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Chapter I. Theta functions

1. Interchanging infinite sums and integration

Since we have to interchange integration and summation several times, we recall
without prove some basic results. We need not the most general limit theorems,
for example we can restrict completely to continuous functions on some subset
D ⊂ R

n (this includes C = R
2) and to sequences of continuous functions (fn)

that converge locally uniform to a (continuous function) f . This means that
for every point in the domain of definition there exists a neighbourhood U such
that the sequence converges uniformly in U ∩D. Assume that the functions fn
are defined on some (finite or infinite) interval I ⊂ R. First we assume that
I = [a, b] is compact. Then integration and limit can be interchanged for trivial
reason,

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx.

This follows immediately from the standard estimate

∣∣∣
∫ b

a

f(x)dx
∣∣∣ ≤ (b− a)‖f − fn‖.

For improper integrals, i.e. in the case where I os not compact, this simple
argument fails, and, in fact, in first courses of analysis for improper integrals
usually there is no limit theorem provided.

We recall that a (continuous) function f : I → C on some interval I is
called absolutely integrable if there exists a bound C such that for all compact
intervals [a, b] in the interior of I of has

∫ b

a

|f(x)|dx ≤ C.

Then it is easy to show that for all sequences of intervals [an, bn] in the interior
of I and such that

[a1, b1] ⊂ [a2, b2] ⊂ · · · , I =

∞⋃

n=1

[an, bn]

the limit of the proper integrals
∫ bn
an

f(x)dx exists and is independent of the

choice of the sequence. The value
∫
I
f(x)dx then is defined as this limit. If
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one wants to interchange improper integrals with a locally uniform limit, one
has to replace the interval I by a compact interval in its interior, then one
can apply the trivial theorem for proper integrals and finally one has to show
that the rest can be estimated uniformly in n by some given ǫ > 0. This is
possible in all cases which occur in these notes. But this effort is not necessary
if one is acquainted with the limit theorems which are provided in the Lebesgue
integration theorem. We formulate them, not in the most general form, but in
a form which is sufficient for our purpose.

BepLev1.1 Theorem of Beppo Levi. Let fn : I → R be a sequence of absolutely
integrable real valued continuous functions on some (not necessarily compact)
interval I. We assume that fn converges pointwise to some continuous function
f . Assume furthermore

f1(x) ≤ f2(x) ≤ · · · for all x ∈ I

and that the sequence of integrals
∫
I
fn(x)dx is bounded. Then f is absolutely

integrable too and we have

lim
n→∞

∫

I

fn(x)dx =

∫

I

f(x)dx.

LebLim1.2 Theorem (Lebesgue limit theorem). Let fn : I → C be a sequence
of absolutely integrable continuous functions on some (not necessarily compact)
interval I. We assume that fn converges pointwise to some continuous function
f . Assume furthermore that there exists an absolutely integrable continuous
function g with the property

|fn(x)| ≤ |g(x)| for all a ∈ N, x ∈ I.

Then f is absolutely integrable too and we have

lim
n→∞

∫

I

fn(x)dx =

∫

I

f(x)dx.

The limit theorems can be reformulated for infinite series. We formulate a
theorem that uses both.
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BepLes1.3 Theorem. Let fn : I → C be a sequence continuous and absolutely
integrable functions and assume that the series

f(x) =
∞∑

n=1

fn(x), h(x) =
∞∑

n=1

|fn(x)|

converge to continuous functions f, h. Assume that the partial sums of integrals

N∑

n=1

∫

I

|fn(x)|dx

are bounded. Then f(x) is integrable and summation and integration can be
interchanged.

Proof. One applies the Theorem of Beppo Levi to the sequence
∑N

n=1 |fn(x)|dx
and then the Lebesgue limit theorem to

∑N
n=1 fn(x)dx. ⊔⊓

2. The simplest theta function

The series
∞∑

n=1

qn = 1 + q + q2 + · · ·

converges for |q| < 1. We claim that it has no zero there. This follows from
the explicit formula

1

1− q
=

∞∑

n=1

qn

which is known as the geometric series. Without knowledge of this formula it
my be hard to prove this. Since analytic functions are often defined as infinite
series it may be a major problem to determine their zeros.

We give another example. The series

∞∑

n=−∞

qn
2

= 1 + 2q + 2q4 + 2q9 + · · ·

converges also for |q| < 1. This function is very interesting for number theory.
This can be seen if one takes the k-th power (for some natural number k) and
evaluates it by means of the Cauchy multiplication theorem. The result is

( ∞∑

n=1

qn
)k

=
∑

(n1,...,nk)∈Zk

qn
2
1+···+n2

k .
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If we collect terms with fixed n = n2
1 + · · ·n2

k, we get

( ∞∑

n=−∞

qn
)k

=
∑

Ak(n)q
n,

Ak(n) := #{x ∈ Z
k; x2

1 + · · ·+ x2
k = n}.

For example A3(2) = 12, since one can place two ±1 and a 0.

Thenen2.1 Theorem.
∞∑

n=−∞

qn
2 6= 0 (|q| < 1).

We will proof this in Sect. 3.

It turns out to be useful to introduce a new variable z related to q by

q = eπiz.

Because of
|q| = eReπiz = e−πy (z = x+ iy)

we get
|q| < 1 ⇐⇒ y > 0.

Hence we can introduce

ϑ(z) =

∞∑

n=−∞

eπin
2z, y > 0.

This is a special case of the Jacobi theta function which we will study in the
next section.

3. The Jacobi theta function

We denote the upper half plane by

H = {z ∈ C, y = Im z > 0}.

We introduce a new variable w and define

f(w) =
∞∑

n=−∞

eπi(n+w)2z.
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In fact, this is a function of two variables but for a while we want to keep z
fixed and consider it as a function of w. Notice that f(0) = ϑ(z). We give a
short comment on the convergence. For fixed z and w we have

∣∣eπ(n+w)2z
∣∣ = eαn

2+βn+γ

where α < 0. For all but finitely many n we have αn2 + βn+ γ ≤ αn2/2 and
hence domination by the geometric series. A little more effort shows that this
series converges normal*) on H × C. Hence it is continuous and holomorphic
in each of the two variables. The basic thing is that f is periodic for trivial
reason, f(w + 1) = f(w). Hence we can expand it into a Fourier series [FB],
Satz III.5.4.

f(w) =

∞∑

m=−∞

ame2πimw,

am =

∫ 1

0

f(w)e−2πimwdu (w = u+ iv).

Here v can be taken arbitrarily in C.

During the computation of the coefficients there will occur an improper
integral ∫ ∞

−∞

eπizu
2

du (Im z > 0).

We refer to [FB], IV.1 to some comments about such integrals which show as
in the case of the Gamma function that this integral converges and depends
analytically from z. It is known that the value of the integral is 1 for z = i.
The integral transformation t = u

√
y shows that the formula

∫ ∞

−∞

eπizu
2

du =

√
z

i

−1

holds for z = iy. By the principle of analytic continuation the formula will hold
on all z ∈ H if can make the choice of the square root such that it is positive
for z = iy and analytic for all z. This is the case if if we use the principal part
of the logarithm for the definition of the square root, since z/i is never on the
negative of the real axis. Recall that the principal part of the logarithm of a
complex number a 6= 0 is defined as

Log a = log |a|+ iArg a, −π < Arg a ≤ π.

*) A series
∑

fn(z) of continuous functions on a subset D ⊂ R
n is called normally

convergent if every point a ∈ D admits a neighbourhood a ∈ U such there exists a

convergent series
∑

mn of numbers such that |fn(z)| ≤ mn for all z ∈ U ∩ D and

for all n. If D is open, one can demand instead of this that for every compact subset

K ⊂ D there exists a simultaneous majorant for all a ∈ K. Normally convergent

series converge locally uniform.
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Then the principal value of the square root is defined as

√
a = e(Log a)/2 (principal value).

Its real part is Re a = cos(Arg(a)). Hence we see

Re
√
a > 0 if a is not real.

For sake of completeness we mention that the principal value of the square root√
a is positive of a is real and positive, and that

√
a = i

√
|a| for negative a.

Now we evaluate the integral

am =

∫ 1

0

∞∑

n=−∞

eπiz(n+w)2−2πimwdu.

We can interchange summation with integration and then shift the integration
variable u 7→ u− n. The result is

am =

∫ ∞

−∞

eπi(zw
2−2mw)du = e−πim2z−1

∫ ∞

−∞

eπiz(w−m/z)2du.

Now we make the choice of the imaginary part v of w such that w − m/z is
real. After a translation of u we get

am = eπim
2(−1/z)

∫ ∞

−∞

eπizu
2

= eπim
2(−1/z)

√
z

i

−1

.

JTF3.1 Theorem. For (z, w) ∈ H × C the formula

√
z

i

∞∑

n=−∞

eπi(n+w)2z =

∞∑

n=−∞

eπin
2(−1/z)+2πinw.

holds. Both series converge normally on H× C. Here the square root of z/i is
defined by means of the principal part of the logarithm.

The function

ϑ(z, w) =

∞∑

n=−∞

eπin
2z+2πinw

is called the Jacobi theta function. Its zero value (w = 0) is the function ϑ(z)
of our interest. The theta transformation formula implies

ϑ
(
−1

z

)
=

√
z

i
ϑ(z).
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Besides ϑ(z) two similar functions play a role. We set

ϑ̃(z) =
∞∑

−∞

(−1)neπin
2z,

˜̃
ϑ(z) =

∞∑

−∞

eπi(n+1/2)2z.

As ϑ also ϑ̃ can be considered as a special value of the Jacobi theta function

ϑ̃(z) = ϑ(z, 1/2),

and the theta transformation formula gives

ϑ̃(Sz) =

√
z

i
˜̃
ϑ(z).

A trivial formula is
ϑ(Tz) = ϑ̃(z).

LemN3.2 Lemma. We have

ϑ(Tz) = ϑ̃(z), ϑ(TSz) =

√
z

i
˜̃
ϑ(z).

4. Some fundamental sets

The group SL(2,R) consists of all 2×2-matrices with real entries and determi-
nant 1. Each element M of this groups induces a biholomorphic transformation
of the upper half plane H onto itself ([FB], Satz V.7.2)

Mz =
az + b

cz + d
, M =

(
a b
c d

)
.

One has
ImMz =

y

|cz + d|2
and

E(z) = z and (MN)(z) = M(Nz).

Let Γ ⊂ SL(2,R) be a subgroup. A subset F ⊂ H is called a fundamental set
if for every z ∈ H there exists M ∈ Γ such that Mz ∈ F . We are interested in
the group Γ that is generated by the two matrices

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
.

It consists of all products M1 · · ·Mn where the Mi belong to {S, S−1, T, T−1}.
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fundTh4.1 Lemma. The set

F = {z ∈ H; |x| ≤ 1/2, |z| ≥ 1}
is a fundamental set of Γ.

Re

Im

11
2

e
πi
3i

Proof. We assume that there is a point z ∈ F such that Mz is not in F for
all M ∈ Γ. We can assume that |Re z| ≤ 1/2. Then necessarily |z| < 1. Then
| − z−1| ≥ 1 and, as a consequence, Im(−z−1) > Im z. This shows that we can
find a sequence Mn ∈ Γ such that ImMn+1(z) > ImMn(z), |ReMn(z)| < 1.
Then necessarily |Mn(z)| < 1. Hence the sequence Mn(z) converges in the
upper half plane. This shows that

|cnz + dn|, Mn =

(
an bn
cn dn

)
,

converges. Since cn, dn are integers, it follows that cn and dn are constant for
big n. But then the imaginary part of Mn(z) would also be constant for big n.
This is a contradiction. ⊔⊓

A similar result can be obtained for the group Γϑ that is generated by

S =

(
0 1
−1 0

)
, T 2 =

(
1 2
0 1

)
.

The same proof shows the following result.

fundT4.2 Lemma. The set

F̃ϑ = {z ∈ H; |x| ≤ 1, |z| ≥ 1}
is a fundamental set of Γϑ.

Re

Im

1

i

Sometimes it is better to consider a slightly modified fundamental set. If we
cut off the part x ≤ −1/2 of F̃ and add its translate under z 7→ z+2 we obtain
another fundamental set.
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fundTm4.3 Lemma. The set
Fϑ = F ∪ TF ∪ TSF

is a fundamental set of Γϑ.

Re1

i

SF

Re10 3
2

−1 1
2

F TF

TSF

5. Powers of the theta function

We will make use of the transformation formulas of the theta function.

hCon5.1 Lemma. Assume that h(z) is a holomorphic function on the upper half
plane with the property

h(z + 2) = h(z), h(−1/z) = h(z).

Assume that the limits

a = lim
y→∞

h(z), b = lim
y→∞

h(1− 1/z)

exist. Then h is constant.

Proof. Instead of h(z) we consider H(z) = (h(z) − a)(h(z) − b). We want to
a apply the maximum principle and hence have to show that H has a max-
imum in H. It is sufficient to show that there exists a maximum of |H(z)|
in a fundamental set. We take Fϑ. The limit behaviour limy→∞ H(z) =
limy→∞ H(1 − 1/z) = 0 shows that |H(z)| has a mximimum in Fϑ. Since it
is invariant under Γϑ, it has a maximum in H. Hence H is constant. The
constant must be zero. It follows that h(z)− a or h(z)− b is zero. Hence h is
constant. ⊔⊓

ThChar5.2 Theorem. Let k ∈ Z and let f : H → C be a holomorphic function with
the properties

f(z + 2) = f(z), f

(
−1

z

)
=

√
z

i

k

f(z),a)

lim
y→∞

f(z) exists,b)

lim
y→∞

√
z

i

−k

f

(
1− 1

z

)
e−πikz/4 exists.c)
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Then
f(z) = const.ϑ(z)k.

(
The constant is lim

y→∞
f(z)

)
.

Proof. First we notice that the function ϑ(z)r has the properties a),b),c). It
is enough to verify it in the case k = 1. Now we can consider the function
h(z) = f(z)/ϑ(z)r. Since ϑ(z) has no zeros, this is a holomorphic function on
H. Lemma 5.1 shows that it is constant. ⊔⊓



Chapter II. Eisenstein series

1. Convergence of Eisenstein series

It should be known (from Analysis I) that the series

∞∑

n=1

n−s

converges for real s > 1. A possible proof is to compare it with the improper
integral ∫ ∞

1

x−sdx.

A similar argument shows the following result.

KonvE1.1 Lemma. The series

∑

(m,n)∈Z×Z−{(0,0)}

1

(m2 + n2)s

converges for real s if and only if s > 2.

Proof. Here one has to compare with the integral

∫

x2+y2≥1

dxdy

(x2 + y2)s

The integral transformation x = r cosϕ, y = r sinϕ (dxdy = rdrdϕ) shows
that the integral converges if and only if s > 2. We leave the details to the
reader. ⊔⊓

We mention that we now have to consider series

∑

s∈S

as

where S is an arbitrary countable index set, not necessarily N. In this case it
only makes sense to talk about absolute convergence. It means that the series

as1 + as2 + · · ·
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converges absolutely for some ordering of S (which can be considered as a
bijective map N → S). The convergence and the value do not depend on the
choice of the ordering (by the rearrangement theorem). The notion of normal
convergence carries over to the general case in the obvious way.

Let z be a point in the upper half plane. The series

∑

(c,d)∈Z2−{(0,0)}

1

|cz + d|2s .

is a generalization of the series above (take z = i) To compare the series for
arbitrary z with that at i we consider the expression

∣∣∣cz + d

ci + d

∣∣∣

We consider this as a function for real (c, d) and fixed z. We can restrict to
c2 + d2 = 1, since this function is invariant under (x, y) 7→ t(x, y). Since this
defines a compact set this function has a maximum and a minimum. Hence we
get the convergence of the series for all z ∈ H and s > 2. The same argument
works, if we let vary z in a compact neighbourhood. Hence the argument gives
normal convergence which shows that we get a holomorphic function on the
upper half plane. But there is a better result. Consider a domain |x| ≤ C,
y ≥ δ for positive numbers. The estimate

|cz + d|2 = (cx+ d)2 + c2y2 ≥ |cz0 + d|2 where z0 = x+ iδ

shows that we have uniform converge on these domains.

KonE1.2 Theorem. The Eisenstein series

Gr(z) =
∑

(c,d)∈Z2−{(0,0)}

(cz + d)−r, r > 2 (r ∈ Z),

converges normal and even more uniformly in the domains |x| ≤ C, y ≥ δ.

If (c, d) runs through Z
2 − {(0, 0, )}, then also −(c, d) does. This shows that

the Eisenstein series is 0 for odd r. Hence we will consider only even r > 2.
The formula

Gr(z + 1) =
∑

(cz + (c+ d))−r = Gr(z)

shows the periodicity of Gr and a similar rearrangement shows

Gr(−1/z) = zr
∑

(−dz + c)r = zrGr(z).

Finally we consider the limit limy→∞ Gr(z). We can take it term by term since
the convergence is uniform and obtain limy→∞ Gr(z) = 2ζ(r).
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TraEis1.3 Lemma. The Eisenstein series Gr, r even, r ≥ 4, has the properties

Gr(z + 1) = Gr(z), Gr

(
−1

z

)
= zrGr(z)

and
lim
y→∞

Gr(z) = 2ζ(r).

2. Fourier expansion of the Eisenstein series

We need a classical identity. We start with the geometric series

1

1− q
=

∞∑

n=0

qn.

Differentiating and multiplication by q gives

q

(1− q)2
=

∞∑

n=1

nqn.

If we insert
q = e2πiz

we get

π2

(sinπz)2
= (2πi)2

∞∑

n=1

nqn.

A classical identity states

π cotπz =
1

z
+

∞∑

n=1

( 1

z + n
+

1

z − n

)
.

Differentiation gives another classical identity.

π2

(sinπz)2
=

∞∑

n=−∞

1

(z + n)2
.

Hence we obtain

∞∑

n=−∞

1

(z + n)2
= (2πi)2

∞∑

n=1

nqn (y > 0).

Repeatedly differentiation gives the following identity.



14 Kaitel II. Eisenstein series

Partk2.1 Proposition. For natural r ≥ 2 we have

(−1)r
∞∑

n=−∞

1

(z + n)r
=

1

(r − 1)!
(2πi)r

∞∑

n=1

nr−1qn (y > 0).

We arrange the Eisenstein series in the form

Gr(z) = 2ζ(r) + 2
∞∑

c=1

{ ∞∑

d=−∞

1

(cz + d)r

}
.

Now we replace in Proposition 2.1 z by cz and insert it.

Gr(z) = 2ζ(r) +
2(2πi)r

(r − 1)!

∞∑

c=1

∞∑

d=1

dr−1qcd.

Now we collect all pairs (c, d) for fixed n = cd. Introducing the notation

σr(n) =
∑

0<d|n

dr

we get the Fourier expansion of the Eisenstein series:

Gr(z) = 2ζ(r) +
2(2πi)r

(r − 1)!

∞∑

n=1

σr−1(n)q
n

3. Sums of eight squares

We want to relate ϑ(z)k to Gr. The transformations under z 7→ −1/z show
that we should take k = 2r. We only got Eisenstein series of even weight.
Hence we are restricted to the case where k is divisible by 4. (This is not the
end of the theory since the Eisenstein series can be generalized to odd and even
half integer weight r. We will not treat this here.) One of the characteristic

properties is f(−1/z) =
√
−z/i

k
f(z). So we have to divide into two cases.

1) k ≡ 0mod 8: In this case f(−1/z) = zrf(z),

2) k ≡ 4mod 8: In this case f(−1/z) = −zrf(z).

We start with the first case. Here a function with the desired transformation
formula is Gr(z). So one might be attempted to suggest that ϑk and Gr agree
upto a constant factor. But this is not the case, since the Eisenstein series has
period 1 but ϑk not. Hence we have to modifiy this ansatz.
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ModG3.1 Lemma. The function

f(z) = Gr

(z + 1

2

)
, r ≥ 4,

has the property

f(z + 2) = f(z), f(−1/z) = zrf(z).

Proof. The following short proof is due to Elstrodt. One uses the formula

− 1
z + 1

2
= A

(z + 1

2

)
where A =

(
−1 1
−2 1

)
∈ SL(2, Z).

Using A = T−1ST 2S one computes f(−1/z() = zrf(z). ⊔⊓
Now we found two functions Gr(z), Gr((z+1)/2) which both have the cor-

rect transformation formulas a) in Theorem I.5.2. Also b) is satisfied for both,

lim
y→∞

Gr(z) = lim
y→∞

Gr((z + 1)/2) = 2ζ(r).

But the condition c) fails for both. Even the following weaker condition

c′) lim
y→∞

√
z

i

r

f(z) = 0

fails for both as one can check easily (using the following calculation). It looks
promising to introduce a a linear combination

g(z) = aGr(z) + bGr

(z + 1

2

)
.

Then we get

z−rg
(
1− 1

z

)
= aGr(z) + 2rbGr(2z).

The limit for y → ∞ is
ζ(r)(a+ 2rb).

This should be 0. We also should have 2ζ(r)(a + b) = 1. Hence we get the
system

a+ 2rb = 0

2ζ(r)(a+ b) = 1
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EisNr3.2 Theorem. Assume r ≡ 0mod 4, r > 0, k = 2r. Then

g(z) = aGr(z) + bGr

(z + 1

2

)

where

a =
2r−1

ζ(r)(2r − 1)
, b = − 1

2ζ(r)(2r − 1)

satisfies the conditions a),b) in Theorem I.5.2 and the weaker condition c’).
Even more,

lim
y→∞

g(z) = 1.

The identity

z−rg
(
1− 1

z

)
= aGr(z)− 2rbGr(2z)

shows that the left hand side has a Fourier expansion

z−rg
(
1− 1

z

)
= a0 + a1q + a2q

2 + · · · (q = e2πiz).

The condition c’) says that a0 = 0. We then get that the limit

z−rg
(
1− 1

z

)
e−2πiz = a1

exists. This is exactly condition c) in the special case r = 4. With the well-
known value ζ(4) = π2/90 we obtain the following beautiful identity.

AchtQ3.3 Theorem. We have

ϑ(z)8 =
3

π4

(
16G4(z)−G4

(z + 1

2

))
.

A simple calculation now gives the following beautiful formula of Jacobi.

JacFo3.4 Theorem. We have

A8(n) = 16
∑

d|n

(−1)n−dd3.



§4. The Eisenstein series of weight two 17

Proof. If we write q = eπiz, the Fourier expansion G4 reads as

G4(z) =
π4

45
+

32π4

6

∞∑

n=1

σr−1(n)q
2n.

If we define σr−1(n/2) = 0 for odd n, we can rewrite this as

G4(z) =
π4

45
+

32π4

6

∞∑

n=1

σr−1(n/2)q
n.

On the other side

G4

(z + 1

2

)
==

π4

45
+

32π4

6

∞∑

n=1

(−1)nσr−1(n)q
n.

So we get

A8(n) = 16(16σr−1(n/2)− (−1)nσr−1(n)).

This equals the expression in the theorem. For example, for odd n, both
expressions give A8(n) = 16

∑
d|n d

r−1. In the special case of an odd prime p
we have

A8(p) = 16(1 + p3). ⊔⊓

For example, A8(5) = 2016. There are actually solutions with 3 zeros and 5
ones. Their number is 1792, and there are solution with 6 zeros and a one and
a four. Their number is 224. The sum is 2016.

4. The Eisenstein series of weight two

In the case k ≡ 0 mod k there works a similar ansatz,

h(z) = aGr(2z) + bGr(z/2).

The conditions limh(z) = 1 and h(−1/z) = −zrh(z) now lead to

2ζ(r)(a+ b) = 1

a2r + b = 0

Now we obtain in analogy to Theorem 3.2 the following result.
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EisNrz4.1 Theorem. Assume r ≡ 2mod 4, r > 2, k = 2r. Then

h(z) = aGr(z) + bGr

(z + 1

2

)

where

b =
2r−1

ζ(r)(2r − 1)
, a =

1

2ζ(r)(1− 2r)

satisfies the conditions a),b) in Theorem I.5.2 and the condition

c′) lim
y→∞

√
z

i

k

h
(
1− 1

z

)
= 0.

Even more,

lim
y→∞

h(z) = 1.

Proof. It remains to prove c’). We start with a small calculation

Gr

( z − 1

2z − 1

)
= Gr

( z − 1

2z − 1
− 1
)
= Gr

(
− z

2z − 1

)

=
( z

2z − 1

)r
Gr

(
2− 1

z

)
= (2z − 1)rGr(z).

We replace z by z/2 + 1/2 to obtain

Gr

(−1/z + 1

2

)
= zrGr

(z
2
+

1

2

)
.

This implies

z−rh
(
1− 1

z

)
= a2rGr

(z
2
+

1

2

)
+ bGr

(z
2

)
.

Since a2r + b = 0 we obtain c’). Actually we can derive a better result. The
function on the right hand side is a Fourier series of period two. Hence we get
that

lim
y→∞

z−rh
(
1− 1

z

)
e−πiz

exists. This is the condition c) in Theorem I.5.2 in the case k = 4, r = 2. But
the Eisenstein series Gr(z) converges absolutely only for r > 2.

Ro remedy the situation, we will define the Eisenstein series also in weight
r = 2. We realize the the Fourier series converges also and makes sense for
r = 2. Hence we can define G2 through the Fourier series.
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DefGz4.2 Definition. We define

G2(z) =
π2

3
− 8π2

∞∑

n=1

σ1(n)q
n.

The goal of this section is the proof of the following result.

TraEz4.3 Theorem. We have

G2

(
−1

z

)
= z2G2(z)− 2πiz.

Proof. The formula

∞∑

d=−∞

1

(cz + d)r
=

1

(r − 1)!
(2πi)r

∞∑

n=1

nr−1qn

is true for all even r ≥ 2, including r = 2. This implies

∞∑

c=1

{
∞∑

d=−∞

1

(cz + d)r

}
=

(2πi)r

(r − 1)!

∞∑

c=1

∑
dr−1qcd.

The convergence of the left hand side (in this ordering) follows if one looks the
right hand-side, since for real q all terms are positive. This gives us

G2(z) =

∞∑

c=−∞

{ ∞∑

d=−∞
d 6=0 if c=0

1

(cz + d)2

}

A simple calculation shows

G2

(
−1

z

)
= z2G∗

2(z)

where

G∗
2(z) =

∞∑

d=−∞

{ ∞∑

c=−∞
c 6=0 if d=0

1

(cz + d)2

}
.

For lack of absolute convergence we cannot conclude that G2 and G∗
2 agree. In

fact, this is false, but the following relation is true (and Theorem 4.3 follows
from this identity).

G∗
2(z) = G2(z)−

2πi

z
.
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For the proof of this identity we introduce two related functions.

H(z) =

∞∑

c=−∞

{ ∞∑

d=−∞
c2+d(d−1) 6=0

1

(cz + d)(cz + d− 1)

}
,

H∗(z) =

∞∑

d=−∞

{ ∞∑

c=−∞
c 6=0, if d∈{0,1}

1

(cz + d)(cz + d− 1)

}
.

We have

H(z)−G2(z) =
∞∑

c=−∞

{ ∞∑

d=−∞
d 6=0 and d 6=1, if c=0

1

(cz + d)2(cz + d− 1)

}
− 1.

Since
∑

(c,d) 6=(0,0)

|cz + d|−3 converges, we get that in H(z)−G2(z) we have nor-

mal convergence without brackets. Hence we can reorder to prove

H(z)−G2(z) = H∗(z)−G∗
2(z).

Hence it is sufficient to prove H(z) − H∗(z) = 2πi/z. Now the point is that
H(z), H∗(z) both can be summed up:

H(z) = 2, H∗(z) = 2− 2πi/z.

The advantage of the switch to H,H∗ is that they are teloscopic sums, i.e. the
formula

N∑

n=1

(an − an+1) = a1 − aN

can be applied. It immediately follows

∞∑

d=−∞
c2+d(d−1) 6=0

(
1

cz + d− 1
− 1

cz + d

)
=

{
0, falls c 6= 0
2 if c = 0,

H∗(z) =

∞∑

d=−∞

{ ∞∑

c=−∞
c 6=0, if d∈[0,1]

[
1

cz + d− 1
− 1

cz + d

]}

= lim
N→∞

N∑

d=−N+1

{ ∞∑

c=−∞
c 6=0, if d∈[0,1]

[
1

cz + d− 1
− 1

cz + d

]}
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= lim
N→∞

[ −1∑

d=−N+1

∞∑

c=−∞

[
1

cz + d− 1
− 1

cz + d

]

+

N∑

d=2

∞∑

c=−∞

[
1

cz + d− 1
− 1

cz + d

]

+

∞∑

c=−∞
c 6=0

[
1

cz − 1
− 1

cz

]
+

∞∑

c=−∞
c 6=0

[
1

cz
− 1

cz + 1

]]

= lim
N→∞

∞∑

c=−∞, c 6=0

[
1

cz −N
− 1

cz +N

]
+ 2.

The last sum is related to the cotangens:

∞∑

c=−∞
c 6=0

[
1

cz −N
− 1

cz +N

]
=

2

z
·

∞∑

c=1

[
1

c−N/z
− 1

c+N/z

]

=
2

z

[
π cot

(
−π

N

z

)
+

z

N

]
.

Wir have to take the limit N → ∞.

2π

z
lim

N→∞
cot

(
−π

N

z

)
=

2π

z
lim

N→∞
i
e−2πiN/z + 1

e−2πiN/z − 1
= −2πi

z
.

The finishes the proof of Theorem 4.3. ⊔⊓
If we consider f(z) = 4G2(2z)−G2(z/2), in the transformation formula the

disruptive term 2πiz cancels out and we obtain

f(−1/z) =
√

z/i
2
f(z)

just as if in G2 this term would not occur. The same is true in all other
calculations and we obtain the following formula.

EiszT4.4 Theorem. We have

ϑ4 =
4G2(2z)−G2(z/2)

π2
.

As application on can derive the following formula due to Jacobi (1828).

SumvQ4.5 Theorem. For n ∈ N we have

A4(n) = 8
∑

4 ∤ d |n

d.

In particular, every natural number is a sum of 4 squares (Lagrange, 1770).
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5. An asymptotic formula

Assume that f(z) is a holomorphic function in the upper half plane with
the properties f(z + 1) = f(z), f(−1/z) = (z/i)rf(z). In addition, assume
limy→∞ f(z) = 0. Then the Fourier series of f must be of the form

f(z) =
∞∑

n=1

anq
n.

This shows that f decreases exponentially for y → ∞. In particular,

lim
y→∞

yr/2|f(z)| = 0.

The essential point now is that the function g(z) = yr/2|f(z)| is invariant,
g(z + 1) = g(z), g(−1/z) = g(z). Hence g takes all its values already in the
fundamental domain F . Since g takes its maximum in F it has a maximum in
H,

|f(z)| ≤ Cy−r/2.

A similar result holds if we demand the weaker condition f(z + 2) = f(z) and
f(−1/z) = (z/i)rf(z). Then we have to demand

lim
y→∞

f(z) = lim
y→∞

(z
i

)r
f
(
1− 1

z

)
= 0.

The same method will give an estimate |f(z)| ≤ Cy−k/4. We use it to estimate
the Fourier coefficients

|an| ≤
∫ 1

0

|f(z)|e2πny.

We specialize this formula to y = 1/n to obtain the following result.

HecAb5.1 Proposition. Let f(z) be a holomorphic function on the upper half plane
with the properties

f(z + 2) = f(z), f
(
−1

z

)
=
(z
i

)r
f(z),

lim
y→∞

f(z) = lim
y→∞

(z
i

)−r

f
(
1− 1

z

)
= 0.

Then the Fourier coefficients satisfy an estimate

|an| ≤ Cnr/2.

It is of interest to compare this with the Fourier coefficients of the Eisenstein
series.
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AbTei5.2 Lemma. For each even r ≥ 4 the estimate

nr−1 ≤ σr−1(n) ≤ ζ(r − 1)nr−1.

holds

Proof. The estimate from below is trivial. The other estimate can be obtained
as follows.

σr−1(n)

nr−1
=

∑
d|n

(
n
d

)r−1

nr−1
=
∑

d|n

d1−r ≤ ζ(r − 1). ⊔⊓

We mention that
lim
σ→∞

ζ(σ) = 1.

AsyDa5.3 Theorem. Let k be natural number that is divisible by 8 and let r = k/2.
Then the asymptotic formula

Ak(n) =
(2π)r

(r − 1)!ζ(r)(2r − 1)

∑

d|n

(−1)n−ddr−1 +O(nr/2)

holds.

We use here the Landau notation. Let f, g, h : D → C be functions on some
subset D ⊂ R which is not bounded above. Then

f(x) = h(x) +O(g(x))

means that there is a constant C such that

|f(x)− h(x)| ≤ Cg(x)

for big enough x. For example f(x) = O(1) means the f is bounded for big
enough x. We leave it as an exercise to show the existence of positive constants
A,B such that

Anr−1 ≤
∑

d|n

(−1)n−ddr−1 ≤ Bnr−1.



Chapter III. Dirichlet series

1. Convergence of Dirichlet series

We consider series of the type

D(s) =

∞∑

n=1

ann
−s.

Such a series is called a Dirichlet series. The most famous Dirichlet series is
the Riemann zeta function

ζ(s) =
∞∑

n=1

n−s.

A Dirichlet series is called (absolutley) convergent if there exists a point s0 in
the the complex plane such that

∞∑

n=1

|ann−s|

converges.

DefPG1.1 Definition. A sequence (an) of complex numbers has at most polynomial
growth if there exist constants C,N such that

|an| ≤ CnN

for almost all n.

Dcp1.2 Lemma. A Dirichlet series converges if an only if its coefficients have
at most polynomial growth.

In the following we use the notation

s = σ + it.

Assume that D(s) converges absolutely for s0. Since

|t|−s = t−σ
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it converges for σ > σ0. For a convergent Dirichlet series we define

σ0 = Inf{σ ∈ R;
∑

|an|n−σ converges}.

Here Inf means the usual infimum inf if the set is bounded from below and −∞
else. We see that the Dirichlet series converges absolutely for σ > σ0 and not
absolutely for any S with σ < σ0. We can say nothing about the behaviour for
σ = σ0. We call σ0 the abscissa of absolute convergence.

It can happen that a Dirichlet series converges, but converges non absolutely,
at some point. For example, the series

∞∑

n=1

(−1)nn−s

converges for s = 1 but does not converge absolutely there. This can be
investigated systematically by means of the rests on the following elementary
formula (Abel’s partial summation).

AmPS1.3 Lemma. Let a(n) be a sequence of real numbers and let for real x be

A(x) =
∑

n≤x

a(n).

Then for every continuously differentiable function

f : [x, y] −→ C, 0 < x < y, (x, y real)

the following formula holds.

∑

x<n≤y

a(n)f(n) = A(y)f(y)−A(x)f(x)−
∫ y

x

A(t)f ′(t)dt.

Proof. We give just a sketch. The formula is trivial if the interval [x, y] contains
no natural number in its interior. If the formula is true for intervals [x, y], [y, z],
then it is true of [x, z]. ⊔⊓

BedK1.4 Theorem. Assume that D(s) =
∑

ann
−s is a Dirichlet series such that

A(x) =
∑

n≤x

an

is bounded. Then D(s) converges (non necessarily absolutely) for Re s > 0 and
represents an analytic function there.
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We apply Abel’s partial summation of f(t) = t−s to obtain

∑

x<n≤y

ann
−s = A(y)y−s −A(x)x−s + s

∫ y

x

A(t)t−s−1dt.

Hence we obtain for a given ε and a fixed s with Re s > 0 that

∣∣ ∑

x<n≤y

ann
−s
∣∣ ≤ ε for y > x > N(ε).

By means of the Cauchy convergence criterium we get the convergence. It is
clear that this estimate can be given locally uniform. ⊔⊓

As an example this shows that

∞∑

n=1

(−1)nn−s

converges and represents an analytic function for Re s > 0. But it converges
absolutely only for Re s > 1.

Another remarkable result is the following theorem.

PosKo1.5 Theorem. Let
∞∑

n=1

ann
−s, an ≥ 0,

be a Dirichlet series with real, non-negative coefficients and let σ0 ist abscissa
of absolute convergence. Then it is not possible to extend D(s) analytically to
any open neighbourhood of σ0.

Proof. We can assume σ0 = 0 (replace s by s − s0). We argue indirectly and
assume that D(s) can be extended analytically into a small disk around 0. The
there exists a positive number ε > 0 such that D(s) is analytic in the disk
|z − 1| < 1 + 2ε. In particular, the Taylor sereis at s = 1 will converge at −ε.
We compute it:

D(s) =
∞∑

m=0

1

m!
D(m)(1)(s− 1)m,

D(m)(s) = (−1)m
∞∑

n=1

an(logn)
mn−s.

This implies

D(s) =
∞∑

m=0

{
∞∑

n=1

an(log n)
mn−1

}
(−1)m

m!
(s− 1)m.
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We can insert s = −ε.

D(−ε) =
∞∑

m=0

{
∞∑

n=1

an(log n)
mn−1

}
(ε+ 1)m

m!
.

All entries in this double series are positive. Hence we can rearrange the sum.
We sum first over m and then over n.

D(−ε) =

∞∑

n=1

{
∞∑

m=0

(ε+ 1)m

m!
(log n)m

}
ann

−1.

The inner sum is e(ε+1) logn = nε+1. Hence

D(ε) =
∞∑

n=

an
1

n−ε
.

This means that the Dirichlet series converges also absolutely for s = −ε. This
is a contradiction to σ0 = 0. ⊔⊓

The essential point now is that all terms in this double series are non-
negative real numbers. Hence we can apply the (great) rearrangement theorem
on sum first over m and then over n. the result is the series D(s) at s = −ε.
Hence this series converges (of course absolutely) ind contrast to the assumption
σ0 = 1. ⊔⊓

2. The functional equation for the Riemann zeta function

In this section we will prove the following famous result of Riemann

FuRi2.1 Theorem. The Riemann zeta function

ζ(s) =

∞∑

n=1

n−s

converges absolutely for Re s > 1 and represents there an analytic function. It
extends to a meromorphic function in the whole plane which is analytic outside
s = 1. Here it has a pole of first order and residue 1. The function

ξ(s) = π−s/2Γ
(s
2

)
ζ(s)

is a meromorphic function that satisfies the functional equation

ξ(s) = ξ(1− s).
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Proof. We will reduce this to the inversion formula for the theta function ϑ.
We start with the gamma integral

Γ(s) =

∫ ∞

0

tse−t dt

t
.

We replace the integration variable t by n2t for a natural number n. Then we
obtain

Γ(s)n−2s =

∫ ∞

0

tse−tn2 dt

t
.

Now sum over n on the lest hand side we get Γ(s)ζ(s). One the right hand side
one interchanges sum und integration to obtain

R(s) := π−sΓ(s)ζ(2s) =

∫ ∞

0

ts
ϑ(it)− 1

2

dt

t
.

So we have R(s) = ξ(2s). We divide this integral into two parts

R1 +R2 =

∫ ∞

1

+

∫ 1

0

.

There exists a constant C such that
∣∣∣ϑ(it)− 1

2

∣∣∣ ≤ Ce−t for t ≥ 1.

Hence R1 extends to an holomorphic function in the whole plane. To treat R2

we use the transformation t → 1/t to obtain

R2(s) =

∫ 1

0

t−sϑ(i/t)− 1

2

dt

t
.

Now we insert the theta inversion formula.

R2(s) =

∫ ∞

1

t−s

√
tϑ(it)− 1

2

dt

t
=

∫ ∞

1

t−s

√
t(ϑ(it)− 1) +

√
t− 1

2

dt

t

= R1(1/2− s) +
1

2

∫ ∞

1

t1/2−s dt

t
− 1

2

∫ ∞

1

t−s dt

t

= R1(1/2− s) +
1

2

( 1

1/2− s
+

1

s

)
.

This gives us

R(s) = R1(s) +R1(1/2− s) +
1

2

( 1

1/2− s
+

1

s

)
.

This formula has been proved under the assumption σ > 1. But the right hand
side is an analytic continuation to the whole plane with two exceptional poles
at s = 0 and s = 1/2. The right hand hand side is invariant under s 7→ 1/2−s.
This means that ξ(s) is invariant under s 7→ 1 − s which is the functional
equation of the zeta function.
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The Euler product

We start with the geometric series

(1− p−s)−1 =

∞∑

ν=0

p−νs

which converges for Re s > 1. We apply this to the first m primes

Pm = {p1, . . . , pm}

and take the product

m∏

k=1

(1− p−s
k )−1 =

m∏

k=1

∑
p−νs
k .

We apply the Cauchy multiplication formula (term by term) to obtain

m∏

k=1

(1− p−s
k ) =

∞∑

ν1,...,νm=0

(pν1

1 · · · pνm

n )−s =
∑

n∈A(m)

n−s

where A(m) denotes all natural numbers which are not divisible by any prime
outside Pm. Here we have to use the result of elementary number theory that
every natural number has a unique decomposition into primes. We obtain

lim
m→∞

m∏

k=1

(1− p−s
k )−1 =

∞∑

n=1

n−s.

EulP2.2 Theorem. The Riemann zeta function

ζ(s) =

∞∑

n=1

n−s

admits for Res > 1 an expansion into an infinite product

ζ(s) =
∏

p

(1− p−s)−1 (extended over all primes).

Here and in the following
∏

p and similarly
∑

p always means that the product
or sum has to be taken over all primes. It remains to show that the product
converges (normally) in the sense of infinite products. This means that

∑

p

|1− (1− p−s)−1|
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converges normally. This follows from the estimate

∑

p

∑

m

|p−ms| ≤
∞∑

n=1

|n−s|. ⊔⊓

Now we restrict to real s > 1. Since the real log x is continuous for x > 0 we
obtain

log ζ(s) =
∑

p

∞∑

k=1

1

k
p−ks ≤

∑

p

p−s +
∑

p

∞∑

k=2

p−ks.

By means of the geometric series we get

log ζ(s) ≤
∑

p

p−s + ζ(2).

SumP2.3 Theorem. The series ∑

p

1

p

diverges.

Proof. Otherwise the function log ζ(s) would be bounded for s → 1 which is
not possible, since ζ(s) has a pole at s = 1. ⊔⊓

Later we will derive much better prime number theorems from the Riemann
zeta function.

We finish this section with a first comment for the zeros of the zeta function.
From the functional equation we see that ζ(s) has zeros at the even negative
integers. These zeros are called the trivial zeros. From the Euler product
one sees that there are no zeros in the half plane Re s > 1. Again using the
functional equation we see that in the half plane Re s < 0 there are only the
trivial zeros. Hence the non-trivial zeros are all in the strip 0 ≤ σ ≤ 1. The
famous Riemann conjecture says that all non-trivial zeros lie on the middle of
this strip (Re s = 1/2). This conjecture is still unsolved.

3. Hecke’s inversion theorem

The following generalization of the functional equation of the Riemann zeta
function is due to Hecke. First we give a generalization of ϑ(z).

EckDef3.1 Definition. Let λ, r be positive real numbers and let ε = ±1. The space

[λ, r, ε]
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consists of all Fourier series

f(z) =
∞∑

n=0

ane
2πinz

λ

with the following properties:

1) The sequence (an) has at most polynomial growth. In particular, f(z) gives
a holomorphic function f : H → C.

2) The functional equation

f
(
−1

z

)
= ε
(z
i

)r
f(z)

is satisfied where the root is defined to have positive imaginary part.

We notice that

ϑ(z) ∈
[
2,

1

2
, 1
]
.

Other examples are

Gr(z) ∈ [1, r, (−1)r/2] for even r > 2.

Now we define a similar space of Dirichlet series. Let R be a meromorphic
function in the complex plane. It is called decaying in a vertical strip a ≤ σ ≤ b
if there exists for every ε > 0 a constant C such that

|R(s)| ≤ ε for a ≤ σ ≤ b, |t| ≥ C.

(In particular there is no pole in this region.)

GeschD3.2 Definition. Let λ, r be positive real numbers and let ε = ±1. The space

{λ, r, ε}
consists of all Dirichlet series

D(s) =

∞∑

n=1

ann
−s

wit the following properties:

1) The Dirichlet series is convergent.
2) The function that is represented in the convergence half plane by D(s) can

be extended to a meromorphic function on the whole plane. It is analytic
outside s = r and has in s = r at most a pole of order one.

3 It satisfies the functional equation

R(s) = εR(r − s) where R(s) =
(2π
λ

)−s

Γ(s)D(s).

4) The meromorphic function R(s) decays in any vertical strip.

An example is

ζ(2s) ∈
{
2,

1

2
, 1
}
.

(The condition 4) will be proved a little later.)
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HecTh3.3 Theorem. The assignment

f(z) =
∞∑

n=0

ane
2πinz/λ 7−→ D(s) =

∞∑

n=1

ann
−s

defines an isomorphism
[λ, r, ε]

∼−→ {λ, r, ε}.
The residue of D at s = r is

Res(D, r) = a0

(2π
λ

)r
Γ(r)−1.

In particular, D is holomorphic if and only if a0 = 0.

Proof. The first part of the proof is very similar to the proof of the functional
equation of the Riemann zeta function, hence we can keep short. As in the
case of the Riemann zeta function one proves

R(s) =

∫ ∞

0

ts(f(it)− a0)
dt

t
.

Then we decompose

R(s) = R1(s) +R2(s) =

∫ ∞

1

+

∫ 1

0

.

The first integral converges in the whole s-plane and defines a holomorphic
function there. In the second integral we transform t by 1/t and apply the
involution formula for f . This gives

R(s) = R1(s) + εR1(r − s)− a0

( ε

r − s
+

1

s

)
.

Meromorphic continuation and functional equation are obvious.

It remains to prove that R(s) decays in arbitrary vertical strips. It is enough
to show this for R1(s). Since |ts| = tσ, it is clear that R(s) is bounded in
vertical strips. Partial integration u(t) = f(it) − a0, v(t) = ts−1 shows that
R1(s) decays in vertical strips.

We come to the second part of the proof, the reverse direction. We start
with Mellin’s inversion formula

e−z =
1

2π

∫ ∞

−∞

Γ(σ + it)

zσ+it
dt.

Here we have to assume σ > 0 and Re z > 0. The power

zσ+it = e(σ+it) log z
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is defined through the principal branch of the logarithm. We do not prove this
formula here (s. [FB], Hilfssatz VII.3.5). We just mention that it rests on the
fact that Γ(s) is rapidly decreasing on vertical strips in the following precise
sense.

Let ε be an arbitrary small positive number, 0 ≤ ε < π/2. In every strip

a ≤ σ ≤ b, |t| ≥ ε,

there is an estimate
|Γ(s)| ≤ Ce−(π/2−ε)|t|

with a suitable constant C = C(a, b, ε).

Now we define
f(z) =

∑

n=0

ane
2πinz

λ ,

where a0 will be determined later. Now we insert the Mellin formula to obtain
for big enough σ (bigger than the abscissa of convergence of D(s))

f(iy)− a0 =
1

2π

∞∑

n=1

an

∫ ∞

−∞

Γ(s)(
2π
λ ny

)s dt =
1

2π

∫ ∞

−∞

R(s)

ys
dt.

Since Γ(s) decreases fast enough, there is no problem with interchanging inte-
gration and summation. Now we want to shift the integration line from σ to
the left (to r − σ).

σ0r−σ

iN

−iN

r

To be precise, one has to integrate along the rectangle in the and then to take
the limit N → ∞. The contribution of the horizontal lines tends to zero, since
R(s) is decaying. So we get

f(iy)− a0 =
1

2π
lim

N→∞

∫ N

−N

R(r − s)

yr−s
dt+Res

(
R(s)

ys
, 0

)
+Res

(
R(s)

ys
, r

)
.

The functional equation R(r − s) = εR(s) shows that limN
−N is actually an

absolutely convergent integral
∫∞

−∞
No we depose of the constant

a0 := −Res

(
R(s)

ys
; s = 0

)
= −Res(R(s); s = 0).
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The functional equation for R(s) now gives

f

(
i

y

)
= εyrf(iy)

and we get by analytic continuation

f

(
−1

z

)
= ε
(z
i

) r
f(z).

This finishes the proof of Hecke’s theorem 3.3. ⊔⊓

A generalization

Instead of a number ǫ = ±1 we introduce a matrix

ε ∈ GL(N,C), ε2 = E unit matrix.

A function f : H → C
N is called holomorphic if each of its components is

holomorphic.

EckDefz3.4 Definition. Let λ, r be positive real numbers and let ε =∈ GL(N,C),
ε2 = E. The space

[λ, r, ε]

consists of all Fourier series

f(z) =
∑

n

ane
2πiz
λ , an ∈ C

N

with the following properties:

1) The sequence an (i.e. its components) has at most polynomial growth. In
particular, f(z) gives a holomorphic function f : H → C

N .
2) The functional equation

f(z) = ε
(z
i

)r
f(z)

is satisfied where the root is defined to have positive imaginary part.

Hecke’s inversion theorem can be carried over literally to the general case.

HecThz3.5 Theorem. Theorem 3.3 carries over to the case of a general ε ∈
GL(N,C), ε2 = E.

Proof. From linear algebra one knows that every matrix of finite order can be
diagonalized. This means that there exists A ∈ GL(N,C) such that AεA−1 is
a diagonal matrix. The entries must be ±1. Hence the proof the theorem can
be reduced to the special case. ⊔⊓
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VaHec3.6 Theorem. Let f : H → C be an analytic function. Assume that f(z) as
well as

g(z) :=
(z
i

)−r

f

(
−1

z

)

can be expanded into a Fourier series of the kind

f(z) =
∞∑

n=0

ane
2πinz

λ , g(z) =
∞∑

n=0

bne
2πinz

λ

where the coefficients have at most polynomial growth Then the two Dirichlet
series

Df (s) =

∞∑

n=1

ann
−s, Dg(s) =

∞∑

n=1

bnn
−s

can be expanded into the full plane as meromorphic functions. The satisfy the
relation

Rf (s) = Rg(r − s) where Rf (s) =

(
2π

λ

)−s

Γ(s)Df (s) (analogously Rg).

The functions (s− r)Df (s) und (s− r)Dg(s) are holomorphic and we have

Res(Df ; r) = a0

(
λ

2π

)r

Γ(r)−1, Res(Dg; r) = b0

(
λ

2π

)r

Γ(r)−1.

Proof. Apply the previous theorem to the pair (f, g) (and the matrix
(
0 1
1 0

)
).

⊔⊓

4. More Euler products

We study in more detail the space [1, r, (−1)r/2] for even r. Its elements have
the transformation formula

f(z + 1) = f(z), f(−1/z) = zrf(z).

This are called modular forms. The have the more general transformation
property

f
(az + b

cz + d

)
= (cz + d)rf(z), M =

(
a b
c d

)
∈ SL(2, Z).

To prove this, we introduce the Petersson notation

(f |M)(z) = (cz + d)−rf(Mz)

for M ∈ GL(2,R), detM > 0. An easy computation shows

f |MN = (f |M)|N.

So we see that the general transformation formula follows for MN if it is true
for M,N . Since it is true for the generators T , S, it must be true in general.
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5. Characters

A character of a group G is a homomorphism χ : G → S1 into the group S1

of complex numbers of absolute value 1. The product of two characters is a
character, the group Ĝ of all characters is a group as well. If a is a real number,
then

χa : Z −→ S1, χa(x) = e2πiax,

is a character of (Z,+). The real number is determined mod 1. In other words
χa depends only on the image of a in R/Z. An elementary result shows that

R/Z
∼−→ Ẑ, a 7−→ χa,

is an isomorphism. Next we treat the group Z/ℓZ, ℓ > 0. This is a finite group.
There is a natural surjective homomorphism Z → Z/ℓZ. If we compose an
arbitrary function f : Z/ℓZ → C with this homomorphism, we get a function
on Z with period ℓ and every function with period ℓ arises in this way. For
sake of convenience we denote this function on Z by the same letter f . Hence
f(a) makes sense for a ∈ Z/ℓZ and for a ∈ Z. For any integer a we can define

χ(ℓ)
a (x) = e2πiax/l.

This does not change if we replace x by x+ nℓ. Hence it defines a function

χ(ℓ)
a : Z/ℓZ −→ S1.

It is obviously a character. This character does not change if an replaces a by

a+ nℓ. Hence on can define χ
(ℓ)
a for a ∈ Z/ℓZ. We will use the notation

χ(ℓ)
a (x) = e2πiax/l

also for a, x ∈ Z/ℓZ in the obvious way.

ChIs5.1 Lemma. The map

Z/ℓZ
∼−→ Ẑ/ℓZ

is an isomorphism.

Proof. Just use the character is determined by the image of 1. ⊔⊓
Let G1, G2 be two groups and G = G1 ×G2 their cartesian product (com-

ponentwise multiplication). Let χ be a character on G. Then χ1(g) = χ(g, e)
is a character of G1 and similarly for G2. Conversely, let χi be characters of
Gi then χ(g1), χ(g2) is a character of G. Hence we obtain ̂G1 ×G2

∼= Ĝ1 × Ĝ2.
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AbCh5.2 Proposition. Let A be a finite abelian group. Then the groups Â of
characters is isomorphic to A. For every a 6= 0 there exists a character χ with
the property χ(a) 6= 0.

Proof. This follows from the main theorem for finite abelian groups. It states
that any finite abelian group is isomorphic to a direct product of finitely many
groups of the form Z/ℓZ. ⊔⊓

ChaSu5.3 Lemma. Let A be a finite abelian group. Then
∑

χ∈Â

χ(a) =

{
#A if a = 0,
0 if a 6= 0

∑

a∈A

χ(a) =

{
#A if χ = e,
0 if χ 6= e

.

Proof. We treat the first part. We can assume a 6= 0. Then there exists a
character χ′ with the property χ′(a) 6= 1. We have∑

χ∈Â

χ(a) =
∑

χ∈Â

χχ′(a) = χ′(a)
∑

χ∈Â

χ(a).

This shows that the sum is zero. The second part is similar. ⊔⊓
A special case is the formula

∑

ν mod ℓ

e2πiνa/ℓ =
{
ℓ if a = 0 in Z/ℓZ
0 else

,

where “νmod ℓ” means that we have to sum over Z/ℓZ which is the same as
the sum over a system of representatives of Z/ℓZ in Z. This formula can be
proved also by means of the geometric sum formula.

A slight generalization of the first formula in the Lemma 5.3 states

ChaSuz5.4 Lemma. Let A be an abelian group and a, b be two elements of A. Then
∑

χ∈Â

χ̄(a)χ(b) =
{
#A if b = a,
0 else.

.

Proof. One uses χ̄(a) = χ(−a) to reduce the statement to the previous Lemma.
⊔⊓

Let f : A → C be a complex valued function on a finite abelian group.
Then one can define Â → C by

f̂(χ) =
1

#A

∑

a∈A

f(a)χ(a)−1.

FouF5.5 Proposition. Let f : A → C be a function on a finite abelian group.
Then

f(a) =
∑

χ∈Â

f̂(χ)χ(a).
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Proof. The right hand side is

1

#A

∑

χ∈Â

∑

x∈A

f(x)χ(x)−1χ(a).

We first sum over χ and apply Lemma 5.4. (Use χ̄(x) = χ(x)−1.) ⊔⊓
If we specialize to A = Z/ℓZ and if we use the identification of the dual

group of A with itself, we obtain the following formula for a function f :
Z/ℓZ → Z.

f(a) =
∑

nmod ℓ

f̂(n)e2πina/ℓ where f̂(n) =
1

ℓ

∑

ν mod ℓ

f(ν)e−2πiνn/ℓ.

So far we used that Z/ℓZ is an abelian group. This is not the complete truth. It
is also a ring. As in every ring we can consider the group of invertible elements.
We denote this group by (Z/ℓZ)∗. The coset of an integer n is invertible if
and only of n is prime to ℓ. This follows from a result in elementary number
theory (a consequence of the euclidian algorithm) that for two coprime integers
n, ℓ there exist integers x, y with the property xn+ yℓ = 1. Then x defined an
inverse of n mod ℓ. Hence representatives of (Z/ℓZ)∗ are the natural numbers
in the interval [0, ℓ − 1] that are coprime to ℓ. By the main theorem for finite
abelian groups this group is isomorphic to a product of finitely many cyclic
groups. We will make use of this (but we don’t need the precise structure
that can be determined, as is done usually in a course on elementary number
theory).

DefFi5.6 Definition. A Dirichlet character is a character on the group (Z/ℓZ)∗.

It turns out to be useful to extend a Dirichlet character χ : Z/ℓZ)∗ → S1 to a
function on the whole Z/ℓZ by means of the definition

χ(a) =
{
χ(a) for a ∈ (Z/ℓZ)∗,
0 else.

As we have explained this can considered also as ℓ-periodic function on Z. We
use the same letter χ for it. A function

χ : Z → S1 ∪ {0}
comes from a Dirichlet character mod ℓ if and only if it has the following
properties

χ(n)χ(m) = χ(mn), χ(n+ ℓ) = χ(n), χ(n) = 0 if and only if (n, ℓ) = 1.

Assume that ℓ′ is a divisor of ℓ. Then there are natural homomorphisms

Z/ℓZ −→ Z/ℓ′Z, (Z/ℓZ)∗ −→ (Z/ℓ′Z)∗.

It may happen that a Dirichlet character χ on (Z/ℓZ)∗ comes from a Dirichlet
character on (Z/ℓZ)∗. This is obviously the case if and only if χ (considered
as function on Z has period ℓ′.
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lisSur5.7 Lemma. Let ℓ′ be a divisor of ℓ. Then the natural homomorphism

(Z/ℓZ)∗ −→ (Z/ℓ′Z)∗

is surjective.

Proof. Let a be an integer that is coprime to ℓ′. We have to find an integer x
such that b = a + xℓ′ such that b is coprime to ℓ. Just take x such that it is
coprime to to the greatest common divisor of a and l. ⊔⊓

PriDC5.8 Definition. A Dirichlet character χ : (Z/ℓZ)∗ → S1 is called primitive

if it is not identically one and if there exists no proper divisor l′|l such that it
comes from a Dirichlet character mod l′.

Let χ be a Dirichlet character mod ℓ. Consider the smallest divisor ℓ′ of ℓ such
that χ comes from a Dirichlet character mod ℓ′. Then this character on Z/ℓ′Z
is trivial or primitive. Hence every non-trivial Dirichlet character is induced by
a primitive one. Hence we can restrict often to primitive Dirichlet characters.

DefGS5.9 Definition. The Gauss sum of a Dirichlet character χ is the following
number

G(χ) =
∑

amod ℓ

χ(a)e2πia/ℓ.

rPi5.10 Lemma. We have G(χ̄) = χ(−1)G(χ).

The proof is easy and can be omitted. ⊔⊓
Recall that we extended a Dirichlet character χ (by zero) to a function on

Z/ℓZ. We can consider the “Fourier transform” χ̂ of this function. This also
a function on Z/ℓZ.

AdMul5.11 Proposition. For a primitive Dirichlet character χ mod ℓ we have

ℓχ̂(−n) = G(χ)χ̄(n) for all n ∈ Z.

Proof. First we treat the case where n and ℓ are coprime. We denote by n̄ an
integer such that nn̄ ≡ 1 mod ℓ. Then χ(n̄) = χ̄(n). We have

χ̄(n)G(χ) =
∑

amod ℓ

χ̄(n)χ(a)e2πia/ℓ.

We now replace a by na. This gives the claim.

So far we didn’t use that χ is primitive. But now, in the case that n and ℓ
are not coprime, we will have to use it. Since χ̄(n) = 0 it is sufficient to show
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χ̂(n) = 0. We write n/ℓ = n′/ℓ′ with coprime n′, ℓ′. Since χ is primitive, it
can’t come from a character on (Z/ℓ′Z)∗ (via (Z/ℓZ)∗ → (Z/ℓZ)∗). Hence χ
can not be trivial on the kernel of this map. Therefore there exists an integer
b, coprime to n such that b ≡ 1 mod ℓ′ but χ(b) 6= 1. We obtain bn ≡ n mod
nℓ′. Since nℓ′ = n′ℓ we get

bn ≡ n mod ℓ.

Now we get

χ̂(n) =
∑

amod ℓ

χ(a)e−2πian/ℓ =
∑

amod ℓ

χ(ab)e−2πiabn/ℓ = χ(b)χ̂(n).

This shows χ̂(n) = 0. ⊔⊓

GauS5.12 Proposition. For a primitive character we have

|G(χ)| =
√
ℓ.

Proof. From the previous proposition we get

ℓ2|G(χ̄)|2 = χ̂(n)χ̂(n).

We sum over n.

|G(χ̄)|2 1

ℓ2
ℓ#(Z/ℓZ)∗ = #(Z/ℓZ)∗.

The claim follows immediately. ⊔⊓

6. Dirichlet L-functions

Dirichlet L-functions are generalizations of the Riemann zeta function. They
are defined for a Dirichlet character χ : (Z/ℓZ)∗ → S1 through

L(s, χ) =
∑

n=1∞

χ(n)n−s

For ℓ = 1 (and the trivial character) this function agrees with the Riemann
zeta function.
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DirPr6.1 Proposition. The Dirichlet series

L(s, χ) =
∑

n=1∞

χ(n)n−s

converges absolutely for σ > 1 an represents a holomorphic function there. It
admits an absolutely convergent product expansion.

L(s, χ) =
∏

(1− χ(p)p−s)−1 (σ > 1).

In particular, it has no zero for σ > 1.

For a Dirichlet character χ(−1)2 = 1, hence χ(−1) = ±1. We call χ even if
χ(1) = 1 and odd if χ(−1) = −1. For an even character we have χ(n) = χ(−n)
and for an odd one we have χ(n) = −χ(n).

We set

δ =

{
0 if χ is even,
1 if χ is odd.

FunLF6.2 Theorem. Let χ : (Z/ℓZ)∗ → S1 be a primitive Dirichlet character mod
ℓ. Then the L-series L(s, χ) extends to a holomorphic function in the whole
complex plane. It satisfies the functional equation

(π
ℓ

)− s+δ

2

Γ
(s+ δ

2

)
L(s, χ) =

G(χ)

iδ
√
ℓ

(π
ℓ

)− 1−s+δ

2

Γ
(1− s+ δ

2

)
L(1− s, χ̄).

Proof. The proof is similar to the proof of the functional equation of the
Riemann zeta function. It uses a generalization of the theta inversion formula.
To formulate it, we introduce for an arbitrary function

f : Z/ℓZ −→ C

the theta function

ϑf (z) =

∞∑

n=−∞

f(n)e2πizn
2/ℓ.

ThChaF6.3 Proposition. We have

ϑf

(
−1

z

)
=

√
z

iℓ
ϑf̂ (z).
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Proof. It is sufficient to prove this formula for functions f of the type

f(n) = e2πina/ℓ,

since every f can be written as linear combination of them. Then

f̂(n) =
∑

ν mod ℓ

e2πi(n−ν)a)/ℓ =
{
ℓ for n = 0,
0 else

.

Now the stated formula follows from

∞∑

n=−∞

eπi(−n2/z+2na) =

√
z

i

∞∑

n=−∞

eπi(n+a)2z.

(Just replace z by z/ℓ and a by a/ℓ.) The last formula is a special case of the
Jacobi theta transformation formula. ⊔⊓

The formula in Proposition 6.3 is useless in the case that f is odd in the
sense f(n) = −f(−n) because both sides then are 0 for trivial reason. There
is a modification which gives also a reasonable result of odd f .

ThChaFz6.4 Proposition. Let

ϑ̂f (z) =

∞∑

n=−∞

nf(n)e2πinz/ℓ.

Then

ϑ̂f

(
−1

z

)
= i

√
z

iℓ

3

ϑ̂f̂ (z).

Proof. The trick is to differentiate Jacobi’s theta transformation formula by w
to obtain

z

√
z

i

∞∑

n=−∞

(n+ w)eπi(n+w)2z =
∞∑

n=−∞

neπin
2(−1/z)+2πinw

and then to apply the same method as in the proof of Proposition I.5.2. ⊔⊓
We now apply this to f(n) = χ(n) where χ(n) is a primitive Dirichlet

character (to be precise, its extension by 0 to Z/ℓZ). We write

ϑ(z, χ) = ϑχ(z) and ϑ̂(z, χ) = ϑ̂χ(z).

Using the formula for the Fourier transform of χ, we obtain the following result.
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ChiTra6.5 Proposition. Let χ be an even primitive Dirichlet character. Then

ϑ
(
−1

z
, χ
)
= ε

√
z

i
ϑ(z, χ̄) where ε =

G(χ)√
ℓ

.

Let χ be an odd primitive Dirichlet character. Then

ϑ̂
(
−1

z
, χ
)
= ε

√
z

i

3

ϑ̂(z, χ̄) where ε =
G(χ)

i
√
ℓ
.

Now we treat L(s, χ) for a character which is not necessarily primitive. We
know that there exists a divisor ℓ′|ℓ and a primitive character χ′ mod ℓ′ such
that χ(n) = χ′(n) for (n, l) = 1. Hence we have

L(s, χ′) = L(s, χ)
∏

p∤l′, p|l

(1− p−s)−1.

The product is a finite product of meromorphic functions which are holomor-
phic for Re s > 0. Hence we obtain

AnFN6.6 Theorem. Let χ : (Z/ℓZ)∗ → S1 be a (not necessarily primitive)
Dirichlet character. Then L(s, χ) extends to a meromorphic function on the
whole plane. When χ is non-trivial then L(s, χ) is holomorphic for Re s > 0.
In the trivial case it has in Re s > 0 one pole, namely at s = 1 and this pole ha
order one.

If one is only interested in the result that L(s, χ) is holomorphic for Re s in
the case of a non-trivial character, then there is a far easier proof which we
want to explain now. Due to Theorem 1.4 it suffices to show that the sum
A(x) =

∑
n≤x χ(n) remains bounded. From the Lemma 5.3 follows that A(x)

is periodic. Hence we obtain the following result.

AnFoz6.7 Theorem. Let χ be a non-trivial Dirichlet character. The Dirichlet
L-series L(s, χ) converges for Re s > 0 and represents there a holomorphic
function.



Chapter IV. Prime number theorems

1. The Dirichlet prime number theorem

Let a, b be two coprime natural numbers. The Dirichlet prime number theorem
states that there are infinitely man primes p ≡ a mod b. We will prove more.

DPrT1.1 Theorem. Let a, b be coprime natural numbers. The series

∑

p≡amod b

1

p

diverges.

The basic fact for the Dirichlet prime number theorem is the following result
due to Dirichlet.

LenZ1.2 Theorem. For a non-trivial Dirichlet character χ one has

L(1, χ) 6= 0.

Proof. There are two cases.

Case I. We assume that χ 6= χ̄ (i.e. χ is not real. For real σ > 1 we get

logL(σ, χ) =
∑

p

log
(
1− χ(p)

pσ

)−1

=
∑

p

∞∑

n=1

χ(p)m

pmσ
.

Now we introduce the function

P (s) = Pℓ(s) =
∏

χmod ℓ

L(s, χ).

A simple calculation gives

logP (σ) =
∑

p

∞∑

n=1

1

pnσ

∑

χmod ℓ

χ(p)n.
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The second relation in Lemma III.5.3 shows that this expression is non-neagtive.
Hence P (s) ≥ 1 for σ > 1. One the other side we know limPσ→1+ = 0, since in
the product a pole of order one (prinicipal) and two zeros (belonging to χ, χ̄)
produce a zero of P (s) at s = 1.

Case II. χ is real. Then χ can take only values 0,±1. We consider

f(s) = ζ(s)L(s, χ) =
∏

fp(s) where fp(s) =
1

(1− p−s)(1− χ(p)p−s)
.

We get
fp(s) = 1 + p−s + p−2s + . . . for χ(p) = 0,

fp(s) = 1 + 2p−s + 3p−2s + . . . for χ(p) = 1,

fp(s) = 1 + p−2s + p−4s + . . . for χ(p) = −1.

The point is that only non negative real coefficients occur. Hence the Dirichlet
series f(s) =

∑
ann

−s has only non-negative real coefficients, even more, in
the case of a square we see an2 ≥ 1. Now assume that L(1, χ) = 0. The f(s)
extends holomorphically to the whole plane. Now we apply Theorem III.1.5
and obtain that this series converges for all s. In particular, it converges for
s = 1/2. But

∞∑

n=1

ann
−1/2 ≥

∞∑

n=1

an2n−1 ≥
∞∑

n=1

n−1

which gives a contradiction. ⊔⊓
We have collected the tools for the proof of the Dirichlet prime number

theorem. Similar to the proof of Theorem III.2.3 we start with

logL(s, χ) =
∑

p

∞∑

k=1

1

k
χ(pk)p−ks

for real s > 1. We obtain that

LogL(s, χ) =
∑

p

χ(p)p−s +O(1),

where O(1) stand symbolically for a function that remains bounden for s → 1+

(Landau O-symbol). We known that for non-trivial χ we have L(1, χ) 6= 0,
hence logL(s, χ) remains bounded for s → 1+. So we get

∑

p

χ(p)p−s = O(1) for s → 1+ (χ non trivial).

Now we use the character identity III.5.4 to obtain

∑

p≡amod ℓ

p−s =
∑

p

1

ϕ(ℓ)

∑

χ

χ̄(a)χ(p)p−s (ϕ(ℓ) := #(Z/ℓZ)∗).
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We seperate the trivial and the non-trivial characters to show

∑

p≡amod ℓ

p−s =
1

ϕ(l)

∑

p∤ℓ

p−s +O(1) (s → 1+).

We know ∑

p∤ℓ

p−s =
∑

p

p−s +O(1) = ζ(s) +O(1).

Hence ∑

p≡amod ℓ

p−s

remains unbounded for s → 1+. But then

∑

p≡amod ℓ

p−1

cannot converge. ⊔⊓

2. A Tauber theorem

Taub2.1 Theorem. Let a1, a2, a3, . . . be a sequence of non-negative real numbers
such that

D(s) =
∞∑

n=1

ann
−s (an ≥ 0)

converges for σ > 1. We assume:

I. The function (s−1)D(s) admits an analytic continuation to an open subset
that contains the closed half plane σ ≥ 1. D(s) has a pole of order 1 with
residue

̺ = Res(D, 1).

II. There are estimates

|D(s)| ≤ C|t|κ and |D′(s)| ≤ C|t|κ for σ > 1, |t| ≥ 1,

where C, κ are suitable constants.

Then ∑

n≤x

an = ̺(1 + r(x)) where r(x) = O
( 1

N
√
log x

)

with a suitable constant N .
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Proof. Besides A(x) =
∑

n≤x an we will study the higher summatory functions

Ak(x) =
1

k!

∑

n≤x

an(x− n)k.

So we have A0(x) = A(x) and

A′
k+1(x) = Ak(x), Ak+1(x) =

∫ x

1

Ak(x)dt.

We will determine the asymptotic behaviour for all k, not only for k = 0. In
fact, we show now that the asymptotic behaviour for Ak implies that of smaller
k.

AbSt2.2 Lemma. Define rk(x) by

Ak(x) = ̺
xk+1

(k + 1)!
(1 + rk(x)).

Then
rk+1 = O(1/ N

√
log x) =⇒ rk = O(1/ 2N

√
log x).

The Lemma shows that we have it suffices to prove

rk(x) = O(1/ log x)

for big enough k. Later we will prove this for k > κ+ 1.

Proof of Lemma 2.2. The function Ak(x) is monotonically increasing. Hence
for any positive c > 0 we have

cAk(x) ≤
∫ x+c

x

Ak(t) dt (c > 0).

We apply this inequality for some x ≥ 1 and for c = hx where h = h(x),
0 < h < 1 will be determined later. The right hand side equals

Ak+1(x+ hx)−Ak+1(x) =
̺

(k + 2)!

[
(x+ hx)k+2(1 + rk+1(x+ hx))− xk+2(1 + rk+1(x))

]
.

We obtain

1 + rk(x) ≤
(1 + h)k+2

(
1 + rk+1(x+ hx)

)
−
(
1 + rk+1(x)

)

h(k + 2)
.
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Now we set
ε(x) := sup

0≤ξ≤1
|rk+1(x+ ξx)|

to obtain

rk(x) ≤
(1 + h)k+2

(
1 + ε(x)

)
−
(
1− ε(x)

)

h(k + 2)
− 1

=

[
(1 + h)k+2 + 1

]
ε(x)

h(k + 2)
+

(1 + h)k+2 −
[
1 + (k + 2)h

]

h(k + 2)
.

Now we choose h = h(x) =
√
ε(x). For sufficiently big x this smaller than 1

Obviously h and hence also (1 + h)k+2 + 1 is bounded from above. The first
term in the estimate of rk is bounded from above by a constant multiple of
ε(x)/h =

√
ε(x). The second term is a polynomial in h whose constant term

vanishes Up to a constant factor it can be estimated by h =
√

ε(x). Obviously

ε(x) = O
(
1/ N
√
log x

)
.

Hence we have with some bound K which is independent on k

rk(x) ≤ K
√

ε(x).

For an estimate of |rk(x)| we need also an estimate of rk below. By means of
the estimate

cAk(x) ≥
∫ x

x−c

Ak(t) dt = Ak+1(x)−Ak+1(x− c) for 0 < c < x

we obtain along the same lines

rk(x) ≥ −K
√

ε(x)

with some new bound K. We obtain

rk(x) = O
(√

ε(x)
)
, also rk(x) = O

(
1/ 2N

√
log x

)
. ⊔⊓

We need the convergence of the following integral

KonIn2.3 Remark. Let k be a natural number, x > 0 und σ > 1. Then the integral

∫ σ+i

σ−i

|xs+k|
|s(s+ 1) · · · (s+ k)| ds.

converges.
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Here the improper integral along the line Re(s) = σ is defined through

∫ σ+i

σ−i

f(s) ds := i

∫ ∞

−∞

f(σ + it) dt.

The proof of Remark 2.3 is trivial, since the integrand can be estimated by a
constant multiple of 1/σ2. ⊔⊓
On the verical line Re s = σ the series D(s) durch is bounded by the series

∞∑

n=1

|an|n−σ.

Now the Lebesgue limit theorem implies the following result.

KonAb2.4 Corollary. The integral

∫ σ+i

σ−i

D(s)xs+k

s(s+ 1) · · · (s+ k)
ds (k ∈ N, x > 0)

converges absolutely for σ > 1. We can interchange summation and integration

∞∑

n=1

anx
k

∫ σ+i

σ−i

(x/n)s

s(s+ 1) · · · (s+ k)
ds.

We want to prove the integral from Corollary 2.4.

BerInt2.5 Lemma. For k ∈ N and σ > 0 we have

1

2πi

∫ σ+i

σ−i

as

s(s+ 1) · · · (s+ k)
ds =

{
0 for 0 < a ≤ 1,
1
k! (1− 1/a)k for a ≥ 1.

Proof . Let

f(s) =
as

s(s+ 1) · · · (s+ k)
.

1) (0 < a ≤ 1) The integral of f(s) along the integration path γ := γ1 ⊕ γ2

σ

γ1

γ2

R
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vanishes by the Cauchy integral theorem. From 0 < a ≤ 1 follows that the
function as is bounded on the integration contour uniformly in R Take the limt
R → ∞ shows ∫ σ+i

σ−i

f(s) ds = 0.

2) (a ≥ 1). Here we have to use the integration contour γ̃ = γ̃1 ⊕ γ̃2

σ

γ̃1

γ̃2

R

since on this contour as is bounded (uniformly in R). Now the residue theorem
shows

1

2πi

∫ σ+i

σ−i

=

k∑

ν=0

Res(f ;−ν) =

k∑

ν=0

(−1)νa−ν

ν!(k − ν)!
=

1

k!
(1− 1/a)k. ⊔⊓

We now obtain a formula for the generalized summatory function.

SumFu2.6 Lemma. In the case k ≥ 1 and σ > 1 we have

Ak(x) =
1

2πi

∫ σ+i

σ−i

D(s)xs+k

s(s+ 1) · · · (s+ k)
ds.

We apply this lemma for a fixed σ. We take σ = 2. The estimate

|D(s)| ≤ C|tκ| (|t| ≥ 1 , 1 < σ ≤ 2)

holds also for σ = 1. For fixed x we obtain

|D(s)xs+k ds

s(s+ 1) · · · (s+ k)| ≤ Const |t|κ−k−1 (|t| ≥ 1 , 1 ≤ σ ≤ 2),

≤ Const |t|−2, if k > κ+ 1

The Cauchy integral theorem allows to move the integration contour from
(Re(s) = 2) to Re(s) = 1 if we detour the singularity at s = 1. So we consider
the integration path L
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2σ1

1+i

Re

Im

We obtain

Waru2.7 Lemma. In the case k > κ+ 1 we have

Ak(x) =
1

2πi

∫

L

D(s)xs+k

s(s+ 1) · · · (s+ k)
ds

(∫

L

:=

∫ 1−i

1−i∞

+

∫ σ−i

1−i

+

∫ σ+i

σ−i

+

∫ 1+i

σ+i

+

∫ 1+i

1+i

)
.

Now we estimate the two improper integrals along the 5 lines separately. We
start with the two lines from 1 − i to 1 − i and from 1 + i to 1 + i. For this
purpose we need the following Lemma.

LebLem2.8 Lemma (B. Riemann, H. Lebesgue). Let

I = (a, b), −∞ ≤ a < b ≤ ∞,

be some (not necessarily finite) interval and f : I → C a function with the
following properties

a) f is bounded.
b) f is differentiable with continuous derivative.
c) f und f ′ are absolutely integrable (from a to b).

Then the function t 7→ f(t)xit (x > 0) is absolutely integrable too and we have

∫ b

a

f(t)xit dt = O(1/ log x).

Proof . We choose sequences

an → a, bn → b, a < an < bn < b.
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We have

∫ b

a

f(t)xit dt = lim
n→∞

∫ bn

an

f(t)xit dt

=
1

i log x
lim

n→∞

([
f(t)xit

]bn
an

−
∫ bn

an

f ′(t)xit dt

)
.

By assumption, f(t) is bounded and |f ′(t)xit| = |f ′(t)| is integrable. We obtain

∣∣∣
∫ b

a

f(t)xit dt
∣∣∣ ≤ Const

∣∣∣ 1

log x

∣∣∣. ⊔⊓

We now have prepared the tools to estimate Ak(x) foe big k.

rkO2.9 Lemma. In the case k > κ+ 1 we have

rk(x) = O(1/ log x).

Now Lemma 2.8 gives

1

2πi

∫ 1+i

1+i

D(s)xs+k

s(s+ 1) · · · (s+ k)
ds = O(xk+1/ log x),

and similarly for the integral from 1 − i to 1 − i. Hence both integrals only
contribute the remainder term of rk(x)!

Now we look at the integral along the vertical line from σ − i to σ + i. At
the moment we have σ > 1.

Lemma 2.8 implies

1

2πi

∫ σ+i

σ−i

D(s)xs+k

s(s+ 1) · · · (s+ k)
ds = O

(
xk+1x

σ−1

log x

)
.

Unfortunately xσ−1/ log x is in the case σ > 1 not of magnitude O(1/ log). But
we have

xσ−1/ log x = O

(
1

log x

)
if σ ≤ 1.

So it seems to be natural to push the integration contour more to the left.
Actually we know that (s − 1)D(s) extends analytically to an open subset
which contains the half plane {s ∈ C, Re(s) ≥ 1}. There exists σ, 0 < σ < 1,
such that the closed rectangle with vertices σ − i, 2− i, 2 + i and σ + i
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is contained in this open subset. The residue theorem shows

∫

E

∗ =

∫

F

∗ +Res

(
D(s)xs+k

s(s+ 1) · · · (s+ k)
; s = 1

)
.

Here E resp. F are the integration contours

Since D(s) has a pole of order 1 with residue ̺ at s = 1t, the residue can be
computed as

̺

(k + 1)!
xk+1.

This is the main term in the asymptotic formula Ak(x) in Lemma 2.9. All
other terms have to disappear in the remainder. We showed this already for
the integral from σ − i to σ + i (using σ ≤ 1). It remains to treat the two
integrals along the horizontal line from σ + i to 1 + i and from σ − i bis 1− i.
For example we show

∫ 1+i

σ+i

D(s)xs+k

s(s+ 1) · · · (s+ k)
ds = O(xk+1/ log x).

The integral can be estimated as follows.

O
(
xk

∫ 1

σ

xt dt
)
= O(xk+1/ log x).

This finishes the proof of the Tauber theorem. ⊔⊓

3. The prime number theorem

We need some bounds for the Riemann ζ function. For their proof we use
another formula that gives the analytic continuation into the domain Re s > 0.
The proof rests on the function

β(t) = t− [t]− 1/2 ([t] = max{n ∈ Z, n ≤ x}).
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1 2 3−1−2−3

Now we consider the integral

F (s) =

∫ ∞

1

t−sβ(t)
dt

t
.

It converges absolutely for Re s > 0 and represents an analytic function there.
Partial integration shows

∫ n+1

n

β(t)
d

dt
t−s =

1/

2

(
(n+ 1)−s + n−s

)
−
∫ n+1

n

t−sdt.

Summing up, we get

−s

∫ ∞

1

β(t)t−s−1dt = ζ(s) + 1/2−
∫ ∞

0

t−s.

In the domain Res > 1 we have proved

ζ(s) =
1

2
+

1

s− 1
− sF (s).

This gives an analytic continuation of ζ(s) into the half plane Re s > 0 (with
the pole of order 1 at a = 1. The residue is 1). We use this formula to give an
estimate for ζ(s) and its derivatives from above.

AbOb3.1 Proposition. For each integer m ≥ 0 there exists a constant Cm such
that

|ζ(m)(t)| ≤ Cm|t| for |t| ≥ 1 and σ > 1.

Proof. We can assume that σ < 2, since in the domain ζ(m)(s = is bounded
by ζ(m)(2). Hence it is sufficient to prove that F (m) remains bounded in the
domain |t| ≥ 1, 1 < σ < 2. In this domain we have

|F (m)(s)| ≤
∫ ∞

1

(log t)mt−2dt.

Since log t has smaller growth than any power of t we can estimate this by∫∞

1
t−3/2dt up to a constant. ⊔⊓
The heart of the proof of the prime number theorem is an estimate of the

zeta function from below.
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AbUn3.2 Theorem. There exists a constant δ > 0 with

|ζ(s)| ≥ δ|t|−4 for |t| ≥ 1 and σ > 1.

Corollary. The zeta function has no zero for σ = 1.

Proof. We need the following elementary inequaltiy

Re(a4) + 4Re(a2) + 3 ≥ 0 for |a| = 1.

If we apply it to a = n−it/2 we get

Re(n−2it) + 4Re(n−it) + 3 ≥ 0.

Let now

D(s) =
∞∑

n=1

bnn
−s

a Dirichlet series with non-negative real coefficients bn which converges for
σ > 1. Then we get

ReD(σ + 2it) + 4ReD(σ + it) + 3D(σ) ≥ 0.

We apply this to

bn =
{
1/ν if n = pν , p prime,
0 else.

Then

D(s) =
∑

p

∑

ν

1

ν
p−νs = −

∑

p

log(1− p−s).

So we get
eD(s) = ζ(s).

The above inequality now gives

|ζ(σ + 2it)||ζ(σ + it)|4ζ(σ)3 ≥ 1.

It can be rewritten as

∣∣∣∣
ζ(σ + it)

σ − 1

∣∣∣∣
4

|ζ(σ + 2it)|[ζ(σ)(σ − 1)]3 ≥ (σ − 1)−1 (σ > 1).

This inequality implies already that the zeta function has no zero for σ = 1.
But it is not yet the estimate of Theorem 3.2. It is enough to prove this
inequality for σ ≤ 2. To get it, we use the already proved estimate

|ζ(t)| ≤ C0|t| for |t| ≥ 1 and σ > 1.
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Together with the above estimate and using the fact that (σ−1)ζ(σ) is bounded
from below by a positive constant on [1, 2], we obtain

|ζ(s)| ≥ A(σ − 1)3/4|t|−1/4 (1 < σ ≤ 2).

Now we consider
σ(t) = 1 + ε|t|−5

where 0 < ε < 1 is a small positive number which will be determined later. We
consider two cases separately.

Case 1). σ ≥ σ(t). This case is trivial. Here we get

|ζ(σ + it)| ≥ Aε3/4|t|−4.

Case 2). here we use

ζ(σ(t) + it)− ζ(σ + it) =

∫ σ(t)

σ

ζ ′(x+ it)dx.

Using the proved estimate for |ζ ′(t)| from above, we obtain with some positive
constant B ab estimat

|ζ(σ + it)|ge|ζ(σ(t) + it)| −B(σ(t)− 1)|t| ≥ (Aε3/4 −Bε)|t|−4.

Taking ε so small that δ = Ae3/4 −Bε > 0, we get the claimed estimate.
⊔⊓

We prove the prime number theorem in the form.

PNT3.3 Theorem. We define r(x) for real x > 0 by
∑

p≤x

log p = x(1 + r(x)).

Then there exists a natural number N such that

r(x) = O

(
1

N
√
log x

)
,

in particular,

lim
x→∞

∑
p≤x log p

x
= 1.

One can derive in an elementary way the prime number theorem in its usual
form

lim
x→∞

#{p, p ≤ x}
x/ log x

= 1.

Proof of Theorem 3.3. The negative of the logarithmic derivative of the Euler
product of the zeta function is

D(s) = −ζ ′(s)

ζ(s)
=

∞∑

n=1

Λ(n)n−s, Λ(n) =
{
log p if n = pν ,
0 else.

It satisfies the assumptions of the Tauber theorem. This gives the proof of the
prime number theorem. ⊔⊓
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