of G into (say right-) cosets G0g. The complement of G0 is the
union of all cosets different from G0 and hence open. From the fact that G is
arcwise connected we get G = G0. This finishes the proof of 2.3. tu

Now we are able to prove a multiplicative analogue of Runge’s approxima-
tion theorem.

2.4 Multiplicative version of Runge’s approximation theorem. Let
F : Q → GL(m, Z) be an invertible holomorphic matrix valued function on a
cuboid Q ⊂ Cn. There exists a sequence Fν : Cn → GL(n,C) of invertible
holomorphic matrix valued functions on the whole Cn that converges on Q
locally uniformly to F .

Proof. Let K ⊂ Q be a compact subset and ε > 0. We have to construct
a holomorphic G : Cn → GL(m,C) such that ||F − G||K < ε. We choose
a cuboid K ⊂ Q0 whose compact closure is contained in Q. Because of 2.3
we can restrict to the case |F (z) − E| < 1 for z ∈ Q0. Then there exists a
holomorphic logarithm eH = F on Q0. By Runge’s approximation theorem
we can approximate H by a polynomial function P . Hence we can manage
||F − eP ||K < ε. tu

The usual theory of infinite products can be generalized to matrix valued
functions. Recall that an infinite product (1+a1)(1+a2) · · · is called absolutely
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convergent if the series |a1| + |a2| + · · · converges. It is known that then the
limit

lim
ν→∞

(1 + a1) · · · (1 + aν)

exists and that it is zero if and only of one of the factors 1 + ai is zero. Here
is a matrix valued variant.

2.5 Lemma. Let Gν be a sequence of holomorphic matrix valued functions on
some open domain in Cn such that there exists a convergent series a1 +a2 + · · ·
of numbers with the property |Gν(z)| ≤ aν for all z. Then the limit

F (z) = lim
m→∞

F1 · · ·Fm, Fν := E +Gν ,

exists an is a holomorphic function. It is invertible if all Fν are.

Proof. The usual theory of infinite products shows that (1 + a1) · · · (1 + aν)
converges, say to a. Pν = F1 · · ·Fν are bounded ba a in the sense |Pν(z)| ≤ a
for all z. This follows from |E +Gi(z)| ≤ 1 + ai. Now we get

|Pν+1(z)− Pν(z)| = |Pν(z)Gν+1(z)| ≤ a · aν

From this follows that Pν is a uniform Cauchy sequence. Hence its limit F
exists and is a holomorphic function. We have still to show that it is invertible
if all Fν are. For this it is sufficient to show that the product of the detFµ
converges absolutely in the sense of infinite products. This means the the series∑

(1 − detFν) converges absolutely. Since 1 − detFν is polynomial without
constant coefficient in the entries of Fν it can be bounded for all ν with aν < 1
by a bound C|aν |. This shows the convergence. tu

3. Cartan’s gluing lemma

We consider two rectangles R′, R′′ ⊂ C in a very special position. We identify
C with R2. In fact we assume that there are real numbers a < b < c < d such
that the rectangles are of the form R′ = (a, c) × I and R′′ = (b, d) × I, where
I ⊂ R is a bounded open interval.

For a cuboid D ⊂ Cn−1 we can consider Q′ = R′ ×D and Q′′ = R′′ ×D.
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3.1 Cousin’s additive gluing lemma. Let Q′, Q′′ be two cuboids in Cn

in the special position Q′ := R′ × D, Q′′ := R′′ × D, where R′, R′′ ⊂ C are
rectangles of the form

R′ = (a, c)× I, R′′ = (b, d)× I (a < b < c < d).

Furthermore let f be an analytic function on Q′ ∩Q′′ Then one has:

There exist analytic functions

f ′ : Q′ −→ C, f ′′ : Q′′ −→ C

with the property

f(z) = f ′(z) + f ′′(z) for z ∈ Q′ ∩Q′′.

Proof. We know that the cohomology of O on a cuboid vanishes. By Leray’s
Lemma the cohomology H1(Q,O) can be computed by means of the Čech
cohomology with respect to the covering Q = Q′ ∪Q′′. Its vanishing is just the
statement of Lemma 3.1. tu

We give a second proof of Lemma 3.1 under a slightly stronger assumption.
We assume that f can be extended to a an analytic function on an open set U
which contains Q′ ∩Q′′.

This proof uses the Cauchy integral formula applied to f as function of z1.
During the proof, z2, . . . , zn will kept fixed. The integrals in consideration will
depend analytically on z2, . . . , zn by Leibniz’s criterion. Hence it is sufficient
to restrict to the case n = 1. The Cauchy integral formula gives

f(z) =
1

2πi

∮
∂(R′∩R′′)

f(ζ)

ζ − z
dζ for z ∈ Q′ ∩Q′′.

It is clear that the boundary ∂(R′ ∩ R′′) is the composition of two paths W ′

and W ′′, where W ′ is contained in the boundary of R′ and W ′′ in the boundary
of R′′.

Then one has
f(z) = f ′(z) + f ′′(z) for z ∈ Q′ ∩Q′′
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with

f ′(z) :=

∮
W ′

f(ζ)

ζ − z
dζ

and similarly f ′′. The functions f ′, f ′′ are analytic in the complements of
W ′,W ′′, hence in the whole Q′, Q′′ (actually in a much bigger domain!)

This second proof of the gluing lemma has the advantage to admit esti-
mates for the functions f ′, f ′′. For this improvement we assume that the
set U is bounded and also that the function f is bounded on U . Recall that
the construction of the gluing functions is given by a Cauchy integral along
f(z)/(ζ1− z1). This integral can be estimated by the standard estimate of line
integrals. This estimate involves the length if the curve. This is bounded by
the bounds of the domain U . We obtain.

3.2 Lemma. Assume that a bounded open set U ⊂ Cn which contains
the closure of Q′ ∩ Q′′ is given. There exists a constant M depending only
on U such that for each bounded holomorphic function f on U the solution
f ′ : Q′ → C, f ′′ : Q′′ → C of the additive gluing lemma can be obtained with
the estimate

|f ′(z)| ≤ M ||f ||
δ′(z)

(z ∈ Q′).

Here ||f || denotes the supremum of |f(z)| on U and δ′(z) denotes the minimal
distance of z to a boundary point of Q′ (similarly for f ′′).

Supplement. For M one can take 3 times the diameter of U . (The diameter
is the supremum of the Euclidean lengths of line segments contained in U .)

There is a multiplicative version of the gluing lemma that produces a decom-
position of the typ f(z) = f ′(z)f ′′(z). The proof is easy for scalar valued
functions. One takes a holomorphic logarithm of f and applies the additive
lemma to the logarithm and exponentiates then. The result follows then from
the rule ea+b = eaeb. Due to Cartan the multiplicative lemma is also valid for
matrix valued f . But the proof is more involved. One reason is that the rule
ea+b = eaeb is false for matrices a, b.

3.3 Lemma (Cartan’s multiplicative gluing lemma). We take the same
assumptions as in 3.1. Furthermore let F : U → GL(m,C) be a holomorphic
function on an open set U which contains the closure of Q′ ∩Q′′. Then there
exist holomorphic functions F ′ : Q′ → GL(m,C), F ′′ : Q′′ → GL(m,C) such
that

F (z) = F ′(z) · F ′′(z) for z ∈ Q′ ∩Q′′.

Proof. In a first step we mention that for the proof of the gluing lemma we can
assume that F (z) is close to the identity matrix (in the sense |F (z)| < ε for a
given ε > 0). The reason is that be the multiplicative Runge approximation we
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can choose for an arbitrary F a G : Cn → GL(m,C) such that FG−1 is small
in the sense we need. So we get a decomposition FG−1 = F ′F ′′ and then a
decomposition F = F ′ · · · (F ′′G). tu

In the next step we will explain the strategy of the proof (which only will
work if F is close enough to the unit matrix). We write F (Z) = E+G(Z) where
E is the unit matrix. Then we apply the additive lemma to the components
of G to produce a decomposition G(Z) = G′(Z) + G′′(Z), where G′, G′′ are
holomorphic on Q′, Q′′. Then as a first trial we set F ′ = E+G′, F ′′ = E+G′′.
Then

F ′F ′′ = (E +G′)(E +G′′) = E +G′G′′ +G′G′′ = F +G′G′′.

The term G′G′′ is a failure term. We want to get rid of it through an approxi-
mation method. What we described is only the first step of an approximation.
Hence we set

G0 = G, G′0 = G′, G′′0 = G′′.

By induction we will define a sequence Gν , G
′
ν , G

′′
ν . Here Gν should be an

invertible matrix valued function on some open neighborhood of Q′ ∩Q′′ and
Gν = G′ν + G′′ν a decomposition in sense of the additive lemma. The basic
formula for the procedure is

(E +G′ν)(E +Gν+1)(E +G′′ν) = (E +Gν).

Assume that we have constructed this sequence. Then we can define

F ′ν = E +G′ν , F ′′ν = E +G′′ν .

Then we have

F = [F ′1F
′
2 · · ·F ′ν ]Fν+1[F ′′1 F

′′
2 · · ·F ′′ν ] on Q′ ∩Q′′

and the solution of the multiplicative decomposition should be obtained by

F ′ := lim
ν→∞

[F ′1 · · ·F ′ν ]

and similarly F ′′. Of course the hope is that Gν tends to zero for ν →∞ and
that the infinity products converge.

Before we start with the proof of the convergence, we have to overcome a
small technical difficulty. Of course we can define Gν+1 through the equation
(E + G′ν)(E + Gν+1)(E + G′′ν) = E + Gν if E + Gν is invertible and we get a
function that is holomorphic onQ′∩Q′′. But to apply the additive gluing lemma
we should have a holomorphic function on some open neighborhood of Q′ ×Q′′.
We will overcome this difficult through a small modification. We enlarge the
cuboid a little bit: We write Q as the intersection of a decreasing sequence of
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cuboids (all contained in U) Q1 ⊃ Q2 ⊃ · · · such that each Qν contains the
(compact) closure of Qν+1. We define the decomposition Qν = Q′ν ∪ Q′′ν into
two sub-cuboids in the obvious way such that Q′ν ∩Q = Q′ and Q′′ν = Q′′.

Now we can define the functions Gν inductively as holomorphic functions
on Q′ν ∩ Q′′ν and then apply the additive gluing lemma to define G′ν , G′′ν on
Q′ν+1, Q′′ν+1. So lets recall:

The functions Gν are holomorphic on Q′ν ∩ Q′′ν . One has the decomposition
Gν = G′ν +G′′ν on Q′ν+1 ∩Q′′ν+1. Moreover one has (by definition of Gν+1)

(E +G′ν)(E +Gν+1)(E +G′′ν) = (E +Gν) on Q′ν+1 ∩Q′′ν+1.

Of course the start is G0 = E − F .

Now we come to the problem of convergence of F ′1 · · ·F ′ν (where F ′ν = E +
G′ν). We want to use a standard criterion for convergence of infinite products.

Proof of 3.3 continued. The strategy to enforce convergence is to construct the
G′ν with an estimate. What we finally want to have is an estimate of the forms

|Gν(z)| ≤ % · 4−ν for z ∈ Q′ν ∩Q′′ν ,
|G′ν(z)| ≤ C · 2−ν for z ∈ Q′ν+1

with certain constants C < 1/2, %. The condition on C will ensure that E +
G′ν + G′′ν is invertible. If we succeed to get such an estimate we are obviously
through.

Estimates for the gluing functions

We will obtain the estimates for Gν+1 from estimates of the G′ν , G
′′
ν inductively.

But this demands also an estimate for the Gν . Recall that Gν+1 is defined by

(E +G′ν)(E +Gν+1)(E +G′′ν) = (E +G′ν +G′′ν) on Q′ν+1 ∩Q′′ν+1.

3.4 Lemma. Let A,B be m×m-matrices such that |A| ≤ 1/2 and |B| ≤ 1/2
and let be C a matric such that

(E +A)(E + C)(E +B) = E +A+B.

There exists a constant P depending only on m such that

|C| ≤ P |A||B|.
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Proof. The set of all A with |A| ≤ 1/2 is compact. The matrix E + A is
invertible for these A. This can be shown by means of the geometric series.
The function |(E+A)−1| takes a maximum on |A| ≤ 1/2. Let P be the square
of this maximum. An easy computation gives

C = (E +A)−1(−AB)(E +B)−1.

This shows |C| ≤ P |A||B|. tu

Proof of 3.3 continued. It is our goal to get an estimate for G′ν , G
′′
ν . To apply

this lemma to our situation we make an assumption about our system of en-
larged cuboids. We assume that the minimal distance of any point of Qν+1 to
a boundary point of Qν is ≥ δ2−ν with some positive constant δ. It is clear
such a constant δ exists (depending on the shape of Q ∩Q′ ⊂ U).

We will proceed by induction to produce

|Gν(z)| ≤ % · 4−ν for z ∈ Q′ν ∩Q′′ν ,
|G′ν(z)| ≤ C2−ν for z ∈ Q′ν
|G′′ν(z)| ≤ C2−ν for z ∈ Q′′ν

The constants C, % will be determined during the proof. Whatever the constants
will be, we can get the beginning of the induction G0, G

′
0, G

′′
0 since, as we

mentioned at the beginning of the proof, G can be assumed as small as we
want. Assume that Gν and G′ν , G′′ν have been constructed. Then we construct
Gν+1 and then the decomposition Gν+1 = G′′ν+1 +G′′ν+1. For Gν+1 we get the
estimate (Lemma 3.4)

|Gν+1(z)| ≤ PC24−ν .

So, if we make the choice

% := 4PC2,

we get the desired inequality |Gν+1(z)| ≤ %·4−(ν+1). For G′ν+1 (similarly G′′ν+1)
we get from Lemma 3.2 the estimate

|G′ν+1(z)| ≤ 2νM

δ
· % · 4−(ν+1) =

2MPC2

δ
2−(ν+1).

So alle we need is the estimate

2MPC2 ≤ δC.

This is true if C is small enough.
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4. The syzygy theorem

We need a sheaf theoretic version of a famous result, namely Hilbert’s syzygy
theorem. Hilbert expressed this theorem for the polynomial ring but the proof
works literally also for the ring of power series. It states:

4.1 Hilbert’s syzygy theorem. Let M be a finitely generated module over
the ring R = C{z1, . . . , zn} of convergent power series in n variables. Let

Fn −→ Fn−1 −→ · · · −→ F1 −→M −→ 0

be a an exact sequence where the modules Fi are finitely generated free modules.
Then the kernel of Fn → Fn−1 is free.

Corollary. For any finitely generated module M there exists an exact sequence

0 −→ Fn+1 −→ · · · −→ F1 −→M −→ 0

with free modules Fi.

There is an immediate sheaf theoretic consequence.

4.2 Remark. Let M be a coherent sheaf on some open subset U ⊂ Cn and
a ∈ U a point. There exists an open neighborhood a ∈ V ⊂ U and an exact
sequence

0 −→ Fn+1 −→ · · · −→ F1 −→M|V −→ 0

where Fi ∼= OniV are free sheaves on V .

Proof. We choose a resolution of the module Ma

0 −→ Fn+1 −→ · · · −→ F1 −→Ma −→ 0

by free OU,a-modules. We can extend this sequence using V.7.10 and V.7.11.
tu

There is a much better result:

4.3 Proposition. Let M be a coherent sheaf on a cuboid Q and Q0 ⊂ Q a
shrunken cuboid. Then there exists an exact sequence

0 −→ Fn+1 −→ · · · −→ F1 −→M|Q0 −→ 0

where Fi ∼= OniQ0
are free sheaves on Q0.

The proof of this proposition rests on the Cartan gluing lemma 3.3. During the
proof we use the following short notation. LetM be a coherent sheaf on some
open subset U ⊂ Cn. The sheaf M admits a free resolution over a compact
subset K ⊂ U if there exists an open set K ⊂ V ⊂ U and an exact sequence

0 −→ Fn+1 −→ · · · −→ F1 −→M|V −→ 0

with free OV -modules Fi.
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4.4 Lemma. As in 3.1 we consider two rectangles in the position

R′ = (a, c)× I, R′′ = (b, d)× I (a < b < c < d)

and then the cuboids Q′ = R′ ×D, Q′′ = R′′ ×D with a cuboid D ⊂ Cn. Let
M be a coherent sheaf over some open neighborhood of Q′ ∪Q′′.
Assume that M admits free resolutions over Q̄′ and Q̄′′. Then M admits a
free resolution over Q′ ∪Q′′.

Before we prove this lemma we show that 4.3 follows from it.

We decompose the cuboid Q0 into N2n

closed small sub-cubes, by dividing each
edge into N equidistant sub-cuboids as
indicated in the figure.

By means of 4.2 and a simple compactness argument this can be done in such a
way thatM admits a free resolution over the closure of each small sub-cuboid.
Application of the gluing lemma 4.4 several times leads to a free resolution over
Q̄0. We describe this in more detail in the case n = 1: In the first step one
produces a resolution over the first row of squares in the above figure

Then we do the same with the second row and then glue the first with the
second row. This gives a free resolution over

It should be clear that this argument works in arbitrary dimension. So we are
reduced to the

Proof of 4.4. The resolutions over Q̄′ and Q̄′′ give two different resolutions over
the intersection. So we need a method to compare two different resolutions.
The principle can be understood already in the local case. So let us assume
that we have a finitely generated module M over a ring R and that we have
two different free resolutions

0 −→ Fn+1 −→ · · · −→ F1 −→ M −→ 0,
0 −→ Gn+1 −→ · · · −→ G1 −→ M −→ 0

Two such resolutions are called isomorphic if there is a commutative diagram

0 −→ Fn+1 −→ · · · −→ F1 −→ M −→ 0,
↓ ↓ ‖

0 −→ Gn+1 −→ · · · −→ G1 −→ M −→ 0
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where the vertical arrows are isomorphisms. It is not true that two resolutions
are isomorphic. The reason that there exist trivial resolutions of 0. By a trivial
resolution of 0 we understand a resolution of the form

0 · · · −→ F
id−→ F −→ 0 −→ · · · −→ 0

with a free module F . One can define the direct sum of a resolution with such
a trivial resolutions. (The direct sum two resolutions

0 −→ Fn+1 −→ · · · −→ F1 −→ M −→ 0,
0 −→ Gn+1 −→ · · · −→ G1 −→ N −→ 0

is
0 −→ Fn+1 ⊕Gn+1 −→ · · · −→ F1 ⊕G1 −→M ⊕N −→ 0

with obvious arrows. In the case N = 0 we can identify M ⊕ 0 and M .)

By an elementary modification of a free resolution we understand a new free
resolution which one obtains if one takes the direct sum with a trivial resolution
of 0 as described above.

4.5 Lemma. Two free resolutions of an R-module M get isomorphic after
performing a finitely many elementary modifications (to both of them).

Proof. The proof is given by some induction. The first step is to modify F1, G1

if necessary. We take free generators of F1 and consider their images in M .
Taking inverse images of them in G1 we construct an R-linear map σ : F1 → G1

and similarly τ : G1 → F1 such that the diagrams

F1

σ

��

// M

‖
��

G1
// M

, F1
// M

G1

τ

OO

// M

‖

OO

commute. It may be that σ and τ−1 are isomorphisms. Then we do nothing.
Otherwise we add to the F -resolution the trivial resolution 0→ G1 → G1 → 0
and to the G-resolution the trivial resolution 0 → F1 → F1 → 0. We get new
resolutions

· · · −→ F3 −→ F2 ⊕G1 −→ F1 ⊕G1 −→ M −→ 0
↓ ‖

· · · −→ G3 −→ G2 ⊕ F1 −→ G1 ⊕ F1 −→ M −→ 0

where the vertical arrows have to be explained. The map F1 ⊕G1 → G1 ⊕ F1

is defined by means of the matrix(
σ 1− στ
1 −τ

)
.
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This has to be understood as follows. The action on a pair (f, g) is given by(
σ 1− στ
1 −τ

)(
f
g

)
:=

(
σ(f) + g − στ(g)

f − τ(g)

)
.

The essential point is that this map is an isomorphism. The inverse map is
given though the matrix (

−τ −1 + στ
−1 σ

)
.

One checks that the above diagram is commutative. This shows that we can
reduce to the situation

0 −→ Fn+1 −→ · · · −→ F1 −→ M −→ 0,
↓ ↓ ‖

0 −→ Gn+1 −→ · · · −→ G1 −→ M −→ 0

where the vertical arrow is an isomorphism. This was the first step of the
induction. We explain, how to continue. It might happen that Fν = Gν = 0
for ν ≥ 0. Then F2, G2 can be considered as submodules of F1, G1. The
map F1 → G1 maps F2 into G2 and conversely. Hence we have isomorphic
resolutions 0→ F2 → F1 →M → 0 and 0→ G2 → G1 →M and we are done.
Otherwise we construct now a linear map σ : F2 → G2 such the diagram

F2 −→ F1 −→ M −→ 0,
↓ ↓ ‖
G2 −→ G1 −→ M −→ 0

commutes. This can easily done by means of the free generators. Similarly we
construct τ : G2 → F2. We modify now with the complexes · · · 0 → G2 →
G2 → 0→ 0 and · · · 0→ F2 → F2 → 0→ 0 and reduce to a situation

· · · F2 −→ F1 −→ M −→ 0,
↓ ↓ ‖

· · · G2 −→ G1 −→ M −→ 0

where both vertical arrows are isomorphism. I should be clear now how the
induction runs and terminates.

Proof of 4.4 continued. We come back to the resolutions of M over Q̄′ and
Q̄′′. This means that there are two cuboids Q̄′ ⊂ Q̃′ and similarly Q̃′′ that
are located similarly as described in 4.4 and such that the resolutions of M
are defined over Q̃′, Q̃′′. After finitely many modifications they are isomorphic
over the intersection. This means that the resolutions are of the form

0 // Omn+1

Q̃′
// · · · // Om1

Q̃′
//M|Q̃′ // 0

0 // Omn+1

Q̃′′
// · · · // Om1

Q̃′′
//M|Q̃′′ // 0
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and over Q̃′ ∩ Q̃′′ there are isomorphisms σ such that the diagram

0 // Omn+1

Q̃′∩Q̃′′
//

σ

��

· · · // Om1

Q̃′∩Q̃′′

σ

��

//M|(Q̃′ ∩ Q̃′′) // 0

0 // Omn+1

′∩Q̃′′
// · · · // Om1

Q̃′∩Q̃′′
//M|(Q̃′ ∩ Q̃′′) // 0

gets commutative.

The isomorphisms σ are given by invertible holomorphic functions Q̃′∩Q̃′′ →
GL(mi,O(Q̃′ ∩ Q̃′′). Now can Cartan’s gluing lemma to write σ as product
σ = σ′σ′′, where σ′ is a holomorphic map from Q′ to GL(mi,O(Q′)) and
similarly σ′′. To be precise we first have to shrink Q̃′ and Q̃′′ a little. We use
the isomorphisms σ′, σ′′ to modify the resolution ofM|Q̃′,M|Q̃′′ in such a way
that now the two resolutions over Q̃′ ∩ Q̃′′ are identical. If this is the case they
glue to single resolution of M over Q̃′ ∪ Q̃′′. This finishes the proof of 4.4 and
then of 4.3. tu

5. Theorem B for cuboids

We know form the lemma of Dolbeault VI.6.9 that the cohomology groups
Hq(Q,OQ), q > 0, vanish for a poly disk Q. Since every rectangle is is biholo-
morphic equivalent to the unit disk this is also true for cuboids. This section
is devoted to the proof of

5.1 Theorem B for cuboids. Let M be a coherent sheaf on a cuboid Q.
Then

Hq(Q,M) = 0 for q > 0.

Corollary. Theorem B is true for polydisks.

The corollary follows since each rectangle in the complex plane is biholomorphic
equivalent to a disk. Technically it has advantages to work with cuboids instead
of polydisks.

It will be necessary to shrink Q a little. This means that we have to consider
a cube Q0 whose (compact) closure is contained in Q. We write Q0 ⊂⊂ Q to
indicated this. There are two different steps. In the first basic step we will
prove

5.2 Theorem. let M be a coherent sheaf on a cuboid Q and Q0 a shrunken
cuboid. Then

Hq(Q0,M|Q0) = 0 for q > 0.
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Proof. We just have to show: Let

0→ Fn+1 −→ · · ·F1 −→ F −→ 0

be an exact sequence of sheaves such that all Fi are acyclic. (This means that
the higher cohomology groups vanish). Then F acyclic. For the proof one
considers the sequence

0 −→ Fn+1 −→ Fn −→−→ 0.

(So K is a co-kernel). From the long exact cohomology seqence follows that K
is acyclic. There is an obvious exact sequence

0 −→ K −→ Fn−1 −→ · · · −→ F1 −→ K.

Now we can argue by induction on n. tu
Proof of 5.1. The proof for arbitrary cubes uses an exhaustion argument. This
argument also will work in the general case of arbitrary Steil spaces. But in
the case of a cuboid is it is technically easier. Hence we give the details already
in the case of the cuboid.

If X is an complex manifold we know that OX(X) gets the structure as a
Frèchet space if one equips it with the topology of uniform convergence on com-
pact subsets. Slightly more generally OX(X)n gets a Frèchet space if we equip
it with the product topology. Our starting point for constructing topologies is:

5.3 Lemma. Let X be a complex manifold and M ⊂ OmU be a coherent
subsheaf of a free sheaf. Then M(X) is a closed subspace of OmX (X).

Proof. Let sk be sequence in M(X) that converges (uniformly on compact
subsets) to s ∈ OX(X)n. We have to show that s ∈ M(X). This means that
for any point a ∈ X we have sa ∈ Ma. We use the notation F = OnX,a and
M = Ma. We consider the maximal ideal m in the local ring OX,a. The
vector space F/mmF is finite dimensional for any m. Hence it carries a natural
topology. Now we consider the images s̄n, s̄ of sn, s in F/mmF . The essential
point is that s̄n converges to s̄ in this finite dimensional vector space. We
have to explain the reason for this. Taking coordinates we can identify OX,a
with the ring of power series. Then OX,a/mm can be identified with a CN

where the map OX,a/mm → CN associates to a power series the vector of
coefficients aν of degree ≤ m. Now we have to use from complex analysis that
the locally uniform convergence sk → s implies the locally uniform convergence
of all partial derivatives and hence also of the Taylor coefficients. This proves
that s̄n → s̄ in F/mmF . Now we use that every sub-vector space of a finite
dimensional vector space is closed. This gives us that s̄ is in the image of M
since this is a sub-vector space. This can be expressed as

s ∈M + mmF.
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From this follows s ∈M by a pure algebraic argument: One has to use Krull’s
intersection theorem. Application of the Krull intersection theorem completes
the proof of 5.3. tu

LetM be a coherent sheaf on a cuboid Q. We shrink Q to a cuboid Q0. We
want to construct a topology on M(Q0) For this purpose we slightly enlarge
the shrink. That is we choose a cuboid Q1 such that Q0 is a shrink of Q1 and
Q1 is a shrink of Q. We know thatM|Q1 is finitely generated. This means that
there exists a surjective map OnQ1

→M|Q1. From the weak form of Theorem
B (5.2) we we get the surjectivity

OQ(Q0)n −→M(Q0).

From 5.3 follows that the kernel is closed. In this way we get a structure as
Frèchet space on M(Q0). It is rather clear that this structure is independent
of the presentation OnQ1

→M|Q1. Hence we obtain:

5.4 Lemma. Let Q be a cuboid and M a finitely generated coherent sheaf on
Q. Let Q0 be a shrunken cuboid. Then M(Q0) carries a unique structure as
Frèchet space with the following property. For each cuboid Q0 ⊂⊂ Q1 ⊂⊂ Q
and all surjective maps OnQ1

→M|Q1 the induced map OnQ(Q0) →M(Q0) is
continuous.

A direct consequence of Runge’s approximation theorem 2.1 is:

5.5 Runge approximation theorem for coherent sheaves (weak form).
Let Q0 ⊂⊂ Q1 ⊂⊂ Q be cuboids and let M be a coherent sheaf on Q. The
image of the restriction map M(Q1)→M(Q0) is dense.

Now we collected all tools for:

Proof of Theorem B for cubes 5.1. We choose a sequence of cuboids

Q1 ⊂⊂ Q2 ⊂⊂ Q3 ⊂⊂ · · · ⊂⊂ Q

whose union is Q. This is an open covering U of Q. We know Hq(Qν ,M|Qν) =
0 for q > 0. We want to show that Hq(Q,M) = 0 for q > 0. From Leray’s
theorem follows that this cohomology group can be computed by means of Čech
cohomology

Hq(U,M) = Hq(Q,M).

Similarly we get

Hq(Um,M|Qm) = Hq(Qm,M|Qm) (= 0),

where Um denotes the (finite) covering of Um by U1, . . . , Um. We recall that
the Čech complex has been denoted by Cq(U,M). For sake of simplicity we
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use the notation Cq(Um,M) := Cq(Um,M|Qm). There are natural restriction
maps

Cq(U,M) −→ Cq(Um,M) −→ Cq(Uk,M) for m > k

and there is a natural (injective) extension map

Cq(Uk,M) −→ Cq(Um,M) for m > k,

a cochain s is extended by the definition s(i0, . . . , iq) = 0 if one of the indices
is out of the range (greater than k).

We consider now a cochain s ∈ Cq(U,M), q > 0, with the property ds = 0
We have to show that there is cochain t ∈ Cq−1(U,M) with dt = s. We denote
by s(m) ∈ Cq(Um,M) for some m > 0 the restriction of s. Since ds = 0 implies
ds(m) = 0 we get s(m) = dt(m) with t(m) ∈ Cq−1(Um,M). We can restrict t(m)

to Cq−1(Um−1,M). From the restriction we can subtract t(m−1). We denote
the result simply by t(m) − t(m−1). We know d(t(m) − t(m−1)) = 0. There are
two different cases. The case q > 1 is very easy, the difficult part will be the
case q = 1.

First case, q > 1. In this case we have still Hq−1(Um−1,M) = 0. Hence there
exists

αm−1 ∈ Cq−2(Um−1,M) such that t(m) − t(m−1) = dαm−1.

We denote the natural extension of αm−1 to Cq−2(Uk,M), k > m− 1, by the
same letter. Then we can define

T (m) := t(m) − d
(m−1∑
k=1

α(k)
) (

∈ Cq−1(Um,M)
)
.

The T (m) are modifications of the t(m) in the sense that the satisfy s(m) =
dT (m). The advantage of the modification is that we now have that the system
T (m) is compatible. We omit the simple calculation for it. This means that the
restriction of T (m) to Um−1 is T (m−1). This implies that they glue to a cochain
t ∈ Cq−1(U,M). But with this cochain we clearly have dt = s. This is want
we wanted to prove.

Second case, q = 1. We consider the sequence of Frèchet spaces

M(Q1)←−M(Q2)←−M(Q2)←− · · ·

The image of each arrow is dense. Recall that we have chosen t(m) with dt(m) =
s(m). Now q = 1. The elements of C0(Um,M) attach to each index k ≤ m
a section from M(Qk). If the element is closed, then these sections glue to a
section fromM(Qm). HenceM(Qm) can be identified with the closed elements
from C0(Um,M). In this way t(m) − t(m−1) can be considered as element of



78 Chapter III. Stein spaces

M(Qm−1). As in the first case we will have to replace t(m) by some other
T (m) = t(m) + α(m). Here α(m) should be a zero cochain with the property
dα(m) = 0. As we explained this can be considered as element ofM(Qm). The
construction of α(m) will use Runge approximation. The aim of the construction
is that the sequence T (m) converges. Since the entries of this sequence are in
different spaces, we have to explain what convergence means: It means that
there exist an T ∈ M(Q) such that for each k the sequence (t(m))≥k, more
precisely its image inM(Qk) converges to T |M(Qk). To prove the convergence,
we will use the Cauchy criterion: For each k we will have to show:

For each neighborhood 0 ∈ U ⊂M(Qk) there exists an N such that the image
of T (µ) − T (ν) in M(Qk) is contained in U for µ > ν ≥ 0.

We will use also that each space M(Qm) has a countable fundamental
system of neighborhoods of the origin (Frèchet spaces are metrizable).

For each m we choose a fundamental system of neighborhoods of the origin
as indicated in the figure

M(Q1) ←− M(Q2) ←− M(Q3) ←− · · ·
∪ ∪ ∪
U11 ←− U21 ←− U31 · · ·
∪ ∪ ∪
U12 ←− U22 ←− U32 · · ·
∪ ∪ ∪
U13 ←− U23 ←− U33 ←− · · ·
∪ ∪ ∪
...

...
...

The horizontal arrows indicate that Ukm is mapped to Uk,m−1 under the restric-
tion mapM(Qm)→M(Qm−1). We also want to have that the neighborhoods
shrink rapidly in the sense Um,k+1+Um,k+1 ⊂ Um,k. It clear that such a system
of neighborhoods can be constructed. Then induction shows

ν+1 copies︷ ︸︸ ︷
Um,k+ν + · · ·+ Um,k+ν ⊂ Um,k.

After this preparation we come the construction of T (m) = t(m) + α(m). What
we want to have is T (m+1) − T (m) ∈ Um,m. It is now problem to construct
this by induction. One starts with T (1) = t(1). Assume that T (1), . . . T (m) have
been constructed. We construct T (m+1). For this we consider T (m+1) − t(n) ∈
M(Qm). By the approximation theorem there exists an element α(m+1) ∈
M(Qm+1) such that T (m) − t(m+1) − α(m+1) ∈ Um,m. Now T (m+1 = t(m+1) +
α(m+1) has the desired property.

We have to check that T (m) is a Cauchy sequence in the described sense.
For this wa have to fix an k and to consider a neighborhood of the origin in
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M(Qk). We can take this neighborhood in the form U = Uk,l with some l. We
have to construct an N ≥ k such that

T (µ) − T (ν) −→ U for µ ≥ ν ≥ N.

(The arrow just indicates that —after restriction to M(Qk)— the element
should be contained in U .) We claim that a possible choice is N = max(k, l+2).
For this we decompose

T (µ) − T (ν) = (T (µ) − T (µ−1)) + · · ·+ (T (ν+1) − T (ν)).

We can consider this element in M(Qν). There it lies in

Uν,µ−1 + Uν,µ−2 + · · ·+ Uν,ν ⊂
µ−ν−2 copies︷ ︸︸ ︷

Uν,ν + · · ·+ Uν,ν ⊂ Uν,ν−(µ−ν−2) = Uν,2ν−µ−2.

Hence the image of T (µ) − T (ν) in M(Qk) is in Uk,2ν−µ−2. Since 2ν − µ− 2 ≥
ν−2 ≥ N −2 ≥ l we obtain T (µ)−T (ν) ∈ Uk,l as desired. So the global section
T “= limT (m)” has been constructed.

Finally we claim dT = s (globally). Since dT (k) = s(k) we only have to show
that T |Uk − T (k) is closed. From construction is a limit of the close elements.
Now d is clearly a continuous operator. This finishes the proof of 5.1. tu

6. Theorem A and B for Stein spaces

The basic theorems about Stein spaces are

6.1 Theorem A for Stein spaces. Let X be a Stein space andM a coherent
sheaf. For each a ∈ X the stalk Ma can be generated by (the germs of) finitely
many global sections.

6.2 Theorem B for Stein spaces. Let X be a Stein space andM a coherent
sheaf. Then

Hq(X,M) = 0 for q > 0.

The formulation seems to indicate that we have two independent theorems.
Actually theorem A is an easy consequence of theorem B. To prove this we
consider the vanishing ideal sheaf J ⊂ OX of the point a and then for an
arbitrary natural number Then we use the exact sequence

0 −→ JM −→M−→M/J −→ 0.
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From theorem B we get that M(X) → (M/J )(X) is surjective. Notice that
(M/J )(X) =Ma/mMa. Here m means the maximal ideal ofOX,a. We denote
by M the submodule of Ma that is generated by the image of M(X) and by
N =Ma/M the factor module. The above argument shows Ma = M + mMa

or mN = N . The proof now follows from the lemma of Nakayama.

For the proof of theorem B we will use an exhaustion by Oka domains.
So the procedure is similar as in the proof of Theorem B for cuboids. But
there are some technical difficulties that arise. One of them is to define a
structure as Frèchet space on M(X) for singular X. Actually this is possible
for each coherent sheaf on an arbitrary complex space in a natural way. But
the construction is difficult. This is already visible for the structure sheaf.
Actually on can try to equip OX(X) with the topology of uniform convergence
on compact sets. To make this work correctly one needs that the limit of a
sequence of analytic functions that converges uniformly on each compact subset
is analytic too. Actually this is true but unfortunately rather deep and not at
reach at the moment. Hence we restrict to topologize M(X) only in special
cases.

We will use 5.3 to construct a Frèchet topology on OX(X) for special non-
smooth complex spaces. Let P ⊂ Cn be a polydisk and X ⊂ P a closed analytic
subset. We have a natural map OP (P ) → OX(X). This map is surjective by
Theorem B for polydisks. To see this just consider the ideal sheaf J ⊂ OP
corresponding to X. Then we have a short exact sequence

0 −→ J −→ OP −→ OP /J −→ 0.

From theorem B we get H1(P,J ) = 0 and form this the surjectivity of
OP (P )→ OP (P )/J (P ). There is a natural isomorphism OX(X) ∼= OP /J (P ).
This gives the claimed surjectivity OP (P )→ OX(X). We know from 5.3 that
the kernel is closed. Hence the factor space of XP (P ) by this kernel carries a
natural structure as Frèchet space. We transport this structure to OX(X) to
get a structure as Frèchet space there.

6.3 Proposition. Let X be a complex space such there exists polydisk P and
a closed holomorphic embedding α : X → P. There exists a unique structure
as Frèchet space on OX(X) such that the induced map OP (P ) → OX(X) is
continuous. This structure is independent of the choice of the embedding α.

The open mapping theorem for Frèchet spaces shows that OP (P ) must carry
the quotient topology of OP (P ). Hence we only have to show the independence
of the choice of the embedding α. Let β : X → P ′ be another closed embedding.
We connect both embeddings to an embedding

(α, β) : X → P × P ′.

We consider the natural maps

OP (P ) −→ OP×P ′(P × P ′) −→ OX(X).
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the first one is associated to the projection P × P ′ → P . Now we first
equip OX(X) with the quotient topology of OP×P ′(P × P ′). Since OP (P ) →
OP×P ′(P × P ′) is continuous by trivial reasons we get with this topology that
OP (P ) → OX(X) is continuous. By the open mapping theorem OX(X)
must carry the quotient topology of OP (P ). So we see that OP (P ) and
OP×P ′(P × P ′) induce the same topology. Since the roles of P and P ′ can
be interchanged, we see that OP (P ) and OP ′(P ′) induce the same topology.

tu
We get a first version of a variant of Runge’s approximation theorem.

6.4 Approximation theorem, first version. Let X ′ be a complex space
that can be embedded into some polydisk β : X ′ ↪→ Q′ ⊂ Cn as closed complex
subspace. Let X be an open subset of X that also can be embedded into some
polydisk α : X ↪→ Q ⊂ Cm as closed complex subspace. We assume that the
function α extends to a holomorphic map X ′ → Cm. Then the following holds:

1) The natural map OX′(X ′)→ OX(X) is continuous.
2) The image of this map is dense.

Proof. We denote the extension of α also by α : X ′ → Cm. The two poly-
disks can be very different and not be compared directly. We improve this by
modifying them. Instead of α : X → Q we consider

X −→ Q×Q′, x 7−→ (α(x), β(x)).

This is also an closed embedding. Similarly we consider

X ′ −→ Cm ×Q′, x 7−→ (α(x), β(x)).

which is also a closed embedding. Since the topologies don’t depend on the
choice of the embeddings, we can assume from advance.

The polydisks Q,Q′ are in the same Cn and we have Q ⊂ Q′. The diagram

X ↪→ Q
∩ ∩
X ′ ↪→ Q′

commutes.

From this diagram we get a map OQ′(Q′) → OQ(Q) → OX(X) that clearly
is continuous. From the universal property of the quotient topology we get
that OX′(X ′)→ OX(X) is continuous. The claimed density now follows from
the density of the image of OQ′(Q′) → OQ(Q). This is a consequence of the
possibility power series expansions in polydisk.

We need an extension of 6.4 to finitely generated coherent sheaves. For this
we need a generalization of 5.3.
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6.5 Lemma. Let X be a complex space that can be embedded as closed
analytic subset into a polydisk. Let M ⊂ OnX be a coherent subsheaf of a free
sheaf. Then M(X) is closed in OX(X)n.

Proof. Let X → P be the closed embedding into a polydisk. It is sufficient to
show that inverse image of M(X) in OP (P )m is closed. But M is the module
of global sections of a coherent sub-sheaf of OnP . Hence we can apply 5.3.

tu

6.6 Lemma. Let X be a complex space that is embeddable as as closed
analytic subset into a polydisk. Let M be a finitely generated coherent sheaf on
X. Then there exists a unique structure as Frèchet space on M(X) such that
for each presentation OnX →M the map OX(X)n →M(X) is continuous.

The approximation theorem 6.4 now has an obvious generalization.

6.7 Runge’s approximation theorem, second version. Let X ′ be a
complex space that can be embedded into some polydisk β : X ′ ↪→ Q′ ⊂ Cn

as closed complex subspace. Let X be an open subset of X that also can be
embedded into some polydisk α : X ↪→ Q ⊂ Cm as closed complex subspace. We
assume that the function α extends to a holomorphic map X ′ → Cm. Assume
that M is a finitely generated coherent sheaf on X ′. Then the following holds:

1) The natural map M(X ′)→M(X) is continuous.
2) The image of this map is dense.

With the so far developed tools the proof of theorem B is literally the same as
for a cube 5.1. So can keep short. Using 1.6 we can construct an exhaustion

U1 ⊂⊂ U2 ⊂⊂ U3 ⊂⊂ · · · ⊂⊂ X

by Oka domains. We know that the cohomology of M vanishes on each Um.
This follows from Theorem B for polydisks. We also have a Frèchet space
structure on M(Um) such the image in M(Um) is dense. (Notice that 5.5 can
be applied since Oka domains are embedded into polydisks by global functions.)
So we have produced the analogue situation as we had in the case of a cuboid.
The proof that we started behind 5.5 now works literally. tu

7. Meromorphic functions

An element a of a ring R is called a non-zero divisor if ax = 0⇒ x = 0. Let S
be a set of all non-zero divisors. Assume that 1 ∈ S and that s, t ∈ S implies
st ∈ S. Then we call S a multiplicative subset. There exists a ring RS that
contains R as subring such that the elements of S are invertible in RS and
such that each element of RS can be written in the form a/s, a ∈ R, s ∈ S.
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Such a ring is uniquely determined up to canonical isomorphism. It is called
the total quotient ring of R. In the case that R is an integral domain, one can
take for S the set of all non-zero elements and RS then is the quotient field of
R. Let f : R1 → R2 be a ring homomorphism and let S1 ⊂ R1, S2 ⊂ R2 be
multiplicative subsets such that f(S1) ⊂ S2 then the homomorphism f extends
in a natural way to a homomorphisme RS1 → RS2 .

Let O be sheaf of rings. For an open subset U we consider the set S(U) of
all f ∈ O(U) such that f |V is a non-zero divisor in O(V ) for each open V ⊂ U .
In particular, the elements of S(U) are non-zero divisors in O(U). Hence one
can consider

O(U)S(U) =
{
f/g; f ∈ O(U), g ∈ S(U)

}
.

There are obvious restriction maps, such that this assignment gives a pre-sheaf.
We denote the generated sheaf of rings by M. The natural map O → M is
injective since the functor

”
generated sheaf“ is exact. Hence we can consider

O as a subsheaf of M.

There is a natural map O →M of sheaves of rings and this map is injective,
since the functor “generated sheaf” is exact.

We callM the sheaf of meromorphic sections of O. The construction ofM
is compatible with restriction to open subsets U . This means that M|U can
be identified with the sheaf of meromorphic sections of O|U . Let f ∈ M(X)
be a section of M. Consider the set of all open subsets U ⊂ X such that
f |U ∈ O(U). The union of all these U is an open subset Uf of X. Clearly
f |Uf ∈ O(Uf ). We call Uf the domain of holomorphy of f .

Let a be a point. There is a natural map from Ma into the total quotient
ring of Oa. Clearly this is injective.

7.1 Lemma. Let X be a topological space and let O be a coherent sheaf of
rings. The natural homomorphism of Ma into the total quotient ring of OX,a
is an isomorphism.

Proof. Let f ∈ OX(U) be an element such that fa is a non-zero divisor in OX,b.
We know from the coherence theorems that then fb is a non-zero divisor in a
full neighborhood. This implies Lemma 7.1. tu

Let f ∈ M(X) be a section of M. Consider the set of all open subsets
U ⊂ X such that f |U ∈ O(U). The union of all these U is an open subset Uf
of X. Clearly f |Uf ∈ O(Uf ). We call Uf the domain of holomorphy of f .

So farM is a rather abstract object, even if O ⊂ CX is a sheaf of continuous
functions, for example if (X,OX) is a complex space in the sense of Serre. To
remedy this situation, we make the following assumption.

7.2 Assumption. Assume that O is a subsheaf of rings of CX . Assume that
for each open subset U ∈ O and that each f ∈ O(U) with the property f(x) 6= 0
is invertible in O(U).

This property is fulfilled of course for complex spaces in the sense of Serre.
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7.3 Proposition. Assume that the assumption above is fulfilled. Let f a
global section of MX . The domain of holomorphy Uf is open and dense in X.
Assume that there exists an open and dense subset U that is contained in Uf
and such that f(x) = 0 for all x ∈ U . Then f = 0.

Proof. Let a ∈ X be a point in the complement of U . There exists a non-
zero divisor ha ∈ OX,a such that hafa ∈ OX,a. This implies hf = in a full
neighborhood W of a where h ∈ OX(W ) is a representative of ha. The function
fh is zero in U ∩W . By continuity it is zero in W . We can assume that hb is a
non-zero divisor of all b ∈W . We obtain f |W = 0. This shows f = 0. tu

So we see that global sections of MX can be considered as holomorphic
functions on dense open subsets with additional properties. For this reason we
call sections of MX simply “meromorphic functions”.

8. Cousin problems

An additive Cousin datum on a complex X space is an open covering U =
(Ui)i∈I on X and a collection of meromorphic functions fi ∈ MX(Ui) for all
indices i such that for each two indices the difference fi− fj is holomorphic on
Ui ∩Uj . One then can ask whether there exists a global meromorphic function
f ∈MX(X) such that f − fi is holomorphic on Ui for all i.

8.1 The first Cousin problem. Let X = (X,OX) be a complex space. Does
any additive Cousin datum admit a solution?

In standard courses about complex analyis one proves the Mittag-Leffler theo-
rem which in a constructive way gives an positive answer in the case X = C.
Again we consider an open covering U = (Ui)i∈I of a complex space.

A multiplicative Cousin datum is a collection of holomorphic functions fi
with the following property:

a) The set of zeros of fi is thin in Ui.
b) There exists a holomorphic function fij on Ui ∩Uj without zeros such that

fi = fijfj on Ui ∩ Uj .
This means that the zeros of fi and fj in Ui ∩ Uj are the same. Hence a
multiplicative Cousin datum should be considered as prescription of zeros. On
can ask whether there exists a global holomorphic function f : X → C such
that f = ϕifi on Ui with a holomorphic function ϕ : Ui → C without zeros.

8.2 Second Cousin problem. Let X be a complex space. Does every
multiplicative Cousin datum admit a solution?

We are able to prove now:



§8. Cousin problems 85

8.3 Theorem. Let U = (Ui)i∈I be an open covering of a Stein space X
fi ∈ MX(Ui) collection of meromorphic functions for all indices i such that
for each two indices the difference fi − fj is holomorphic on Ui ∩ Uj. Then
there exists a global meromorphic function f ∈ MX(X) such that f − fi is
holomorphic on Ui for all i.

Proof. We consider the short exact sequence

0 −→ OX −→MX −→MX/OX −→ 0.

We consider the images si of fi in (MX/OX)(Ui). By assumption they agree in
the intersections and hence define a global section (MX/OX)(X). Now from
the long exact cohomology sequence follows that M(X) −→ (MX/OX)(X)
is surjective. Choose f ∈ M(X) with image s. Then clearly fa − (fi)a is
contained in OX,a for all a ∈ Ui. This shows that f − fi is holomorphic on
Ui. tu

The second Cousin problem

Again we consider an open covering U = (Ui)i∈I of a complex space. A mul-
tiplicative Cousin datum is a collection of holomorphic functions fi with the
following property:

a) The set of zeros of fi is thin in Ui.
b) There exists a holomorphic function fij on Ui ∩Uj without zeros such that

fi = fijfj on Ui ∩ Uj .
This means that the zeros of fi and fj in Ui ∩ Uj are the same. Hence a
multiplicative Cousin datum should be considered as prescription of zeros. On
can ask whether there exists a global holomorphic function f : X → C such
that f = ϕifi on Ui with a holomorphic function ϕ : Ui → C without zeros.

For a solution of this Cousin problem we need the sheaf ZX of locally
constant functions with values in Z.

8.4 Theorem. Let X be a Stein space with the property H2(X, ZX) = 0.
Then any multiplicative Cousin problem has a solution.

Proof.. For any open subset U ⊂ X we consider the set O∗X(U) of holomorphic
functions without zeros on U . This is a group under multiplication. (This
statement easily can be reduced to the case Cn where it is known.) With usual
restriction maps we get a sheaf O∗X of abelian groups. Let f ∈ OX(U). Then
e2πif is holomorphic too. (Again this follows from the case X = Cn.) We claim
that the sequence

0 −→ ZX −→ OX −→ O∗X −→ 0

is exact. The only problem is the surjectivity. For this one has to show: Let
a ∈ X be a point and f a holomorphic function without zeros on some open
neighborhood of a. Then there is a holomorphic function g in a maybe smaller
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open neighborhood of a with the property eg = f . This also can be reduced
easily to the case X = Cn. For the construction of g one may assume that
|f(a)− 1| < 1. Then one can make use of the logarithm series.

Now the proof of 8.4 is easy. From the assumptions and the long exact
cohomology sequence we get H1(X,O∗X) = 0. A Cousin distribution is nothing
but a Čech cocycle. The solution of the Cousin problem means that this cocycle
is trivial. Hence we have to show Ȟ1((U,O∗X) = 0. But we know that the first
Čech cohomology groups are embedded into the true cohomology. tu

One should investigate now what it means that H2(X, ZX) is zero. Clearly
this depends only on the topological nature of X. Hence it is more a problem
of topology than of complex analysis. Hence we only mention

1) H2(Cn, ZCn) = 0. (This has been proved in VI.6.8.)
2) H2(U, ZU ) = 0 for an open subset U ⊂ C. (We will not prove it here.)

We recall that in standard courses on complex functions the solution of the mul-
tiplicative Cousin problem for X = C is given in a constructive way by means
of Weierstrass products. So we obtained a very remarkable generalization using
cohomological methods.



Chapter IV. Finiteness Theorems

1. Compact Complex Spaces

The aim of this section is:

1.1 Theorem. Let X be a compact complex space and M a coherent sheaf.
The cohomology group Hp(X,M) is a finite dimensional complex vector space
for each p.

Since the sheaf of holomorphic differential forms on a complex manifold is
locally free and hence coherent we get

1.2 Corollary. Let X be a compact complex manifold of (pure) dimension
n. Then the cohomology groups

Hp(X,ΩqX)

are finite dimensional. Moreover the vanish for p+ q > n.

Another approach uses Hodge theory.

Before we start with the proof we formulate to lemmas:

1.3 Lemma. Let U1, U2 be two open Stein subspaces of complex space X.
Then U1 ∩ U2 is Stein.

Proof. Point separation and infinitesimal point separation are clear. Hence let
K ⊂ U1 ∩ U2 be a compact subset. We have to show that K̂ (the holomorphic
hull taken in U1 ∩ U2) is compact. We denote the holomorphic hulls taken in
U1 resp U2 by K̂1 resp. K̂2. Then K̂ is a closed subset of K̂1 ∩ K̂2. This shows
that K is compact. tu



Chapter V. Sheaves

1. Presheaves

1.1 Definition. A presheaf F (of abelian groups) on a topological space X is
a map which assigns to every open subset U ⊂ X an abelian group F (U) and
to every pair U, V of open subsets with the property V ⊂ U a homomorphism

rUV : F (U) −→ F (V )

such that for three open subsets U, V,W with the property W ⊂ V ⊂ U

rUW = rVW ◦ rUV

holds:

Example: F (U) is the set al continuous functions f : U → C and rUV (f) := f |V
(restriction).

Many presheaves generalize this example. Hence the maps rUV are called
“restrictions” in general and one uses the notation

s|V := rUV (s) for s ∈ F (U).

The elements of F (U) sometimes are called “sections” of F over U . In the
special case U = X they are called “global” sections.

1.2 Definition. Let X be a topological space. A homomorphism of presheaves

f : F −→ G

is a family of group homomorphisms

fU : F (U) −→ G(U),

such that the diagram
F (U) −→ G(U)
↓ ↓

F (V ) −→ G(V )

commutes for every pair V ⊂ U of open subsets, i.e. fU (s)|GV = fV (s|FV ).
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It is clear how to define the identity map idF : F → F of a presheaf and the
composition g ◦ f of two homomorphims f : F → G, g : G→ H of presheaves.

There is also a natural notion of a sub-presheaf F ⊂ G. Besides F (U) ⊂
G(U) for all U one has to demand, that the restrictions are compatible. This
means:

The canonical inclusions iU : F (U)→ G(U) define a homomorphism i : F → G
of presheaves.

When f : F → G is a homomorphism of presheaves, the images fU (F (U))
define a sub-presheaf of G. We call it the presheaf-image and denote it by

fpre(F ).

It is also clear that the kernels of the maps fU define a sub-presheaf of F . We
denote it by Kernel(f : F → G). When F is a sub-presheaf of G then one
can can consider the factor groups G(U)/H(U). Using VII.1.1 it is clear how
to define restriction maps to get a presheaf G/preF . We call this presheaf the
factor-presheaf.

Since we have defined Kernel and Image we can also introduce the notion
of a preasheaf-exact sequence. A sequence F → G → H is presheaf-exact
if and only if F (U) → G(U) → H(U) is exact for all U . What we have said
about exact sequences of abelian groups carries literarily over to presheaf-exact
sequences of presheaves of abelian groups.

2. Germs and Stalks

let F be a presheaf on a topological space X und let a ∈ X be a point. We
consider pairs (U, s), where U is an open neighpourhood of a and s ∈ F (U)
a section over U . Two pairs (U, s), (V, t) are called equivalent, if there exists
an open neighborhood a ∈ W ⊂ U ∩ V , such that s|W = t|W . This is an
equivalence relation. The equivalence classes

[U, s]a :=
{

(V, t); (V, t) ∼ (U, s)
}

are called germs of F in the point a. The set of all germs

Fa :=
{

[U, s]a, a ⊂ U ⊂ X, s ∈ F (U)
}

is the so-called stalk of F in a. The stalk carries a natural structure as abelian
group. One defines

[U, s]a + [V, t]a := [U ∩ V, s|U ∩ V + t|U ∩ V ]a.
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We use frequently the simplified notation

sa = [U, s]a.

For every open neighborhood a ∈ U ⊂ X there is an obvious homomorphism

F (U) −→ Fa, s 7−→ sa.

A homomorphism of presheaves f : F → G induces natural mappings

fa : Fa −→ Ga (a ∈ X).

The image of a germ [U, s]a is simply [U, fU (s)]a. It is easy to see that this is
well-defined.

2.1 Remark. Let F → G and G → H be homomorphism of presheaves
and let a ∈ X be a point. Assume that every neighborhood of a contains a
small open neighborhood U such that F (U) → G(U) → H(U) is exact. Then
Fa → Ga → Ha is exact.

Corollary. if F → G→ H is presheaf-exact then Fa → Ga → Ha is exact for
all a.

If F is a preasheaf on X, one can consider for each open subset U ⊂ X

F (0)(U) :=
∏
a∈U

Fa.

The elements are families (sa)a∈U with sa ∈ Fa. There is now coupling between
the different sa. Hence F (0)(U) usually is very giantly.

For open sets V ⊂ U , one has an obvious homomorphism F (0)(U) →
F (0)(V ). Hence we obtain a preasheaf F (0) together with a natural homo-
morphism

F −→ F (0).

3. Sheaves

3.1 Definition. A presheaf F is called sheaf, if the following conditions are
satisfied:

(G1) When U =
⋃
Ui is an open covering of an open subset U ⊂ X and if

s, t ∈ F (U) are sections with the property s|Ui = t|Ui fur alle i, then s = t.

(G2) When U =
⋃
Ui is an open covering of an open subset U ⊂ X und if

si ∈ F (Ui) is a family of sections with the property

si|Ui ∩ Uj = sj |Ui ∩ Uj fur alle i, j,

then there exists a section s ∈ F (U) with the property s|Ui = si for all i.

(G3) F (∅) is the zero group.
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Clearly the presheaf of continuous functions is a sheaf, since continuity is a
local property. An example of a presheaf F , which usually is not a sheaf is
the presheaf of constant functions with values in Z (F (U) = {f : U → Z, f
constant}). But the set of locally constant functions with values in Z is a sheaf.

By a subsheaf of a sheaf F we understand a sub-presheaf G ⊂ F which is
already a sheaf. If F,G are presheaves then a homomorphism f : F → G of
presheaves is called also a homomorphism of sheaves.

3.2 Remark. Let F ⊂ G be a sub-presheaf. We assume that G (but not
necessarily F ) is a sheaf. Then there is a smallest subsheaf F̃ ⊂ G which
contains F . For an arbitrary point a ∈ X the induced map fa : Fa → F̃a is an
isomorphism.

It is clear, that F̃ (U) has to be defined as set of all s ∈ G(U), such that:

There exists an open covering U =
⋃
Ui, such that s|Ui is in the image of

F (Ui)→ G(Ui) for all i.

This is equivalent with:

The germ sa is in the image of Fa → Ga for all a ∈ U .

3.3 Definition. Let F → G be a homomorphism of sheaves. The sheaf-image
fsheaf (F ) is the smallest subsheaf of G, which contains the presheaf-image-
fpre(F ).

We have to differ between two natural notions of surjectivity.

3.4 Definition.
1) A homomorphism of preasheaves f : F → G is called presheaf-surjective

if fpre(F ) = G.

2) A homomorphism of sheaves f : F → G is called sheaf-surjective if
fsheaf (F ) = G.

Wenn F and G both are sheaves then sheaf-surjectivity and presheaf-surjecti-
vity are different things. We give an example which will be basic:

Let O be the sheaf of holomorphic functions on C, hence O(U) is the set of
all holomorphic functions on an open subset U . This a sheaf of abelian groups
(under addition). Similarly we consider the sheaf O∗ of holomorphic functions
without zeros. This is also a sheaf of abelain groups (under multiplication).
The map f → ef defines a sheaf homomorphism

exp : O −→ O∗.

The map O(U) → O∗(U) is not always surjective. For example for U = C∗
the function 1/z is not in the image. Hence exp is not presheaf-surjective. But
it is know from complex calculus that exp : O(U) → O∗(U) is surjective if U
is simply connected, for example for a disc U . Since a point admits arbitrarily
small neighborhoods which are discs, it follows that exp is sheaf-surjective.
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3.5 Remark. A homomorphism of sheaves f : F → G is sheaf-surjective if
and only if the maps fa : Fa → Ga are surjective for all a ∈ X.

Fortunately the notion “injective” doesn’t contain this difficulty.

3.6 Remark. Let f : F → G be a homomorphism of sheaves. The kernel in
the sense of presheaves is already a sheaf.

Hence we don’t have to distinguish between presheaf-injective and sheaf-
injective and also not between preasheaf-kernel and sheaf-kernel.

3.7 Remark. A homomorphism of sheaves f : F → G is injective if and only
if the maps fa : Fa → Ga are injective for all a ∈ X.

A homomorphism of presheaves f : F → G (sheaves) is called an isomorphism
if all F (U)→ G(U) are isomorphisms. Their inverses then define a homomor-
phism f−1 : G→ F .

3.8 Remark. A homomorphism of sheafs F → G is an isomorphism if and
only if Fa → Ga is an isomorphism for all a.

For presheaves this is false. As counter example on can take for F the presheaf
of constant functions and for G the sheaf of locally constant functions.

It is natural to introduce the notion of sheaf-exactness as follows:

3.9 Definition. A sequence F → G → H of sheaf homomorphims is sheaf-
exact at G , if the the kernel of G→ H and the sheaf-image of F → G agree.

Generalizing 3.5 and 3.7 one can easily show:

3.10 Proposition. A sequence F → G → H is exact if and only if Fa →
Ga → Ha is exact for all a.

Our discussion so far has obviously one gap: Let F ⊂ G be subsheaf of a sheaf
G. We would like to have an exact sequence

0 −→ F −→ G −→ H −→ 0.

The sheaf H should be the factor sheaf of G by F . But up to now we only
defined the factor-presheafG/preF which usually is no sheaf. In the next section
we will give the correct definition for a factor sheaf G/sheafF .
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4. The generated sheaf

For a presheaf F we introduced the monstrous presheaf

F (0)(U) =
∏
a∈U

Fa.

Obviously F (0) is a sheaf. Sometimes its is called the “Godement-sheaf” or the
“associated flabby sheaf”. There is a natural homomorphism

F → F (0).

We can consider its presheaf-image and then the smallest subsheaf which con-
tains it. We denote this sheaf by F̂ and call it the “generated sheaf” by F .
There is a natural homomorphism

F → F̂ .

From the construction follows immediately

4.1 Remark. Let F be a presheaf. The natural maps

Fa
∼−→ F̂a

are isomorphisms.

A homomorphism F → G of presheaves induces a homomorphism F (0) → G(0).
Clearly F̂ is mapped into Ĝ.

4.2 Remark. Let f : F → G be a homomorphism of presheaves. There is a
natural homomorphism F̂ → Ĝ, such that the diagram

F −→ G
↓ ↓
F̂ −→ Ĝ

commutes.

When F is already a sheaf then F → F (0) is injective. Then the map of F into
the presheaf image is an isomorphism. This implies that the presheaf image is
already a sheaf.

4.3 Remark. Let F be a sheaf. Then F → F̂ is an isomorphism.

If F is a sub-presheaf of a sheaf G, then the induced map F̂ → Ĝ ∼= G is
an isomorphism F̂ → F̃ between F̂ and the smallest subsheaf F̃ of G, wich
contains F .

We identify F̃ and F̂ .
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Factor sheaves and exact sequences of sheaves

Let F → G be a homomorphism of presheaves. We introcuced already the fac-
tor preshaf G/preF , which asociates to an open U the factor group G(U)/F (U).
Even if both F and G are sheaves this will usually not a shesf. Hence we define
the factor sheaf as the sheaf generated by the factor-presheaf.

G/sheafF := Ĝ/preF.

This called the factor-sheaf. Since we are interested mainly in sheaves, we will
write usually for a homomorphism for sheaves f : F → G:

G/F := G/sheafF (factor sheaf)

f(F ) := fsheaf(F ) (sheaf image)

Notice that there is no need to differ between sheaf- and presheaf-kernel. When
we talk about an exact sequence of sheaves

F −→ G −→ H

we usually mean “sheaf exactness”. All what we have said about exactness
properties of sequences of abelian groups is literally true for sequences of
sheaves. For example: A sequence of sheaves 0 → F → G (0 denotes the
zero sheaf) is exact if and only of F → G is injective. A sequence of sheaves
F → G→ 0 is exact if and only if F → G is surjective (in the sense of sheaves
of course). A sequence of sheaves 0→ F → G→ H → 0 is exact if and only if
there is an ismomorphism H ∼= G/F which identifies this sequence with

0 −→ F −→ G −→ G/F −→ 0.

4.4 Remark. Let 0 → F → G → H → 0 be an exact sequence of sheaves.
Then for open U the sequence

0→ F (U)→ G(U)→ H(U)

is exact.

Corollary. The sequence

0→ F (X)→ G(X)→ H(X)

is exact.

Usually G(X) −→ H(X) is not surjective as the example

0 −→ ZX −→ O
f 7→e2πif

−→ O∗ −→ 0

shows. Cohomology theory will measure the absence the right exactness. The
above sequence will be part of a long exact sequence

0→ F (X)→ G(X)→ H(X) −→ H1(X,F ) −→ · · ·
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5. Direct and inverse image of sheaves

Let f : X → Y a continuous map of topological spaces and F a pre-sheaf on
X. Then (f∗F )(V ) := F (f−1(C)) with natural restriction maps is a pre-sheaf
on Y . It is a sheaf if F is a sheaf. We call it the direct image sheaf. For
a point a ∈ X there is an obvious map (f∗F )f(a) → Fa. Let X → Y be a
closed embedding. This means that the image is closed and that X → Y is a
topological map. In this case the above map induces a bijection (f∗F )f(a)

∼= Fa.

We use some simple facts about sheaves. Let F be a sheaf on a topological
space. We know the trivial procedure of restricting F to an open subset. There
is a more general procedure to restrict sheaves to an arbitrary subset Y ⊂ X
(equipped with the induced topology). Even more general, one can define for
a continuous map f : Y → X the inverse image f−1F of a sheaf F on X. First
one considers the presheaf

G(V ) = lim
−→

F (U)

where U runs through all open subsets of X that contain f(V ). Then one
defines f−1F to be its generated sheaf. If U ⊂ X is open an ι : U → X is the
canonical injection then ι−1F can be identified with the restriction. Hence we
can use the notation F |Y = ι−1F for any subset Y ⊂ X, equipped with the
induced topology. Again ι denotes the natural injection.

5.1 Lemma. Let X be a topological space and Y ⊂ X a closed subspace. Let
F be a sheaf on X such that F |(X − Y ) is zero and let ι : Y → X the natural
injection. Then there is a natural isomorphism

ι∗(F |Y )
∼−→ F.

More precisely, the functor F 7→ F |Y defines an equivalence between the cate-
gory of sheaves on Y and the category of sheaves on X whose restriction to U
vanishes.

We use some simple facts about sheaves. Let F be a sheaf on a topological
space. We know the trivial procedure of restricting F to an open subset. There
is a more general procedure to restrict sheaves to an arbitrary subset Y ⊂ X
(equipped with the induced topology). Even more general, one can define for
a continuous map f : Y → X the inverse image f−1F of a sheaf F on X. First
one considers the presheaf

G(V ) = lim
−→

F (U)

where U runs through all open subsets of X that contain f(V ). Then one
defines f−1F to be its generated sheaf. If U ⊂ X is open an ι : U → X is the
canonical injection then ι−1F can be identified with the restriction. Hence we
can use the notation F |Y = ι−1F for any subset Y ⊂ X, equipped with the
induced topology. Again ι denotes the natural injection.
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5.2 Lemma. Let X be a topological space and Y ⊂ X a closed subspace. Let
F be a sheaf on X such that F |(X − Y ) is zero and let ι : Y → X the natural
injection. Then there is a natural isomorphism

ι∗(F |Y )
∼−→ F.

More precisely, the functor F 7→ F |Y defines an equivalence between the cate-
gory of sheaves on Y and the category of sheaves on X whose restriction to U
vanishes.

6. Sheaves of rings and modules

A sheaf of A-modules is a sheaf F of abelian groups such that every F (U) carries
a structure as A-module and such the the restriction maps F (U) → F (V )
for V ⊂ U are A-linear. A homomorphism F → G is called A-linear if all
F (U) → G(U) are so. Then kernel and image carry natural structures of
sheafs of A-modules. Also the stalks carry such a structure naturally. Hence
the whole canonical flabby resolution is a sequence of sheafs of A-modules.

There is a refinement of this construction: By a sheaf of rings O we under-
stand a sheaf of abelian groups such that every O(U) is not only an abelian
group but a ring and such that all restriction maps O(U) → O(V ) are ring
homomorphisms. Then the stalks Oa carry a natural ring structure such that
the homomorphisms O(U) −→ Oa (U is an open neighborhood of a) are ring
homomorphisms.

By an O-module we understand a sheaf M of abelian groups such every
F (U) carries a structure as O(U)-module and such that the restriction maps
are compatible with the module structure. To make this precise we give a short
comment. Let M be an A-module and N be a module over a different ring
B. Assume that a homomorphism r : A → B is given. A homomorphism
f : M → N of abelian groups is called compatible with the module structures
if the formula

f(am) = r(a)f(m) (a ∈ A, m ∈M)

holds. An elegant way to express this is as follows. We can consider N also as
an module over A by means of the definition an := r(a)n. Sometimes this A-
module is written as N[r]. Then the compatibility of the map f simply means
that it is an A-linear map

f : M −→ N[r].

Usually we will omit the subscript [r] and simply say that f : M → N is
A-linear.

IfM is an O-module then the stalkMa is naturally an Oa-module. An O-
linear map f :M→N between two O-modules is a homomorphism of sheaves
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of abelian groups such the maps M(U) → N (U) are O(U) linear. Then the
Kernel and image also carry natural structures of O-modules.

Another standard construction of commutative algebra carries over to the
case of modules over sheaves.

An O-submodule P ⊂M is an sub-sheaf of abelian groups such that P(U)
is an O(U)-submodule of M(U) for every open U . Then the natural inclusion
P ↪→ M is O-linear. The factor sheaf M/N carries a natural structure as
O-module. An ideal sheaf in O is just an O-submodule of O (which can be
considered as O-module in the obvious way). The factor sheaf of O by an ideal
sheaf carries a natural structure as sheaf of rings.

Let ϕ : M → N be an O-linear map and P ⊂ N an O-submodule. Then
ϕ−1(P) is defined in the naiv way: ϕ−1(P)(U) := ϕ−1

U (P((U)). This is already
a sheaf, actually an O-submodule of M.

The direct sum M1 ⊕ · · · ⊕ Mm of O-modules Mi can be defined in the
naive way.

Clearly the canonical flabby resolution of an O-module is naturally a se-
quence of O-modules.

Since for every open subset U ⊂ X we have a ring homomorphism O(X)→
O(U) all M(U) can be considered as O(X)-modules. Hence a O-module can
be considered as sheaf of O(X)-modules.

Finitely generated sheaves

Let M be an O-module and Om → M an O-linear map. There is an in-
duced map Om(X)→M(X). Hence there are m distinguished global sections
s1, . . . , sm ∈M(X) (the images of the elements of the standard basis e1, . . . , em
of Om(X). These global sections determine the map, since for any open U ⊂ X
an arbitrary section ofOm can be written in the form s = f1e1|U+· · ·+fmem|U .
The image of this section is f1s1|U + · · ·+ fmsm. Conversely we obtain an O-
linear map through this formula for any choice of global sections s1 . . . , sm.
This shows:

6.1 Lemma. There is a natural one to one correspondence between O-linear
maps Om →M and m-tuples of global sections of M.

An O-module is called finitely generated if there is a surjective of O-modules
Om → M. Surjectivity of course is understood in the sense of sheaves. So
this means that there exist global sections s1, . . . , sm ∈ M(X) whose germs
generate the stalk Ma for each point a ∈ X.

Let M be an O-module. Assume that for each point a a submodule Na
is given. One can ask whether there exists a sub-module N ⊂ M with these
stalks. Of course N is uniquely determined if it exists. For example N exists
if there exist finitely man sections s1, . . . , sm ∈ M(X) such that Na is gener-
ated by s1, . . . , sm. Then N is generated by these sections. This shows that
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the notion of “finitely generated system” in connection with Oka’s coherence
theorem is closely related to the notion of a sheaf.

6.2 Remark. A finitely generated system (Ma) in the sense of I.10.1 can be
considered as a finitely generated submodule of OmU .

The support of a sheaf F is defined as

supportF := {a ∈ F ; Fa 6= 0}.

6.3 Lemma. Let M be a finitely generated O-module. The support of F is a
closed subset.

Proof. We show that the complement of the support is open. Let a be a point
such that Ma = 0. Consider generators s1, . . . , sm of M. the germs (si)a are
zero. Hence there exists an open neighborhood U such that all si|U = 0. This
shows Mb = 0 for all b ∈ U . tu

6.4 Lemma. Let M,N be two finitely generated submodules of an O-module
P Let a be a point such that Ma ⊂ Na Then there exists an open neighborhood
a ∈ U such that M|U ⊂ N|U .

Proof. Take generators s1, . . . , sm of M and t1, . . . , tn of N . Express the
germs (ti)a by the (sj)a. Since there are only finitely coefficients involved,
these equations extend to a small open neighborhood of a. tu

A similar argument gives:

6.5 Lemma. Let M → N be an O-linear map of finitely generated O-
modules. Let a be a point such that Ma → Na is surjective. Then there exists
an open neighborhood U such that M|U → N|U is surjective.

Lifting of maps

There is very simple fact of commutative algebra. Let M → N be a surjective
R-linear map of R-modules and Rn →M a linear map too. Then there exists
a lift. Rn → M . Denote the images of the standard basis e1, . . . , en in N by
b1, . . . , bn and take pre-images ai in M . Then map ei to ai.

To get an analogue for sheaves we consider a surjective O-linear mapM→
N of O-modules and an O-linear map On → N . Now we get a problem since
the map M(X)→ N (X) needs not to be surjective. So we can not repeat the
above argument. We only can say:
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6.6 Lemma. Let M → N be a surjective O-linear map and On → N also
an O-linear map. For each point a there exists an open neighborhood U and
an O|U -linear map such the diagram

O|Un

�� ##G
GG

GG
GG

G

M|U // N|U

commutes.

7. Coherent sheaves

Let X be a topological space and O a sheaf of rings. We consider the category
of O-modules M. Examples are the free modules On. We consider O-linear
maps On →M. It involves a map O(X)n →M(X). The images of the unit
vectors gives n global sections s1, . . . , sn. These sections determine the whole
map of sheaves, since necessarily

O(U)n −→M(U), (f1, . . . fn) 7−→ f1s1|U + · · ·+ fnsn|U.
Conversely, if n global sections s1, . . . , sn are given, then this formula defines
an O-linear map On →M. This means that we have a canonical isomorphism

HomO(On,M) ∼=M(X)n.

An O-module M is called finitely generated if there exists a surjective O-
linear map On → M. “Surjective” is of course understood in the sense of
sheaves, i.e. the maps OnX,a →Ma have to be surjective for all a ∈ X. For the
defining sections s1, . . . , sn this means that Ma is generated by s1,a, . . . , sn,a.
Concretely this means the following:

Let U ∈ X be open and let s ∈ M(U). Then there exists an open covering
U =

⋃
Ui such that every s|Ui is a linear combination of the s1|Ui, . . . sn|Ui

with coefficients in O(Ui).

If this is the case we also say that M is generated by the global sections
s1, . . . , sn.

7.1 Lemma. Let M → N be a surjective O-linear map and On → N also
an O-linear map. For each point a there exists an open neighborhood U and
an O|U -linear map such the diagram

O|Un

�� ##G
GG

GG
GG

G

M|U // N|U
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commutes.

Proof. The map On → N corresponds to n global sections s1, . . . , sn. If we
take U small enough there are in the image of M(U), ti 7→ si. The sections ti
give a map On →M. tu

An O-module M is called locally finitely generated if every point a ∈ X
admits an open neighbourhood such that M|U is a finitely generated O|U -
module.

Let us recall a basic property of noetherian rings R. Let M be a finitely
generated module, i.e. there exists a surjective R-linear map Rn → M . Then
the kernel K of this map is finitely generated as well. Hence there exists an

exact sequence Rn
ϕ→ Rm →M . The map ϕ determines M ∼= Rn/Im(ϕ). The

map ϕ just given by a matrix with m rows and n columns. This is the way
how computer algebra can manage computations for finitely generated modules
over neotherian rings as polynomial rings. Serre found a weak substitute for
O-modules.

7.2 Definition. A sheaf of rings O is called coherent if for any open subset
and any surjective On|U → Om|U the kernel is locally finitely generated.

7.3 Definition. Let O be a coherent sheaf of rings. An O-module M is
called coherent if for every point there exists an open neighborhood U and an
exact sequence

O|Un −→ O|Um −→M|U −→ 0.

Of course O considered as O-module then is coherent. Just consider 0→ O →
O → 0.

An O-module is called a (finitely generated) free sheaf if it is isomorphic
to Om for suitable m. It is called locally free if every point admits an open
neighborhood such that the restriction to it is free. A locally free sheaf is also
called a vector bundle. For trivial reasons a free sheaf over a coherent sheaf
of rings is coherent. Since coherence is a local property every vector bundle
is coherent. The property “coherent” is stable under standard constructions.
The proves are not difficult. We will keep them short:

First we treat some special cases for free O-modules. A first trivial obser-
vation is that the image of an O-linear map Op → Oq is coherent. The next
observation is that the intersection M∩N of two coherent subsheaves M,N
of On is coherent. (The intersection M∩ N is defined in the naive sense as
presheaf and turns to be out a sheaf, more precisely an O-module.) The idea
is to write the intersection as a kernel. We explain the principle for individ-
ual modules M,N ⊂ Rn of finite type over a ring R: Let F : Rp → Rm,
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G : Rq → Rm be linear maps and let M,N be their images. We denote by K
the kernel of the linear map

Rp+q −→ Rm, (m,n) 7−→ F (m)−G(n).

The image of K under the map

Rp+q −→ Rm, (m,n) 7−→ F (m).

is precisely the intersection M ∩N . The last observation is the following. Let
Op → Oq be O-linear and let M⊂ Oq be coherent. We claim that its inverse
image in Op is coherent. We explain again the algebra behind this result.
Let F : Rm → Rl be a R-linear map and N ⊂ Rl be a R-module of finite
type. We assume that F (Rm) ∩ N is finitely generated. Then there exists a
finitely generated submodule P ⊂ Rm such that F (P ) = F (Rm) ∩N . We also
assume that the kernel K of F is finitely generated. It is easily proved that
F−1(N) = P +K and we obtain that the inverse image is finitely generated.

These observations carry over to arbitrary coherent O-modules.

7.4 Lemma. Let M → N be an O-linear map of coherent sheaves. The
image sheaf is coherent.

Corollary. A locally finitely generated sub-sheaf of a coherent sheaf is coher-
ent.

Proof. It is sufficient to show that the image of a map Om →M is coherent.
By definition of coherence it is sufficient to show that the kernel K is locally
finitely generated. We can assume that there exists an exact sequence

Op −→ Oq −→M −→ 0.

Since Oq →M is surjective we can assume (use Lemma 7.1) that there exists
a lift Om → Oq such that the diagram

Om //

""D
DD

DD
DD

D M

Oq

OO

Op

OO

commutes. Take the image of Op → Oq and then its pre-image in Om It is
easy to check that this is the kernel K. tu
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7.5 Lemma. The kernel of a map M→N of coherent sheaves is coherent.

Proof. Because of Lemma 7.4 we can assume that M → N is surjective. We
choose presentations

Oa −→ Ob −→M, Oc −→ Od −→ N .

We can assume that there is commutative diagram

0 // K //M // N // 0

Ob
ϕ //

OO

Od

OO

Oa //

OO

Oc
ψ

OO

The existence of ϕ follows from Lemma 7.1 (after replacing X by a small open
neighborhood of a given point). The existence of Oa → Oc is trivial. Then we
get a natural surjection ϕ−1(ψ(Oc))→ K. tu

7.6 Lemma. The cokernel N/ϕ(N ) of a map ϕ : M → N of coherent
sheaves is coherent.

Proof. We can assume that N is a sub-sheaf of M and that ϕ is the canonical
injection. We can assume that a commutative diagram with exact columns
exists:

0 0

0 // N //

OO

M //

OO

M/N // 0

Ob //

OO

Od

OO

Oa //

OO

Oc

OO

It is easy to construct from this diagram an exact sequence

Ob ⊕Oc −→ Od −→M/N −→ 0. tu.

7.7 The two of three lemma. Let O be a coherent sheaf of rings and

0 −→M1 −→M2 −→M3 −→ 0

an exact sequence of O-modules. Assume that two of them are coherent than
the third is coherent too.
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Proof. All what remains to show is that M2 is coherent if M1,M2 are. We
can assume that there is a commutative diagram

0

0 //M1
//M2

//M3

OO

// 0

Oq

OO

α

bbEEEEEEEE

Op

OO

We use this to produce a map

M1 ⊕Oq −→M2, (x, y) 7−→ x− α(y).

It is easy to check that this map is surjective. The kernel is defined by x = α(y).
Hence it can be identified with the part of Oq that is mapped into M1 under
α. But this precisely the kernel of Oq →M3 hence the image of Op. We get
an exact sequence

Op −→M1 ⊕Oq −→M2 −→ 0.

This shows that M2 is coherent (use Lemma 7.6). ). tu

7.8 Lemma. The intersection of two coherent subsheaves of a coherent sheaf
is coherent.

Proof. One uses the fact that intersections can be constructed as kernels. Let
M,N ⊂ X be two sub modules of an O-module X . ThenM∩N is isomorphic
to the kernel of M×N → X , (a, b) 7→ a− b. tu

7.9 Remark. Let M be a coherent O-module. Then the support of M is a
closed.

Proof. We show that the set of all a such thatMa = 0 is open. We can assume
thatM is finitely generated by sections s1, . . . , sn. If there germs at a are zero
then s1, . . . , sn are zero in a full neighbourhood of a. tu

We collect some of the permanence properties of coherent sheaves.

7.10 Proposition.
1) Let M,N be two coherent sub-sheaves of a coherent sheaf. Assume Ma ⊂
Na for some point a. Then there exists an open neighborhood U such that
M|U ⊂ N|U .
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2) Let M,N be two coherent sub-sheaves of a coherent sheaf. Assume Ma =
Na for some point a. Then there exists an open neighborhood U such that
M|U = N|U .

3) Let f, g :M→N be two O-linear maps between coherent sheaves such that
fa = ga for some point a. Then there exists an open neighborhood U such
that f |U = g|U .

4) Let M→N → P be O-linear maps of coherent sheaves and a a point. The
following two conditions are equivalent:

a) The sequence Ma → Na → Pa is exact.
b) There is an open neighborhood U such that the sequenceM|U → N|U →
P|U is exact.

Proof.

1) Use that Ma ⊂ Na is equivalent to Na =Ma ∩Na (= (M∩N )a.

2) follows from 1).

3) Consider the kernel of f − g.

4)Consider the image A of M → N and the kernel B of N → P. Both are
coherent. We can assume that they are finitely generated. From assumption
we know Aa = Ba. tu

7.11 Proposition. Let M,N coherent O-modules and Ma → Na an Oa-
linear map. There exists an open neighborhood U and an extension M|U →
N|U as O|U -linear map.

Additional remark. By Proposition 7.10 this extension is unique in the
obvious local sense.

Proof. We can assume that there is a surjective O-linear map On →M. We
consider the composed map Ona → Ma → Na. It is no problem to extend to
Ona → Na to an open neighborhoodO|Un → N|U . We can assume that U is the
whole space. The kernel of Ona →Ma is contained in the kernel of Ona → Na.
Since the kernels are coherent this extends to a full open neighborhood U .
Hence we get a factorization M|U → N|U . The same construction works in
the category of OX -modules.

7.12 Lemma. Let OX be a coherent sheaf of rings on a topological space
X. Let J ⊂ OX be a coherent sheaf of ideals. Let Y be the support of OX/J .
Then the restriction of OX/J to Y is a coherent sheaf of rings. The category
of coherent Y-modules is equivalent to the category of coherent OX modules
which are annihilated by J .

tu



Chapter VI. Cohomology of sheaves

1. Some homological algebra

A complex A
.

is a sequence of homomorphisms of abelian groups

· · · // An−1

dn−1 // An
dn // An+1

// · · ·

such that the composition of two consecutive is 0, dn ◦ dn−1 = 0. Usually one
omits indices at the d-s and writes simply d = dn and hence d ◦ d = 0, which
sometimes is written as d2 = 0. The cohomology groups of A

.
are defined as

Hn(A
.
) :=

Kernel(An → An+1)

Image(An−1 → An)
(n ∈ Z).

They vanish if and only if the complex is exact. Hence the cohomology groups
measure the absence of exactness of a complex.

A homomorphism f
.

: A
. → B

.
of complexes is a commutative diagram

· · · // An−1 //

fn−1

��

An //

fn

��

An+1 //

fn+1

��

· · ·

· · · // Bn−1 // Bn // Bn+1 // · · ·

It is clear how to compose two complex homomorphisms f
.
;A

. → B
.
, g

.
;B

. →
C
.

to a complex homomorphism g
. ◦ f. : A

. → C
.
. A sequence of complex

homomorphisms
· · · −→ A

. −→ B
. −→ C

. −→ · · ·

is called exact, if all the induced sequences

· · · −→ An −→ Bn −→ Cn −→ · · ·

are exact. There is also the notion of a short exact sequence of complexes

0 −→ A
. −→ B

. −→ C
. −→ 0

Here 0 stands for the zero-complex (0n = 0, dn = 0 for all n).
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A homomorphism of complexes A
. → B

.
induces naturally homomorphisms

Hn(A
.
) −→ Hn(B

.
)

of the cohomology groups (use VII.1.1). These homomorphisms are compatible
with the composition of complex-homomorphisms. A less obvious construction
is as follows: Let

0 −→ An −→ Bn −→ Cn −→ 0

be a short exact sequence of complexes. We construct a homomorphism

δ : Hn(C
.
) −→ Hn+1(A

.
).

Let [c] ∈ Hn(C
.
) be represented by an element c ∈ Cn. Take a pre-image

b ∈ Bn and consider β = db ∈ Bn+1. Since β goes to d(c) = 0 in Cn+1 there
exists a pre-image a ∈ An+1. This goes to 0 in An+2 (because An+2 is imbedded
in Bn+2 and b goes to d2(b) = 0 there). Hence a defines a cohomology class
[a] ∈ Hn+1(A

.
). It is easy to check that this class doesn’t depend on the above

choices.

1.1 Fundamental lemma of homological algebra. Let

0 −→ A
. −→ B

. −→ C
. −→ 0

be a short exact sequence of complexes. Then the long sequence

· · · → Hn−1(C
.
)
δ→ Hn(A

.
)→ Hn(B

.
)→ Hn(C

.
)
δ→ Hn+1(C

.
)→ · · ·

is exact.

We leave the details to the reader. tu
There is a second lemma of homological algebra which we will need.

1.2 Lemma. Let

0

��

0

��

0

��

0

��
0 // A00 //

��

A01 //

��

A02 //

��

A03 //

��

· · ·

0 // A10 //

��

A11 //

��

A12 //

��

A13 //

��

· · ·

0 // A20 //

��

A21 //

��

A22 //

��

A23 //

��

· · ·

0 // A30 //

��

A31 //

��

A32 //

��

A33 //

��

· · ·

...
...

...
...
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be a commutative diagram where all lines and columns are exact besides the
first column and the first row (those containing A00). Then there is a natu-
ral isomorphism between the cohomology groups of the first row and the first
column,

Hn(A
., 0) ∼= Hn(A0, .)

For n = 0 this is understood as

Kernel(A00 −→ A01) = Kernel(A00 −→ A10).

The proof is given by “diagram chasing”. We only give a hint how it works.
Assume n = 1. Let [a] ∈ H1(A0,.) be a cohomology class represented by an
element a ∈ A0,1. This element goes to 0 in A0,2. As a consequence the image
of a in A1,1 goes to 0 in A1,2. Hence this image comes from an element α ∈ A1,0.
Clearly this element goes to zero in A2,0 (since it goes to 0 in A2,1.) Now α
defines a cohomology class [α] ∈ H1(A

.,0). There is some extra work to show
that this map is well-defined. tu

2. The canonical flabby resolution

A sheaf F is called flabby, if F (X) → F (U) is surjective of all U . Then
F (U)→ F (V ) is surjective for all V ⊂ U . An example for a flabby sheaf is the
Godement sheaf F (0). Recall that we have the exact sequence

0 −→ F −→ F (0).

We want to extend this sequence. For this we consider the sheaf F (0)/F and
embed it into its Godement sheaf,

F (1) := (F (0)/F )
(0)
.

In this way we get a long exact sequence

0 −→ F −→ F (0) −→ F (1) −→ F (2) −→ · · ·

If F (n) has been already constructed then we define

F (n+1) :=
(
F (n)/F (n−1)

)(0)
.

The sheaves F (n) are all flabby. We call this sequence the canonical flabby
resolution or the Godement resolution. Sometimes it is useful to write the
resolution in the form

· · · // 0 //

��

F //

��

0 //

��

0 //

��

0 //

��

· · ·

· · · // 0 // F (0) // F (1) // F (2) // F (3) // · · ·
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Both lines are complexes. The vertical arrows can be considered as a complex
homomorphism. The induced homomorphism of the cohomology groups are
isomorphisms. Notice that only the 0-cohomology group of both complexes is
different from 0. This zero cohomology group is naturally isomorphic F .

Now we apply the global section functor Γ to the resolution. This is

ΓF := F (X).

We obtain a long sequence

0 −→ ΓF −→ ΓF (0) −→ ΓF (1) −→ ΓF (2) −→ · · ·

The essential point is that this sequence is no longer exact. we only can say
that it is a complex. We prefer to write in the form

· · · // 0 //

��

ΓF //

��

0 //

��

0 //

��

0 //

��

· · ·

· · · // 0 // ΓF (0) // ΓF (1) // ΓF (2) // ΓF (3) // · · ·

The second line is

· · · −→ 0 −→ΓF (0) −→ ΓF (1) −→ ΓF (2) −→ · · ·
↑

zero position

Now we define the cohomology groups H
.
(X,F ) to be the cohomology groups

of this complex:

Hn(X,F ) :=
Kernel(ΓF (n) −→ ΓF (n+1))

Kernel(ΓF (n−1) −→ ΓF (n))

(We define ΓF (n) = 0 for n < 0.) Clearly

Hn(X,F ) = 0 for n < 0.

Next we treat the special case n = 0,

H0(X,F ) = Kernel(ΓF (0) −→ ΓF (1)).

Since the kernel can be taken in the presheaf sense, we can write

H0(X,F ) = ΓKernel(F (0) −→ F (1)).

Recall that F (1) is a sheaf, which contains F (0)/F as subsheaf. We obtain

H0(X,F ) = ΓKernel(F (0) −→ F (0)/F )

This is the image of F in F (0) an hence a sheaf which is canonically isomorphic
to F .
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2.1 Remark. There is a natural isomorphism

H0(X,F ) ∼= ΓF = F (X).

If F → G is a homomorphism of sheaves, then the homomorphism Fa → Ga
induce a homomorphism F (0) → G(0). If F → G → H is an exact sequence.
Then F (0) → G(0) → H(0) is also exact (already as sequence of presheaves).
More generally

2.2 Lemma. Let 0 → F → G → H −→ 0 be an exact sequence of sheaves.
Then the induced sequence 0 → F (n) → G(n) → H(n) → 0 is exact for every
n.

The proof is by induction. One needs the following lemma about abelian
groups:

Let

0

��

0

��

0

��
0 // A00 //

��

A01 //

��

A02 //

��

0

0 // A10 //

��

A11 //

��

A12 //

��

0

0 // A20 //

��

A21 //

��

A22 //

��

0

0 0 0

be a commutative diagram such that the three columns and the first to lines are
exact. Then the third line is also exact.

This follows from 1.2. tu
Before we continue we need a basic lemma:

2.3 Lemma. Let 0→ F → G→ H → 0 be a short exact sequence of sheaves.
Assume that F is flabby. Then

0→ ΓF → ΓG→ ΓH → 0

is exact.
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Proof. Let h ∈ H(X). We have to show that h is the image of an g ∈ G(X).
For the proof one considers the set of all pairs (U, g), where U is an open subset
and g ∈ G(U) and such that g maps to h|U . This set is ordered by

(U, g) ≥ (U ′, g′)⇐⇒ U ′ ⊂ U and g|U ′ = g′.

From the sheaf axioms follows that every inductive subset has an upper bound.
By Zorns’s lemma there exists a maximal (U, g). We have to show U = X. If
this is not the case, we can find a pair (U ′, g′) in the above set such that U ′ is
not contained in U . The difference g− g′ defines a section in F (U ∩U ′). Since
F is flabby, this extends to a global section. This allows us to modify g′ such
that it glues with g to a section on U ∪ U ′. tu

An immediate corollary of 2.3 states:

2.4 Lemma. Let 0 → F → G → H → 0 an exact sequence of sheaves. If F
and G are flabby then H is flabby too.

Let 0 → F → G → H → 0 be an exact sequence of sheafs. We obtain a
commutative diagram

...
...

...
↓ ↓ ↓

0 −→ F (n−1) −→ G(n−1) −→ H(n−1) −→ 0
↓ ↓ ↓

0 −→ F (n) −→ G(n) −→ H(n) −→ 0
↓ ↓ ↓

0 −→ F (n+1) −→ G(n+1) −→ H(n+1) −→ 0
↓ ↓ ↓
...

...
...

From 2.2 we know that all lines of this diagram are exact From 2.3 follows that
they remain exact after applying Γ. Hence the diagram

...
...

...
↓ ↓ ↓

0 −→ ΓF (n−1) −→ ΓG(n−1) −→ ΓH(n−1) −→ 0
↓ ↓ ↓

0 −→ ΓF (n) −→ ΓG(n) −→ ΓH(n) −→ 0
↓ ↓ ↓

0 −→ ΓF (n+1) −→ ΓG(n+1) −→ ΓH(n+1) −→ 0
↓ ↓ ↓
...

...
...

can be considered as a short exact sequence of complexes. We can apply 1.1 to
obtain the long exact cohomology sequence:
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2.5 Theorem. Every short exact sequence 0→ F → G→ H → 0 induces a
natural long exact cohomology sequence

0→ ΓF −→ ΓG −→ ΓH
δ−→ H1(X,F ) −→ H1(X,G) −→ H1(X,H)

δ−→ H2(X,F ) −→ · · ·

The next Lemma shows that the cohomology of flabby sheaves is trivial.

2.6 Lemma. Let
0→ F −→ F0 → F1 −→ · · ·

be an exact sequence of flabby sheaves (finite or infinite). Then

0→ ΓF −→ ΓF0 → ΓF1 −→ · · ·

is exact.

Corollary. For flabby F one has:

Hi(X,F ) = 0 for i > 0.

Proof. We use the so-called splitting principle. The long exact sequence can
be splitted into short exact sequences

0 −→ F −→ F0 −→ F0/F −→ 0, 0 −→ F0/F −→ F1 −→ F1/F0 −→ 0, . . . .

From 2.4 we get that the F0/F, F1/F0, . . . are flabby. The claim now follows
from 2.3. tu

A sheaf F is called acyclic if Hn(X,F ) = for n > 0. Hence flabby sheaves
are acyclic. By an acyclic resolution of a sheaf we understand an exact sequence

0 −→ F −→ F0 −→ F1 −→ F2 −→ · · ·

with acyclic Fi.

2.7 Proposition. Let 0 → F → F0 → F1 → · · · be an acyclic resolution of
F . Then there is a natural isomorphism between the n-the cohomology group
Hn(X,F ) and the n-th cohomology group of the complex

· · · −→ 0 −→ΓF0 −→ ΓF1 −→ ΓF2 −→ · · ·
↑

zero position
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Proof . Taking the canonical flabby resolutions of F and of all Fn on gets a
diagram

0

��

0

��

0

��

0

��
0 // F //

��

F0
//

��

F2
//

��

F3
//

��

· · ·

0 // F (0) //

��

F
(0)
0

//

��

F
(0)
1

//

��

F
(0)
2

//

��

· · ·

0 // F (1) //

��

F
(1)
0

//

��

F
(1)
1

//

��

F
(1)
2

//

��

· · ·

0 // F (2) //

��

F
(2)
0

//

��

F
(2)
1

//

��

F
(2)
2

//

��

· · ·

...
...

...
...

All lines and columns are exact. We apply Γ to this complex. Then all lines
and columns besides the first ones remain exact. We can apply 1.2. tu

One may ask what “natural” means in 2.7 means. It means that certain
diagrams in which this ismomorphism appears are commutative. Since it is
the best to check this when it is used we give just one example: Consider
the above commutative diagram in the following new meaning: All occurring
sheaves besides F are acyclic. Then 1.2 gives an isomorphism between the n-th
cohomology groups of the complexes 0→ ΓF0 → ΓF1 → · · · and 0→ ΓF (0) →
ΓF (1) → · · ·. Both are isomorphic to Hn(X,F ). This gives a commutative
triangle.

3. Paracompactness

We consider a very special case. We take for O the sheaf C of continuous
functions. There are two possibilities: CR is the sheaf of continuous real-valued
and CC the sheaf of continuous complex-valued functions. If we write C we
mean one of both. The sheaf C or more generally a module over this sheaf have
over paracompact spaces a property which can be considered as a weakened
form of flabbyness.
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3.1 Remark. Let X be paracompact space andM a C-module on X. Assume
that U is an open subset and V ⊂⊂ U an open subset which is relatively compact
in U . Assume that s ∈M(U) is a section over U . Then there is a global section
S ∈M(X) such that S|V = s|V .

Proof. We choose a continuous real valued function ϕ on X, which is one on
V and whose support is compact and contained in U . Then we consider the
open covering X = U ∪ U ′, where U ′ denotes the complement of the support
of ϕ. On U we consider the section ϕs and on U ′ the zero section. Since both
are zero on U ∩ U ′ they glue to a section S on X.

3.2 Lemma. Let X be a paracompact space andM→N a surjective C-linear
map of C-modules. Then M(X)→ N (X) is surjective.

Proof. Let s ∈ N (X). There exists an open covering (Ui)i∈I of X such that
s|Ui is the image of an section ti ∈ M(Ui). We can assume that the covering
is locally finite. We take relatively compact open subsets Vi ⊂ Ui such that
(Vi) is still a covering. Then we choose a partition of unity (ϕi) with respect
to (Vi). By 3.2 there exists global sections Ti ∈ M(X) with Ti|Vi = ti|Vi. We
now consider

T :=
∑
i∈I

ϕiTi.

Since I can be infinite we have to explain what this means. Let a ∈ X a point.
There exists an open neighborhood U(a) such Vi ∩ U(a) 6= ∅ only for a finite
subset J ⊂ I. We can define the section

T (a) :=
∑
i∈J

ϕTi|U(a).

The sets U(a) cover X and the sections T (a) glue to a section T . Clearly T
maps to s. tu

3.3 Lemma. Let X be a paracompact space and M → N → P an exact
sequence of C-modules. Then M(X)→ N (X)→ P(X) is exact too.

Proof. The exactness of the sequence implies the exactness of

0 −→ Image(M→N ) −→ N −→ Kernel(N → P) −→ 0.

From 3.2 we get

0 −→ Image(M→N )(X) −→ N (X) −→ Kernel(N → P)(X) −→ 0.

Applying 3.2 to M→ Image(M→N ) we obtain

Image(M→N )(X) = Image(M(X)→ N (X)).
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Since also
Kernel(N → P)(X) = Kernel(N (X)→ P(X))

we get the exactness of

0 −→ Image(M(X)→ N (X)) −→ N (X) −→ Kernel(N (X)→ P(X)) −→ 0.

This proves 3.3. tu
LetM b an C-module over a paracompact space. Then the canonical flabby

resolution is also a sequence of C-modules. From 3.3 follows that the resolution
remains exact after the application of Γ. We obtain.

3.4 Proposition. Let X be paracompact. Every C-module is acyclic, i.e.
Hn(X,M) = 0 for n > 0.

The essential tool of the proofs has been the existence of a partition of unity.
Partitions of unity exist also in the differentiable world. Hence there is the
following variant of 3.3.

3.5 Proposition. Let X be a paracompact differentiable manifold, then every
C∞-modul is acyclic.

4. Čech Cohomology

We have to work with open coverings U = (Ui)i∈I of the given topological space
X. For indices i0, . . . , ip we use the notation

Ui0,...,ip = Ui0 ∩ . . . ∩ Uip .

Let F be sheaf on X. A p-cochain of F with respect to the covering U is family
of sections is an element of ∏

(i0,...,ip)∈Ip+1

F (Ui0,...,ip).

This means that to any (p + 1)-tuple of indices i0, . . . , ip there is associated
a section s(i0, . . . , ip) ∈ F (Ui0,...,ip). We denote the group of all cochains by
Cp(U, F ). The derivative ds of a p-cochain the (p+ 1)-cochain defined by

ds(s0, . . . sp+1) =

p+1∑
j=0

(−1)js(i0, . . . , îj , . . . , ip+1)|Ui0,...,ip+1
.

The rule d2 = 0 is obvious, hence we obtain a complex

· · · −→ Cp−1(U, F ) −→ Cp(U, F ) −→ Cp+1(U, F ) −→ · · ·

Here for negative p we set Cp(U, F ) = 0. The cohomology groups of this
complex are the Čech cohomology groups Ȟ

p
(U, F ).
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4.1 Lemma. There is a natural isomorphism

Ȟ
0
(U, F ) = H0(X,F ) (= F (X)).

Proof. A zero-cochain s is just a family si ∈ F (Ui). The condition ds = 0
means si|Ui ∩ Uj = sj |Ui ∩ Uj . By the sheaf axioms they glue to a global
section. tu

4.2 Remark. Let F be a flabby sheaf. Then for every open covering

Ȟp(U, F ) = 0 for p > 0.

Proof. Just to save notation we restrict to the case p = 1. The general case
works in the same way. We start with a little remark. Assume that the whole
space X = Ui0 is a member of the covering. Then the Čech cohomology
vanishes (for every sheaf): if (sij) is a cocycle one defines si = si,i0 . Then
d((si)) = (sij).

For the general proof of 4.2 (in the case p = 1) we now consider the sequence

0 −→ F (X) −→
∏
i

F (Ui) −→
∏
ij

F (Ui ∩ Uj) −→
∏
ijk

F (Ui ∩ Uj ∩ Uk)

s 7−→ (s|Ui)
(si) 7−→ (si − sj)

(sij) 7−→ (sij + sjk − sik)

We will proof that this sequence is exact. (Then 4.2 follows.) The idea is to
sheafify this sequence: For an open subset U ⊂ X one considers F |U and also
the restricted covering U ∩Ui. Repeating the above construction for U instead
of X on obtains a sequence of sheaves

0 −→ F −→ A −→ B −→ C.

Since F is flabby, also A,B, C are flabby. The remark at the beginning of the
proof shows that 0 −→ F (U) −→ A(U) −→ B(U) −→ C(U) is exact, when
U is contained in some Ui. Hence the sequence of sheaves is exact. From 2.6
follows that the exactness is also true for U = X. tu

4.3 Theorem of Leray. Let F be a sheaf on X and U = (Ui) an open
covering of X. Assume that Hp(U,F |U) = 0 for all p > 0 and for arbitrary
intersection of finitely many Ui. Then there is a natural isomorphism

Hp(X,F ) ∼= Ȟp(U, F )

for all p.
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Proof . We consider a flabby resolution 0 → F → F0 → F1 → · · ·. There is a
natural diagram

0 0 0 0
↓ ↓ ↓ ↓

0 → F (X) → F0(X) → F1(X) → F2(X) → · · ·
↓ ↓ ↓ ↓

0 → C0(U, F ) → C0(U, F0) → C0(U, F1) → C0(U, F2) → · · ·
↓ ↓ ↓ ↓

0 → C1(U, F ) → C1(U, F0) → C1(U, F1) → C1(U, F2) → · · ·
↓ ↓ ↓ ↓

0 → C2(U, F ) → C2(U, F0) → C2(U, F1) → C2(U, F2) → · · ·
↓ ↓ ↓ ↓
...

...
...

...

All rows but the first one are exact. Similarly all columns but first one are
exact. Now a homological lemma 1.2 gives the desired result. tu

5. The first cohomology group

The first Čhech cohomology group has some special properties: We will keep
very short, since later we will use it only in applications. Let f : G → H be
a surjective homomorphism of sheaves and U = (Ui) an open covering of X.
We denote by HU,f (X) the set of all global sections of H with the following
property:

For every index i there is a section ti ∈ G(Ui) with f(ti) = s|Ui. By definition
of (sheaf-)surjectivity for every global section s ∈ H(X) there exists an open
covering U with s ∈ HU,f (X). It follows

H(X) =
⋃
U

HU,f (X).

Let 0 → F → G
f→ H → 0 be an exact sequence and U an open covering.

There exists a natural homomorphism

δ : HU,f (X) −→ Ȟ1(U, F ),

which is constructed as follows: Let be s ∈ HU,f (X). We choose elements

ti ∈ G(Ui) which are mapped to s|Ui. The differences ti − tj come from
sections tij ∈ F (Ui ∩Uj). They define a 1-cocycle δ(s). It is easy to check that
this corresponding element of Ȟ1(U, F ) doesn’t depend on the choice of the ti.
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5.1 Lemma. Let 0→ F
f→ G→ H → 0 be an exact sequence of sheaves and

U an open covering. The sequence

0→ F (X) −→ G(X) −→ HU,f (X)
δ−→ Ȟ1(U , F ) −→ Ȟ1(U , G) −→ Ȟ1(U , H)

is exact.

The simple proof is left to the reader. tu
Let now F be an arbitrary sheaf, F (0) the associated flabby sheaf. We get

an exact sequence 0 → F → F (0) → H → 0. let U be an open covering. We
know that Ȟ1(U, F (0)) vanishes, 4.2. From 4.2 we obtain an isomorphy

Ȟ1(U, F ) ∼= HU,f (X)/G(X).

From the long exact cohomology sequence we get for the usual cohomology

H1(X,F ) ∼= H(X)/G(X).

This gives an injective homomorphism

Ȟ1(U, F ) −→ H1(X,F ).

In the following we consider Ȟ1(U, F ) as subset of H1(X,F ). Now it is easy
to check:

5.2 Proposition. Let F be a sheaf. Then

H1(X,F ) =
⋃
U

Ȟ1(U, F ).

The following commutative diagram that the Čech combining δ from 5.1 and
that of general sheaf theory 2.5 coincide:

5.3 Remark. For a short exact sequence 0→ F → G
f→ H → 0 the diagram

0 −→ F (X) −→ G(X) −→ HU,f (X)
δ−→ Ȟ1(U, F )

‖ ‖ ↓ ↓
0 −→ F (X) −→ G(X) −→ H(X)

δ−→ H1(X,F )

is commutative.

The proof is left to the reader. tu
Let V = (Vj)j∈J be a refinement of U = (Ui)i∈I and ϕ : J −→ I a refinement

map (Vϕ ⊂ Ui). Using this refinement map one obtains a natural map

Ȟ1(U, F ) −→ Ȟ1(V, F ).

This shows:
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5.4 Remark. Let V be an refinement of U and ϕ : J → I a refinement map.
The diagram

Ȟ1(U, F ) //

&&MM
MMM

MMM
MM

Ȟ1(V, F )

xxqqq
qqq

qqq
q

H1(X,F )

commutes. Especially it doesn’t depend on the choice of the refinement map.

We also mention a refinement of Leray’s lemma 4.3 in case of the first coho-
mology group.

5.5 Theorem (refinement of Leray’s theorem in case of the first co-
homology group). Let F be a sheaf on X and U = (Ui) an open covering
of X. Assume that H1(Ui, F |Ui) = 0 for all ⊂∈ I. Then there is a natural
isomorphism

H1(X,F ) ∼= Ȟ1(U, F ).

Hint for the proof. One has to show that for any refinement V the map
H1(U, F ) → H1(V, F ) is surjective. The proof is easy and left to the reader.
Details can be found in Forster’s book “Riemann surfaces”, Propostition
II.12.8. tu

6. Some vanishing results

Let X be a topological space and A an abelian group. We denote by AX the
sheaf of locally constant functions with values in A. This sheaf can be identified
with the sheaf which is generated by the presheaf of constant functions. We
will write

Hn(X,A) := Hn(X,AX).

6.1 Proposition. Let U be an open and convex subset of Rn. Then for every
abelian group A

H1(U,A) = 0.

Actually this is true for all Hn, n > 0. The best way to prove this to use the
comparison theorem with singular cohomology as defined in algebraic topology.
We restrict to H1.
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Proof of 6.1. Every convex open subset of Rn is topologically equivalent to
Rn. Hence it is sufficient to restrict to U = Rn. Just for simplicity we assume
n = 1. (The general case should then be clear.) We use Čhech cohomology and
show that every open covering admits a refinement U such that H1(U, AX) = 0.
To show this we take a refinement of a very simple nature. It is easy to show
that there exists a refinement of the following form. The index set is Z. There
exists a sequence of real numbers (an) with the following properties:

a) an ≤ an+1

b) an → +∞ for n→∞ and an → −∞ for n→ −∞
c) Un = (an, an+2).

Assume that sn,m is a cocycle with respect to this covering. Notice that Un
has non empty intersection only with Un−1 and Un+1. Hence only sn−1,n is of
relevance. This a locally constant function on Un−1 ∩ Un = (an, an+1). Since
this is connected, the function sn−1,n is constant. We want to show that it is
coboundary, i.e. we want to construct constant functions sn on Un such that
sn−1,n = sn−sn−1 on (an, an+1). This is easy. One starts with s0 = 0 and then
constructs inductively s1, s2, . . . and in the same way for negative n. tu

Consider on the real line R the sheaf of real valued differentiable functions
C∞. Taking derivatives one gets a sheaf homomorphism C∞ → C∞, f 7→ f ′.
The kernel is the sheaf of all locally constant functions, which we denote simply
by R. Hence we get an sequence

0 −→ R −→ C∞ −→ C∞ −→ 0.

This sequence is exact since every differentiable function has an integral.
Hence this sequence can be considered as acyclic resolution of R. We ob-
tain Hn(R,R) = 0 for all n > 0. For n = 1 this follows already from 6.1.
There is a generalization to higher dimensions. For example a standard result
of vector analysis states in the case n = 2.

6.2 Lemma. Let E ⊂ Rn be an open and convex subset, f, g ∈ C∞ a pair of
differentiable functions with the property

∂f

∂y
=
∂g

∂x
.

Then there is a differentiable function h with the property

f =
∂h

∂x
, g =

∂h

∂y
.

In the sequence of exact sequences this means:

The sequence
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0 −→ C −→ C∞(E) −→ C∞(E)× C∞(E) −→ C∞(E) −→ 0

f 7−→
(
∂f
∂x
,
∂f
∂y

)
(f, g) 7−→ ∂f

∂y
− ∂g
∂x

is exact. When E is not convex, this sequence needs not to be exact. But since
every point in R2 has an open convex neighborhood, the sequence of sheaves

0 −→ RX −→ C∞X −→ C∞X × C∞X −→ C∞X −→ 0

is exact. This is an acyclic resolution and we obtain:

6.3 Proposition. For convex open E ⊂ R2 we have

Hi(E,R) = 0 for i > 0.

The sequence is a special case of the de-Rham complex

0 −→ R −→ A0
X −→ A1

X −→ · · · −→ AnX −→ 0

Here X is a differentiable manifold of dimension n and AiX denotes the sheaf
of alternating differential forms of degree i.

6.4 Lemma of Poincaré. Let U ⊂ Rn be an open convex subset. Then

Hp(U,R) = 0 for p > 0.

Proof. Let ω be a closed form. We decompose it as

ω = α+ β ∧ dxn,
where α doesn’t contain any term with dxn. We write

β =
∑

fadxa

where a are subsets of {1, . . . , n − 1} that do nor contain n. (We use the
notation dxa = dxa1 ∧ . . . ∧ dxap , where a1 < . . . < ap are the elements of
a in their natural order.) Integrating with respect to the last variable we
find differentiable functions Fa such that ∂nFa = fa. Now the difference ω −
d
∑
a Fadxa doesn’t contain any term in which dxn occurs. Hence we can

assume that in ω no term with dxn occurs. We write

ω =
∑
a

gadxa,

where all a are subsets of {1, . . . , n − 1}. Now we use dω = 0. We obtain
∂nga = 0. Hence ga do not depend on xn. But now ω can be considered
as differential form in one dimension less (on the image of U with respect to
the projection map that cancels the last variable) and an induction argument
completes the proof. tu

We obtain
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6.5 Theorem of de Rham. For a differentiable manifold X on has

dimHi(X,R) ∼=
Kernel(Ai(X) −→ Ai+1(X))

Image((Ai−1(X) −→ Ai(X))
.

Applying the Lemma of Poincarè again we obtain:

6.6 Proposition. For convex open E ⊂ Rn on has

Hi(E,R) = 0 fur i > 0.

Differential forms can also be considered complex valued. The Lemma of
Poincarè remains true by trivial reasons. Hence we see also:

6.7 Proposition. For convex open E ⊂ Rn on has

Hi(E,CX) = 0 fur i > 0.

As an application we prove

6.8 Proposition. For convex open E ⊂ Rn on has

H2(E, Z) = 0.

Proof. We consider the homomorphism

C −→ C.
, z 7−→ e2πiz.

The kernel is Z. This can be considered as a exact sequence of sheaves for
example on an open convex E ⊂ Rn. A small part of the long exact cohomology
sequence is

H1(E,C∗) −→ H2(X, Z) −→ H2(E,C).

Since the first and the third member of this sequence vanish (6.1 and 6.3) we
get the proof of 6.6. tu

Next we treat an example of complex analysis. For this wee need the Dol-
beault complex

0 −→ Ωp(U)
∂̄−→ Ap,0(U)

∂̄−→ Ap,1(U)
∂̄−→ · · ·

for an open subset U ⊂ Cn.
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6.9 Lemma of Dolbeault. Let U ⊂ Cn be a polydisk. The sequence

0 −→ Ωp(U)
∂̄−→ Ap,0(U)

∂̄−→ Ap,1(U)
∂̄−→ · · ·

is exact.

Corollary. One has

Hq(U,OU ) = 0 for q > 0.

6.10 Basic Lemma. Let f : E → C be a C∞-function on the unit disk E.
Then there exists a C∞-function g : E → C with the property

∂g

∂z̄
= f(z).

Additional Remark. If f depends differentiably on more variables, one can
get that the seme is true for g.

Proof of the basic lemma. In a first step we assume that f is defined on some
open neighborhood of Ē. The proof uses Stokes’s theorem. The idea is to
define g as an surface integral:

g(a) =
1

2πi

∫
E

f(z)
dz ∧ dz̄
z − a

.

Since there is a singular point in the integrand, the integral needs an interpre-
tation. For this we use polar coordinates z = a + reiϕ in a small disk around
a. We get

dz ∧ dz̄ = 2idx ∧ dy = 2irdrdϕ.

The new integrand is 2if(z)e−iϕ. The singularity disappeared!. This consider-
ations shows that as precise definition of the integral one can take

g(a) =
1

2πi
lim
ε→0

∫
E(ε)

f(z)
dz ∧ dz̄
z − a

where E(ε) denotes the complement of the disk |z − a| ≤ ε. Here ε should be
taken small enough such that this closed disk is contained in E. We will apply
the theorem of Stokes to E(ε) and the differential form

ω := f(z) log |z − a|2dz̄.

Since

dω = ∂ω =
∂f

z
log |z − a|2 +

f(z)

z − a
,
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we get from Stokes theorem∮
|z|=1

f(z) log |z − a|2dz̄ −
∮
|z−a|=ε

f(z) log |z − a|2dz̄

=

∫
E(ε)

∂f

∂z
log |z − a|2dz ∧ dz̄ +

∫
E(ε)

f(z)
dz ∧ dz̄
z − a

.

Now we take the limit ε to 0 the integral
∮
|z−a|=ε f(z) log |z − a|2dz̄ tends to

0. This follows from the standard estimate of line curve integrals and the fact
limε→0 ε log ε = 0. Taking the limit now we get

2πig(a) =

∮
|z|=1

f(z) log |z − a|2dz̄ −
∫
E

∂f

∂z
log |z − a|2dz ∧ dz̄.

One should notice that the integrand of the surface integral still has a singu-
larity at a. But this is only a logarithmic singularity and log |z−a| is Lebesgue
integrable over E. It is easy to verify that the Lebesgue limit theorem ap-
plies. The same argument applies to show that g is differentiable and that
differentiation can be interchanged with integration:

2πi
∂g(a)

∂ā
=

∫
E

∂f(z)

∂z

dz ∧ dz̄
z̄ − a

−
∫
|z|=1

f(z)
dz̄

z̄ − a
.

Now the proof follows from the generalized Cauchy integral formula: Let f be
a C∞ function on an open neighborhood of Ē. Then

2πif(a) =

∫
|z|=1

f(z)

z − a
dz +

∫
E

∂f

∂z̄

dz ∧ dz̄
z − a

.

(For holomorphic f this is the usual Cauchy integral formula.

Since this formula may not be standard, we mention that it is also an
application of Stokes theorem. One uses the formula

d
(
f(z)

dz

z − a

)
=
∂f

∂z̄

dz ∧ dz̄
z − a

and again applies Stoke’s theorem to the domain E(ε), introduces polar coor-
dinates and takes the limit ε→ 0.

Now we assume that F is given only on E (and not on a neighborhood of Ē.
This needs a new technique. The idea is to use an approximation argument.
We choose an exhaustion of E by the sequence of disks En = {z; |z| < 1−1/n}.
We know already that there exists gn ∈ C∞(En) such that ∂gn/∂z̄ = f on En.
The functions gn are not uniquely determined. The idea is to prepare them
such that they converge. More precisely we want to have that for each i the
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sequence gn, gn+1, . . . converges on En. The limit will be a function on En and
all these differential forms glue to a function g on the whole E. This will be
the solution of our problem. (∂g/∂z̄ = f).

We have to explain in which sense convergence is understood. For this we
use the maximum norm ||h||En for a function that is continuous on some open
neighborhood of En. The strategy is to construct the gn inductively such that

||gn+1 − gn||En−1
< 2−n.

One starts with arbitrary g1. The induction step is very easy. Assume that
g1, . . . , gn have been constructed. Then choose any h such that ∂h/∂z̄ = f on
En+1. We can modify h by adding function. Hence we try to define gn+1 =
h + P with an analytic function. Now we use that h − gn is holomorphic on
En. We can approximate this function on En−1 by a polynomial P (taking a
partial sum of the Taylor expansion). This gives the construction of gn+1.

Now it is easy to show that the limit of the gn exists. Just write in (on Pn)
in the form

g = gn +

∞∑
i=n

(fi+1 − fi).

The sum is a series of holomorphic functions that converges uniformly on En.
Hence the limit exists and differentiation can be exchanged with the limit.

This finishes the proof of the basic lemma. tu
Proof of 6.9 continued. Now we go to several variables and consider a polydisk
P . We assume that ω is a differential form of type (p, q) not only on P but on
an open neighborhood of P̄ . We assume ∂ω = 0 and claim that there exists a
(p, q − 1)-form ω′ on P with ∂ω′ = ω. The proof can be given by induction in
the same way as in the proof of the lemma of Picareè. The beginning of the
induction now is the basic lemma 6.10. We skip details. tu

We give a nice application. Let C̄ be the Riemann sphere.

6.11 Theorem. One has

H1(C̄,OC̄ ) = 0.

For the proof we use a covering by two disks of the Riemann sphere U = {z ∈
C; |z| < 2} and V = {z ∈ C̄; |z| > 1} (including ∞). We can apply the
refinement of Leray’s theorem 5.5 to obtain H1(U,O) = H1(C̄,OC̄ ). A Čech
1-cocycle simply is given by a holomorphic function on the circular ring. We
have to show that it can be written as difference f1−f2 where fi is holomorphic
on the disc Ei. This is possible by the theory of the Laurent decomposition.

tu
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1. Abelian groups

We assume that the reader is familiar with the notion of an abelian group and
homomorphism between abelian groups. If A is a subgroup of an abelian group
B, then the factor group B/A is well defined. All what one needs usually is
that there is a natural surjective homomorphism f : B → B/A with kernel A.
Let f : B → X be a homomorphism into some abelian group. Then f factors
through a homomorphism B/A→ X if and only if the kernel of f contains A.
That f factors means that there is a commutative diagram

A //

��

X

A/B

==zzzzzzzz

Let f : A → B be a homomorphism of abelian groups. Then the image f(A)
is a subgroup of B. If there is no doubt which homomorphism f is considered,
we allow the notation

B/A := B/f(A).

1.1 Lemma. A commutative diagram

A //

��

B

��
C // D

induces homomorphisms

B/A −→ D/C, C/A −→ D/B.

A (finite or infinite) sequence of homomorphisms of abelian groups

· · · −→ A −→ B −→ C −→ · · ·
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is called exact at B if

Kernel(B −→ C) = Image(A −→ B).

It is called exact if it is exact at every place. An exact sequence A → B → C
induces an injective homomorphism

B/A
� � // C .

The sequence 0 → A → B is exact if and only if A → B is injective. The
sequence A→ B → 0 is exact if and only of A→ B is surjective. The sequence

0 −→ A −→ B −→ C −→ 0

is exact if and only if A → B is injective and if the induced homomorphism
B/A → C is an isomorphism. A sequence of this form is called a short exact
sequence. Hence the typical short exact sequence is

0 −→ A −→ B −→ B/A −→ 0 (A ⊂ B).

1.2 The five term lemma. Let

A1
//

f1

��

A2
//

f2

��

A3
//

f3

��

A4
//

f4

��

A5

f5

��
B1

// B2
// B3

// B4
// B5

be a commutative diagram with exact lines and such that f1, f2 and f4, f5 are
isomorphisms. Then f3 is an isomorphism too.

The proof is easy and left to the reader. tu

2. Modules and ideals

All rings which we consider are assumed to be commutative and with unit
elements. Ring homomorphisms are assumed to map the unit element into the
unit element. A module M over a ring A is an abelian group together with a
map A×M →M , (a,m) 7−→ am, such that the usual axioms of a vector space
are satisfied including 1Am = m for all m ∈ M . The notion of linear maps,
kernel, image of a linear map are as in the case of vector spaces. But in contrast
to the case of vector spaces, a module has usually no basis. A module which
admits a basis is called free. A finitely generated free module is isomorphic to
Rn.
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If M ⊂ N is a submodule, then the factor group N/M carries a structure
of an A-module.

Recall that an ideal a in a Ring R is an abelian subgroup such that ra ∈ a
for r ∈ R and a ∈ a. Hence an ideal is nothing but an R-submodule of R. The
factor R/a is not only a R-module but carries a structure as ring such that
R→ R/a is a ring homomorphism.

An ideal is called finitely generated if it is finitely generated as module.
This means that there are elements a1, . . . , an such that a = Ra1 + · · ·+Ran.
One writes a = (a1, . . . , an). The product ab of two ideals is the set of all
finite sums

∑
i aibi with ai ∈ a and bi ∈ b. Ideal multiplication is associative.

Especially powers of ideals are defined.

All what we have said about exact sequences of abelian groups is literarily
true for A-modules.

Tensor product

Recall that for two modules M,N over a ring R, there exists a module M⊗RN
together with an R-bilinear map

M ×N −→M ⊗R N, (a, b) 7−→ a⊗ b,

such that for each bilinear map M ×N → P into an arbitrary third module P
there exists a unique commutative diagram

M ×N //

##G
GG

GG
GG

GG
M ⊗R N

zzvv
vv
vv
vv
v

P

with an R-linear map M ⊗RN → P . The tensor product M ⊗RN is generated
by the special elements m⊗ n.

If f : M →M ′ and g : N → N ′ are R-linear maps, then one gets a natural
R-linear map

f ⊗ g : M ⊗R N −→M ′ ⊗R N ′, (a, b) 7−→ f(a)⊗ g(a).

It is clear that this map is uniquely determined by this formula. The existence
follows from the universal property applied to the map (a, b) 7→ f(a)⊗ f(b).
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Basic properties of the tensor product

There is a natural isomorphism

R⊗RM
∼−→ M, (r ⊗m) 7−→ rm

and more generally
Rn ⊗M ∼−→ Mn.

As a special case we get
Rn ⊗R Rm ∼= Rn×m.

This is related also to the formula

(M ×N)⊗R P ∼= (M ⊗R P )× (N ⊗R P ) (canonically).

The tensor product is associative: For usual R-modules M,N,P on has an
isomorphism

(M ⊗R N)⊗R P
∼−→ M ⊗R (N ⊗R P ), (m⊗ n)⊗ p 7−→ m⊗ (n⊗ p).

The existence of this map follows from the universal property of the tensor
product.

The tensor product is also commutative:

M ⊗R N
∼−→ N ⊗RM, m⊗ n 7−→ n⊗m.

Ring extension

Let A → B be a ring homomorphism and M an A-module. Then M ⊗A B
carries a natural structure as B-module. It is given by b(m ⊗ b′) = m ⊗ (bb′).
The existence follows from the universal property of the tensor product. A
special case is

An ⊗A B = Bn.

Existence of the tensor product

For an arbitrary set I we define RI to be the set of all maps I → R, i 7→ ri
such that ri is 0 for almost all i. So RI = Rn for I = {1, . . . , n}. By definition
a module is free if and only if it is isomorphic to an RI for suitable I. An
arbitrary R-module M can be represented by an exact sequence

RJ −→ RI −→M −→ 0.

For another N module we define now the tensor product by the exact sequence

NJ −→ N I −→M ⊗R N −→ 0.

The bilinear map M ×N →M ⊗R N and the universal property are obvious.
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Exactness properties

Let M → N be an injective homomorphism of R-modules. For an R-module P
the induced homomorphism M ⊗R P → N ⊗R P needs not to be injective. But
when P ∼= Rn is free, injectivity is preserved. A slight and trivial extension of
this observation is:

2.1 Remark. Let M1 →M2 →M3 be an exact exact sequence of R-modules.
Then for every free module P the sequence M1⊗R P →M2⊗R P →M3⊗R P
remains exact.

In this connection we mention some other exactness properties. For two R-
modules M,N we denote by HomR(M,M) the set of all R-linear maps M → N .
This is an R-module. Let M → N be an R-linear map. Then for an arbitrary
R-module P one has obvious R-linear maps

HomR(P,M) −→ HomR(P,N), HomR(N,P ) −→ HomR(M,P ).

Since Hom(Rn,M) ∼= Mn, one has:

2.2 Remark. Let 0 −→ M1 → M2 → M3 → 0 be an exact sequence of
R-modules and P also an R-module, then:

a) If P is free then

0 −→ HomR(P,M1) −→ HomR(P,M2) −→ HomR(P,M3) −→ 0

remains exact.

b) If M3 is free than

0 −→ HomR(M3, P ) −→ HomR(M2, P ) −→ HomR(M1, P ) −→ 0

remains exact.

We comment shortly b). When M3 is free one can chose a system of elements
in M2 whose images in M3 define a basis. This system generates a submodule
M ′3 ⊂ M2 which maps isomorphically to M3. Now it is easy to see that M2 is
isomorphic to M1 ×M3 and the map M1 → M2 corresponds to m 7→ (m, 0)
and the map M2 → M3 corresponds to (m1,m3) 7−→ m3. Now the exactness
shold be clear.
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3. Divisibility

We recall some basic notions of divisibility in rings. Let R be ring (commutative
and with unit). An element a ∈ R of a ring is called a unit if the equation
ax = 1R is solvable in R. Then the solution is unique. The set R∗ of units is
a group under multiplication. A ring is called an integral domain if ab = 0 ⇒
a = 0 or b = 0.

3.1 Definition. Let R be an integral domain. An element a ∈ R − R∗ is
called

a) indecomposable, if one has

a = bc =⇒ b or c is a unit

b) prime element, if
a|bc =⇒ a|b or a|c

(a|b means that the equation b = ax is solvable in R). Notice that units are
not prime elements.)

Of course prime elements are indecomposable, but usually the converse is
false.

Example. Let R = C[X] be the polynomials ring in one variable over C and
R0 the sub-ring of all polynomials without linear term. The element X3 is
indecomposable in R0 but not a prime: X3|X2 ·X4.

3.2 Definition. The integral domain R is called factorial or UFD-ring,
if the following two conditions are satisfied:

1) Each element a ∈ R − R∗ can be written as product of finitely man inde-
composable elements.

2) Each indecomposable element is prime.

In factorial rings the decomposition into primes is unique in the following sense:
Let

a = u1 · · ·un = v1 · · · vm
be two decompositions of a ∈ R−R∗ into primes. Then one has

a) m = n.

b) There exists a permutation σ of the digits 1, . . . , n, such that

uν = ενvσ(ν), εν ∈ R∗ for 1 ≤ ν ≤ n.

It is easy to prove this by induction.
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Examples for factorial rings.

1) Each field is factorial.
2) Z is factorial
3) By an important Theorem of Gauss the polynomial ring R[z1, . . . , zn] over

a factorial ring is factorial too.

3.3 Theorem of Gauss. The polynomial ring R[z1, . . . , zn] over a factorial
ring is factorial too.

4. The discriminant

The discriminant should be treated in an course of basic algebra: We just
recall the basic facts. One constructs for each natural number n a polynomial
∆n of n variables over the ring Z of integers. Using this universal polynomial
one defines for any normalized polynomial

P = zn + an−1z
n−1 + · · ·+ a0

over a ring R the discriminant

d(P ) := ∆n(a0, . . . , an−1) ∈ R.

The basic fact about the discriminant is: Assume that R is factorial. Then P
is square free if and only if d(P ) 6= 0.

We just give a comment. In the case R = C a polynomial is square free if
and only if has no double zero. The discriminant of the quadratic polynomial
X2 + bX + c is b2 − 4c.

5. Noetherian rings

In commutative algebra there is a basic notion of noetherian ring. A ring R
(commutative and with unit) is called noetherian, if any ideal a ⊂ R is finitely
generated. Noetherian rings have the basic property that a sub-module of a
finitely generated module is finitely generated. It is trivial that the factor ring of
a noetherian ring is noetherian. The Hilbert basis theorem states the following:
The polynomial ring R[X1, . . . , Xn] over a noetherian ring is noetherian. Hence
every finitely generated R-algebra is noetherian.

A ring R is called local if it is not the zero ring and if the set of all non-units
m is an ideal. Then the factor ring R/m is a field. A homomorphism A→ B of
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local rings is call local, if the maximal ideal of A is mapped into the maximal
ideal of B. A field K is a local ring, m = {0}. The ring Z of integers is not a
local ring, since the units are just the elements ±1. Similarly the ring of poly-
nomials K[X1, . . . , Xn] (n ≥ 1) is not a local ring. The basic example for us the
ring On = C{z1, . . . , zn} of convergent power series. Elements with a non zero
constant term are invertible. Elements with zero constant term are not invert-
ible. Obviously they form an ideal mn. The residue field On/mn is isomorphic
to C. More precisely the composition of the natural homomorphisms

C −→ On −→ On/mn
is an isomorphism. We can use this isomorphism to identify C and On/mn.

In this connection we want to mention another algebraic result. Let M be
a module over a ring R

5.1 Lemma von Nakayama. Let M be a finitely generated module over a
local ring R with maximal ideal m. Assume mM = M . Then M = 0.

There is a rather obvious application:

5.2 Lemma. Let R be a noetherian local ring R and r1, . . . , rn elements of the
maximal ideal. Assume that their cosets mod m2 generated m/m2 as R-module.
Then they generate m.

For the prove one applies the lemma of Nakayama to m/(r1, . . . , rn). We also
mention that m/m2 is not only an R-module but an R/m module in a natural
way. Hence it is vector space over the field R/m. A subset of m/m2 is an
R-submodule if and only if it as R/m-module.

5.3 Krull intersection theorem, first version. Let R be a local noetherian
ring. The intersection of all powers of the maximal ideal is zero.

The intersection theorem has an important consequence for noetherian local
rings:

5.4 Lemma. Let f, g : A→ B be two local homomorphisms between noethe-
rian local rings. Assume that there exist generators a1, . . . , an of the maximal
ideal of A such that f(ai) = g(ai). Then f = g.

There is second version of Krull’s intersection theorem:

5.5 Krull intersection theorem, second version. Let R be a noetherian
local ring with maximal ideal m. Assume that M is a finitely generated R-
module. Then for each submodule N ⊂M one has

N =

∞⋂
ν=1

(N + mνM).

If one applies this version to M = R and N = 0, one obtains the first version.
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Finiteness properties for algebras

Recall that a an algebra is just a fing homomorphism ϕ : A → B. Then B
is called an A-algebra. One can consider B as A-module by ab =: ϕ(a)b. An
algebra homomorphism B → C of A-algebras is just a ring homomorphism
that is also A-linear.

There are two basic finiteness properties for algebras A → B. The first is:
B is finitely generated as A-algebra. This means that there exists a surjective
homomorphism of A-algebras of the polynomial ring A[X1, . . . , Xn] to B. This
means that there are finitely many elements b1, . . . , bn such that any element
of B can be expressed as a polynomial with coefficients in A. There is another
much more restrictive finiteness condition: B is finitely generated as A-module.
This means that there exist finitely many elements b1, . . . , bn such that B =
Ab1 + · · ·+Abn. We call a ring extension A→ B finite, if this second stronger
condition is satisfied. A ring extension A→ B is called integral, if any element
b ∈ B satisfies an equation

bn + an−1b
n−1 + · · ·+ a0 = 0, ai ∈ A.

Be aware. This notion of “integral” has nothing to do with “integral domain”.
Notice that the highest coefficient is one. It is a basic fact that finite extensions
are integral. More precisely, a ring extension is finite if and only if it is integral
and if it is finitely generated as algebra. The usual noether normalization
theorem in commutative algebra states the following:

If K → A is a finitely algebra over a field K then there exist a subalgebra
A0 ⊂ A such that A is a finite over A0 and such that A0 is isomorphic as
K-algebra to a polynomial ring K[X1, . . . , Xn]. The number n is unique. It
equals the so-called Krull dimension of A.

An ideal p in a ring R is called a prime ideal if R/p is an integral domain.
Concretely this means

ab ∈ p =⇒ a ∈ p or b ∈ p.

The Krull dimension dimA is a basic notion of commutative algebra. It is
defined for any commutative ring with unity and can be an integer ≥ 0 or ∞.
By definition is the Supremum of all n such that there exists a chain of prime
ideals

p0
⊂
6= . . . ⊂6= pn.

The basic facts about the Krull dimension are:

5.6 Proposition. Let R be a local noetherian ring such the maximal ideal
can be generated by n elements. Then dimR ≤ n.

The rings K[z1, . . . , zn], K[[z1, . . . , zm]] (where K is a field) and the ring
C{z1, . . . , zn} have Krull dimension n.
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A maximal chain of prime ideals in all three cases is

0 ⊂ (z1) ⊂ . . . ⊂ (z1, . . . , zn).

This shows that the dimension is ≥ n. That the dimension equals n follows in
the case C{z1, . . . , zn} from the first part.

5.7 Theorem of Cohen Seidenberg. If A ⊂ B is an integral ring extension
of noetherian rings then dimA = dimB.

An important result of Krull dimension theory is:

5.8 Proposition. Let R be a noetherian local ring and a ∈ R a non-zero
divisor. Then

dimR/(a) = dimR− 1.

Corollary. If a is an ideal which contains a non-zero divisor then

dimR > dimR/a.

Recall that a ring R is called an integral domain if ab = 0 ⇒ a = 0 or b = 0.
We recall that each integral domain is contained in a field K as subring. One
can achieve that K consists of all a/b, a, b ∈ R, b 6= 0. Such a field is called
a field of fractions. A field of fractions is uniquely determined up to canonical
isomorphism in an obvious way. Hence one talks about “the” field of fractions.

A special case of the so-called primary decomposition in noetherian ring
states:

5.9 Proposition. Every proper radical ideal in a noetherian ring is the
intersection of finitely many prime ideals.

Recall that an ideal is called a radical ideal if an = 0 for some natural number
implies a = 0. Prime ideals of course are radical ideals. The intersection of
radical ideals is a radical ideal.
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1. Paracompact spaces

A covering U = (Ui)i∈I of a topological space is called locally finite, if for every
point a ∈ X there exists a neighborhood W , such that the set of indices i ∈ I
with Ui ∩W 6= ∅ is finite.

A covering V = (Vj)j∈J is called a refinement of the covering U if for every
index j ∈ J there exists an index i ∈ I with Vj ⊂ Ui. If one chooses for each
j such an i one obtains a so-called refinement map J → I, which needs not to
be unique.

1.1 Definition. A Hausdorff space is called paracompact if every open
covering admits a locally finite (open) refinement.

We collect some results about paracompact spaces without proofs. Firstly we
give examples:

Every metric space is paracompact.

Every locally compact space with countable basis of topology is paracompact.

Next we formulate the basic result about paracompactness: Let U = (Ui) be
a locally finite covering. A partition of unity with respect to U is family ϕi of
continuous real valued functions on X with the following property:

a) The support of ϕi is compact and contained in Ui.
b) 0 ≤ ϕi ≤ 1,
c)
∑
i∈I ϕi(x) = 1 for all x ∈ X.

(This sum is finite.)

1.2 Proposition. Let X be a paracompact space. For every locally finite
open covering there exists a partition of unity.

We mention two related results:

1.3 Proposition. Let X be a paracompact space and U = (Ui) a locally finite
open covering. There exist open subsets Vi ⊂ Ui whose closure V̄i (taken in X)
is contained in Ui and such that V = (Vi) is still a covering.

Another related result states:
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1.4 Proposition. Let X be a locally compact paracompact space, U an open
subset and V ⊂⊂ U a relatively compact open subset in U . Then there exists
a continuous function on X which is one on V and whose support is compact
and contained in U .

(The symbol V ⊂⊂ U means that the closure V̄ , taken in X, is compact and
contained in U .)

2. Frèchet spaces

A topological vector space is (complex) vector space E together with a topology
such the addition map E × E −→ E and the multiplication with scalars C ×
E −→ E is continuous. It is easy to derive then that or each fixed a ∈ E the
map E → E, x 7→ x + a, is topological. Topological vector spaces very often
are constructed by means of semi-norms.

A semi-norm p on a complex vector space E is a map p : E → R with the
properties

a) p(a) ≥ 0 for all a ∈ E,
b) p(ta) = |t|p(a) for all t ∈ C, a ∈ E,
c) p(a+ b) ≤ p(a) + p(b).

The ball of radius r > 0 is defined as

Ur(a, p) :=
{
x ∈ E; p(a− x) < r

}
.

Let M be a set of semi-norms. A subset B ⊂ E is called a semi-ball around a
with respect to M if there exists a finite subset N ⊂M and for each p ∈ N a
number rp > 0 such that

B =
⋂
p∈N

Urp(a, p).

A subset U of E is called open (with respect to M) if for every a ∈ U there
exists a semi-ball B around a with B ⊂ U .

It is clear that this defines a topology on E such that all p : E → C are
continuous. (It is actually the weakest topology with this property.) It is
also easy to to see that E is a topological vector space. Moreover a sequence
(an) in E converges to a ∈ E if and only if p(an − a) → 0 for all p ∈ M.
Obviously the elements p ∈ M are continuous. Let Mmax be the set of all
continuous semi-norms. Two sets N and M define the same topology if and
only if Mmax = Nmax. Especially Mmax and M define the same topology.

The set M is called definit, if

p(a) = 0 for all p ∈M =⇒ a = 0.
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It is easy to prove that M is definit if and only if E is a Hausdorff space.

A sequence (an) in E is called a Cauchy sequence with respect to M, if for
every ε > 0 and every p ∈M there exists an N = N(p, ε) such that

p(an − am) < ε for n,m ≥ N.

Remarkably this notion only depends on the topology. Obviously a sequence
is a Cauchy sequence if and only if for every neighborhood U od the origin one
has an − am ∈ U if noth n,m are sufficiently large.

The set M is called of countable type, if there exists a countable subset
N ⊂M defining the same topology and the same Cauchy sequences.

2.1 Definition. A Frèchet space E is a topological vector space whose topology
can be defined by a set M of semi-norms such the following properties are
satisfied:

a) M is definite.
b) M is of countable type.
c) Every Cauchy sequence converges.

Notice that a Banach space is a Frèchet space, where M consists of a single
element.

2.2 Lemma. Frèchet spaces are metrizable.

Proof. We choose some ordering of N = {p1, p2, . . .}. Then one defines

d(a, b) =

∞∑
n=1

2−n
pn(a− b)

1 + p(an) + p(bn)
.

It is easy to show that this is a metric which defines the original topology.
tu

An important result about Frèchet spaces is:

2.3 Open mapping theorem. Any surjective linear continuous map E → F
between Frèchet spaces is open. Especially the topology on F agrees with the
quotient topology of E.

An obvious corollary states that a bijective linear continuous map between
Frèchet spaces is topological.

Basic example of Frèchet spaces

Let X be a complex manifold and O(X) the set of all analytic functions on X.
This is a complex vector space. For an arbitrary compact subset K ⊂ X we
define

p(f) = pK(f) := max
z∈K
|f(z)|.

This is s semi norm. A sequence (fn) converges with respect to pK if and only
if fn converges uniformly on K.
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2.4 Remark. Let X be a complex manifold. The vector space O(X) equipped
with the set of all norms of the form pK , K ⊂ X compact, is a Frèchet space.

The set of all pK is of countable type since X is assumed to have countable basis
of topology. This implies that there is a sequence K1 ⊂ K2 ⊂ · · · of compact
subsets whose union is X and such that Ki is contained in the interior of Ki+1.
Then every compact subset is contained in one of the Ki. The convergence of
Cauchy sequences follows from the theorem of Weierstrass, which states that
analyticity is stable under uniform convergence. tu

The basic result about this Frèchet space is:

2.5 Theorem of Montel. Let X be a complex manifild and C > 0 a positive
constant. The set

O(X,C) :=
{
f ∈ O(X); |f(z)| ≤ C for z ∈ X

}
is compact in O(X).

For the proof one has to use the fact that a metric space is compact if every
sequence admits a convergent subsequence. Hence the statement follows from
the usual theorem of Montel which states that every sequence in O(X,C) ad-
mits a locally convergent sub-sequence. We notice that the analogue for real
differentiable functions is false. The proof uses heavily the Cauchy integral.

Compact operators

A well-known fact is that in a Banach space of infinite dimension the closed
ball ||a|| ≤ 1 is not compact. This result is also true for Frèchet spaces in the
following form:

Assume that the Frèchet space admits a non-empty open subset with compact
closure. Then it is of finite dimension.

We need a generalization of this result: A continuous linear map f : E → F
between Frèchet spaces is a compact operator, if there exists a non-empty open
subset of E such that the closure of its image is compact. It is clear that this
is the case if f(E) is of finite dimension.

A linear map f : E → F is called nearly surjective if F/f(E) has finite
dimension. This is automatically the case when F is finite dimensional.

2.6 Theorem of Schwartz. Let f : E → F be a surjective continuous linear
map between Frèchet spaces and let g : E → F be a compact operator. Then
f + g is nearly surjective.

If one applies Schwartz’s theorem in the case E = F , f = − id and g = id on
obtains:

2.7 Corollary. When the identity operator id : E → E of a Frèchet space is
compact, then E is finite dimensional
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